WorldWideScience

Sample records for tesla cavity modeling

  1. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  2. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  3. TESLA cavity modeling and digital implementation in FPGA technology for control system development

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S.; Simrock, S.

    2006-01-01

    The electromechanical model of the TESLA cavity has been implemented in FPGA technology for real-time testing of the control system. The model includes Lorentz force detuning and beam loading effects. Step operation and vector stimulus operation modes are applied for the evaluation of a FPGA cavity simulator operated by a digital controller. The performance of the cavity hardware model is verified by comparing with a software model of the cavity implemented in the MATLAB system. The numerical aspects are considered for an optimal DSP calculation. Some experimental results are presented for different cavity operational conditions. (orig.)

  4. TESLA superconducting RF cavity development

    International Nuclear Information System (INIS)

    Koepke, K.

    1995-01-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.)

  5. Hydroforming of superconducting TESLA cavities

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.

    2003-01-01

    Seamless fabrication of single-cell and multi-cell TESLA shape cavities by hydroforming has been developed at DESY. The forming takes place by expanding the seamless tube with internal water pressure while simultaneously swaging it axially. Tube radius and axial displacement are being computer controlled in accordance with results of FEM simulations and the experimentally obtained strain-stress curve of tube material. Several Nb single cell cavities have been produced. A first bulk Nb double cell cavity has been fabricated. The Nb seamless tubes have been produced by spinning and deep drawing. Surface treatment such as buffered chemical polishing, (BCP), electropolishing (EP), high pressure ultra pure water rinsing (HPR), annealing at 800degC and baking at ca. 150degC have been applied. The best single cell bulk Nb cavity has reached an accelerating gradient of Eacc > 42 MV/m after ca. 250 μm BCP and 100 μm EP. Several bimetallic NbCu single cell cavities of TESLA shape have been fabricated. The seamless tubes have been produced by explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 mm and 3 mm respectively. The RF performance of NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m after ca. 180 μm BCP, annealing at 800degC and baking at 140degC for 30 hours. The degradation of the quality factor Qo after repeated quenching is moderate, after ca. 150 quenches it reaches the saturation point of Qo=1.4x10 10 at low field. This indicates that on the basis of RF performance and material costs the combination of hydroforming with tube cladding is a very promising option. (author)

  6. Cavity parameters identification for TESLA control system development

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). ELHEP Lab., ISE; Simrock, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  7. Cavity parameters identification for TESLA control system development

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S.

    2005-01-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  8. Overview of electrical axis measurement in TESLA-type cavities

    International Nuclear Information System (INIS)

    Labanc, Anton

    2007-01-01

    The cells of TESLA cavities are mechanically aligned and tuned before the cavities are installed into the cryomodule. The alignment minimizes unwanted interaction of the accelerated beam with the transverse electric field component and the magnetic field of the accelerating TM 010 -π mode. It also reduces an interaction with higher order modes. The tuning equalizes field amplitudes of the accelerating mode in all cells. Until now, the eccentricity (misalignment) of cells is measured mechanically with residual misalignment after tuning up to 0.4 mm. Unfortunately the mechanical measurement is only weakly related to the electromagnetic fields inside a cavity, both for the accelerating and higher order modes. For improvement of the precision a new method of electromagnetic field mapping inside a cavity, based on small perturbation theory was developed. This method can be applied to modes which do not propagate through the beam pipes. In the setup built for the axis measurement a metallic needle is used as field perturbing object. Conducted tests confirmed high precision of 0.1 mm. Tests on the copper model for which it is possible to excite all of considered modes and on several niobium cavities were performed. In this paper an overview of measurement method, equipment and first results are reported. (orig.)

  9. Performance of TESLA Cavities After Fabrication and Preparation in Industry

    CERN Document Server

    Pekeler, Michael; Bauer, Stefan; Knobloch, Jens; Vom Stein, Peter

    2005-01-01

    In order to demonstrate cw operation of TESLA cavities in linear accelerators driving FEL applications, two TESLA cavities were manufactured and prepared by ACCEL for BESSY. After production, both cavities were prepared for vertical test at ACCEL's premises using state of the art chemical polishing and high pressure water rinsing techniques. The cavities were tested in DESY's vertical RF test installation. Accelerating gradients close to 25 MV/m were reached. One cavity was completed with a helium vessel modified for cw operation and prepared with chemical polishing, high pressure water rinsing, and assembled with the required High Power Coupler at ACCEL. The fully dressed cavity was then shipped under vacuum to BESSY and tested in the horizontal cryostat HoBiCaT. Horizontal RF test results will be presented and compared with the vertical test results.

  10. Hydroforming of Tesla Cavities at Desy

    International Nuclear Information System (INIS)

    Singer, W.; Kaiser, H.; Singer, X.; Gonin, I.; Zhelezov, I.; Khabibullin, T.; Kneisel, P.; Saito, K.

    2000-01-01

    Since several years the development of seamless niobium cavity fabrication by hydro forming is being pursued at DESY. This technique offers the possibility of lower cost of fabrication and perhaps better rf performance of the cavities because of the elimination of electron-beam welds, which in the standard fabrication technique have sometimes lead to inferior cavity performance due to defects. Several single cell 1300 MHz cavities have been formed from high purity seamless niobium tubes, which are under computer control expanded with internal pressure while simultaneously being swaged axially. The seamless tubes have been made by either back extrusion and flow forming or by spinning or deep drawing. Standard surface treatment techniques such as high temperature post purification, buffered chemical polishing (BCP), electropolishing (EP) and high pressure ultra pure water rinsing (HPR) have been applied to these cavities. The cavities exhibited high Q - values of 2 x 10 10 at 2K and residual resistances as low as 3 n(Omega) after the removal of a surface layer of app. 100 (micro)m by BCP. Surprisingly, even at high gradients up to the maximum measured values of E acc ∼ 33 MV/m the Q-value did not decrease in the absence of field emission as often observed. After electropolishing of additional 100 (micro)m one of the cavities reached an accelerating gradient of E acc (ge) 42 MV/m

  11. A database for superconducting cavities for the TESLA Test Facility

    International Nuclear Information System (INIS)

    Gall, P.D.; Goessel, A.; Gubarev, V.; Iversen, J.

    2006-01-01

    We look back on 10 years experience using a database for superconducting cavities for the TESLA Test Facility (TTF). The database was developed to collect data of every preparation step and measurement in order to optimize cavity production and preparation techniques to meet the ambitious goal of high accelerating gradients at high quality factors. Data from 110 superconducting 9-cell cavities, 50 single cell cavities, several 2- to 7-cell cavities and about 60 RF couplers were collected in the database. In addition, company measurements on sub-assemblies and parts forming the next 30 9-cell cavities were stored, thus establishing the database as part of a quality management system. This database is dynamically accessible via an extensive graphical web-interface based on ORACLE products, which enables the users to select and analyse the collected data easily from anywhere

  12. Pill-Box Cavity BPM For TESLA Cryomodul

    CERN Document Server

    Sargsyan, V

    2003-01-01

    A new cavity BPM with 10 μm resolution is designed and fabricated to perform single bunch measurements at the TESLA linear collider. In order to have a low energy dissipation in the cryogenic supermodule, the inner surface of the cavity is copper plated. Cross-talk is minimised by a special polarisation design. The electronics, at 1.5 GHz, is a homodyne receiver normalised to the bunch charge. Its LO-signal for down-conversion is taken from the same cavity.

  13. Operating experience with superconducting cavities at the TESLA test facility

    International Nuclear Information System (INIS)

    Moeller, Wolf-Dietrich

    2003-01-01

    A description of the TESLA Test Facility, which has been set up at DESY by the TeV Energy Superconducting Accelerator (TESLA) collaboration, will be given as it is now after five years of installation and operation. The experience with the first three modules, each containing 8 superconducting 9-cell cavities, installed and operated in the TTF-linac will be described. The measurements in the vertical and horizontal cryostats as well as in the modules will be compared. Recent results of the operation at the TESLA design current, macropulses of 800 μsec with bunches of 3.2 nC at a rate of 2.25 MHz are given. New measurement results of the higher order modes (HOM) will be presented. The operation and optimisation of the TTF Free Electron Laser (TTF-FEL) will also be covered in this paper. (author)

  14. Status and outlook for high power processing of 1.3 GHz TESLA multicell cavities

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Barnes, P.; Graber, J.; Metzger, D.; Mofat, D.; Muller, H.; Padamsee, H.; Sears, J.; Tigner, M.; Matheisen, A.

    1993-01-01

    In order to increase the usable accelerating gradient in Superconducting TESLA cavities, the field emission threshold barrier must be raised. As has been previously demonstrated on S-band cavities, a way to accomplish this is with the use of high peak power RF processing. A transmitter with a peak power of 2 Mwatt and 300 μsec pulse length has been assembled and has been used to process TESLA cavities. Several five cell TESLA cavities at 1.3 GHz have been manufactured for this purpose. This transmitter and the cavities will be described and the results of the tests will be presented

  15. First cold test of TESLA superconducting RF cavity in horizontal cryostat (CHECHIA)

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1996-01-01

    In the framework of the TESLA project, the horizontal cryostat (CHECHIA) was built to test a superconducting RF cavity equipped with its helium vessel, magnetic shielding, cold tuner, main coupler and higher order modes couplers under realistic conditions before final assembly of eight cavities into TESLA Test Facility cryo-module. The results of the first cold tests in CHECHIA, performed at DESY with a 9-cell cavity (C19) to be used in the TTF injector are presented. (author)

  16. Cavity digital control testing system by Simulink step operation method for TESLA linear accelerator and free electron laser

    Science.gov (United States)

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced in this paper. The FPGA -- Field Programmable Gate Array technology has been implemented for digital controller stabilizing cavity field gradient. The cavity SIMULINK model has been applied to test the hardware controller. The step operation method has been developed for testing the FPGA device coupled to the SIMULINK model of the analog real plant. The FPGA signal processing has been verified according to the required algorithm of the reference MATLAB controller. Some experimental results have been presented for different cavity operational conditions.

  17. MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab

    2016-09-26

    Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.

  18. Tesla coil theoretical model and experimental verification

    OpenAIRE

    Voitkans, Janis; Voitkans, Arnis

    2014-01-01

    Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...

  19. Achievement of 35 MV/m in the superconducting nine-cell cavities for TESLA

    International Nuclear Information System (INIS)

    Lilje, L.; Kostin, D.; Matheisen, A.; Moeller, W.D.; Proch, D.; Reschke, D.; Simrock, S.; Twarowski, K.; Kako, E.; Saito, K.; Schmueser, P.; Suzuki, T.

    2004-01-01

    The tera electronvolt superconducting linear accelerator TESLA is the only linear electron-positron collider project based on superconductor technology for particle acceleration. In the first stage with 500 GeV center-of-mass energy an accelerating field of 23.4 MV/m is needed in the superconducting niobium cavities which are operated at a temperature of 2 K and a quality factor Q 0 of 10 10 . This performance has been reliably achieved in the cavities of the TESLA test facility (TTF) accelerator. The upgrade of TESLA to 800 GeV requires accelerating gradients of 35 MV/m. Using an improved cavity treatment by electrolytic polishing it has been possible to raise the gradient to 35 - 43 MV/m in single cell resonators. Here we report on the successful transfer of the electropolishing technique to multi-cell cavities. Presently four nine-cell cavities have achieved 35 MV/m at Q 0 ≥ 5 x 10 9 , and a fifth cavity could be excited to 39 MV/m. In two high-power tests it could be verified that EP-cavities preserve their excellent performance after welding into the helium cryostat and assembly of the high-power coupler. One cavity has been operated for 1100 hours at the TESLA-800 gradient of 35 MV/m and 57 hours at 36 MV/m without loss in performance. (orig.)

  20. First cold test of TESLA superconducting RF cavity in horizontal cryostat (CHECHIA)

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1996-01-01

    In the framework of the TESLA project, the horizontal cryostat (CHECHIA) was built to test a superconducting RF cavity equipped with its helium vessel, magnetic shielding, cold tuner, main coupler and higher order modes couplers under realistic conditions before final assembly of eight cavities into TESLA Test Facility cryo-module. The results of the first cold tests in CHECHIA, performed at DESY with a 9-cell cavity (C19) to be used in the TTF injector are presented. Additional measurements of mechanical stability under RF operation (frequency variation with He pressure, Lorentz detuning) and cryogenic and electric measurements of power dissipation are presented. (author)

  1. Cavity-Type BPMs For The TESLA Test Facility Free Electron Laser

    CERN Document Server

    Waldmann, H

    2003-01-01

    For measurements of the beam position at the undulator section of the TESLA Test Facility (TTF) at DESY cavity-type beam position monitors were developed, installed and brought into operation. Besides of some theoretical aspects results of in-beam measurements at the TTF are presented and pros and cons of this monitor concept are discussed.

  2. Test measurement of a new TESLA cavity beam position monitor at the ELBE linac

    International Nuclear Information System (INIS)

    Sargsyan, V.; Schreiber, H.J.; Evtushenko, P.; Schurig, R.

    2004-01-01

    A new type of a cavity BPM proposed for beam position determination along the TESLA linac was tested at the accelerator ELBE in Rossendorf / Dresden. Measurements using an improved BPM (large and stable cross-talk isolation, significantly less energy dissipation, a novel LO signal generation) were performed in single- and multi-bunch regimes. Agreement with expectations was found. The low bunch charge available allowed for preliminary measurements on sensitivity and position resolution, which extrapolated to TESLA would ful l the demands for precise bunch-to-bunch position determination. Possible improvements, in particular on the signal processing scheme, are also discussed. (orig.)

  3. Short bunch wake potentials for a chain of TESLA cavities

    International Nuclear Information System (INIS)

    Novokhatski, Alexander; Mosnier, Alban

    2014-01-01

    The modification of wake fields from a single cavity to a quasi-periodic structure of cavities is of great concern, especially for applications using very short bunches. We extend our former study (Novokhatski, 1997 [1]). A strong modification of wake fields along a train of cavities was clearly found for bunch lengths lower than 1 mm. In particular, the wakes induced by the bunch, as it proceeds down the successive cavities, decrease in amplitude and become more linear around the bunch center, with a profile very close to the integral of the charge density. The loss factor, decreasing also with the number of cells, becomes independent of bunch length for very short bunches and tends asymptotically to a finite value. This nice behavior of wake fields for short bunches presents good opportunity for application of very short bunches in Linear Colliders and X-ray Free Electron Lasers

  4. Cryomodule tests of the TESLA-like superconducting cavity in KEK-STF

    International Nuclear Information System (INIS)

    Kako, Eiji; Sato, Masato; Shishido, Toshio; Noguchi, Shuichi; Hatori, Hirofumi; Hayano, Hitoshi; Yamamoto, Yasuchika; Watanabe, Ken

    2008-01-01

    Construction of STF (Superconducting RF Test Facility) is being carried out at KEK. The STF-Baseline superconducting cavity system, which includes four TESLA-like 9-cell cavities, input couplers and frequency tuners, has been developed for the future ILC project. A 6-m cryomodule including one of four TESLA-like cavities was assembled, and the cryomodule was installed in the tunnel for the initial test, called the STF Phase-0.5. The first cool-down of the cryomodule and high power tests of the cavity had been carried out at 2 K from October to November, 2007. The maximum accelerating gradient (Eacc, max) of 19.3 MV/m was achieved in a specific pulse width of 1.5 msec and a repetition rate of 5 Hz, (23.4 MV/m in a shorter pulse width of 0.6 msec). Compensation of Lorentz force detuning at 18 MV/m was successfully demonstrated by using a piezo tuner. The second cryomodule test for four cavities, called the STF Phase-1.0, is scheduled in July, 2008. (author)

  5. Cryogenic Current Comparator for Absolute Measurement of the Dark Current of the Superconducting Cavities for Tesla

    CERN Document Server

    Knaack, K; Wittenburg, K

    2003-01-01

    A newly high performance SQUID based measurement system for detecting dark currents, generated by superconducting cavities for TESLA is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the nA range with a small signal bandwidth of 70 kHz. To reach the maximum possible energy in the TESLA project is a strong motivation to push the gradients of the superconducting cavities closer to the physical limit of 50 MV/m. The field emission of electrons (the so called dark current) of the superconducting cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. This contribution describes a Cryogenic Current Comparator (CCC) as an excellent and useful tool for this purpose. The most important component of the CCC is a high performance DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted ...

  6. Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities

    International Nuclear Information System (INIS)

    Bane, K

    2008-01-01

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm

  7. Beam orbit control in TESLA superconducting cavities from dipole mode measurements

    International Nuclear Information System (INIS)

    Paparella, R.

    2006-09-01

    The knowledge of the electromagnetic interaction between a beam and the surrounding vacuum chamber is necessary in order to optimize the accelerator performance in terms of stored current. Many instability phenomena may occur in the machine because of the fields produced by the beam and acting back on itself. Basically, these fields, wake-fields, produce an extra voltage, affecting the longitudinal dynamics, and a transverse kick which deflects the beam. In this thesis we present the results of theoretical and experimental investigations to demonstrate the possibility of using the dipolar wake fields of the superconducting accelerating to measure the beam transverse position. After an introduction to the ILC project and to the TESLA technology, of superconducting RF cavities, we will approach the problem from an analytical point of view in chapter 2. The expression of the wake fields in a cylindrical cavity will be investigated and the electromagnetic field modes derived from Maxwell equations in an original way. Graphical solutions of a Matlab program simulating the fields due to a particle passing through a pill-box cavity along a generic path will be shown. The interaction of the beam with higher order modes (HOM) in the TESLA cavities has been studied in the past at the TESLA Test Facility (TTF) in order to determine whether the modes with the highest loss factor are sufficiently damped. Starting from the results obtained before 2003, HOM signals has been better observed and examined in order to use dipole modes to find the electric center of each cavity in the first TTF accelerating module. The results presented in chapter 3 will show that by monitoring the HOM signal amplitude for two polarizations of a dipole mode, one can measure electrical center of the modes with a resolution of 50 μm. Moreover, a misalignment of the first TTF module with respect to the gun axis has been predicted using cavity dipole modes. Alternatives to this method are described in

  8. Cryomodule tests of four Tesla-like cavities in the Superconducting RF Test Facility at KEK

    Directory of Open Access Journals (Sweden)

    Eiji Kako

    2010-04-01

    Full Text Available A 6-m cryomodule including four Tesla-like cavities was developed, and was tested in the Superconducting RF Test Facility phase-I at KEK. The performance as a total superconducting cavity system was checked in the cryomodule tests at 2 K with high rf power. One of the four cavities achieved a stable pulsed operation at 32  MV/m, which is higher than the operating accelerating gradient in the ILC. The maximum accelerating gradient (E_{acc,max⁡} obtained in the vertical cw tests was maintained or slightly improved in the cryomodule tests operating in a pulse mode. Compensation of the Lorentz force detuning at 31  MV/m was successfully demonstrated by a piezo tuner and predetuning.

  9. Diagnostics Upgrades for Investigations of HOM Effects in TESLA-type SCRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Edstrom Jr., D.; Ruan, J. [Fermilab; Thurman-Keup, R. [Fermilab; Shin, Y. [Fermilab; Prieto, P. [Fermilab; Eddy, N. [Fermilab; Carlsten, B. E. [Los Alamos

    2017-08-23

    We describe the upgrades to diagnostic capabilities on the Fermilab Accelerator Science and Technology (FAST) electron linear accelerator that will allow investigations of the effects of high-order modes (HOMs) in SCRF cavities on macropulse-average beam quality. We examine the dipole modes in the first pass-band generally observed in the 1.6-1.9 GHz regime for TESLA-type SCRF cavities due to uniform transverse beam offsets of the electron beam. Such cavities are the basis of the accelerators such as the European XFEL and the proposed MaRIE XFEL facility. Preliminary HOM detector data, prototype BPM test data, and first framing camera OTR data with ~20- micron spatial resolution at 250 pC per bunch will be presented.

  10. Measurement and adjustment of dumb-bells for 9-cell TESLA cavity

    International Nuclear Information System (INIS)

    Xu Wencan; Quan Shengwen; Hao Jiankui; Jiang Tao; Zhang Baocheng; Zhao Kui

    2008-01-01

    Correct Dumb-bells are very important to make sure the right field flatness, frequency of TM010 mode and length of 9-cell TESLA cavity. The shape of the dumb-bells will be wrong due to deep drawing, machining and EB welding. Then, the dumb-bells should be adjusted after iris and stiffness welding according to the mechanical and microwave measurement. Peking University has set up facilities for measuring and correcting the dumb-bells. This paper discusses the method of measuring and correcting the dumb-bells. (authors)

  11. Electropolishing on single-cell: (TESLA, Reentrant and Low Loss shapes) Comsol modelling

    International Nuclear Information System (INIS)

    Bruchon, M.

    2007-01-01

    In the framework of improvement of cavity electropolishing, modelling permits to evaluate some parameters not easily accessible by experiments and can also help us to guide them. Different laboratories (DESY, Fermilab) work on electro or chemical polishing modelling with different approaches and softwares. At CEA Saclay, COMSOL software is used to model horizontal electropolishing of cavity in two dimensions. The goal of this study has been motivated by improvement of our electropolishing setup by modifying the arrival of the acid. The influence of a protuberant cathode has been evaluated and compared for different shapes of single cell cavities: TESLA, ILC Low Loss (LL ILC ), and ILC Reentrant (RE ILC ). (author)

  12. Measuring the performance of the coaxial HOM coupler on a 2-cell TESLA-shape copper cavity

    International Nuclear Information System (INIS)

    Wang Fang; Wang Erdong; Zhang Baocheng; Zhao Kui

    2009-01-01

    Coaxial High Order Mode (HOM) couplers have been fabricated at Peking University and their RF performance has been measured on a test device consisting of a coaxial transmission line and a 2-cell TESLA-shape copper cavity. The test results on the 2-cell TESLA-shape copper cavity with HOM couplers indicate that the coupler can cut off the fundamental mode TM 010 and absorb HOMs effectively after a careful adjustment. The optimal angle of the HOM coupler with the beam tube is found. The initial test results of HOM couplers are presented in this paper. (authors)

  13. Tesla Coil Theoretical Model and its Experimental Verification

    OpenAIRE

    Voitkans Janis; Voitkans Arnis

    2014-01-01

    In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple re...

  14. Tesla Coil Theoretical Model and its Experimental Verification

    Directory of Open Access Journals (Sweden)

    Voitkans Janis

    2014-12-01

    Full Text Available In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is developed to characterize a signal in a long line. Formulas for calculation of voltage in Tesla coil by coordinate and calculation of resonance frequencies are proposed. The theoretical calculations are verified experimentally. Resonance frequencies of Tesla coil are measured and voltage standing wave characteristics are obtained for different output capacities in the single-wire mode. Wave resistance and phase coefficient of Tesla coil is obtained. Experimental measurements show good compliance with the proposed theory. The formulas obtained in this paper are also usable for a regular two-wire long line with distributed parameters.

  15. Business Model Design: Lessons Learned from Tesla Motors

    OpenAIRE

    Chen , Yurong; Perez , Yannick

    2015-01-01

    International audience; Electric vehicle (EV) industry is still in the introduction stage in product life cycle, and dominant design remains unclear. EV companies, both incumbent from the car industry and new comers, have long taken numerous endeavors to promote EV in the niche market by providing innovative products and business models. While most carmakers still take 'business as usual' approach for developing their EV production and offers, Tesla Motors, an EV entrepreneurial firm, stands ...

  16. Highly Sensitive Measurements of the Dark Current of Superconducting Cavities for TESLA Using a SQUID Based Cryogenic Current Comparator

    CERN Document Server

    Vodel, W; Nietzsche, S

    2004-01-01

    This contribution presents a Cryogenic Current Comparator (CCC) as an excellent tool for detecting dark currents generated, e.g. by superconducting cavities for the upcoming TESLA project (X-FEL) at DESY. To achieve the maximum possible energy the gradient of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The undesired field emission of electrons (so-called dark current) of the superconducting RF cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a highly sensitive LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measu...

  17. Simulation Model solves exact the Enigma named Generating high Voltages and high Frequencies by Tesla Coil

    OpenAIRE

    Simo Janjanin

    2016-01-01

    Simulation model of Tesla coil has been successfully completed, and has been verified the procedure and functioning. The literature and documentation for the model were taken from the rich sources, especially the copies of Tesla patents. The oscillating system‟s electrical scheme consists of the voltage supply 220/50 Hz, Fe transformer, capacitor and belonging chosen electrical components, the air gap in the primary Tesla coil (air transformer) and spark gap in the exit of the coil. The inves...

  18. Submacropulse electron-beam dynamics correlated with higher-order modes in Tesla-type superconducting rf cavities

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2018-06-01

    Full Text Available We report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs located before, between, and after them. Oscillations of ∼100  kHz in the vertical plane and ∼380  kHz in the horizontal plane with up to 600-μm amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000  pC/b. However, the effects were much reduced at 100  pC/b. The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.

  19. TESLA: Large Signal Simulation Code for Klystrons

    International Nuclear Information System (INIS)

    Vlasov, Alexander N.; Cooke, Simon J.; Chernin, David P.; Antonsen, Thomas M. Jr.; Nguyen, Khanh T.; Levush, Baruch

    2003-01-01

    TESLA (Telegraphist's Equations Solution for Linear Beam Amplifiers) is a new code designed to simulate linear beam vacuum electronic devices with cavities, such as klystrons, extended interaction klystrons, twistrons, and coupled cavity amplifiers. The model includes a self-consistent, nonlinear solution of the three-dimensional electron equations of motion and the solution of time-dependent field equations. The model differs from the conventional Particle in Cell approach in that the field spectrum is assumed to consist of a carrier frequency and its harmonics with slowly varying envelopes. Also, fields in the external cavities are modeled with circuit like equations and couple to fields in the beam region through boundary conditions on the beam tunnel wall. The model in TESLA is an extension of the model used in gyrotron code MAGY. The TESLA formulation has been extended to be capable to treat the multiple beam case, in which each beam is transported inside its own tunnel. The beams interact with each other as they pass through the gaps in their common cavities. The interaction is treated by modification of the boundary conditions on the wall of each tunnel to include the effect of adjacent beams as well as the fields excited in each cavity. The extended version of TESLA for the multiple beam case, TESLA-MB, has been developed for single processor machines, and can run on UNIX machines and on PC computers with a large memory (above 2GB). The TESLA-MB algorithm is currently being modified to simulate multiple beam klystrons on multiprocessor machines using the MPI (Message Passing Interface) environment. The code TESLA has been verified by comparison with MAGIC for single and multiple beam cases. The TESLA code and the MAGIC code predict the same power within 1% for a simple two cavity klystron design while the computational time for TESLA is orders of magnitude less than for MAGIC 2D. In addition, recently TESLA was used to model the L-6048 klystron, code

  20. Large-Signal Code TESLA: Improvements in the Implementation and in the Model

    National Research Council Canada - National Science Library

    Chernyavskiy, Igor A; Vlasov, Alexander N; Anderson, Jr., Thomas M; Cooke, Simon J; Levush, Baruch; Nguyen, Khanh T

    2006-01-01

    We describe the latest improvements made in the large-signal code TESLA, which include transformation of the code to a Fortran-90/95 version with dynamical memory allocation and extension of the model...

  1. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  2. The TESLA RF System

    International Nuclear Information System (INIS)

    Choroba, S.

    2003-01-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ∼600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components

  3. Modelling Wireless Power Transfer Using an Array of Tesla Coils

    Science.gov (United States)

    Pierson, Casey Thomas

    Wireless power transmission, or WPT, is a well-demonstrated property in electrical science and physics. Coil-and-wave transmission (CWT) consists of two Tesla coils, one powered by a controlled voltage source v src and one connected across a generic load Z 0 , at a mid- to long range distance apart with spherical capacitors at each of their top loads. The literature on the different methods of WPT varies widely, but research of CWT is sparse, lacking especially in the area of computer simulation. Recently, a physical experiment was conducted by Marzolf et al. in [1], and yielded surprising resonant frequencies in the high frequency range. The goal of this research is to answer the question of whether these reosnant frequencies originate in unexplained field effects or in non-ideal circuit behavior, and establish a formal model to indicate at what frequencies the resonant peaks occur as a first approximation. By carefully constructing a simulation of the most geometrically simple, power efficient design in the work of Marzolf et al. using the scientific software Octave, we investigate these frequencies computationally: first, an ideal scenario that has no flux leakage or exterior losses is modelled mathematically and simulated, and then, a non-ideal scenario that accounts for losses in the coils and surroundings is modelled mathematically and simulated. Both models utilize a simple formula for spherical capacitance for the top loads. After running these simulations through detailed sampling up to 4 MHz, the ideal model could not account for the resonant peaks, while the non-ideal model indicated the resonant peaks near the exact frequency ranges that were observed. An unexpected characteristic of these results was that coupling coefficients between the coils of the transmitter and receiver played a noticeable part in the indication of resonant peaks. This demonstrates that unknown field effects are not the primary driver of resonance in the ideal or non

  4. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  5. Forward Modeling of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  6. Linear Colliders TESLA

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The aim of the TESLA (TeV Superconducting Linear Accelerator) collaboration (at present 19 institutions from seven countries) is to establish the technology for a high energy electron-positron linear collider using superconducting radiofrequency cavities to accelerate its beams. Another basic goal is to demonstrate that such a collider can meet its performance goals in a cost effective manner. For this the TESLA collaboration is preparing a 500 MeV superconducting linear test accelerator at the DESY Laboratory in Hamburg. This TTF (TESLA Test Facility) consists of four cryomodules, each approximately 12 m long and containing eight 9-cell solid niobium cavities operating at a frequency of 1.3 GHz

  7. 3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite

    Directory of Open Access Journals (Sweden)

    Oleksiy Kononenko

    2017-10-01

    Full Text Available Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.

  8. Offline estimation of decay time for an optical cavity with a low pass filter cavity model.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2012-08-01

    This Letter presents offline estimation results for the decay-time constant for an experimental Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The cavity dynamics are modeled in terms of a low pass filter (LPF) with unity DC gain. This model is used by an extended Kalman filter (EKF) along with the recorded light intensity at the output of the cavity in order to estimate the decay-time constant. The estimation results using the LPF cavity model are compared to those obtained using the quadrature model for the cavity presented in previous work by Kallapur et al. The estimation process derived using the LPF model comprises two states as opposed to three states in the quadrature model. When considering the EKF, this means propagating two states and a (2×2) covariance matrix using the LPF model, as opposed to propagating three states and a (3×3) covariance matrix using the quadrature model. This gives the former model a computational advantage over the latter and leads to faster execution times for the corresponding EKF. It is shown in this Letter that the LPF model for the cavity with two filter states is computationally more efficient, converges faster, and is hence a more suitable method than the three-state quadrature model presented in previous work for real-time estimation of the decay-time constant for the cavity.

  9. Tissue expander stimulated lengthening of arteries (TESLA) induces early endothelial cell proliferation in a novel rodent model.

    Science.gov (United States)

    Potanos, Kristina; Fullington, Nora; Cauley, Ryan; Purcell, Patricia; Zurakowski, David; Fishman, Steven; Vakili, Khashayar; Kim, Heung Bae

    2016-04-01

    We examine the mechanism of aortic lengthening in a novel rodent model of tissue expander stimulated lengthening of arteries (TESLA). A rat model of TESLA was examined with a single stretch stimulus applied at the time of tissue expander insertion with evaluation of the aorta at 2, 4 and 7day time points. Measurements as well as histology and proliferation assays were performed and compared to sham controls. The aortic length was increased at all time points without histologic signs of tissue injury. Nuclear density remained unchanged despite the increase in length suggesting cellular hyperplasia. Cellular proliferation was confirmed in endothelial cell layer by Ki-67 stain. Aortic lengthening may be achieved using TESLA. The increase in aortic length can be achieved without tissue injury and results at least partially from cellular hyperplasia. Further studies are required to define the mechanisms involved in the growth of arteries under increased longitudinal stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Discrete vapour cavity model with improved timing of opening and collapse of cavities

    NARCIS (Netherlands)

    Bergant, A.; Tijsseling, A.S.; Vítkovský, J.P.; Simpson, A.R.; Lambert, M.F.

    2007-01-01

    Transient vaporous cavitation occurs in hydraulic piping systems when the liquid pressure falls to the vapour pressure. Cavitation may occur as a localized vapour cavity (large void fraction) or as distributed vaporous cavitation (small void fraction). The discrete vapour cavity model (DVCM) with

  11. Photon collider at TESLA

    International Nuclear Information System (INIS)

    Telnov, Valery

    2001-01-01

    High energy photon colliders (γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e + e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3)L e + e - . Typical cross-sections of interesting processes in γγ collisions are higher than those in e + e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e + e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ''an optical storage ring (optical trap)'' with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems

  12. Climate Modeling: Ocean Cavities below Ice Shelves

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Mark Roger [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-09-12

    The Accelerated Climate Model for Energy (ACME), a new initiative by the U.S. Department of Energy, includes unstructured-mesh ocean, land-ice, and sea-ice components using the Model for Prediction Across Scales (MPAS) framework. The ability to run coupled high-resolution global simulations efficiently on large, high-performance computers is a priority for ACME. Sub-ice shelf ocean cavities are a significant new capability in ACME, and will be used to better understand how changing ocean temperature and currents influence glacial melting and retreat. These simulations take advantage of the horizontal variable-resolution mesh and adaptive vertical coordinate in MPAS-Ocean, in order to place high resolution below ice shelves and near grounding lines.

  13. Intraindividual comparison of image quality in MR urography at 1.5 and 3 Tesla in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Regier, M.; Adam, G.; Kemper, J. [Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Nolte-Ernsting, C. [Klinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany)

    2008-10-15

    Purpose: experimental evaluation of image quality of the upper urinary tract in MR urography (MRU) at 1.5 and 3 Tesla in a porcine model. Materials and methods: in this study four healthy domestic pigs, weighing between 71 and 80 kg (mean 73.6 kg), were examined with a standard T 1w 3D-GRE and a high-resolution (HR) T 1w 3D-GRE sequence at 1.5 and 3 Tesla. Additionally, at 3 Tesla both sequences were performed with parallel imaging (SENSE factor 2). The MR urographic scans were performed after intravenous injection of gadolinium-DTPA (0.1 mmol/kg body weight (bw)) and low-dose furosemide (0.1 mg/kg bw). Image evaluation was performed by two independent radiologists blinded to sequence parameters and field strength. Image analysis included grading of image quality of the segmented collecting system based on a five-point grading scale regarding anatomical depiction and artifacts observed (1: the majority of the segment (> 50%) was not depicted or was obscured by major artifacts; 5: the segment was visualized without artifacts and had sharply defined borders). Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined. Statistical analysis included {kappa}-statistics, Wilcoxon and paired student t-test. Results: the mean scores for MR urographies at 1.5 Tesla were 2.83 for the 3D-GRE and 3.48 for the HR 3D-GRE sequence. Significantly higher values were determined using the corresponding sequences at 3 Tesla, averaging 3.19 for the 3D-GRE (p = 0.047) and 3.92 for the HR 3D-GRE (p = 0.023) sequence. Delineation of the pelvicaliceal system was rated significantly higher at 3 Tesla compared to 1.5 Tesla (3D-GRE: p = 0.015; HR 3D-GRE: p = 0.006). At 3 Tesla the mean SNR and CNR were significantly higher (p < 0.05). A {kappa} of 0.67 indicated good interobserver agreement. (orig.)

  14. Intraindividual comparison of image quality in MR urography at 1.5 and 3 Tesla in an animal model

    International Nuclear Information System (INIS)

    Regier, M.; Adam, G.; Kemper, J.; Nolte-Ernsting, C.

    2008-01-01

    Purpose: experimental evaluation of image quality of the upper urinary tract in MR urography (MRU) at 1.5 and 3 Tesla in a porcine model. Materials and methods: in this study four healthy domestic pigs, weighing between 71 and 80 kg (mean 73.6 kg), were examined with a standard T 1w 3D-GRE and a high-resolution (HR) T 1w 3D-GRE sequence at 1.5 and 3 Tesla. Additionally, at 3 Tesla both sequences were performed with parallel imaging (SENSE factor 2). The MR urographic scans were performed after intravenous injection of gadolinium-DTPA (0.1 mmol/kg body weight (bw)) and low-dose furosemide (0.1 mg/kg bw). Image evaluation was performed by two independent radiologists blinded to sequence parameters and field strength. Image analysis included grading of image quality of the segmented collecting system based on a five-point grading scale regarding anatomical depiction and artifacts observed (1: the majority of the segment (> 50%) was not depicted or was obscured by major artifacts; 5: the segment was visualized without artifacts and had sharply defined borders). Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined. Statistical analysis included κ-statistics, Wilcoxon and paired student t-test. Results: the mean scores for MR urographies at 1.5 Tesla were 2.83 for the 3D-GRE and 3.48 for the HR 3D-GRE sequence. Significantly higher values were determined using the corresponding sequences at 3 Tesla, averaging 3.19 for the 3D-GRE (p 0.047) and 3.92 for the HR 3D-GRE (p = 0.023) sequence. Delineation of the pelvicaliceal system was rated significantly higher at 3 Tesla compared to 1.5 Tesla (3D-GRE: p = 0.015; HR 3D-GRE: p = 0.006). At 3 Tesla the mean SNR and CNR were significantly higher (p < 0.05). A κ of 0.67 indicated good interobserver agreement. (orig.)

  15. Superconducting superstructure for the TESLA collider

    Energy Technology Data Exchange (ETDEWEB)

    Sekutowicz, J.; Tang, C. [DESY, MHF-SL, Hamburg (Germany); Ferrario, M. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1998-04-01

    The Authors discuss the new layout of a cavity chain (superstructure) allowing, the Authors hope, significant cost reduction of the RF system of both linacs of the TESLA linear collider. The proposed scheme increases the fill factor and thus makes an effective gradient of an accelerator higher. The authors present mainly computations that have performed up to now and which encouraged to order the copper model of the scheme, still keeping in mind that experiments with a beam will be necessary to prove if the proposed solution can be used for the acceleration.

  16. Influence from cavity decay on geometric quantum computation in the large-detuning cavity QED model

    International Nuclear Information System (INIS)

    Chen Changyong; Zhang Xiaolong; Deng Zhijiao; Gao Kelin; Feng Mang

    2006-01-01

    We introduce a general displacement operator to investigate the unconventional geometric quantum computation with dissipation under the model of many identical three-level atoms in a cavity, driven by a classical field. Our concrete calculation is made for the case of two atoms, based on a previous scheme [S.-B. Zheng, Phys. Rev. A 70, 052320 (2004)] for the large-detuning interaction of the atoms with the cavity mode. The analytical results we present will be helpful for experimental realization of geometric quantum computation in real cavities

  17. Thermal Model of a Dish Stirling Cavity-Receiver

    Directory of Open Access Journals (Sweden)

    Rubén Gil

    2015-01-01

    Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.

  18. TESLA & ILC Cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, T. J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Weisend, II, J. G. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-01-01

    The TESLA collaboration developed a unique variant of SRF cryomodule designs, the chief feature being use of the large, low pressure helium vapor return pipe as the structural support backbone of the cryomodule. Additional innovative features include all cryogenic piping within the cryomodule (no parallel external cryogenic transfer line), long strings of RF cavities within a single cryomodule, and cryomodules connected in series. Several projects, including FLASH and XFEL at DESY, LCLS-II at SLAC, and the ILC technical design have adopted this general design concept. Advantages include saving space by eliminating the external transfer line, relatively tight packing of RF cavities along the beamline due to fewer warm-cold transitions, and potentially lower costs. However, a primary disadvantage is the relative lack of independence for warm-up, replacement, and cool-down of individual cryomodules.

  19. TESLA Test Facility. Status

    International Nuclear Information System (INIS)

    Aune, B.

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 μs). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.)

  20. Modeling high-power RF accelerator cavities with SPICE

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1992-01-01

    The dynamical interactions between RF accelerator cavities and high-power beams can be treated on personal computers using a lumped circuit element model and the SPICE circuit analysis code. Applications include studies of wake potentials, two-beam accelerators, microwave sources, and transverse mode damping. This report describes the construction of analogs for TM mn0 modes and the creation of SPICE input for cylindrical cavities. The models were used to study continuous generation of kA electron beam pulses from a vacuum cavity driven by a high-power RF source

  1. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    International Nuclear Information System (INIS)

    Ghezzehei, T.; Trautz, R.; Finsterle, S.; Cook, P.; Ahlers, C.

    2004-01-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  2. Modeling of Coupled Nano-Cavity Lasers

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr

    -of-states and it is argued that Purcell enhancement should also be included in stimulated recombination term, contrary to the common practice in the literature. It is shown that for quantum well devices, the Purcell enhancement is effectively independent of the cavity quality factor due to the broad electronic density......-of-states relative to the optical density-of-states. The low effective Purcell eect for quantum well devices limits the highest possible modulation bandwidth to a few tens of gigahertz, which is comparable to the performance of conventional diode lasers. Compared to quantum well devices, quantum dot devices have...... is useful for design of coupled systems. A tight-binding description for coupled nanocavity lasers is developed and employed to investigate the phase-locking behavior for the system of two coupled cavities. Phase-locking is found to be critically dependent on exact parameter values and to be dicult...

  3. Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model

    Science.gov (United States)

    Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal

    2018-02-01

    We consider a generalized double Jaynes-Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity-cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.

  4. COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed

    2011-03-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  5. Comparison Of RF Cavity Transport Models For BBU Simulations

    International Nuclear Information System (INIS)

    Shin, Ilkyoung; Yunn, Byung; Satogata, Todd; Ahmed, Shahid

    2011-01-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  6. The TESLA physics program

    CERN Document Server

    Behnke, T

    2002-01-01

    The TESLA accelerator concept is based on superconducting cavities, which are operated at comparatively low frequencies (L-Band, 1.3 GHz) . Superconducting cavities in connection with the low frequency offer a number of significant advantages. Because the power dissipation in the superconducting cavity walls is very small, the accelerating field can be produced with long, low peak-power RF pulses. Thus the total power consumption of the accelerator can be kept at an acceptable limit, while still maintaining a high current and a long bunch train in the machine. In fact it is possible to use a long RF pulse (of 1 ms length) and large inter-bunch spacing within one pulse (337 ns at E/sub cms/ = 500 GeV). This allows collisions with zero- crossing angle at the experiment, and gives enough time between two bunches to operate a fast feedback system to maintain stable collisions. Even more important, the relatively low RF frequency results in significant smaller wake field effects than at machine operating at larger...

  7. Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity

    International Nuclear Information System (INIS)

    Hellert, Thorsten; Dohlus, Martin; Decking, Winfried

    2017-10-01

    FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intrabunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.

  8. Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hellert, Thorsten; Dohlus, Martin; Decking, Winfried

    2017-10-15

    FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intrabunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.

  9. A statistical model for field emission in superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.; Green, K.; Jost, W.; Wright, B.

    1993-01-01

    A statistical model is used to account for several features of performance of an ensemble of superconducting cavities. The input parameters are: the number of emitters/area, a distribution function for emitter β values, a distribution function for emissive areas, and a processing threshold. The power deposited by emitters is calculated from the field emission current and electron impact energy. The model can successfully account for the fraction of tests that reach the maximum field Epk in an ensemble of cavities, for eg, 1-cells at sign 3 GHz or 5-cells at sign 1.5 GHz. The model is used to predict the level of power needed to successfully process cavities of various surface areas with high pulsed power processing (HPP)

  10. Two-channel interaction models in cavity QED

    International Nuclear Information System (INIS)

    Wang, L.

