WorldWideScience

Sample records for terrestrial trophic models

  1. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals

    Science.gov (United States)

    Tucker, Marlee A.; Rogers, Tracey L.

    2014-01-01

    Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. PMID:25377460

  2. Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals.

    Science.gov (United States)

    Tucker, Marlee A; Rogers, Tracey L

    2014-12-22

    Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.

    Science.gov (United States)

    Mogren, Christina L; Walton, William E; Parker, David R; Trumble, John T

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1) arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1) of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1)). Buenoa scimitra accumulated 5120±406 ng g(-1) of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1) arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.

  4. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    Science.gov (United States)

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l−1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g−1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142–290 ng g−1). Buenoa scimitra accumulated 5120±406 ng g−1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l−1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies. PMID:23826344

  5. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.

    Directory of Open Access Journals (Sweden)

    Christina L Mogren

    Full Text Available The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae and Tidarren haemorrhoidale (Araneae: Theridiidae and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1. Buenoa scimitra accumulated 5120±406 ng g(-1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.

  6. Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades.

    Science.gov (United States)

    McCluney, Kevin E; Sabo, John L

    2016-08-17

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. © 2016 The Author(s).

  7. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain.

    Science.gov (United States)

    Sanders, Dirk; Moser, Andrea; Newton, Jason; van Veen, F J Frank

    2016-03-16

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host-parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary-secondary-tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ(15)N increased with trophic level, with trophic discrimination factors (Δ(15)N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host-parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. © 2016 The Authors.

  8. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...... that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped...

  9. Do stage-specific functional responses of consumers dampen the effects of subsidies on trophic cascades in streams?

    Science.gov (United States)

    Sato, Takuya; Watanabe, Katsutoshi

    2014-07-01

    Resource subsidies often weaken trophic cascades in recipient communities via consumers' functional response to the subsidies. Consumer populations are commonly stage-structured and may respond to the subsidies differently among the stages yet less is known about how this might impact the subsidy effects on the strength of trophic cascades in recipient systems. We show here, using a large-scale field experiment, that the stage structure of a recipient consumer would dampen the effects of terrestrial invertebrate subsidies on the strength of trophic cascade in streams. When a high input rate of the terrestrial invertebrates was available, both large and small fish stages switched their diet to the terrestrial subsidy, which weakened the trophic cascade in streams. However, when the input rate of the terrestrial invertebrates was at a moderate level, the terrestrial subsidy did not weaken the trophic cascade. This discrepancy was likely due to small fish stages being competitively excluded from feeding on the subsidy by larger stages of fish and primarily foraging on benthic invertebrates under the moderate input level. Although previous studies using single fish stages have clearly demonstrated that the terrestrial invertebrate input equivalent to our moderate input rate weakened the trophic cascade in streams, this subsidy effect might be overestimated given small fish stage may not switch their diet to the subsidy under competition with large fish stage. Given the ubiquity of consumer stage structure and interaction among consumer stages, the effects we saw might be widespread in nature, requiring future studies that explicitly involve consumer's stage structure into community ecology. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  10. Radionuclide transfer in terrestrial animals

    International Nuclear Information System (INIS)

    DiGregorio, D.; Kitchings, T.; Van Voris, P.

    1978-01-01

    The analysis of dispersion of radionuclides in terrestrial food chains, generally, is a series of equations identifying the fractional input and outflow rates from trophic level to trophic level. Data that are prerequisite inputs for these food chain transport models include: (1) identification of specific transport pathway, (2) assimilation at each pathway link, and (3) the turnover rate or retention function by successive receptor species in the appropriate food chain. In this report, assimilation coefficients, biological half-lives, and excretion rates for a wide variety of vertebrate and invertebrate species and radionuclides have been compiled from an extensive search of the available literature. Using the information accumulated from the literature, correlations of nuclide metabolism and body weight are also discussed. (author)

  11. Modelling emergent trophic strategies in plankton

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Aksnes, Dag L.; Berge, Terje

    2015-01-01

    Plankton are typically divided into phytoplankton and zooplankton in marine ecosystem models. Yet, most protists in the photic zone engage in some degree of phagotrophy, and it has been suggested that trophic strategy is really a continuum between pure phototrophs (phytoplankton) and pure...

  12. Trophic structure of fish fauna along the longitudinal gradient of a first-order rural stream

    Directory of Open Access Journals (Sweden)

    Jardel Nimet

    2015-12-01

    Full Text Available Abstract Aim: This study evaluated the trophic structure of the fish assemblage along the longitudinal gradient of a first-order rural stream. Methods Fish were sampled by electrofishing technique in December 2007, September 2008 and March 2009, at three stretch of the Itiz stream (headwater, middle and mouth. We sampled 1,255 individuals relating to 18 species. The categorization of trophic guilds was based on stomach content data of 1,096 individuals, analyzed according to the volumetric method, except for four species, which were classified according to the literature. To test the hypothesis of differences in the richness, abundance and biomass of trophic guilds along the headwater-mouth gradient, it was performed non-parametric statistical analysis of the dietary data. Was also calculated, the amplitude of trophic niche (Levins's index for each guild. To summarize the composition and abundance of the trophic guilds along the longitudinal gradient, we applied a non-metric multidimensional scaling (NMDS. Results We registered seven guilds: herbivorous, detritivorous, aquatic insectivorous, terrestrial insectivorous, invertivorous, omnivorous and piscivorous, the latter was exclusive to headwater and middle stretches. The omnivorous guild was not recorded in the headwater. Through PERMANOVA analysis it was found that the species richness of more specialized guilds (detritivorous and insectivorous terrestrial and of generalist invertivorous increased, while less specialized guilds like aquatic insectivorous and herbivorous, decrease significantly in headwater-mouth direction. Except by the non-expected increase of insectivorous terrestrial and decrease of herbivorous downstream, the non-metric multidimensional scaling (NMDS identified longitudinal variations in abundance and biomass of the guilds that agree with general patterns of fish guilds distribution along environmental gradients. Conclusion These results suggest that the influence of

  13. The exploration of trophic structure modeling using mass balance Ecopath model of Tangerang coastal waters

    Science.gov (United States)

    Dewi, N. N.; Kamal, M.; Wardiatno, Y.; Rozi

    2018-04-01

    Ecopath model approach was used to describe trophic interaction, energy flows and ecosystem condition of Tangerang coastal waters. This model consists of 42 ecological groups, of which 41 are living groups and one is a detritus group. Trophic levels of these groups vary between 1.0 (for primary producers and detritus) to 4.03 (for tetraodontidae). Groups with trophic levels 2≤TLfish, while detritus has a positive impact on the majority of demersal fish. Leiognathidae havea negative impact on phytoplankton, zooplankton and several other groups. System omnivory index for this ecosystem is 0.151. System primary production/respiration (P/R) ratio of Tangerang coastal waters is 1.505. This coastal ecosystem is an immatureecosystem because it hasdegraded. Pedigree index for this model is 0.57. This model describes ecosystem condition affected by overfishing and antropogenic activities. Therefore, through Ecopath model we provide some suggestions about the ecosystem-based fisheries management.

  14. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing.

    Science.gov (United States)

    Liu, Pi-Jen; Shao, Kwang-Tsao; Jan, Rong-Quen; Fan, Tung-Yung; Wong, Saou-Lien; Hwang, Jiang-Shiou; Chen, Jen-Ping; Chen, Chung-Chi; Lin, Hsing-Juh

    2009-09-01

    Several coral reefs of Nanwan Bay, Taiwan have recently undergone shifts to macroalgal or sea anemone dominance. Thus, a mass-balance trophic model was constructed to analyze the structure and functioning of the food web. The fringing reef model was comprised of 18 compartments, with the highest trophic level of 3.45 for piscivorous fish. Comparative analyses with other reef models demonstrated that Nanwan Bay was similar to reefs with high fishery catches. While coral biomass was not lower, fish biomass was lower than those of reefs with high catches. Consequently, the sums of consumption and respiratory flows and total system throughput were also decreased. The Nanwan Bay model potentially suggests an overfished status in which the mean trophic level of the catch, matter cycling, and trophic transfer efficiency are extremely reduced.

  15. Modeling lake trophic state: a random forest approach

    Science.gov (United States)

    Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...

  16. Comparison of contaminants from different trophic levels and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.; Riget, F. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Cleemann, M. [Department of Environmental Chemistry, Ministry of Environment and Energy, National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Aarkrog, A. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Johansen, P. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Hansen, J.C. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2000-01-17

    The present paper provides an overview of the priority contaminants and media from the Greenland part of the Arctic Monitoring and Assessment Program. Levels and accumulation patterns of heavy metals, POPs and a radionuclide (137Cs) are compared from the terrestrial, freshwater and marine ecosystems. Of the nine compounds presented, seven (Cd, Hg, Se, {sigma}PCB, {sigma}DDT, {sigma}HCH, HCB) increased in concentration towards higher trophic levels. For these contaminants the concentrations in soil and aquatic sediment were in the same order of magnitude, whereas the concentrations in marine biota were higher than found in the freshwater and terrestrial ecosystems probably due to the presence of longer food chains. Pb and 137Cs showed the reverse pattern compared with the other compounds. The concentrations in soil and aquatic sediments decreased in the order terrestrial, freshwater and marine ecosystems, which was reflected in the biota as well. Reindeer had similar or lower levels of Pb and 137Cs than lichens. Levels of Pb and 137Cs in marine biota did not show the same clear increase towards higher trophic as found for the other analysed compounds. Greenland Inuit contains considerably less mercury but higher levels of {sigma}PCB, {sigma}DDT and HCB than other Arctic marine top consumers.

  17. Trophic dynamics of a simple model ecosystem.

    Science.gov (United States)

    Bell, Graham; Fortier-Dubois, Étienne

    2017-09-13

    We have constructed a model of community dynamics that is simple enough to enumerate all possible food webs, yet complex enough to represent a wide range of ecological processes. We use the transition matrix to predict the outcome of succession and then investigate how the transition probabilities are governed by resource supply and immigration. Low-input regimes lead to simple communities whereas trophically complex communities develop when there is an adequate supply of both resources and immigrants. Our interpretation of trophic dynamics in complex communities hinges on a new principle of mutual replenishment, defined as the reciprocal alternation of state in a pair of communities linked by the invasion and extinction of a shared species. Such neutral couples are the outcome of succession under local dispersal and imply that food webs will often be made up of suites of trophically equivalent species. When immigrants arrive from an external pool of fixed composition a similar principle predicts a dynamic core of webs constituting a neutral interchange network, although communities may express an extensive range of other webs whose membership is only in part predictable. The food web is not in general predictable from whole-community properties such as productivity or stability, although it may profoundly influence these properties. © 2017 The Author(s).

  18. Trophic strategies of unicellular plankton

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Nielsen, Lasse Tor; Andersen, Ken Haste

    2017-01-01

    . To this end, we develop and calibrate a trait-based model for unicellular planktonic organisms characterized by four traits: cell size and investments in phototrophy, nutrient uptake, and phagotrophy. We use the model to predict how optimal trophic strategies depend on cell size under various environmental...... unicellulars are colimited by organic carbon and nutrients, and only large photoautotrophs and smaller mixotrophs are nutrient limited; (2) trophic strategy is bottom-up selected by the environment, while optimal size is top-down selected by predation. The focus on cell size and trophic strategies facilitates......Unicellular plankton employ trophic strategies ranging from pure photoautotrophs over mixotrophy to obligate heterotrophs (phagotrophs), with cell sizes from 10-8 to 1 μg C. A full understanding of how trophic strategy and cell size depend on resource environment and predation is lacking...

  19. Landscape variation influences trophic cascades in dengue vector food webs.

    Science.gov (United States)

    Weterings, Robbie; Umponstira, Chanin; Buckley, Hannah L

    2018-02-01

    The epidemiology of vector-borne diseases is governed by a structured array of correlative and causative factors, including landscape (for example, rural versus urban), abiotic (for example, weather), and biotic (for example, food web) factors. Studies of mosquito-borne diseases rarely address these multiple factors at large spatial scales, which limits insights into how human alterations of landscapes and food webs alter mosquito abundance. We used structural equation modeling to identify the relative magnitude and direction of landscape, abiotic, and food web factors on Aedes larvae and adults across 70 sites in northern Thailand. Food web factors were modeled as mosquito-predator trophic cascades. Landscape context affected mosquito-predator communities in aquatic and terrestrial environments via cascading food web interactions. Several mosquito predators within these food webs showed potential as biocontrol agents in mosquito population control, but their potentials for control were landscape-dependent. In terrestrial food webs, the habitat-sensitive tokay gecko structured mosquito-predator communities, indicating that a conservation approach to vector control could be a useful addition to existing control efforts.

  20. Trophic models: What do we learn about Celtic Sea and Bay of Biscay ecosystems?

    Science.gov (United States)

    Moullec, Fabien; Gascuel, Didier; Bentorcha, Karim; Guénette, Sylvie; Robert, Marianne

    2017-08-01

    Trophic models are key tools to go beyond the single-species approaches used in stock assessments to adopt a more holistic view and implement the Ecosystem Approach to Fisheries Management (EAFM). This study aims to: (i) analyse the trophic functioning of the Celtic Sea and the Bay of Biscay, (ii) investigate ecosystem changes over the 1980-2013 period and, (iii) explore the response to management measures at the food web scale. Ecopath models were built for each ecosystem for years 1980 and 2013, and Ecosim models were fitted to time series data of biomass and catches. EcoTroph diagnosis showed that in both ecosystems, fishing pressure focuses on high trophic levels (TLs) and, to a lesser extent, on intermediate TLs. However, the interplay between local environmental conditions, species composition and ecosystem functioning could explain the different responses to fisheries management observed between these two contiguous ecosystems. Indeed, over the study period, the ecosystem's exploitation status has improved in the Bay of Biscay but not in the Celtic Sea. This improvement does not seem to be sufficient to achieve the objectives of an EAFM, as high trophic levels were still overexploited in 2013 and simulations conducted with Ecosim in the Bay of Biscay indicate that at current fishing effort the biomass will not be rebuilt by 2030. The ecosystem's response to a reduction in fishing mortality depends on which trophic levels receive protection. Reducing fishing mortality on pelagic fish, instead of on demersal fish, appears more efficient at maximising catch and total biomass and at conserving both top-predator and intermediate TLs. Such advice-oriented trophic models should be used on a regular basis to monitor the health status of marine food webs and analyse the trade-offs between multiple objectives in an ecosystem-based fisheries management context.

  1. Multi-model analysis of terrestrial carbon cycles in Japan: reducing uncertainties in model outputs among different terrestrial biosphere models using flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2009-08-01

    Terrestrial biosphere models show large uncertainties when simulating carbon and water cycles, and reducing these uncertainties is a priority for developing more accurate estimates of both terrestrial ecosystem statuses and future climate changes. To reduce uncertainties and improve the understanding of these carbon budgets, we investigated the ability of flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine-based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and an improved model (based on calibration using flux observations). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using flux observations (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs, and model calibration using flux observations significantly improved the model outputs. These results show that to reduce uncertainties among terrestrial biosphere models, we need to conduct careful validation and calibration with available flux observations. Flux observation data significantly improved terrestrial biosphere models, not only on a point scale but also on spatial scales.

  2. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape

    Science.gov (United States)

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G.; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G.

    2015-01-01

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169

  3. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  4. The Aquatic Trophic Ecology of Suisun Marsh, San Francisco Estuary, California, During Autumn in a Wet Year

    Directory of Open Access Journals (Sweden)

    Robert E. Schroeter

    2015-09-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.v13iss3art6Using stable isotopes of carbon (δ13C and nitrogen (δ15N and mixing models, we investigated the trophic levels and carbon sources of invertebrates and fishes of a large tidal marsh in the San Francisco Estuary. Our goal was to better understand an estuarine food web comprised of native and alien species. We found the following: (1 the food web was based largely on carbon from phytoplankton and emergent-aquatic and terrestrial vegetation, but carbon from submerged aquatic vegetation and phytobenthos was also used; (2 alien species increased the complexity of the food web by altering carbon-flow pathways and by occupying trophic positions different from native species; and (3 most consumers were dietary generalists.

  5. Trait-mediated trophic cascade creates enemy-free space for nesting hummingbirds.

    Science.gov (United States)

    Greeney, Harold F; Meneses, M Rocio; Hamilton, Chris E; Lichter-Marck, Eli; Mannan, R William; Snyder, Noel; Snyder, Helen; Wethington, Susan M; Dyer, Lee A

    2015-09-01

    The indirect effects of predators on nonadjacent trophic levels, mediated through traits of intervening species, are collectively known as trait-mediated trophic cascades. Although birds are important predators in terrestrial ecosystems, clear examples of trait-mediated indirect effects involving bird predators have almost never been documented. Such indirect effects are important for structuring ecological communities and are likely to be negatively impacted by habitat fragmentation, climate change, and other factors that reduce abundance of top predators. We demonstrate that hummingbirds in Arizona realize increased breeding success when nesting in association with hawks. An enemy-free nesting space is created when jays, an important source of mortality for hummingbird nests, alter their foraging behavior in the presence of their hawk predators.

  6. Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn.

    Science.gov (United States)

    Berger, Kim Murray; Gese, Eric M; Berger, Joel

    2008-03-01

    The traditional trophic cascades model is based on consumer resource interactions at each link in a food chain. However, trophic-level interactions, such as mesocarnivore release resulting from intraguild predation, may also be important mediators of cascades. From September 2001 to August 2004, we used spatial and seasonal heterogeneity in wolf distribution and abundance in the southern Greater Yellowstone Ecosystem to evaluate whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of wolves (Canis lupus), accounts for high rates of coyote predation on pronghorn (Antilocapra americana) fawns observed in some areas. Results of this ecological perturbation in wolf densities, coyote densities, and pronghorn neonatal survival at wolf-free and wolf-abundant sites support the existence of a species-level trophic cascade. That wolves precipitated a trophic cascade was evidenced by fawn survival rates that were four-fold higher at sites used by wolves. A negative correlation between coyote and wolf densities supports the hypothesis that interspecific interactions between the two species facilitated the difference in fawn survival. Whereas densities of resident coyotes were similar between wolf-free and wolf-abundant sites, the abundance of transient coyotes was significantly lower in areas used by wolves. Thus, differential effects of wolves on solitary coyotes may be an important mechanism by which wolves limit coyote densities. Our results support the hypothesis that mesopredator release of coyotes contributes to high rates of coyote predation on pronghorn fawns, and demonstrate the importance of alternative food web pathways in structuring the dynamics of terrestrial systems.