    1993-01-01

    The authors introduce four fully quantized models of light-matter interactions in optical or microwave cavities. These are the first exactly soluble models in cavity quantum electrodynamics (cavity QED) that provide two transition channels for the flipping of atomic states. In these models a loss-free cavity is assumed to support three or four quantized field modes, which are coupled to a single atom. The atom exchanges photons with the cavity, in either the Raman configuration including both Stokes and anti-Stokes modes, or through two-photon cascade processes. The authors obtain the effective Hamiltonians for these models by adiabatically eliminating an off-resonant intermediate atomic level, and discuss their novel properties in comparison to the existing one-channel Jaynes-Cummings models. They give a detailed description of a method to find exact analytic solutions for the eigenfunctions and eigenvalues for the Hamiltonians of four models. These are also valid when the AC Stark shifts are included. It is shown that the eigenvalues can be expressed in very simple terms, and formulas for normalized eigenvectors are also given, as well as discussions of some of their simple properties. Heisenberg picture equations of motions are derived for several operators with solutions provided in a couple of cases. The dynamics of the systems with both Fock state and coherent state fields are demonstrated and discussed using the model's two key variables, the atomic inversion and the expectation value of photon number. Clear evidences of high efficiency mode-mixing are seen in both the Raman and cascade configurations, and different kinds of collapses and revivals are encountered in the atomic inversions. Effects of several factors like the AC Stark shift and variations in the complex coupling constants are also illustrated

  11. Modelling of diamond deposition microwave cavity generated plasmas

    International Nuclear Information System (INIS)

    Hassouni, K; Silva, F; Gicquel, A

    2010-01-01

    Some aspects of the numerical modelling of diamond deposition plasmas generated using microwave cavity systems are discussed. The paper mainly focuses on those models that allow (i) designing microwave cavities in order to optimize the power deposition in the discharge and (ii) estimating the detailed plasma composition in the vicinity of the substrate surface. The development of hydrogen plasma models that may be used for the self-consistent simulation of microwave cavity discharge is first discussed. The use of these models for determining the plasma configuration, composition and temperature is illustrated. Examples showing how to use these models in order to optimize the cavity structure and to obtain stable process operations are also given. A transport model for the highly reactive H 2 /CH 4 moderate pressure discharges is then presented. This model makes possible the determination of the time variation of plasma composition and temperature on a one-dimensional domain located on the plasma axis. The use of this model to analyse the transport phenomena and the chemical process in diamond deposition plasmas is illustrated. The model is also utilized to analyse pulsed mode discharges and the benefit they can bring as far as diamond growth rate and quality enhancement are concerned. We, in particular, show how the model can be employed to optimize the pulse waveform in order to improve the deposition process. Illustrations on how the model can give estimates of the species density at the growing substrate surface over a wide domain of deposition conditions are also given. This brings us to discuss the implication of the model prediction in terms of diamond growth rate and quality. (topical review)

  12. About the origin of matter - the TESLA project

    International Nuclear Information System (INIS)

    Heuer, R.D.

    2004-01-01

    An introduction to the TESLA project is given. After a general introduction to the standard model of elementary particles together with some possible extension the scientific potential of TESLA is described with special regards to the production of Higgs bosons and supersymmetric particles. Finally the technology of TESLA is considered. (HSI)

  13. Characterizing Cavities in Model Inclusion Fullerenes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-06-01

    Full Text Available Abstract: The fullerene-82 cavity is selected as a model system in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecular surface, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and cubic lattice approach to the molecular volume. Accurate measures of the molecular volume and surface area have been performed with the pseudorandom Monte Carlo (MCVS and uniform Monte Carlo (UMCVS methods. These calculations serve as a reference for the rest of the methods. The SURMO2 method does not recognize the cavity and may not be convenient for intercalation compounds. The programs that detect the cavities never exceed 1% deviation relative to the reference value for molecular volume and 5% for surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the solvent-accessible surfaces has been calculated. Fullerene-82 is compared with fullerene-60 and -70.

  14. Characterizing cavities in model inclusion molecules: a comparative study.

    Science.gov (United States)

    Torrens, F; Sánchez-Marín, J; Nebot-Gil, I

    1998-04-01

    We have selected fullerene-60 and -70 cavities as model systems in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecule taken as a unitary sphere, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and a cubic lattice approach to a molecular space. Accurate measures of the molecular volume and surface area have been performed with the pseudo-random Monte Carlo (MCVS) and uniform Monte Carlo (UMCVS) methods. These calculations serve as a reference for the rest of the methods. The SURMO2 and MS methods have not recognized the cavities and may not be convenient for intercalation compounds. The programs that have detected the cavities never exceed 5% deviation relative to the reference values for molecular volume and surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the accessible surfaces has been calculated.

  15. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  16. Computer simulation and cold model testing of CCL cavities

    International Nuclear Information System (INIS)

    Chang, C.R.; Yao, C.G.; Swenson, D.A.; Funk, L.W.

    1993-01-01

    The SSC coupled-cavity-linac (CCL) consists of nine modules with eight tanks in each module. Multicavity magnetically coupled bridge couplers are used to couple the eight tanks within a module into one RF resonant chain. The operating frequency is 1282.851 MHz. In this paper the authors discuss both computer calculations and cold model measurements to determine the geometry dimension of the RF structure

  17. Homogeneous nonequilibrium critical flashing flow with a cavity flooding model

    International Nuclear Information System (INIS)

    Lee, S.Y.; Schrock, V.E.

    1989-01-01

    The primary purpose of the work presented here is to describe the model for pressure undershoot at incipient flashing in the critical flow of straight channels (Fanno-type flow) for subcooled or saturated stagnation conditions on a more physical basis. In previous models, a modification of the pressure undershoot prediction of Alamgir and Lienhard was used. Their method assumed nucleation occurs on the bounding walls as a result of molecular fluctuations. Without modification it overpredicts the pressure undershoot. In the present work the authors develop a mechanistic model for nucleation from wall cavities. This physical concept is more consistent with experimental data

  18. FDTD modeling of EM field inside microwave cavities

    CERN Document Server

    Narayan, Shiv; Kanth, V Krushna

    2017-01-01

    This book deals with the EM analysis of closed microwave cavities based on a three-dimensional FDTD method. The EM analysis is carried out for (i) rectangular microwave ovens and (ii) hybrid-cylindrical microwave autoclaves at 2.45 GHz. The field distribution is first estimated inside domestic rectangular ovens in xy-, yz-, and zx-plane. Further, the RF leakage from the oven door is determined to study the effect of leakage radiation on wireless communication at 2.45 GHz. Furthermore, the EM analysis of the autoclave is carried out based on 3D FDTD using staircase approximation. In order to show the capability of autoclaves (excited with five source) for curing the aerospace components and materials, the field distribution inside autoclave cavity is studied in presence of aerospace samples. The FDTD based modelling of oven and autoclave are explained with the appropriate expressions and illustrations.

  19. A new cavity model for SAS4A

    International Nuclear Information System (INIS)

    Moxon, D.; Camous, F.

    1994-01-01

    The SAS4 code is the fourth generation of the SAS series developed at the ANL to study the initiating phase of hypothetical core disruptive accidents in LMFBRs. It was made available to the CEA in order to obtain more validation studies and model developments. The new cavity model described and incorporated in the code was first developed as a stand-alone code. It was thoroughly tested numerically and found to be quick and stable. Tis paper describes only the physical phenomena taken into account

  20. A transparent model of the human scala tympani cavity.

    Science.gov (United States)

    Rebscher, S J; Talbot, N; Bruszewski, W; Heilmann, M; Brasell, J; Merzenich, M M

    1996-01-01

    A dimensionally accurate clear model of the human scala tympani has been produced to evaluate the insertion and position of clinically applied intracochlear electrodes for electrical stimulation. Replicates of the human scala tympani were made from low melting point metal alloy (LMA) and from polymethylmeth-acrylate (PMMA) resin. The LMA metal casts were embedded in blocks of epoxy and in clear silicone rubber. After removal of the metal alloy, a cavity was produced that accurately models the human scala tympani. Investment casting molds were made from the PMMA scala tympani casts to enable production of multiple LMA casts from which identical models were fabricated. Total dimensional distortion of the LMA casting process was less than 1% in length and 2% in diameter. The models have been successfully integrated into the design process for the iterative development of advanced intracochlear electrode arrays at UCSF. These fabrication techniques are applicable to a wide range of biomedical design problems that require modelling of visually obscured cavities.

  1. Superconducting magnet package for the TESLA test facility

    International Nuclear Information System (INIS)

    Koski, A.; Bandelmann, R.; Wolff, S.

    1996-01-01

    The magnetic lattice of the TeV electron superconducting linear accelerator (TESLA) will consist of superconducting quadrupoles for beam focusing and superconducting correction dipoles for beam steering, incorporated in the cryostats containing the superconducting cavities. This report describes the design of these magnets, presenting details of the magnetic as well as the mechanical design. The measured characteristics of the TESLA Test Facility (TTF) quadrupoles and dipoles are compared to the results obtained from numerical computations

  2. Nikola Tesla: een biografie

    NARCIS (Netherlands)

    ir.ing. Ruud Thelosen

    2015-01-01

    De Technische uitvinder Tesla heeft 700 patenten op zijn naam staan als hij overlijdt. Zijn uitvindingen hebben de wereld in de 20e eeuw volledig veranderd. Zijn wisselstroom generator hebben heel de VS van elektriciteit voorzien. Radioverkeer , remote control werd mogelijk dankzij Tesla. Volgens

  3. Development and manufacturing of a Nb$_{3}$Sn quadrupole magnet Model at CEA/Saclay for TESLA Interaction Region

    CERN Document Server

    Durante, Maria; Fratini, M; Leboeuf, D; Segreti, M; Védrine, Pierre; 10.1109/TASC.2004.829129

    2004-01-01

    One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the interaction regions of large particle accelerators. In some projects, as in the future linear collider TESLA, the quadrupole magnets are inside the detector solenoid and must operate in its background field. This situation gives singular Lorentz force distribution in the ends of the magnet. To learn about Nb/sub 3/Sn technology, evaluate fabrication techniques and test the interaction with a solenoidal field, DAPNIA /SACM at CEA/Saclay has started the manufacturing of a 1-m-long, 56- mm-single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It will produce a nominal field gradient of 211 T/m at 11,870 A. The coils are wound from Rutherford-type cables insulated with glass fiber tape, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated,...

  4. Dicke-model simulation via cavity-assisted Raman transitions

    Science.gov (United States)

    Zhang, Zhiqiang; Lee, Chern Hui; Kumar, Ravi; Arnold, K. J.; Masson, Stuart J.; Grimsmo, A. L.; Parkins, A. S.; Barrett, M. D.

    2018-04-01

    The Dicke model is of fundamental importance in quantum mechanics for understanding the collective behavior of atoms coupled to a single electromagnetic mode. Here, we demonstrate a Dicke-model simulation via cavity-assisted Raman transitions in a configuration using counterpropagating laser beams. The observations indicate that motional effects should be included to fully account for the results. These results are contrary to experiments using single-beam and copropagating configurations. We give a theoretical description that accounts for the beam geometries used in the experiments and indicates the potential role of motional effects. In particular, a model is given that highlights the influence of Doppler broadening on the observed phase-transition thresholds.

  5. Manual of Tesla Experiments; Handbuch Tesla Experimente

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Guenter

    2009-07-01

    The first part, ''Making Lightning and Thunder'', describes a number of Tesla generators that can generate, e.g., coloured light arcs, ball lightning and swords of lightning. The second part, ''New Experiments with EMP, Tesla Waves and Microwaves'', presents a solid state Tesla generator for generating electrodynamic vortices and proposes circuiting alternatives to generate electromagnetic pulses (EMP). Further, mysterious Teslar wave, microwave and scalar wave generators are presented, as well as exotic Star Wars experiments like mass accelerators and plasma guns. The third section describes, among others, a tube-driven Tesla generator with 50 cm streamers. The reader will also find a catalogue of Messrs. Information Unlimited, USA, who are providers of many of the kits, circuiting diagrams and apparatuses presented here. (orig.) [German] Der erste Teil mit dem Titel ''Blitz und Donner selbst erzeugt'' beschreibt eine Reihe von Teslageneratoren, mit denen zum Beispiel bunte Lichtbogen, Kugelblitze und Blitzschwerter erzeugt werden koennen. Im zweiten Teil ''Neue Experimente mit EMPs, Tesla- and Mikrowellen'' findet der Leser einen Solid-State-Teslagenerator zur Erzeugung elektrodynamischer Wirbel sowie Schaltungsvorschlaege zum Thema ''Elektromagnetischer Impuls'' (EMP). Des Weiteren werden geheimnisumwitterte Tesla-, Mikro- und Skalarwellengeneratoren vorgestellt. Exotische Star-Wars-Experimente wie Massenbeschleuniger und Plasmakanonen fehlen ebenfalls nicht. Im dritten Teil wird unter anderem ein roehrenbetriebener Teslagenerator mit Streamern von 50 cm Laenge beschrieben. Ausserdem findet der Leser hier einen Katalog der US-Firma Information Unlimited, bei der viele im Buch besprochenen Bausaetze, Schaltplaene und Fertiggeraete bezogen werden koennen. (orig.)

  6. Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system

    Science.gov (United States)

    Zou, Chongzhe; Zhang, Yanping; Falcoz, Quentin; Neveu, Pierre; Li, Jianlan; Zhang, Cheng

    2017-06-01

    A solar cavity receiver model for the dish collector system is designed in response to growing demand of renewable energy. In the present research field, no investigations into the geometric parameters of a cavity receiver have been performed. The cylindrical receiver in this study is composed of an enclosed bottom at the back, an aperture at the front, a helical pipe inside the cavity and an insulation layer on the external surface of the cavity. The influence of several critical receiver parameters on the thermal efficiency is analyzed in this paper: cavity inner diameter and cavity length. The thermal model in this paper is solved considering the cavity dimensions as variables. Implementing the model into EES, each parameter influence is separately investigated, and a preliminary optimization method is proposed.

  7. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the ......In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition...... and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide...... frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns....

  8. Main features of nucleation in model solutions of oral cavity

    Science.gov (United States)

    Golovanova, O. A.; Chikanova, E. S.; Punin, Yu. O.

    2015-05-01

    The regularities of nucleation in model solutions of oral cavity have been investigated, and the induction order and constants have been determined for two systems: saliva and dental plaque fluid (DPF). It is shown that an increase in the initial supersaturation leads to a transition from the heterogeneous nucleation of crystallites to a homogeneous one. Some additives are found to enhance nucleation: HCO{3/-} > C6H12O6 > F-, while others hinder this process: protein (casein) > Mg2+. It is established that crystallization in DPF occurs more rapidly and the DPF composition is favorable for the growth of small (52.6-26.1 μm) crystallites. On the contrary, the conditions implemented in the model saliva solution facilitate the formation of larger (198.4-41.8 μm) crystals.

  9. TESLA project goes public

    International Nuclear Information System (INIS)

    Flegel', I.

    2002-01-01

    The TESLA project connected with the creation of superconducting linear accelerator with colliding neutron and positron beams in the DESY Laboratory (Hamburg) is presented. Scientists of 36 countries make a contribution in the Feasibility study of new accelerator construction. Creation of new accelerator will open the way to the investigation into new elementary particles; TESLA is perfectly suitable for the production of Higgs particles. Exact measurements on the unit will allow to research into properties of supersymmetrical particles. The TESLA project involves the creation of X-ray free electron laser [ru

  10. Physiologic characterization of inflammatory arthritis in a rabbit model with BOLD and DCE MRI at 1.5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Nasui, Otilia C.; Chan, Michael W.; Nathanael, George; Rayner, Tammy; Weiss, Ruth; Detzler, Garry; Zhong, Anguo [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto, ON (Canada); Miller, Elka [Children' s Hospital of Eastern Ontario (CHEO), Department of Diagnostic Imaging, Ottawa, ON (Canada); Belik, Jaques [The Hospital for Sick Children, Department of Neonatology, Toronto, ON (Canada); Cheng, Hai-Ling; Kassner, Andrea; Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Moineddin, Rahim [Department of Public Health, Family and Community Medicine, Toronto, ON (Canada); Jong, Roland; Rogers, Marianne [Mount Sinai Hospital, Department of Pathology, Toronto, ON (Canada)

    2014-11-15

    Our aim was to test the feasibility of blood oxygen level dependent magnetic resonance imaging (BOLD MRI) and dynamic contrast-enhanced (DCE) MRI to monitor periarticular hypoxic/inflammatory changes over time in a juvenile rabbit model of arthritis. We examined arthritic and contralateral nonarthritic knees of 21 juvenile rabbits at baseline and days 1,14, and 28 after induction of arthritis by unilateral intra-articular injection of carrageenin with BOLD and DCE MRI at 1.5 Tesla (T). Nine noninjected rabbits served as controls. Associations between BOLD and DCE-MRI and corresponding intra-articular oxygen pressure (PO{sub 2}) and blood flow [blood perfusion units (BPU)] (polarographic probes, reference standards) or clinical-histological data were measured by correlation coefficients. Percentage BOLD MRI change obtained in contralateral knees correlated moderately with BPU on day 0 (r = -0.51, p = 0.02) and excellently on day 28 (r = -0.84, p = 0.03). A moderate correlation was observed between peak enhancement DCE MRI (day 1) and BPU measurements in arthritic knees (r = 0.49, p = 0.04). In acute arthritis, BOLD and DCE MRI highly correlated (r = 0.89, p = 0.04; r = 1.0, p < 0.0001) with histological scores in arthritic knees. The proposed techniques are feasible to perform at 1.5 T, and they hold potential as surrogate measures to monitor hypoxic and inflammatory changes over time in arthritis at higher-strength MRI fields. (orig.)

  11. Superconducting cavity driving with FPGA controller

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland); Simrock, S.; Brand, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chase, B.; Carcagno, R.; Cancelo, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Koeth, T.W. [Rutgers - the State Univ. of New Jersey, NJ (United States)

    2006-07-01

    The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)

  12. Superconducting cavity driving with FPGA controller

    International Nuclear Information System (INIS)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S.; Simrock, S.; Brand, A.; Chase, B.; Carcagno, R.; Cancelo, G.; Koeth, T.W.

    2006-01-01

    The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)

  13. Development of standard surgical digital model by using 3-tesla MRI data

    International Nuclear Information System (INIS)

    Takahashi, Kaoru; Watanabe, Eiju

    2010-01-01

    Despite soaring social demand for more skillful and safe surgery, the number of operation gradually declined due to remarkable development of other multimodality treatments, such as radiotherapy and intravascular surgery. Therefore, it is necessary to establish comprehensive surgical training system including acquisition of anatomical knowledge and microsurgical technique in order to meet the public demand for surgical safety and credibility. However, cadaver dissection, widely accepted as a standard surgical training method, generate burdensome costs and effort for most Japanese surgeons as a daily surgical training tool. As a result, alternatives, such as experimental animals, full-scale brain models, and computer based models, are being developed and have become more practical and useful. We should carefully recognize both their advantages and disadvantages and find an effective training system by combining them according to surgeon's proficiency level and their distinct purposes. With these factors in mind, we are exploiting a computer-based standard anatomical digital model derived from 3T MRI data as an alternative to cadaver dissection. It is useful for neurosurgeons to acquire three-dimensional microscopic neuroanatomy due to an unprecedented advantage that allows each anatomical structure to be segmented and manipulated individually based on an actual operative procedure. We have made an initial model of hippocampus resection surgery. This model allows both proficient and fledgling surgeon to confirm and understand three-dimensional detailed neuroanatomy. (author)

  14. Mathematical model governing laser-produced dental cavity

    Science.gov (United States)

    Yilbas, Bekir S.; Karatoy, M.; Yilbas, Z.; Karakas, Eyup S.; Bilge, A.; Ustunbas, Hasan B.; Ceyhan, O.

    1990-06-01

    Formation of dental cavity may be improved by using a laser beam. This provides nonmechanical contact, precise location of cavity, rapid processing and increased hygienity. Further examination of interaction mechanism is needed to improve the application of lasers in density. Present study examines the tenperature rise and thermal stress development in the enamel during Nd YAG laser irradiation. It is found that the stresses developed in the enamel is not sufficiently high enough to cause crack developed in the enamel.

  15. A model of gas cavity breakup behind a blockage in fast breeder reactor subassembly geometry

    International Nuclear Information System (INIS)

    Fukuzawa, Y.

    1980-05-01

    A semi-empirical model has been developed to describe the transient behaviour of a gas cavity due to breakup behind a blockage in Liquid Metal Fast Breeder Reactor subassembly geometry. The main mechanisms assumed for gas cavity breakup in the present model are as follows: The gas cavity is broken up by the pressure fluctuation at the interface due to turbulence in the liquid. The centrifugal force on the liquid opposes breakup. The model is able to describe experimental results on the transient behaviour of a gas cavity due to breakup after the termination of gas injection. On the basis of the present model the residence time of a gas cavity behind a blockage in sodium is predicted and the dependence of the residence time on blockage size is discussed. (orig.) [de

  16. Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods

    Science.gov (United States)

    Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett

    2009-01-01

    Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....

  17. JACoW N-doped niobium accelerating cavities: Analyzing model applicability

    CERN Document Server

    Eichhorn, Ralf; Weingarten, Wolfgang

    2017-01-01

    The goal of this research was to analyse data from multiple cavities in order to test the viability of a model for surface resistance proposed previously. The model intends to describe the behaviour of the quality factor with respect to the RF field strength, while exploring the physical cause of this phenomenon; the model is pretty general, but will be checked here specifically for N-doped niobium cavities. The data were obtained from two single-cell 1.3 GHz cavities manufactured and tested at Jefferson Lab in Newport News, VA, USA.

  18. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.

    Science.gov (United States)

    Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng

    2018-05-10

    CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.

  19. Predictive model for functional consequences of oral cavity tumour resections

    NARCIS (Netherlands)

    van Alphen, M.J.A.; Hageman, T.A.G.; Hageman, Tijmen Antoon Geert; Smeele, L.E.; Balm, Alfonsus Jacobus Maria; Balm, A.J.M.; van der Heijden, Ferdinand; Lemke, H.U.

    2013-01-01

    The prediction of functional consequences after treatment of large oral cavity tumours is mainly based on the size and location of the tumour. However, patient specific factors play an important role in the functional outcome, making the current predictions unreliable and subjective. An objective

  20. Spherical and cylindrical cavity expansion models based prediction of penetration depths of concrete targets.

    Directory of Open Access Journals (Sweden)

    Xiaochao Jin

    Full Text Available The cavity expansion theory is most widely used to predict the depth of penetration of concrete targets. The main purpose of this work is to clarify the differences between the spherical and cylindrical cavity expansion models and their scope of application in predicting the penetration depths of concrete targets. The factors that influence the dynamic cavity expansion process of concrete materials were first examined. Based on numerical results, the relationship between expansion pressure and velocity was established. Then the parameters in the Forrestal's formula were fitted to have a convenient and effective prediction of the penetration depth. Results showed that both the spherical and cylindrical cavity expansion models can accurately predict the depth of penetration when the initial velocity is lower than 800 m/s. However, the prediction accuracy decreases with the increasing of the initial velocity and diameters of the projectiles. Based on our results, it can be concluded that when the initial velocity is higher than the critical velocity, the cylindrical cavity expansion model performs better than the spherical cavity expansion model in predicting the penetration depth, while when the initial velocity is lower than the critical velocity the conclusion is quite the contrary. This work provides a basic principle for selecting the spherical or cylindrical cavity expansion model to predict the penetration depth of concrete targets.

  1. Hydroforming of elliptical cavities

    Science.gov (United States)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been

  2. Hydroforming of elliptical cavities

    Directory of Open Access Journals (Sweden)

    W. Singer

    2015-02-01

    Full Text Available Activities of the past several years in developing the technique of forming seamless (weldless cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E_{acc} up to 35  MV/m after buffered chemical polishing (BCP and up to 42  MV/m after electropolishing (EP. More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E_{acc} of 30–35  MV/m were measured after BCP and E_{acc} up to 40  MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E_{acc}=30–35  MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and

  3. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  4. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  5. Improvement of cavity performance in the Saclay/Cornell/DESY's SC cavities

    International Nuclear Information System (INIS)

    Kako, E.; Noguchi, S.; Ono, M.

    2000-01-01

    Development of 1.3 GHz Nb superconducting cavities for TESLA (TeV Energy Superconducting Linear Collider) has been carried out with international collaboration. Three Saclay single-cell cavities, one Cornell two-cell cavity and one DESY nine-cell cavity were sent to KEK in order to compare the cavity performance. These cavities were tested at KEK after the following surface treatment: 1) high pressure rinsing, HPR, 2) chemical polishing and HPR, 3) electropolishing and HPR. The test results, especially, improvement of the cavity performance due to electropolishing are reported in this paper. (author)

  6. Tesla Roadsterin vauriokorjaus

    OpenAIRE

    Hiltunen, Santeri

    2016-01-01

    Insinöörityössä perehdyttiin Tesla-sähköauton rakenteeseen sekä korjaamiseen, sähkötyö-turvallisuuteen sekä sähkötekniikkaan. Työn tavoitteena on selvittää, mitä laki vaatii sähköauton korjaamiseen, ja kuinka saada varaosia ja ohjeita ajoneuvoon, jolla ei ole Suomessa maahantuojaa. Lisäksi tavoitteena oli selvittää, minkälainen auto on kyseessä sekä mitä materiaaleja autoon on käytetty. Työssä korjattiin takaosasta mekaanisilta osiltaan vaurioitunut Tesla Roadster -merkkinen sähköaut...

  7. Nikola Tesla and robotics

    Directory of Open Access Journals (Sweden)

    Vukobratović Miomir

    2006-01-01

    Full Text Available The paper analyzes some of Tesla's works and his most remarkable views concerning the problem of formulating theoretical bases of automatic control. As a tribute to Tesla's work on remote control of automated systems, as well to his (at the time far-seeing visions, special attention is paid to solving complex problem of control and feedback application. A more detailed discussion of the way and origin of formulating theoretical bases of automatic control are given. Besides, in more detail are presented the related pioneering works of Professor Nicholas Bernstein, great Russian physiologist who formulated the basic rules of the self-regulating movements of the man. Bernstein has achievements of highest scientific significance that has been in a direct function of identifying and proving the priority of his pioneering contributions in the domain of feedback, i.e. control and principles of cybernetics.

  8. Computer Aided Modeling of Human Mastoid Cavity Biomechanics Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Chou Yuan-Fang

    2010-01-01

    Full Text Available The aim of the present study was to analyze the human mastoid cavity on sound transmission using finite element method. Pressure distributions in the external ear canal and middle ear cavity at different frequencies were demonstrated. Our results showed that, first, blocking the aditus improves middle ear sound transmission in the 1500- to 2500-Hz range and decreases displacement in frequencies below 1000 Hz when compared with the normal ear. Second, at frequencies lower than 1000 Hz, the acoustic pressures were almost uniformly distributed in the external ear canal and middle ear cavity. At high frequencies, higher than 1000 Hz, the pressure distribution varied along the external ear canal and middle ear cavity. Third, opening the aditus, the pressures difference in dB between the middle ear cavity and external ear canal were larger than those of the closed mastoid cavity in low frequency (<1000 Hz. Finally, there was no significant difference in the acoustic pressure between the oval window and round window is noted and increased by 5 dB by blocking the aditus. These results suggest that our complete FE model including the mastoid cavity is potentially useful and can provide more information in the study of middle ear biomechanics.

  9. In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model

    Directory of Open Access Journals (Sweden)

    Hadlich Stefan

    2011-01-01

    Full Text Available Abstract Background Pancreatic cancer is the fourth leading cause of tumour death in the western world. However, appropriate tumour models are scarce. Here we present a syngeneic murine pancreatic cancer model using 7 Tesla MRI and evaluate its clinical relevance and applicability. Methods 6606PDA murine pancreatic cancer cells were orthotopically injected into the pancreatic head. Liver metastases were induced through splenic injection. Animals were analyzed by MRI three and five weeks following injection. Tumours were detected using T2-weighted high resolution sequences. Tumour volumes were determined by callipers and MRI. Liver metastases were analyzed using gadolinium-EOB-DTPA and T1-weighted 3D-Flash sequences. Tumour blood flow was measured using low molecular gadobutrol and high molecular gadolinium-DTPA. Results MRI handling and applicability was similar to human systems, resolution as low as 0.1 mm. After 5 weeks tumour volumes differed significantly (p 3+/-243 mm3 with MRI (mean 918 mm3+/-193 mm3 with MRI being more precise. Histology (n = 5 confirmed MRI tumour measurements (mean size MRI 38.5 mm2+/-22.8 mm2 versus 32.6 mm2+/-22.6 mm2 (histology, p 3+/-56.7 mm3 after 5 weeks. Lymphnodes were also easily identified. Tumour accumulation of gadobutrol was significantly (p Conclusions This model permits monitoring of tumour growth and metastasis formation in longitudinal non-invasive high-resolution MR studies including using contrast agents comparable to human pancreatic cancer. This multidisciplinary environment enables radiologists, surgeons and physicians to further improve translational research and therapies of pancreatic cancer.

  10. Modeling and simulation of a molten salt cavity receiver with Dymola

    International Nuclear Information System (INIS)

    Zhang, Qiangqiang; Li, Xin; Wang, Zhifeng; Zhang, Jinbai; El-Hefni, Baligh; Xu, Li

    2015-01-01

    Molten salt receivers play an important role in converting solar energy to thermal energy in concentrating solar power plants. This paper describes a dynamic mathematical model of the molten salt cavity receiver that couples the conduction, convection and radiation heat transfer processes in the receiver. The temperature dependence of the material properties is also considered. The radiosity method is used to calculate the radiation heat transfer inside the cavity. The outlet temperature of the receiver is calculated for 11 sets of transient working conditions. The simulation results compare well with experimental data, thus the model can be further used in system simulations of entire power plants. - Highlights: • A detailed model for molten salt cavity receiver is presented. • The model couples the conduction, convection and thermal radiation. • The simulation results compare well with experimental data. • The model can be further used for many purposes.

  11. The cavity electromagnetic field within the polarizable continuum model of solvation

    Energy Technology Data Exchange (ETDEWEB)

    Pipolo, Silvio, E-mail: silvio.pipolo@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy); Corni, Stefano, E-mail: stefano.corni@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Cammi, Roberto, E-mail: roberto.cammi@unipr.it [Department of Chemistry, Università degli studi di Parma, Parma (Italy)

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  12. A comparative Thermal Analysis of conventional parabolic receiver tube and Cavity model tube in a Solar Parabolic Concentrator

    Science.gov (United States)

    Arumugam, S.; Ramakrishna, P.; Sangavi, S.

    2018-02-01

    Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.

  13. A speech production model including the nasal Cavity

    DEFF Research Database (Denmark)

    Olesen, Morten

    In order to obtain articulatory analysis of speech production the model is improved. the standard model, as used in LPC analysis, to a large extent only models the acoustic properties of speech signal as opposed to articulatory modelling of the speech production. In spite of this the LPC model...... is by far the most widely used model in speech technology....

  14. TESLA accelerator installation

    International Nuclear Information System (INIS)

    Neskovic, N.; Ostojic, R.; Susini, A.; Milinkovic, Lj.; Ciric, D.; Dobrosavljevic, A.; Brajuskovic, B.; Cirkovic, S.; Bojovic, B.; Josipovic, M.

    1992-01-01

    The TESLA accelerator Installation is described. Its main parts are the VINCY Cyclotron, the multiply charged heavy-ion mVINIS Ion Source, and the negative light-ion pVINIS Ion Source. The Installation should be the principal installation of a regional center for basic and applied research in nuclear physics, atomic physics, surface physics and solid state physics, for production of radioisotopes, for research and therapy in nuclear medicine. The first extraction of the ion beam from the Cyclotron is planned for 1995. (R.P.) 3 refs.; 1 fig

  15. Simulations of the Static Tuning for the TESLA Linear Collider

    CERN Document Server

    Schulte, Daniel

    2003-01-01

    At the heart of the TESLA linear collider are the two 10 km long superconducting linacs. A linac is constructed from 858 cryomodules each containing 12 nine-cell 1.3 GHz superconducting cavities. 355 quadrupoles provide the necessary beam focusing. The advantages of low-frequency superconducting RF in terms of wakefield behaviour are well known, and the TESLA alignment tolerances are relatively loose. However, the effects of cavity tilts and their impact of the linac beam-based alignment algorithms have until recently not been fully investigated. In addition, the strong sensitivity to correlated emittance growth due to the high beam-beam disruption parameter makes it desirable to control the linac emittance down to a few percent. In this report we discuss various static tuning algorithms and present new simulation results. Discussions of the relative merits and applicability of the methods is also discussed.

  16. CERN: Ten-Tesla twin

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An important step in the development of the high field superconducting magnets for CERN's proposed LHC proton collider came on 21 October when a 1 metre-long model of the proposed twin-dipole magnet produced a field of 10 Tesla in its two o beam apertures at the design temperature of 1.8K. The LHC designers have to plan for proton beams approaching 8 TeV to attain the right conditions for the quarks and gluons hidden deep inside protons to produce new physics. To contain these very high energy protons in the tight track of the 27-kilometre LEP tunnel would need the strongest magnetic bending power ever used in a full storage ring

  17. Evaluation of new injection and cavity preparation model in local anesthesia teaching

    NARCIS (Netherlands)

    Yekta, S.S.; Lampert, F.; Kazemi, S.; Kazemi, R.; Brand, H.S.; Baart, J.A.; Mazandarani, M.

    2013-01-01

    The aim of this study was to evaluate a recently developed preclinical injection and cavity preparation model in local anesthesia. Thirty-three dental students administered an inferior alveolar nerve block injection in the model, followed by preparation on a tooth. The injection was evaluated by

  18. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    Science.gov (United States)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also

  19. Modelling of shrinkage cavity defects during the wheel and belt casting process

    International Nuclear Information System (INIS)

    Dablement, S; Mortensen, D; Fjaer, H; Lee, M; Grandfield, J; Savage, G; Nguyen, V

    2012-01-01

    Properzi continuous casting is a wheel and belt casting process used for producing aluminium wire rod which is essential to the making of electrical cables and over head lines. One of the main concerns of Properzi process users is to ensure good quality of the final product and to avoid cast defects especially the presence of shrinkage cavity. Numerical models developed with the Alsim software, which allows an automatic calculation of gap dependent heat transfer coefficients at the metal-mould interface due to thermal deformation, are used in order to get a better understanding on the shrinkage cavity formation. Models show the effect of process parameters on the cavity defect development and provide initial guidance for users in order to avoid this kind of casting defect.

  20. Adapting TESLA technology for future cw light sources using HoBiCaT

    Science.gov (United States)

    Kugeler, O.; Neumann, A.; Anders, W.; Knobloch, J.

    2010-07-01

    The HoBiCaT facility has been set up and operated at the Helmholtz-Zentrum-Berlin and BESSY since 2005. Its purpose is testing superconducting cavities in cw mode of operation and it was successfully demonstrated that TESLA pulsed technology can be used for cw mode of operation with only minor changes. Issues that were addressed comprise of elevated dynamic thermal losses in the cavity walls, necessary modifications in the cryogenics and the cavity processing, the optimum choice of operational parameters such as cavity temperature or bandwidth, the characterization of higher order modes in the cavity, and the usability of existing tuners and couplers for cw.

  1. Report on the TESLA Engineering Study/Review

    Energy Technology Data Exchange (ETDEWEB)

    Cornuelle, John C.

    2002-08-30

    In March, 2001, the TESLA Collaboration published its Technical Design Report (TDR, see references and links in Appendix), the first sentence of which stated ''...TESLA (TeV-Energy Superconducting Linear Collider) (will be) a superconducting electron-positron collider of initially 500 GeV total energy, extendable to 800 GeV, and an integrated X-ray laser laboratory.'' The TDR included cost and manpower estimates for a 500 GeV e{sup +}e{sup -} collider (250 on 250 GeV) based on superconducting RF cavity technology. This was submitted as a proposal to the German government. The government asked the German Science Council to evaluate this proposal. The recommendation from this body is anticipated to be available by November 2002. The government has indicated that it will react on this recommendation by mid-2003. In June 2001, Steve Holmes, Fermilab's Associate Director for Accelerators, commissioned Helen Edwards and Peter Garbincius to organize a study of the TESLA Technical Design Report and the associated cost and manpower estimates. Since the elements and methodology used in producing the TESLA cost estimate were somewhat different from those used in preparing similar estimates for projects within the U.S., it is important to understand the similarities, differences, and equivalences between the TESLA estimate and U.S. cost estimates. In particular, the project cost estimate includes only purchased equipment, materials, and services, but not manpower from DESY or other TESLA collaborating institutions, which is listed separately. It does not include the R&D on the TESLA Test Facility (TTF) nor the costs of preparing the TDR nor the costs of performing the conceptual studies so far. The manpower for the pre-operations commissioning program (up to beam) is included in the estimate, but not the electrical power or liquid Nitrogen (for initial cooldown of the cryogenics plant). There is no inclusion of any contingency or management reserve. If

  2. Report on the TESLA Engineering Study/Review

    International Nuclear Information System (INIS)

    Cornuelle, John C.

    2002-01-01

    In March, 2001, the TESLA Collaboration published its Technical Design Report (TDR, see references and links in Appendix), the first sentence of which stated ''...TESLA (TeV-Energy Superconducting Linear Collider) (will be) a superconducting electron-positron collider of initially 500 GeV total energy, extendable to 800 GeV, and an integrated X-ray laser laboratory.'' The TDR included cost and manpower estimates for a 500 GeV e + e - collider (250 on 250 GeV) based on superconducting RF cavity technology. This was submitted as a proposal to the German government. The government asked the German Science Council to evaluate this proposal. The recommendation from this body is anticipated to be available by November 2002. The government has indicated that it will react on this recommendation by mid-2003. In June 2001, Steve Holmes, Fermilab's Associate Director for Accelerators, commissioned Helen Edwards and Peter Garbincius to organize a study of the TESLA Technical Design Report and the associated cost and manpower estimates. Since the elements and methodology used in producing the TESLA cost estimate were somewhat different from those used in preparing similar estimates for projects within the U.S., it is important to understand the similarities, differences, and equivalences between the TESLA estimate and U.S. cost estimates. In particular, the project cost estimate includes only purchased equipment, materials, and services, but not manpower from DESY or other TESLA collaborating institutions, which is listed separately. It does not include the R and D on the TESLA Test Facility (TTF) nor the costs of preparing the TDR nor the costs of performing the conceptual studies so far. The manpower for the pre-operations commissioning program (up to beam) is included in the estimate, but not the electrical power or liquid Nitrogen (for initial cooldown of the cryogenics plant). There is no inclusion of any contingency or management reserve. If the U.S. were to become

  3. Artefacts induced by coiled intracranial aneurysms on 3.0-Tesla versus 1.5-Tesla MR angiography—An in vivo and in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Schaafsma, Joanna D., E-mail: j.d.schaafsma@umcutrecht.nl [Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre, PO Box 85500, 3508 GA Utrecht (Netherlands); Velthuis, Birgitta K., E-mail: b.k.velthuis@umcutrecht.nl [Imaging Division, University Medical Centre, PO Box 85500, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: koen@isi.uu.nl [Image Sciences Institute, University Medical Centre, PO Box 85500, 3508 GA Utrecht (Netherlands); Kort, Gerard A.P. de, E-mail: g.a.p.dekort@umcutrecht.nl [Imaging Division, University Medical Centre, PO Box 85500, 3508 GA Utrecht (Netherlands); Rinkel, Gabriel J.E., E-mail: g.j.e.rinkel@umcutrecht.nl [Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre, PO Box 85500, 3508 GA Utrecht (Netherlands); Bartels, Lambertus W., E-mail: w.bartels@umcutrecht.nl [Image Sciences Institute, University Medical Centre, PO Box 85500, 3508 GA Utrecht (Netherlands)

    2014-05-15

    Objective: To compare metal-induced artefacts from coiled intracranial aneurysms on 3.0-Tesla and 1.5-Tesla magnetic resonance angiography (MRA), since concerns persist on artefact enlargement at 3.0 Tesla. Materials and methods: We scanned 19 patients (mean age 53; 16 women) with 20 saccular aneurysms treated with coils only, at 1.5 and 3.0 Tesla according to standard clinical 3D TOF-MRA protocols containing a shorter echo-time but weaker read-out gradient at 3.0 Tesla in addition to intra-arterial digital subtraction angiography (IA-DSA). Per modality two neuro-radiologists assessed the occlusion status, measured residual flow, and indicated whether coil artefacts disturbed this assessment on MRA. We assessed relative risks for disturbance by coil artefacts, weighted kappa's for agreement on occlusion levels, and we compared remnant sizes. For artefact measurements, a coil model was created and scanned with the same protocols followed by 2D MR scans with variation of echo-time and read-out gradient strength. Results: Coil artefacts disturbed assessments less frequently at 3.0 Tesla than at 1.5 Tesla (RR: 0.3; 95%CI: 0.1–0.8). On 3.0-Tesla MRA, remnants were larger than on 1.5-Tesla MRA (difference: 0.7 mm; 95%CI: 0.3–1.1) and larger than on IA-DSA (difference: 1.0 mm; 95%CI: 0.6–1.5) with similar agreement on occlusion levels with IA-DSA for both field strengths (κ 0.53; 95%CI: 0.23–0.84 for 1.5-Tesla MRA and IA-DSA; κ 0.47; 95%CI: 0.19–0.76 for 3.0-Tesla MRA and IA-DSA). Coil model artefacts were smaller at 3.0 Tesla than at 1.5 Tesla. The echo-time influenced artefact size more than the read-out gradient. Conclusions: Artefacts were not larger, but smaller at 3.0 Tesla because a shorter echo-time at 3.0 Tesla negated artefact enlargement. Despite smaller artefacts and larger remnants at 3.0 Tesla, occlusion levels were similar for both field strengths.

  4. Artefacts induced by coiled intracranial aneurysms on 3.0-Tesla versus 1.5-Tesla MR angiography—An in vivo and in vitro study

    International Nuclear Information System (INIS)

    Schaafsma, Joanna D.; Velthuis, Birgitta K.; Vincken, Koen L.; Kort, Gerard A.P. de; Rinkel, Gabriel J.E.; Bartels, Lambertus W.

    2014-01-01

    Objective: To compare metal-induced artefacts from coiled intracranial aneurysms on 3.0-Tesla and 1.5-Tesla magnetic resonance angiography (MRA), since concerns persist on artefact enlargement at 3.0 Tesla. Materials and methods: We scanned 19 patients (mean age 53; 16 women) with 20 saccular aneurysms treated with coils only, at 1.5 and 3.0 Tesla according to standard clinical 3D TOF-MRA protocols containing a shorter echo-time but weaker read-out gradient at 3.0 Tesla in addition to intra-arterial digital subtraction angiography (IA-DSA). Per modality two neuro-radiologists assessed the occlusion status, measured residual flow, and indicated whether coil artefacts disturbed this assessment on MRA. We assessed relative risks for disturbance by coil artefacts, weighted kappa's for agreement on occlusion levels, and we compared remnant sizes. For artefact measurements, a coil model was created and scanned with the same protocols followed by 2D MR scans with variation of echo-time and read-out gradient strength. Results: Coil artefacts disturbed assessments less frequently at 3.0 Tesla than at 1.5 Tesla (RR: 0.3; 95%CI: 0.1–0.8). On 3.0-Tesla MRA, remnants were larger than on 1.5-Tesla MRA (difference: 0.7 mm; 95%CI: 0.3–1.1) and larger than on IA-DSA (difference: 1.0 mm; 95%CI: 0.6–1.5) with similar agreement on occlusion levels with IA-DSA for both field strengths (κ 0.53; 95%CI: 0.23–0.84 for 1.5-Tesla MRA and IA-DSA; κ 0.47; 95%CI: 0.19–0.76 for 3.0-Tesla MRA and IA-DSA). Coil model artefacts were smaller at 3.0 Tesla than at 1.5 Tesla. The echo-time influenced artefact size more than the read-out gradient. Conclusions: Artefacts were not larger, but smaller at 3.0 Tesla because a shorter echo-time at 3.0 Tesla negated artefact enlargement. Despite smaller artefacts and larger remnants at 3.0 Tesla, occlusion levels were similar for both field strengths

  5. Artefacts induced by coiled intracranial aneurysms on 3.0-Tesla versus 1.5-Tesla MR angiography--An in vivo and in vitro study.

    Science.gov (United States)

    Schaafsma, Joanna D; Velthuis, Birgitta K; Vincken, Koen L; de Kort, Gerard A P; Rinkel, Gabriel J E; Bartels, Lambertus W

    2014-05-01

    To compare metal-induced artefacts from coiled intracranial aneurysms on 3.0-Tesla and 1.5-Tesla magnetic resonance angiography (MRA), since concerns persist on artefact enlargement at 3.0Tesla. We scanned 19 patients (mean age 53; 16 women) with 20 saccular aneurysms treated with coils only, at 1.5 and 3.0Tesla according to standard clinical 3D TOF-MRA protocols containing a shorter echo-time but weaker read-out gradient at 3.0Tesla in addition to intra-arterial digital subtraction angiography (IA-DSA). Per modality two neuro-radiologists assessed the occlusion status, measured residual flow, and indicated whether coil artefacts disturbed this assessment on MRA. We assessed relative risks for disturbance by coil artefacts, weighted kappa's for agreement on occlusion levels, and we compared remnant sizes. For artefact measurements, a coil model was created and scanned with the same protocols followed by 2D MR scans with variation of echo-time and read-out gradient strength. Coil artefacts disturbed assessments less frequently at 3.0Tesla than at 1.5Tesla (RR: 0.3; 95%CI: 0.1-0.8). On 3.0-Tesla MRA, remnants were larger than on 1.5-Tesla MRA (difference: 0.7mm; 95%CI: 0.3-1.1) and larger than on IA-DSA (difference: 1.0mm; 95%CI: 0.6-1.5) with similar agreement on occlusion levels with IA-DSA for both field strengths (κ 0.53; 95%CI: 0.23-0.84 for 1.5-Tesla MRA and IA-DSA; κ 0.47; 95%CI: 0.19-0.76 for 3.0-Tesla MRA and IA-DSA). Coil model artefacts were smaller at 3.0Tesla than at 1.5Tesla. The echo-time influenced artefact size more than the read-out gradient. Artefacts were not larger, but smaller at 3.0Tesla because a shorter echo-time at 3.0Tesla negated artefact enlargement. Despite smaller artefacts and larger remnants at 3.0Tesla, occlusion levels were similar for both field strengths. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Measurements on the SPS 200 MHz Travelling Wave Cavity towards an Impedance Model

    CERN Document Server

    Roggen, Toon; Caspers, Fritz; Vollinger, Christine; CERN. Geneva. ATS Department

    2016-01-01

    This note discusses the contribution of the SPS 200 MHz TWC (Travelling Wave Cavity) to the SPS longitudinal impedance model. The measurement method and setup is briefly explained and a comparison with simulations is discussed for both the fundamental pass band (FPB) as well as the Higher Order Modes (HOMs). In addition a number of improvements to the measurement setup are discussed.

  7. Numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities

    International Nuclear Information System (INIS)

    Milioli, F.E.

    1985-01-01

    In this research work a numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities of a Boussinesq fluid is presented. The conservation equations are written in a general curvilinear coordinate system which matches the irregular boundaries of the domain. The nonorthogonal system is generated by a suitable system of elliptic equations. The momentum and continuity equations are transformed from the Cartesian system to the general curvilinear system keeping the Cartesian velocity components as the dependent variables in the transformed domain. Finite difference equations are obtained for the contravariant velocity components in the transformed domain. The numerical calculations are performed in a fixed rectangular domain and both the Cartesian and the contravariant velocity components take part in the solutiomn procedure. The dependent variables are arranged on the grid in a staggered manner. The numerical model is tested by solving the driven flow in a square cavity with a moving side using a nonorthogoanl grid. The natural convenction in a square cavity, using an orthogonal and a nonorthogonal grid, is also solved for the model test. Also, the solution for the buoyancy flow between a square cylinder placed inside a circular cylinder is presented. The results of the test problems are compared with those available in the specialized literature. Finally, in order to show the generality of the model, the natural convection problem inside a very irregular cavity is presented. (Author) [pt

  8. Habitat suitability models for cavity-nesting birds in a postfire landscape

    Science.gov (United States)

    Robin E. Russell; Victoria A. Saab; Jonathan G. Dudley

    2007-01-01

    Models of habitat suitability in postfire landscapes are needed by land managers to make timely decisions regarding postfire timber harvest and other management activities. Many species of cavity-nesting birds are dependent on postfire landscapes for breeding and other aspects of their life history and are responsive to postfire management activities (e.g., timber...

  9. [70 years of Nikola Tesla studies].

    Science.gov (United States)

    Juznic, Stanislav

    2013-01-01

    Nikola Tesla's studies of chemistry are described including his not very scholarly affair in Maribor. After almost a century and half of hypothesis at least usable scenario of Tesla's life and "work" in Maribor is provided. The chemistry achievements of Tesla's most influential professors Martin Sekulić and Tesla's Graz professors are put into the limelight. The fact that Tesla in Graz studied on the technological chemistry Faculty of Polytechnic is focused.

  10. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    Science.gov (United States)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  11. Modeling and experimental verification of laser self-mixing interference phenomenon with the structure of two-external-cavity feedback

    Science.gov (United States)

    Chen, Peng; Liu, Yuwei; Gao, Bingkun; Jiang, Chunlei

    2018-03-01

    A semiconductor laser employed with two-external-cavity feedback structure for laser self-mixing interference (SMI) phenomenon is investigated and analyzed. The SMI model with two directions based on F-P cavity is deduced, and numerical simulation and experimental verification were conducted. Experimental results show that the SMI with the structure of two-external-cavity feedback under weak light feedback is similar to the sum of two SMIs.

  12. Investigating the probability of detection of typical cavity shapes through modelling and comparison of geophysical techniques

    Science.gov (United States)

    James, P.

    2011-12-01

    With a growing need for housing in the U.K., the government has proposed increased development of brownfield sites. However, old mine workings and natural cavities represent a potential hazard before, during and after construction on such sites, and add further complication to subsurface parameters. Cavities are hence a limitation to certain redevelopment and their detection is an ever important consideration. The current standard technique for cavity detection is a borehole grid, which is intrusive, non-continuous, slow and expensive. A new robust investigation standard in the detection of cavities is sought and geophysical techniques offer an attractive alternative. Geophysical techniques have previously been utilised successfully in the detection of cavities in various geologies, but still has an uncertain reputation in the engineering industry. Engineers are unsure of the techniques and are inclined to rely on well known techniques than utilise new technologies. Bad experiences with geophysics are commonly due to the indiscriminate choice of particular techniques. It is imperative that a geophysical survey is designed with the specific site and target in mind at all times, and the ability and judgement to rule out some, or all, techniques. To this author's knowledge no comparative software exists to aid technique choice. Also, previous modelling software limit the shapes of bodies and hence typical cavity shapes are not represented. Here, we introduce 3D modelling software (Matlab) which computes and compares the response to various cavity targets from a range of techniques (gravity, gravity gradient, magnetic, magnetic gradient and GPR). Typical near surface cavity shapes are modelled including shafts, bellpits, various lining and capping materials, and migrating voids. The probability of cavity detection is assessed in typical subsurface and noise conditions across a range of survey parameters. Techniques can be compared and the limits of detection distance

  13. Nikola Tesla: the Moon's rotation.

    Science.gov (United States)

    Tomić, A.; Jovanović, B. S.

    1993-09-01

    The review of three articles by N. Tesla, published in the year 1919 in the journal "Electrical experimenter" is given, with special reference to the astronomical contents and to circumstances in which they appeared.

  14. Tests on model of a prestressed concrete nuclear pressure vessel with multiple cavities

    International Nuclear Information System (INIS)

    Favre, R.; Koprna, M.; Jaccoud, J.P.

    1977-01-01

    The prestressed concrete pressure vessel (prototype) is a cylinder having a diameter of 48 m and a height of 39 m. It has 25 vertical cavities (reactor, heat exchangers, heat recuperators) and 3 horizontal cavities (gas turbines of 500 kw). The cavities are closed by plugs, and their tightness is ensured by a steel lining. A model, on a scale of 1/20, made of microconcrete, was loaded in several cycles, by a uniform inner pressure in the cavities, increasing to the point of failure. The three successive stages were examined: stage of globally elastic behavior, cracking stage, ultimate stage. The behavior of the model is globally elastic up to an inner pressure of 120 to 130 kp/cm 2 , corresponding to about twice the maximum pressure of service, equal to 65 kp/cm 2 . The prestressed tendons at this stage show practically no stress increase. The first detectable cracks appear on the lateral side half-way up the model, as soon as the pressure exceeded 120 kp/cm 2 . From 150-165 kp/cm 2 , the cracking stage can be considered as achieved and the main crack pattern entirely formed. A horizontal crack continues in the middle of the barrel, as well as vertical cracks at each outer cavity. Beyond a pressure of 150-165 kp/cm 2 the ultimate stage begins. The strains of the stresses in the tendons grow more rapidly. The steel lining is highly solicited. Above about 210 kp/cm 2 the model behaves like a structure composed of a group of concrete blocks bound by the tendons and the lining. The failure (240 kp/cm 2 ) occurred through a mechanism of ejection and bending of the concrete ring at the periphery of the barrel of the vessel, which was solicited mainly in tension

  15. [Nikola Tesla in medicine, too].

    Science.gov (United States)

    Hanzek, Branko; Jakobović, Zvonimir

    2007-12-01

    Using primary and secondary sources we have shown in this paper the influence of Nikola Tesla's work on the field of medicine. The description of his experiments conduced within secondary-school education programs aimed to present the popularization of his work in Croatia. Although Tesla was dedicated primarily to physics and was not directly involved in biomedical research, his work significantly contributed to paving the way of medical physics particularly radiology and high-frequency electrotherapy.

  16. In vivo hepatic lipid quantification using MRS at 7 Tesla in a mouse model of glycogen storage disease type 1a.

    Science.gov (United States)

    Ramamonjisoa, Nirilanto; Ratiney, Helene; Mutel, Elodie; Guillou, Herve; Mithieux, Gilles; Pilleul, Frank; Rajas, Fabienne; Beuf, Olivier; Cavassila, Sophie

    2013-07-01

    The assessment of liver lipid content and composition is needed in preclinical research to investigate steatosis and steatosis-related disorders. The purpose of this study was to quantify in vivo hepatic fatty acid content and composition using a method based on short echo time proton magnetic resonance spectroscopy (MRS) at 7 Tesla. A mouse model of glycogen storage disease type 1a with inducible liver-specific deletion of the glucose-6-phosphatase gene (L-G6pc(-/-)) mice and control mice were fed a standard diet or a high-fat/high-sucrose (HF/HS) diet for 9 months. In control mice, hepatic lipid content was found significantly higher with the HF/HS diet than with the standard diet. As expected, hepatic lipid content was already elevated in L-G6pc(-/-) mice fed a standard diet compared with control mice. L-G6pc(-/-) mice rapidly developed steatosis which was not modified by the HF/HS diet. On the standard diet, estimated amplitudes from olefinic protons were found significantly higher in L-G6pc(-/-) mice compared with that in control mice. L-G6pc(-/-) mice showed no noticeable polyunsaturation from diallylic protons. Total unsaturated fatty acid indexes measured by gas chromatography were in agreement with MRS measurements. These results showed the great potential of high magnetic field MRS to follow the diet impact and lipid alterations in mouse liver.

  17. Heat transfer modelling in thermophotovoltaic cavities using glass media

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N. [Northumbria University, Newcastle upon Tyne (United Kingdom). School of Engineering and Technology

    2005-08-15

    Optimisation of heat transfer, and in particular radiative heat transfer in terms of the spectral, angular and spatial radiation distributions, is required to achieve high efficiencies and high electrical power densities for thermophotovoltaic (TPV) conversion. This work examines heat transfer from the radiator to the PV cell in an infinite plate arrangement using three different arrangements of participating dielectric media. The modelling applies the Discrete Ordinates method and assumes fused silica (quartz glass) as the dielectric medium. The arrangement radiator-glass-PV cell (also termed dielectric photon concentration) was found to be superior in terms of efficiency and power density. (author)

  18. Speed Geometric Quantum Logical Gate Based on Double-Hamiltonian Evolution under Large-Detuning Cavity QED Model

    International Nuclear Information System (INIS)

    Chen Changyong; Liu Zongliang; Kang Shuai; Li Shaohua

    2010-01-01

    We introduce the double-Hamiltonian evolution technique approach to investigate the unconventional geometric quantum logical gate with dissipation under the model of many identical three-level atoms in a cavity, driven by a classical field. Our concrete calculation is made for the case of two atoms for the large-detuning interaction of the atoms with the cavity mode. The main advantage of our scheme is of eliminating the photon flutuation in the cavity mode during the gating. The corresponding analytical results will be helpful for experimental realization of speed geometric quantum logical gate in real cavities. (general)

  19. Detuning related coupler kick variation of a superconducting nine-cell 1.3 GHz cavity

    Science.gov (United States)

    Hellert, Thorsten; Dohlus, Martin

    2018-04-01

    Superconducting TESLA-type cavities are widely used to accelerate electrons in long bunch trains, such as in high repetition rate free electron lasers. The TESLA cavity is equipped with two higher order mode couplers and a fundamental power coupler (FPC), which break the axial symmetry of the cavity. The passing electrons therefore experience axially asymmetrical coupler kicks, which depend on the transverse beam position at the couplers and the rf phase. The resulting emittance dilution has been studied in detail in the literature. However, the kick induced by the FPC depends explicitly on the ratio of the forward to the backward traveling waves at the coupler, which has received little attention. The intention of this paper is to present the concept of discrete coupler kicks with a novel approach of separating the field disturbances related to the standing wave and a reflection dependent part. Particular attention is directed to the role of the penetration depth of the FPC antenna, which determines the loaded quality factor of the cavity. The developed beam transport model is compared to dedicated experiments at FLASH and European XFEL. Both the observed transverse coupling and detuning related coupler kick variations are in good agreement with the model. Finally, the expected trajectory variations due to coupler kick variations at European XFEL are investigated and results of numerical studies are presented.

  20. PSpice modeling of broadband RF cavities for transient and frequency domain simulations

    Energy Technology Data Exchange (ETDEWEB)

    Harzheim, Jens [Institut fuer Theorie Elektromagnetischer Felder, Fachgebiet Beschleunigertechnik, TU Darmstadt (Germany)

    2016-07-01

    In the future accelerator facility FAIR, Barrier-Bucket Systems will play an important role for different longitudinal beam manipulations. As the function of this type of system is to provide single sine gap voltages, the components of the system have to operate in a broad frequency range. To investigate the different effects and to design the different system components, the whole Barrier-Bucket System is to be modeled in PSpice. While for low power signals, the system shows linear behavior, nonlinear effects arise at higher amplitudes. Therefore, simulations in both, frequency and time domain are needed. The highly frequency dependent magnetic alloy ring cores of the future Barrier-Bucket cavity have been mod eled in a first step and based on these models, the whole cavity was analyzed in PSpice. The simulation results show good agreement with former measurements.

  1. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    International Nuclear Information System (INIS)

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs

  2. Construction of 0.15 Tesla Overhauser Enhanced MRI.

    Science.gov (United States)

    Tokunaga, Yuumi; Nakao, Motonao; Naganuma, Tatsuya; Ichikawa, Kazuhiro

    2017-01-01

    Overhauser enhanced MRI (OMRI) is one of the free radical imaging technologies and has been used in biomedical research such as for partial oxygen measurements in tumor, and redox status in acute oxidative diseases. The external magnetic field of OMRI is frequently in the range of 5-10 mTesla to ensure microwave penetration into small animals, and the S/N ratio is limited. In this study, a 0.15 Tesla OMRI was constructed and tested to improve the S/N ratio for a small sample, or skin measurement. Specification of the main magnet was as follows: 0.15 Tesla permanent magnet; gap size 160 mm; homogenous spherical volume of 80 mm in diameter. The OMRI resonator was designed based on TE 101 cavity mode and machined from a phosphorus deoxidized copper block for electron spin resonance (ESR) excitation and a solenoid transmission/receive resonator for NMR detection. The resonant frequencies and Q values were 6.38 MHz/150 and 4.31-4.41 GHz/120 for NMR and ESR, respectively. The Q values were comparable to those of conventional low field OMRI resonators at 15 mTesla. As expected, the MRI S/N ratio was improved by a factor of 30. Triplet dynamic nuclear polarization spectra were observed for 14 N carboxy-PROXYL, along the excitation microwave sweep. In the current setup, the enhancement factor was ca. 0.5. In conclusion, the results of this preliminary evaluation indicate that the 0.15 Tesla OMRI could be useful for free radical measurement for small samples.

  3. Non-homogeneous model for a side heated square cavity filled with a nanofluid

    International Nuclear Information System (INIS)

    Celli, Michele

    2013-01-01

    Highlights: • A side heated two dimensional square cavity filled with a nanofluid is studied. • A non-homogeneous model is taken into account. • The properties of the nanofluid are functions of the fraction of nanoparticles. • Low-Rayleigh numbers yield a non-homogeneous distribution of the nanoparticles. -- Abstract: A side heated two dimensional square cavity filled with a nanofluid is here studied. The side heating condition is obtained by imposing two different uniform temperatures at the vertical boundary walls. The horizontal walls are assumed to be adiabatic and all boundaries are assumed to be impermeable to the base fluid and to the nanoparticles. In order to study the behavior of the nanofluid, a non-homogeneous model is taken into account. The thermophysical properties of the nanofluid are assumed to be functions of the average volume fraction of nanoparticles dispersed inside the cavity. The definitions of the nondimensional governing parameters (Rayleigh number, Prandtl number and Lewis number) are exactly the same as for the clear fluids. The distribution of the nanoparticles shows a particular sensitivity to the low Rayleigh numbers. The average Nusselt number at the vertical walls is sensitive to the average volume fraction of the nanoparticles dispersed inside the cavity and it is also sensitive to the definition of the thermophysical properties of the nanofluid. Highly viscous base fluids lead to a critical behavior of the model when the simulation is performed in pure conduction regime. The solution of the problem is obtained numerically by means of a Galerkin finite element method

  4. Trimming algorithm of frequency modulation for CIAE-230 MeV proton superconducting synchrocyclotron model cavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Zhang, Tianjue; Ji, Bin; Hou, Shigang; Guo, Juanjuan; Yin, Meng; Xing, Jiansheng; Lv, Yinlong; Guan, Fengping; Lin, Jun

    2017-01-21

    A new project, the 230 MeV proton superconducting synchrocyclotron for cancer therapy, was proposed at CIAE in 2013. A model cavity is designed to verify the frequency modulation trimming algorithm featuring a half-wave structure and eight sets of rotating blades for 1 kHz frequency modulation. Based on the electromagnetic (EM) field distribution analysis of the model cavity, the variable capacitor works as a function of time and the frequency can be written in Maclaurin series. Curve fitting is applied for theoretical frequency and original simulation frequency. The second-order fitting excels at the approximation given its minimum variance. Constant equivalent inductance is considered as an important condition in the calculation. The equivalent parameters of theoretical frequency can be achieved through this conversion. Then the trimming formula for rotor blade outer radius is found by discretization in time domain. Simulation verification has been performed and the results show that the calculation radius with minus 0.012 m yields an acceptable result. The trimming amendment in the time range of 0.328–0.4 ms helps to reduce the frequency error to 0.69% in Simulation C with an increment of 0.075 mm/0.001 ms, which is half of the error in Simulation A (constant radius in 0.328–0.4 ms). The verification confirms the feasibility of the trimming algorithm for synchrocyclotron frequency modulation. - Highlights: • A model cavity is designed to verify the trimming algorithm of frequency modulation. • The RF frequency is expressed by fitting approximation and Maclaurin series. • The variable capacitor of the cavity works as a function of time. • The trimming formula for blade radius is found by discretization in time domain. • The amendment solution helps to reduce the frequency error.

  5. Study and development of an input coupler for the future TESLA collider

    International Nuclear Information System (INIS)

    Dupery, C.

    1996-01-01

    The TESLA (TeV Superconducting Linear Accelerator) is operating with a high frequency cavity resonator input coupler. Some technical restraints (such as thermal, mechanical, electrical, vacuum, multipactor discharge phenomena) constrain the development of this coupler. In order to solve these problems, studies have been performed at the French Atomic Energy Commission (CEA) and are presented in this paper

  6. A Ball Lightning Model as a Possible Explanation of Recently Reported Cavity Lights

    International Nuclear Information System (INIS)

    Fryberger, D.

    2009-01-01

    The salient features of cavity lights, in particular, mobile luminous objects (MLO's), as have been experimentally observed in superconducting accelerator cavities, are summarized. A model based upon standard electromagnetic interactions between a small particle and the 1.5 GHz cavity excitation field is described. This model can explain some features of these data, in particular, the existence of particle orbits without wall contact. While this result is an important success for the model, it is detailed why the model as it stands is incomplete. It is argued that no avenues for a suitable extension of the model through established physics appear evident, which motivates an investigation of a model based upon a more exotic object, ball lightning. As discussed, further motivation derives from the fact that there are significant similarities in many of the qualitative features of ball lightning and MLO's, even though they appear in quite different circumstances and differ in scale by orders of magnitude. The ball lightning model, which incorporates electromagnetic charges and currents, is based on a symmetrized set of Maxwell's equations in which the electromagnetic sources and fields are characterized by a process called dyality rotation. It is shown that a consistent mathematical description of dyality rotation as a physical process can be achieved by adding suitable (phenomenological) current terms to supplement the usual current terms in the symmetrized Maxwell's equations. These currents, which enable the conservation of electric and magnetic charge, are called vacuum currents. It is shown that the proposed ball lightning model offers a good qualitative explanation of the perplexing aspects of the MLO data. Avenues for further study are indicated

  7. A Ball Lightning Model as a Possible Explanation of Recently Reported Cavity Lights

    Energy Technology Data Exchange (ETDEWEB)

    Fryberger, David; /SLAC

    2009-08-04

    The salient features of cavity lights, in particular, mobile luminous objects (MLO's), as have been experimentally observed in superconducting accelerator cavities, are summarized. A model based upon standard electromagnetic interactions between a small particle and the 1.5 GHz cavity excitation field is described. This model can explain some features of these data, in particular, the existence of particle orbits without wall contact. While this result is an important success for the model, it is detailed why the model as it stands is incomplete. It is argued that no avenues for a suitable extension of the model through established physics appear evident, which motivates an investigation of a model based upon a more exotic object, ball lightning. As discussed, further motivation derives from the fact that there are significant similarities in many of the qualitative features of ball lightning and MLO's, even though they appear in quite different circumstances and differ in scale by orders of magnitude. The ball lightning model, which incorporates electromagnetic charges and currents, is based on a symmetrized set of Maxwell's equations in which the electromagnetic sources and fields are characterized by a process called dyality rotation. It is shown that a consistent mathematical description of dyality rotation as a physical process can be achieved by adding suitable (phenomenological) current terms to supplement the usual current terms in the symmetrized Maxwell's equations. These currents, which enable the conservation of electric and magnetic charge, are called vacuum currents. It is shown that the proposed ball lightning model offers a good qualitative explanation of the perplexing aspects of the MLO data. Avenues for further study are indicated.

  8. Modeling of cavity swelling-induced embrittlement in irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Han, X.

    2012-01-01

    During long-time neutron irradiation occurred in Pressurized Water Reactors (PWRs), significant changes of the mechanical behavior of materials used in reactor core internals (made of 300 series austenitic stainless steels) are observed, including irradiation induced hardening and softening, loss of ductility and toughness. So far, much effect has been made to identify radiation effects on material microstructure evolution (dislocations, Frank loops, cavities, segregation, etc.). The irradiation-induced cavity swelling, considered as a potential factor limiting the reactor lifetime, could change the mechanical properties of materials (plasticity, toughness, etc.), even lead to a structure distortion because of the dimensional modifications between different components. The principal aim of the present PhD work is to study qualitatively the influence of cavity swelling on the mechanical behaviors of irradiated materials. A micromechanical constitutive model based on dislocation and irradiation defect (Frank loops) density evolution has been developed and implemented into ZeBuLoN and Cast3M finite element codes to adapt the large deformation framework. 3D FE analysis is performed to compute the mechanical properties of a polycrystalline aggregate. Furthermore, homogenization technique is applied to develop a Gurson-type model. Unit cell simulations are used to study the mechanical behavior of porous single crystals, by accounting for various effects of stress triaxiality, of void volume fraction and of crystallographic orientation, in order to study void effect on the irradiated material plasticity and roughness at polycrystalline scale. (author) [fr

  9. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio

    Science.gov (United States)

    Roquier, Gerard

    2017-06-01

    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  10. Tesla man out of time

    CERN Document Server

    Cheney, Margaret

    1981-01-01

    Called a madman by some, a genius by others, and an enigma by nearly everyone, Nikola Tesla created astonishing, world-transforming devises that were virtually without theoretical precedent. Tesla not only discovered the rotating magnetic field, the basis of most alternating current machinery, but also introduced the fundamentals of robotry, computers, and missile science and helped pave the way for such technologies as satellites, microwaves, beam weapons, and nuclear fusion. Almost supernaturally gifted, Tesla was also unusually erratic, flamboyant, and neurotic. He was J. P. Morgan's client, counted Mark Twain as a friend, and considered Thomas Edison an enemy. But above all, he was the hero and mentor to many of the last century's most famous scientists. In a meticulously researched, engagingly written biography, Margaret Cheney presents the many different dimensions of this extraordinary man, capturing his human qualities and quirks as she chronicles a lifetime of discoveries that continue to alter our ...

  11. Emittance damping considerations for TESLA

    International Nuclear Information System (INIS)

    Floettmann, K.; Rossbach, J.

    1993-03-01

    Two schemes are considered to avoid very large damping rings for TESLA. The first (by K.F.) makes use of the linac tunnel to accomodate most of the damping 'ring' structure, which is, in fact, not a ring any more but a long linear structure with two small bends at each of its ends ('dog-bone'). The other scheme (by J.R.) is based on a positron (or electron, respectively) recycling scheme. It makes use of the specific TESLA property, that the full bunch train is much longer (240 km) than the linac length. The spent beams are recycled seven times after interaction, thus reducing the number of bunches to be stored in the damping ring by a factor of eight. Ultimately, this scheme can be used to operate TESLA in a storage ring mode ('storage linac'), with no damping ring at all. Finally, a combination of both schemes is considered. (orig.)

  12. Modelling investigations of DBRs and cavities with photonic crystal holes for application in VCSELs

    International Nuclear Information System (INIS)

    Ivanov, P; Ho, Y-L D; Cryan, M J; Rorison, J

    2012-01-01

    We investigate the reflection spectra of distributed Bragg reflectors (DBRs) and DBR cavities with and without photonic crystal holes fabricated within them. A finite-difference time domain (FDTD) electromagnetic model which is considered to provide the exact solution of Maxwell equations is used as a reference model. Two simplified modelling approaches are compared to the FDTD results: an effective index model where the individual DBR constituent layers penetrated by holes possess an effective index and a spatial loss model where optical losses are introduced spatially where the holes are fabricated. Results of the FDTD and the spatial loss model show that optical loss determines the properties of an etched DBR and DBR cavity when the lattice constant of the holes of exceeds 1 μm and the hole depth is small. The spatial loss model compares well to the FDTD results for holes with a lattice period exceeding 1 μm. We also consider the realistic effect of angling the sides of the etched holes. (paper)

  13. Modeling the Rapid Boil-Off of a Cryogenic Liquid When Injected into a Low Pressure Cavity

    Science.gov (United States)

    Lira, Eric

    2016-01-01

    Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.

  14. TESLA-N electron scattering with polarized targets at TESLA

    International Nuclear Information System (INIS)

    Korotokov, V.

    2001-01-01

    Measurements of polarized eN scattering can be realized at the TESLA linear collider facility at DESY with luminosities that are about two orders of magnitude higher than those expected for other experiments at comparable energies. A large variety of polarized parton distribution and fragmentation functions can be determined with unprecedented accuracy, many of them for the first time

  15. GCFR 1/20-scale PCRV central core cavity closure model test

    International Nuclear Information System (INIS)

    Robinson, G.C.; Dougan, J.R.

    1981-06-01

    Oak Ridge National Laboratory has been conducting structural response tests of the prestressed concrete reactor vessel (PCRV) closures for the 300-MW(e) gas-cooled fast reactor demonstration power plant. This report describes the third in a series of tests of small-scale closure plug models. The model represents a redesign of the central core cavity closure plug. The primary objective was to demonstrate structural performance and ultimate load capacity of the closure plug. Secondary objectives included obtaining data on crack development and propagation and on mode of failure of the composite structure

  16. NUMERICAL SIMULATION OF CAVITY FLOW AND FLOW OVER AIRCRAFT COMPARTMENT USING SEMI-EMPIRICAL TURBULENCE MODELS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article is devoted to the validation and application of CFD code for turbulent flows. Two-dimensional un- steady flows in the cavities and compartments and three-dimensional flow in the compartment of complex geometry have been considered. Two turbulence parameter oriented models are used.Numerical simulation of unsteady transonic flow (Mоо=0.74 in a narrow channel with a cavity inside has been conducted. The dependence of the static pressure on time at fixed points in space has been obtained. The fast Fourier trans- form has been applied for processing data of static pressure. The difference of 6-10% between the numerical and experi-mental data has been obtained.The computations of unsteady transonic cavity flow with Mach number Mоо=0.85 have been performed. Low fre- quency oscillations of the static pressure in several fixed points in space have been obtained. Power spectrum of oscilla- tions at the center of the cavity is compared with experimental data and Rossiter modes. An acceptable agreement between experimental and computed data has been achieved. The influence of geometrical factors on the frequency characteristics of the flow has been investigated. For this purpose two round flaps have been added to the cavity. The most low-frequency oscillation modes changed by the presence of the flaps. The first mode was gone, the second mode amplitude decreased and the third mode amplitude significantly decreased. The changes in height of protruding part of the geometry to the external flow have led to changes in pressure pulsation amplitude without changing the frequency. The spectral functions obtained while using the two considered models of turbulence have been compared for this case. It is found that the frequency values are only slightly different; the main difference is present at the amplitude of pulsations.The effect of deflection of flat flap on the non-stationary subsonic flow parameters in a cylindrical body with an inner

  17. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields

    Directory of Open Access Journals (Sweden)

    F. Schillaci

    2018-02-01

    Full Text Available A coil-capacitor target is modeled using FEM simulations and analytical calculations, which allow to explain the time evolution of such complex target during magnetic field production driven by the flow of an extremely high current generated through the interaction with a high power laser. The numerical model includes a detailed study of the magnetic field produced by the coil-capacitor target, both in the static and transient cases, as well as magnetic force and Joule heating. The model is validated by experimental data reported in literature and can be of interest for several applications. As an example, the combination of two synchronized nanosecond lasers with the purpose of producing a plasma responsible of the proton-boron (p+ + 11B → 8.5 MeV + 3α fusion reaction, and energizing two multi-turn coils with the main purpose of confining such a plasma could enhance the reaction rate. The preliminary conceptual design of a magnetic mirror configuration to be used for confining protons and boron ions up to a few MeV/u in a region of less than 1 mm2 is briefly reported.

  18. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields

    Science.gov (United States)

    Schillaci, F.; De Marco, M.; Giuffrida, L.; Fujioka, S.; Zhang, Z.; Korn, G.; Margarone, D.

    2018-02-01

    A coil-capacitor target is modeled using FEM simulations and analytical calculations, which allow to explain the time evolution of such complex target during magnetic field production driven by the flow of an extremely high current generated through the interaction with a high power laser. The numerical model includes a detailed study of the magnetic field produced by the coil-capacitor target, both in the static and transient cases, as well as magnetic force and Joule heating. The model is validated by experimental data reported in literature and can be of interest for several applications. As an example, the combination of two synchronized nanosecond lasers with the purpose of producing a plasma responsible of the proton-boron (p+ + 11B → 8.5 MeV + 3α) fusion reaction, and energizing two multi-turn coils with the main purpose of confining such a plasma could enhance the reaction rate. The preliminary conceptual design of a magnetic mirror configuration to be used for confining protons and boron ions up to a few MeV/u in a region of less than 1 mm2 is briefly reported.

  19. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    Science.gov (United States)

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  20. Nikola Tesla Educational Opportunity School.

    Science.gov (United States)

    Design Cost Data, 2001

    2001-01-01

    Describes the architectural design, costs, general description, and square footage data for the Nikola Tesla Educational Opportunity School in Colorado Springs, Colorado. A floor plan and photos are included along with a list of manufacturers and suppliers used for the project. (GR)

  1. The Legacy of Nikola Tesla

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. The Legacy of Nikola Tesla - The AC System that he Helped to Usher in. D P Sen Gupta. General Article Volume 12 Issue 3 March 2007 pp 54-69. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. The Legacy of Nikola Tesla

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 4. The Legacy of Nikola Tesla - AC Power System and its Growth in India. D P Sen Gupta. General Article Volume 12 Issue 4 April 2007 pp 69-79. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Assessment of models for steam release from concrete and implications for modeling corium behavior in reactor cavities

    International Nuclear Information System (INIS)

    Washington, K.E.; Carroll, D.E.

    1988-01-01

    Models for concrete outgassing have been developed and incorporated into a developmental version of the CONTAIN code for the assessment of corium behavior in reactor cavities. The resultant code, referred to as CONTAIN/OR in order to distinguish it from the released version of CONTAIN, has the capability to model transient heat conduction and concrete outgassing in core-concrete interaction problems. This study focused on validation and assessment of the outgassing model through comparisons with other concrete response codes. In general, the model is not mechanistic; however, there are certain important processes and feedback effects that are treated rigorously. The CONTAIN outgassing model was compared against two mechanistic concrete response codes (USINT and SLAM). Gas release and temperature profile predictions for several concrete thicknesses and heating rates were performed with acceptable agreement seen in each case. The model was also applied to predict corium behavior in a reactor cavity for a hypothetical severe accident scenario. In this calculation, gases evolving from the concrete during nonablating periods fueled exothermic Zr chemical reactions in the corium. Higher corium temperatures and more concrete ablation were observed when compared with that seen when concrete outgassing was neglected. Even though this result depends somewhat upon the makeup of the corium sources and the concrete type in the cavity, it does show that concrete outgassing can be important in the modeling of corium behavior in reactor cavities. In particular, the need to expand the traditional role of CORCON from steady-state ablation to the consideration of more transient events is clearly evident as a result of this work. 5 refs., 11 figs., 1 tab

  4. Calculation of secondary capacitance of compact Tesla pulse transformer

    International Nuclear Information System (INIS)

    Yu Binxiong; Liu Jinliang

    2013-01-01

    An analytic expression of the secondary capacitance of a compact Tesla pulse transformer is derived. Calculated result by the expression shows that two parts contribute to the secondary capacitance, namely the capacitance between inner and outer magnetic cores and the attached capacitance caused by the secondary winding. The attached capacitance equals to the capacitance of a coaxial line which is as long as the secondary coil, and whose outer and inner diameters are as large as the inner diameter of the outer magnetic and the outer diameter of the inner magnetic core respectively. A circuital model for analyzing compact Tesla transformer is built, and numeric calculation shows that the expression of the secondary capacitance is correct. Besides, a small compact Tesla transformer is developed, and related test is carried out. Test result confirms the calculated results by the expression derived. (authors)

  5. A New Signal Model for Axion Cavity Searches from N -body Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Erik W.; Rosenberg, Leslie J. [Physics Department, University of Washington, Seattle, WA 98195-1580 (United States); Quinn, Thomas R.; Tremmel, Michael J., E-mail: lentze@phys.washington.edu, E-mail: ljrosenberg@phys.washington.edu, E-mail: trq@astro.washington.edu, E-mail: mjt29@astro.washington.edu [Astronomy Department, University of Washington, Seattle, WA 98195-1580 (United States)

    2017-08-20

    Signal estimates for direct axion dark matter (DM) searches have used the isothermal sphere halo model for the last several decades. While insightful, the isothermal model does not capture effects from a halo’s infall history nor the influence of baryonic matter, which has been shown to significantly influence a halo’s inner structure. The high resolution of cavity axion detectors can make use of modern cosmological structure-formation simulations, which begin from realistic initial conditions, incorporate a wide range of baryonic physics, and are capable of resolving detailed structure. This work uses a state-of-the-art cosmological N -body+Smoothed-Particle Hydrodynamics simulation to develop an improved signal model for axion cavity searches. Signal shapes from a class of galaxies encompassing the Milky Way are found to depart significantly from the isothermal sphere. A new signal model for axion detectors is proposed and projected sensitivity bounds on the Axion DM eXperiment (ADMX) data are presented.

  6. Paul Drude's prediction of nonreciprocal mutual inductance for Tesla transformers.

    Science.gov (United States)

    McGuyer, Bart

    2014-01-01

    Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed.

  7. Modeling cavities exhibiting strong lateral confinement using open geometry Fourier modal method

    DEFF Research Database (Denmark)

    Häyrynen, Teppo; Gregersen, Niels

    2016-01-01

    We have developed a computationally efficient Fourier-Bessel expansion based open geometry formalism for modeling the optical properties of rotationally symmetric photonic nanostructures. The lateral computation domain is assumed infinite so that no artificial boundary conditions are needed. Instead,...... around a geometry specific dominant transverse wavenumber region. We will use the developed approach to investigate the Q factor and mode confinement in cavities where top DBR mirror has small rectangular defect confining the modes laterally on the defect region....

  8. Modeling multipulsing transition in ring cavity lasers with proper orthogonal decomposition

    International Nuclear Information System (INIS)

    Ding, Edwin; Shlizerman, Eli; Kutz, J. Nathan

    2010-01-01

    A low-dimensional model is constructed via the proper orthogonal decomposition (POD) to characterize the multipulsing phenomenon in a ring cavity laser mode locked by a saturable absorber. The onset of the multipulsing transition is characterized by an oscillatory state (created by a Hopf bifurcation) that is then itself destabilized to a double-pulse configuration (by a fold bifurcation). A four-mode POD analysis, which uses the principal components, or singular value decomposition modes, of the mode-locked laser, provides a simple analytic framework for a complete characterization of the entire transition process and its associated bifurcations. These findings are in good agreement with the full governing equation.

  9. Modeling the interaction of a heavily beam loaded SRF cavity with its low-level RF feedback loops

    Science.gov (United States)

    Liu, Zong-Kai; Wang, Chaoen; Chang, Lung-Hai; Yeh, Meng-Shu; Chang, Fu-Yu; Chang, Mei-Hsia; Chang, Shian-Wen; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Lo, Chih-Hung; Yu, Tsung-Chi

    2018-06-01

    A superconducting radio frequency (SRF) cavity provides superior stability to power high intensity light sources and can suppress coupled-bunch instabilities due to its smaller impedance for higher order modes. Because of these features, SRF cavities are commonly used for modern light sources, such as the TLS, CLS, DLS, SSRF, PLS-II, TPS, and NSLS-II, with an aggressive approach to operate the light sources at high beam currents. However, operating a SRF cavity at high beam currents may result with unacceptable stability problems of the low level RF (LLRF) system, due to drifts of the cavity resonant frequency caused by unexpected perturbations from the environment. As the feedback loop gets out of control, the cavity voltage may start to oscillate with a current-dependent characteristic frequency. Such situations can cause beam abort due to the activation of the interlock protection system, i.e. false alarm of quench detection. This malfunction of the light source reduces the reliability of SRF operation. Understanding this unstable mechanism to prevent its appearance becomes a primary task in the pursuit of highly reliable SRF operation. In this paper, a Pedersen model, including the response of the LLRF system, was used to simulate the beam-cavity interaction of a SRF cavity under heavy beam loading. Causes for the onset of instability at high beam current will be discussed as well as remedies to assure the design of a stable LLRF system.

  10. Analytical Model for the End-Bearing Capacity of Tapered Piles Using Cavity Expansion Theory

    Directory of Open Access Journals (Sweden)

    Suman Manandhar

    2012-01-01

    Full Text Available On the basis of evidence from model tests on increasing the end-bearing behavior of tapered piles at the load-settlement curve, this paper proposes an analytical spherical cavity expansion theory to evaluate the end-bearing capacity. The angle of tapering is inserted in the proposed model to evaluate the end-bearing capacity. The test results of the proposed model in different types of sands and different relative densities show good effects compared to conventional straight piles. The end-bearing capacity increases with increases in the tapering angle. The paper then propounds a model for prototypes and real-type pile tests which predicts and validates to evaluate the end-bearing capacity.

  11. Modeling nest survival of cavity-nesting birds in relation to postfire salvage logging

    Science.gov (United States)

    Vicki Saab; Robin E. Russell; Jay Rotella; Jonathan G. Dudley

    2011-01-01

    Salvage logging practices in recently burned forests often have direct effects on species associated with dead trees, particularly cavity-nesting birds. As such, evaluation of postfire management practices on nest survival rates of cavity nesters is necessary for determining conservation strategies. We monitored 1,797 nests of 6 cavity-nesting bird species: Lewis'...

  12. New Tesla-Experiment; Neue Tesla-Experimente

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Guenter; Harthun, Norbert

    2010-07-01

    Mysterious Teslar wave, microwave and scalar wave generators are presented, as well as exotic Star Wars experiments like mass accelerators and plasma guns. The third section describes, among others, a tube-driven Tesla generator with 50 cm streamers. The reader will also find a catalogue of Messrs. Information Unlimited, USA, who are providers of many of the kits, circuiting diagrams and apparatuses presented here. Main topic in this issue is wireless energy transfer and telecommunication engineering.(orig./GL)

  13. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    Science.gov (United States)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  14. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  15. Large-Signal Code TESLA: Current Status and Recent Development

    National Research Council Canada - National Science Library

    Chernyavskiy, Igor A; Vlasov, Alexander N; Cooke, Simon J; Abe, David K; Levush, Baruch; Antonsen, Jr., Thomas M; Nguyen, Khanh T

    2008-01-01

    .... One such tool is the large-signal code TESLA, which was successfully applied for the modeling of single-beam and multiple-beam klystron devices at the Naval Research Laboratory and which is now used by number of U.S. companies...

  16. A case study testing the cavity mode model of the magnetosphere

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-07-01

    Full Text Available Based on a case study we test the cavity mode model of the magnetosphere, looking for eigenfrequencies via multi-satellite and multi-instrument measurements. Geotail and ACE provide information on the interplanetary medium that dictates the input parameters of the system; the four Cluster satellites monitor the magnetopause surface waves; the POLAR (L=9.4 and LANL 97A (L=6.6 satellites reveal two in-situ monochromatic field line resonances (FLRs with T=6 and 2.5 min, respectively; and the IMAGE ground magnetometers demonstrate latitude dependent delays in signature arrival times, as inferred by Sarafopoulos (2004b. Similar dispersive structures showing systematic delays are also extensively scrutinized by Sarafopoulos (2005 and interpreted as tightly associated with the so-called pseudo-FLRs, which show almost the same observational characteristics with an authentic FLR. In particular for this episode, successive solar wind pressure pulses produce recurring ionosphere twin vortex Hall currents which are identified on the ground as pseudo-FLRs. The BJN ground magnetometer records the pseudo-FLR (alike with the other IMAGE station responses associated with an intense power spectral density ranging from 8 to 12 min and, in addition, two discrete resonant lines with T=3.5 and 7 min. In this case study, even though the magnetosphere is evidently affected by a broad-band compressional wave originated upstream of the bow shock, nevertheless, we do not identify any cavity mode oscillation within the magnetosphere. We fail, also, to identify any of the cavity mode frequencies proposed by Samson (1992.

    Keywords. Magnetospheric physics (Magnetosphereionosphere interactions; Solar wind-magnetosphere interactions; MHD waves and instabilities

  17. DOOCS environment for FPGA-based cavity control system and control algorithms development

    International Nuclear Information System (INIS)

    Pucyk, P.; Koprek, W.; Kaleta, P.; Szewinski, J.; Pozniak, K.T.; Czarski, T.; Romaniuk, R.S.