  7. Characterisation (δ13C and δ15N isotopes) of the food webs in a New Zealand stream in the Waitakere Ranges, with emphasis on the trophic level of the endemic frog Leiopelma hochstetteri

    International Nuclear Information System (INIS)

    Najera-Hillman, E.; Alfaro, A.C.; Breen, B.B.; O'Shea, S.

    2009-01-01

    Leiopelma hochstetteri, the most widespread of New Zealand's native frogs, is recognised as threatened, and is fully protected by legislation. As a first step to characterise the diet and trophic level of L. hochstetteri within streams in the Waitakere Ranges, Auckland, stable carbon and nitrogen isotope analyses were undertaken on a variety of sympatric terrestrial and aquatic plant and animal species, including adult frogs. These results show that: (1) aquatic and terrestrial food webs are linked by terrestrial inputs into the stream; (2) invertebrate and vertebrate predators separate well into distinct trophic groups, and (3) L. hochstetteri occupies an intermediate trophic position among predators, with a diet, at least as an adult, comprising terrestrial invertebrates. Shortfin eels and banded kokopu are identified as potential predators of L. hochstetteri, but data for rats are inconclusive. These results have important implications for the conservation of New Zealand native frog species and riparian stream habitat. (author). 75 refs., 3 figs., 1 tab

  8. Trophic modeling of the Northern Humboldt Current Ecosystem, Part I: Comparing trophic linkages under La Niña and El Niño conditions

    Science.gov (United States)

    Tam, Jorge; Taylor, Marc H.; Blaskovic, Verónica; Espinoza, Pepe; Michael Ballón, R.; Díaz, Erich; Wosnitza-Mendo, Claudia; Argüelles, Juan; Purca, Sara; Ayón, Patricia; Quipuzcoa, Luis; Gutiérrez, Dimitri; Goya, Elisa; Ochoa, Noemí; Wolff, Matthias

    2008-10-01

    The El Niño of 1997-98 was one of the strongest warming events of the past century; among many other effects, it impacted phytoplankton along the Peruvian coast by changing species composition and reducing biomass. While responses of the main fish resources to this natural perturbation are relatively well known, understanding the ecosystem response as a whole requires an ecotrophic multispecies approach. In this work, we construct trophic models of the Northern Humboldt Current Ecosystem (NHCE) and compare the La Niña (LN) years in 1995-96 with the El Niño (EN) years in 1997-98. The model area extends from 4°S-16°S and to 60 nm from the coast. The model consists of 32 functional groups of organisms and differs from previous trophic models of the Peruvian system through: (i) division of plankton into size classes to account for EN-associated changes and feeding preferences of small pelagic fish, (ii) increased division of demersal groups and separation of life history stages of hake, (iii) inclusion of mesopelagic fish, and (iv) incorporation of the jumbo squid ( Dosidicus gigas), which became abundant following EN. Results show that EN reduced the size and organization of energy flows of the NHCE, but the overall functioning (proportion of energy flows used for respiration, consumption by predators, detritus and export) of the ecosystem was maintained. The reduction of diatom biomass during EN forced omnivorous planktivorous fish to switch to a more zooplankton-dominated diet, raising their trophic level. Consequently, in the EN model the trophic level increased for several predatory groups (mackerel, other large pelagics, sea birds, pinnipeds) and for fishery catch. A high modeled biomass of macrozooplankton was needed to balance the consumption by planktivores, especially during EN condition when observed diatoms biomass diminished dramatically. Despite overall lower planktivorous fish catches, the higher primary production required-to-catch ratio implied a

  9. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    OpenAIRE

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aqu...

  10. Cadmium assimilation in the terrestrial isopod, Porcellio dilatatus - Is trophic transfer important?

    International Nuclear Information System (INIS)

    Calhoa, Carla Filipa; Soares, Amadeu M.V.M.; Mann, Reinier M.

    2006-01-01

    Terrestrial isopods have become important tools for the ecotoxicological assessment of metal-contaminated soils. Their value as an invertebrate model is partly because of their extraordinary capacity to bioaccumulate toxic metals from the environment. Replication of this accumulation process in the laboratory has in the past relied on the amendment of organic food substrates through the addition of inorganic metal salts. However, the bioavailability of the metals when presented through doping regimes may differ from the bioavailability of metals in nature, because over time metals become biologically compartmentalised and form complexes with organic molecules. This study examines the differential bioavailability of Cd to the terrestrial isopod, Porcellio dilatatus, when presented as either a Cd-amended diet or pre-incorporated biologically into lettuce (Lactuca sativa). Isopods were either provided with lettuce contaminated superficially with Cd(NO 3 ) 2 or lettuce grown hydroponically in growth media containing 100 μM Cd(NO 3 ) 2 . Assimilation efficiency of Cd was greater among isopods that were fed the amended diet (71%, S.E. = 7%), than among isopods feeding on biologically contaminated lettuce (52%, S.E. = 5%) and demonstrates that speciation of Cd is likely to influence the rate of Cd assimilation and accumulation in a laboratory test

  11. Cadmium assimilation in the terrestrial isopod, Porcellio dilatatus - Is trophic transfer important?

    Energy Technology Data Exchange (ETDEWEB)

    Calhoa, Carla Filipa [CESAM - Centro de Estudos de Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Aveiro 3810-193 (Portugal); Soares, Amadeu M.V.M. [CESAM - Centro de Estudos de Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Aveiro 3810-193 (Portugal); Mann, Reinier M. [CESAM - Centro de Estudos de Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Aveiro 3810-193 (Portugal)]. E-mail: rmann@bio.ua.pt

    2006-12-01

    Terrestrial isopods have become important tools for the ecotoxicological assessment of metal-contaminated soils. Their value as an invertebrate model is partly because of their extraordinary capacity to bioaccumulate toxic metals from the environment. Replication of this accumulation process in the laboratory has in the past relied on the amendment of organic food substrates through the addition of inorganic metal salts. However, the bioavailability of the metals when presented through doping regimes may differ from the bioavailability of metals in nature, because over time metals become biologically compartmentalised and form complexes with organic molecules. This study examines the differential bioavailability of Cd to the terrestrial isopod, Porcellio dilatatus, when presented as either a Cd-amended diet or pre-incorporated biologically into lettuce (Lactuca sativa). Isopods were either provided with lettuce contaminated superficially with Cd(NO{sub 3}){sub 2} or lettuce grown hydroponically in growth media containing 100 {mu}M Cd(NO{sub 3}){sub 2}. Assimilation efficiency of Cd was greater among isopods that were fed the amended diet (71%, S.E. = 7%), than among isopods feeding on biologically contaminated lettuce (52%, S.E. = 5%) and demonstrates that speciation of Cd is likely to influence the rate of Cd assimilation and accumulation in a laboratory test.

  12. Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models

    Science.gov (United States)

    Anderson, Thomas R.; Hessen, Dag O.; Mitra, Aditee; Mayor, Daniel J.; Yool, Andrew

    2013-09-01

    The performance of four contemporary formulations describing trophic transfer, which have strongly contrasting assumptions as regards the way that consumer growth is calculated as a function of food C:N ratio and in the fate of non-limiting substrates, was compared in two settings: a simple steady-state ecosystem model and a 3D biogeochemical general circulation model. Considerable variation was seen in predictions for primary production, transfer to higher trophic levels and export to the ocean interior. The physiological basis of the various assumptions underpinning the chosen formulations is open to question. Assumptions include Liebig-style limitation of growth, strict homeostasis in zooplankton biomass, and whether excess C and N are released by voiding in faecal pellets or via respiration/excretion post-absorption by the gut. Deciding upon the most appropriate means of formulating trophic transfer is not straightforward because, despite advances in ecological stoichiometry, the physiological mechanisms underlying these phenomena remain incompletely understood. Nevertheless, worrying inconsistencies are evident in the way in which fundamental transfer processes are justified and parameterised in the current generation of marine ecosystem models, manifested in the resulting simulations of ocean biogeochemistry. Our work highlights the need for modellers to revisit and appraise the equations and parameter values used to describe trophic transfer in marine ecosystem models.

  13. Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams

    Science.gov (United States)

    Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle; Mahler, Barbara J.; Van Metre, Peter C.

    2016-01-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  14. Assessing Lake Trophic Status: A Proportional Odds Logistic Regression Model

    Science.gov (United States)

    Lake trophic state classifications are good predictors of ecosystem condition and are indicative of both ecosystem services (e.g., recreation and aesthetics), and disservices (e.g., harmful algal blooms). Methods for classifying trophic state are based off the foundational work o...

  15. Trophic levels of fish species of commercial importance in the Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Camilo B García

    2011-09-01

    Full Text Available Ecological studies on commercial important fish species are of great value to support resource management issues. This study calculated trophic levels of those Colombian Caribbean fish species whose diet has been locally described. Usable diet data of 119 species resulted in 164 trophic level estimates. An ordinary regression model relating trophic level and fish size was formulated. The regression slope was positive and significantly different from zero (p<0.05 suggesting a scaling of trophic level with fish size. Both the list of trophic levels and the regression model should be of help in the formulation of trophic indicators and models of neotropical ecosystems. Rev. Biol. Trop. 59 (3: 1195-1203. Epub 2011 September 01.

  16. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants.

  17. Comparison of contaminants from different trophic levels and ecosystems

    DEFF Research Database (Denmark)

    Dietz, R.; Riget, F.; Cleemann, M.

    2000-01-01

    The present paper provides an overview of the priority contaminants and media from the Greenland part of the Arctic Monitoring and Assessment Program. Levels and accumulation patterns of heavy metals, POPs and a radionuclide (Cs-137) are compared from the terrestrial, freshwater and marine...... ecosystems. Of the nine compounds presented, seven (Cd, Hg, Se, Sigma PCB, Sigma DDT, Sigma HCH, HCB) increased in concentration towards higher trophic levels. For these contaminants the concentrations in soil and aquatic sediment were in the same order of magnitude, whereas the concentrations in marine...

  18. Trophic signatures of seabirds suggest shifts in oceanic ecosystems

    Science.gov (United States)

    Gagne, Tyler O.; Hyrenbach, K. David; Hagemann, Molly E.; Van Houtan, Kyle S.

    2018-01-01

    Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level–based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher–trophic level to lower–trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems. PMID:29457134

  19. Quantifying Trophic Interactions and Carbon Flow in Louisiana Salt Marshes Using Multiple Biomarkers

    Science.gov (United States)

    Polito, M. J.; Lopez-Duarte, P. C.; Olin, J.; Johnson, J. J.; Able, K.; Martin, C. W.; Fodrie, J.; Hooper-Bui, L. M.; Taylor, S.; Stouffer, P.; Roberts, B. J.; Rabalais, N. N.; Jensen, O.

    2017-12-01

    Salt marshes are critical habitats for many species in the northern Gulf of Mexico. However, given their complex nature, quantifying trophic linkages and the flow of carbon through salt marsh food webs is challenging. This gap in our understanding of food web structure and function limits our ability to evaluate the impacts of natural and anthropogenic stressors on salt marsh ecosystems. For example, 2010 Deepwater Horizon (DWH) oil spill had the potential to alter trophic and energy pathways. Even so, our ability to evaluate its effects on Louisiana salt marsh food webs was limited by a poor basis for comparison of the pre-spill baseline food web. To be better equipped to measure significant alterations in salt marsh ecosystems in the future, we quantified trophic interactions at two marsh sites in Barataria Bay, LA in May and October of 2015. Trophic structure and carbon flow across 52 species of saltmarsh primary producers and consumers were examined through a combination of three approaches: bulk tissue stable isotope analysis (δ13C, δ15N, δ34S), dietary fatty acid analysis (FAA), and compound-specific stable isotope analysis of essential amino acids (δ13C EAA). Bulk stable isotope analysis indicated similar trophic diversity between sites and seasons with the use of aquatic resources increasing concomitantly with trophic level. FAA and δ13C EAA biomarkers revealed that marsh organisms were largely divided into two groups: those that primarily derive carbon from terrestrial C4 grasses, and those that predominately derive carbon from a combination of phytoplankton and benthic microalgal sources. Differences in trophic structure and carbon flow were minimal between seasons and sites that were variably impacted by the DWH spill. These data on salt marsh ecosystem structure will be useful to inform future injury assessments and restoration initiatives.

  20. Modelling for an improved integrated multi-trophic aquaculture system for the production of highly valued marine species

    Directory of Open Access Journals (Sweden)

    Luana Granada

    2014-05-01

    Full Text Available Integrated multi-trophic aquaculture (IMTA is regarded as a suitable approach to limit aquaculture nutrients and organic matter outputs through biomitigation. Here, species from different trophic or nutritional levels are connected through water transfer. The co-cultured species are used as biofilters, and each level has its own independent commercial value, providing both economic and environmental sustainability. In order to better understand and optimize aquaculture production systems, dynamic modelling has been developed towards the use of models for analysis and simulation of aquacultures. Several models available determine the carrying capacity of farms and the environmental effects of bivalve and fish aquaculture. Also, in the last two decades, modelling strategies have been designed in order to predict the dispersion and deposition of organic fish farm waste, usually using the mean settling velocity of faeces and feed pellets. Cultured organisms growth, effects of light and temperature on algae growth, retention of suspended solids, biodegradation of nitrogen and wastewater treatment are examples of other modelled parameters in aquaculture. Most modelling equations have been developed for monocultures, despite the increasing importance of multi-species systems, such as polyculture and IMTA systems. The main reason for the development of multi-species models is to maximize the production and optimize species combinations in order to reduce the environmental impacts of aquaculture. Some multi-species system models are available, including from the polyculture of different species of bivalves with fish to more complex systems with four trophic levels. These can incorporate ecosystem models and use dynamic energy budgets for each trophic group. In the proposed IMTA system, the bioremediation potential of the marine seaweed Gracilaria vermiculophylla (nutrient removal performance and the Mediterranean filter-feeding polychaete Sabella

  1. PCBs and DDE, but not PBDEs, increase with trophic level and marine input in nestling bald eagles

    International Nuclear Information System (INIS)

    Hamish Elliott, Kyle; Cesh, Lillian S.; Dooley, Jessica A.; Letcher, Robert J.; Elliott, John E.

    2009-01-01

    Concentrations of persistent contaminants often vary widely among individuals within a population. We hypothesized that such variation was caused mainly by differences in diet (biomagnification) and in coastal systems by the tendency of marine systems to act as contaminant sinks. We examined the relationship between contaminant concentrations and stable isotope ratios in nestling plasma from an apex predator with a particularly broad diet. Our study included freshwater, estuarine, inshore and pelagic breeding sites. Bald eagles (Haliaeetus leucocephalus) at the pelagic marine sites showed high trophic level and marine input, eagles at the freshwater sites showed low trophic level and marine input, and eagles at the estuarine and inshore marine sites had intermediate values. The relationship between trophic level and marine input may reflect longer food chains in pelagic compared to terrestrial ecosystems. ΣPCBs and DDE concentrations generally increased with trophic level and marine input, with the exception of the freshwater sites, while ΣPBDEs, hydroxylated-PBDEs and hydroxylated-PCBs increased with marine input, but were independent of trophic level. The relationships for ΣPCBs and DDE were often slightly stronger with marine input than trophic level, suggesting that oceanographic processes may be more important than trophic level. At freshwater locations, spatial variation may be more important than trophic level due to the heterogeneity of contaminant profiles between feeding locations (lakes, rivers, agricultural fields). Adults had similar isotopic composition to their chicks but higher contamination. Based on nests where prey composition was determined independently, isotopic enrichment values for nestling plasma were 1.6 ± 0.1 (δ 15 N) and - 0.4 ±0.2 (δ 13 C). We conclude that trophic level and marine influence are significant factors influencing PCB and DDE concentrations in eagles. However, trophic level in particular did not influence PBDEs

  2. Trophic modeling of Eastern Boundary Current Systems: a review and prospectus for solving the “Peruvian Puzzle”

    Directory of Open Access Journals (Sweden)

    Marc H. Taylor

    2013-04-01

    Full Text Available Eastern Boundary Current systems (EBCSs are among the most productive fishing areas in the world. High primary and secondary productivity supports a large biomass of small planktivorous pelagic fish, “small pelagics”, which are important drivers of production to the entire system whereby they can influence both higher and lower trophic levels. Environmental variability causes changes in plankton (food quality and quantity, which can affect population sizes, distribution and domi-nance among small pelagics. This variability combined with impacts from the fishery complicate the development of management strategies. Consequently, much recent work has been in the development of multispecies trophic models to better understand interdependencies and system dynamics. Despite similarities in extent, structure and primary productivity between EBCSs, the Peruvian system greatly differs from the others in the magnitude of fish catches, due mainly to the incredible production of the anchovy Engraulis ringens. This paper reviews literature concerning EBCSs dynamics and the state-of-the-art in the trophic modeling of EBCSs. The objective is to critically analyze the potential of this approach for system understanding and management and to adapt existing steady-state models of the Peruvian system for use in (future dynamic simulations. A guideline for the construction of trophodynamic models is presented taking into account the important trophic and environmental interactions. In consideration of the importance of small pelagics for the system dynamics, emphasis is placed on developing appropriate model compartmentalization and spatial delineation that facilitates dynamic simulations. Methods of model validation to historical changes are presented to support hypotheses concerning EBCS dynamics and as a critical step to the development of predictive models. Finally, the identification of direct model links to easily obtainable abiotic parameters is

  3. Trophic relationships in a tropical stream food web assessed by stable isotope analysis

    OpenAIRE

    Coat, Sophie; Monti, Dominique; Bouchon, Claude; Lepoint, Gilles

    2009-01-01

    1. Stable isotope analysis, coupled with dietary data from the literature, was used to investigate trophic patterns of freshwater fauna in a tropical stream food web (Guadeloupe, French West Indies). 2. Primary producers (biofilm, algae and plant detritus of terrestrial origin) showed distinct delta C-13 signatures, which allowed for a powerful discrimination of carbon sources. Both autochthonous (C-13-enriched signatures) and allochthonous (C-13-depleted signatures) resources enter the food ...