    2005-01-01

    The paper describes the concept and realization of the DOOCS control software for FPGAbased TESLA cavity controller and simulator (SIMCON). It bases on universal software components, created for laboratory purposes and used in MATLAB based control environment. These modules have been recently adapted to the DOOCS environment to ensure a unified software to hardware communication model. The presented solution can be also used as a general platform for control algorithms development. The proposed interfaces between MATLAB and DOOCS modules allow to check the developed algorithm in the operation environment before implementation in the FPGA. As the examples two systems have been presented. (orig.)

  18. Nucleonic instruments from VUPJT Tesla

    International Nuclear Information System (INIS)

    Smola, J.

    1986-01-01

    The instruments currently produced by Tesla Premysleni are listed and briefly characterized. They include a low level alpha-beta counter, an automatic low level alpha-beta counter, detection units for environmental sample counting, instruments for measuring specific activity of liquids and radon concentration in water, a radioactive aerosol meter, dose ratemeters, portable alpha-beta indicators for surface contamintion monitoring, neutron monitors, single-, two- and three-channel spectrometric units. (M.D.)

  19. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    International Nuclear Information System (INIS)

    Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-01-01

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  20. Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model

    Science.gov (United States)

    Advani, Madhu; Bunin, Guy; Mehta, Pankaj

    2018-03-01

    A central question in ecology is to understand the ecological processes that shape community structure. Niche-based theories have emphasized the important role played by competition for maintaining species diversity. Many of these insights have been derived using MacArthur’s consumer resource model (MCRM) or its generalizations. Most theoretical work on the MCRM has focused on small ecosystems with a few species and resources. However theoretical insights derived from small ecosystems many not scale up to large ecosystems with many resources and species because large systems with many interacting components often display new emergent behaviors that cannot be understood or deduced from analyzing smaller systems. To address these shortcomings, we develop a statistical physics inspired cavity method to analyze MCRM when both the number of species and the number of resources is large. Unlike previous work in this limit, our theory addresses resource dynamics and resource depletion and demonstrates that species generically and consistently perturb their environments and significantly modify available ecological niches. We show how our cavity approach naturally generalizes niche theory to large ecosystems by accounting for the effect of collective phenomena on species invasion and ecological stability. Our theory suggests that such phenomena are a generic feature of large, natural ecosystems and must be taken into account when analyzing and interpreting community structure. It also highlights the important role that statistical-physics inspired approaches can play in furthering our understanding of ecology.

  1. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  2. Cavity-ligand binding in a simple two-dimensional water model

    Directory of Open Access Journals (Sweden)

    G. Mazovec

    2016-02-01

    Full Text Available By means of Monte Carlo computer simulations in the isothermal-isobaric ensemble, we investigated the interaction of a hydrophobic ligand with the hydrophobic surfaces of various curvatures (planar, convex and concave. A simple two-dimensional model of water, hydrophobic ligand and surface was used. Hydration/dehidration phenomena concerning water molecules confined close to the molecular surface were investigated. A notable dewetting of the hydrophobic surfaces was observed together with the reorientation of the water molecules close to the surface. The hydrogen bonding network was formed to accommodate cavities next to the surfaces as well as beyond the first hydration shell. The effects were most strongly pronounced in the case of concave surfaces having large curvature. This simplified model can be further used to evaluate the thermodynamic fingerprint of the docking of hydrophobic ligands.

  3. Kinetic characteristics of crystallization from model solutions of the oral cavity

    Science.gov (United States)

    Golovanova, O. A.; Chikanova, E. S.

    2015-11-01

    The kinetic regularities of crystallization from model solutions of the oral cavity are investigated and the growth order and constants are determined for two systems: saliva and dental plaque fluid (DPF). It is found that the stage in which the number of particles increases occurs in the range of mixed kinetics and their growth occurs in the diffusion range. The enhancing effect of additives HCO- 3 > C6H12O6 > F- and the retarding effect of Mg2+ are demonstrated. The HCO- 3 and Mg2+ additives, taken in high concentrations, affect the corresponding rate constants. It is revealed the crystallization in DPF is favorable for the growth of small crystallites, while the model solution of saliva is, vice versa, favorable for the growth of larger crystals.

  4. Performance estimation of Tesla turbine applied in small scale Organic Rankine Cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Li, Xue-song

    2017-01-01

    Highlights: • One-dimensional model of the Tesla turbine is improved and applied in ORC system. • Working fluid properties and system operating conditions impact efficiency. • The influence of turbine efficiency on ORC system performance is evaluated. • Potential of using Tesla turbine in ORC systems is estimated. - Abstract: Organic Rankine Cycle (ORC) system has been proven to be an effective method for the low grade energy utilization. In small scale applications, the Tesla turbine offers an attractive option for the organic expander if an efficient design can be achieved. The Tesla turbine is simple in structure and is easy to be manufactured. This paper improves the one-dimensional model for the Tesla turbine, which adopts a non-dimensional formulation that identifies the dimensionless parameters that dictates the performance features of the turbine. The model is used to predict the efficiency of a Tesla turbine that is applied in a small scale ORC system. The influence of the working fluid properties and the operating conditions on the turbine performance is evaluated. Thermodynamic analysis of the ORC system with different organic working fluids and under various operating conditions is conducted. The simulation results reveal that the ORC system can generate a considerable net power output. Therefore, the Tesla turbine can be regarded as a potential choice to be applied in small scale ORC systems.

  5. Tesla - A Flash of a Genius

    Science.gov (United States)

    Teodorani, M.

    2005-10-01

    This book, which is entirely dedicated to the inventions of scientist Nikola Tesla, is divided into three parts: a) all the most important innovative technological creations from the alternate current to the death ray, Tesla research in fundamental physics with a particular attention to the concept of "ether", ball lightning physics; b) the life and the bright mind of Nikola Tesla and the reasons why some of his most recent findings were not accepted by the establishment; c) a critical discussion of the most important work by Tesla followers.

  6. Nell’anno di Nikola Tesla

    OpenAIRE

    Persida Lazarević Di Giacomo

    2006-01-01

    The 150th Anniversary Celebration of Nikola Tesla The paper deals with the 150th anniversary celebration of Nikola Tesla, the greatest ever Yugoslav scientist. Due to his origins, Tesla is contended between Serbia and Croatia, but he is also considered to be an American scientist since he registered most of his patents in the USA. Although there is some dissension between Serbia and Croatia regarding the historical facts about Tesla’s life, it can be asserted that Tesla appears to be an...

  7. New achievements in RF cavity manufacturing

    International Nuclear Information System (INIS)

    Lippmann, G.; Pimiskern, K.; Kaiser, H.

    1993-01-01

    Dornier has been engaged in development, manufacturing and testing of Cu-, Cu/Nb- and Nb-cavities for many years. Recently, several different types of RF cavities were manufactured. A prototype superconducting (s.c.) B-Factory accelerating cavity (1-cell, 500 MHz) was delivered to Cornell University, Laboratory of Nuclear Studies. A second lot of 6 s.c. cavities (20-cell, 3000 MHz) was fabricated on contract from Technical University of Darmstadt for the S-DALINAC facility. Finally, the first copper RF structures (9-cell, 1300 MHz) for TESLA were finished and delivered to DESY, two s.c. niobium structures of the same design are in production. Highlights from the manufacturing processes of these cavities are described and first performance results will be reported

  8. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

    Science.gov (United States)

    Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.

    2017-08-01

    We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments

  9. Development of a multi-scale simulation model of tube hydroforming for superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Sumption, M.D., E-mail: sumption.3@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Bong, H.J. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Lim, H. [Sandia National Laboratories, Albuquerque, NM (United States); Collings, E.W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States)

    2017-01-02

    This work focuses on finite element modeling of the hydroforming process for niobium tubes intended for use in superconducting radio frequency (SRF) cavities. The hydroforming of tubular samples into SRF-relevant shapes involves the complex geometries and loading conditions which develop during the deformation, as well as anisotropic materials properties. Numerical description of the process entails relatively complex numerical simulations. A crystal plasticity (CP) model was constructed that included the evolution of crystallographic orientation during deformation as well as the anisotropy of tubes in all directions and loading conditions. In this work we demonstrate a multi-scale simulation approach which uses both microscopic CP and macroscopic continuum models. In this approach a CP model (developed and implemented into ABAQUS using UMAT) was used for determining the flow stress curve only under bi-axial loading in order to reduce the computing time. The texture of the materials obtained using orientation imaging microscopy (OIM) and tensile test data were inputs for this model. Continuum FE analysis of tube hydroforming using the obtained constitutive equation from the CP modeling was then performed and compared to the results of hydraulic bulge testing. The results show that high quality predictions of the deformation under hydroforming of Nb tubes can be obtained using CP-FEM based on their known texture and the results of tensile tests. The importance of the CP-FEM based approach is that it reduces the need for hydraulic bulge testing, using a relatively simple computational approach.

  10. Development of a multi-scale simulation model of tube hydroforming for superconducting RF cavities

    International Nuclear Information System (INIS)

    Kim, H.S.; Sumption, M.D.; Bong, H.J.; Lim, H.; Collings, E.W.

    2017-01-01

    This work focuses on finite element modeling of the hydroforming process for niobium tubes intended for use in superconducting radio frequency (SRF) cavities. The hydroforming of tubular samples into SRF-relevant shapes involves the complex geometries and loading conditions which develop during the deformation, as well as anisotropic materials properties. Numerical description of the process entails relatively complex numerical simulations. A crystal plasticity (CP) model was constructed that included the evolution of crystallographic orientation during deformation as well as the anisotropy of tubes in all directions and loading conditions. In this work we demonstrate a multi-scale simulation approach which uses both microscopic CP and macroscopic continuum models. In this approach a CP model (developed and implemented into ABAQUS using UMAT) was used for determining the flow stress curve only under bi-axial loading in order to reduce the computing time. The texture of the materials obtained using orientation imaging microscopy (OIM) and tensile test data were inputs for this model. Continuum FE analysis of tube hydroforming using the obtained constitutive equation from the CP modeling was then performed and compared to the results of hydraulic bulge testing. The results show that high quality predictions of the deformation under hydroforming of Nb tubes can be obtained using CP-FEM based on their known texture and the results of tensile tests. The importance of the CP-FEM based approach is that it reduces the need for hydraulic bulge testing, using a relatively simple computational approach.

  11. Modeling cavities exhibiting strong lateral confinement using open geometry Fourier modal method

    Science.gov (United States)

    Häyrynen, Teppo; Gregersen, Niels

    2016-04-01

    We have developed a computationally efficient Fourier-Bessel expansion based open geometry formalism for modeling the optical properties of rotationally symmetric photonic nanostructures. The lateral computation domain is assumed infinite so that no artificial boundary conditions are needed. Instead, the leakage of the modes due to an imperfect field confinement is taken into account by using a basis functions that expand the whole infinite space. The computational efficiency is obtained by using a non-uniform discretization in the frequency space in which the lateral expansion modes are more densely sampled around a geometry specific dominant transverse wavenumber region. We will use the developed approach to investigate the Q factor and mode confinement in cavities where top DBR mirror has small rectangular defect confining the modes laterally on the defect region.

  12. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model.

    Science.gov (United States)

    Unal, G S; Aksun, M I

    2015-11-02

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  13. Technical challenges of superconductivity and cryogenics in pursuing TESLA-TTF

    International Nuclear Information System (INIS)

    Shu, Quan-Sheng

    1996-01-01

    TESLA (TeV Energy Superconducting Linear Accelerator) Collaboration is an international R ampersand D effort towards the development of an e + e - linear collider with 500 GeV center of mass by means of 20 km active superconducting accelerating structures at a frequency of 1.3 GHz. The ultimate challenges faced by the TESLA project are (1) to raise operational accelerating gradients to 25 MV/m from current world level of 5-10 MV/m, and (2) to reduce construction costs (cryomodules, klystrons, etc.) down to $2,000/MV from now about $40,000/MV. The TESLA Collaboration is building a prototype TESLA test facility (TTF) of a 500 MeV superconducting linear accelerator to establish the technical basis. TTF is presently under construction and will be commissioned at DESY in 1997, through the joint efforts of 24 laboratories from 8 countries. Significant progress has been made in reaching the high accelerating gradient of 25 MV/m in superconducting cavities, developing cryomodules and constructing TTF infrastructure, etc. This paper will briefly discuss the challenges being faced and review the progress achieved in the technical area of superconductivity and cryogenics by the TESLA Collaboration

  14. Dental cavities

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001055.htm Dental cavities To use the sharing features on this page, please enable JavaScript. Dental cavities are holes (or structural damage) in the ...

  15. Design of half-reentrant SRF cavities

    International Nuclear Information System (INIS)

    Meidlinger, M.; Grimm, T.L.; Hartung, W.

    2006-01-01

    The shape of a TeSLA inner cell can be improved to lower the peak surface magnetic field at the expense of a higher peak surface electric field by making the cell reentrant. Such a single-cell cavity was designed and tested at Cornell, setting a world record accelerating gradient [V. Shemelin et al., An optimized shape cavity for TESLA: concept and fabrication, 11th Workshop on RF Superconductivity, Travemuende, Germany, September 8-12, 2003; R. Geng, H. Padamsee, Reentrant cavity and first test result, Pushing the Limits of RF Superconductivity Workshop, Argonne National Laboratory, September 22-24, 2004]. However, the disadvantage to a cavity is that liquids become trapped in the reentrant portion when it is vertically hung during high pressure rinsing. While this was overcome for Cornell's single-cell cavity by flipping it several times between high pressure rinse cycles, this may not be feasible for a multi-cell cavity. One solution to this problem is to make the cavity reentrant on only one side, leaving the opposite wall angle at six degrees for fluid drainage. This idea was first presented in 2004 [T.L. Grimm et al., IEEE Transactions on Applied Superconductivity 15(6) (2005) 2393]. Preliminary designs of two new half-reentrant (HR) inner cells have since been completed, one at a high cell-to-cell coupling of 2.1% (high-k cc HR) and the other at 1.5% (low-k cc HR). The parameters of a HR cavity are comparable to a fully reentrant cavity, with the added benefit that a HR cavity can be easily cleaned with current technology

  16. The Grenoble station for producing strong transient magnetic fields higher than 100 teslas by an explosive driven flux compression

    International Nuclear Information System (INIS)

    Guillot, M.

    1976-01-01

    Reproducible transient magnetic fields up to 400 teslas (4 megaoersted) are achieved by a simple explosive driven flux compression. The results are described simply from the point of view of energy conversion. The problems of field measurements are studied: the precision is +-2% with a field cavity of 5 mm diameter [fr

  17. Dynamics of interacting Dicke model in a coupled-cavity array

    Science.gov (United States)

    Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro

    2014-09-01

    We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

  18. Side-coupled cavity model for surface plasmon-polariton transmission across a groove

    International Nuclear Information System (INIS)

    Liu, J.S.Q.

    2010-01-01

    We demonstrate that the transmission properties of surface plasmon-polaritons (SPPs) across a rectangular groove in a metallic film can be described by an analytical model that treats the groove as a side-coupled cavity to propagating SPPs on the metal surface. The coupling efficiency to the groove is quantified by treating it as a truncated metal-dielectric-metal (MDM) waveguide. Finite-difference frequency-domain (FDFD) simulations and mode orthogonality relations are employed to derive the basic scattering coefficients that describe the interaction between the relevant modes in the system. The modeled SPP transmission and reflection intensities show excellent agreement with full-field simulations over a wide range of groove dimensions, validating this intuitive model. The model predicts the sharp transmission minima that occur whenever an incident SPP resonantly couples to the groove. We also for the first time show the importance of evanescent, reactive MDM SPP modes to the transmission behavior. SPPs that couple to this mode are resonantly enhanced upon reflection from the bottom of the groove, leading to high field intensities and sharp transmission minima across the groove. The resonant behavior exhibited by the grooves has a number of important device applications, including SPP mirrors, filters, and modulators.

  19. Modelling of the nonlinear soliton dynamics in the ring fibre cavity

    Science.gov (United States)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2018-04-01

    Using the cabaret method numerical realization, long-time spatio-temporal dynamics of the electromagnetic field in a nonlinear ring fibre cavity with dispersion is investigated during the hundreds of round trips. Formation of both the temporal cavity solitons and irregular pulse trains is demonstrated and discussed.

  20. Control System Design for Automatic Cavity Tuning Machines

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; /Fermilab; Goessel, A.; Iversen, J.; Klinke, D.; /DESY

    2009-05-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  1. Control System Design for Automatic Cavity Tuning Machines

    International Nuclear Information System (INIS)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; Goessel, A.; Iversen, J.; Klinke, D.

    2009-01-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  2. 12 tesla test coil. Annual progress report

    International Nuclear Information System (INIS)

    1979-01-01

    The Plasma Fusion Center at MIT has been charged with responsibility for the design, development, fabrication and test operation of a Niobium-3-Tin Superconducting Test Coil. Research is described on DOE's 12 tesla coil demonstration program in which several one-meter diameter superconducting test coils will be inserted and tested in DOE's High Field Test Facility at the Lawrence Livermore Laboratories. The work was initiated at the start of FY 79. FY 79 saw the completion of our Preliminary Design and the initiation of three (3) subcontracts: (1) Westinghouse review of the Preliminary Design, (II) Supercon, Inc. development of a tubular copper matrix, Nb 3 Sn Superconductor and (III) Airco optimization of the LCP-W Nb 3 Sn superconductor for 12T service. In addition, Airco was charged with the production of a 1000 foot length of model 15,000A conductor. Coil winding exercises were initiated at the Everson Electric Company

  3. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Science.gov (United States)

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  4. Evaluation of bond strength of silorane and methacrylate based restorative systems to dentin using different cavity models

    Directory of Open Access Journals (Sweden)

    Stephano Zerlottini Isaac

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this in vitro study was to evaluate the microtensile bond strength (µTBS to dentin of two different restorative systems: silorane-based (P90, and methacrylate-based (P60, using two cavity models. MATERIAL AND METHODS: Occlusal enamel of 40 human third molars was removed to expose flat dentin surface. Class I cavities with 4 mm mesial-distal width, 3 mm buccal-lingual width and 3 mm depth (C-factor=4.5 were prepared in 20 teeth, which were divided into two groups (n=10 restored with P60 and P90, bulk-filled after dentin treatment according to manufacturer's instructions. Flat buccal dentin surfaces were prepared in the 20 remaining teeth (C-factor=0.2 and restored with resin blocks measuring 4x3x3 mm using the two restorative systems (n=10. The teeth were sectioned into samples with area between 0.85 and 1.25 mm2 that were submitted to µTBS testing, using a universal testing machine (EMIC at speed of 0.5 mm/min. Fractured specimens were analyzed under stereomicroscope and categorized according to fracture pattern. Data were analyzed using ANOVA and Tukey Kramer tests. RESULTS: For flat surfaces, P60 obtained higher bond strength values compared with P90. However, for Class I cavities, P60 showed significant reduction in bond strength (p0.05, or between Class I Cavity and Flat Surface group, considering P90 restorative system (p>0.05. Regarding fracture pattern, there was no statistical difference among groups (p=0.0713 and 56.3% of the fractures were adhesive. CONCLUSION: It was concluded that methacrylate-based composite µTBS was influenced by cavity models, and the use of silorane-based composite led to similar bond strength values compared to the methacrylate-based composite in cavities with high C-factor.

  5. Cavity design programs

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    Numerous computer programs are available to help accelerator physicists and engineers model and design accelerator cavities and other microwave components. This article discusses the problems these programs solve and the principles upon which these programs are based. Some examples of how these programs are used in the design of accelerator cavities are also given

  6. Contamination issues in superconducting cavity technology

    International Nuclear Information System (INIS)

    Kneisel, Peter

    1997-01-01

    The application of radio-frequency superconductivity technology in particle accelerator projects has become increasingly evident in recent years. Several large scale projects around the world are either completed or close to completion, such as CEBAF, HERA, TRISTAN and LEP. And superconducting cavity technology is seriously being considered for future applications in linear colliders (TESLA), high current proton accelerators (APT, spallation neutron sources), muon colliders and free electron lasers for industrial application. The reason for this multitude of activities are matured technology based on a better understanding of the phenomena encountered in superconducting cavities and the influence of improved material properties and contamination and quality control measures

  7. A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications

    Science.gov (United States)

    Robin, J.; Tanter, M.; Pernot, M.

    2017-09-01

    Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.

  8. Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India); Sharma, S.K. [Energy Research Centre, Panjab University, Chandigarh 160 017, Punjab (India)

    2007-06-15

    A thermal model is developed for heating and cooling of an agricultural greenhouse integrated with an aquifer coupled cavity flow heat exchanger system (ACCFHES). The ACCFHES works on the principal of utilizing deep aquifer water available at the ground surface through an irrigation tube well already installed in every agricultural field at constant year-round temperature of 24 C. The analysis is based on the energy balance equations for different components of the greenhouse. Using the derived analytical expressions, a computer program is developed in C{sup ++} for computing the hourly greenhouse plant and room air temperature for various design and climatic parameters. Experimental validation of the developed model is carried out using the measured plant and room air temperature data of the greenhouse (in which capsicum is grown) for the winter and summer conditions of the year 2004-2005 at Chandigarh (31 N and 78 E), Punjab, India. It is observed that the predicted and measured values are in close agreement. Greenhouse room air and plant temperature is maintained 6-7 K and 5-6 K below ambient, respectively for an extreme summer day and 7-8 K and 5-6 K above ambient, respectively for an extreme winter night. Finally, parametric studies are conducted to observe the effect of various operating parameters such as mass of the plant, area of the plant, mass flow rate of the circulating air and area of the ACCFHES on the greenhouse room air and plant temperature. (author)

  9. Modelling and simulation of a natural convection flow in a saturated porous cavity

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1991-09-01

    The natural convection flow in a two-dimensional fluid-saturated porous cavity is modelled by means of a Theory of Mixtures viewpoint in which fluid and porous medium are regarded as continuous constituents of a binary mixture, coexisting superposed. A local description, that allows distinct temperature profiles for both fluid and solid constituents is obtained. The model, simplified by the Boussinesq approximation, is simulated with the help of the Control Volumes Method. The effect of some usual parameters like Rayleigh, Darcy and Prandtl numbers and of a new dimensionless number, relating coefficients associated to the heat exchange between fluid and solid constituents (due to its temperature difference) and coefficients of heat conduction for each constituent, is considered. Stream lines for the fluid constituent and isotherms for both fluid and solid constituents are presented for some cases. Qualitative agreement with results using the classical approach (Darcy's law and additional terms to account for boundary and inertia effects, used as momentum equation) was obtained. (author)

  10. Design of a high-power test model of the PEP-II rf cavity

    International Nuclear Information System (INIS)

    Schwarz, H.D.; Bell, R.A.; Hodgson, J.A.

    1993-05-01

    The design of a normal-conducting high-power test cavity (HPTC) for PEP-II is described. The cavity includes HOM loading waveguides and provisions for testing two alternate input coupling schemes. 3-D electromagnetic field simulations provided input information for the surface power deposition. Finite element codes were utilized for thermal and stress analyses of the cavity to arrive at a suitable mechanical design capable of handling the high power dissipation. The mechanical design approach with emphasis on the cooling channel layout and mechanical stress reduction is described

  11. Nell’anno di Nikola Tesla

    Directory of Open Access Journals (Sweden)

    Persida Lazarević Di Giacomo

    2006-12-01

    Full Text Available The 150th Anniversary Celebration of Nikola Tesla The paper deals with the 150th anniversary celebration of Nikola Tesla, the greatest ever Yugoslav scientist. Due to his origins, Tesla is contended between Serbia and Croatia, but he is also considered to be an American scientist since he registered most of his patents in the USA. Although there is some dissension between Serbia and Croatia regarding the historical facts about Tesla’s life, it can be asserted that Tesla appears to be an example of collaboration among the former Yugoslav countries. Tesla, however, deserves to be remembered as well as the author of autobiographical prose (My Inventions; Some Personal Recollections; A Strange Experience by Nikola Tesla and as the protagonist of many works published in Serbo-Croatian and in English, such as Miloš Crnjanski’s drama Tesla (1969 or The Hunger and Ecstasy of Vampires (1996 by Brian M. Stableford, for example. This fact should not be neglected and actually should be researched more fully.

  12. Cavity-enhanced surface-plasmon resonance sensing: Modeling and performance

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Zullo, R.; Gaglio, G.; Homola, Jiří; De Natale, P.

    2014-01-01

    Roč. 25, č. 1 (2014), 015205 ISSN 0957-0233 Institutional support: RVO:67985882 Keywords : optical resonators * optical sensors * cavity ring-down spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.433, year: 2014

  13. Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities

    Science.gov (United States)

    Higgins, Matthew Benjamin

    This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (extremely well with analytical and computational models developed for the Sago site which take into account measured soil properties.

  14. Displacement-noise-free gravitational-wave detection with a single Fabry-Perot cavity: A toy model

    International Nuclear Information System (INIS)

    Tarabrin, Sergey P.; Vyatchanin, Sergey P.

    2008-01-01

    We propose a detuned Fabry-Perot cavity, pumped through both the mirrors, as a toy model of the gravitational-wave (GW) detector partially free from displacement noise of the test masses. It is demonstrated that the noise of cavity mirrors can be eliminated, but the one of lasers and detectors cannot. The isolation of the GW signal from displacement noise of the mirrors is achieved in a proper linear combination of the cavity output signals. The construction of such a linear combination is possible due to the difference between the reflected and transmitted output signals of detuned cavity. We demonstrate that in low-frequency region the obtained displacement-noise-free response signal is much stronger than the f gw 3 -limited sensitivity of displacement-noise-free interferometers recently proposed by S. Kawamura and Y. Chen. However, the loss of the resonant gain in the noise cancelation procedure results is the sensitivity limitation of our toy model by displacement noise of lasers and detectors

  15. Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection

    Science.gov (United States)

    Chen, Xueli; Yang, Defu; Qu, Xiaochao; Hu, Hao; Liang, Jimin; Gao, Xinbo; Tian, Jie

    2012-06-01

    Bioluminescence tomography (BLT) has been successfully applied to the detection and therapeutic evaluation of solid cancers. However, the existing BLT reconstruction algorithms are not accurate enough for cavity cancer detection because of neglecting the void problem. Motivated by the ability of the hybrid radiosity-diffusion model (HRDM) in describing the light propagation in cavity organs, an HRDM-based BLT reconstruction algorithm was provided for the specific problem of cavity cancer detection. HRDM has been applied to optical tomography but is limited to simple and regular geometries because of the complexity in coupling the boundary between the scattering and void region. In the provided algorithm, HRDM was first applied to three-dimensional complicated and irregular geometries and then employed as the forward light transport model to describe the bioluminescent light propagation in tissues. Combining HRDM with the sparse reconstruction strategy, the cavity cancer cells labeled with bioluminescent probes can be more accurately reconstructed. Compared with the diffusion equation based reconstruction algorithm, the essentiality and superiority of the HRDM-based algorithm were demonstrated with simulation, phantom and animal studies. An in vivo gastric cancer-bearing nude mouse experiment was conducted, whose results revealed the ability and feasibility of the HRDM-based algorithm in the biomedical application of gastric cancer detection.

  16. Modeling of Reduced-Beta Half-Reentrant Cavities: Final Report

    International Nuclear Information System (INIS)

    Popielarksi, J.T.; Hartung, W.; Johnson, M.J.

    2011-01-01

    The linear accelerator for the Spallation Neutron Source uses multi-cell elliptical superconducting cavities to provide much of the accelerating voltage. Similar technology is being considered for other projects, including a proposed superconducting proton linac at Fermilab and the European Spallation Source. A new type of accelerating structure, a 'half-reentrant' elliptical cavity has been studied at Michigan State University. A half-reentrant cavity can potentially improve upon existing elliptical cavity designs by reducing the cryogenic load by as much as 40% for the same accelerating gradient. Alternatively, with the same peak surface magnetic field as traditional elliptical cavities, it is anticipated that half-reentrant designs could operate at up to 25% higher accelerating gradient. With a half-reentrant shape, liquids can drain easily during chemical etching and high pressure rinsing, which allows standard multi-cell processing techniques to be used. Electromagnetic designs have been developed for three half-reentrant cell shapes suitable for an ion or proton linac (β = 0.47, 0.61 and 0.81). The mechanical designs have been done for prototypes at 805 MHz. The design and optimization of the reduced-β half-reentrant cavities are summarized in this report.

  17. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.

  18. NIKOLA TESLA AND THE X-RAY

    OpenAIRE

    Rade R. Babic

    2005-01-01

    After professor Wilhelm Konrad Röntgen published his study of an x-ray discovery (Academy Bulletin, Berlin, 08. 11. 1895.), Nikola Tesla published his first study of an x-ray on the 11th of March in 1896. (X-ray, Electrical Review). Until the 11th of August in 1897 he had published ten studies on this subject. All Tesla,s x-ray studies were experimental, which is specific to his work. Studying the nature of the x-ray, he established a new medical branch-radiology. He wrote:” There’s no doubt...

  19. Fabrication and Final Field Tuning of Copper Cavity Models for a High-Current SRF ERL at 703.75 MHz

    CERN Document Server

    Cole, Michael; Burger, Al; Falletta, Michael; Holmes, Douglas; Peterson, Ed; Wong, Robert

    2005-01-01

    Advanced Energy Systems is currently under contract to BNL to fabricate a five cell superconducting cavity and cryomodule for the RHIC eCooler SRF Energy Recovery Linac (ERL) program.* The cavity is designed and optimized for ampere class SRF ERL service. As part of this program, we have fabricated two low power copper models of the RF cavities. During the fabrication process a series of frequency measurements were made and compared to the frequency expected at that point in the fabrication process. Where possible, the cavity was modified either before or during, the next fabrication step to tune the cavity frequency toward the target frequency. Following completion of the cavities they were tuned for field flatness and frequency. This paper will review the measurements made, frequency tuning performed, and discuss discrepancies between the expected and measured results. We will also review the as fabricated field profiles and the results of the tuning steps. Further, the cost and benefits of extensive in pro...

  20. Experimental program with beam in TESLA test facility

    International Nuclear Information System (INIS)

    Mosnier, A.; Aune, B.

    1994-09-01

    In order to establish a technical basis for a high energy e + e - collider using the superconducting RF technology, the test of a string of 32 cavities with beam at an accelerating gradient of 15 MV/m is planned in an installation at DESY. Several experiments with beam in the TTF linac will be performed. The dissipated HOM power at helium temperature is a key issue for TESLA, its estimation requires careful calorimetric measurements and the full charge injector. Bunch wake potentials can be estimated with bunch charges of at least 1 to 2 nC. Multibunch measurements require a beam of a few hundreds of these bunches. The beam will be injected either on axis or off axis. RF steering due to couplers will be estimated by measuring the beam displacement for different RF phase settings. The expected resolution is well below the TESLA specification. The acceleration of dark currents will be observed for different settings of the focusing elements. 7 figs., 1 tab., 3 refs

  1. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    Directory of Open Access Journals (Sweden)

    François De Guio

    Full Text Available Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, a monogenic model of cerebral small vessel disease (SVD. The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE ≥24.Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male and 24 controls (54.8±11.0 years, 42% male. Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models.MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls.Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  2. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.

  3. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Dzyuba, A; Romanenko, A; Cooley, L D

    2010-01-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H pen . Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H pen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H pen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ∼ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model

  4. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    Science.gov (United States)

    Dzyuba, A.; Romanenko, A.; Cooley, L. D.

    2010-12-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was

  5. A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids.

    Science.gov (United States)

    Ginzburg, Irina; Steiner, Konrad

    2002-03-15

    The filling process of viscoplastic metal alloys and plastics in expanding cavities is modelled using the lattice Boltzmann method in two and three dimensions. These models combine the regularized Bingham model for viscoplastic fluids with a free-interface algorithm. The latter is based on a modified immiscible lattice Boltzmann model in which one species is the fluid and the other one is considered to be a vacuum. The boundary conditions at the curved liquid-vacuum interface are met without any geometrical front reconstruction from a first-order Chapman-Enskog expansion. The numerical results obtained with these models are found in good agreement with available theoretical and numerical analysis.

  6. Chemical association in simple models of molecular and ionic fluids. III. The cavity function

    Science.gov (United States)

    Zhou, Yaoqi; Stell, George

    1992-01-01

    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  7. A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity.

    Science.gov (United States)

    Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa

    2015-06-25

    The complexity of the mechanics involved in the mammalian reproductive process is evident. Neither an ovum nor an embryo is self-propelled, but move through the oviduct or uterus due to the peristaltic action of the tube walls, imposed pressure gradients, and perhaps ciliary motion. Here we use the method of regularized Stokeslets to model the transport of an ovum or an embryo within a peristaltic tube. We represent the ovum or the embryo as a spherical vesicle of finite volume - not a massless point particle. The outer membrane of the neutrally buoyant vesicle is discretized by nodes that are joined by a network of springs. The elastic moduli of these springs are chosen large enough so that a spherical shape is maintained. For simplicity, here we choose an axisymmetric tube where the geometry of the two-dimensional cross-section along the tube axis reflects that of the sagittal cross-section of the uterine cavity. Although the tube motion is axisymmetric, the presence of the vesicle within the tube requires a fully three-dimensional model. As was found in Yaniv et al. (2009, 2012) for a 2D closed channel, we find that the flow dynamics in a 3D peristaltic tube are strongly influenced by the closed end and the manner in which the peristaltic wave damps out towards the closure. In addition, we demonstrate that the trajectory of a vesicle of finite volume can greatly differ from the trajectory of a massless fluid particle initially placed at the vesicle׳s centroid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. TeSLA e-assessment workshop

    NARCIS (Netherlands)

    Janssen, José

    2016-01-01

    Presentatie ten behoeve van de e-assessment workshop voor docenten van de Open Universiteit Nederland betrokken in de eerste TeSLA pilot. Topics: toetsfraude, toetsdesign, technologie voor authenticatie en verificatie van auteurschap.

  9. Cavity-enhanced surface-plasmon resonance sensing: modeling and performance

    International Nuclear Information System (INIS)

    Giorgini, A; Avino, S; Malara, P; Zullo, R; Gagliardi, G; Homola, J; De Natale, P

    2014-01-01

    We investigate the performance of a surface-plasmon-resonance refractive-index (RI) sensor based on an optical resonator. The resonator transforms RI changes of liquid samples, interacting with the surface plasmon excited by near-infrared light, into a variation of the intra-cavity optical loss. Cavity ring-down measurements are provided as a proof of concept of RI sensing on calibrated mixtures. A characterization of the overall sensor response and noise features as well as a discussion on possible improvements is carried out. A reproducibility analysis shows that a resolution of 10 −7 –10 −8  RIU is within reach over observation times of 1–30 s. The ultimate resolution is set only by intrinsic noise features of the cavity-based method, pointing to a potential limit below 10 −10  RIU/√Hz. (paper)

  10. Quantum phase fluctuations in the Jaynes-cummings model: effects of cavity damping

    International Nuclear Information System (INIS)

    Ho Trung Dung; Shumovskij, A.S.

    1992-01-01

    Phase properties of a coherent field interacting with a two-level atom in a cavity with very high but finite Q are studied. It is shown that due to the cavity damping the field phase is randomized more quickly than in the ideal-losslesscavity case. The Hermitian phase distribution and the phase distributions associated with the Q function and the Wigner function are compared. The similarities between them have clear interpretation in terms of the area-of-overlap in phase space. 29 refs.; 3 figs

  11. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    DEFF Research Database (Denmark)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-01-01

    -level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within......-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder...

  12. Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot

    Science.gov (United States)

    Ge, Honghao; Ren, Fengli; Li, Jun; Han, Xiujun; Xia, Mingxu; Li, Jianguo

    2017-03-01

    A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.

  13. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  14. THEORETICAL GAS CONCENTRATIONS ACHIEVING 100% FILL OF THE VITREOUS CAVITY IN THE POSTOPERATIVE PERIOD: A Gas Eye Model Study.

    Science.gov (United States)

    Williamson, Tom H; Guillemaut, Jean-Yves; Hall, Sheldon K; Hutter, Joseph C; Goddard, Tony

    2017-12-11

    To determine the concentrations of different gas tamponades in air to achieve 100% fill of the vitreous cavity postoperatively and to examine the influence of eye volume on these concentrations. A mathematical model of the mass transfer dynamics of tamponade and blood gases (O2, N2, and CO2) when injected into the eye was used. Mass transfer surface areas were calculated from published anatomical data. The model has been calibrated from published volumetric decay and composition results for three gases sulphahexafluoride (SF6), hexafluoroethane (C2F6), or perfluoropropane (C3F8). The concentrations of these gases (in air) required to achieve 100% fill of the vitreous cavity postoperatively without an intraocular pressure rise were determined. The concentrations were calculated for three volumes of the vitreous cavity to test whether ocular size influenced the results. A table of gas concentrations was produced. In a simulation of pars plana vitrectomy operations in which an 80% to 85% fill of the vitreous cavity with gas was achieved at surgery, the concentrations of the 3 gases in air to achieve 100% fill postoperatively were 10% to 13% for C3F8, 12% to 15% for C2F6, and 19% to 25% for SF6. These were similar to the so-called "nonexpansive" concentrations used in the clinical setting. The calculations were repeated for three different sizes of eye. Aiming for an 80% fill at surgery and 100% postoperatively, an eye with a 4-mL vitreous cavity required 24% SF6, 15% C2F6, or 13% C3F8; 7.2 mL required 25% SF6, 15% C2F6, or 13% C3F8; and 10 mL required 25% SF6, 16% C2F6, or 13% C3F8. When using 100% gas (e.g., used in pneumatic retinopexy), to achieve 100% fill postoperatively, the minimum vitreous cavity fill at surgery was 43% for SF6, 29% for C2F6, and 25% for C3F8 and was only minimally changed by variation in the size of the eye. A table has been produced, which could be used for surgical innovation in gas usage in the vitreous cavity. It provides concentrations

  15. Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations.

    Science.gov (United States)

    Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S

    2014-05-01

    We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.

  16. MCCREEP - a model to estimate creep produced by microcracking around a cavity in an intact rock mass

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1991-11-01

    AECL Research is examining the disposal of nuclear fuel waste in a vault in plutonic rock. Models (MCDIRC and MCROC) have been developed to predict the mechanical behaviour of the rock in response to excavation and heat from the waste. The dominant mechanism of deformation at temperatures below 150 degrees C is microcracking, which results in rock creep and a decrease in rock strength. MCDIRC has been constructed to consider the perturbation of the stress state of intact rock by long cylindrical cavities. Slow crack-growth data are used to estimate time-dependent changes in rock strength, from which possible movements (creep strain) in the rock mass are estimated. MCDIRC depends on analytical solutions for stress-state perturbations. MCCREEP has been developed from MCDIRC and relies on the use of finite-element methods to solve for stress states. It is more flexible than MCDIRC and can deal with non-homogeneous rock properties and non-symmetrical cavities

  17. Experimental investigation on combustion performance of cavity-strut injection of supercritical kerosene in supersonic model combustor

    Science.gov (United States)

    Sun, Ming-bo; Zhong, Zhan; Liang, Jian-han; Wang, Hong-bo

    2016-10-01

    Supersonic combustion with cavity-strut injection of supercritical kerosene in a model scramjet engine was experimentally investigated in Mach 2.92 facility with the stagnation temperatures of approximately 1430 K. Static pressure distribution in the axial direction was determined using pressure transducers installed along the centerline of the model combustor top walls. High speed imaging camera was used to capture flame luminosity and combustion region distribution. Multi-cavities were used to and stabilize the combustion in the supersonic combustor. Intrusive injection by thin struts was used to enhance the fuel-air mixing. Supercritical kerosene at temperatures of approximately 780 K and various pressures was prepared using a heat exchanger driven by the hot gas from a pre-burner and injected at equivalence ratios of approximately 1.0. In the experiments, combustor performances with different strut injection schemes were investigated and compared to direct wall injection scheme based on the measured static pressure distributions, the specific thrust increments and the images obtained by high-speed imaging camera. The experimental results showed that the injection by thin struts could obtain an enhanced mixing in the field but could not acquire a steady flame when mixing field cannot well match cavity separation region. There is no significant difference on performance between different schemes since the unsteady intermittent and oscillating flame leads to no actual combustion efficiency improvement.

  18. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  19. 8-channel, FPGA based, DSP integrated cavity simulator and controller for VUV-FEL. SIMCON 3.0 Ver. 3.0. rev. 1, 06.2005 - Hardware manual

    International Nuclear Information System (INIS)

    Pozniak, K.T.; Czarski, T.; Koprek, W.; Giergusiewicz, W.; Romaniuk, R.S.

    2005-01-01

    The note describes integrated, eight channel system of hardware controller and simulator of the resonant superconducting, narrowband niobium cavity, originally considered for the TTF and TESLA in DESY, Hamburg (now tested for the VUV FEL and developed for X-Ray FEL). The controller bases on a programmable circuit Xilinx VirtexII V4000. The solution uses DSP EMBEDDED BOARD module positioned on a Modular LLRF Control Platform. The algorithm and FPGA circuit configuration was done in the VHDL language. The internal hardware multiplication components, present in Virtex II chips, were used, to improve the floating point calculation efficiency. The implementation was achieved of a device working in the real time, according to the demands of the LLRF control system for the TESLA Test Facility (now associated with the VUV FEL machine). The device under consideration will be referred to as superconducting cavity (SCCav) SIMCON throughout this work. The manual describes hardware features of SIMCON, ver. 3.0 in modular solution. The following components are described here in detail: functional layer, parameter programming, foundations of control of particular blocks and monitoring of the real time processes. This note is accompanied by the one describing the multichannel DOOCS interface for the described hardware system. The interface was prepared in DOOCS for Solaris and in Windows. The hardware and software of 8-channel SIMCON was tested in CHECIA and ACC1 module of VUV FEL linac. The measurements results are presented. While giving all necessary technical details required to understand the work of the integrated hardware controller and simulator and to enable its practical copying, this document is a unity with other TESLA technical notes published by the same team on the subject. Thus, some modeling and other subjects were omitted, as they were addressed in detail in the quoted references. Keywords: Super conducting cavity, cavity simulator, CAVITIES CONTROLLER, SIMCON

  20. Conduction-coupled Tesla transformer.

    Science.gov (United States)

    Reed, J L

    2015-03-01

    A proof-of-principle Tesla transformer circuit is introduced. The new transformer exhibits the high voltage-high power output signal of shock-excited transformers. The circuit, with specification of proper circuit element values, is capable of obtaining extreme oscillatory voltages. The primary and secondary portions of the circuit communicate solely by conduction. The destructive arcing between the primary and secondary inductors in electromagnetically coupled transformers is ubiquitous. Flashover is eliminated in the new transformer as the high-voltage inductors do not interpenetrate and so do not possess an annular volume of electric field. The inductors are remote from one another. The high voltage secondary inductor is isolated in space, except for a base feed conductor, and obtains earth by its self-capacitance to the surroundings. Governing equations, for the ideal case of no damping, are developed from first principles. Experimental, theoretical, and circuit simulator data are presented for the new transformer. Commercial high-temperature superconductors are discussed as a means to eliminate the counter-intuitive damping due to small primary inductances in both the electromagnetic-coupled and new conduction-coupled transformers.

  1. Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla.