  4. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores.

    Science.gov (United States)

    Sonia Kéfi; Berlow, Eric L; Wieters, Evie A; Joppa, Lucas N; Wood, Spencer A; Brose, Ulrich; Navarrete, Sergio A

    2015-01-01

    How multiple types of non-trophic interactions map onto trophic networks in real communities remains largely unknown. We present the first effort, to our knowledge, describing a comprehensive ecological network that includes all known trophic and diverse non-trophic links among >100 coexisting species for the marine rocky intertidal community of the central Chilean coast. Our results suggest that non-trophic interactions exhibit highly nonrandom structures both alone and with respect to food web structure. The occurrence of different types of interactions, relative to all possible links, was well predicted by trophic structure and simple traits of the source and target species. In this community, competition for space and positive interactions related to habitat/refuge provisioning by sessile and/or basal species were by far the most abundant non-trophic interactions. If these patterns are orroborated in other ecosystems, they may suggest potentially important dynamic constraints on the combined architecture of trophic and non-trophic interactions. The nonrandom patterning of non-trophic interactions suggests a path forward for developing a more comprehensive ecological network theory to predict the functioning and resilience of ecological communities.

  5. Trophic interaction modifications: an empirical and theoretical framework.

    Science.gov (United States)

    Terry, J Christopher D; Morris, Rebecca J; Bonsall, Michael B

    2017-10-01

    Consumer-resource interactions are often influenced by other species in the community. At present these 'trophic interaction modifications' are rarely included in ecological models despite demonstrations that they can drive system dynamics. Here, we advocate and extend an approach that has the potential to unite and represent this key group of non-trophic interactions by emphasising the change to trophic interactions induced by modifying species. We highlight the opportunities this approach brings in comparison to frameworks that coerce trophic interaction modifications into pairwise relationships. To establish common frames of reference and explore the value of the approach, we set out a range of metrics for the 'strength' of an interaction modification which incorporate increasing levels of contextual information about the system. Through demonstrations in three-species model systems, we establish that these metrics capture complimentary aspects of interaction modifications. We show how the approach can be used in a range of empirical contexts; we identify as specific gaps in current understanding experiments with multiple levels of modifier species and the distributions of modifications in networks. The trophic interaction modification approach we propose can motivate and unite empirical and theoretical studies of system dynamics, providing a route to confront ecological complexity. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  6. Terrestrial and marine trophic pathways support young-of-year growth in a nearshore Arctic fish

    Science.gov (United States)

    von Biela, Vanessa R.; Zimmerman, Christian E.; Cohn, Brian R.; Welker, Jeffrey M.

    2013-01-01

    River discharge supplies nearshore communities with a terrestrial carbon source that is often reflected in invertebrate and fish consumers. Recent studies in the Beaufort Sea have documented widespread terrestrial carbon use among invertebrates, but only limited use among nearshore fish consumers. Here, we examine the carbon source and diet of rapidly growing young-of-year Arctic cisco (Coregonus autumnalis) using stable isotope values (δ13C and δ15N) from muscle and diet analysis (stomach contents) during a critical and previously unsampled life stage. Stable isotope values (δ15N and δ13C) may differentiate between terrestrial and marine sources and integrate over longer time frames (weeks). Diet analysis provides species-specific information, but only from recent foraging (days). Average δ13C for all individuals was −25.7 ‰, with the smallest individuals possessing significantly depleted δ13C values indicative of a stronger reliance of terrestrial carbon sources as compared to larger individuals. Average δ15N for all individuals was 10.4 ‰, with little variation among individuals. As fish length increased, the proportion of offshore Calanus prey and neritic Mysis prey increased. Rapid young-of-year growth in Arctic cisco appears to use terrestrial carbon sources obtained by consuming a mixture of neritic and offshore zooplankton. Shifts in the magnitude or phenology of river discharge and the delivery of terrestrial carbon may alter the ecology of nearshore fish consumers.

  7. Implications of Uncertainty in Fossil Fuel Emissions for Terrestrial Ecosystem Modeling

    Science.gov (United States)

    King, A. W.; Ricciuto, D. M.; Mao, J.; Andres, R. J.

    2017-12-01

    Given observations of the increase in atmospheric CO2, estimates of anthropogenic emissions and models of oceanic CO2 uptake, one can estimate net global CO2 exchange between the atmosphere and terrestrial ecosystems as the residual of the balanced global carbon budget. Estimates from the Global Carbon Project 2016 show that terrestrial ecosystems are a growing sink for atmospheric CO2 (averaging 2.12 Gt C y-1 for the period 1959-2015 with a growth rate of 0.03 Gt C y-1 per year) but with considerable year-to-year variability (standard deviation of 1.07 Gt C y-1). Within the uncertainty of the observations, emissions estimates and ocean modeling, this residual calculation is a robust estimate of a global terrestrial sink for CO2. A task of terrestrial ecosystem science is to explain the trend and variability in this estimate. However, "within the uncertainty" is an important caveat. The uncertainty (2σ; 95% confidence interval) in fossil fuel emissions is 8.4% (±0.8 Gt C in 2015). Combined with uncertainty in other carbon budget components, the 2σ uncertainty surrounding the global net terrestrial ecosystem CO2 exchange is ±1.6 Gt C y-1. Ignoring the uncertainty, the estimate of a general terrestrial sink includes 2 years (1987 and 1998) in which terrestrial ecosystems are a small source of CO2 to the atmosphere. However, with 2σ uncertainty, terrestrial ecosystems may have been a source in as many as 18 years. We examine how well global terrestrial biosphere models simulate the trend and interannual variability of the global-budget estimate of the terrestrial sink within the context of this uncertainty (e.g., which models fall outside the 2σ uncertainty and in what years). Models are generally capable of reproducing the trend in net terrestrial exchange, but are less able to capture interannual variability and often fall outside the 2σ uncertainty. The trend in the residual carbon budget estimate is primarily associated with the increase in atmospheric CO2

  8. Pre- and post-hatch trophic egg production in the subsocial burrower bug, Canthophorus niveimarginatus (Heteroptera: Cydnidae)

    Science.gov (United States)

    Filippi, Lisa; Baba, Narumi; Inadomi, Koichi; Yanagi, Takao; Hironaka, Mantaro; Nomakuchi, Shintaro

    2009-02-01

    In recent years, three terrestrial bugs, Adomerus triguttulus and Sehirus cinctus (Cydnidae) and the closely related Parastrachia japonensis (Parastrachiidae), have been the focus of several fascinating studies because of the remarkable, extensive parental care they were found to display. This care includes egg and nymph guarding, production of trophic eggs, unfertilized, low cost eggs that are used as food by newly hatched nymphs, and progressive provisioning of the host seed. In this study, we have investigated yet a third related Asian cydnid, Canthophorus niveimarginatus, with regard to the possible occurrence of some or all of these complex traits in order to assess how widespread these maternal investment patterns are in this group of insects and to better understand the implications of their manifestations from an evolutionary context. Manipulative experiments were carried out in the lab to determine whether females provision nests. Observational and egg removal studies were carried out to determine whether trophic eggs are produced, and, if they are, their possible impact on nymphal success. The findings revealed that C. niveimarginatus does, in fact, progressively provision young, and this species also displays all of the other behaviors associated with extended parental care in subsocial insects. Moreover, unlike the other two related species, which place trophic eggs on the surface of the original egg mass, C. niveimarginatus produces both pre- and post-hatch trophic eggs. Nymphs deprived of access to post-hatch trophic eggs had significantly lower body weight and survival rate than those that fed on them. To our knowledge, this is the first time the production of both pre- and post-hatch trophic eggs has been demonstrated in insects outside the Hymenoptera. In this paper, we qualitatively and quantitatively demonstrate the provisioning behavior and patterns of trophic egg production in C. niveimarginatus. When and how trophic eggs are produced and

  9. Successional changes in trophic interactions support a mechanistic model of post-fire population dynamics.

    Science.gov (United States)

    Smith, Annabel L

    2018-01-01

    Models based on functional traits have limited power in predicting how animal populations respond to disturbance because they do not capture the range of demographic and biological factors that drive population dynamics, including variation in trophic interactions. I tested the hypothesis that successional changes in vegetation structure, which affected invertebrate abundance, would influence growth rates and body condition in the early-successional, insectivorous gecko Nephrurus stellatus. I captured geckos at 17 woodland sites spanning a succession gradient from 2 to 48 years post-fire. Body condition and growth rates were analysed as a function of the best-fitting fire-related predictor (invertebrate abundance or time since fire) with different combinations of the co-variates age, sex and location. Body condition in the whole population was positively affected by increasing invertebrate abundance and, in the adult population, this effect was most pronounced for females. There was strong support for a decline in growth rates in weight with time since fire. The results suggest that increased early-successional invertebrate abundance has filtered through to a higher trophic level with physiological benefits for insectivorous geckos. I integrated the new findings about trophic interactions into a general conceptual model of mechanisms underlying post-fire population dynamics based on a long-term research programme. The model highlights how greater food availability during early succession could drive rapid population growth by contributing to previously reported enhanced reproduction and dispersal. This study provides a framework to understand links between ecological and physiological traits underlying post-fire population dynamics.

  10. Trophic flow structure of a neotropical estuary in northeastern Brazil and the comparison of ecosystem model indicators of estuaries

    Science.gov (United States)

    Lira, Alex; Angelini, Ronaldo; Le Loc'h, François; Ménard, Frédéric; Lacerda, Carlos; Frédou, Thierry; Lucena Frédou, Flávia

    2018-06-01

    We developed an Ecopath model for the Estuary of Sirinhaém River (SIR), a small-sized system surrounded by mangroves, subject to high impact, mainly by the sugar cane and other farming industries in order to describe the food web structure and trophic interactions. In addition, we compared our findings with those of 20 available Ecopath estuarine models for tropical, subtropical and temperate regions, aiming to synthesize the knowledge on trophic dynamics and provide a comprehensive analysis of the structures and functioning of estuaries. Our model consisted of 25 compartments and its indicators were within the expected range for estuarine areas around the world. The average trophic transfer efficiency for the entire system was 11.8%, similar to the theoretical value of 10%. The Keystone Index and MTI (Mixed Trophic Impact) analysis indicated that the snook (Centropomus undecimalis and Centropomus parallelus) and jack (Caranx latus and Caranx hippos) are considered as key resources in the system, revealing their high impact in the food web. Both groups have a high ecological and commercial relevance, despite the unregulated fisheries. As result of the comparison of ecosystem model indicators in estuaries, differences in the ecosystem structure from the low latitude zones (tropical estuaries) to the high latitude zones (temperate system) were noticed. The structure of temperate and sub-tropical estuaries is based on high flows of detritus and export, while tropical systems have high biomass, respiration and consumption rates. Higher values of System Omnivory Index (SOI) and Overhead (SO) were observed in the tropical and subtropical estuaries, denoting a more complex food chain. Globally, none of the estuarine models were classified as fully mature ecosystems, although the tropical ecosystems were considered more mature than the subtropical and temperate ecosystems. This study is an important contribution to the trophic modeling of estuaries, which may also help

  11. Multiple attractors and boundary crises in a tri-trophic food chain.

    NARCIS (Netherlands)

    Boer, M.P.; Kooi, B.W.; Kooijman, S.A.L.M.

    2001-01-01

    The asymptotic behaviour of a model of a tri-trophic food chain in the chemostat is analysed in detail. The Monod growth model is used for all trophic levels, yielding a non-linear dynamical system of four ordinary differential equations. Mass conservation makes it possible to reduce the dimension

  12. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem; Allen, Julian Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason T.; Tsiaras, Kostas P.; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle C.; Daewel, Ute; Wakelin, Sarah L.; Machú , Eric; Pushpadas, Dhanya; Butenschö n, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris J M; Garç on, Vé ronique C.; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A.; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-01-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  13. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem

    2014-05-07

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  14. Biomass changes and trophic amplification of plankton in a warmer ocean.

    Science.gov (United States)

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  15. V.I. Vernadskiy study of biochemical cycles and role of biocenoses trophic structure in their stabilization under background conditions and at chemical pollution

    International Nuclear Information System (INIS)

    Bezel, V.S.; Bel'skij, E.A.; Bel'skaya, E.A.; Zhujkova, T.V.; Mukhacheva, S.V.; Nesterkov, A.V.

    2008-01-01

    In the present report the participation of different trophic belonging organisms in biogeochemical cycles at the pollution of the environment by aerogenic emissions of metallurgical enterprises are discussed. Investigation in and around southern taiga of Middle Ural in liable to heavy metals contamination areas was made. Several areas with different level of soil contamination from background uncontaminated (at a distance 20-30 km from emission source) to buffer (4-7 km) and impact (1-2 km) were separated out. Mechanism of chemical elements accumulation by different components of terrestrial ecosystems that the aggregate of trophic levels present: depository environment (soil), producers (plants), consumers of several levels (phytophages, zoophages) was studied. Accumulation of chemical elements was considered in biomass of trophic levels both with content of chemical elements in the soil on a regional background level and by their intensive contamination. The findings enable to evaluate the quantity of chemical elements involved in biogenic cycles by different trophic belonging organisms

  16. Modeling and estimation of a low degree geopotential model from terrestrial gravity data

    Science.gov (United States)

    Pavlis, Nikolaos K.

    1988-01-01

    The development of appropriate modeling and adjustment procedures for the estimation of harmonic coefficients of the geopotential, from surface gravity data was studied, in order to provide an optimum way of utilizing the terrestrial gravity information in combination solutions currently developed at NASA/Goddard Space Flight Center, for use in the TOPEX/POSEIDON mission. The mathematical modeling was based on the fundamental boundary condition of the linearized Molodensky boundary value problem. Atmospheric and ellipsoidal corrections were applied to the surface anomalies. Terrestrial gravity solutions were found to be in good agreement with the satellite ones over areas which are well surveyed (gravimetrically), such as North America or Australia. However, systematic differences between the terrestrial only models and GEMT1, over extended regions in Africa, the Soviet Union, and China were found. In Africa, gravity anomaly differences on the order of 20 mgals and undulation differences on the order of 15 meters, over regions extending 2000 km in diameter, occur. Comparisons of the GEMT1 implied undulations with 32 well distributed Doppler derived undulations gave an RMS difference of 2.6 m, while corresponding comparison with undulations implied by the terrestrial solution gave RMS difference on the order of 15 m, which implies that the terrestrial data in that region are substantially in error.

  17. Isotopic determination of the trophic ecology of a ubiquitous key species - The crab Liocarcinus depurator (Brachyura: Portunidae)

    Science.gov (United States)

    Careddu, Giulio; Calizza, Edoardo; Costantini, Maria Letizia; Rossi, Loreto

    2017-05-01

    Knowledge of the trophic ecology of predators is key to understanding how they affect food web structure and ecosystem functioning. The harbour crab Liocarcinus depurator (L.) (Brachyura: Portunidae) is one of the most abundant decapod species in soft-bottom areas of the Mediterranean Sea and northeast Atlantic Ocean. It is both a common prey and predator of commercial and non-commercial marine species and its predation pressure appears to have little effect on the subtidal community assemblage. However, there are few studies of its diet and little is known about its role in mediating energy flows in marine ecosystems. In this study, carbon (δ13C) and nitrogen (δ15N) stable isotope analysis (SIA) and Bayesian analytical tools were used to characterise the trophic niche of L. depurator and to quantify the most important prey supporting this species under various environmental conditions. Specimens of L. depurator, their potential prey and basal resources were collected from two different subtidal areas of the Gulf of Gaeta, one affected by human activities (north side) and the other seasonally influenced by freshwater inputs originating from the River Garigliano (south side). While there were differences between the two sampling areas in terms of the abundance and δ15N and δ13C values of the macrobenthic prey community, no differences in the δ15N values and trophic position of L. depurator were observed. Specifically, Bayesian mixing models showed Polychaeta Errantia as the main source of crab diets in both areas. The observed differences in the δ13C values and the analysis of trophic pathways also indicate that the terrestrial organic matter originating from the discharge of the River Garigliano was integrated along the food web up to L. depurator. Although this species is usually considered an opportunistic feeder, it appears to be highly selective and its trophic habits did not influence food web topology, which in contrast was found to be strongly

  18. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  19. Influence of trophic level, and calcification on the uptake of plutonium observed, in situ, in marine organisms

    International Nuclear Information System (INIS)

    Guary, J.C.; Fraizier, A.

    1977-01-01

    A study has been made of the transport mechanisms of plutonium in the marine environment. This work has shown that a relationship exists between the concentration of plutonium in marine plant and animal species and the trophic level of these organisms; this relation is evidenced by a decrease in the concentration of the radioelement as the trophic level of the species increases. Three modes of transport - via water, sediment and food - have been studied. Direct contact between sea water and organisms, the principal mode of transfer to marine species belonging to lower trophic levels (the primary producers and consumers), seems to play an important role in the uptake of plutonium. On the other hand, the sediment in contact with which certain species live does not appear to constitute an important transfer vector. The trophic relations between animal species lead one to assume that plutonium is transported also via the food-chain without necessarily implying that there is a concentration of the radioelement along the whole chain leading from the primary producers to the tertiary consumers. In addition, it has been possible to establish that there is a relation between the rate of plutonium uptake and the calcified structures of certain marine species comparable to that which exists in the bone tissue of terrestrial mammals. (author)

  20. Trophic transfer of pyrene metabolites between aquatic invertebrates

    International Nuclear Information System (INIS)

    Carrasco Navarro, V.; Leppänen, M.T.; Kukkonen, J.V.K.; Godoy Olmos, S.