    Science.gov (United States)

    Wrede, Karsten H; Dammann, Philipp; Mönninghoff, Christoph; Johst, Sören; Maderwald, Stefan; Sandalcioglu, I Erol; Müller, Oliver; Özkan, Neriman; Ladd, Mark E; Forsting, Michael; Schlamann, Marc U; Sure, Ulrich; Umutlu, Lale

    2014-01-01

    To prospectively evaluate 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) in comparison to 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of unruptured intracranial aneurysms (UIA). Sixteen neurosurgical patients (male n = 5, female n = 11) with single or multiple UIA were enrolled in this trial. All patients were accordingly examined at 7 Tesla and 1.5 Tesla MRI utilizing dedicated head coils. The following sequences were obtained: 7 Tesla TOF MRA, 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced MPRAGE. Image analysis was performed by two radiologists with regard to delineation of aneurysm features (dome, neck, parent vessel), presence of artifacts, vessel-tissue-contrast and overall image quality. Interobserver accordance and intermethod comparisons were calculated by kappa coefficient and Lin's concordance correlation coefficient. A total of 20 intracranial aneurysms were detected in 16 patients, with two patients showing multiple aneurysms (n = 2, n = 4). Out of 20 intracranial aneurysms, 14 aneurysms were located in the anterior circulation and 6 aneurysms in the posterior circulation. 7 Tesla MPRAGE imaging was superior over 1.5 and 7 Tesla TOF MRA in the assessment of all considered aneurysm and image quality features (e.g. image quality: mean MPRAGE7T: 5.0; mean TOF7T: 4.3; mean TOF1.5T: 4.3). Ratings for 7 Tesla TOF MRA were equal or higher over 1.5 Tesla TOF MRA for all assessed features except for artifact delineation (mean TOF7T: 4.3; mean TOF1.5T 4.4). Interobserver accordance was good to excellent for most ratings. 7 Tesla MPRAGE imaging demonstrated its superiority in the detection and assessment of UIA as well as overall imaging features, offering excellent interobserver accordance and highest scores for all ratings. Hence, it may bear the potential to serve as a high-quality diagnostic tool for pretherapeutic assessment and

  2. Modeling and Simulation of a Resonant-Cavity-Enhanced InGaAs/GaAs Quantum Dot Photodetector

    Directory of Open Access Journals (Sweden)

    W. W. Wang

    2015-01-01

    Full Text Available We simulated and analyzed a resonant-cavity-enhancedd InGaAs/GaAs quantum dot n-i-n photodiode using Crosslight Apsys package. The resonant cavity has a distributed Bragg reflector (DBR at one side. Comparing with the conventional photodetectors, the resonant-cavity-enhanced photodiode (RCE-PD showed higher detection efficiency, faster response speed, and better wavelength selectivity and spatial orientation selectivity. Our simulation results also showed that when an AlAs layer is inserted into the device structure as a blocking layer, ultralow dark current can be achieved, with dark current densities 0.0034 A/cm at 0 V and 0.026 A/cm at a reverse bias of 2 V. We discussed the mechanism producing the photocurrent at various reverse bias. A high quantum efficiency of 87.9% was achieved at resonant wavelength of 1030 nm with a FWHM of about 3 nm. We also simulated InAs QD RCE-PD to compare with InGaAs QD. At last, the photocapacitance characteristic of the model has been discussed under different frequencies.

  3. Modeling and performance of the MHTGR [Modular High-Temperature Gas-Cooled Reactor] reactor cavity cooling system

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1990-04-01

    The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab

  4. 4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography

    International Nuclear Information System (INIS)

    Wirrwar, A.; Vosberg, H.; Herzog, H.; Halling, H.; Weber, S.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich GmbH

    1997-01-01

    The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography

  5. TeSLA workshop betrouwbaar toetsen op afstand

    NARCIS (Netherlands)

    Brouns, Francis; Janssen, José

    2017-01-01

    Presentatie ten behoeve van workshop betrouwbaar toetsen op afstand voor docenten van de Open Universiteit Nederland betrokken in de derde TeSLA pilot. Topics: toetsfraude, toetsdesign, technologie voor authenticatie en verificatie van auteurschap, TeSLA instrumenten.

  6. TeSLA e-assessment workshop pilot 2

    OpenAIRE

    Janssen, José

    2017-01-01

    Presentatie ten behoeve van de e-assessment workshop voor docenten van de Open Universiteit Nederland betrokken in de tweede TeSLA pilot. Topics: toetsfraude, toetsdesign, technologie voor authenticatie en verificatie van auteurschap, TeSLA instrument.

  7. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  8. MODERN ELECTRIC CARS OF TESLA MOTORS COMPANY

    OpenAIRE

    O. F. Vynakov; E. V. Savolova; A. I. Skrynnyk

    2016-01-01

    This overview article shows the advantages of a modern electric car as compared with internal combustion cars by the example of the electric vehicles of Tesla Motors Company. It (в смысле- статья) describes the history of this firm, provides technical and tactical characteristics of three modifications of electric vehicles produced by Tesla Motors. Modern electric cars are not less powerful than cars with combustion engines both in speed and acceleration amount. They are reliable, economical ...

  9. Tesla inventor of the electrical age

    CERN Document Server

    Carlson, W Bernard

    2013-01-01

    Nikola Tesla was a major contributor to the electrical revolution that transformed daily life at the turn of the twentieth century. His inventions, patents, and theoretical work formed the basis of modern AC electricity, and contributed to the development of radio and television. Like his competitor Thomas Edison, Tesla was one of America's first celebrity scientists, enjoying the company of New York high society and dazzling the likes of Mark Twain with his electrical demonstrations. An astute self-promoter and gifted showman, he cultivated a public image of the eccentric genius. Even at t

  10. Tesla-transformer-type electron beam accelerator

    International Nuclear Information System (INIS)

    Liu Jinliang; Zhong Huihuang; Tan Qimei; Li Chuanlu; Zhang Jiande

    2002-01-01

    An electron-beam Tesla-transformer accelerator is described. It consists of the primary storage energy system. Tesla transformer, oil Blumlein pulse form line, and the vacuum diode. The experiments of initial stage showed that diode voltage rises up to about 500 kV with an input of 20 kV and the maximum electron-beam current is about 9 kA, the pulse width is about 50 ns. This device can operate stably and be set up easily

  11. Energy Spread Sources in TESLA and TTF

    International Nuclear Information System (INIS)

    Mosnier, A.; Tessier, J.M.

    1995-03-01

    The beam energy spread in the TESLA linac must be small enough to limit the emittance dilution due to the dispersive effects. This report summarizes the major sources of energy spread both for the TESLA linac and the TTF linac, where these estimations will be carefully checked with beam experiments. The first part recalls the intra-bunch energy spread while the second part looks into the bunch-to-bunch energy spread induced by rf field fluctuations within the bunch train and from pulse-to-pulse. (author). 3 refs., 4 figs

  12. Physical model for the incoherent writing/erasure of cavity solitons in semiconductor optical amplifiers.

    Science.gov (United States)

    Barbay, S; Kuszelewicz, R

    2007-09-17

    We present a physical mechanism that explains the recent observations of incoherent writing and erasure of Cavity Solitons in a semiconductor optical amplifier [S. Barbay et al, Opt. Lett. 31, 1504-1506 (2006)]. This mechanism allows to understand the main observations of the experiment. In particular it perfectly explains why writing and erasure are possible as a result of a local perturbation in the carrier density, and why a delay is observed along with the writing process. Numerical simulations in 1D are performed and show very good qualitative agreement with the experimental observations.

  13. Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities.

    Science.gov (United States)

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Tsai, Chung-Jun; Nussinov, Ruth

    2007-11-01

    We investigate Abeta(17-42) protofibril structures in solution using molecular dynamics simulations. Recently, NMR and computations modeled the Abeta protofibril as a longitudinal stack of U-shaped molecules, creating an in-parallel beta-sheet and loop spine. Here we study the molecular architecture of the fibril formed by spine-spine association. We model in-register intermolecular beta-sheet-beta-sheet associations and study the consequences of Alzheimer's mutations (E22G, E22Q, E22K, and M35A) on the organization. We assess the structural stability and association force of Abeta oligomers with different sheet-sheet interfaces. Double-layered oligomers associating through the C-terminal-C-terminal interface are energetically more favorable than those with the N-terminal-N-terminal interface, although both interfaces exhibit high structural stability. The C-terminal-C-terminal interface is essentially stabilized by hydrophobic and van der Waals (shape complementarity via M35-M35 contacts) intermolecular interactions, whereas the N-terminal-N-terminal interface is stabilized by hydrophobic and electrostatic interactions. Hence, shape complementarity, or the "steric zipper" motif plays an important role in amyloid formation. On the other hand, the intramolecular Abeta beta-strand-loop-beta-strand U-shaped motif creates a hydrophobic cavity with a diameter of 6-7 A, allowing water molecules and ions to conduct through. The hydrated hydrophobic cavities may allow optimization of the sheet association and constitute a typical feature of fibrils, in addition to the tight sheet-sheet association. Thus, we propose that Abeta fiber architecture consists of alternating layers of tight packing and hydrated cavities running along the fibrillar axis, which might be possibly detected by high-resolution imaging.

  14. Partial Cavity Flows at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  15. Nikola Tesla, the Ether and his Telautomaton

    Science.gov (United States)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  16. Magnetic resonance examinations at two Tesla

    International Nuclear Information System (INIS)

    Grabbe, E.; Maas, R.; Heller, M.; Denkhaus, H.; Buecheler, E.

    1986-01-01

    After having used a 2 Tesla prototype whole body scanner for about one and a half years, it is now possible to comment on the clinical value of high field strengths. The methods and techniques employed are described. The problems arising from high field strengths are discussed and their effect on clinical diagnosis is indicated. (orig.) [de

  17. Beam dynamic issues in TESLA damping ring

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-05-01

    In this paper we study general requirements on impedances of the linear collider TESLA damping ring design. Quantitative consideration is performed for 17-km long ''dog-bone'' ring. Beam dynamics in alternative options of 6.3 and 2.3-km long damping rings is briefly discussed. 5 refs., 2 tabs

  18. Novel techniques for 7 tesla breast MRI

    NARCIS (Netherlands)

    van der Velden, T.A.

    2017-01-01

    This thesis introduced several new techniques to the field of 7 tesla breast MRI, enabling high field multi-parametric MR imaging and, potentially, patient specific treatment planning. Chapter 2 described the development of a RF coil setup for bilateral breast MR imaging and 31P spectroscopy. This

  19. Progress in the study and construction of the TESLA test facility injector

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T. [Paris-11 Univ., 91 - Orsay (France). Lab. de l`Accelerateur Lineaire; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Buhler, S.; Junquera, T. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire] [and others

    1995-12-31

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.). 7 refs.

  20. Progress in the study and construction of the TESLA test facility injector

    International Nuclear Information System (INIS)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T.; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F.; Buhler, S.; Junquera, T.

    1995-01-01

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.)

  1. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities.

    Science.gov (United States)

    Prokhorov, Alexander; Prokhorova, Nina I

    2012-11-20

    We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.

  2. Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model

    Directory of Open Access Journals (Sweden)

    Mahshid Hadavand

    2011-01-01

    Full Text Available Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM. This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.

  3. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    Science.gov (United States)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  4. Strategic Alliance with Competitors in the Electric Vehicle Market: Tesla Motor’s Case

    Directory of Open Access Journals (Sweden)

    Taesu Cheong

    2016-01-01

    Full Text Available We investigate how the choice of coopetition of the simultaneous pursuit of collaboration and competition dynamically impacts both the participating firms and also the other self-developing ones in the same market. A conceptual framework of mathematical models obtained from the arguments and insights in the literature is used to undertake an in-depth study through a multiperiod analysis from 2013 to 2020 of an exemplar case of coopetition, the two concurrently ongoing coopetition partnerships in the US electric vehicle (EV market, the Tesla Motors-Daimler AG alliance and the Tesla Motors-Toyota alliance and the other firms which are not involved in coopetition.

  5. A Study of Thermocurrent Induced Magnetic Fields in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Anthony C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)

    2014-03-31

    The case of axisymmetric ILC-type cavities with titanium helium vessels is investigated. A first-order estimate for magnetic field within the SRF current layer is presented. The induced magnetic field is found to be not more than 1.4x10-8 Tesla = 0.14 milligauss for the case of axial symmetry. Magnetic fields due to symmetry breaking effects are discussed.

  6. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  7. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  8. Modified energy-deposition model, for the computation of the stopping-power ratio for small cavity sizes

    International Nuclear Information System (INIS)

    Janssens, A.C.A.

    1981-01-01

    This paper presents a modification to the Spencer-Attix theory, which allows application of the theory to larger cavity sizes. The modified theory is in better agreement with the actual process of energy deposition by delta rays. In the first part of the paper it is recalled how the Spencer-Attix theory can be derived from basic principles, which allows a physical interpretation of the theory in terms of a function describing the space and direction average of the deposited energy. A realistic model for the computation of this function is described and the resulting expression for the stopping-power ratio is calculated. For the comparison between the Spencer-Attix theory and this modified expression a correction factor to the ''Bragg-Gray inhomogeneous term'' has been defined. This factor has been computed as a function of cavity size for different source energies and mean excitation energies; thus, general properties of this factor have been elucidated. The computations have been extended to include the density effect. It has been shown that the computation of the inhomogeneous term can be performed for any expression describing the energy loss per unit distance of the electrons as a function of their energy. Thus an expression has been calculated which is in agreement with a quadratic range-energy relationship. In conclusion, the concrete procedure for computing the stopping-power ratio is reviewed

  9. Numerical modelling of heat transfer in a cavity due to liquid jet impingement for liquid supported stretch blow moulding

    Science.gov (United States)

    Smyth, Trevor; Menary, Gary; Geron, Marco

    2018-05-01

    Impingement of a liquid jet in a polymer cavity has been modelled numerically in this study. Liquid supported stretch blow moulding is a nascent polymer forming process using liquid as the forming medium to produce plastic bottles. The process derives from the conventional stretch blow moulding process which uses compressed air to deform the preform. Heat transfer away from the preform greatly increases when a liquid instead of a gas is flowing over a solid; in the blow moulding process the temperature of the preform is tightly controlled to achieve optimum forming conditions. A model was developed with Computational Fluid Dynamics code ANSYS Fluent which allows the extent of heat transfer between the incoming liquid and the solid preform to be determined in the initial transient stage, where a liquid jet enters an air filled preform. With this data, an approximation of the extent of cooling through the preform wall can be determined.

  10. 76 FR 60124 - Tesla Motors, Inc.; Grant of Petition for Temporary Exemption From the Electronic Stability...

    Science.gov (United States)

    2011-09-28

    ...-0110] Tesla Motors, Inc.; Grant of Petition for Temporary Exemption From the Electronic Stability... notice grants the petition of Tesla Motors, Inc. (Tesla) for the temporary exemption of its Roadster... procedures in 49 CFR Part 555, Tesla Motors, Inc. (Tesla) submitted a petition dated June 7, 2011 asking the...

  11. MODERN ELECTRIC CARS OF TESLA MOTORS COMPANY

    Directory of Open Access Journals (Sweden)

    O. F. Vynakov

    2016-08-01

    Full Text Available This overview article shows the advantages of a modern electric car as compared with internal combustion cars by the example of the electric vehicles of Tesla Motors Company. It (в смысле- статья describes the history of this firm, provides technical and tactical characteristics of three modifications of electric vehicles produced by Tesla Motors. Modern electric cars are not less powerful than cars with combustion engines both in speed and acceleration amount. They are reliable, economical and safe in operation. With every year the maximum range of an electric car is increasing and its battery charging time is decreasing.Solving the problem of environmental safety, the governments of most countries are trying to encourage people to switch to electric cars by creating subsidy programs, lending and abolition of taxation. Therefore, the advent of an electric vehicle in all major cities of the world is inevitable.

  12. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  13. 7-Tesla Magnetic Resonance Imaging Precisely and Noninvasively Reflects Inflammation and Remodeling of the Skeletal Muscle in a Mouse Model of Antisynthetase Syndrome

    Directory of Open Access Journals (Sweden)

    Clara Sciorati

    2014-01-01

    Full Text Available Inflammatory myopathies comprise heterogeneous disorders. Their etiopathogenesis is poorly understood, because of the paucity of informative experimental models and of approaches for the noninvasive study of inflamed tissues. Magnetic resonance imaging (MRI provides information about the state of the skeletal muscle that reflects various facets of inflammation and remodeling. This technique has been scarcely used in experimental models of inflammatory myopathies. We characterized the performance of MRI in a well-established mouse model of myositis and the antisynthetase syndrome, based on the immunization of wild-type mice with the amino-terminal fragment of histidyl-tRNA synthetase (HisRS. Over an eight-week period following myositis induction, MRI enabled precise identification of pathological events taking place in muscle tissue. Areas of edema and of active inflammation identified by histopathology paralleled muscle modifications detected noninvasively by MRI. Muscles changes were chronologically associated with the establishment of autoimmunity, as reflected by the development of anti-HisRS antibodies in the blood of immunized mice. MR imaging easily appreciated muscle damage and remodeling even if actual disruption of myofiber integrity (as assessed by serum concentrations of creatinine phosphokinase was limited. Thus, MR imaging represents an informative and noninvasive analytical tool for studying in vivo immune-mediated muscle involvement.

  14. 7-Tesla Magnetic Resonance Imaging Precisely and Noninvasively Reflects Inflammation and Remodeling of the Skeletal Muscle in a Mouse Model of Antisynthetase Syndrome

    Science.gov (United States)

    Sciorati, Clara; Esposito, Antonio; Campana, Lara; Canu, Tamara; Monno, Antonella; Palmisano, Anna; De Cobelli, Francesco; Del Maschio, Alessandro; Ascheman, Dana P.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2014-01-01

    Inflammatory myopathies comprise heterogeneous disorders. Their etiopathogenesis is poorly understood, because of the paucity of informative experimental models and of approaches for the noninvasive study of inflamed tissues. Magnetic resonance imaging (MRI) provides information about the state of the skeletal muscle that reflects various facets of inflammation and remodeling. This technique has been scarcely used in experimental models of inflammatory myopathies. We characterized the performance of MRI in a well-established mouse model of myositis and the antisynthetase syndrome, based on the immunization of wild-type mice with the amino-terminal fragment of histidyl-tRNA synthetase (HisRS). Over an eight-week period following myositis induction, MRI enabled precise identification of pathological events taking place in muscle tissue. Areas of edema and of active inflammation identified by histopathology paralleled muscle modifications detected noninvasively by MRI. Muscles changes were chronologically associated with the establishment of autoimmunity, as reflected by the development of anti-HisRS antibodies in the blood of immunized mice. MR imaging easily appreciated muscle damage and remodeling even if actual disruption of myofiber integrity (as assessed by serum concentrations of creatinine phosphokinase) was limited. Thus, MR imaging represents an informative and noninvasive analytical tool for studying in vivo immune-mediated muscle involvement. PMID:24895622

  15. The success of the 11-Tesla project and its potential beyond particle physics

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    On 7 March, the 1-metre-long single-aperture dipole model magnet under testing at Fermilab reached a current of 12.54 kA corresponding to a bore field of 11.5 Tesla, thus surpassing the goal set for the 11 T dipole project.   Computer generated model of the FNAL 1 metre 11 T dipole model magnet and a pair of CERN coils. Image: courtesy of Don Mitchell, FNAL. The 11-Tesla dipole project originated from a proposal made by High Luminosity LHC project coordinator, Lucio Rossi, in September 2010. To cope with the increasing amount of debris hitting the magnets when increasing the number of collisions produced by the LHC, he suggested replacing a few 8-Tesla dipole magnets in the LHC tunnel with shorter, stronger 11-Tesla magnets in order to create enough space to install additional collimators. The only way to achieve this goal is to use advanced niobium-tin technology. Rossi’s proposal aligned well with the goals of Fermilab’s High-Field Magnet R&D programme, which aims t...

  16. Field stabilization in superconducting cavities under pulsed operating

    International Nuclear Information System (INIS)

    Tessier, J.M.

    1996-01-01

    Within the framework of Tesla linear accelerator project, superconducting cavity battery is used to accelerate electrons and positrons. These cavities require pulsed running and must reach very high accelerating gradients. Under the action of the Lorentz force, the resonance frequency shifts and leaves the band-pass width, which hinders the field from taking its maximal value inside the cavity. The setting of an auto-oscillating loop allows to bring the generator frequency under the control of the cavity frequency. A feedback system is needed to reduce the energy dispersion inside the particle packets. The effects of the mechanical vibrations that disturb the accelerating voltage phase between two impulses are also compensated by a feedback loop. This thesis describes all these phenomena and computes their effects on the energy dispersion of the beam in both cases of relativistic and non-relativistic particles. (A.C.)

  17. SU-F-T-43: Prediction of Dose Increments by Brain Metastases Resection Cavity Shrinkage Model with I-125 and Cs-131 LDR Seed Implantations

    Energy Technology Data Exchange (ETDEWEB)

    Han, D; Braunstein, S; Sneed, P; McDermott, M; Ma, L [University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: This work aims to determine dose variability via a brain metastases resection cavity shrinkage model (RC-SM) with I-125 or Cs-131 LDR seed implantations. Methods: The RC-SM was developed to represent sequential volume changes of 95 consecutive brain metastases patients. All patients underwent serial surveillance MR and change in cavity volume was recorded for each patient. For the initial resection cavity, a prolate-ellipsoid cavity model was suggested and applied volume shrinkage rates to correspond to 1.7, 3.6, 5.9, 11.7, and 20.5 months after craniotomy. Extra-ring structure (6mm) was added on a surface of the resection volume and the same shrinkage rates were applied. Total 31 LDR seeds were evenly distributed on the surface of the resection cavity. The Amersham 6711 I-125 seed model (Oncura, Arlington Heights, IL) and the Model Cs-1 Rev2 Cs-131 seed model (IsoRay, Richland, WA) were used for TG-43U1 dose calculation and in-house-programed 3D-volumetric dose calculation system was used for resection cavity rigid model (RC-RM) and the RC-SM dose calculation. Results: The initial resection cavity volume shrunk to 25±6%, 35±6.8%, 42±7.7%, 47±9.5%, and 60±11.6%, with respect to sequential MR images post craniotomy, and the shrinkage rate (SR) was calculated as SR=56.41Xexp(−0.2024Xt)+33.99 and R-square value was 0.98. The normal brain dose as assessed via the dose to the ring structure with the RC-SM showed 29.34% and 27.95% higher than the RC-RM, I-125 and Cs-131, respectively. The dose differences between I-125 and Cs-131 seeds within the same models, I-125 cases were 9.17% and 10.35% higher than Cs-131 cases, the RC-RM and the RC-SM, respectively. Conclusion: A realistic RC-SM should be considered during LDR brain seed implementation and post-implement planning to prevent potential overdose. The RC-SM calculation shows that Cs-131 is more advantageous in sparing normal brain as the resection cavity volume changes with the LDR seeds implementation.

  18. Electron scattering with polarized targets at TESLA

    International Nuclear Information System (INIS)

    Anselmino, M.; Aschenauer, E.C.; Belostotski, S.

    2000-11-01

    Measurements of polarized electron-nucleon scattering can be realized at the TESLA linear collider facility with projected luminosities that are about two orders of magnitude higher than those expected of other experiments at comparable energies. Longitudinally polarized electrons, accelerated as a small fraction of the total current in the e + arm of TESLA, can be directed onto a solid state target that may be either longitudinally or transversely polarized. A large variety of polarized parton distribution and fragmentation functions can be determined with unprecedented accuracy, many of them for the first time. A main goal of the experiment is the precise measurement of the x- and Q 2 -dependence of the experimentally totally unknown quark transversity distributions that will complete the information on the nucleon's quark spin structure as relevant for high energy processes. Comparing their Q 2 -evolution to that of the corresponding helicity distributions constitutes an important precision test of the predictive power of QCD in the spin sector. Measuring transversity distributions and tensor charges allows access to the hitherto unmeasured chirally odd operators in QCD which are of great importance to understand the role of chiral symmetry. The possibilities of using unpolarized targets and of experiments with a real photon beam turn TESLA-N into a versatile next-generation facility at the intersection of particle and nuclear physics. (orig.)

  19. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  20. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  1. Model to Test Electric Field Comparisons in a Composite Fairing Cavity

    Science.gov (United States)

    Trout, Dawn H.; Burford, Janessa

    2013-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown.

  2. Small horizontal emittance in the TESLA damping ring

    International Nuclear Information System (INIS)

    Decking, W.

    2001-01-01

    The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10 -6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given

  3. On the modelling of turbulent flows under strong buoyancy effects in cavities with curved boundaries; French title please

    Energy Technology Data Exchange (ETDEWEB)

    Viollet, P L; Goussebaile, J [E.D.F, Laboratoire National d' Hydraulique, Chatou (France)

    1983-07-01

    Finite-difference methods have been developed for the two-dimensional computation of non-isothermal unsteady flows inside cavities with curved boundaries. The algorithm uses either u, v, P or u, v, {psi} formulations, and arbitrary non orthogonal curvilinear grids may be used. The turbulence modelling is tested for the case of a stratified two-layer flow with shear and the k-{epsilon} eddy viscosity and algebraic-stress models are compared. An example of unsteady density currents in a U-shaped pipe is given with comparison of experimental results. (author) [French] Cette note decrit succinctement les methodes de differences finies qui ont ete developpees pour le calcul bidimensionnel d'ecoulements non isothermes dans les cavites presentant des frontieres courbes. L'algorithme utilise les variables u, v, P ou u, v, {psi} et des maillages curvilignes non orthogonaux quelconques peuvent etre utiliss. La simulation de turbulence a deux equations est testee pour le cas d'un ecoulement horizontal stratifie: le modele k-{epsilon} standard est compare au modele avec expressions algebriques des flux turbulents. Enfin, un exemple de courants de densite instationnaires dans une tuyauterie en forme de U, pour lequel des resultats experimentaux sont disponibles, est presente. (author)

  4. TESLA GPUs versus MPI with OpenMP for the Forward Modeling of Gravity and Gravity Gradient of Large Prisms Ensemble

    Directory of Open Access Journals (Sweden)

    Carlos Couder-Castañeda

    2013-01-01

    Full Text Available An implementation with the CUDA technology in a single and in several graphics processing units (GPUs is presented for the calculation of the forward modeling of gravitational fields from a tridimensional volumetric ensemble composed by unitary prisms of constant density. We compared the performance results obtained with the GPUs against a previous version coded in OpenMP with MPI, and we analyzed the results on both platforms. Today, the use of GPUs represents a breakthrough in parallel computing, which has led to the development of several applications with various applications. Nevertheless, in some applications the decomposition of the tasks is not trivial, as can be appreciated in this paper. Unlike a trivial decomposition of the domain, we proposed to decompose the problem by sets of prisms and use different memory spaces per processing CUDA core, avoiding the performance decay as a result of the constant calls to kernels functions which would be needed in a parallelization by observations points. The design and implementation created are the main contributions of this work, because the parallelization scheme implemented is not trivial. The performance results obtained are comparable to those of a small processing cluster.

  5. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-08-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity toning and matching problems

  6. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-01-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity tuning and matching problems. (Author) 8 refs., 10 figs

  7. Use of the ROC model for optimalization in radiotherapy for head and neck cancers. Pt. 2. Cancer of the oral cavity

    International Nuclear Information System (INIS)

    Maciejewski, B.; Zajusz, A.; Rota, L.

    1993-01-01

    The ROC model is used to estimate optimal radiation treatment for cancer of the oral cavity. For 210 patients with cancer of the oral cavity iso-utility curves and k values were determined for various tumors stages and overall treatment times. Optimal k value decreases from 0.792 to 0.584 when overall treatment time is prolonged from 35 to 49 days. It may suggest that the planning of extra dose to balance the effect of extension of overall treatment time does not really improve therapeutic gain. (author)

  8. Mirror-Imaged Rapid Prototype Skull Model and Pre-Molded Synthetic Scaffold to Achieve Optimal Orbital Cavity Reconstruction.

    Science.gov (United States)

    Park, Sung Woo; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk

    2015-08-01

    Reconstruction of traumatic orbital wall defects has evolved to restore the original complex anatomy with the rapidly growing use of computer-aided design and prototyping. This study evaluated a mirror-imaged rapid prototype skull model and a pre-molded synthetic scaffold for traumatic orbital wall reconstruction. A single-center retrospective review was performed of patients who underwent orbital wall reconstruction after trauma from 2012 to 2014. Patients were included by admission through the emergency department after facial trauma or by a tertiary referral for post-traumatic orbital deformity. Three-dimensional (3D) computed tomogram-based mirror-imaged reconstruction images of the orbit and an individually manufactured rapid prototype skull model by a 3D printing technique were obtained for each case. Synthetic scaffolds were anatomically pre-molded using the skull model as guide and inserted at the individual orbital defect. Postoperative complications were assessed and 3D volumetric measurements of the orbital cavity were performed. Paired samples t test was used for statistical analysis. One hundred four patients with immediate orbital defect reconstructions and 23 post-traumatic orbital deformity reconstructions were included in this study. All reconstructions were successful without immediate postoperative complications, although there were 10 cases with mild enophthalmos and 2 cases with persistent diplopia. Reoperations were performed for 2 cases of persistent diplopia and secondary touchup procedures were performed to contour soft tissue in 4 cases. Postoperative volumetric measurement of the orbital cavity showed nonsignificant volume differences between the damaged orbit and the reconstructed orbit (21.35 ± 1.93 vs 20.93 ± 2.07 cm(2); P = .98). This protocol was extended to severe cases in which more than 40% of the orbital frame was lost and combined with extensive soft tissue defects. Traumatic orbital reconstruction can be optimized and

  9. Low-dimensional modeling of a driven cavity flow with two free parameters

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann; Sørensen, Jens Nørkær; Brøns, Morten

    2003-01-01

    . By carrying out such a procedure one obtains a low-dimensional model consisting of a reduced set of Ordinary Differential Equations (ODEs) which models the original equations. A technique called Sequential Proper Orthogonal Decomposition (SPOD) is developed to perform decompositions suitable for low...... parameters to appear in the inhomogeneous boundary conditions without the addition of any constraints. This is necessary because both the driving lid and the rotating rod are controlled simultaneously. Apparently, the results reported for this model are the first to be obtained for a low-dimensional model...

  10. Three-dimensional model of a liquid-cooled, low energy booster, radio-frequency cavity tuner at the superconducting super collider

    International Nuclear Information System (INIS)

    Ranganathan, R.; Propp, A.; Campbell, B.; Dao, B.

    1994-01-01

    A three-dimensional computational heat transfer and fluid flow model was developed to analyze a forced-flow, liquid-cooled, low energy booster (LEB), radio-frequency (RF) cavity, tuner concept. The results for a commercial dielectric heat transfer fluid indicated safe temperatures in the ferrite

  11. Deposition of a model substance, Tc E-HIDA, in the oral cavity after administration of lozenges, chewing gum and sublingual tablets

    DEFF Research Database (Denmark)

    Christrup, Lona Louring; Davis, S.S.; Melia, C.D.

    1990-01-01

    The deposition and clearance of a model substance, Tc E-HIDA, in the oral cavity/upper oesophagus and in the stomach after administration of lozenges, chewing gum and sublingual tablets has been followed by gamma scintigraphy in a group of healthy male volunteers. Following administration...

  12. Three-dimensional model of a liquid-cooled, low energy booster radio- frequency cavity tuner at the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, R.; Propp, A.; Campbell, B.; Dao, B.

    1993-04-01

    A three-dimensional computational heat transfer and fluid flow model was developed to analyze a forced-flow, liquid-cooled, low energy booster (LEB) radio-frequency (RF) cavity tuner concept. The results for a commercial dielectric heat transfer fluid indicated safe temperatures in the ferrite.

  13. Three-dimensional model of a liquid-cooled, low energy booster radio- frequency cavity tuner at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ranganathan, R.; Propp, A.; Campbell, B.; Dao, B.

    1993-04-01

    A three-dimensional computational heat transfer and fluid flow model was developed to analyze a forced-flow, liquid-cooled, low energy booster (LEB) radio-frequency (RF) cavity tuner concept. The results for a commercial dielectric heat transfer fluid indicated safe temperatures in the ferrite

  14. Superconducting radio frequency cavities: design, development and results

    International Nuclear Information System (INIS)

    Prakash, P.N.; Mistri, K.K.; Sonti, S.S.K.; Sacharias, J.; Raiand, A.; Kanjilal, D.

    2013-01-01

    In recent years, the development of superconducting niobium cavities has evoked a lot of interest among the accelerator physics community of India. Many laboratories are planning to develop superconducting niobium cavities for new accelerators and applications. Inter-University Accelerator Centre (IUAC) has been engaged in the indigenous development of niobium resonators for over a decade. During this period, several quarter wave resonators have been successfully built, tested and installed in the superconducting linac at IUAC. A new niobium low beta resonator for the High Current Injector (HCI) project has been designed, prototyped and tested. In addition to the in-house projects, IUAC is nearing completion of two niobium single spoke resonators (SSR1) for Fermi Lab, USA. Under the Indian Institutions and Fermi Lab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology, Indore and Inter-University Accelerator Centre have jointly developed TESLA-type 1.3 GHz single cell cavities which have achieved very high accelerating gradients. Buoyed by the success of this work, a 5-cell 1.3 GHz cavity with simple end tubes has been successfully built. This cavity is presently at Fermi Lab for 2 K tests. Recently, a 650 MHz, β=0.9 single cell cavity has also been successfully completed and is ready for cold tests. There are plans to develop a 650 MHz, β=0.6 single cell cavity in collaboration with VECC, Kolkata. This paper presents the status of the niobium cavities developed at Inter-University Accelerator Centre. (author)

  15. Tesla's coherent plasma discharge -and- a plan for megavolts at Megahertz

    International Nuclear Information System (INIS)

    Nichson, J.D.

    1987-01-01

    In his lecture on Experiments With Alternate Currents of High Potential and High Frequency before the Institute of Electrical Engineers in London (1892), Tesla reports a discharge through a partially evacuated air tube of 1 meter length and 1 inch diameter. It is characterized by the following properties: (1) The filamentary discharge may be locally displaced by a nearby dielectric body or a magnet. (2) When the filament is released, it demonstrates behaviour similar to that of a string which suspends a weight, including the formation of standing waves with distinct nodes. (3) Its decay time is on the order of 8 minutes. (4) The vibrating filament may be split with a magnet to produce two vibrating filaments. (5) This effect could only be formed with a dynamo-driven coil at low air pressures in the tube. The disruptive discharge coil (coloquially a Tesla Coil) failed to produce the effect with its superior voltage and frequency range. It is here proposed that this phenomenon is related to positive leader formation. A model for this, consistent for AC and DC discharges, is advanced. Also, a novel method for regulation of a nitrogen-filled spark gap will be proposed. It is hoped that this new device will produce smooth, uniform discharges from the Tesla Coil. This, if theory is correct on many points, will reproduce Tesla's coherent plasma at higher pressures in free-standing form, and will allow other novel effects

  16. Using dynamic N-mixture models to test cavity limitation on northern flying squirrel demographic parameters using experimental nest box supplementation.

    Science.gov (United States)

    Priol, Pauline; Mazerolle, Marc J; Imbeau, Louis; Drapeau, Pierre; Trudeau, Caroline; Ramière, Jessica

    2014-06-01

    Dynamic N-mixture models have been recently developed to estimate demographic parameters of unmarked individuals while accounting for imperfect detection. We propose an application of the Dail and Madsen (2011: Biometrics, 67, 577-587) dynamic N-mixture model in a manipulative experiment using a before-after control-impact design (BACI). Specifically, we tested the hypothesis of cavity limitation of a cavity specialist species, the northern flying squirrel, using nest box supplementation on half of 56 trapping sites. Our main purpose was to evaluate the impact of an increase in cavity availability on flying squirrel population dynamics in deciduous stands in northwestern Québec with the dynamic N-mixture model. We compared abundance estimates from this recent approach with those from classic capture-mark-recapture models and generalized linear models. We compared apparent survival estimates with those from Cormack-Jolly-Seber (CJS) models. Average recruitment rate was 6 individuals per site after 4 years. Nevertheless, we found no effect of cavity supplementation on apparent survival and recruitment rates of flying squirrels. Contrary to our expectations, initial abundance was not affected by conifer basal area (food availability) and was negatively affected by snag basal area (cavity availability). Northern flying squirrel population dynamics are not influenced by cavity availability at our deciduous sites. Consequently, we suggest that this species should not be considered an indicator of old forest attributes in our study area, especially in view of apparent wide population fluctuations across years. Abundance estimates from N-mixture models were similar to those from capture-mark-recapture models, although the latter had greater precision. Generalized linear mixed models produced lower abundance estimates, but revealed the same relationship between abundance and snag basal area. Apparent survival estimates from N-mixture models were higher and less precise

  17. Interaction of a single mode field cavity with the 1D XY model: Energy spectrum

    International Nuclear Information System (INIS)

    Tonchev, H; Donkov, A A; Chamati, H

    2016-01-01

    In this work we use the fundamental in quantum optics Jaynes-Cummings model to study the response of spin 1/2chain to a single mode of a laser light falling on one of the spins, a focused interaction model between the light and the spin chain. For the spin-spin interaction along the chain we use the XY model. We report here the exact analytical results, obtained with the help of a computer algebra system, for the energy spectrum in this model for chains of up to 4 spins with nearest neighbors interactions, either for open or cyclic chain configurations. Varying the sign and magnitude of the spin exchange coupling relative to the light-spin interaction we have investigated both cases of ferromagnetic or antiferromagnetic spin chains. (paper)

  18. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    Science.gov (United States)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  19. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    Science.gov (United States)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  20. MRI of the carotid artery at 7 Tesla: Quantitative comparison with 3 Tesla

    NARCIS (Netherlands)

    Koning, Wouter; De Rotte, Alexandra A J; Bluemink, Johanna J.; Van Der Velden, Tijl A.; Luijten, Peter R.; Klomp, DWJ; Zwanenburg, Jaco J M

    2015-01-01

    Purpose: To evaluate the 7 Tesla (T) MRI of the carotid arteries, as quantitatively compared with 3T. Materials and Methods: The 7T MRI of the carotid arteries was performed in six healthy subjects and in two patients with carotid stenosis. The healthy group was scanned at 3T and at 7T, using

  1. Non-linear analysis up to rupture of a model of a multi-cavity prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Rebora, B.; Uffer, F.; Zimmermann, T.

    1977-01-01

    Within the frame of a German-Swiss agreement concerning the project of a high-temperature nuclear plant (HHT), the Swiss Federal Institute for Reactor Research (EIR, in Wuerlingen) has developed an integrated variant of an helium-cooled high temperature reactor of 3x500 Mwe. A test on a model (1:20) of this prestressed concrete nuclear vessel with multiple cavities has been carried out under the supervision of 'Bonnard et Gardel ingenieurs-conseils SA (BG). The aim of this analysis is to determine the mechanism of ruin and ultimate load of the structure. In addition, comparison with the results of the test emphasizes the mathematical model with a view to its utilisation for the analysis of any prestressed concrete nuclear vessel. The principal interest of this paper is to show the accuracy of non-linear analysis of a complex massive structure with the test results and the evolution of the behaviour of the structure from the apparition of the first crack up to the ruin by rupture of the steel wires. (Auth.)

  2. A 4 Tesla/1 meter superferric MRI magnet

    International Nuclear Information System (INIS)

    Schmidt, W.M.; Huson, F.R.; Mackay, W.W.; Rocha, R.M.

    1991-01-01

    Superferric technology was first applied to Magnetic Resonance Imaging (MRI) magnets by the Texas Accelerator Center (TAC) in 1986 with the design and construction of a 4 Tesla/30 cm magnet. In an evolutionary step, this technology is now being applied to the development of a whole body 4 Tesla/1 meter superconducting magnet. The design of such a magnetis presented in this paper

  3. TeSLA pilot 2 pedagogical & quality aspects

    OpenAIRE

    Janssen, José

    2018-01-01

    Presentation given at the TeSLA project meeting at the Open University of the Netherlands, addressing pedagogical aspects of pilot 2 and clarification of the scope and limitations of the TeSLA instruments with respect to pedagogy, assessment activity and type of academic dishonesty.

  4. Jakob Narkiewicz-Jodko-Tesla ``Predecessor''

    Science.gov (United States)

    Samuilov, Vladimir; Kiselev, Vladimir

    2014-03-01

    Prof. Jakob Narkiewicz-Jodko (1947-1905) is a bright figure in the history of science of the XIXth century. His major discoveries are: Electrography - the method of the visualization of electric discharge from the bodies due to the application of high strength and high frequency electric fields, and one of the first observations of the propagation of the electromagnetic waives and information transfer over the distances. We review Prof. Jakob Narkiewicz-Jodko's research results and explain our point why we consider him as the predecessor of Nikola Tesla.

  5. Approximate Teleportation of an Unknown Atomic-Entangled State with Dissipative Atom-Cavity Resonant Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    LIU Zong-Liang; LI Shao-Hua; CHEN Chang-Yong

    2008-01-01

    We propose a scheme for approximately and conditionally teleporting an unknown atomic-entangled state in dissipative cavity QED.It is the further development of the scheme of [Phys.Rev.A 69 (2004) 064302],where the cavity mode decay has not been considered and the state teleportated is an unknown atomic state.In this paper,we investigate the influence of the decay on the approximate and conditional teleportation of the unknown atomic-entangled state,which is different from that teleportated in [Phys.Rev.A 69 (2004) 064302] and then give the fidelity of the teleportation,which depends on the cavity mode decay.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap.

  6. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  7. Nikola Tesla: the man behind the magnetic field unit.

    Science.gov (United States)

    Roguin, Ariel

    2004-03-01

    The magnetic field strength of both the magnet and gradient coils used in MR imaging equipment is measured in Tesla units, which are named for Nikola Tesla. This article presents the life and achievements of this Serbian-American inventor and researcher who discovered the rotating magnetic field, the basis of most alternating-current machinery. Nikola Tesla had 700 patents in the United States and Europe that covered every aspect of science and technology. Tesla's discoveries include the Tesla coil, AC electrical conduction, improved lighting, newer forms of turbine engines, robotics, fluorescent light, wireless transmission of electrical energy, radio, remote control, discovery of cosmic radio waves, and the use of the ionosphere for scientific purposes. He was a genius whose discoveries had a pivotal role in advancing us into the modern era. Copyright 2004 Wiley-Liss, Inc.

  8. Quantitative techniques for musculoskeletal MRI at 7 Tesla.

    Science.gov (United States)

    Bangerter, Neal K; Taylor, Meredith D; Tarbox, Grayson J; Palmer, Antony J; Park, Daniel J

    2016-12-01

    Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems.

  9. Use of the upper radial order modes in spherical superconducting cavities

    International Nuclear Information System (INIS)

    Reuss, J.

    1975-04-01

    Spherical cavities resonating on a high g radial order mode are considered. The ratio of the maximum magnetic field inside the cavity to the maximum field on the wall is proportional to g. The proportion coefficient is given for the TEsub(g10); TEsub(g20), TMsub(g10), and TMsub(g20) modes. That corresponds to an energy concentration at the center. Owing to this property the superconducting cavities might be used to produce strong H.F. magnetic fields (larger than 10 Teslas) [fr

  10. Tuning of External Q And Phase for The Cavities of A Superconducting Linear Accelerator

    CERN Document Server

    Katalev, V V

    2004-01-01

    The RF power required for a certain gradient of a superconducting cavity depends on the beam current and coupling between the cavity and waveguide. The coupling with the cavity may be changed by variation of Qext. Different devices can be used to adjust Qext or phase. In this paper three stub and E-H tuners are compared and their usability for the RF power distribution system for the superconducting accelerator of the European Xray laser and the TESLA linear collider is considered. The tuners were analyzed by using the scattering matrix. Advantages and limitations of the devices are presented.

  11. Nikola Tesla - genije koji je premostio vekove

    Directory of Open Access Journals (Sweden)

    Vladimir T. Ristić

    2006-07-01

    Full Text Available Ispisujući prve stranice svoje obimne knjige o životnom putu Nikole Tesle, američki pisac Džon Oí Nil kaže: Tesla je bio mislilac i pronalazač najvišeg reda, onaj što mišljenjem, a ne slučajem, dolazi do otkrića, dok mu eksperiment služi samo za potvrdu njegove teze. On je bio i matematičar, znao je bezbroj formula napamet, tako da se najčešće nije morao služiti priručnicima; osim toga, imao je najsolidnije tehničko obrazovanje, što je, na primer, Edisonu nedostajalo. Nikola Tesla je osnovno školovanje započeo u rodnom Smiljanu, a nastavio i dovršio u Gospiću gde se sa roditeljima, posle smrti starijeg brata, preselio. Gimnaziju je upisao u Karlovcu. Bila je to ugledna škola, a u profesoru fizike Nikola je imao izuzetnog pedagoga, koji je svojim đacima umeo vrlo vešto da dočara čak i ono što je u fizici teško razumljivo.