    2013-01-01

    The trophic transfer of pyrene metabolites was studied using Gammarus setosus as a predator and the invertebrates Lumbriculus variegatus and Chironomus riparius as prey. The results obtained by liquid scintillation counting confirmed that the pyrene metabolites produced by the aquatic invertebrates L. variegatus and C. riparius were transferred to G. setosus through the diet. More detailed analyses by liquid chromatography discovered that two of the metabolites produced by C. riparius appeared in the chromatograms of G. setosus tissue extracts, proving their trophic transfer. These metabolites were not present in chromatograms of G. setosus exclusively exposed to pyrene. The present study supports the trophic transfer of PAH metabolites between benthic macroinvertebrates and common species of an arctic amphipod. As some PAH metabolites are more toxic than the parent compounds, the present study raises concerns about the consequences of their trophic transfer and the fate and effects of PAHs in natural environments. - Highlights: ► The trophic transfer of pyrene metabolites between invertebrates was evaluated. ► Biotransformation of pyrene by L. variegatus and C. riparius is different. ► Metabolites produced by L. variegatus and C. riparius are transferred to G. setosus. ► Specifically, two metabolites produced by C. riparius were transferred. - Some of the pyrene metabolites produced by the model invertebrates L. variegatus and C. riparius are transferred to G. setosus through the diet, proving their trophic transfer.

  1. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)

    Science.gov (United States)

    Glen E. Liston; Kelly Elder

    2006-01-01

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  2. Description of the East Brazil Large Marine Ecosystem using a trophic model

    Directory of Open Access Journals (Sweden)

    Kátia M.F. Freire

    2008-09-01

    Full Text Available The objective of this study was to describe the marine ecosystem off northeastern Brazil. A trophic model was constructed for the 1970s using Ecopath with Ecosim. The impact of most of the forty-one functional groups was modest, probably due to the highly reticulated diet matrix. However, seagrass and macroalgae exerted a strong positive impact on manatee and herbivorous reef fishes, respectively. A high negative impact of omnivorous reef fishes on spiny lobsters and of sharks on swordfish was observed. Spiny lobsters and swordfish had the largest biomass changes for the simulation period (1978-2000; tunas, other large pelagics and sharks showed intermediate rates of biomass decline; and a slight increase in biomass was observed for toothed cetaceans, large carnivorous reef fishes, and dolphinfish. Recycling was an important feature of this ecosystem with low phytoplankton-originated primary production. The mean transfer efficiency between trophic levels was 11.4%. The gross efficiency of the fisheries was very low (0.00002, probably due to the low exploitation rate of most of the resources in the 1970s. Basic local information was missing for many groups. When information gaps are filled, this model may serve more credibly for the exploration of fishing policies for this area within an ecosystem approach.

  3. Multi-trophic resilience of boreal lake ecosystems to forest fires.

    Science.gov (United States)

    Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R

    2014-05-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  4. Trophic niche of squids: Insights from isotopic data in marine systems worldwide

    Science.gov (United States)

    Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.

    2013-10-01

    Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.

  5. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    Science.gov (United States)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  6. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  7. Fish trophic structure in a first order stream of the Iguatemi River basin, Upper Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    Evaneide Nogueira Lopes

    2016-12-01

    Full Text Available We described the spatial distribution of fish trophic groups in the Água Boa Stream, MS, Brazil. Specimens were caught using electrofishing in the upper, intermediate and lower stretches of the stream, between March and November 2008. We analyzed 415 stomach contents of 24 species. Detritus/sediment and aquatic invertebrates were the main exploited resources. Ordination analysis categorized the species in six trophic groups. Aquatic invertivores showed the highest richness (10 species, followed by detritivores (08 species, omnivores (03 species, terrestrial invertivores (03 species, algivores (02 species and herbivore (01 species. Three trophic groups occurred in the upper stretch, six in the intermediate and five in the lower. Detritivores, omnivores and algivores showed the highest density, while detritivores and aquatic invertivores presented the highest biomass. Autochthonous resources were particularly important to the studied fish fauna, especially aquatic invertebrates, so, conservation actions reducing the simplification of the habitat by silting and recovering the riparian forest are essential to maintain the ichthyofauna of the Água Boa Stream.

  8. Competition influence in the segregation of the trophic niche of otariids: a case study using isotopic Bayesian mixing models in Galapagos pinnipeds.

    Science.gov (United States)

    Páez-Rosas, Diego; Rodríguez-Pérez, Mónica; Riofrío-Lazo, Marjorie

    2014-12-15

    The feeding success of predators is associated with the competition level for resources, and, thus, sympatric species are exposed to a potential trophic overlap. Isotopic Bayesian mixing models should provide a better understanding of the contribution of preys to the diet of predators and the feeding behavior of a species over time. The carbon and nitrogen isotopic signatures from pup hair samples of 93 Galapagos sea lions and 48 Galapagos fur seals collected between 2003 and 2009 in different regions (east and west) of the archipelago were analyzed. A PDZ Europa ANCA-GSL elemental analyzer interfaced with a PDZ Europa 20-20 continuous flow gas source mass spectrometer was employed. Bayesian models, SIAR and SIBER, were used to estimate the contribution of prey to the diet of predators, the niche breadth, and the trophic overlap level between the populations. Statistical differences in the isotopic values of both predators were observed over the time. The mixing model determined that Galapagos fur seals had a primarily teutophagous diet, whereas the Galapagos sea lions fed exclusively on fish in both regions of the archipelago. The SIBER analysis showed differences in the trophic niche between the two sea lion populations, with the western rookery of the Galapagos sea lion being the population with the largest trophic niche area. A trophic niche partitioning between Galapagos fur seals and Galapagos sea lions in the west of the archipelago is suggested by our results. At intraspecific level, the western population of the Galapagos sea lion (ZwW) showed higher trophic breadth than the eastern population, a strategy adopted by the ZwW to decrease the interspecific competition levels in the western region. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Modelling impacts of offshore wind farms on trophic web: the Courseulles-sur-Mer case study

    Science.gov (United States)

    Raoux, Aurore; Pezy, Jean-Philippe; Dauvin, Jean-Claude; Tecchio, samuele; Degraer, Steven; Wilhelmsson, Dan; Niquil, Nathalie

    2016-04-01

    The French government is planning the construction of three offshore wind farms in Normandy. These offshore wind farms will integrate into an ecosystem already subject to a growing number of anthropogenic disturbances such as transportation, fishing, sediment deposit, and sediment extraction. The possible effects of this cumulative stressors on ecosystem functioning are still unknown, but they could impact their resilience, making them susceptible to changes from one stable state to another. Understanding the behaviour of these marine coastal complex systems is essential in order to anticipate potential state changes, and to implement conservation actions in a sustainable manner. Currently, there are no global and integrated studies on the effects of construction and exploitation of offshore wind farms. Moreover, approaches are generally focused on the conservation of some species or groups of species. Here, we develop a holistic and integrated view of ecosystem impacts through the use of trophic webs modelling tools. Trophic models describe the interaction between biological compartments at different trophic levels and are based on the quantification of flow of energy and matter in ecosystems. They allow the application of numerical methods for the characterization of emergent properties of the ecosystem, also called Ecological Network Analysis (ENA). These indices have been proposed as ecosystem health indicators as they have been demonstrated to be sensitive to different impacts on marine ecosystems. We present here in detail the strategy for analysing the potential environmental impacts of the construction of the Courseulles-sur-Mer offshore wind farm (Bay of Seine) such as the reef effect through the use of the Ecopath with Ecosim software. Similar Ecopath simulations will be made in the future on the Le Tréport offshore wind farm site. Results will contribute to a better knowledge of the impacts of the offshore wind farms on ecosystems. They also allow to

  10. Major decline in marine and terrestrial animal consumption by brown bears (Ursus arctos).

    Science.gov (United States)

    Matsubayashi, Jun; Morimoto, Junko O; Tayasu, Ichiro; Mano, Tsutomu; Nakajima, Miyuki; Takahashi, Osamu; Kobayashi, Kyoko; Nakamura, Futoshi

    2015-03-17

    Human activities have had the strongest impacts on natural ecosystems since the last glacial period, including the alteration of interspecific relationships such as food webs. In this paper, we present a historical record of major alterations of trophic structure by revealing millennium-scale dietary shifts of brown bears (Ursus arctos) on the Hokkaido islands, Japan, using carbon, nitrogen, and sulfur stable isotope analysis. Dietary analysis of brown bears revealed that salmon consumption by bears in the eastern region of Hokkaido significantly decreased from 19% to 8%. In addition, consumption of terrestrial animals decreased from 56% to 5% in western region, and 64% to 8% in eastern region. These dietary shifts are likely to have occurred in the last approximately 100-200 years, which coincides with the beginning of modernisation in this region. Our results suggest that human activities have caused an alteration in the trophic structure of brown bears in the Hokkaido islands. This alteration includes a major decline in the marine-terrestrial linkage in eastern region, and a loss of indirect-interactions between bears and wolves, because the interactions potentially enhanced deer predation by brown bears.

  11. Short-chain chlorinated paraffins in terrestrial bird species inhabiting an e-waste recycling site in South China

    International Nuclear Information System (INIS)

    Luo, Xiao-Jun; Sun, Yu-Xin; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian

    2015-01-01

    Short-chain chlorinated paraffins (SCCPs) are under review by the Stockholm Convention on Persistent Organic Pollutants. Currently, limited data are available about SCCPs in terrestrial organisms. In the present study, SCCP concentration in the muscles of seven terrestrial bird species (n = 38) inhabiting an e-waste recycling area in South China was determined. This concentration varied from 620 to 17,000 ng/g lipid. Resident birds accumulated significantly higher SCCP concentrations than migratory birds (p < 0.01). Trophic magnification was observed for migratory bird species but not for resident, which was attributed to high heterogeneity of SCCP in e-waste area. Two different homologue group patterns were observed in avian samples. The first pattern was found in five bird species dominated by C 10 and C 11 congeners, while the second was found in the remains, which show rather equal abundance of homologue groups. This may be caused by two sources of SCCPs (local and e-waste) in the study area. - Highlights: • SCCPs in terrestrial bird species from an e-waste area are first reported. • Elevated SCCP level was found as compared with other regions. • Resident birds accumulated significantly higher SCCP levels than migratory birds. • Trophic magnification was observed for migratory but not for resident bird species. • Two homologue patterns were found among seven bird species. - SCCP concentration in terrestrial bird species inhabiting an e-waste site was first reported in this study

  12. From neurons to epidemics: How trophic coherence affects spreading processes

    Science.gov (United States)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  13. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  14. Invasive ants compete with and modify the trophic ecology of hermit crabs on tropical islands.

    Science.gov (United States)

    McNatty, Alice; Abbott, Kirsti L; Lester, Philip J

    2009-05-01

    Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to delta(15) N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in delta(15) N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in

  15. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    Science.gov (United States)

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  16. A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu

    2017-01-01

    In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of 'terrestrial ecosystem model' was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems. (author)

  17. Prey utilisation and trophic overlap between the non native mosquitofish and a native fish in two Mediterranean rivers

    Directory of Open Access Journals (Sweden)

    E. KALOGIANNI

    2014-04-01

    Full Text Available Non native freshwater fish species have been long implicated in the decline of native Mediterranean ichthyofauna, through hybridization, disease transmission, competition for food and habitat, predation and/or ecosystem alteration; our knowledge, however, on the underlying mechanisms of these ecological impacts remains very limited. To explore the potential for trophic competition between the widespread Eastern mosquitofish Gambusia holbrooki and its co-occurring native toothcarp Valencia letourneuxi we compared resource use, feeding strategies, trophic selectivities and diet niche overlap. For this purpose, we studied two populations of the two species from a freshwater and a brackish habitat respectively, characterized by different food resource availabilities. In both habitats, the mosquitofish consumed a greater diversity of invertebrates and preyed on terrestrial invertebrates more frequently than the native toothcarp. Furthermore, in the less diverse and less rich brackish habitat, the non native relied heavily on plant material to balance a decrease in animal prey consumption and modified its individual feeding strategy, whereas these adaptive changes were not apparent in the native species. Their diet overlapped, indicating trophic competition, but this overlap was affected by resource availability variation; in the freshwater habitat, there was limited overlap in their diet, whereas in the brackish habitat, their diets and prey selectivities converged and there was high overlap in resource use, indicative of intense interspecific trophic competition. Overall, it appears that the underlying mechanism of the putative negative impacts of the mosquitofish on the declining Corfu toothcarp is mainly trophic competition, regulated by resource variability, though there is also evidence of larvae predation by the mosquitofish.

  18. Reciprocal subsidies and food web pathways leading to chum salmon fry in a temperate marine-terrestrial ecotone.

    Science.gov (United States)

    Romanuk, Tamara N; Levings, Colin D

    2010-04-08

    Stable isotope analysis was used to determine the relative proportions of terrestrial and marine subsidies of carbon to invertebrates along a tidal gradient (low-intertidal, mid-intertidal, high-intertidal, supralittoral) and to determine the relative importance of terrestrial carbon in food web pathways leading to chum salmon fry Oncorhynchus keta (Walbaum) in Howe Sound, British Columbia. We found a clear gradient in the proportion of terrestrially derived carbon along the tidal gradient ranging from 68% across all invertebrate taxa in the supralittoral to 25% in the high-intertidal, 20% in the mid-intertidal, and 12% in the low-intertidal. Stable isotope values of chum salmon fry indicated carbon contributions from both terrestrial and marine sources, with terrestrially derived carbon ranging from 12.8 to 61.5% in the muscle tissue of chum salmon fry (mean 30%). Our results provide evidence for reciprocal subsidies of marine and terrestrially derived carbon on beaches in the estuary and suggest that the vegetated supralittoral is an important trophic link in supplying terrestrial carbon to nearshore food webs.

  19. Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs.

    Science.gov (United States)

    Au, Sarah Y; Lee, Cindy M; Weinstein, John E; van den Hurk, Peter; Klaine, Stephen J

    2017-05-01

    To evaluate the process of trophic transfer of microplastics, it is important to consider various abiotic and biotic factors involved in their ingestion, egestion, bioaccumulation, and biomagnification. Toward this end, a review of the literature on microplastics has been conducted to identify factors influencing their uptake and absorption; their residence times in organisms and bioaccumulation; the physical effects of their aggregation in gastrointestinal tracts; and their potential to act as vectors for the transfer of other contaminants. Limited field evidence from higher trophic level organisms in a variety of habitats suggests that trophic transfer of microplastics may be a common phenomenon and occurs concurrently with direct ingestion. Critical research needs include standardizing methods of field characterization of microplastics, quantifying uptake and depuration rates in organisms at different trophic levels, quantifying the influence that microplastics have on the uptake and/or depuration of environmental contaminants among different trophic levels, and investigating the potential for biomagnification of microplastic-associated chemicals. More integrated approaches involving computational modeling are required to fully assess trophic transfer of microplastics. Integr Environ Assess Manag 2017;13:505-509. © 2017 SETAC. © 2017 SETAC.

  20. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Patricia Puerta

    Full Text Available Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla and sea surface temperature (SST, and trophic (prey density conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents

  1. Trophic diversity of Poznań Lakeland lakes

    Directory of Open Access Journals (Sweden)

    Dzieszko Piotr

    2015-06-01

    Full Text Available The main goal of the presented work is to determine the current trophic state of 31 lakes located in Poznań Lakeland. These lakes are included in the lake monitoring programme executed by the Voivodship Environmental Protection Inspectorate in Poznań. The place in the trophic classification for investigated lakes was determined as well as the relationships between their trophic state indices. The trophic state of investigated lakes in the research area is poor. More than a half of the investigated lakes are eutrophic. Depending on the factor that is taken into account the trophic state of investigated lakes differs radically.

  2. Platforms of the Nicaraguan Rise: Examples of the sensitivity of carbonate sedimentation to excess trophic resources

    Science.gov (United States)

    Hallock, Pamela; Hine, Albert C.; Vargo, Gabriel A.; Elrod, Jane A.; Jaap, Walter C.

    1988-12-01

    The Nicaraguan Rise is an active tectonic structure in the western Caribbean. Carbonate accumulation on its platforms has not kept pace with relative Holocene sea-level rise, despite a tropical location remote from terrigenous sedimentation. Trophic resources apparently exceed levels favoring coral-reef development because sponge-algal communities dominate the drowning western platforms, in contrast to mixed coral-algal benthos on Pedro Bank and well- developed coral reefs along the north coast of Jamaica. Concentrations of biotic pigments in sea-surface waters show a corresponding west-east gradient; oceanic waters flowing over the western banks carry nearly twice as much biotic pigment as oceanic waters north of Jamaica. Sources enriching the western Caribbean are terrestrial runoff, upwelling off northern South America, and topographic upwelling over the Nicaraguan Rise. That relatively modest levels of trophic resources can suppress coral-reef development holds important implications for understanding carbonate platform drownings in the geologic record.

  3. Modeling of nitrogen transformation in an integrated multi-trophic aquaculture (IMTA)

    Science.gov (United States)

    Silfiana; Widowati; Putro, S. P.; Udjiani, T.

    2018-03-01

    The dynamic model of nitrogen transformation in IMTA (Integrated Multi-Trophic Aquaculture) is purposed. IMTA is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in IMTA consisting of ammonia (NH3), Nitrite (NO2) and Nitrate (NO3). Nitrogen transformation of several processes, nitrification, assimilation, and volatilization. Numerical simulations are performed by providing initial parameters and values based on a review of previous research. The numerical results show that the rate of change in nitrogen concentration in IMTA decrease and reaches stable at different times.