  12. Investigation of superconducting niobium 1170 MHz cavities

    International Nuclear Information System (INIS)

    Anashin, V.V.; Bibko, S.I.; Fadeyev, E.I.

    1988-01-01

    The design, fabrication and experiments with superconducting L-band single cell cavities are described. These cavities model a cell of an accelerating RF structure. The cavities have been fabricated from technical grade and higher purity grade sheet niobium using deep-drawing, electron beam welding and chemical polishing. They have spherical geometry and are excited in the TM 010 mode. A computerized set-up was used for cavity tests. Qo=1.5 x 10 9 and E acc = 4.3 MV/m were obtained in the cavity made of higher purity grade niobium. 6 references, 8 figures, 3 tables

  13. Numerical simulations of radiation hydrodynamics and modeling of high temperature hohlraum cavities

    International Nuclear Information System (INIS)

    Gupta, N.K.; Godwal, B.K.

    2003-10-01

    A summary of our efforts towards the validation of radiation hydrodynamics and opacity models are presented. Effects of various parameters on the radiation temperature inside an inertial confinement fusion (ICF) hohlraum, the effects of non-local thermodynamic equilibrium conditions on emission and absorption, and the hydrodynamics of aluminium and gold foils driven by radiation are studied. LTE and non-LTE predictions for emitted radiation are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. It is shown that the mixing of two high Z materials can lead to an enhancement in the Rosseland mean. An experimental study of soft x-ray emission from laser-irradiated Au-Cu mix-Z targets confirmed these predictions. It is seen that only multi group non-LTE radiation transport is able to explain experimentally observed features in the conversion efficiency of laser light to x-rays. One group radiation transport under predicts the radiation temperature. It is shown that erroneous results can be obtained if the space mesh in the hohlraum wall is not fine enough. Hydrodynamics of a wedge shaped aluminium foil driven by the hohlraum radiation is also presented and results are compared with NOVA laser experiments. Laser driven shock wave EOS and gold hohlraum experiments carried out at CAT are analyzed and they confirmed our theoretical estimates. (author)

  14. Vibro-acoustic modeling and analysis of a coupled acoustic system comprising a partially opened cavity coupled with a flexible plate

    Science.gov (United States)

    Shi, Shuangxia; Su, Zhu; Jin, Guoyong; Liu, Zhigang

    2018-01-01

    This paper is concerned with the modeling and solution method of a three-dimensional (3D) coupled acoustic system comprising a partially opened cavity coupled with a flexible plate and an exterior field of semi-infinite size, which is ubiquitously encountered in architectural acoustics and is a reasonable representation of many engineering occasions. A general solution method is presented to predict the dynamic behaviors of the three-dimensional (3D) acoustic coupled system, in which the displacement of the plate and the sound pressure in the cavity are respectively constructed in the form of the two-dimensional and three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The effect of the opening is taken into account via the work done by the sound pressure acting at the coupling aperture that is contributed from the vibration of particles on the acoustic coupling interface and on the structural-acoustic coupling interface. Both the acoustic coupling between finite cavity and exterior field and the structural-acoustic coupling between flexible plate and interior acoustic field are considered in the vibro-acoustic modeling of the three-dimensional acoustic coupled acoustic system. The dynamic responses of the coupled structural-acoustic system are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the coupled system. The accuracy and effectiveness of the proposed method are validated through numerical examples and comparison with results obtained by the boundary element analysis. Furthermore, the influence of the opening and the cavity volume on the acoustic behaviors of opened cavity system is studied.

  15. A two-cavity reactor for solar chemical processes: heat transfer model and application to carbothermic reduction of ZnO

    International Nuclear Information System (INIS)

    Wieckert, Christian; Palumbo, Robert; Frommherz, Ulrich

    2004-01-01

    A 5 kW two-cavity beam down reactor for the solar thermal decomposition of ZnO with solid carbon has been developed and tested in a solar furnace. Initial exploratory experiments show that it operates with a solar to chemical energy conversion efficiency of about 15% when the solar flux entering the reactor is 1300 kW/m 2 , resulting in a reaction chamber temperature of about 1500 K. The solid products have a purity of nearly 100% Zn. Furthermore, the reactor has been described by a numerical model that combines radiant and conduction heat transfer with the decomposition kinetics of the ZnO-carbon reaction. The model is based on the radiosity exchange method. For a given solar input, the model estimates cavity temperatures, Zn production rates, and the solar to chemical energy conversion efficiency. The model currently makes use of two parameters which are determined from the experimental results: conduction heat transfer through the reactor walls enters the model as a lumped term that reflects the conduction loss during the experiments, and the rate of the chemical reaction includes an experimentally determined term that reflects the effective amount of ZnO and CO participating in the reactor. The model output matches well the experimentally determined cavity temperatures. It suggests that reactors built with this two-cavity concept already on this small scale can reach efficiencies exceeding 25%, if operated with a higher solar flux or if one can reduce conduction heat losses through better insulation and if one can maintain or improve the effective amount of ZnO and CO that participates in the reaction

  16. Optimization of materials for the parts that compose a Tesla turbine; Otimizacao de materiais para as partes que compoe uma turbina tipo Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Geovana Vilas Boas da, E-mail: geovana_dmp@yahoo.com.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil); Guimaraes, Lamartine N.F.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: placco@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2013-07-01

    The TERRA project (Tecnologia de Reatores Rapidos Avancados) of the Aeronautica (Brazil) aims to develop the necessary technologies for the design of nuclear microreactors. These, in turn, aim to address the thermal and electrical needs in space vehicles. One of the activities of this project is to build a closed thermal cycle, the Rankine type in order to test a Tesla turbine type developed by the group. In this thermodynamic cycle the water is transformed into steam, which triggers a turbine which, in turn, provide power to the alternator to be converted into electricity. The work presented a survey of the materials available on the national market for machining a Tesla type turbine. The surveys were made considering the characteristics and operating conditions of a specific thermal cycle, the interest of the group. Results: cost-benefit tables for each party of the turbine, characteristics of each material, the machining process, as well as a comparison between one of 304L stainless steel model turbine with a turbine with the selected materials. The results from this study raised the level of sophistication of the research involved the TERRA project, since the study of ideal materials that make up the parts of a Tesla type turbine in a heat cycle is unprecedented.

  17. USC-HN2, a new model cell line for recurrent oral cavity squamous cell carcinoma with immunosuppressive characteristics.

    Science.gov (United States)

    Russell, Sarah M; Lechner, Melissa G; Gong, Lucy; Megiel, Carolina; Liebertz, Daniel J; Masood, Rizwan; Correa, Adrian J; Han, Jing; Puri, Raj K; Sinha, Uttam K; Epstein, Alan L

    2011-09-01

    Head and neck squamous cell carcinomas (HNSCC) are common and aggressive tumors that have not seen an improvement in survival rates in decades. These tumors are believed to evade the immune system through a variety of mechanisms and are therefore highly immune modulatory. In order to elucidate their interaction with the immune system and develop new therapies targeting immune escape, new pre-clinical models are needed. A novel human cell line, USC-HN2, was established from a patient biopsy specimen of invasive, recurrent buccal HNSCC and characterized by morphology, heterotransplantation, cytogenetics, phenotype, gene expression, and immune modulation studies and compared to a similar HNSCC cell line; SCCL-MT1. Characterization studies confirmed the HNSCC origin of USC-HN2 and demonstrated a phenotype similar to the original tumor and typical of aggressive oral cavity HNSCC (EGFR(+)CD44v6(+)FABP5(+)Keratin(+) and HPV(-)). Gene and protein expression studies revealed USC-HN2 to have highly immune-modulatory cytokine production (IL-1β, IL-6, IL-8, GM-CSF, and VEGF) and strong regulatory T and myeloid derived suppressor cell (MDSC) induction capacity in vitro. Of note, both USC-HN2 and SCCL-MT1 were found to have a more robust cytokine profile and MDSC induction capacity when compared to seven previously established HNSCC cell lines. Additionally, microarray gene expression profiling of both cell lines demonstrate up-regulation of antigen presenting genes. Because USC-HN2 is therefore highly immunogenic, it also induces strong immune suppression to evade immunologic destruction. Based upon these results, both cell lines provide an excellent model for the development of new suppressor cell-targeted immunotherapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Model validation using CFD-grade experimental database for NGNP Reactor Cavity Cooling Systems with water and air

    Energy Technology Data Exchange (ETDEWEB)

    Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Petrov, Victor [Univ. of Michigan, Ann Arbor, MI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Tompkins, Casey [Univ. of Wisconsin, Madison, WI (United States); Nunez, Daniel [Univ. of Michigan, Ann Arbor, MI (United States)

    2018-02-13

    This project has been focused on the experimental and numerical investigations of the water-cooled and air-cooled Reactor Cavity Cooling System (RCCS) designs. At this aim, we have leveraged an existing experimental facility at the University of Wisconsin-Madison (UW), and we have designed and built a separate effect test facility at the University of Michigan. The experimental facility at UW has underwent several upgrades, including the installation of advanced instrumentation (i.e. wire-mesh sensors) built at the University of Michigan. These provides highresolution time-resolved measurements of the void-fraction distribution in the risers of the water-cooled RCCS facility. A phenomenological model has been developed to assess the water cooled RCCS system stability and determine the root cause behind the oscillatory behavior that occurs under normal two-phase operation. Testing under various perturbations to the water-cooled RCCS facility have resulted in changes in the stability of the integral system. In particular, the effects on stability of inlet orifices, water tank volume have and system pressure been investigated. MELCOR was used as a predictive tool when performing inlet orificing tests and was able to capture the Density Wave Oscillations (DWOs) that occurred upon reaching saturation in the risers. The experimental and numerical results have then been used to provide RCCS design recommendations. The experimental facility built at the University of Michigan was aimed at the investigation of mixing in the upper plenum of the air-cooled RCCS design. The facility has been equipped with state-of-theart high-resolution instrumentation to achieve so-called CFD grade experiments, that can be used for the validation of Computational Fluid Dynanmics (CFD) models, both RANS (Reynold-Averaged) and LES (Large Eddy Simulations). The effect of risers penetration in the upper plenum has been investigated as well.

  19. 76 FR 47639 - Tesla Motors, Inc.; Receipt of Petition for Temporary Exemption From the Electronic Stability...

    Science.gov (United States)

    2011-08-05

    ...-0110] Tesla Motors, Inc.; Receipt of Petition for Temporary Exemption From the Electronic Stability... accordance with the procedures in 49 CFR part 555, Tesla Motors, Inc., has petitioned the agency for a... part 555, Tesla Motors, Inc. (Tesla) submitted a petition dated June 7, 2001 asking the agency for a...

  20. 77 FR 22383 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA

    Science.gov (United States)

    2012-04-13

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA AGENCY: National Highway Traffic... exemption. SUMMARY: This document grants in full the petition of Tesla Motors Inc's. (Tesla) for an... 49 CFR Part 541, Federal Motor Vehicle Theft Prevention Standard. Tesla requested confidential...

  1. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  2. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance on a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.

  3. Foundations for quantitative microstructural models to track evolution of the metallurgical state during high purity Nb cavity fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, Thomas R [Michigan State University; Wright, Neil T [Michigan State University; Compton, Chris C [Facility for Rare Isotope Beams

    2014-03-15

    The goal of the Materials Science SRF Cavity Group of Michigan State University and the National Superconducting Cyclotron has been (and continues to be) to understand quantitatively the effects of process history on functional properties. These relationships were assessed via studies on Nb samples and cavity parts, which had various combinations of forming processes, welding, heat treatments, and surface preparation. A primary focus was on large-grain cavity building strategies. Effects of processing operations and exposure to hydrogen on the thermal conductivity has been identified in single and bi-crystal samples, showing that the thermal conductivity can be altered by a factor of 5 depending on process history. Characterization of single crystal tensile samples show a strong effect of crystal orientation on deformation resistance and shape changes. Large grain half cells were examined to characterize defect content and surface damage effects, which provided quantitative information about the depth damage layers from forming.

  4. Modeling study on the thermal performance of a modified cavity receiver with glass window and secondary reflector

    International Nuclear Information System (INIS)

    Chang, Huawei; Duan, Chen; Wen, Ke; Liu, Yuting; Xiang, Can; Wan, Zhongmin; He, Sinian; Jing, Changwei; Shu, Shuiming

    2015-01-01

    Highlights: • A modified cavity receiver with glass window and secondary reflector is presented. • Optical and thermal performance of the modified cavity receiver is investigated. • Effects of glass window and secondary reflector are analyzed with comparison study. - Abstract: The development of a cavity receiver for a 1 kW beta type solar Stirling engine is presented in this work. The proposed receiver is composed of an additional quartz glass window and a secondary reflector aiming at improving the thermal performance. Monte-Carlo ray-tracing method is adopted to study the optical property and calculate radiative exchange factors of the solar collector system. The results show that the radiation flux sent to the proposed cavity receiver is 5003 W, and the optical efficiency of this receiver is 70.8%. Numerical simulation is conducted to investigate the thermal performance of this modified receiver. The proposed receiver is also compared with other three simulated receivers combining the presence and absence of the quartz glass window and the secondary reflector. The numerical simulation results show that the modified receiver with both quartz glass window and secondary trumpet reflector outperformed other designs, and its heat loss is reduced about 56% compared to the initial receiver without both quartz glass window and secondary reflector. Hence, the impact factors on the modified receiver radiation and convection heat transfer are well analyzed including temperature, the inner surface orientation and emissivity. The research indicates that the proposed cavity receiver can efficiently reduce the heat loss from cavity and is suitable for Stirling engine applications.

  5. Fabrication and measurement of a 10x scale model of a double-sided planar mm-wave linac cavity structure

    International Nuclear Information System (INIS)

    Kang, Y.W.; Matthews, P.; Nassiri, A.; Kustom, R.L.

    1994-01-01

    A double-sided planar mm-wave linear accelerating cavity, structure has been investigated. An 80-cell constant impedance structure working with 2π/3-mode traveling wave was chosen as an accelerator section. A 10x scale model of the structure has been fabricated and the basic electrical performances have been tested. The nodal shift measurement technique with a rectangular detuning plunger was used to measure the phase advance between the cells with a vector network analyzer

  6. A new interlock design for the TESLA RF system

    International Nuclear Information System (INIS)

    Leich, H.; Kahl, J.; Choroba, S.; Grevsmuehl, T.; Heidbrook, N.

    2001-01-01

    The RF system for TESLA requires a comprehensive interlock system. Usually interlock systems are organized in a hierarchical way. In order to react to different fault conditions in a fast and flexible manner a nonhierarchical organization seems to be the better solution. At the TESLA Test Facility (TTF) at DESY the authors will install a nonhierarchical interlock system that is based on user designed reprogrammable gate-arrays (FPGA's) which incorporate an embedded microcontroller system. This system could be used later for the TESLA linear collider replacing a strictly hierarchical design

  7. Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users

    OpenAIRE

    Cowan, Ronald L.; Bolo, Nicolas R.; Dietrich, Mary; Haga, Erica; Lukas, Scott E.; Renshaw, Perry F.

    2007-01-01

    The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent...

  8. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  9. Tuned cavity magnetometer sensitivity.

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Schwindt, Peter

    2009-09-01

    We have developed a high sensitivity (Tesla/{radical}Hz), non-cryogenic magnetometer that utilizes a novel optical (interferometric) detection technique. Further miniaturization and low-power operation are key advantages of this magnetometer, when compared to systems using SQUIDs which require liquid Helium temperatures and associated overhead to achieve similar sensitivity levels.

  10. Geometric optimization of a solar cubic-cavity multi-tubular thermochemical reactor using a Monte Carlo-finite element radiative transfer model

    International Nuclear Information System (INIS)

    Valades-Pelayo, P.J.; Romero-Paredes, H.; Arancibia-Bulnes, C.A.; Villafán-Vidales, H.I.

    2016-01-01

    In the present study, the optimization of a multi-tubular solar thermochemical cavity reactor is carried out. The reactor consists of a cubic cavity made of woven graphite, housing nine 2.54 cm diameter tungsten tubes. A heat transfer model is developed and implemented considering high-temperature radiative transfer at steady state. The temperature distribution on the receiver tubes is determined by using a hybrid Monte Carlo-finite volume approach. The optimization aims at maximizing average tube temperature by varying tube locations. Optimal tube distributions are explored by using a custom-made stochastic, multi-parameter, global optimization algorithm. A considerable increase in average temperature as well as improvement on temperature uniformity is found in the optimized tube arrays. Patterns among the different optimal distributions are found, and general features are discussed.

  11. Assessing the MR compatibility of dental retainer wires at 7 Tesla.

    Science.gov (United States)

    Wezel, Joep; Kooij, Bert Jan; Webb, Andrew G

    2014-10-01

    To determine the MR compatibility of common dental retainer wires at 7 Tesla in terms of potential RF heating and magnetic susceptibility effects. Electromagnetic simulations and experimental results were compared for dental retainer wires placed in tissue-mimicking phantoms. Simulations were then performed for a human model with wire in place. Finally, image quality was assessed for different scanning protocols and wires. Simulations and experimental data in phantoms agreed well, with the length of the wire correlating to maximum heating in phantoms being approximately 47 mm. Even in this case, no substantial heating occurs when scanning within the specific absorption rate (SAR) guidelines for the head. Image distortions from the most ferromagnetic dental wire were not significant for any brain region. Dental retainer wires appear to be MR compatible at 7 Tesla. Copyright © 2013 Wiley Periodicals, Inc.

  12. Instrumentation of the forward region of the TESLA detector

    International Nuclear Information System (INIS)

    Buesser, Karsten

    2004-01-01

    The expected beam-beam interaction at the proposed TESLA electron-positron linear collider has a significant impact on the design of the TESLA detector. Especially the instrumentation of the very forward region down to polar angles below 5 mrad will have to handle an immense background of electrons and positrons adding up to TeVs of energy deposition per bunch crossing. Instrumentation down to small angles is crucial not only for the measurement of the luminosity through Bhabha scattering, but also to maximize the hermeticity of the detector. Additionally these charged particles from beamstrahlung have to be measured as part of the feedback system of the TESLA accelerator and could also be used for beam diagnostics. The present design of the TESLA detector foresees two calorimeters in the forward region whose technologies have to meet the requirements regarding detector resolutions and radiation hardness. (orig.)

  13. In-house L-band niobium single cell cavities at KEK

    International Nuclear Information System (INIS)

    Inoue, Hitoshi; Kobayashi, Yoshiharu; Funahashi, Yoshisato; Koizumi, Susumu; Saito, Kenji; Noguchi, Shuichi; Kako, Eiji; Shishido, Toshio

    1993-01-01

    For the TESLA (TeV Energy Superconducting Linear Accelerator) as an energy frontier accelerator of the next generation improving the performance of the niobium superconducting cavities is the most important issue and much reduction of fabrication cost of cavities is another key. Since manufacturing of niobium material requires hard techniques due to the easily oxidizable metal, fabrication of niobium cavities has been conducted in only companies providing enough equipments in Japan. KEK has accumulated the fabrication technics such as forming method by deep drawing, trimming, centering of beam tubes, electron beam welding and measurement of manufacturing error so on. We made in-house L-band single cell cavities using these technologies. In this paper we present these manufacturing of the niobium cavities and estimate the fabrication cost as exactly as possible. The manufacturing error is also described. (author)

  14. Studies of HOMs in chains of SRF cavities using state-space concatenation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Galek, Tomasz; Heller, Johann; Flisgen, Thomas; Brackebusch, Korinna; Rienen, Ursula van [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock (Germany)

    2016-07-01

    The design of modern superconducting radio frequency cavities for acceleration of charged particle bunches requires intensive numerical simulations, as they typically arise as modules of several multi-cell cavities. A wide variety of parameters vital to the proper operation of accelerating cavities must be optimized and studied. One of the most important issues concerning the SRF cavities is the influence of the higher order modes on the beam quality, in this contribution. For TESLA-like structures with 1.3 GHz accelerating mode, higher order modes are calculated up to 4 GHz, the external quality factor and the shunt/geometrical impedance spectra are analyzed. To compute properties of complete RF modules the state-space concatenation scheme is used. The aspects of the concatenation scheme and its application to the bERLinPro's chain of cavities is discussed.

  15. Development of high purity niobium material for superconducting cavities

    International Nuclear Information System (INIS)

    Umezawa, Hiroaki; Takeuchi, Koichi; Sakita, Kohei; Suzuki, Takafusa; Saito, Kenji; Noguchi, Shuichi.

    1993-01-01

    For the superconducting niobium cavities, issues of thermal quench and field emission have to be solved to achieve a high field gradient (>25MV/m) for TESLA (TeV Energy Superconducting Linear Accelerator). In order to overcome the quench, upgrading of thermal conductivity of niobium material at the low temperature is very important. On the reduction of the field emission not only dust particles but also defect, impurity and inhomogeneity should be considered. Therefore development of high purity niobium material is very important to solve these issues. This paper describes the our latest R and D for high purity niobium material. (author)

  16. Radiation protection systems on the TESLA Accelerator Installation

    International Nuclear Information System (INIS)

    Pavlovic, R.

    1996-01-01

    In the Institute of Nuclear sciences VINCA, the Accelerator Installation TESLA which is an medium energy ion accelerator facility consisting of an isochronous cyclotron VINCY, a heavy ion source, a D/H ion source, three low energy and five high energy experimental channels is now under construction. Some problems in defining radiation protection and safety programme, particularly problems in construction appropriate shielding barriers at the Accelerator Installation TESLA are discussed in this paper. (author

  17. Tesla the life and times of an electric messiah

    CERN Document Server

    Cawthorne, Nigel

    2014-01-01

    Despite being incredibly popular during his time, Nikola Tesla today remains largely overlooked among lists of the greatest inventors and scientists of the modern era.  Thomas Edison gets all the glory for discovering the light bulb, but it was his one time assistant and life long arch nemesis, Tesla, who made the breakthrough in alternating current technology.  Edison and Tesla carried on a bitter feud for years, but it was Tesla's AC generators that illuminated the 1893 World's Fair in Chicago; the first time that an event of such magnitude had ever taken place under artificial light.  Today, all homes and electrical appliances run on Tesla's AC current.Born in Croatia in 1856, Tesla spoke eight languages and as well as almost single handedly developing household electricity.  During his life, he patented more than 700 inventions.  He invented electrical generators, FM radio, remote control robots, spark plugs and fluorescent lights.  He had a photographic memory and did advanced calculus and physic...

  18. Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine

    International Nuclear Information System (INIS)

    Khan, M Usman Saeed; Maqsood, M Irfan; Ali, Ehsan; Jamal, Shah; Javed, M

    2013-01-01

    Recent research has shown that tesla turbine can be one of the future efficient sources of renewable energy. Modern techniques used for designing of tesla turbine have given optimum results regarding efficiency and applications. In this paper we have suggested fully coordinated applications of tesla turbine in different fields particularly in power generation at both low level and high level generation. In Energy deficient countries the tesla turbine has wide range of applications and it can play an important role in energy management system. Our proposed applications includes, - the use of tesla turbine as renewable energy resource; - using tesla turbine in distributed generation system; - use of tesla turbine at home for power generation; - use of tesla turbine in irrigation channels; - using tesla turbine in hybrid electric vehicles; All applications are explained with the help of flow charts and block diagrams and their implementation techniques are also explained in details. The results of physical experiments and simulations are also included for some applications.

  19. Improved reactor cavity

    International Nuclear Information System (INIS)

    Katz, L.R.; Demarchais, W.E.

    1984-01-01

    A reactor pressure vessel disposed in a cavity has coolant inlet or outlet pipes extending through passages in the cavity walls and welded to pressure nozzles. The cavity wall has means for directing fluid away from a break at a weld away from the pressure vessel, and means for inhibiting flow of fluid toward the vessel. (author)

  20. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  1. Optimization of materials for the parts that compose a Tesla turbine

    International Nuclear Information System (INIS)

    Rocha, Geovana Vilas Boas da; Guimaraes, Lamartine N.F.; Placco, Guilherme M.

    2013-01-01

    The TERRA project (Tecnologia de Reatores Rapidos Avancados) of the Aeronautica (Brazil) aims to develop the necessary technologies for the design of nuclear microreactors. These, in turn, aim to address the thermal and electrical needs in space vehicles. One of the activities of this project is to build a closed thermal cycle, the Rankine type in order to test a Tesla turbine type developed by the group. In this thermodynamic cycle the water is transformed into steam, which triggers a turbine which, in turn, provide power to the alternator to be converted into electricity. The work presented a survey of the materials available on the national market for machining a Tesla type turbine. The surveys were made considering the characteristics and operating conditions of a specific thermal cycle, the interest of the group. Results: cost-benefit tables for each party of the turbine, characteristics of each material, the machining process, as well as a comparison between one of 304L stainless steel model turbine with a turbine with the selected materials. The results from this study raised the level of sophistication of the research involved the TERRA project, since the study of ideal materials that make up the parts of a Tesla type turbine in a heat cycle is unprecedented

  2. Cantilever piezoelectric energy harvester with multiple cavities

    International Nuclear Information System (INIS)

    S Srinivasulu Raju; M Umapathy; G Uma

    2015-01-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity. (paper)

  3. Development of superconducting cavities at JAERI

    International Nuclear Information System (INIS)

    Ouchi, N.

    2001-01-01

    Development of superconducting (SC) cavities is continued for the high intensity proton accelerator in JAERI. In FY-1999, we carried out R and D work; (1) 2nd vertical test of β=0.886 single-cell cavity, (2) vertical test for observation of Q-disease without heat treatment after electropolishing, (3) vertical test of β=0.5 5-cell cavity, (4) pretuning, surface treatment and vertical test of β=0.886 5-cell cavity, (5) pulsed operation of β=0.886 single-cell cavity in the vertical test to confirm the validity of a new model calculation. This paper describes the present status of the R and D work for the SC cavities in JAERI. (author)

  4. Superconducting cavity driving with FPGA controller

    International Nuclear Information System (INIS)

    Czarski, Tomasz; Koprek, Waldemar; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan; Brandt, Alexander; Chase, Brian; Carcagno, Ruben; Cancelo, Gustavo; Koeth, Timothy W.

    2006-01-01

    A digital control of superconducting cavities for a linear accelerator is presented. FPGA-based controller, supported by Matlab system, was applied. Electrical model of a resonator was used for design of a control system. Calibration of the signal path is considered. Identification of cavity parameters has been carried out for adaptive control algorithm. Feed-forward and feedback modes were applied in operating the cavities. Required performance has been achieved; i.e. driving on resonance during filling and field stabilization during flattop time, while keeping reasonable level of the power consumption. Representative results of the experiments are presented for different levels of the cavity field gradient

  5. How Much Tesla Is Too Much?

    International Nuclear Information System (INIS)

    Monu, U.V.J.

    2015-01-01

    There are 7 Tesla (T) scanners operate in up to 35 research clinics worldwide. Currently 11T, 9T, 7T and 4T MRI in research facilities all over the world. The more powerful the magnet -the better the images, the faster the imaging time and the more patient put through. 10 -12 T seem to be the upper limit for current technology. The FDA has limited the power of the MRI for clinical use to 8T. Higher Field MRI Scanner-Advantages include Higher Field MRI Scanner, higher contrast to noise, higher spatial resolution and Images can be acquired at faster times. UltraHigh Field Imaging Advantageous in Sports medicine type patients with injury to tendons, ligaments and cartilage. Disadvantages of telsa to Safety Issues include Specific Absorption Rate (SARs) issues, Increased heating of tissues, Becomes an issue when imaging large structures, not a real problem in MSK except for spine imaging and Most units will adjust to approved parameters before scanning

  6. Solid targetry at the TESLA Accelerator Installation

    CERN Document Server

    Comor, J J; Rajcevic, M; Kosutic, D; Spasic, M; Vidovic, A; Duricic, J; Nedeljkovic, N

    2002-01-01

    According to the concept of the TESLA Accelerator Installation, the channel for production of radioisotopes has to routinely produce sup 2 sup 0 sup 1 Tl, sup 1 sup 1 sup 1 In, sup 6 sup 7 Ga, sup 1 sup 2 sup 3 I and sup 1 sup 8 F, and a number of other radionuclides for experimental purposes. The production of sup 1 sup 2 sup 3 I and sup 1 sup 8 F will be performed in dedicated, commercial target stations, while a versatile solid target irradiation system is designed for the routine and experimental production of all other radioisotopes. The solid target station is designed to accept targets for both the 7 deg. and 90 deg. irradiation geometry. The targets used for the routine production will be prepared by electroplating on a silver substrate. They can be irradiated with a 1.5 kW beam using the 7 deg. geometry. The cooling of these targets is enhanced by fins on the back of the silver substrate designed so that the highest temperature on the surface of the target does not exceed 110 deg. C. The irradiation ...

  7. State of the art of multicell SC cavities and perspectives

    International Nuclear Information System (INIS)

    Peter Kneisel

    2002-01-01

    Superconducting cavity technology has made major progresses in the last decade with the introduction of high purity niobium on an industrial scale and, at the same time, by an improved understanding of the limiting processes in cavity performance, such as multipacting, field emission loading and thermal break-down. Multicell niobium cavities for beta = 1 particle acceleration, e.g. for the TESLA project, are routinely exceeding gradients of Eacc = 20 MV/m after the application of surface preparation techniques such as buffered chemical polishing or electropolishing, high pressure ultrapure water rinsing, UHV heat treatment and clean room assembly. The successes of the technology for beta = 1 accelerators has triggered a whole set of possible future applications for beta < 1 particle acceleration such as spallation neutron sources (SNS, ESS), transmutation of nuclear waste (TRASCO, ASH) or rare isotopes (RIA). The most advanced of these projects is SNS now under construction at Oak Ridge National Laboratory. This paper will review the technical solutions adopted to advance SRF technology and their impact on cavity performance, based on the SNS prototyping efforts. 2K at these high gradients are no longer out of reach. For the accelerator builder the challenge remains to come up with a good and reasonable design, which takes into account the status of the technology and does not over-estimate the achievable cavity performances in a large assembly such as, e.g., a multi-cavity cryo-module. In the following the criteria for multi-cell sc cavity design are reviewed and it is attempted to give a snapshot of the present status of multi-cell cavity performances

  8. [Studies of three-dimensional cardiac late gadolinium enhancement MRI at 3.0 Tesla].

    Science.gov (United States)

    Ishimoto, Takeshi; Ishihara, Masaru; Ikeda, Takayuki; Kawakami, Momoe

    2008-12-20

    Cardiac late Gadolinium enhancement MR imaging has been shown to allow assessment of myocardial viability in patients with ischemic heart disease. The current standard approach is a 3D inversion recovery sequence at 1.5 Tesla. The aims of this study were to evaluate the technique feasibility and clinical utility of MR viability imaging at 3.0 Tesla in patients with myocardial infarction and cardiomyopathy. In phantom and volunteer studies, the inversion time required to suppress the signal of interests and tissues was prolonged at 3.0 Tesla. In the clinical study, the average inversion time to suppress the signal of myocardium at 3.0 Tesla with respect to MR viability imaging at 1.5 Tesla was at 15 min after the administration of contrast agent (304.0+/-29.2 at 3.0 Tesla vs. 283.9+/-20.9 at 1.5 Tesla). The contrast between infarction and viable myocardium was equal at both field strengths (4.06+/-1.30 at 3.0 Tesla vs. 4.42+/-1.85 at 1.5 Tesla). Even at this early stage, MR viability imaging at 3.0 Tesla provides high quality images in patients with myocardial infarction. The inversion time is significantly prolonged at 3.0 Tesla. The contrast between infarction and viable myocardium at 3.0 Tesla are equal to 1.5 Tesla. Further investigation is needed for this technical improvement, for clinical evaluation, and for limitations.

  9. Toroidal 12 cavity klystron : a novel approach

    International Nuclear Information System (INIS)

    Hazarika, A.B.R.

    2013-01-01

    A toroidal 12 cavity klystron is designed to provide with high energy power with the high frequency microwave RF- plasma generated from it. The cavities are positioned in clock hour positions. The theoretical modeling and designing is done to study the novel approach. (author)

  10. Dispersion of coupled mode-gap cavities

    NARCIS (Netherlands)

    Lian, Jin; Sokolov, Sergei; Yuce, E.; Combrie, S.; de Rossi, A.; Mosk, Allard

    2015-01-01

    The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity

  11. Hydroforming SRF Three-cell Cavity from Seamless Niobium Tube

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Masashi [KEK, Tsukuba; Dohmae, Takeshi [KEK, Tsukuba; Hocker, Andy [Fermilab; Inoue, Hitoshi [KEK, Tsukuba; Park, Gunn-Tae [KEK, Tsukuba; Tajima, Tsuyoshi [Los Alamos; Umemori, Kensei [KEK, Tsukuba

    2016-06-01

    We are developing the manufacturing method for superconducting radio frequency (SRF) cavities by using a hydroforming instead of using conventional electron beam welding. We expect higher reliability and reduced cost with hydroforming. For successful hydroforming, high-purity seamless niobium tubes with good formability as well as advancing the hydroforming technique are necessary. Using a seamless niobium tube from ATI Wah Chang, we were able to successfully hydroform a 1.3 GHz three-cell TESLA-like cavity and obtained an Eacc of 32 MV/m. A barrel polishing process was omitted after the hydroforming. The vertical test was carried out with very rough inside surface. We got amazing and interesting result.

  12. Measurement of Microwave Parameters of a Superconducting Niobium Cavity

    Science.gov (United States)

    Azaryan, N. S.; Baturitskii, M. A.; Budagov, Yu. A.; Demin, D. L.; Dem‧yanov, S. E.; Karpovich, V. A.; Kniga, V. V.; Krivosheev, R. M.; Lyubetskii, N. V.; Maksimov, S. I.; Pobol‧, I. L.; Rodionova, V. N.; Shirkov, G. D.; Shumeiko, N. M.; Yurevich, S. V.

    2017-01-01

    This paper describes a method for direct measurement of the amplitude-frequency characteristics and the Q factor of empty superconducting niobium radio frequency Tesla-type cavities. An automated measuring complex that permits recording the superconductivity effect and measuring high Q values has been developed. Measurements have been made of the Q factors of the investigated objects (the first domestic 1.3-GHz niobium cavities) at a level no lower than 0.1·109 (with a maximum value of 1.2·1010) and a level of relative losses lower than 130 dB (with a minimum factor of 139.7 dB) at liquid nitrogen temperature.

  13. Thermal behaviour analysis of SRF cavities and superconducting HOM couplers

    International Nuclear Information System (INIS)

    Fouaidy, M.; Junquera, T.

    1993-01-01

    Two individual papers appear in this report, titled Thermal model calculations in superconducting RF cavities, and Thermal study of HOM couplers for superconducting RF cavities. Both were indexed separately for the INIS database. (R.P.)

  14. Heat or mass transfer from an open cavity

    NARCIS (Netherlands)

    Kuiken, H.K.

    1978-01-01

    This paper presents a mathematical model for heat or mass transfer from an open cavity. It is assumed that the Péclet number, based on conditions at the cavity, and the Prandtl number are both large. The model assumes heat- or mass-transfer boundary layers at the rim of the cavity vortex flow. Heat

  15. FPGA-based multichannel optical concentrator SIMCON 4.0 for TESLA cavities LLRF control system

    Science.gov (United States)

    Perkuszewski, Karol; Pozniak, Krzysztof T.; Jalmuzna, Wojciech; Koprek, Waldemar; Szewinski, Jaroslaw; Romaniuk, Ryszard S.; Simrock, Stefan

    2006-10-01

    The paper presents an idea, design and realization of a gigabit, optoelectronic synchronous massive data concentrator for the LLRF control system for FLASH and XFEL superconducting accelerators and lasers. The design bases on a central, large, programmable FPGA VirtexIIPro circuit by Xilinx and on eight commercial optoelectronic transceivers. There were implemented peripheral devices for embedded PowerPC block like: memory and Ethernet. The SIMCON 4.0 module was realized as a single, standard EURO-6HE board with VXI/VME-bus. Hardware implementation was described for the most important functional blocks. Construction solutions were presented.

  16. FPGA based multichannel optical concentrator SIMCON 4.0 for TESLA cavities LLRF control system

    International Nuclear Information System (INIS)

    Perkuszewski, K.; Pozniak, K.T.; Jalmuzna, W.; Koprek, W.; Szewinski, J.; Romaniuk, R.S.

    2006-01-01

    The paper presents an idea, design and realization of a gigabit, optoelectronic synchronous massive data concentrator for the LLRF control system for FLASH and XFEL superconducting accelerators and lasers. The design bases on a central, large, programmable FPGA VirtexIIPro circuit by Xilinx and on eight commercial optoelectronic transceivers. There were implemented peripheral devices for embedded PowerPC block like: memory and Ethernet. The SIMCON 4.0 module was realized as a single, standard EURO-6HE board with VXI/VME-bus. Hardware implementation was described for the most important functional blocks. Construction solutions were presented. (orig.)

  17. FPGA based multichannel optical concentrator SIMCON 4.0 for TESLA cavities LLRF control system

    Energy Technology Data Exchange (ETDEWEB)

    Perkuszewski, K.; Pozniak, K.T.; Jalmuzna, W.; Koprek, W.; Szewinski, J.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). Inst. of Electronic Systems; Simrock, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-07-01

    The paper presents an idea, design and realization of a gigabit, optoelectronic synchronous massive data concentrator for the LLRF control system for FLASH and XFEL superconducting accelerators and lasers. The design bases on a central, large, programmable FPGA VirtexIIPro circuit by Xilinx and on eight commercial optoelectronic transceivers. There were implemented peripheral devices for embedded PowerPC block like: memory and Ethernet. The SIMCON 4.0 module was realized as a single, standard EURO-6HE board with VXI/VME-bus. Hardware implementation was described for the most important functional blocks. Construction solutions were presented. (orig.)

  18. A Passively-Suspended Tesla Pump Left Ventricular Assist Device

    Science.gov (United States)

    Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson

    2009-01-01

    The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799

  19. In Vitro Assessment of Spray Deposition Patterns in a Pediatric (12 Year-Old) Nasal Cavity Model.

    Science.gov (United States)

    Sawant, Namita; Donovan, Maureen D

    2018-03-26

    Nasal sprays available for the treatment of cold and allergy symptoms currently use identical formulations and devices for adults as well as for children. Due to the obvious differences between the nasal airway dimensions of a child and those of an adult, the performance of nasal sprays in children was evaluated. Deposition patterns of nasal sprays administered to children were tested using a nasal cast based on MRI images obtained from a 12 year old child's nasal cavity. Test formulations emitting a range of spray patterns were investigated by actuating the device into the pediatric nasal cast under controlled conditions. The results showed that the nasal sprays impacted in the anterior region of the 12 year old child's nasal cavity, and only limited spray entered the turbinate region - the effect site for most topical drugs and the primary absorptive region for systemically absorbed drugs. Differences in deposition patterns following the administration of nasal sprays to adults and children may lead to differences in efficacy between these populations. Greater anterior deposition in children may result in decreased effectiveness, greater anterior dosage form loss, and the increased potential for patient non-compliance.

  20. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  1. Analysis of performance limitations for superconducting cavities

    International Nuclear Information System (INIS)

    J. R. Delayen; L. R. Doolittle; C. E. Reece

    1998-01-01

    The performance of superconducting cavities in accelerators can be limited by several factors, such as: field emission, quenches, arcing, rf power; and the maximum gradient at which a cavity can operate will be determined by the lowest of these limitations for that particular cavity. The CEBAF accelerator operates with over 300 cavities and, for each of them, the authors have determined the maximum operating gradient and its limiting factor. They have developed a model that allows them to determine the distribution of gradients that could be achieved for each of these limitations independently of the others. The result of this analysis can guide an R and D program to achieve the best overall performance improvement. The same model can be used to relate the performance of single-cell and multi-cell cavities

  2. Optimizing Centrifugal Barrel Polishing For Mirror Finish SRF Cavity And RF Tests At Jefferson Lab

    International Nuclear Information System (INIS)

    Palczewski, Ari; Geng, Rongli; Tian, Hui

    2012-01-01

    We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E ACC thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

  3. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  4. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging.

    Science.gov (United States)

    Singh, Arun D; Platt, Sean M; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E; Alzahrani, Yahya; Plesec, Thomas

    2016-04-01

    The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation.

  5. Cortical microinfarcts detected in vivo on 3 tesla MRI : Clinical and radiological correlates

    NARCIS (Netherlands)

    Van Dalen, Jan Willem; Scuric, Eva E M; Van Veluw, Susanne J.; Caan, Matthan W A; Nederveen, Aart J.; Biessels, Geert Jan; Van Gool, Willem A.; Richard, Edo

    2015-01-01

    Background and Purpose-Cortical microinfarcts (CMIs) are a common postmortem finding associated with vascular risk factors, cognitive decline, and dementia. Recently, CMIs identified in vivo on 7 Tesla MRI also proved retraceable on 3 Tesla MRI. Methods-We evaluated CMIs on 3 Tesla MRI in a

  6. Cortical microinfarcts detected in vivo on 3 Tesla MRI: clinical and radiological correlates

    NARCIS (Netherlands)

    Dalen, J.W. van; Scuric, E.E.; Veluw, S.J. van; Caan, M.W.; Nederveen, A.J.; Biessels, G.J.; Gool, W.A. van; Richard, E.

    2015-01-01

    BACKGROUND AND PURPOSE: Cortical microinfarcts (CMIs) are a common postmortem finding associated with vascular risk factors, cognitive decline, and dementia. Recently, CMIs identified in vivo on 7 Tesla MRI also proved retraceable on 3 Tesla MRI. METHODS: We evaluated CMIs on 3 Tesla MRI in a

  7. UTEX modeling of xenon signature sensitivity to geology and explosion cavity characteristics following an underground nuclear explosion

    Science.gov (United States)

    Lowrey, J. D.; Haas, D.

    2013-12-01

    Underground nuclear explosions (UNEs) produce anthropogenic isotopes that can potentially be used in the verification component of the Comprehensive Nuclear-Test-Ban Treaty. Several isotopes of radioactive xenon gas have been identified as radionuclides of interest within the International Monitoring System (IMS) and in an On-Site Inspection (OSI). Substantial research has been previously undertaken to characterize the geologic and atmospheric mechanisms that can drive the movement of radionuclide gas from a well-contained UNE, considering both sensitivities on gas arrival time and signature variability of xenon due to the nature of subsurface transport. This work further considers sensitivities of radioxenon gas arrival time and signatures to large variability in geologic stratification and generalized explosion cavity characteristics, as well as compares this influence to variability in the shallow surface.

  8. Undulator systems for the TESLA X-FEL

    International Nuclear Information System (INIS)

    Pflueger, J.; Tischer, M.

    2002-01-01

    A large X-ray FEL lab is under consideration within the TESLA project and is supposed to be operated in parallel with the TESLA linear collider. There will be five SASE FELs and five conventional spontaneous undulators. A conceptual design study has been made for the undulator systems for these X-FELs. It includes segmentation into 6.1 m long undulator 'cells'. Each consists of a 5 m long undulator 'segment', a separate quadrupole, one horizontal and one vertical corrector, and a phase shifter. These items are presented and discussed

  9. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  10. Inhibited emission of electromagnetic modes confined in subwavelength cavities

    International Nuclear Information System (INIS)

    Le Thomas, N.; Houdre, R.

    2011-01-01

    We experimentally demonstrate the active inhibition of subwavelength confined cavity modes emission and quality factor enhancement by controlling the cavity optical surrounding. The intrinsic radiation angular spectrum of modes confined in planar photonics crystal cavities as well as its modifications depending on the environment are inferred via a transfer matrix modeling and k-space imaging.

  11. Cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Walther, Herbert; Varcoe, Benjamin T H; Englert, Berthold-Georg; Becker, Thomas

    2006-01-01

    This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given

  12. T2 relaxation time in patellar cartilage - global and regional reproducibility at 1.5 Tesla and 3 Tesla

    International Nuclear Information System (INIS)

    Glaser, C.; Horng, A.; Mendlik, T.; Weckbach, S.; Hoffmann, R.T.; Wagner, S.; Raya, J.G.; Reiser, M.; Horger, W.