  4. Trophic shifts of a generalist consumer in response to resource pulses.

    Directory of Open Access Journals (Sweden)

    Pei-Jen L Shaner

    2011-03-01

    Full Text Available Trophic shifts of generalist consumers can have broad food-web and biodiversity consequences through altered trophic flows and vertical diversity. Previous studies have used trophic shifts as indicators of food-web responses to perturbations, such as species invasion, and spatial or temporal subsidies. Resource pulses, as a form of temporal subsidies, have been found to be quite common among various ecosystems, affecting organisms at multiple trophic levels. Although diet switching of generalist consumers in response to resource pulses is well documented, few studies have examined if the switch involves trophic shifts, and if so, the directions and magnitudes of the shifts. In this study, we used stable carbon and nitrogen isotopes with a Bayesian multi-source mixing model to estimate proportional contributions of three trophic groups (i.e. producer, consumer, and fungus-detritivore to the diets of the White-footed mouse (Peromyscus leucopus receiving an artificial seed pulse or a naturally-occurring cicadas pulse. Our results demonstrated that resource pulses can drive trophic shifts in the mice. Specifically, the producer contribution to the mouse diets was increased by 32% with the seed pulse at both sites examined. The consumer contribution to the mouse diets was also increased by 29% with the cicadas pulse in one of the two grids examined. However, the pattern was reversed in the second grid, with a 13% decrease in the consumer contribution with the cicadas pulse. These findings suggest that generalist consumers may play different functional roles in food webs under perturbations of resource pulses. This study provides one of the few highly quantitative descriptions on dietary and trophic shifts of a key consumer in forest food webs, which may help future studies to form specific predictions on changes in trophic interactions following resource pulses.

  5. Is Bocourt’s Terrific Skink Really So Terrific? Trophic Myth and Reality

    Science.gov (United States)

    Jowers, Michael J.; Boistel, Renaud; Ineich, Ivan

    2013-01-01

    Many scientists argue that our planet is undergoing a mass extinction event that is largely due to human influences. In this context, rediscoveries of species presumed to be extinct are encouraging and of great potential interest. During a 2003 expedition to New Caledonia, Bocourt’s terrific skink, Phoboscincus bocourti, was unexpectedly rediscovered on a small islet by one of us. This skink species had been described from a single specimen collected around 1872 in New Caledonia. Since that time, however, no data on the species’ biology, trophic interactions, or role in the ecosystem have been collected, making it difficult to follow the established conservation plan. In this study, we used a multidisciplinary approach involving natural history, anatomy, morphology, genetics, and stable isotopes to elucidate the ecology of Bocourt’s terrific skink. Over the course of three different expeditions to the islet (total of 55 days across 2005 and 2012), we captured 4 individuals and observed another 4 individuals. The species’ dentition and trophic ecology suggest that it is a top predator in its ecosystem and a major consumer of small terrestrial reptiles. Its high degree of genetic relatedness to another New Caledonian skink, which has a broad distribution, suggests that P. bocourti underwent genetic isolation at a geographical remote location, where dispersal or colonization was highly improbable. Moreover, the lack of genetic variation among the four individuals we captured may imply that a unique lineage, characterized by few inter-island exchanges, exists on the islet. Bocourt’s terrific skink may be the largest terrestrial squamate predator alive in New Caledonia today. As a result, it is likely vulnerable to habitat modifications and especially the invasive rodents found on this islet. Further information is necessary to assess the conservation plans and practices in place as no concrete changes have been made since the species’ rediscovery almost 10

  6. Fish community reassembly after a coral mass mortality: higher trophic groups are subject to increased rates of extinction.

    Science.gov (United States)

    Alonso, David; Pinyol-Gallemí, Aleix; Alcoverro, Teresa; Arthur, Rohan

    2015-05-01

    Since Gleason and Clements, our understanding of community dynamics has been influenced by theories emphasising either dispersal or niche assembly as central to community structuring. Determining the relative importance of these processes in structuring real-world communities remains a challenge. We tracked reef fish community reassembly after a catastrophic coral mortality in a relatively unfished archipelago. We revisited the stochastic model underlying MacArthur and Wilson's Island Biogeography Theory, with a simple extension to account for trophic identity. Colonisation and extinction rates calculated from decadal presence-absence data based on (1) species neutrality, (2) trophic identity and (3) site-specificity were used to model post-disturbance reassembly, and compared with empirical observations. Results indicate that species neutrality holds within trophic guilds, and trophic identity significantly increases overall model performance. Strikingly, extinction rates increased clearly with trophic position, indicating that fish communities may be inherently susceptible to trophic downgrading even without targeted fishing of top predators. © 2015 John Wiley & Sons Ltd/CNRS.

  7. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    Directory of Open Access Journals (Sweden)

    Justin S Strong

    Full Text Available The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator. This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.

  8. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American...

  9. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American Carbon...

  10. Diet and trophic structure of the fish fauna in a subtropical ecosystem: impoundment effects

    Directory of Open Access Journals (Sweden)

    Rosilene Luciana Delariva

    Full Text Available This study examined the diet and trophic structure of the fish fauna, over temporal and spatial scales, as affected by the impoundment of the Iguaçu River in the region of Salto Caxias, Paraná State, Brazil. Sampling was conducted before (March 1997 - February 1998 and after the impoundment (March 1999 - February 2000, at four sampling sites. The stomach contents were analyzed by the volumetric method. The species could be organized in 10 trophic guilds: algivores, carcinophages, detritivores, herbivores, aquatic insectivores, terrestrial insectivores, invertivores, omnivores, piscivores, and planktivores; the first and last guilds were represented only in the post-impoundment period. Similarity patterns and feeding changes were summarized by a non-metric Multi-dimensional Scaling (nMDS analysis and statistically tested by a Permutational multivariate analysis of variance (PERMANOVA. Most species showed feeding changes, except for the piscivores and detritivores. These changes were related to the temporal factor (impoundment phases, such as reduced intake of benthic organisms and allochthonous food, which were usually replaced by resources from the reservoir itself (algae, microcrustaceans, and fish, simplifying the food spectrum of the fish fauna. A different indicator of food resources (IndVal corroborated these changes in the feeding of the species. The proportions of the trophic guilds evaluated based on the catch per unit of effort (CPUE and tested by ANOSIM were significantly different before and after the impoundment. Herbivores and piscivores were the guilds that contributed (SIMPER to these differences, especially the high increase in biomass of the piscivore guild after the impoundment. Variations in the abundance of trophic guilds were more directly related to changes in the feeding habits of the fish fauna than to increases in the number and biomass of the species that constitute these guilds.

  11. Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks.

    Science.gov (United States)

    Fröbisch, Nadia B; Fröbisch, Jörg; Sander, P Martin; Schmitz, Lars; Rieppel, Olivier

    2013-01-22

    The biotic recovery from Earth's most severe extinction event at the Permian-Triassic boundary largely reestablished the preextinction structure of marine trophic networks, with marine reptiles assuming the predator roles. However, the highest trophic level of today's marine ecosystems, i.e., macropredatory tetrapods that forage on prey of similar size to their own, was thus far lacking in the Paleozoic and early Mesozoic. Here we report a top-tier tetrapod predator, a very large (>8.6 m) ichthyosaur from the early Middle Triassic (244 Ma), of Nevada. This ichthyosaur had a massive skull and large labiolingually flattened teeth with two cutting edges indicative of a macropredatory feeding style. Its presence documents the rapid evolution of modern marine ecosystems in the Triassic where the same level of complexity as observed in today's marine ecosystems is reached within 8 My after the Permian-Triassic mass extinction and within 4 My of the time reptiles first invaded the sea. This find also indicates that the biotic recovery in the marine realm may have occurred faster compared with terrestrial ecosystems, where the first apex predators may not have evolved before the Carnian.

  12. Exploring global carbon turnover and radiocarbon cycling in terrestrial biosphere models

    Science.gov (United States)

    Graven, H. D.; Warren, H.

    2017-12-01

    The uptake of carbon into terrestrial ecosystems through net primary productivity (NPP) and the turnover of that carbon through various pathways are the fundamental drivers of changing carbon stocks on land, in addition to human-induced and natural disturbances. Terrestrial biosphere models use different formulations for carbon uptake and release, resulting in a range of values in NPP of 40-70 PgC/yr and biomass turnover times of about 25-40 years for the preindustrial period in current-generation models from CMIP5. Biases in carbon uptake and turnover impact simulated carbon uptake and storage in the historical period and later in the century under changing climate and CO2 concentration, however evaluating global-scale NPP and carbon turnover is challenging. Scaling up of plot-scale measurements involves uncertainty due to the large heterogeneity across ecosystems and biomass types, some of which are not well-observed. We are developing the modelling of radiocarbon in terrestrial biosphere models, with a particular focus on decadal 14C dynamics after the nuclear weapons testing in the 1950s-60s, including the impact of carbon flux trends and variability on 14C cycling. We use an estimate of the total inventory of excess 14C in the biosphere constructed by Naegler and Levin (2009) using a 14C budget approach incorporating estimates of total 14C produced by the weapons tests and atmospheric and oceanic 14C observations. By simulating radiocarbon in simple biosphere box models using carbon fluxes from the CMIP5 models, we find that carbon turnover is too rapid in many of the simple models - the models appear to take up too much 14C and release it too quickly. Therefore many CMIP5 models may also simulate carbon turnover that is too rapid. A caveat is that the simple box models we use may not adequately represent carbon dynamics in the full-scale models. Explicit simulation of radiocarbon in terrestrial biosphere models would allow more robust evaluation of biosphere

  13. Holistic assessment of Chwaka Bay's multi-gear fishery - Using a trophic modeling approach

    Science.gov (United States)

    Rehren, Jennifer; Wolff, Matthias; Jiddawi, Narriman

    2018-04-01

    East African coastal communities highly depend on marine resources for not just income but also protein supply. The multi-species, multi-gear nature of East African fisheries makes this type of fishery particularly difficult to manage, as there is a trade-off between maximizing total catch from all gears and species and minimizing overfishing of target species and the disintegration of the ecosystem. The use and spatio-temporal overlap of multiple gears in Chwaka Bay (Zanzibar) has led to severe conflicts between fishermen. There is a general concern of overfishing in the bay because of the widespread use of small mesh sizes and destructive gears such as dragnets and spear guns. We constructed an Ecopath food web model to describe the current trophic flow structure and fishing pattern of the bay. Based on this model, we explored the impact of different gears on the ecosystem and the fishing community in order to give advice for gear based management in the bay. Results indicate that Chwaka bay is a productive, shallow water system, with biomass concentrations around the first and second trophic level. The system is greatly bottom-up driven and dominated by primary producers and invertebrates. The trophic and network indicators as well as the community energetics characterize Chwaka Bay as relatively mature. Traps and dragnets have the strongest impact on the ecosystem and on the catches obtained by other gears. Both gears potentially destabilize the ecosystem by reducing the biomass of top-down controlling key species (including important herbivores of macroalgae). The dragnet fishery is the least profitable, but provides most jobs for the fishing community. Thus, a complete ban of dragnets in the bay would require the provision of alternative livelihoods. Due to the low resource biomass of fish in the bay and the indication of a loss of structural control of certain fish groups, Chwaka Bay does not seem to provide scope for further expansion of the fishery

  14. Terrestrial Microgravity Model and Threshold Gravity Simulation using Magnetic Levitation

    Science.gov (United States)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars. The paper will discuss experiments md modeling work to date in support of this project.

  15. A model of trophic flows in the northern Benguela upwelling system during the 1980s

    DEFF Research Database (Denmark)

    Shannon, L.J.; Jarre, Astrid

    1999-01-01

    A model of trophic flows through the northern Benguela between 1980 and 1989 was constructed using the ECOPATH approach. The model serves to close the temporal gap between models of the system for the 1970s and 1990s. The aim is to provide a workable model, with the intention of encouraging...... in the northern Benguela during the 1980s was high, comparable to that of the Peruvian system in the 1960s and almost double that of the northern Benguela during the 1970s. Horse mackerel and hake catches were both high, with fishing on hake being ecologically more expensive. Biomass of benthic producers, meio...

  16. Terrestrial Microgravity Model and Threshold Gravity Simulation sing Magnetic Levitation

    Science.gov (United States)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successiblly simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  17. Modelling of the radionuclide transport through terrestrial food chains

    International Nuclear Information System (INIS)

    Hanusik, V.

    1991-01-01

    The paper presents a terrestrial food chains model for computing potential human intake of radionuclides released into the atmosphere during normal NPP operation. Attention is paid to the choice of model parameter values. Results obtained by our approach are compared to those applied in current methodology. (orig.) [de

  18. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

    Science.gov (United States)

    Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett

    2015-01-01

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115

  19. Ecosystem regime shifts disrupt trophic structure.

    Science.gov (United States)

    Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K

    2018-01-01

    Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological

  20. Temporal variability (1997-2015) of trophic fish guilds and its relationships with El Niño events in a subtropical estuary

    Science.gov (United States)

    Possamai, Bianca; Vieira, João P.; Grimm, Alice M.; Garcia, Alexandre M.

    2018-03-01

    Global climatic phenomena like El Niño events are known to alter hydrological cycles and local abiotic conditions leading to changes in structure and dynamics of terrestrial and aquatic biological communities worldwide. Based on a long-term (19 years) standardized sampling of shallow water estuarine fishes, this study investigated the temporal variability in composition and dominance patterns of trophic guilds in a subtropical estuary (Patos Lagoon estuary, Southern Brazil) and their relationship with local and regional driving forces associated with moderate (2002-2003 and 2009-2010) and very strong (1997-1998 and 2015-2016) El Niño events. Fish species were classified into eight trophic guilds (DTV detritivore, HVP herbivore-phytoplankton, HVM macroalgae herbivore, ISV insectivore, OMN omnivore, PSV piscivore, ZBV zoobenthivore and ZPL zooplanktivore) and their abundances were correlated with environmental factors. Canonical correspondence analysis revealed that less dominant (those comprising water transparency occurring mostly during non-El Niño conditions. In contrast, ZBV's abundance was not correlated with contrasting environmental conditions, but rather, had higher association with samples characterized by intermediate environmental values. Overall, these findings show that moderate and very strong El Niño events did not substantially disrupt the dominance patterns among trophic fish guilds in the estuary. Rather, they increased trophic estuarine diversity by flushing freshwater fishes with distinct feeding habits into the estuary.

  1. Trophic redundancy reduces vulnerability to extinction cascades.

    Science.gov (United States)

    Sanders, Dirk; Thébault, Elisa; Kehoe, Rachel; Frank van Veen, F J

    2018-03-06

    Current species extinction rates are at unprecedentedly high levels. While human activities can be the direct cause of some extinctions, it is becoming increasingly clear that species extinctions themselves can be the cause of further extinctions, since species affect each other through the network of ecological interactions among them. There is concern that the simplification of ecosystems, due to the loss of species and ecological interactions, increases their vulnerability to such secondary extinctions. It is predicted that more complex food webs will be less vulnerable to secondary extinctions due to greater trophic redundancy that can buffer against the effects of species loss. Here, we demonstrate in a field experiment with replicated plant-insect communities, that the probability of secondary extinctions is indeed smaller in food webs that include trophic redundancy. Harvesting one species of parasitoid wasp led to secondary extinctions of other, indirectly linked, species at the same trophic level. This effect was markedly stronger in simple communities than for the same species within a more complex food web. We show that this is due to functional redundancy in the more complex food webs and confirm this mechanism with a food web simulation model by highlighting the importance of the presence and strength of trophic links providing redundancy to those links that were lost. Our results demonstrate that biodiversity loss, leading to a reduction in redundant interactions, can increase the vulnerability of ecosystems to secondary extinctions, which, when they occur, can then lead to further simplification and run-away extinction cascades. Copyright © 2018 the Author(s). Published by PNAS.

  2. Potential Applications of Gosat Based Carbon Budget Products to Refine Terrestrial Ecosystem Model

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2011-12-01

    Estimation of carbon exchange in terrestrial ecosystem associates with difficulties due to complex entanglement of physical and biological processes: thus, the net ecosystem productivity (NEP) estimated from simulation often differs among process-based terrestrial ecosystem models. In addition to complexity of the system, validation can only be conducted in a point scale since reliable observation is only available from ground observations. With a lack of large spatial data, extension of model simulation to a global scale results in significant uncertainty in the future carbon balance and climate change. Greenhouse gases Observing SATellite (GOSAT), launched by the Japanese space agency (JAXA) in January, 2009, is the 1st operational satellite promised to deliver the net land-atmosphere carbon budget to the terrestrial biosphere research community. Using that information, the model reproducibility of carbon budget is expected to improve: hence, gives a better estimation of the future climate change. This initial analysis is to seek and evaluate the potential applications of GOSAT observation toward the sophistication of terrestrial ecosystem model. The present study was conducted in two processes: site-based analysis using eddy covariance observation data to assess the potential use of terrestrial carbon fluxes (GPP, RE, and NEP) to refine the model, and extension of the point scale analysis to spatial using Carbon Tracker product as a prototype of GOSAT product. In the first phase of the experiment, it was verified that an optimization routine adapted to a terrestrial model, Biome-BGC, yielded the improved result with respect to eddy covariance observation data from AsiaFlux Network. Spatial data sets used in the second phase were consists of GPP from empirical algorithm (e.g. support vector machine), NEP from Carbon Tracker, and RE from the combination of these. These spatial carbon flux estimations was used to refine the model applying the exactly same

  3. Influence of dispersants on trophic transfer of petroleum hydrocarbons in a marine food chain

    International Nuclear Information System (INIS)

    Wolfe, M. F.; Schwartz, G. J. B.; Singaram, S.; Tjeerdema, R. S.

    1997-01-01

    Experiments were conducted to determine the impact of dispersing agents on petroleum hydrocarbons (PH) bioavailability and trophic transfer in primary levels of a marine food chain. Uptake, bioaccumulation and metabolic transformation of a model PH, ( 1 4C)naphthalene, were measured and compared with Prudhoe Bay Crude Oil (PBCO) dispersed with Corexit 9527, and undispersed preparations of PBCO. The model food chain consisted of a primary algae producer and a primary rotifer consumer. Results showed that uptake of naphthalene increased significantly in the presence of a dispersant in algae. A significant increase in uptake was also recorded in rotifers via trophic transfer. Trophic transfer played a significant, sometimes even dominant, role in uptake and bioaccumulation. 27 refs., 6 figs

  4. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology

    Directory of Open Access Journals (Sweden)

    Nicholas E.C. Fleming

    2015-07-01

    Full Text Available Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ13C and δ15N stable isotope values, we examined: (1 whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2 Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3 When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ15N (trophic position were evident between all three species, with size-based and temporal shifts in δ15N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous

  5. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology.