    2007-01-01

    Purpose: Evaluation of the global and regional reproducibility of T2 relaxation time in patellar cartilage at 1.5 T and 3 T. Materials and Methods: 6 left patellae of 6 healthy volunteers (aged 25-30, 3 female, 3 male) were examined using a fat-saturated multiecho sequence and a T1-w 3D-FLASH sequence with water excitation at 1.5 Tesla and 3 Tesla. Three consecutive data sets were acquired within one MRI session with the examined knee being repositioned in the coil and scanner between each data set. The segmented cartilage (FLASH sequence) was overlaid on the multiecho data and T2 values were calculated for the total cartilage, 3 horizontal layers consisting of a superficial, intermedial and deep layer, 3 facets consisting of a medial, median (ridge) and lateral facet (global T2 values) and 27 ROIs/MRI slices (regional T2 value). The reproducibility (precision error) was calculated as the root mean square average of the individual standard deviations [ms] and coefficients of variation (COV) [%]. Results: The mean global reproducibility error for T2 was 3.53% (±0.38%) at 1.5 Tesla and 3.25% (±0.61%) at 3 Tesla. The mean regional reproducibility error for T2 was 8.62% (±2.61%) at 1.5 Tesla and 9.66% (±3.37%) at 3 Tesla. There was no significant difference with respect to absolute reproducibility errors between 1.5 Tesla and 3 Tesla at a constant spatial resolution. However, different reproducibility errors were found between the cartilage layers. One third of the data variability could be attributed to the influence of the different cartilage layers, and another 10% to the influence of the separate MRI slices. Conclusion: Our data provides an estimation of the global and regional reproducibility errors of T2 in healthy cartilage. In the analysis of small subregions, an increase in the regional reproducibility error must be accepted. The data may serve as a basis for sample size calculations of study populations and may contribute to the decision regarding the

  13. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  14. Axonal diameter and density estimated with 7-Tesla hybrid diffusion imaging in transgenic Alzheimer rats

    OpenAIRE

    Daianu, Madelaine; Jacobs, Russell E.; Town, Terrence; Thompson, Paul M.

    2016-01-01

    Diffusion-weighted MR imaging (DWI) is a powerful tool to study brain tissue microstructure. DWI is sensitive to subtle changes in the white matter (WM), and can provide insight into abnormal brain changes in diseases such as Alzheimer’s disease (AD). In this study, we used 7-Tesla hybrid diffusion imaging (HYDI) to scan 3 transgenic rats (line TgF344-AD; that model the full clinico-pathological spectrum of the human disease) ex vivo at 10, 15 and 24 months. We acquired 300 DWI volumes across...

  15. 76 FR 60118 - Tesla Motors, Inc. Grant of Petition for Renewal of a Temporary Exemption From the Advanced Air...

    Science.gov (United States)

    2011-09-28

    ...-0070] Tesla Motors, Inc. Grant of Petition for Renewal of a Temporary Exemption From the Advanced Air... Protection. SUMMARY: This notice grants the petition of Tesla Motors, Inc. (Tesla) for the renewal of a... the one for Tesla. Over time, the number of petitions for exemption from the advanced air bag...

  16. 77 FR 2269 - Foreign-Trade Zone 18-San Jose, CA, Application for Subzone, Tesla Motors, Inc. (Electric...

    Science.gov (United States)

    2012-01-17

    ..., CA, Application for Subzone, Tesla Motors, Inc. (Electric Passenger Vehicles), Palo Alto and Fremont... passenger- vehicle manufacturing facilities of Tesla Motors, Inc. (Tesla), located in Palo Alto and Fremont... January 10, 2012. The Tesla facilities (currently employing over 1,000 workers) consist of two sites: Site...

  17. A speech production model including the nasal Cavity: A novel approach to articulatory analysis of speech signals

    DEFF Research Database (Denmark)

    Olesen, Morten

    In order to obtain articulatory analysis of speech production the model is improved. the standard model, as used in LPC analysis, to a large extent only models the acoustic properties of speech signal as opposed to articulatory modelling of the speech production. In spite of this the LPC model...... is by far the most widely used model in speech technology....

  18. Tesla-VUPJT instruments suitable for application in water management

    International Nuclear Information System (INIS)

    Novakova, O.; Broj, K.; Fronka, O.; Kula, J.; Slezak, V.

    1987-01-01

    A comparison is made of new instruments by Tesla, Czechoslovakia, viz. the NA 6201 for low alpha and beta counting and the NRR 610 alpha-beta automatic gauge, with similar foreign made instruments. The factors are discussed which affect the overall detection efficiency and the background level. (B.S.). 4 tabs

  19. Upgrading the power supplies of TEXTOR for three Tesla operation

    International Nuclear Information System (INIS)

    Giesen, B.; Veiders, E.; Petree, F.; Fink, R.; Wagnitz, R.

    1986-01-01

    The toroidal magnetic system of TEXTOR can tolerate a magnetic field load of up to 2.6 Tesla routinely at full plasma current, and of up to 3 Tesla under certain boundary conditions and for a restricted number of discharges. The original power supply which can generate a toroidal magnetic field of 2 Tesla has been upgraded to operate at a field strength of 3 Tesla, by adding a new, controlled rectifier, with its own independent control, connected in parallel with the first. Studies were undertaken to determine its behaviour where control is lost, such as when a circuit breaker trips or in ''freewheel'' operation. This paper analyzes this asymmetrical arrangement and discusses the danger of damaging the smaller unit by commutating a large current into it. Moreover, in order to improve the availability of TEXTOR, the new controlled rectifier is redundant to two other units that control the vertical field and the ohmic heating coil currents. For this purpose the two bridges of this 12-pulse system are to be changed from a parallel to a series connexion, the free-wheeling diodes are disconnected and redeployed to block the large voltage pulses that are induced at plasma initiation, and 3-phase ''freewheeling'' thyristors are added that serve to reduce reactive power consumption

  20. Excerpts from Prodigal Genius: The Life of Nikola Tesla

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. Excerpts from Prodigal Genius: The Life of Nikola Tesla. John J O Neill. Classics Volume 12 Issue 3 March 2007 pp 91-96. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/012/03/0091-0096 ...

  1. Tesla coil discharges guided by femtosecond laser filaments in air

    Science.gov (United States)

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-04-01

    A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  2. TeSLA presentatie voor medewerkers van AMN

    NARCIS (Netherlands)

    Janssen, José

    2017-01-01

    Presentatie over Online toetsen voor medewerkers van AMN (www.amn.nl). Topics: assessment onderzoek Welten-instituut en meer in het bijzonder het TeSLA project waarin instrumenten voor authenticatie en auteurschap verificatie worden gecombineerd om betrouwbaar toetsen op afstand mogelijk te maken.

  3. Beam induced rf cavity transient voltage

    International Nuclear Information System (INIS)

    Kramer, S.L.; Wang, J.M.

    1998-10-01

    The authors calculate the transient voltage induced in a radio frequency cavity by the injection of a relativistic bunched beam into a circular accelerator. A simplified model of the beam induced voltage, using a single tone current signal, is generated and compared with the voltage induced by a more realistic model of a point-like bunched beam. The high Q limit of the bunched beam model is shown to be related simply to the simplified model. Both models are shown to induce voltages at the resonant frequency ω r of the cavity and at an integer multiple of the bunch revolution frequency (i.e. the accelerating frequency for powered cavity operation) hω ο . The presence of two nearby frequencies in the cavity leads to a modulation of the carrier wave exp(hω ο t). A special emphasis is placed in this paper on studying the modulation function. These models prove useful for computing the transient voltage induced in superconducting rf cavities, which was the motivation behind this research. The modulation of the transient cavity voltage discussed in this paper is the physical basis of the recently observed and explained new kinds of longitudinal rigid dipole mode which differs from the conventional Robinson mode

  4. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  5. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.

    Science.gov (United States)

    Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for

  6. Development of an ex vivo retention model simulating bioadhesion in the oral cavity using human saliva and physiologically relevant irrigation media

    DEFF Research Database (Denmark)

    Madsen, Katrine D.; Sander, Camilla; Baldursdottir, Stefania

    2013-01-01

    In recent years, there has been a particular interest in bioadhesive formulations for oromucosal drug delivery as this may promote prolonged local therapy and enhanced systemic effect. Saliva plays a vital role in oromucosal drug absorption by dissolving the drug and presenting it to the mucosal...... in the oral cavity. Thus we aimed at developing an advanced ex vivo buccal retention model, with focus on choosing a physiologically relevant irrigation media closely resembling human saliva. Spray dried chitosan microparticles containing metformin hydrochloride as an example of a small hydrophilic drug, were...... employed as bioadhesive formulations. Chewing-stimulated human whole saliva was collected and characterized for use in retention studies in comparison with four artificial irrigation media; phosphate buffer, Saliva Orthana(®), porcine gastric mucin base media (PGM3), and xanthan gum based media (XG2...

  7. Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.

  8. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  9. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  10. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    Science.gov (United States)

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.

  11. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Konomi, T., E-mail: konomi@ims.ac.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yasuda, F. [University of Tokyo, Bunkyo-ku, Tokyo 113-8654 (Japan); Furuta, F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853 (United States); Saito, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-01-11

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q{sub 0} was 1.5×10{sup 10} with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity

  12. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q 0 was 1.5×10 10 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and

  13. An iterative model for the steady state current distribution in oxide-confined vertical-cavity surface-emitting lasers (VCSELs)

    Science.gov (United States)

    Chuang, Hsueh-Hua

    The purpose of this dissertation is to develop an iterative model for the analysis of the current distribution in vertical-cavity surface-emitting lasers (VCSELs) using a circuit network modeling approach. This iterative model divides the VCSEL structure into numerous annular elements and uses a circuit network consisting of resistors and diodes. The measured sheet resistance of the p-distributed Bragg reflector (DBR), the measured sheet resistance of the layers under the oxide layer, and two empirical adjustable parameters are used as inputs to the iterative model to determine the resistance of each resistor. The two empirical values are related to the anisotropy of the resistivity of the p-DBR structure. The spontaneous current, stimulated current, and surface recombination current are accounted for by the diodes. The lateral carrier transport in the quantum well region is analyzed using drift and diffusion currents. The optical gain is calculated as a function of wavelength and carrier density from fundamental principles. The predicted threshold current densities for these VCSELs match the experimentally measured current densities over the wavelength range of 0.83 mum to 0.86 mum with an error of less than 5%. This model includes the effects of the resistance of the p-DBR mirrors, the oxide current-confining layer and spatial hole burning. Our model shows that higher sheet resistance under the oxide layer reduces the threshold current, but also reduces the current range over which single transverse mode operation occurs. The spatial hole burning profile depends on the lateral drift and diffusion of carriers in the quantum wells but is dominated by the voltage drop across the p-DBR region. To my knowledge, for the first time, the drift current and the diffusion current are treated separately. Previous work uses an ambipolar approach, which underestimates the total charge transferred in the quantum well region, especially under the oxide region. However, the total

  14. RF cavity evaluation with the code SUPERFISH

    International Nuclear Information System (INIS)

    Hori, T.; Nakanishi, T.; Ueda, N.

    1982-01-01

    The computer code SUPERFISH calculates axisymmetric rf fields and is most applicable to re-entrant cavities of an Alvarez linac. Some sample results are shown for the first Alvarez's in NUMATRON project. On the other hand the code can also be effectivily applied to TE modes excited in an RFQ linac when the cavity is approximately considered as positioning at an infinite distance from the symmetry axis. The evaluation was made for several RFQ cavities, models I, II and a test linac named LITL, and useful results for the resonator design were obtained. (author)

  15. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  16. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  17. Dental Sealants Prevent Cavities

    Science.gov (United States)

    ... Digital Press Kit Read the MMWR Science Clips Dental Sealants Prevent Cavities Effective protection for children Language: ... more use of sealants and reimbursement of services. Dental care providers can Apply sealants to children at ...

  18. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased

  19. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  20. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  1. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter

    2010-01-01

    treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasiparticle nature of the quantum-dot-cavity system. Furthermore, a temperature induced...

  2. Dynamical modeling and experiment for an intra-cavity optical parametric oscillator pumped by a Q-switched self-mode-locking laser

    Science.gov (United States)

    Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun

    2016-11-01

    The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.

  3. Synchronic, optical transmission data link integrated with FPGA circuits (for TESLA LLRF control system)

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, J.S.

    2006-07-15

    The X-ray free-electron laser X-FEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new possibilities for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated to the LLRF1 system in VUV FEL experiment It is being developed by the ELHEP2 group in the Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller to stabilize the vector sum of fields in cavities of one cryo-module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. The synchronic, optical link project was made for the accelerator X-FEL laser TESLA, the LLRF control system experiment at DESY, Hamburg. The control and diagnostic data is transmitted up to 2.5Gbit/s through a plastic fiber in a distance up to a few hundred meters. The link is synchronized once after power up, and never resynchronized when data is transmitted with maximum speed. The one way link bit error rate is less then 10{sup -15}. The transceiver component written in VHDL that works in the dedicated Altera registered Stratix registered GX FPGA circuit. During the work in the PERG laboratory a 2,5Gbit/s serial link with the long vector parallel interface transceiver was created. Long-Data-Vector transceiver transmits 16bit vector each 8ns with 120ns latency. (orig.)

  4. Synchronic, optical transmission data link integrated with FPGA circuits (for TESLA LLRF control system)

    International Nuclear Information System (INIS)

    Zielinski, J.S.

    2006-05-01

    The X-ray free-electron laser X-FEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new possibilities for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated to the LLRF1 system in VUV FEL experiment It is being developed by the ELHEP2 group in the Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller to stabilize the vector sum of fields in cavities of one cryo-module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. The synchronic, optical link project was made for the accelerator X-FEL laser TESLA, the LLRF control system experiment at DESY, Hamburg. The control and diagnostic data is transmitted up to 2.5Gbit/s through a plastic fiber in a distance up to a few hundred meters. The link is synchronized once after power up, and never resynchronized when data is transmitted with maximum speed. The one way link bit error rate is less then 10 -15 . The transceiver component written in VHDL that works in the dedicated Altera registered Stratix registered GX FPGA circuit. During the work in the PERG laboratory a 2,5Gbit/s serial link with the long vector parallel interface transceiver was created. Long-Data-Vector transceiver transmits 16bit vector each 8ns with 120ns latency. (orig.)

  5. Contribution to study and realization of 20-Tesla superconducting magnet

    International Nuclear Information System (INIS)

    Marty, J.

    1981-11-01

    This work is mainly concerned with 20 Tesla induction production study. This magnetic induction should be produced by associating a series of coils using high critical field commercial: superconductors to the 10 Tesla magnet (diameter: 300; let's call it 10-300 magnet). The operation temperature lowering from 4,2 0 K to 1,8 0 K should effectively lead to much higher inductions (with equal effective diameter) than the greatest performances nowadays realized at 4,2 0 K temperature. To this performance augmentation is associated a more important energy density augmentation. This leads to the necessity of the knowledge of the superconducting material physical properties. They are studied in this report. Following, different methodes of magnet calculations are described: problems related to mechanical constraints, protection and stability must be known. Finally, some coils of the 10-300 magnet are presented together with their realization [fr

  6. Living laboratory for Nikola Tesla. Living laboratories, Tesla, Second Life, sustainable construction technologies and renewable energy sources; Wohnlabor fuer Nikola Tesla. Ueber Wohnlabors, Tesla, Second Life, nachhaltige Bautechnologien und erneuerbare Energie

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Ivan; Redi, Andrea; Jovanovic, Branimir (and others)

    2008-07-01

    Adventure is the opposite of conventional teaching. Adventure is the moment when experience alone is not enough. Sometimes, courageous people challenge the nature of things, helping us to get new insights and achieve a new viewpoint. The experience-oriented ''work in progress'' university is an adventure of this kind. The book looks into the Tesla laboratory and the Wardenclyffe Tower, both of which could not be completed for financial reasons, and addresses them from today's state of technology. The conceptional section is based on the ''Tesla doctrine'' which comprises fundamental philosophical statements on civilisatory progress. The book presents the results of the investigation. The 16 architectural projects presented here were developed live on the online platform. Second Life, ORTLOS Sim. (orig.)

  7. Soil moisture determination with Tesla NZK 203 neutron gage

    International Nuclear Information System (INIS)

    Hally, J.

    1977-01-01

    Soil moisture was measured using the NZK 203 neutron probe manufactured by Tesla Premysleni. The individual measuring sites were spaced at a distance of 100 m. The NZK 203 set consists of a NPK 202 moisture gage and a NSK 301 scintillation detector and features the following specifications: moisture density measuring range 20 to 500 kg/m 3 , 241 Am-Be fast neutron source having a neutron flux of 7.5x10 4 n.sec -1 +-10%, operating temperature -10 to +45 degC. The measured counting rate was primarily affected by the statistical fluctuation of ionizing radiation and by instrument instability. In order that these effects should be limited each measurement was repeated 10 times with the optimum measurement time at an interval of 20 to 100 sec. The NZK 203 Tesla set was proven to be suitable for rapid and reproducible determination of moisture profiles. (J.P.)

  8. SRS Behaviour with a superconducting 5-Tesla wiggler insertion

    International Nuclear Information System (INIS)

    Suller, V.P.; Marks, N.; Poole, M.W.; Walker, R.P.

    1983-01-01

    A 5 Tesla superconducting wavelength shifting wiggler magnet has been inserted into the SRS lattice. Observations have been made of the behaviour of the stored electron beam with the magnet powered. Betatron tune shifts and modulation of the betatron function have been measured and good agreement obtained with theory. Closed orbit changes have been examined and the stored beam lifetime optimised. The magnet is fully operational and is producing intense x-ray beams for users

  9. Elon Musk – riskanter Milliardenpoker um Tesla & Co.

    OpenAIRE

    Lipp, Reto

    2017-01-01

    Interview von Reto Lipp mit Peter Leibfried (SRF ECO): Von seinen Fans wird er wie ein Rockstar gefeiert. Ob Tesla, Solar City oder SpaceX, Elon Musk will die Welt revolutionieren. Doch seine Visionen verschlingen Unsummen. Bisher ist es ihm stets gelungen, neue Gelder zu mobilisieren und bei Bedarf Millionenbeträge zwischen seinen Unternehmen hin und her zu schieben. Doch das Firmenimperium lebt von riesigen Erwartungen der Investoren. Kann Elon Musk sie nicht einlösen, droht der Kollaps.

  10. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  11. Using 3 Tesla magnetic resonance imaging in the pre-operative evaluation of tongue carcinoma.

    Science.gov (United States)

    Moreno, K F; Cornelius, R S; Lucas, F V; Meinzen-Derr, J; Patil, Y J

    2017-09-01

    This study aimed to evaluate the role of 3 Tesla magnetic resonance imaging in predicting tongue tumour thickness via direct and reconstructed measures, and their correlations with corresponding histological measures, nodal metastasis and extracapsular spread. A prospective study was conducted of 25 patients with histologically proven squamous cell carcinoma of the tongue and pre-operative 3 Tesla magnetic resonance imaging from 2009 to 2012. Correlations between 3 Tesla magnetic resonance imaging and histological measures of tongue tumour thickness were assessed using the Pearson correlation coefficient: r values were 0.84 (p Tesla magnetic resonance imaging had 83 per cent sensitivity, 82 per cent specificity, 82 per cent accuracy and a 90 per cent negative predictive value for detecting cervical lymph node metastasis. In this cohort, 3 Tesla magnetic resonance imaging measures of tumour thickness correlated highly with the corresponding histological measures. Further, 3 Tesla magnetic resonance imaging was an effective method of detecting malignant adenopathy with extracapsular spread.

  12. Development of a 1.0 MV 100 Hz compact tesla transformer with PFL

    International Nuclear Information System (INIS)

    Kang Qiang; Chang Anbi; Li Mingjia; Meng Fanbao; Su Youbin

    2006-01-01

    The theory and characteristic of a compact Tesla transformer are introduced, and an unitized configuration design is performed for 1.0 MV, 100 Hz Tesla transformer and 40 Ω, 40 ns pulse forming line (PFL). Two coaxial open cores in Tesla transformer serve as the inner and outer conductors of PFL, and a traditional PFL is combined with the Tesla transformer, then the pulse generator can be smaller, more efficient, and more stable. The designed compact Tesla transformer employed in electron beams accelerator CHP01 can charge PFL of 600 pF for 1.3 MV voltage at a single shot, and keep 1.15 MV at 100 Hz repeated rates. Furthermore, a continuance run in 5 seconds is achieved by Tesla transformer under voltage and frequency ratings. (authors)

  13. A time-efficient acquisition protocol for multipurpose diffusion-weighted microstructural imaging at 7 Tesla.

    Science.gov (United States)

    Sepehrband, Farshid; O'Brien, Kieran; Barth, Markus

    2017-12-01

    Several diffusion-weighted MRI techniques have been developed and validated during the past 2 decades. While offering various neuroanatomical inferences, these techniques differ in their proposed optimal acquisition design, preventing clinicians and researchers benefiting from all potential inference methods, particularly when limited time is available. This study reports an optimal design that enables for a time-efficient diffusion-weighted MRI acquisition scheme at 7 Tesla. The primary audience of this article is the typical end user, interested in diffusion-weighted microstructural imaging at 7 Tesla. We tested b-values in the range of 700 to 3000 s/mm 2 with different number of angular diffusion-encoding samples, against a data-driven "gold standard." The suggested design is a protocol with b-values of 1000 and 2500 s/mm 2 , with 25 and 50 samples, uniformly distributed over two shells. We also report a range of protocols in which the results of fitting microstructural models to the diffusion-weighted data had high correlation with the gold standard. We estimated minimum acquisition requirements that enable diffusion tensor imaging, higher angular resolution diffusion-weighted imaging, neurite orientation dispersion, and density imaging and white matter tract integrity across whole brain with isotropic resolution of 1.8 mm in less than 11 min. Magn Reson Med 78:2170-2184, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Cryogenic system for the 45 Tesla hybrid magnet

    International Nuclear Information System (INIS)

    Van Sciver, S.W.; Miller, J.R.; Welton, S.; Schneider-Muntau, H.J.; McIntosh, G.E.

    1994-01-01

    The 45 Tesla hybrid magnet system will consist of a 14 Tesla superconducting outsert magnet and a 31 Tesla water cooled insert. The magnet is planned for operation in early 1995 at the National High Magnetic Field Laboratory. Its purpose is to provide the highest DC magnetic fields for the materials research community. The present paper discusses the overall design of the cryogenic system for the superconducting magnet. Unique features of this system include static 1.8 K pressurized He II as a coolant for the magnet and a refrigerated structural support system for load transfer during fault conditions. The system will consist of two connected cryostats. The magnet is contained within one cryostat which has a clear warm bore of 616 mm and is designed to be free of system interfaces and therefore minimize interference with the magnet user. A second supply cryostat provides the connections to the refrigeration system and magnet power supply. The magnet and supply cryostats are connected to each other through a horizontal services duct section. Issues to be discussed in the present paper include design and thermal analysis of the magnet system during cooldown and in steady state operation and overall cryogenic system design

  15. RHQT Nb3Al 15-Tesla magnet design study

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late this year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.

  16. In vitro assessment of MRI issues at 3-Tesla for a breast tissue expander with a remote port.

    Science.gov (United States)

    Linnemeyer, Hannah; Shellock, Frank G; Ahn, Christina Y

    2014-04-01

    A patient with a breast tissue expander may require a diagnostic assessment using magnetic resonance imaging (MRI). To ensure patient safety, this type of implant must undergo in vitro MRI testing using proper techniques. Therefore, this investigation evaluated MRI issues (i.e., magnetic field interactions, heating, and artifacts) at 3-Tesla for a breast tissue expander with a remote port. A breast tissue expander with a remote port (Integra Breast Tissue Expander, Model 3612-06 with Standard Remote Port, PMT Corporation, Chanhassen, MN) underwent evaluation for magnetic field interactions (translational attraction and torque), MRI-related heating, and artifacts using standardized techniques. Heating was evaluated by placing the implant in a gelled-saline-filled phantom and MRI was performed using a transmit/receive RF body coil at an MR system reported, whole body averaged specific absorption rate of 2.9-W/kg. Artifacts were characterized using T1-weighted and GRE pulse sequences. Magnetic field interactions were not substantial and, thus, will not pose a hazard to a patient in a 3-Tesla or less MRI environment. The highest temperature rise was 1.7°C, which is physiologically inconsequential. Artifacts were large in relation to the remote port and metal connector of the implant but will only present problems if the MR imaging area of interest is where these components are located. A patient with this breast tissue expander with a remote port may safely undergo MRI at 3-Tesla or less under the conditions used for this investigation. These findings are the first reported at 3-Tesla for a tissue expander. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Video Toroid Cavity Imager

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  18. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  19. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  20. Cancer immunogenomic approach to neoantigen discovery in a checkpoint blockade responsive murine model of oral cavity squamous cell carcinoma

    Science.gov (United States)

    Zolkind, Paul; Przybylski, Dariusz; Marjanovic, Nemanja; Nguyen, Lan; Lin, Tianxiang; Johanns, Tanner; Alexandrov, Anton; Zhou, Liye; Allen, Clint T.; Miceli, Alexander P.; Schreiber, Robert D.; Artyomov, Maxim; Dunn, Gavin P.; Uppaluri, Ravindra

    2018-01-01

    Head and neck squamous cell carcinomas (HNSCC) are an ideal immunotherapy target due to their high mutation burden and frequent infiltration with lymphocytes. Preclinical models to investigate targeted and combination therapies as well as defining biomarkers to guide treatment represent an important need in the field. Immunogenomics approaches have illuminated the role of mutation-derived tumor neoantigens as potential biomarkers of response to checkpoint blockade as well as representing therapeutic vaccines. Here, we aimed to define a platform for checkpoint and other immunotherapy studies using syngeneic HNSCC cell line models (MOC2 and MOC22), and evaluated the association between mutation burden, predicted neoantigen landscape, infiltrating T cell populations and responsiveness of tumors to anti-PD1 therapy. We defined dramatic hematopoietic cell transcriptomic alterations in the MOC22 anti-PD1 responsive model in both tumor and draining lymph nodes. Using a cancer immunogenomics pipeline and validation with ELISPOT and tetramer analysis, we identified the H-2Kb-restricted ICAM1P315L (mICAM1) as a neoantigen in MOC22. Finally, we demonstrated that mICAM1 vaccination was able to protect against MOC22 tumor development defining mICAM1 as a bona fide neoantigen. Together these data define a pre-clinical HNSCC model system that provides a foundation for future investigations into combination and novel therapeutics. PMID:29423108

  1. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  2. Non-enhanced MR imaging of cerebral arteriovenous malformations at 7 Tesla

    International Nuclear Information System (INIS)

    Wrede, Karsten H.; Dammann, Philipp; Johst, Soeren; Maderwald, Stefan; Moenninghoff, Christoph; Forsting, Michael; Schlamann, Marc; Sandalcioglu, I.E.; Ladd, Mark E.; Sure, Ulrich; Umutlu, Lale

    2016-01-01

    To evaluate prospectively 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) and 7 Tesla non-contrast-enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of intracerebral arteriovenous malformations (AVMs) in comparison to 1.5 Tesla TOF MRA and digital subtraction angiography (DSA). Twenty patients with single or multifocal AVMs were enrolled in this trial. The study protocol comprised 1.5 and 7 Tesla TOF MRA and 7 Tesla non-contrast-enhanced MPRAGE sequences. All patients underwent an additional four-vessel 3D DSA. Image analysis of the following five AVM features was performed individually by two radiologists on a five-point scale: nidus, feeder(s), draining vein(s), relationship to adjacent vessels, and overall image quality and presence of artefacts. A total of 21 intracerebral AVMs were detected. Both sequences at 7 Tesla were rated superior over 1.5 Tesla TOF MRA in the assessment of all considered AVM features. Image quality at 7 Tesla was comparable with DSA considering both sequences. Inter-observer accordance was good to excellent for the majority of ratings. This study demonstrates excellent image quality for depiction of intracerebral AVMs using non-contrast-enhanced 7 Tesla MRA, comparable with DSA. Assessment of untreated AVMs is a promising clinical application of ultra-high-field MRA. (orig.)

  3. Non-enhanced MR imaging of cerebral arteriovenous malformations at 7 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, Karsten H.; Dammann, Philipp [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, Department of Neurosurgery, Essen (Germany); Johst, Soeren; Maderwald, Stefan [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Moenninghoff, Christoph; Forsting, Michael [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Schlamann, Marc [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Hospital Giessen, Department of Neuroradiology, Giessen (Germany); Sandalcioglu, I.E. [University Hospital Essen, Department of Neurosurgery, Essen (Germany); Nordstadtkrankenhaus Hannover, Department of Neurosurgery, Hannover (Germany); Ladd, Mark E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology (E020), Heidelberg (Germany); Sure, Ulrich [University Hospital Essen, Department of Neurosurgery, Essen (Germany); Umutlu, Lale [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2016-03-15

    To evaluate prospectively 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) and 7 Tesla non-contrast-enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of intracerebral arteriovenous malformations (AVMs) in comparison to 1.5 Tesla TOF MRA and digital subtraction angiography (DSA). Twenty patients with single or multifocal AVMs were enrolled in this trial. The study protocol comprised 1.5 and 7 Tesla TOF MRA and 7 Tesla non-contrast-enhanced MPRAGE sequences. All patients underwent an additional four-vessel 3D DSA. Image analysis of the following five AVM features was performed individually by two radiologists on a five-point scale: nidus, feeder(s), draining vein(s), relationship to adjacent vessels, and overall image quality and presence of artefacts. A total of 21 intracerebral AVMs were detected. Both sequences at 7 Tesla were rated superior over 1.5 Tesla TOF MRA in the assessment of all considered AVM features. Image quality at 7 Tesla was comparable with DSA considering both sequences. Inter-observer accordance was good to excellent for the majority of ratings. This study demonstrates excellent image quality for depiction of intracerebral AVMs using non-contrast-enhanced 7 Tesla MRA, comparable with DSA. Assessment of untreated AVMs is a promising clinical application of ultra-high-field MRA. (orig.)

  4. Hippocampal MRI volumetry at 3 Tesla: reliability and practical guidance.

    Science.gov (United States)

    Jeukens, Cécile R L P N; Vlooswijk, Mariëlle C G; Majoie, H J Marian; de Krom, Marc C T F M; Aldenkamp, Albert P; Hofman, Paul A M; Jansen, Jacobus F A; Backes, Walter H

    2009-09-01

    Although volumetry of the hippocampus is considered to be an established technique, protocols reported in literature are not described in great detail. This article provides a complete and detailed protocol for hippocampal volumetry applicable to T1-weighted magnetic resonance (MR) images acquired at 3 Tesla, which has become the standard for structural brain research. The protocol encompasses T1-weighted image acquisition at 3 Tesla, anatomic guidelines for manual hippocampus delineation, requirements of delineation software, reliability measures, and criteria to assess and ensure sufficient reliability. Moreover, the validity of the correction for total intracranial volume size was critically assessed. The protocol was applied by 2 readers to the MR images of 36 patients with cryptogenic localization-related epilepsy, 4 patients with unilateral hippocampal sclerosis, and 20 healthy control subjects. The uncorrected hippocampal volumes were 2923 +/- 500 mm3 (mean +/- SD) (left) and 3120 +/- 416 mm3 (right) for the patient group and 3185 +/- 411 mm3 (left) and 3302 +/- 411 mm3 (right) for the healthy control group. The volume of the 4 pathologic hippocampi of the patients with unilateral hippocampal sclerosis was 2980 +/- 422 mm3. The inter-reader reliability values were determined: intraclass-correlation-coefficient (ICC) = 0.87 (left) and 0.86 (right), percentage volume difference (VD) = 7.0 +/- 4.7% (left) and 6.0 +/- 3.8% (right), and overlap ratio (OR) = 0.82 +/- 0.04 (left) and 0.82 +/- 0.03 (right). The positive Pearson correlation between hippocampal volume and total intracranial volume was found to be low: r = 0.48 (P = 0.03, left) and r = 0.62 (P = 0.004, right) and did not significantly reduce the volumetric variances, showing the limited benefit of the brain size correction. A protocol was described to determine hippocampal volumes based on 3 Tesla MR images with high inter-reader reliability. Although the reliability of hippocampal volumetry at 3 Tesla

  5. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1999-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  6. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  7. Mirror-smooth surfaces and repair of defects in superconducting RF cavities by mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C. A. [Fermilab; Cooley, L. D. [Fermilab

    2012-11-22

    Mechanical techniques for polishing the inside surface of niobium superconducting radio-frequency (SRF) cavities have been systematically explored. By extending known techniques to fine polishing, mirror-like finishes were produced, with <15 nm RMS (root mean square) roughness over 1 mm2 scan area. This is an order of magnitude less than the typical roughness produced by the electropolishing of niobium cavities. The extended mechanical polishing (XMP) process was applied to several SRF cavities which exhibited equator defects that caused quench at <20 MV m-1 and were not improved by further electropolishing. Cavity optical inspection equipment verified the complete removal of these defects, and minor acid processing, which dulled the mirror finish, restored performance of the defective cells to the high gradients and quality factors measured for adjacent cells when tested with other harmonics. This innate repair feature of XMP could be used to increase manufacturing yield. Excellent superconducting properties resulted after initial process optimization, with quality factor Q of 3 × 1010 and accelerating gradient of 43 MV m-1 being attained for a single-cell TESLA cavity, which are both close to practical limits. Several repaired nine-cell cavities also attained Q > 8 × 109 at 35 MV m-1, which is the specification for the International Linear Collider. Future optimization of the process and pathways for eliminating requirements for acid processing are also discussed.

  8. Ability of preoperative 3.0-Tesla magnetic resonance imaging to predict the absence of side-specific extracapsular extension of prostate cancer.

    Science.gov (United States)

    Hara, Tomohiko; Nakanishi, Hiroyuki; Nakagawa, Tohru; Komiyama, Motokiyo; Kawahara, Takashi; Manabe, Tomoko; Miyake, Mototaka; Arai, Eri; Kanai, Yae; Fujimoto, Hiroyuki

    2013-10-01

    Recent studies have shown an improvement in prostate cancer diagnosis with the use of 3.0-Tesla magnetic resonance imaging. We retrospectively assessed the ability of this imaging technique to predict side-specific extracapsular extension of prostate cancer. From October 2007 to August 2011, prostatectomy was carried out in 396 patients after preoperative 3.0-Tesla magnetic resonance imaging. Among these, 132 (primary sample) and 134 patients (validation sample) underwent 12-core prostate biopsy at the National Cancer Center Hospital of Tokyo, Japan, and at other institutions, respectively. In the primary dataset, univariate and multivariate analyses were carried out to predict side-specific extracapsular extension using variables determined preoperatively, including 3.0-Tesla magnetic resonance imaging findings (T2-weighted and diffusion-weighted imaging). A prediction model was then constructed and applied to the validation study sample. Multivariate analysis identified four significant independent predictors (P Tesla diffusion-weighted magnetic resonance imaging findings, ≥2 positive biopsy cores on each side and a maximum percentage of positive cores ≥31% on each side. The negative predictive value was 93.9% in the combination model with these four predictors, meanwhile the positive predictive value was 33.8%. Good reproducibility of these four significant predictors and the combination model was observed in the validation study sample. The side-specific extracapsular extension prediction by the biopsy Gleason score and factors associated with tumor location, including a positive 3.0-Tesla diffusion-weighted magnetic resonance imaging finding, have a high negative predictive value, but a low positive predictive value. © 2013 The Japanese Urological Association.

  9. Hip imaging of avascular necrosis at 7 Tesla compared with 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Theysohn, J.M.; Kraff, O.; Theysohn, N.; Orzada, S.; Lauenstein, T.C. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, Institute for Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Landgraeber, S. [University Hospital Essen, Department of Orthopedic Surgery, Essen (Germany); Ladd, M.E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); German Cancer Research Center, Department of Medical Physics in Radiology, Heidelberg (Germany)

    2014-05-15

    To compare ultra-high field, high-resolution bilateral magnetic resonance imaging (MRI) of the hips at 7 Tesla (T) with 3 T MRI in patients with avascular necrosis (AVN) of the femoral head by subjective image evaluations, contrast measurements, and evaluation of the appearance of imaging abnormalities. Thirteen subjects with avascular necrosis treated using advanced core decompression underwent MRI at both 7 T and 3 T. Sequence parameters as well as resolution were kept identical for both field strengths. All MR images (MEDIC, DESS, PD/T2w TSE, T1w TSE, and STIR) were evaluated by two radiologists with regard to subjective image quality, soft tissue contrasts, B1 homogeneity (four-point scale, higher values indicating better image quality) and depiction of imaging abnormalities of the femoral heads (three-point scale, higher values indicating the superiority of 7 T). Contrast ratios of soft tissues were calculated and compared with subjective data. 7-T imaging of the femoral joints, as well as 3-T imaging, achieved ''good'' to ''very good'' quality in all sequences. 7 T showed significantly higher soft tissue contrasts for T2w and MEDIC compared with 3 T (cartilage/fluid: 2.9 vs 2.2 and 3.6 vs 2.6), better detailed resolution for cartilage defects (PDw, T2w, T1w, MEDIC, DESS > 2.5) and better visibility of joint effusions (MEDIC 2.6; PDw/T2w 2.4; DESS 2.2). Image homogeneity compared with 3 T (3.9-4.0 for all sequences) was degraded, especially in TSE sequences at 7 T through signal variations (7 T: 2.1-2.9); to a lesser extent also GRE sequences (7 T: 2.9-3.5). Imaging findings related to untreated or treated AVN were better delineated at 3 T (≤1.8), while joint effusions (2.2-2.6) and cartilage defects (2.5-3.0) were better visualized at 7 T. STIR performed much more poorly at 7 T, generating large contrast variations (1.5). 7-T hip MRI showed comparable results in hip joint imaging compared with 3 T with slight

  10. Hip imaging of avascular necrosis at 7 Tesla compared with 3 Tesla

    International Nuclear Information System (INIS)

    Theysohn, J.M.; Kraff, O.; Theysohn, N.; Orzada, S.; Lauenstein, T.C.; Landgraeber, S.; Ladd, M.E.

    2014-01-01

    To compare ultra-high field, high-resolution bilateral magnetic resonance imaging (MRI) of the hips at 7 Tesla (T) with 3 T MRI in patients with avascular necrosis (AVN) of the femoral head by subjective image evaluations, contrast measurements, and evaluation of the appearance of imaging abnormalities. Thirteen subjects with avascular necrosis treated using advanced core decompression underwent MRI at both 7 T and 3 T. Sequence parameters as well as resolution were kept identical for both field strengths. All MR images (MEDIC, DESS, PD/T2w TSE, T1w TSE, and STIR) were evaluated by two radiologists with regard to subjective image quality, soft tissue contrasts, B1 homogeneity (four-point scale, higher values indicating better image quality) and depiction of imaging abnormalities of the femoral heads (three-point scale, higher values indicating the superiority of 7 T). Contrast ratios of soft tissues were calculated and compared with subjective data. 7-T imaging of the femoral joints, as well as 3-T imaging, achieved ''good'' to ''very good'' quality in all sequences. 7 T showed significantly higher soft tissue contrasts for T2w and MEDIC compared with 3 T (cartilage/fluid: 2.9 vs 2.2 and 3.6 vs 2.6), better detailed resolution for cartilage defects (PDw, T2w, T1w, MEDIC, DESS > 2.5) and better visibility of joint effusions (MEDIC 2.6; PDw/T2w 2.4; DESS 2.2). Image homogeneity compared with 3 T (3.9-4.0 for all sequences) was degraded, especially in TSE sequences at 7 T through signal variations (7 T: 2.1-2.9); to a lesser extent also GRE sequences (7 T: 2.9-3.5). Imaging findings related to untreated or treated AVN were better delineated at 3 T (≤1.8), while joint effusions (2.2-2.6) and cartilage defects (2.5-3.0) were better visualized at 7 T. STIR performed much more poorly at 7 T, generating large contrast variations (1.5). 7-T hip MRI showed comparable results in hip joint imaging compared with 3 T with slight advantages in contrast detail (cartilage defects

  11. Multipactors in klystron cavities

    International Nuclear Information System (INIS)

    Hayashi, Kazutaka; Iyeki, Hiroshi; Kikunaga, Toshiyuki.

    1993-01-01

    A multipactor phenomenon in a klystron causes gain shortage or instability problem. Some tests using a prototype klystron input cavity revealed the microwave discharges in vacuum with magnetic field. The test results and the methods to avoid multipactors are discussed in this paper. (author)

  12. What's a Cavity?

    Science.gov (United States)

    ... and deeper over time. Cavities are also called dental caries (say: KARE-eez), and if you have a ... made up mostly of the germs that cause tooth decay. The bacteria in your mouth make acids and when plaque clings to your teeth, the acids can eat away at the outermost ...

  13. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  14. Oral cavity and jaw

    International Nuclear Information System (INIS)

    Solntsev, A.M.; Koval', G.Yu.

    1984-01-01

    Radioanatome of oral cavity and jaw is described. Diseases of the teeth, jaw, large salivary glands, temporo-mandibular articulation are considered. Roentgenograms of oral cacity and jaw of healthy people are presented and analyzed as well as roentgenograms in the above-mentioned diseases

  15. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  16. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  17. Cavity Nesting Birds

    Science.gov (United States)

    Virgil E. Scott; Keith E. Evans; David R. Patton; Charles P. Stone

    1977-01-01

    Many species of cavity-nesting birds have declined because of habitat reduction. In the eastern United States, where primeval forests are gone, purple martins depend almost entirely on man-made nesting structures (Allen and Nice 1952). The hole-nesting population of peregrine falcons disappeared with the felling of the giant trees upon which they depended (Hickey and...

  18. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  19. Open microwave cavities

    Czech Academy of Sciences Publication Activity Database

    Šeba, Petr; Rotter, I.; Mueller, M.; Persson, C.; Pichugin, Konstantin N.

    2001-01-01

    Roč. 9, - (2001), s. 484-487 ISSN 1386-9477 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : microwave cavity * resonances Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.009, year: 2001

  20. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  1. Activities on cryostats and SRF cavities at the I.P.N. Orsay laboratory

    International Nuclear Information System (INIS)

    Buelher, S.; Caruette, A.; Fouaidy, M.; Junquera, T.

    1993-01-01

    The main effort of the SRF community at Orsay during the last five years was concentrated on the MACSE project (study, construction, assembly and test of 3 cryostats), participation to the TESLA project and R and D activities in close collaboration with the Saclay SRF group. 3 major topics are outlined and briefly discussed: cryogenics, scanning surface thermometers for diagnostics on SRF cavities and thermal behaviour analysis of HOM couplers. The main results obtained in this frame since the 5th SC workshop at Hamburg in 1991 are presented. (authors) 12 refs., 17 figs., 6 tabs

  2. FPGA and optical-network-based LLRF distributed control system for TESLA-XFEL linear accelerator

    Science.gov (United States)

    Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Czarski, Tomasz; Giergusiewicz, Wojciech; Jalmuzna, Wojciech; Olowski, Krysztof; Perkuszewski, Karol; Zielinski, Jerzy; Simrock, Stefan

    2005-02-01

    The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control system for the TESLA-XFEL accelerator. The design of a system basing on the FPGA chips and multi-gigabit optical network was debated. The system design approach was fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of the, DSP enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. Initial parameters of the system model under the design are presented.