    Science.gov (United States)

    Fleming, Nicholas E C; Harrod, Chris; Newton, Jason; Houghton, Jonathan D R

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ (13)C and δ (15)N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ (15)N (trophic position) were evident between all three species, with size-based and temporal shifts in δ (15)N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions

  6. Hidden dental diversity in the oldest terrestrial apex predator Dimetrodon.

    Science.gov (United States)

    Brink, Kirstin S; Reisz, Robert R

    2014-01-01

    Paleozoic sphenacodontid synapsids are the oldest known fully terrestrial apex predators. Dimetrodon and other sphenacodontids are the first terrestrial vertebrates to have strong heterodonty, massive skulls and well-developed labio-lingually compressed and recurved teeth with mesial and distal cutting edges (carinae). Here we reveal that the dentition of Dimetrodon and other sphenacodontids is diverse. Tooth morphology includes simple carinae with smooth cutting edges and elaborate enamel features, including the first occurrence of cusps and true denticles (ziphodonty) in the fossil record. A time-calibrated phylogenetic analysis indicates that changes in dental morphology occur in the absence of any significant changes in skull morphology, suggesting that the morphological change is associated with changes in feeding style and trophic interactions in these ecosystems. In addition, the available evidence indicates that ziphodonty evolved for the first time in the largest known species of the genus Dimetrodon and independently from the ziphodont teeth observed in some therapsids.

  7. Measurement Axis Searching Model for Terrestrial Laser Scans Registration

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2016-01-01

    Full Text Available Nowadays, terrestrial Lidar scans can cover rather a large area; the point densities are strongly varied because of the line-of-sight measurement principle in potential overlaps with scans taken from different viewpoints. Most of the traditional methods focus on registration algorithm and ignore searching model. Sometimes the traditional methods are directly used to align two point clouds; a large critically unsolved problem of the large biases will be created in areas distant from the overlaps while the local overlaps are often aligned well. So a novel measurement axis searching model (MASM has been proposed in this paper. The method includes four steps: (1 the principal axis fitting, (2 the measurement axis generation, (3 low-high-precision search, and (4 result generation. The principal axis gives an orientation to the point cloud; the search scope is limited by the measurement axis. The point cloud orientation can be adjusted gradually until the achievement of the global optimum using low- and high-precision search. We perform some experiments with simulated point clouds and real terrestrial laser scans. The results of simulated point clouds have shown the processing steps of our method, and the results of real terrestrial laser scans have shown the sensitivity of the approach with respect to the indoor and outdoor scenes.

  8. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide.

    Science.gov (United States)

    Kissling, Wilm Daniel; Dalby, Lars; Fløjgaard, Camilla; Lenoir, Jonathan; Sandel, Brody; Sandom, Christopher; Trøjelsgaard, Kristian; Svenning, Jens-Christian

    2014-07-01

    Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species' evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals ("MammalDIET"). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external

  9. The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    DEFF Research Database (Denmark)

    Douglas, Thomas A.; Loseto, Lisa L.; MacDonald, Robie W.

    2012-01-01

    the fate of Hg in most ecosystems, and the role of trophic processes in controlling Hg in higher order animals are also included. Case studies on Eastern Beaufort Sea beluga (Delphinapterus leucas) and landlocked Arctic char (Salvelinus alpinus) are presented as examples of the relationship between...... into non-biological archives is also addressed. The review concludes by identifying major knowledge gaps in our understanding, including: (1) the rates of Hg entry into marine and terrestrial ecosystems and the rates of inorganic and MeHg uptake by Arctic microbial and algal communities; (2...

  10. Influence of Climate Change and Trophic Coupling across Four Trophic Levels in the Celtic Sea

    Science.gov (United States)

    Lauria, Valentina; Attrill, Martin J.; Pinnegar, John K.; Brown, Andrew; Edwards, Martin; Votier, Stephen C.

    2012-01-01

    Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect ‘bottom-up’ climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986–2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66±0.02°C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = −0.305±0.125; 1-group: p = 0.04, slope = −0.410±0.193). Seabird demographics showed complex species–specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314±0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = −0.144±0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales. PMID:23091621

  11. Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.

    Directory of Open Access Journals (Sweden)

    Valentina Lauria

    Full Text Available Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO, the decadal mean Sea Surface Temperature (SST in the Celtic Sea increased by 0.66 ± 0.02 °C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group and spring SST (0-group: p = 0.02, slope = -0.305 ± 0.125; 1-group: p = 0.04, slope = -0.410 ± 0.193. Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 ± 0.014 as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 ± 0.05. Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea, emphasizing the need for more research at regional scales.

  12. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the

  13. Hexabromocyclododecane in terrestrial passerine birds from e-waste, urban and rural locations in the Pearl River Delta, South China: Levels, biomagnification, diastereoisomer- and enantiomer-specific accumulation

    International Nuclear Information System (INIS)

    Sun Yuxin; Luo Xiaojun; Mo Ling; He Mingjing; Zhang Qiang; Chen Shejun; Zou Fasheng; Mai Bixian

    2012-01-01

    Diastereoisomers and enantiomers of hexabromocyclododecane (HBCD) were determined in muscle and stomach contents of three terrestrial passerine birds from e-waste, urban and rural locations in South China. The highest HBCD concentration was found at the urban site, followed by the e-waste site, suggesting that HBCD was linked to urbanization and industrialization, as well as e-waste recycling activities. Trophic magnification for α-HBCD was observed in the terrestrial food chain. Diastereisomeric pattern in birds showed the predominance of α-isomer, with a minor contribution of γ-isomer. The enantiomeric analysis revealed a preferential enrichment of (−)-α-HBCD and (+)-γ-HBCD. The similarity in enantiomeric fractions of HBCD isomers between muscle and stomach contents of birds suggested that dietary uptake may be responsible for the observed nonracemic distribution of HBCD isomers in the studied birds although in vivo enantioselective biotic processes cannot be ruled out. - Highlights: ► HBCD concentrations in three terrestrial passerine birds and their stomach contents were determined. ► Biomagnification and trophic magnification for α-HBCD was found. ► A preferential enrichment of (−)-α-HBCD and (+)-γ-HBCD were found in birds. ► Diet rather than in vivo biotic processes contributed to the observed nonracemic distribution of HBCD isomers. - Enantiomer-specific accumulation of hexabromocyclododecane in terrestrial passerine birds in South China was demonstrated.

  14. A multi-model assessment of terrestrial biosphere model data needs

    Science.gov (United States)

    Gardella, A.; Cowdery, E.; De Kauwe, M. G.; Desai, A. R.; Duveneck, M.; Fer, I.; Fisher, R.; Knox, R. G.; Kooper, R.; LeBauer, D.; McCabe, T.; Minunno, F.; Raiho, A.; Serbin, S.; Shiklomanov, A. N.; Thomas, A.; Walker, A.; Dietze, M.

    2017-12-01

    Terrestrial biosphere models provide us with the means to simulate the impacts of climate change and their uncertainties. Going beyond direct observation and experimentation, models synthesize our current understanding of ecosystem processes and can give us insight on data needed to constrain model parameters. In previous work, we leveraged the Predictive Ecosystem Analyzer (PEcAn) to assess the contribution of different parameters to the uncertainty of the Ecosystem Demography model v2 (ED) model outputs across various North American biomes (Dietze et al., JGR-G, 2014). While this analysis identified key research priorities, the extent to which these priorities were model- and/or biome-specific was unclear. Furthermore, because the analysis only studied one model, we were unable to comment on the effect of variability in model structure to overall predictive uncertainty. Here, we expand this analysis to all biomes globally and a wide sample of models that vary in complexity: BioCro, CABLE, CLM, DALEC, ED2, FATES, G'DAY, JULES, LANDIS, LINKAGES, LPJ-GUESS, MAESPA, PRELES, SDGVM, SIPNET, and TEM. Prior to performing uncertainty analyses, model parameter uncertainties were assessed by assimilating all available trait data from the combination of the BETYdb and TRY trait databases, using an updated multivariate version of PEcAn's Hierarchical Bayesian meta-analysis. Next, sensitivity analyses were performed for all models across a range of sites globally to assess sensitivities for a range of different outputs (GPP, ET, SH, Ra, NPP, Rh, NEE, LAI) at multiple time scales from the sub-annual to the decadal. Finally, parameter uncertainties and model sensitivities were combined to evaluate the fractional contribution of each parameter to the predictive uncertainty for a specific variable at a specific site and timescale. Facilitated by PEcAn's automated workflows, this analysis represents the broadest assessment of the sensitivities and uncertainties in terrestrial

  15. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Directory of Open Access Journals (Sweden)

    K. Ichii

    2010-07-01

    Full Text Available Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine – based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID, we conducted two simulations: (1 point simulations at four eddy flux sites in Japan and (2 spatial simulations for Japan with a default model (based on original settings and a modified model (based on model parameter tuning using eddy flux data. Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP, most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  16. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  17. Terrestrial gravity data analysis for interim gravity model improvement

    Science.gov (United States)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  18. Trophically available metal - A variable feast

    International Nuclear Information System (INIS)

    Rainbow, Philip S.; Luoma, Samuel N.; Wang Wenxiong

    2011-01-01

    Assimilation of trace metals by predators from prey is affected by the physicochemical form of the accumulated metal in the prey, leading to the concept of a Trophically Available Metal (TAM) component in the food item definable in terms of particular subcellular fractions of accumulated metal. As originally defined TAM consists of soluble metal forms and metal associated with cell organelles, the combination of separated fractions which best explained particular results involving a decapod crustacean predator feeding on bivalve mollusc tissues. Unfortunately TAM as originally defined has subsequently frequently been used in the literature as an absolute description of that component of accumulated metal that is trophically available in all prey to all consumers. It is now clear that what is trophically available varies between food items, consumers and metals. TAM as originally defined should be seen as a useful starting hypothesis, not as a statement of fact. - Trophically Available Metal (TAM), the component of accumulated metal in food that is taken up by a feeding animal, varies with food type and consumer.

  19. Trophically available metal - A variable feast

    Energy Technology Data Exchange (ETDEWEB)

    Rainbow, Philip S., E-mail: p.rainbow@nhm.ac.uk [Department of Zoology, Natural History Museum, Cromwell Rd, London SW7 5BD (United Kingdom); Luoma, Samuel N. [Department of Zoology, Natural History Museum, Cromwell Rd, London SW7 5BD (United Kingdom); John Muir Institute of the Environment, University of California, Davis, CA 95616 (United States); Wang Wenxiong [College of Marine and Environmental Sciences, State Key Laboratory for Marine Environmental Sciences, Xiamen University, Fujian (China)

    2011-10-15

    Assimilation of trace metals by predators from prey is affected by the physicochemical form of the accumulated metal in the prey, leading to the concept of a Trophically Available Metal (TAM) component in the food item definable in terms of particular subcellular fractions of accumulated metal. As originally defined TAM consists of soluble metal forms and metal associated with cell organelles, the combination of separated fractions which best explained particular results involving a decapod crustacean predator feeding on bivalve mollusc tissues. Unfortunately TAM as originally defined has subsequently frequently been used in the literature as an absolute description of that component of accumulated metal that is trophically available in all prey to all consumers. It is now clear that what is trophically available varies between food items, consumers and metals. TAM as originally defined should be seen as a useful starting hypothesis, not as a statement of fact. - Trophically Available Metal (TAM), the component of accumulated metal in food that is taken up by a feeding animal, varies with food type and consumer.

  20. Asia-MIP: Multi Model-data Synthesis of Terrestrial Carbon Cycles in Asia

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ito, A.; Kang, M.; Sasai, T.; SATO, H.; Ueyama, M.; Kobayashi, H.; Saigusa, N.; Kim, J.

    2013-12-01

    Asia, which is characterized by monsoon climate and intense human activities, is one of the prominent understudied regions in terms of terrestrial carbon budgets and mechanisms of carbon exchange. To better understand terrestrial carbon cycle in Asia, we initiated multi-model and data intercomparison project in Asia (Asia-MIP). We analyzed outputs from multiple approaches: satellite-based observations (AVHRR and MODIS) and related products, empirically upscaled estimations (Support Vector Regression) using eddy-covariance observation network in Asia (AsiaFlux, CarboEastAsia, FLUXNET), ~10 terrestrial biosphere models (e.g. BEAMS, Biome-BGC, LPJ, SEIB-DGVM, TRIFFID, VISIT models), and atmospheric inversion analysis (e.g. TransCom models). We focused on the two difference temporal coverage: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2010; data intensive period) scales. The regions of covering Siberia, Far East Asia, East Asia, Southeast Asia and South Asia (60-80E, 10S-80N), was analyzed in this study for assessing the magnitudes, interannual variability, and key driving factors of carbon cycles. We will report the progress of synthesis effort to quantify terrestrial carbon budget in Asia. First, we analyzed the recent trends in Gross Primary Productivities (GPP) using satellite-based observation (AVHRR) and multiple terrestrial biosphere models. We found both model outputs and satellite-based observation consistently show an increasing trend in GPP in most of the regions in Asia. Mechanisms of the GPP increase were analyzed using models, and changes in temperature and precipitation play dominant roles in GPP increase in boreal and temperate regions, whereas changes in atmospheric CO2 and precipitation are important in tropical regions. However, their relative contributions were different. Second, in the decadal analysis (2001-2010), we found that the negative GPP and carbon uptake anomalies in 2003 summer in Far East Asia is one of the largest

  1. Human-Induced Long-Term Shifts in Gull Diet from Marine to Terrestrial Sources in North America's Coastal Pacific: More Evidence from More Isotopes (δ2H, δ34S).

    Science.gov (United States)

    Hobson, Keith A; Blight, Louise K; Arcese, Peter

    2015-09-15

    Measurements of naturally occurring stable isotopes in tissues of seabirds and their prey are a powerful tool for investigating long-term changes in marine foodwebs. Recent isotopic (δ(15)N, δ(13)C) evidence from feathers of Glaucous-winged Gulls (Larus glaucescens) has shown that over the last 150 years, this species shifted from a midtrophic marine diet to one including lower trophic marine prey and/or more terrestrial or freshwater foods. However, long-term isotopic patterns of δ(15)N and δ(13)C cannot distinguish between the relative importance of lower trophic-level marine foods and terrestrial sources. We examined 48 feather stable-hydrogen (δ(2)H) and -sulfur (δ(34)S) isotope values from this same 150-year feather set and found additional isotopic evidence supporting the hypothesis that gulls shifted to terrestrial and/or freshwater prey. Mean feather δ(2)H and δ(34)S values (± SD) declined from the earliest period (1860-1915; n = 12) from -2.5 ± 21.4 ‰ and 18.9 ± 2.7 ‰, respectively, to -35.5 ± 15.5 ‰ and 14.8 ± 2.4 ‰, respectively, for the period 1980-2009 (n = 12). We estimated a shift of ∼ 30% increase in dependence on terrestrial/freshwater sources. These results are consistent with the hypothesis that gulls increased terrestrial food inputs in response to declining forage fish availability.

  2. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system.

    Science.gov (United States)

    Angelini, Christine; Silliman, Brian R

    2014-01-01

    Facilitation cascades arise where primary foundation species facilitate secondary (dependent) foundation species, and collectively, they increase habitat complexity and quality to enhance biodiversity. Whether such phenomena occur in nonmarine systems and if secondary foundation species enhance food web structure (e.g., support novel feeding guilds) and ecosystem function (e.g., provide nursery for juveniles) remain unclear. Here we report on field experiments designed to test whether trees improve epiphyte survival and epiphytes secondarily increase the number and diversity of adult and juvenile invertebrates in a potential live oak-Tillandsia usneoides (Spanish moss) facilitation cascade. Our results reveal that trees reduce physical stress to facilitate Tillandsia, which, in turn, reduces desiccation and predation stress to facilitate invertebrates. In experimental removals, invertebrate total density, juvenile density, species richness and H' diversity were 16, 60, 1.7, and 1.5 times higher, and feeding guild richness and H' were 5 and 11 times greater in Tillandsia-colonized relative to Tillandsia-removal limb plots. Tillandsia enhanced communities similarly in a survey across the southeastern United States. These findings reveal that a facilitation cascade organizes this widespread terrestrial assemblage and expand the role of secondary foundation species as drivers of trophic structure and ecosystem function. We conceptualize the relationship between foundation species' structural attributes and associated species abundance and composition in a Foundation Species-Biodiversity (FSB) model. Importantly, the FSB predicts that, where secondary foundation species form expansive and functionally distinct structures that increase habitat availability and complexity within primary foundation species, they generate and maintain hot spots of biodiversity and trophic interactions.

  3. Divergent trophic levels in two cryptic sibling bat species.

    Science.gov (United States)

    Siemers, Björn M; Greif, Stefan; Borissov, Ivailo; Voigt-Heucke, Silke L; Voigt, Christian C

    2011-05-01

    Changes in dietary preferences in animal species play a pivotal role in niche specialization. Here, we investigate how divergence of foraging behaviour affects the trophic position of animals and thereby their role for ecosystem processes. As a model, we used two closely related bat species, Myotis myotis and M. blythii oxygnathus, that are morphologically very similar and share the same roosts, but show clear behavioural divergence in habitat selection and foraging. Based on previous dietary studies on synanthropic populations in Central Europe, we hypothesised that M. myotis would mainly prey on predatory arthropods (i.e., secondary consumers) while M. blythii oxygnathus would eat herbivorous insects (i.e., primary consumers). We thus expected that the sibling bats would be at different trophic levels. We first conducted a validation experiment with captive bats in the laboratory and measured isotopic discrimination, i.e., the stepwise enrichment of heavy in relation to light isotopes between consumer and diet, in insectivorous bats for the first time. We then tested our trophic level hypothesis in the field at an ancient site of natural coexistence for the two species (Bulgaria, south-eastern Europe) using stable isotope analyses. As predicted, secondary consumer arthropods (carabid beetles; Coleoptera) were more enriched in (15)N than primary consumer arthropods (tettigoniids; Orthoptera), and accordingly wing tissue of M. myotis was more enriched in (15)N than tissue of M. blythii oxygnathus. According to a Bayesian mixing model, M. blythii oxygnathus indeed fed almost exclusively on primary consumers (98%), while M. myotis ate a mix of secondary (50%), but also, and to a considerable extent, primary consumers (50%). Our study highlights that morphologically almost identical, sympatric sibling species may forage at divergent trophic levels, and, thus may have different effects on ecosystem processes.

  4. Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems

    Science.gov (United States)

    Tockner, K.

    2009-04-01

    Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition

  5. Trophic interactions between native and introduced fish species in a littoral fish community.

    Science.gov (United States)

    Monroy, M; Maceda-Veiga, A; Caiola, N; De Sostoa, A

    2014-11-01

    The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable-isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ(13)C and δ(15)N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31.6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19.7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits. © 2014 The Fisheries Society of the British Isles.

  6. Model coupler for coupling of atmospheric, oceanic, and terrestrial models

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok

    2007-02-01

    A numerical simulation system SPEEDI-MP, which is applicable for various environmental studies, consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical databases for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. It is applicable for any models with three-dimensional structured grid system, which is used by most environmental and hydrodynamic models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  7. Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy

    Directory of Open Access Journals (Sweden)

    Luis B Tovar-y-Romo

    2014-02-01

    Full Text Available Motor neuron physiology and development depend on a continuous and tightly regulated trophic support from a variety of cellular sources. Trophic factors guide the generation and positioning of motor neurons during every stage of the developmental process. As well, they are involved in axon guidance and synapse formation. Even in the adult spinal cord an uninterrupted trophic input is required to maintain neuronal functioning and protection from noxious stimuli. Among the trophic factors that have been demonstrated to participate in motor neuron physiology are vascular endothelial growth factor (VEGF, glial-derived neurotrophic factor (GDNF, ciliary neurotrophic factor (CNTF and insulin-like growth factor 1 (IGF-1. Upon binding to membrane receptors expressed in motor neurons or neighboring glia, these trophic factors activate intracellular signaling pathways that promote cell survival and have protective action on motor neurons, in both in vivo and in vitro models of neuronal degeneration. For these reasons these factors have been considered a promising therapeutic method for amyotrophic lateral sclerosis (ALS and other neurodegenerative diseases, although their efficacy in human clinical trials have not yet shown the expected protection. In this review we summarize experimental data on the role of these trophic factors in motor neuron function and survival, as well as their mechanisms of action. We also briefly discuss the potential therapeutic use of the trophic factors and why these therapies may have not been yet successful in the clinical use.

  8. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  9. The interacting effects of temperature and food chain length on trophic abundance and ecosystem function.

    Science.gov (United States)

    Beveridge, Oliver S; Humphries, Stuart; Petchey, Owen L

    2010-05-01

    1. While much is known about the independent effects of trophic structure and temperature on density and ecosystem processes, less is known about the interaction(s) between the two. 2. We manipulated the temperature of laboratory-based bacteria-protist communities that contained communities with one, two, or three trophic levels, and recorded species' densities and bacterial decomposition. 3. Temperature, food chain length and their interaction produced significant responses in microbial density and bacterial decomposition. Prey and resource density expressed different patterns of temperature dependency during different phases of population dynamics. The addition of a predator altered the temperature-density relationship of prey, from a unimodal trend to a negative one. Bacterial decomposition was greatest in the presence of consumers at higher temperatures. 4. These results are qualitatively consistent with a recent model of direct and indirect temperature effects on resource-consumer population dynamics. Results highlight and reinforce the importance of indirect effects of temperature mediated through trophic interactions. Understanding and predicting the consequences of environmental change will require that indirect effects, trophic structure, and individual species' tolerances be incorporated into theory and models.

  10. Trophic cascades: linking ungulates to shrub-dependent birds and butterflies.

    Science.gov (United States)

    J Teichman, Kristine; Nielsen, Scott E; Roland, Jens

    2013-11-01

    1. Studies demonstrating trophic cascades through the loss of top-down regulatory processes in productive and biologically diverse terrestrial ecosystems are limited. 2. Elk Island National Park, Alberta and surrounding protected areas have a wide range of ungulate density due to the functional loss of top predators, management for high ungulate numbers and variable hunting pressure. This provides an ideal setting for studying the effects of hyper-abundant ungulates on vegetation and shrub-dependent bird and butterfly species. 3. To examine the cascading effects of high ungulate density, we quantified vegetation characteristics and abundances of yellow warbler Dendroica petechia and Canadian tiger swallowtail Papilio canadensis under different ungulate density in and around Elk Island National Park. 4. Using Structural Equation Models we found that ungulate density was inversely related to shrub cover, whereas shrub cover was positively related to yellow warbler abundance. In addition, chokecherry Prunus virginiana abundance was inversely related to browse impact but positively related to P. canadensis abundance. 5. These results demonstrate a cascade resulting from hyper-abundant ungulates on yellow warblers and Canadian tiger swallowtails through reductions in shrub cover and larval host plant density. The combined effect of the functional loss of top predators and management strategies that maintain high ungulate numbers can decouple top-down regulation of productive temperate ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  11. Trophic flow structure of the Danajon ecosystem (Central Philippines) and impacts of illegal and destructive fishing practices

    Science.gov (United States)

    Bacalso, Regina Therese M.; Wolff, Matthias

    2014-11-01

    A trophic model of the shallow Danajon Bank, in the Central Visayas, Philippines was developed using a mass-balance approach (Ecopath) to describe the system characteristics and fisheries interactions. The Ecopath model is composed of 37 functional groups and 17 fishing fleet types reflecting the high diversity of catches and fishing operations in the Danajon Bank. Collectively, the catch is dominated by lower trophic level fish and invertebrates as reflected in the mean trophic level of the fishery (2.95). The low biomass and high exploitation levels for many upper trophic level groups and the little evidence for strong natural physical disturbances suggest that top-down fishery is the main driver of system dynamics. The mixed trophic impacts (MTI) analysis reveals the role of the illegal and destructive fishing operations in influencing the ecosystem structure and dynamics. Furthermore, the illegal fisheries' estimated collective annual harvest is equivalent to nearly a quarter of the entire municipal fisheries catch in the area. Improved fisheries law enforcement by the local government units to curb these illegal and destructive fishing operations could substantially increase the potential gains of the legal fisheries.

  12. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.

  13. A Meteorological Distribution System for High Resolution Terrestrial Modeling (MicroMet)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    Spatially distributed terrestrial models generally require atmospheric forcing data on horizontal grids that are of higher resolution than available meteorological data. Furthermore, the meteorological data collected may not necessarily represent the area of interest's meteorological variability. To address these deficiencies, computationally efficient and physically realistic methods must be developed to take available meteorological data sets (e.g., meteorological tower observations) and generate high-resolution atmospheric-forcing distributions. This poster describes MicroMet, a quasi-physically-based, but simple meteorological distribution model designed to produce high-resolution (e.g., 5-m to 1-km horizontal grid increments) meteorological data distributions required to run spatially distributed terrestrial models over a wide variety of landscapes. The model produces distributions of the seven fundamental atmospheric forcing variables required to run most terrestrial models: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, and precipitation. MicroMet includes a preprocessor that analyzes meteorological station data and identifies and repairs potential data deficiencies. The model uses known relationships between meteorological variables and the surrounding area (primarily topography) to distribute those variables over any given landscape. MicroMet performs two kinds of adjustments to available meteorological data: 1) when there are data at more than one location, at a given time, the data are spatially interpolated over the domain using a Barnes objective analysis scheme, and 2) physical sub-models are applied to each MicroMet variable to improve its realism at a given point in space and time with respect to the terrain. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) will be used as example Micro

  14. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere

    Directory of Open Access Journals (Sweden)

    Y. P. Wang

    2010-07-01

    Full Text Available Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N and phosphorus (P, in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C, nitrogen (N and phosphorus (P cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise.

    This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.

  15. Trophic flexibility and the persistence of understory birds in intensively logged rainforest.

    Science.gov (United States)

    Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C

    2013-10-01

    Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. © 2013 Society for Conservation Biology.

  16. Adaptive evolution of body size subject to indirect effect in trophic cascade system.

    Science.gov (United States)

    Wang, Xin; Fan, Meng; Hao, Lina

    2017-09-01

    Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective

  17. Terrestrial Sagnac delay constraining modified gravity models

    Science.gov (United States)

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  18. Trophic Cascades Induced by Lobster Fishing Are Not Ubiquitous in Southern California Kelp Forests

    Science.gov (United States)

    Guenther, Carla M.; Lenihan, Hunter S.; Grant, Laura E.; Lopez-Carr, David; Reed, Daniel C.

    2012-01-01

    Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and

  19. [Strengths, weaknesses, and opportunities of French research in trophic ecology].

    Science.gov (United States)

    Perga, Marie-Élodie; Danger, Michael; Dubois, Stanislas; Fritch, Clémentine; Gaucherel, Cédric; Hubas, Cedric; Jabot, Franck; Lacroix, Gérard; Lefebvre, Sébastien; Marmonier, Pierre; Bec, Alexandre

    2018-05-30

    The French National Institute of Ecology and Environment (INEE) aims at fostering pluridisciplinarity in Environmental Science and, for that purpose, funds ex muros research groups (GDR) on thematic topics. Trophic ecology has been identified as a scientific field in ecology that would greatly benefit from such networking activity, as being profoundly scattered. This has motivated the seeding of a GDR, entitled "GRET". The contours of the GRET's action, and its ability to fill these gaps within trophic ecology at the French national scale, will depend on the causes of this relative scattering. This study relied on a nationally broadcasted poll aiming at characterizing the field of trophic ecology in France. Amongst all the unique individuals that fulfilled the poll, over 300 belonged at least partly to the field of trophic ecology. The sample included all French public research institutes and career stages. Three main disruptions within the community of scientist in trophic ecology were identified. The first highlighted the lack of interfaces between microbial and trophic ecology. The second evidenced that research questions were strongly linked to single study fields or ecosystem type. Last, research activities are still quite restricted to the ecosystem boundaries. All three rupture points limit the conceptual and applied progression in the field of trophic ecology. Here we show that most of the disruptions within French Trophic Ecology are culturally inherited, rather than motivated by scientific reasons or justified by socio-economic stakes. Comparison with the current literature confirms that these disruptions are not necessarily typical of the French research landscape, but instead echo the general weaknesses of the international research in ecology. Thereby, communication and networking actions within and toward the community of trophic ecologists, as planned within the GRET's objectives, should contribute to fill these gaps, by reintegrating microbes within

  20. The Terrestrial Investigation Model: A probabilistic risk assessment model for birds exposed to pesticides

    Science.gov (United States)

    One of the major recommendations of the National Academy of Science to the USEPA, NMFS and USFWS was to utilize probabilistic methods when assessing the risks of pesticides to federally listed endangered and threatened species. The Terrestrial Investigation Model (TIM, version 3....

  1. Modeling the terrestrial N processes in a small mountain catchment through INCA-N: A case study in Taiwan.

    Science.gov (United States)

    Lu, Meng-Chang; Chang, Chung-Te; Lin, Teng-Chiu; Wang, Lih-Jih; Wang, Chiao-Ping; Hsu, Ting-Chang; Huang, Jr-Chuan

    2017-09-01

    Riverine dissolved inorganic nitrogen (DIN) is an important indicator of trophic status of aquatic ecosystems. High riverine DIN export in Taiwan, ~3800kg-Nkm -2 yr -1 , which is ~18 times higher than the global average, urges the need of thorough understanding of N cycling processes. We applied INCA-N (Integrated Nitrogen Catchment Model) to simulate riverine DIN export and infer terrestrial N processes using weekly rainwater and streamwater samples collected at the Fushan Experimental Forest (FEF) of northern Taiwan. Results showed that the modeled discharge and nitrate export are in good agreement with observations, suggesting the validity of our application. Based on our modeling, the three main N removal processes, in the order of descending importance, were plant uptake, riverine N transport and denitrification at FEF. The high plant uptake rate, 4920kg-Nkm -2 yr -1 , should have led to accumulation of large biomass but biomass at FEF was relatively small compared to other tropical forests, likely due to periodic typhoon disruptions. The low nitrate concentration but high DIN export highlights the importance of hydrological control over DIN export, particularly during typhoons. The denitrification rate, 750kg-Nkm -2 yr -1 , at FEF was also low compared to other tropical forest ecosystems, likely resulting from quick water drainage through the coarse-loamy top soils. The high DIN export to atmospheric deposition ratio, 0.45, suggests that FEF may be in advanced stages of N excess. This simulation provides useful insights for establishing monitoring programs and improves our understanding N cycling in subtropical watersheds. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Regional and Seasonal Differences in Species Composition and Trophic Groups for Tidepool Fishes of a Western Pacific Island – Taiwan

    Directory of Open Access Journals (Sweden)

    Colin K. C. Wen

    2018-03-01

    Full Text Available Spatial and temporal variations in the species composition of assemblages are common in many marine organisms, including fishes. Variations in the fish species composition of subtidal coral reefs have been well documented, however much less is known about such differences for intertidal fish assemblages. This is surprising, given that intertidal fishes are more vulnerable to terrestrial human disturbances. It is critical to evaluate the ecology and biology of intertidal fishes before they are severely impacted by coastal development, especially in developing countries such as those in the tropical western Pacific region where coastal development is rapidly increasing. In this study, we investigated the species composition, abundance, biomass and species number (richness for intertidal fish assemblages in subtropical (northern and tropical (southern Taiwan across four seasons by collecting fishes from tidepools using clove oil. We also examined the gut contents of collected fishes to identify their trophic functional groups in order to investigate regional and seasonal variations for different trophic groups. We found significant differences in the species composition of tidepool fish assemblages between subtropical and tropical Taiwan. Bathygobius fuscus, Abudefduf vaigiensis and Istiblennius dussumieri were dominant species in subtropical Taiwan, whereas Bathygobius coalitus, Abudefduf septemfasciatus and Istiblennius lineatus were dominant in tropical Taiwan. Other species such as Bathygobius cocosensis, Abudefduf sordidus and Istiblennius edentulus were common in both regions. For trophic groups, omnivores and detritivores had or showed trends towards higher species numbers and abundances in the subtropical region, whereas herbivores, planktivores and general carnivores had or showed trends towards higher species numbers and biomass in the tropical region. Overall, many intertidal fish species and trophic groups showed differences in

  3. Rapid Prototyping — A Tool for Presenting 3-Dimensional Digital Models Produced by Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Juho-Pekka Virtanen

    2014-07-01

    Full Text Available Rapid prototyping has received considerable interest with the introduction of affordable rapid prototyping machines. These machines can be used to manufacture physical models from three-dimensional digital mesh models. In this paper, we compare the results obtained with a new, affordable, rapid prototyping machine, and a traditional professional machine. Two separate data sets are used for this, both of which were acquired using terrestrial laser scanning. Both of the machines were able to produce complex and highly detailed geometries in plastic material from models based on terrestrial laser scanning. The dimensional accuracies and detail levels of the machines were comparable, and the physical artifacts caused by the fused deposition modeling (FDM technique used in the rapid prototyping machines could be found in both models. The accuracy of terrestrial laser scanning exceeded the requirements for manufacturing physical models of large statues and building segments at a 1:40 scale.

  4. Evaluation of terrestrial microcosms for assessing the fate and effects of genetically engineered microorganisms on ecological processes

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Bentjen, S.A.; Bolton, H. Jr.; Li, S.W.; Ligotke, M.W.; McFadden, K.M.; Van Voris, P.

    1989-04-01

    This project evaluates and modifies the existing US Environmental Protection Agency's Office of Pesticides and Toxic Substances (EPA/OPTS) terrestrial microcosm test system and test protocols such that they can be used to determine the environmental fate and ecological hazards of genetically engineered microorganisms (GEMs). The intact soil-core microcosm represents terrestrial ecosystems, and when coupled with appropriate test protocols, such microcosms may be appropriate to define and limit risks associated with the intentional release of GEMs. The terrestrial microcosm test system was used to investigate the survival and transport of two model GEMs (Azospirillum lipoferum and Pseudomonas sp. Tn5 mutants) to various trophic levels and niches and through intact soil cores. Subsequent effects on nutrient cycling and displacement of indigenous microorganisms were evaluated. The model organisms were a diazotrophic root-colonizing bacterium (A. lipoferum) and a wheat root growth-inhibiting rhizobacterium (Pseudomonas sp.). The transposable element Tn5 was used as a genetic marker for both microorganisms in two separate experiments. The organisms were subjected to transposon mutagenesis using a broad host-range-mobilizable suicide plasmid. The transposon Tn5 conferred levels of kanamycin resistance up to 500 ..mu..g/ml (Pseudomonas sp.), which allowed for selection of the bacteria from environmental samples. The presence of Tn5 DNA in the genome of the model GEMs also allowed the use of Tn5 gene probes to confirm and enumerate the microorganisms in different samples from the microcosms. Two types of root growth-inhibiting Pseudomonas sp. Tn5 mutants were obtained and used in microcosm studies: those that lacked the ability to inhibit either wheat root growth or the growth of other microorganisms in vitro (tox/sup /minus//) and those which retained these properties (tox/sup +/). 53 refs., 7 figs., 6 tabs.

  5. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    Science.gov (United States)

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  6. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  7. Green Turtle Trophic Ecology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently conducting a study of green sea turtle (Chelonia mydas) trophic ecology in the eastern Pacific. Tissue samples and stable carbon and stable...