  3. Non-Enhanced MR Imaging of Cerebral Arteriovenous Malformations at 7 Tesla.

    Science.gov (United States)

    Wrede, Karsten H; Dammann, Philipp; Johst, Sören; Mönninghoff, Christoph; Schlamann, Marc; Maderwald, Stefan; Sandalcioglu, I Erol; Ladd, Mark E; Forsting, Michael; Sure, Ulrich; Umutlu, Lale

    2016-03-01

    To evaluate prospectively 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) and 7 Tesla non-contrast-enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of intracerebral arteriovenous malformations (AVMs) in comparison to 1.5 Tesla TOF MRA and digital subtraction angiography (DSA). Twenty patients with single or multifocal AVMs were enrolled in this trial. The study protocol comprised 1.5 and 7 Tesla TOF MRA and 7 Tesla non-contrast-enhanced MPRAGE sequences. All patients underwent an additional four-vessel 3D DSA. Image analysis of the following five AVM features was performed individually by two radiologists on a five-point scale: nidus, feeder(s), draining vein(s), relationship to adjacent vessels, and overall image quality and presence of artefacts. A total of 21 intracerebral AVMs were detected. Both sequences at 7 Tesla were rated superior over 1.5 Tesla TOF MRA in the assessment of all considered AVM features. Image quality at 7 Tesla was comparable with DSA considering both sequences. Inter-observer accordance was good to excellent for the majority of ratings. This study demonstrates excellent image quality for depiction of intracerebral AVMs using non-contrast-enhanced 7 Tesla MRA, comparable with DSA. Assessment of untreated AVMs is a promising clinical application of ultra-high-field MRA. • Non-contrast-enhanced 7 Tesla MRA demonstrates excellent image quality for intracerebral AVM depiction. • Image quality at 7 Tesla was comparable with DSA considering both sequences. • Assessment of intracerebral AVMs is a promising clinical application of ultra-high-field MRA.

  4. Implosion of the small cavity and large cavity cannonball targets

    International Nuclear Information System (INIS)

    Nishihara, Katsunobu; Yamanaka, Chiyoe.

    1984-01-01

    Recent results of cannonball target implosion research are briefly reviewed with theoretical predictions for GEKKO XII experiments. The cannonball targets are classified into two types according to the cavity size ; small cavity and large cavity. The compression mechanisms of the two types are discussed. (author)

  5. K-FIX(GT): A computer program for modeling the expansion phase of steam explosions within complex three dimensional cavities

    International Nuclear Information System (INIS)

    Hyder, M.L.; Farawila, Y.M.; Abdel-Khalik, S.I.; Halvorson, P.J.

    1992-05-01

    In the development of the Severe Accident Analysis Program for the Savannah River production reactors, it was recognized that certain accidents have the potential for causing damaging steam explosions. The massive SRS reactor buildings are likely to withstand any imaginable steam explosion. However, reactor components and building structures including hatches, ventilation ducts, etc., could be at risk if such an explosion occurred. No tools were available to estimate the effects of such explosions on actual structures. To meet this need, the Savannah River Laboratory contracted with the Georgia Institute of Technology Research Institute for development of a computer-based calculational tool for estimating the effects of steam explosions. The goal for this study was to develop a computer code that could be used parametrically to predict the effects of various steam explosions on their surroundings. This would be able to predict whether a steam explosion of a given magnitude would be likely to fail a particular structure. This would require, of course, that the magnitude of the explosion be specified through some combination of judgment and calculation. The requested code, identified as the K-FIX(GT) code, was developed and delivered by the contractor, along with extensive documentation. The several individual reports that constitute the documentation are each being issued as a separate WSRC report. Documentation includes several model calculations, and representation of these in graphic form. This report gives detailed instructions for the use of the code, including identification of all input parameters required

  6. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    Science.gov (United States)

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  7. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  8. Development of an ex vivo retention model simulating bioadhesion in the oral cavity using human saliva and physiologically relevant irrigation media.

    Science.gov (United States)

    Madsen, Katrine D; Sander, Camilla; Baldursdottir, Stefania; Pedersen, Anne Marie L; Jacobsen, Jette

    2013-05-20

    In recent years, there has been a particular interest in bioadhesive formulations for oromucosal drug delivery as this may promote prolonged local therapy and enhanced systemic effect. Saliva plays a vital role in oromucosal drug absorption by dissolving the drug and presenting it to the mucosal surface. However, the rheological, chemical, and interfacial properties of this complex biological fluid may strongly affect the adhesion of bioadhesive formulations. There is a need for well characterized in vitro models to assess the bioadhesive properties of oral dosage forms for administration in the oral cavity. Thus we aimed at developing an advanced ex vivo buccal retention model, with focus on choosing a physiologically relevant irrigation media closely resembling human saliva. Spray dried chitosan microparticles containing metformin hydrochloride as an example of a small hydrophilic drug, were employed as bioadhesive formulations. Chewing-stimulated human whole saliva was collected and characterized for use in retention studies in comparison with four artificial irrigation media; phosphate buffer, Saliva Orthana(®), porcine gastric mucin base media (PGM3), and xanthan gum based media (XG2). Retention of metformin, applied as spray dried microparticles on porcine buccal mucosa, greatly depended on the characteristics of the irrigation media. When rheology of the irrigation media was examined, changes in retention profiles could be interpreted, as irrigation media containing mucin and xanthan gum possessed a higher viscosity than phosphate buffer, which led to longer retention of the drug due to better hydration of the mucosa and the spray dried microparticles. Metformin retention profiles were comparable when human saliva, Saliva Orthana(®), or PGM3 were used as irrigation media. Moreover, PGM3 displayed physico-chemical properties closest to those of human saliva with regard to pH, protein content and surface tension. Saliva Orthana(®) and PGM3 are therefore

  9. Extrapolation of Inter Domain Communications and Substrate Binding Cavity of Camel HSP70 1A: A Molecular Modeling and Dynamics Simulation Study.

    Directory of Open Access Journals (Sweden)

    Saurabh Gupta

    Full Text Available Heat shock protein 70 (HSP70 is an important chaperone, involved in protein folding, refolding, translocation and complex remodeling reactions under normal as well as stress conditions. However, expression of HSPA1A gene in heat and cold stress conditions associates with other chaperons and perform its function. Experimental structure for Camel HSP70 protein (cHSP70 has not been reported so far. Hence, we constructed 3D models of cHSP70 through multi- template comparative modeling with HSP110 protein of S. cerevisiae (open state and with HSP70 protein of E. coli 70kDa DnaK (close state and relaxed them for 100 nanoseconds (ns using all-atom Molecular Dynamics (MD Simulation. Two stable conformations of cHSP70 with Substrate Binding Domain (SBD in open and close states were obtained. The collective mode analysis of different transitions of open state to close state and vice versa was examined via Principal Component Analysis (PCA and Minimum Distance Matrix (MDM. The results provide mechanistic representation of the communication between Nucleotide Binding Domain (NBD and SBD to identify the role of sub domains in conformational change mechanism, which leads the chaperone cycle of cHSP70. Further, residues present in the chaperon functioning site were also identified through protein-peptide docking. This study provides an overall insight into the inter domain communication mechanism and identification of the chaperon binding cavity, which explains the underlying mechanism involved during heat and cold stress conditions in camel.

  10. Nonlinear Analysis of Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Ottosen, N. S.; Krenk, Steen

    1979-01-01

    The paper covers some material and computational aspects of the rock mechanics of leached cavities in salt. A material model is presented in which the instantaneous stiffness of the salt is obtained by interpolation between the unloaded state and a relevant failure state. The model enables predic...... prediction of short term triaxial behaviour from uniaxial stress-strain curves. Key results from a nonlinear finite element calculation of a gas-filled cavity are given, and the general features are related to a simple nonlinear method of stress evaluation....

  11. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    International Nuclear Information System (INIS)

    Illias, Hazlee A; Chen, George; Lewin, Paul L

    2011-01-01

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  12. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    Energy Technology Data Exchange (ETDEWEB)

    Illias, Hazlee A [Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chen, George; Lewin, Paul L, E-mail: h.illias@um.edu.my [Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2011-06-22

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  13. Prominence mass supply and the cavity

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, Donald J.; Innes, D. [Max Planck Institute for Solar System Research, D-37191 Katlenburg-Lindau (Germany); Gibson, S. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307 (United States); Luna, M. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Karpen, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-12-20

    A prevalent but untested paradigm is often used to describe the prominence-cavity system: the cavity is under-dense because it is evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolution of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model with diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prominence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 Å bandpass near the prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of our one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  14. Prominence Mass Supply and the Cavity

    Science.gov (United States)

    Schmit, Donald J.; Gibson, S.; Luna, M.; Karpen, J.; Innes, D.

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system; the cavity is under-dense because it it evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolutin of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model and diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prminence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 A badpass near he prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  15. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  16. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  17. Nuclear reactor cavity streaming shield

    International Nuclear Information System (INIS)

    Klotz, R.J.; Stephen, D.W.

    1978-01-01

    The upper portion of a nuclear reactor vessel supported in a concrete reactor cavity has a structure mounted below the top of the vessel between the outer vessel wall and the reactor cavity wall which contains hydrogenous material which will attenuate radiation streaming upward between vessel and the reactor cavity wall while preventing pressure buildup during a loss of coolant accident

  18. Diffusion tensor imaging of the normal prostate at 3 Tesla

    International Nuclear Information System (INIS)

    Guerses, Bengi; Kabakci, Neslihan; Kovanlikaya, Arzu; Firat, Zeynep; Bayram, Ali; Kovanlikaya, Ilhami; Ulud, Aziz M.

    2008-01-01

    The aim of this study was to assess the feasibility of diffusion tensor imaging (DTI) of the prostate and to determine normative fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of healthy prostate with a 3-Tesla magnetic resonance imaging (MRI) system. Thirty volunteers with a mean age of 28 (25-35) years were scanned with a 3-Tesla MRI (Intera Achieva; Philips, The Netherlands) system using a six-channel phased array coil. Initially, T2-weighted turbo spin-echo (TSE) axial images of the prostate were obtained. In two subjects, a millimetric hypointense signal change was detected in the peripheral zones on T2-weighted TSE images. These two subjects were excluded from the study. DTI with single-shot echo-planar imaging (ssEPI) was performed in the remaining 28 subjects. ADC and FA values were measured using the manufacturer supplied software by positioning 9-pixel ROIs on each zone. Differences between parameters of the central and peripheral zones were assessed. Mean ADC value of the central (1.220 ± 0.271 x 10 -3 mm 2 /s) was found to be significantly lower when compared with the peripheral gland (1.610 ± 0.347 x 10 -3 mm 2 /s) (P < 0.01). Mean FA of the central gland was significantly higher (0.26), compared with the peripheral gland (0.16) (P < 0.01). This study shows the feasibility of prostate DTI with a 3-Tesla MR system and the normative FA and ADC values of peripheral and central zones of the normal prostate. The results are compatible with the microstructural organization of the gland. (orig.)

  19. A study of nasal cavity volume by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tosa, Yasuyoshi [Showa Univ., Tokyo (Japan). School of Medicine

    1992-04-01

    The nasal cavity volume in 69 healthy volunteers from 8 to 23 years old (17 males and 52 females) was studied using magnetic resonance imaging (MRI). Merits of MRI such as no radiation exposure, less artifact due to bone and air and measurement of intravascular blood flow; and demerits such as contraindication in users of heart pace-makers or magnetic clips, contraindication in people with claustrophobia and influence of environmental magnetic fields must be considered. A Magunetom M10 (Siemens), a superconduction device with 1.0 Tesla magnetic flux density was used. Enhanced patterns of T[sub 1], and pulse lines were photographed at 600 msec TR (repetition time) and 19 msec TE (echo time) using SE (spin echo) and short SE (spin echo), and 3 or 4 mm slices. Photographs were made of the piriform aperture, choana, superior-middle-inferior concha including the nasal meatus, the frontal sinus, maxillary sinus, cribriform plate, and upper surface of the palate. The line connecting the maximum depression point in the nasal root and the pontomedullary junction was selected by sagittal median section, because this corresponds well with the CM (canthomeatal) line which is useful in CT (computed tomography). The transverse section of the nasal cavity volume was traced by display console with an accessory MRI device and calculated by integration of the slice width. The increase of height and body weight neared a plateau at almost 16 years, whereas increase of nasal cavity volume continued until about 20 years. Pearson's coefficient of correlation and regression line were significant. There were no significant differences in these parameters between male and female groups. Comparatively strong correlation between nasal cavity volume, and age, height and body weight was statistically evident. (author).

  20. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  1. Superconducting 63-Pole 2 Tesla Wiggler for Canadian Light Source

    International Nuclear Information System (INIS)

    Khruschev, S.V.; Kuper, E.A.; Lev, V.H.; Mezentsev, N.A.; Miginsky, E.G.; Repkov, V.V.; Shkaruba, B.A.; Syrovatin, V.M.; Tsukanov, V.M.

    2006-01-01

    A superconducting 63-pole wiggler with the average period 34 mm designed and fabricated at the Institute of Nuclear Physics in Novosibirsk for Synchrotron Radiation Center (CLS) in Canada is described. The maximum field 2.2 Tesla in the median plane has been achieved. The liquid helium consumption less than 0.03 liters per hour in operating mode has been reached. In January 2005, the wiggler was installed in the storage ring in CLS and now experiments are already underway. The main parameters of the magnet and the cryogenic systems as well as test results are presented

  2. ENERGY GAIN BY MEANS OF RESONANCE IN THE TESLA COIL

    Directory of Open Access Journals (Sweden)

    Yu. Batygin

    2016-12-01

    Full Text Available An analytical review of publications on the problem, first formulated by Nikola Tesla, generating «free» energy from the air in the surrounding space has been presented. The hypothesis of the resonance phenomenon as a «key» to the air energy has been advanced. The main unsolved problem is the extrac-tion of «free» energy (proposed to call it «resonance» and its supply to the electrical load have been noted. It is expected that the quality factor of the secondary circuit must be large enough.

  3. Travelling wave accelerating structure design for TESLA positron injector linac

    CERN Document Server

    Jin, K; Zhou, F; Flöttmann, K

    2000-01-01

    A modified cup-like TW accelerating structure for TESLA Positron Pre-Accelerator (PPA) is designed by optimizing the structure geometry and by changing the iris thickness cell by cell in a section . This structure has high shunt-impedance and a large iris radius to meet with the requirements of high gradient and large transverse acceptance. The beam dynamics in the structure with the optimum solenoid focus field are studied. A satisfactory positron beam transmission and the beam performance at the PPA output have been obtained. In this paper the accelerating structure design is described in detail and the results are presented.

  4. Colloquium: cavity optomechanics

    CERN Multimedia

    2011-01-01

    Monday 14 November 2011, 17:00 Ecole de Physique, Auditoire Stueckelberg Université de Genève Cavity optomechanics: controlling micro mechanical oscillators with laser light Prof. Tobias Kippenberg EPFL, Lausanne Laser light can be used to cool and to control trapped ions, atoms and molecules at the quantum level. This has lead to spectacular advances such as the most precise atomic clocks. An outstanding frontier is the control with lasers of nano- and micro-mechancial systems. Recent advances in cavity optomechanics have allowed such elementary control for the first time, enabling mechanical systems to be ground state cooled leading to readout with quantum limited sensitivity and permitting to explore new device concepts resulting from radiation pressure.  

  5. k-t SENSE-accelerated Myocardial Perfusion MR Imaging at 3.0 Tesla - comparison with 1.5 Tesla

    Science.gov (United States)

    Plein, Sven; Schwitter, Juerg; Suerder, Daniel; Greenwood, John P.; Boesiger, Peter; Kozerke, Sebastian

    2008-01-01

    Purpose To determine the feasibility and diagnostic accuracy of high spatial resolution myocardial perfusion MR at 3.0 Tesla using k-space and time domain undersampling with sensitivity encoding (k-t SENSE). Materials and Methods The study was reviewed and approved by the local ethic review board. k-t SENSE perfusion MR was performed at 1.5 Tesla and 3.0 Tesla (saturation recovery gradient echo pulse sequence, repetition time/echo time 3.0ms/1.0ms, flip angle 15°, 5x k-t SENSE acceleration, spatial resolution 1.3×1.3×10mm3). Fourteen volunteers were studied at rest and 37 patients during adenosine stress. In volunteers, comparison was also made with standard-resolution (2.5×2.5×10mm3) 2x SENSE perfusion MR at 3.0 Tesla. Image quality, artifact scores, signal-to-noise ratios (SNR) and contrast-enhancement ratios (CER) were derived. In patients, diagnostic accuracy of visual analysis to detect >50% diameter stenosis on quantitative coronary angiography was determined by receiver-operator-characteristics (ROC). Results In volunteers, image quality and artifact scores were similar for 3.0 Tesla and 1.5 Tesla, while SNR was higher (11.6 vs. 5.6) and CER lower (1.1 vs. 1.5, p=0.012) at 3.0 Tesla. Compared with standard-resolution perfusion MR, image quality was higher for k-t SENSE (3.6 vs. 3.1, p=0.04), endocardial dark rim artifacts were reduced (artifact thickness 1.6mm vs. 2.4mm, pTesla and 1.5 Tesla, respectively. Conclusions k-t SENSE accelerated high-resolution perfusion MR at 3.0 Tesla is feasible with similar artifacts and diagnostic accuracy as at 1.5 Tesla. Compared with standard-resolution perfusion MR, image quality is improved and artifacts are reduced. PMID:18936311

  6. 76 FR 33402 - Tesla Motors, Inc.; Receipt of Petition for Renewal of Temporary Exemption from the Advanced Air...

    Science.gov (United States)

    2011-06-08

    ...-0070] Tesla Motors, Inc.; Receipt of Petition for Renewal of Temporary Exemption from the Advanced Air... Protection. SUMMARY: In accordance with the procedures in 49 CFR Part 555, Tesla Motors, Inc., has petitioned... Petition In accordance with 49 U.S.C. 30113 and the procedures in 49 CFR Part 555, Tesla Motors, Inc...

  7. An open data repository and a data processing software toolset of an equivalent Nordic grid model matched to historical electricity market data

    Directory of Open Access Journals (Sweden)

    Luigi Vanfretti

    2017-04-01

    This Nordic 44 equivalent model was also used in iTesla project (iTesla [3] to carry out simulations within a dynamic security assessment toolset (iTesla, 2016 [4], and has been further enhanced during the ITEA3 OpenCPS project (iTEA3 [5]. The raw, processed data and output models utilized within the iTesla platform (iTesla, 2016 [4] are also available in the repository. The CIM and Modelica snapshots of the “Nordic 44” model for the year 2015 are available in a Zenodo repository.

  8. Leaching materials from cavities

    International Nuclear Information System (INIS)

    Hodgson, T.D.; Jordan, T.W.J.

    1980-01-01

    A material is leached from a cavity by contacting the material with a liquid and subjecting the liquid to a number of pressure cycles, each pressure cycle involving a decrease in pressure to cause boiling of the liquid, followed by a rise in pressure to inhibit the boiling. The method may include the step of heating the liquid to a temperature near to its boiling point. The material may be nuclear fuel pellets or calcium carbonate pellets. (author)

  9. Superconducting cavities for HERA

    International Nuclear Information System (INIS)

    Dwersteg, B.; Ebeling, W.; Moeller, W.D.; Renken, D.; Proch, D.; Sekutowicz, J.; Susta, J.; Tong, D.

    1988-01-01

    Superconducting 500 MHz cavities are developed to demonstrate the feasibility of upgrading the e-beam energy of the HERA storage ring. A prototype module with 2 x 4 cell resonators and appropriate fundamental and higher mode couplers has been designed at DESY and is being built by industrial firms. The design and results of RF and cryogenic measurements are reported in detail. 17 references, 10 figures, 2 tables

  10. Design of an 18 Tesla, tandem mirror, fusion reactor, hybrid choke coil

    International Nuclear Information System (INIS)

    Parmer, J.F.; Agarwal, K.; Gurol, H.; Mancuso, A.; Michels, P.H.; Peck, S.D.; Burgeson, J.; Dalder, E.N.

    1987-01-01

    A hybrid, part normal part superconducting 18-Tesla solenoid choke coil is designed for a tandem mirror fusion reactor. The present state of the art is represented by the 12-Tesla, superconducting NbSn coil. Future applications other than tandem mirror fusion devices needing high field solenoids might require hybrid magnets of the type described herein. The hybrid design was generated because of critical field performance limitations on present, practical superconducting wires. A hybrid design might be required (due to structural limits) even if the critical field were higher. Also, hybrids could be a cost-effective way of getting very high fields for certain applications. The 18-Tesla solenoid described is composed of an inner coil made of water-cooled, high-strength zirconium copper which generates 3 Tesla. A superconducting NbSn background coil contributes the remaining 15 Tesla. The focus of the design study was on the inner coil. Demonstration fabrication and testing was performed

  11. High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla.

    Directory of Open Access Journals (Sweden)

    Brian Null

    Full Text Available High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays.

  12. Simulations of the TESLA Linear Collider with a Fast Feedback System

    CERN Document Server

    Schulte, Daniel; White, G

    2003-01-01

    The tolerances on the beams as they collide at the interaction point of the TESLA linear collider are very tight due to the nano-metre scale final vertical bunch spot sizes. Ground motion causes the beams to increase in emittance and drift out of collision leading to dramatic degradation of luminosity performance. To combat this, both slow orbit and fast intra-train feedback systems will be used. The design of these feedback systems depends critically on how component misalignment effects the beam throughout the whole accelerator. A simulation has been set up to study in detail the accelerator performance under such conditions by merging the codes of PLACET, MERLIN and GUINEA-PIG together with Simulink code to model feedback systems, all under a Matlab environment.

  13. Specific heat of single crystalline YBa2Cu3O7 in 20 Tesla

    International Nuclear Information System (INIS)

    Bonjour, E.; Calemczuk, R.; Henry, J.Y.; Muller, J.; Triscone, G.; Vallier, J.C.

    1993-01-01

    The specific heat of a single crystal of YBa 2 Cu 3 0 7 is measured from 40 to 150 K in magnetic fields up to 20 Tesla applied either parallel or normal to the c axis. Adiabatic calorimetry with a scatter well below 0.1% is used. The scaling of the superconducting transitions determines the bulk anisotropy ratio 5.5±0.5. A Maki-like term is observed at intermediate temperatures. The unusual behaviour of YBa 2 Cu 3 0 7 in a field, featuring a considerable smearing of the transition and an apparently field-independent onset, may be qualitatively understood as a phenomenological consequence of the small and anisotropic value of the coherence length alone, using the relevant models of field-induced critical I-D fluctuations on one hand, and London-like regime for the mean-field part of the transition on the other hand

  14. Specific heat of single crystalline YBa2Cu3O7 in 20 Tesla

    International Nuclear Information System (INIS)

    Junod, A.; Bonjour, E.; Calemczuk, R.; Henry, J.Y.; Muller, J.; Triscone, G.; Vallier, J.C.

    1994-01-01

    The specific heat of a single crystal of YBa 2 Cu 3 O 7 is measured from 40 to 150 K in magnetic fields up to 20 Tesla applied either parallel or normal to the c axis. Adiabatic calorimetry with a scatter well below 0.1% is used. The scaling of the superconducting transitions determines the bulk anisotropy ratio, 5.5±0.5. A Maki-like term is observed at intermediate temperatures. The unusual behaviour of YBa 2 Cu 3 O 7 in a field, featuring a considerable smearing of the transition and an apparently field-independent onset, may be qualitatively understood as a phenomenological consequence of the small and anisotropic value of the coherence length alone, using the relevant models of field-induced critical 1-D fluctuations on one hand, and London-like regime for the mean-field part of the transition on the other hand. (orig.)

  15. 201 MHz Cavity R and D for MUCOOL and MICE

    International Nuclear Information System (INIS)

    Li, Derun; Virostek, Steve; Zisman, Michael; Norem, Jim; Bross, Alan; Moretti, Alfred; Norris, Barry; Torun, Yagmur; Phillips, Larry; Rimmer, Robert; Stirbet, Mircea; Reep, Michael; Summers, Don

    2006-01-01

    We describe the design, fabrication, analysis and preliminary testing of the prototype 201 MHz copper cavity for a muon ionization cooling channel. Cavity applications include the Muon Ionization Cooling Experiment (MICE) as well as cooling channels for a neutrino factory or a muon collider. This cavity was developed by the US muon cooling (MUCOOL) collaboration and is being tested in the MUCOOL Test Area (MTA) at Fermilab. To achieve a high accelerating gradient, the cavity beam irises are terminated by a pair of curved, thin beryllium windows. Several fabrication methods developed for the cavity and windows are novel and offer significant cost savings as compared to conventional construction methods. The cavity's thermal and structural performances are simulated with an FEA model. Preliminary high power RF commissioning results will be presented

  16. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  17. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    International Nuclear Information System (INIS)

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.

    2012-01-01

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  18. Diagnosis of rotator cuff tears using 3-Tesla MRI versus 3-Tesla MRA: a systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, Ciaran; Harb, Ziad; Smith, Christian; Ajuied, Adil [Guy' s and St Thomas' Hospital, King' s Health Partners, Department of Trauma and Orthopaedics, London (United Kingdom); Houghton, Russell [Guy' s and St Thomas' Hospital, King' s Health Partners, Department of Radiology, London (United Kingdom); Corbett, Steven [Guy' s and St Thomas' Hospital, King' s Health Partners, Department of Trauma and Orthopaedics, London (United Kingdom); Fortius Clinic, London (United Kingdom)

    2016-02-15

    To compare the diagnostic accuracy of magnetic resonance imaging (MRI), 2-dimensional magnetic resonance arthrogram (MRA) and 3-dimensional isotropic MRA in the diagnosis of rotator cuff tears when performed exclusively at 3-T. A systematic review was undertaken of the Cochrane, MEDLINE and PubMed databases in accordance with the PRISMA guidelines. Studies comparing 3-T MRI or 3-T MRA (index tests) to arthroscopic surgical findings (reference test) were included. Methodological appraisal was performed using QUADAS 2. Pooled sensitivity and specificity were calculated and summary receiver-operating curves generated. Kappa coefficients quantified inter-observer reliability. Fourteen studies comprising 1332 patients were identified for inclusion. Twelve studies were retrospective and there were concerns regarding index test bias and applicability in nine and six studies respectively. Reference test bias was a concern in all studies. Both 3-T MRI and 3-T MRA showed similar excellent diagnostic accuracy for full-thickness supraspinatus tears. Concerning partial-thickness supraspinatus tears, 3-T 2D MRA was significantly more sensitive (86.6 vs. 80.5 %, p = 0.014) but significantly less specific (95.2 vs. 100 %, p < 0.001). There was a trend towards greater accuracy in the diagnosis of subscapularis tears with 3-T MRA. Three-Tesla 3D isotropic MRA showed similar accuracy to 3-T conventional 2D MRA. Three-Tesla MRI appeared equivalent to 3-T MRA in the diagnosis of full- and partial-thickness tears, although there was a trend towards greater accuracy in the diagnosis of subscapularis tears with 3-T MRA. Three-Tesla 3D isotropic MRA appears equivalent to 3-T 2D MRA for all types of tears. (orig.)

  19. Diagnosis of rotator cuff tears using 3-Tesla MRI versus 3-Tesla MRA: a systematic review and meta-analysis

    International Nuclear Information System (INIS)

    McGarvey, Ciaran; Harb, Ziad; Smith, Christian; Ajuied, Adil; Houghton, Russell; Corbett, Steven

    2016-01-01

    To compare the diagnostic accuracy of magnetic resonance imaging (MRI), 2-dimensional magnetic resonance arthrogram (MRA) and 3-dimensional isotropic MRA in the diagnosis of rotator cuff tears when performed exclusively at 3-T. A systematic review was undertaken of the Cochrane, MEDLINE and PubMed databases in accordance with the PRISMA guidelines. Studies comparing 3-T MRI or 3-T MRA (index tests) to arthroscopic surgical findings (reference test) were included. Methodological appraisal was performed using QUADAS 2. Pooled sensitivity and specificity were calculated and summary receiver-operating curves generated. Kappa coefficients quantified inter-observer reliability. Fourteen studies comprising 1332 patients were identified for inclusion. Twelve studies were retrospective and there were concerns regarding index test bias and applicability in nine and six studies respectively. Reference test bias was a concern in all studies. Both 3-T MRI and 3-T MRA showed similar excellent diagnostic accuracy for full-thickness supraspinatus tears. Concerning partial-thickness supraspinatus tears, 3-T 2D MRA was significantly more sensitive (86.6 vs. 80.5 %, p = 0.014) but significantly less specific (95.2 vs. 100 %, p < 0.001). There was a trend towards greater accuracy in the diagnosis of subscapularis tears with 3-T MRA. Three-Tesla 3D isotropic MRA showed similar accuracy to 3-T conventional 2D MRA. Three-Tesla MRI appeared equivalent to 3-T MRA in the diagnosis of full- and partial-thickness tears, although there was a trend towards greater accuracy in the diagnosis of subscapularis tears with 3-T MRA. Three-Tesla 3D isotropic MRA appears equivalent to 3-T 2D MRA for all types of tears. (orig.)

  20. Diagnosis of rotator cuff tears using 3-Tesla MRI versus 3-Tesla MRA: a systematic review and meta-analysis.

    Science.gov (United States)

    McGarvey, Ciaran; Harb, Ziad; Smith, Christian; Houghton, Russell; Corbett, Steven; Ajuied, Adil

    2016-02-01

    To compare the diagnostic accuracy of magnetic resonance imaging (MRI), 2-dimensional magnetic resonance arthrogram (MRA) and 3-dimensional isotropic MRA in the diagnosis of rotator cuff tears when performed exclusively at 3-T. A systematic review was undertaken of the Cochrane, MEDLINE and PubMed databases in accordance with the PRISMA guidelines. Studies comparing 3-T MRI or 3-T MRA (index tests) to arthroscopic surgical findings (reference test) were included. Methodological appraisal was performed using QUADAS 2. Pooled sensitivity and specificity were calculated and summary receiver-operating curves generated. Kappa coefficients quantified inter-observer reliability. Fourteen studies comprising 1332 patients were identified for inclusion. Twelve studies were retrospective and there were concerns regarding index test bias and applicability in nine and six studies respectively. Reference test bias was a concern in all studies. Both 3-T MRI and 3-T MRA showed similar excellent diagnostic accuracy for full-thickness supraspinatus tears. Concerning partial-thickness supraspinatus tears, 3-T 2D MRA was significantly more sensitive (86.6 vs. 80.5 %, p = 0.014) but significantly less specific (95.2 vs. 100 %, p Tesla 3D isotropic MRA showed similar accuracy to 3-T conventional 2D MRA. Three-Tesla MRI appeared equivalent to 3-T MRA in the diagnosis of full- and partial-thickness tears, although there was a trend towards greater accuracy in the diagnosis of subscapularis tears with 3-T MRA. Three-Tesla 3D isotropic MRA appears equivalent to 3-T 2D MRA for all types of tears.

  1. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  2. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.

  3. Three-Dimensional Morphology of a Coronal Prominence Cavity

    Science.gov (United States)

    Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; hide

    2010-01-01

    We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs

  4. Short-cavity squeezing in barium

    Science.gov (United States)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  5. A technique for monitoring fast tuner piezoactuator preload forces for superconducting rf cavities

    International Nuclear Information System (INIS)

    Pischalnikov, Y.; Branlard, J.; Carcagno, R.; Chase, B.; Edwards, H.; Orris, D.; Makulski, A.; McGee, M.; Nehring, R.; Poloubotko, V.; Sylvester, C.; Fermilab

    2007-01-01

    The technology for mechanically compensating Lorentz Force detuning in superconducting RF cavities has already been developed at DESY. One technique is based on commercial piezoelectric actuators and was successfully demonstrated on TESLA cavities [1]. Piezo actuators for fast tuners can operate in a frequency range up to several kHz; however, it is very important to maintain a constant static force (preload) on the piezo actuator in the range of 10 to 50% of its specified blocking force. Determining the preload force during cool-down, warm-up, or re-tuning of the cavity is difficult without instrumentation, and exceeding the specified range can permanently damage the piezo stack. A technique based on strain gauge technology for superconducting magnets has been applied to fast tuners for monitoring the preload on the piezoelectric assembly. The design and testing of piezo actuator preload sensor technology is discussed. Results from measurements of preload sensors installed on the tuner of the Capture Cavity II (CCII)[2] tested at FNAL are presented. These results include measurements during cool-down, warmup, and cavity tuning along with dynamic Lorentz force compensation

  6. A technique for monitoring fast tuner piezoactuator preload forces for superconducting rf cavities

    Energy Technology Data Exchange (ETDEWEB)

    Pischalnikov, Y.; Branlard, J.; Carcagno, R.; Chase, B.; Edwards, H.; Orris, D.; Makulski, A.; McGee, M.; Nehring, R.; Poloubotko, V.; Sylvester, C.; /Fermilab

    2007-06-01

    The technology for mechanically compensating Lorentz Force detuning in superconducting RF cavities has already been developed at DESY. One technique is based on commercial piezoelectric actuators and was successfully demonstrated on TESLA cavities [1]. Piezo actuators for fast tuners can operate in a frequency range up to several kHz; however, it is very important to maintain a constant static force (preload) on the piezo actuator in the range of 10 to 50% of its specified blocking force. Determining the preload force during cool-down, warm-up, or re-tuning of the cavity is difficult without instrumentation, and exceeding the specified range can permanently damage the piezo stack. A technique based on strain gauge technology for superconducting magnets has been applied to fast tuners for monitoring the preload on the piezoelectric assembly. The design and testing of piezo actuator preload sensor technology is discussed. Results from measurements of preload sensors installed on the tuner of the Capture Cavity II (CCII)[2] tested at FNAL are presented. These results include measurements during cool-down, warmup, and cavity tuning along with dynamic Lorentz force compensation.

  7. Effect of non-uniform surface resistance on the quality factor of superconducting niobium cavity

    Science.gov (United States)

    Tan, Weiwei; Lu, Xiangyang; Yang, Ziqin; Zhao, Jifei; Yang, Deyu; Yang, Yujia

    2016-08-01

    The formula Rs = G /Q0 is commonly used in the calculation of the surface resistance of radio frequency niobium superconducting cavities. The applying of such equation is under the assumption that surface resistance is consistent over the cavity. However, the distribution of the magnetic field varies over the cavity. The magnetic field in the equator is much higher than that in the iris. According to Thermal Feedback Theory, it leads non-uniform distribution of the density of heat flux, which results in a different temperature distribution along the cavity inter surface. The BCS surface resistance, which depends largely on the temperature, is different in each local inner surface. In this paper, the effect of surface non-uniform resistance on the quality factor has been studied, through the calculation of Q0 in the original definition of it. The results show that it is necessary to consider the non-uniform distribution of magnetic field when the accelerating field is above 20 MV/m for TESLA cavities. Also, the effect of inhomogeneity of residual resistance on the quality factor is discussed. Its distribution barely affects the quality factor.

  8. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....

  9. Single-cell LEP-type cavity on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    A single-cell cavity, made of copper, with tapered connectors for impedance measurements. It was used as a model of LEP-type superconducting cavities, to investigate impedance and higher-order modes and operated at around 600 MHz (the LEP acceleration frequency was 352.2 MHz). See 8202500.

  10. Design of 118 MHz twelfth harmonic cavity of APS PAR

    International Nuclear Information System (INIS)

    Kang, Y.W.; Kustom, R.L.; Bridges, J.F.

    1992-01-01

    Two radio frequency (RF) cavities are needed in the Positron Accumulator Ring (PAR) of the Advanced Photon Source. One is for the first harmonic frequency at 9.8 MHz, and the other is for the twelfth harmonic frequency at 118 MHz. This note reports on the design of the 118 MHz RF cavity. Computer models are used to find the mode frequencies, impedances, Q-factors, and field distributions in the cavity. The computer codes MAFIA, URMEL, and URMEL-T are useful tools which model and simulate the resonance characteristics of a cavity. These codes employ the finite difference method to solve Maxwell's equations. MAFIA is a three-dimensional problem solver and uses square patches to approximate the inner surface of a cavity. URMEL and URMEL-T are two-dimensional problem solvers and use rectangular and triangular meshes, respectively. URMEL-T and MAFIA can handle problems with arbitrary dielectric materials located inside the boundary. The cavity employs a circularly cylindrical ceramic window to limit the vacuum to the beam pipe. The ceramic window used in the modeling will have a wall thickness of 0.9 cm. This wall thickness is not negligible in determining the resonant frequencies of the cavity. In the following, results of two- and three-dimensional modeling of the cavities using the URMEL-T and MAFIA codes are reported

  11. Atmospheric signals produced by cavity rebound

    International Nuclear Information System (INIS)

    Jones, E.M.; App, F.N.; Whitaker, R.W.

    1993-01-01

    An analysis of the atmospheric acoustic signals produced by a class of low-yield tests conducted just below the base of the alluvial cover in Yucca Flat of the Nevada Test Site (NTS), has revealed a clear manifestation of an elastic, cavity rebound signal. We use modeling as the basis for understanding the observed phenomena

  12. Cavity syncronisation of underdamped Josephson junction arrays

    DEFF Research Database (Denmark)

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...

  13. Control of Acoustics and Store Separation in a Cavity in Supersonic Flow

    National Research Council Canada - National Science Library

    Sahoo, Debashis

    2005-01-01

    .... For the first problem, an innovative cavity acoustics model is developed that rigorously explains the role of leading edge microjets in cavity noise suppression and predicts the magnitude of noise...

  14. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  15. Multipacting studies in elliptic SRF cavities

    Science.gov (United States)

    Prakash, Ram; Jana, Arup Ratan; Kumar, Vinit

    2017-09-01

    Multipacting is a resonant process, where the number of unwanted electrons resulting from a parasitic discharge rapidly grows to a larger value at some specific locations in a radio-frequency cavity. This results in a degradation of the cavity performance indicators (e.g. the quality factor Q and the maximum achievable accelerating gradient Eacc), and in the case of a superconducting radiofrequency (SRF) cavity, it leads to a quenching of superconductivity. Numerical simulations are essential to pre-empt the possibility of multipacting in SRF cavities, such that its design can be suitably refined to avoid this performance limiting phenomenon. Readily available computer codes (e.g.FishPact, MultiPac,CST-PICetc.) are widely used to simulate the phenomenon of multipacting in such cases. Most of the contemporary two dimensional (2D) codes such as FishPact, MultiPacetc. are unable to detect the multipacting in elliptic cavities because they use a simplistic secondary emission model, where it is assumed that all the secondary electrons are emitted with same energy. Some three-dimensional (3D) codes such as CST-PIC, which use a more realistic secondary emission model (Furman model) by following a probability distribution for the emission energy of secondary electrons, are able to correctly predict the occurrence of multipacting. These 3D codes however require large data handling and are slower than the 2D codes. In this paper, we report a detailed analysis of the multipacting phenomenon in elliptic SRF cavities and development of a 2D code to numerically simulate this phenomenon by employing the Furman model to simulate the secondary emission process. Since our code is 2D, it is faster than the 3D codes. It is however as accurate as the contemporary 3D codes since it uses the Furman model for secondary emission. We have also explored the possibility to further simplify the Furman model, which enables us to quickly estimate the growth rate of multipacting without

  16. EQUACIONAMENTO E MODELAGEM DA BOBINA BIFILAR DE TESLA

    Directory of Open Access Journals (Sweden)

    Caio Marcelo de Marcelo de Miranda

    2012-01-01

    Full Text Available A Biotelemetria apresenta-se como uma importante técnica que possui várias aplicações na área de Biomedicina e outras. A dimensão da unidade remota ou sensora constitui um grande desafio dentro desta área, sendo que na maioria dos casos,deseja-se uma unidade o menor possível. Desta maneira, sensores passivos são interessantes, pois possibilitam uma menor dimensão do dispositivo e não necessitam de uma fonte própria de energia, ou bateria, que pode causar danos ao indivíduo monitorado caso ocorra vazamento do seu conteúdo químico. Deste modo,o sensor indutivo autorressonante apresenta-se como uma boa solução, uma vez que este pode ser construído com apenas um componente, neste caso um indutor.Por apresentar pequenas dimensões, este tipo de sensor possui uma baixa capacitância parasita, o que torna a sua frequência de ressonância bastante alta. Neste caso, a bobina bifilar idealizada por Nikola Tesla pode constituir-se de uma solução, uma vez que a idéia de Tesla era de aumentar a capacitância intrínseca de suas bobinas. Portanto, um entendimento físico e devido equacionamento da bobina bifilar se faz necessário, uma vez que, até onde se sabe, este tipo de abordagem não existe na literatura.A partir de uma análise das tensões entre espiras adjacentes, foi desenvolvido neste trabalho um equacionamento da bobina bifilar de Tesla, possibilitando a determinação do aumento da capacitância interna e, consequente, redução na frequência de ressonância desta bobina. Um modelo elétrico equivalente da bobina foi também elaborado através desta análise. Isto possibilita o projeto de bobinas bifilares e predição dos parâmetros capacitância e frequência de autorressonância desta bobina. Testes foram realizados ao comparar a frequência de autorressonância calculada e medida para diversos números de espiras,comprovando a validade do modelo e das equações desenvolvidas.

  17. Oral cavity eumycetoma

    Directory of Open Access Journals (Sweden)

    Gisele Alborghetti Nai

    2011-06-01

    Full Text Available Mycetoma is a pathological process in which eumycotic (fungal or actinomycotic causative agents from exogenous source produce grains. It is a localized chronic and deforming infectious disease of subcutaneous tissue, skin and bones. We report the first case of eumycetoma of the oral cavity in world literature. CASE REPORT: A 43-year-old male patient, complaining of swelling and fistula in the hard palate. On examination, swelling of the anterior and middle hard palate, with fistula draining a dark liquid was observed. The panoramic radiograph showed extensive radiolucent area involving the region of teeth 21-26 and the computerized tomography showed communication with the nasal cavity, suggesting the diagnosis of periapical cyst. Surgery was performed to remove the lesion. Histopathological examination revealed purulent material with characteristic grain. Gram staining for bacteria was negative and Grocott-Gomori staining for the detection of fungi was positive, concluding the diagnosis of eumycetoma. The patient was treated with ketoconazole for nine months, and was considered cured at the end of treatment. CONCLUSION: Histopathological examination, using histochemical staining, and direct microscopic grains examination can provide the distinction between eumycetoma and actinomycetoma accurately.

  18. Cryostat for TRISTAN superconducting cavity

    International Nuclear Information System (INIS)

    Mitsunobu, S.; Furuya, T.; Hara, K.

    1990-01-01

    Superconducting cavities generate rather high heat load of hundreds watts in one cryostat and have high sensitivity for pressure. We adopted usual pool-boiling type cooling for its stable pressure operation. Two 5-cell Nb cavities were installed in one flange type cryostat. Tuning mechanics actuated by a pulse-motor and a Piezo-electric element are set at outside of vacuum end flange. The design and performance of the cryostat for TRISTAN superconducting cavities are described. (author)

  19. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  20. Clinical evaluation of cardiovascular disease by gated-MRI (magnetic resonance imaging) in the operating field of 0.35 and 1.5 Tesla

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Naito, Hiroaki; Yamada, Yukinori; Kozuka, Takahiro

    1985-01-01

    To evaluate the clinical usefulness of magnetic resonance imaging (MRI) in the cardiovascular disease, 21 patients were examined using 0.35 and 1.5 Tesla superconductive type (Magnetom, Siemens). In our study, all patients were performed using ECG-gated MRI. Therefore, the cardiac chambers were discriminated clearly from the myocardial wall compared to non-gated MRI. Gated-MRI was performed in 6 normal persons in the operating field at 0.35 and 1.5 Tesla. The image of the latter showed superior than that of the former because of high S/N ratio. In myocardial infarction, infarct area was demonstrated as the wall thinning in 4 of 5 patients. Hypertrophic cardiomyopathy showed thickened left ventricle associated with its narrowed cavity in 7 patients. In the remaining such as congenital and valvular heart disease, global and regional cardiac morphology were assessed noninvasively by gated MRI. In addition, gated MRI was also applied to the diagnosis of peripheral vascular diseases. In dissecting aneurysm, double channels with an intimal flap in the aorta were clearly visualized. And in the aortitis syndrome, aortic dilatation and stenosis were also assessed noninvasively. In conclusion, gated MRI in diagnosing various abnormalities of cardiovascular disease was confirmed. (author)