  8. Ecosystem structure and trophic analysis of Angolan fishery landings

    Directory of Open Access Journals (Sweden)

    Ronaldo Angelini

    2011-06-01

    Full Text Available Information on the mean trophic level of fishery landings in Angola and the output from a preliminary Ecopath with Ecosim (EwE model were used to examine the dynamics of the Angolan marine ecosystem. Results were compared with the nearby Namibian and South African ecosystems, which share some of the exploited fish populations. The results show that: (i The mean trophic level of Angola’s fish landings has not decreased over the years; (ii There are significant correlations between the landings of Angola, Namibia and South Africa; (iii The ecosystem attributes calculated by the EwE models for the three ecosystems were similar, and the main differences were related to the magnitude of flows and biomass; (iv The similarity among ecosystem trends for Namibia, South Africa and Angola re-emphasizes the need to continue collaborative regional studies on the fish stocks and their ecosystems. To improve the Angolan model it is necessary to gain a better understanding of plankton dynamics because plankton are essential for Sardinella spp. An expanded analysis of the gut contents of the fish species occupying Angola’s coastline is also necessary.

  9. The Development of the ITU-R Terrestrial Clutter Loss Model

    DEFF Research Database (Denmark)

    Medbo, Jonas; Larsson, Christina; Olsson, Bengt Erik

    2018-01-01

    The ITU-R has recently published a new Recommendation giving methods for the estimation of clutter loss at frequencies between 30 MHz and 100 GHz. This paper provides an overview of the methods. In particular, the derivation and form of the new clutter model for terrestrial paths is described in ...

  10. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models

    Directory of Open Access Journals (Sweden)

    Akihiko Ito

    2016-05-01

    Full Text Available The seasonal-cycle amplitude (SCA of the atmosphere–ecosystem carbon dioxide (CO2 exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP, we investigated how well the SCA of atmosphere–ecosystem CO2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO2, climate, land-use, and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr−1. In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their

  11. Terrestrial Permafrost Models of Martian Habitats and Inhabitants

    Science.gov (United States)

    Gilichinsky, D.

    2011-12-01

    The terrestrial permafrost is the only rich depository of viable ancient microorganisms on Earth, and can be used as a bridge to possible Martian life forms and shallow subsurface habitats where the probability of finding life is highest. Since there is a place for water, the requisite condition for life, the analogous models are more or less realistic. If life ever existed on Mars, traces might have been preserved and could be found at depth within permafrost. The age of the terrestrial isolates corresponds to the longevity of the frozen state of the embedding strata, with the oldest known dating back to the late Pliocene in Arctic and late Miocene in Antarctica. Permafrost on Earth and Mars vary in age, from a few million years on Earth to a few billion years on Mars. Such a difference in time scale would have a significant impact on the possibility of preserving life on Mars, which is why the longevity of life forms preserved within terrestrial permafrost can only be an approximate model for Mars. 1. A number of studies indicate that the Antarctic cryosphere began to develop on the Eocene-Oligocene boundary, after the isolation of the continent. Permafrost degradation is only possible if mean annual ground temperature, -28°C now, rise above freezing, i.e., a significant warming to above 25°C is required. There is no evidence of such sharp temperature increase, which indicates that the climate and geological history was favorable to persistence of pre-Pliocene permafrost. These oldest relics (~30Myr) are possibly to be found at high hypsometric levels of ice-free areas (Dry Valleys and nearby mountains). It is desirable to test the layers for the presence of viable cells. The limiting age, if one exists, within this ancient permafrost, where the viable organisms were no longer present, could be established as the limit for life preservation below 0oC. Positive results will extend the known temporal limits of life in permafrost. 2. Even in this case, the age of

  12. Complexity of plant volatile-mediated interactions beyond the third trophic level

    NARCIS (Netherlands)

    Poelman, E.H.; Kos, M.

    2016-01-01

    Food chains of plant-associated communities typically reach beyond three trophic levels. The predators and parasitoids in the third trophic level are under attack by top predators or parasitised by hyperparasitoids. These higher trophic level organisms respond to plant volatiles in search of their

  13. Organochlorines in the Vaccares Lagoon trophic web (Biosphere Reserve of Camargue, France)

    Energy Technology Data Exchange (ETDEWEB)

    Roche, H., E-mail: helene.roche@u-psud.f [Ecologie, Systematique et Evolution, UMR8079 CNRS, Universite Paris-Sud, AgroParisTech, F91405 Orsay Cedex (France); Vollaire, Y.; Persic, A.; Buet, A. [Ecologie, Systematique et Evolution, UMR8079 CNRS, Universite Paris-Sud, AgroParisTech, F91405 Orsay Cedex (France); Oliveira-Ribeiro, C. [Departamento de Biologia Celular, Universidade Federal do Parana, Caixa Postal 19031, CEP: 81.531-990, Curitiba, PR (Brazil); Coulet, E. [Nature Reserve of Camargue, La Capeliere, F13200 Arles (France); Banas, D.; Ramade, F. [Ecologie, Systematique et Evolution, UMR8079 CNRS, Universite Paris-Sud, AgroParisTech, F91405 Orsay Cedex (France)

    2009-08-15

    During a decade (1996-2006), ecotoxicological studies were carried out in biota of the Vaccares Lagoon (Biosphere Reserve in Rhone Delta, France). A multicontamination was shown at all levels of the trophic web due to a direct bioconcentration of chemical from the medium combined with a food transfer. Here, the pollutants investigated were organochlorines, among which many compounds banned or in the course of prohibition (or restriction) (PCB, lindane, pp'-DDE, dieldrin, aldrin, heptachlor, endosulfan...) and some substances likely still used in the Rhone River basin (diuron, fipronil). The results confirmed the ubiquity of contamination. It proves to be chronic, variable and tends to regress; however contamination levels depend on the trophic compartment. A biomagnification process was showed. A comparison of investigation methods used in other Mediterranean wetlands provides basis of discussion, and demonstrates the urgent need of modelling to assess the ecotoxicological risk in order to improve the management of such protected areas. - The Vaccares Lagoon trophic web biomagnifies organochlorine pollutants.

  14. Coastal habitats as surrogates for taxonomic, functional and trophic structures of benthic faunal communities.

    Science.gov (United States)

    Törnroos, Anna; Nordström, Marie C; Bonsdorff, Erik

    2013-01-01

    Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.

  15. Critical assessment and ramifications of a purported marine trophic cascade

    Science.gov (United States)

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  16. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  17. Accuracy of cultural heritage 3D models by RPAS and terrestrial photogrammetry

    Directory of Open Access Journals (Sweden)

    M. Bolognesi

    2014-06-01

    Full Text Available The combined use of high-resolution digital images taken from ground as well as from RPAS (Remotely Piloted Aircraft Systems have significantly increased the potential of close range digital photogrammetry applications in Cultural Heritage surveying and modeling. It is in fact possible, thanks to SfM (Structure from Motion, to simultaneously process great numbers of aerial and terrestrial images for the production of a dense point cloud of an object. In order to analyze the accuracy of results, we started numerous tests based on the comparison between 3D digital models of a monumental complex realized by the integration of aerial and terrestrial photogrammetry and an accurate TLS (Terrestrial Laser Scanner reference model of the same object. A lot of digital images of a renaissance castle, assumed as test site, have been taken both by ground level and by RPAS at different distances and flight altitudes and with different flight patterns. As first step of the experimentation, the images were previously processed with Agisoft PhotoScan, one of the most popular photogrammetric software. The comparison between the photogrammetric DSM of the monument and a TLS reference one was carried out by evaluating the average deviation between the points belonging to the two entities, both globally and locally, on individual façades and architectural elements (sections and particular. In this paper the results of the first test are presented. A good agreement between photogrammetric and TLS digital models of the castle is pointed out.

  18. Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic High-Arctic ecosystem

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Schmidt, Niels Martin; Hoye, Toke T.

    2016-01-01

    As a response to current climate changes, individual species have changed various biological traits, illustrating an inherent phenotypic plasticity. However, as species are embedded in an ecological network characterised by multiple consumer-resource interactions, ecological mismatches are likely...... to arise when interacting species do not respond homogeneously. The approach of biological networks analysis calls for the use of structural equation modelling (SEM), a multidimensional analytical setup that has proven particularly useful for analysing multiple interactions across trophic levels. Here we...

  19. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  20. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  1. Time- and depth-wise trophic niche shifts in Antarctic benthos.

    Science.gov (United States)

    Calizza, Edoardo; Careddu, Giulio; Sporta Caputi, Simona; Rossi, Loreto; Costantini, Maria Letizia

    2018-01-01

    Climate change is expected to affect resource-consumer interactions underlying stability in polar food webs. Polar benthic organisms have adapted to the marked seasonality characterising their habitats by concentrating foraging and reproductive activity in summer months, when inputs from sympagic and pelagic producers increase. While this enables the persistence of biodiverse food webs, the mechanisms underlying changes in resource use and nutrient transfer are poorly understood. Thus, our understanding of how temporal and spatial variations in the supply of resources may affect food web structure and functioning is limited. By means of C and N isotopic analyses of two key Antarctic benthic consumers (Adamussium colbecki, Bivalvia, and Sterechinus neumayeri, Echinoidea) and Bayesian mixing models, we describe changes in trophic niche and nutrient transfer across trophic levels associated with the long- and short-term diet and body size of specimens sampled in midsummer in both shallow and deep waters. Samplings occurred soon after the sea-ice broke up at Tethys Bay, an area characterised by extreme seasonality in sea-ice coverage and productivity in the Ross Sea. In the long term, the trophic niche was broader and variation between specimens was greater, with intermediate-size specimens generally consuming a higher number of resources than small and large specimens. The coupling of energy channels in the food web was consequently more direct than in the short term. Sediment and benthic algae were more frequently consumed in the long term, before the sea-ice broke up, while consumers specialised on sympagic algae and plankton in the short term. Regardless of the time scale, sympagic algae were more frequently consumed in shallow waters, while plankton was more frequently consumed in deep waters. Our results suggest a strong temporal relationship between resource availability and the trophic niche of benthic consumers in Antarctica. Potential climate-driven changes

  2. Trophic ulcers in the carpal tunnel syndrome

    Directory of Open Access Journals (Sweden)

    Abelardo Q.-C. Araújo

    1993-09-01

    Full Text Available A patient with carpal tunnel syndrome (CTS and trophic ulcers is described. Despite the healing of the ulcers after surgery for CTS, the severe sensory deficit and the electrophysiological tests have not shown any significant improvement. We think these findings argue against the hypothesis of the sensory deficit being responsible for the trophic ulcers. We favor a major role for the sympathetic disturbances as the main cause for those lesions.

  3. Intersexual Trophic Niche Partitioning in an Ant-Eating spider (Araneae: Zodariidae)

    DEFF Research Database (Denmark)

    Pekár, Stanislav; Martisová, Martina; Bilde, T.

    2011-01-01

    lead to higher energy demands in females driven by fecundity selection, while males invest in mate searching. We tested predictions of the two hypotheses underlying intersexual trophic niche partitioning in a natural population of spiders. Zodarion jozefienae spiders specialize on Messor barbarus ants...... that are polymorphic in body size and hence comprise potential trophic niches for the spider, making this system well-suited to study intersexual trophic niche partitioning. Methodology/Principal Findings Comparative analysis of trophic morphology (the chelicerae) and body size of males, females and juveniles...... demonstrated highly female biased SSD (Sexual Size Dimorphism) in body size, body weight, and in the size of chelicerae, the latter arising from sex-specific growth patterns in trophic morphology. In the field, female spiders actively selected ant sub-castes that were larger than the average prey size...

  4. Predator-prey dynamics driven by feedback between functionally diverse trophic levels.

    Directory of Open Access Journals (Sweden)

    Katrin Tirok

    Full Text Available Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits--prey edibility and predator food-selectivity--and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity.

  5. Intersexual trophic niche partitioning in an ant-eating spider (Araneae: Zodariidae.

    Directory of Open Access Journals (Sweden)

    Stano Pekár

    2011-01-01

    Full Text Available Divergence in trophic niche between the sexes may function to reduce competition between the sexes ("intersexual niche partitioning hypothesis", or may be result from differential selection among the sexes on maximizing reproductive output ("sexual selection hypothesis". The latter may lead to higher energy demands in females driven by fecundity selection, while males invest in mate searching. We tested predictions of the two hypotheses underlying intersexual trophic niche partitioning in a natural population of spiders. Zodarion jozefienae spiders specialize on Messor barbarus ants that are polymorphic in body size and hence comprise potential trophic niches for the spider, making this system well-suited to study intersexual trophic niche partitioning.Comparative analysis of trophic morphology (the chelicerae and body size of males, females and juveniles demonstrated highly female biased SSD (Sexual Size Dimorphism in body size, body weight, and in the size of chelicerae, the latter arising from sex-specific growth patterns in trophic morphology. In the field, female spiders actively selected ant sub-castes that were larger than the average prey size, and larger than ants captured by juveniles and males. Female fecundity was highly positively correlated with female body mass, which reflects foraging success during the adult stage. Females in laboratory experiments preferred the large ant sub-castes and displayed higher capture efficiency. In contrast, males occupied a different trophic niche and showed reduced foraging effort and reduced prey capture and feeding efficiency compared with females and juveniles.Our data indicate that female-biased dimorphism in trophic morphology and body size correlate with sex-specific reproductive strategies. We propose that intersexual trophic niche partitioning is shaped primarily by fecundity selection in females, and results from sex-differences in the route to successful reproduction where females are

  6. Consequences of simulating terrestrial N dynamics for projecting future terrestrial C storage

    Science.gov (United States)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2009-04-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation patterns, as well as soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. Notably, O-CN simulates realistic responses of net primary productivity, foliage area, and foliage N content to elevated atmospheric [CO2] as evidenced at free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge). We re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric [CO2], N deposition and climatic changes over the 21st century. We find that accounting for terrestrial N cycling about halves the potential to store C in response to increases in atmospheric CO2 concentrations; mainly due to a reduction of the net C uptake in temperate and boreal forests. Nitrogen deposition partially alleviates the effect of N limitation, but is by far not sufficient to compensate for the effect completely. These findings underline the importance of an accurate representation of nutrient limitations in future projections of the terrestrial net CO2 exchanges and therefore land-climate feedback studies.

  7. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    Science.gov (United States)

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  8. Nutrients distribution and trophic status assessment in the northern Beibu Gulf, China

    Science.gov (United States)

    Lai, Junxiang; Jiang, Fajun; Ke, Ke; Xu, Mingben; Lei, Fu; Chen, Bo

    2014-09-01

    Using historical and 2010 field data, the distribution of nutrients in the northern Beibu Gulf of China is described. There was a decreasing trend in the concentration of nutrients from the north coast to offshore waters of the northern Beibu Gulf, reflecting the influence of inputs from land-based sources. High concentrations of dissolved inorganic nitrogen (DIN) and phosphate (PO4-P) occurred mainly at Fangchenggang Bay, Qinzhou Bay, and Lianzhou Bay. Four different methods were used to assess eutrophication. The trophic status of the Beibu Gulf was characterized using the single factor, Eutrophication index (EI), Trophic index (TRIX) and Assessment of Estuarine Trophic Status (ASSETS) methods. Based on nutrient concentrations, 73.9% of DIN and 26.7% of PO4-P samples exceeded the fourth grade Seawater Quality Standard of China. Eutrophication index values varied widely, but higher levels of eutrophication were generally found in bays and estuaries. TRIX values ranged from 2.61 to 7.27, with an average of 4.98, indicating a mesotrophic and moderately productive system. A positive correlation between TRIX and harmful algal species richness and abundance was observed. The ASSETS model evaluates eutrophication status based on a Pressure-State-Response approach, including three main indices: influencing factors, overall eutrophic condition, and future outlook. The Beibu Gulf was graded as moderate using ASSETS. The single factor and Chinese nutrient index methods were considered inadequate for the assessment of trophic status. TRIX can be used as an indicator of trophic state and ASSETS showed good potential to assess eutrophication. The results of TRIX and ASSETS depend on threshold values. To establish these values, further research is required within the northern Beibu Gulf.

  9. Proposal for a remote sensing trophic state index based upon Thematic Mapper/Landsat images

    Directory of Open Access Journals (Sweden)

    Evlyn Márcia Leão de Moraes Novo

    2013-12-01

    Full Text Available This work proposes a trophic state index based on the remote sensing retrieval of chlorophyll-α concentration. For that, in situ Bidirectional Reflectance Factor (BRF data acquired in the Ibitinga reservoir were resampled to match Landsat/TM spectral simulated bands (TM_sim bands and used to run linear correlation with concurrent measurements of chlorophyll-α concentration. Monte Carlo simulation was then applied to select the most suitable model relating chlorophyll-α concentration and simulated TM/Landsat reflectance. TM4_sim/TM3_sim ratio provided the best model with a R2 value of 0.78. The model was then inverted to create a look-up-table (LUT relating TM4_sim/TM3_sim ratio intervals to chlorophyll-α concentration trophic state classes covering the entire range measured in the reservoir. Atmospheric corrected Landsat TM images converted to surface reflectance were then used to generate a TM4/TM3 ratio image. The ratio image frequency distribution encompassed the range of TM4_sim/TM3_sim ratio indicating agreement between in situ and satellite data and supporting the use of satellite data to map chlorophyll- concentration trophic state distribution in the reservoir. Based on that, the LUT was applied to a Landsat/TM ratio image to map the spatial distribution of chlorophyll- trophic state classes in Ibitinga reservoir. Despite the stochastic selection of TM4_sim/TM3_sim ratio as the best input variable for modeling the chlorophyll-α concentration, it has a physical basis: high concentration of phytoplankton increases the reflectance in the near-infrared (TM4 and decreases the reflectance in the red (TM3. The band ratio, therefore, enhances the relationship between chlorophyll- concentration and remotely sensed reflectance.

  10. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America.

    Science.gov (United States)

    Mitchell, Jonathan S; Roopnarine, Peter D; Angielczyk, Kenneth D

    2012-11-13

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  11. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    Science.gov (United States)

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  12. Climate Change and Baleen Whale Trophic Cascades in Greenland

    Science.gov (United States)

    2009-09-30

    DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Climate Change and Baleen Whale Trophic Cascades in Greenland...SUBTITLE Climate Change And Baleen Whale Trophic Cascades In Greenland 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  13. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas

    Science.gov (United States)

    Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.

    2015-01-01

    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104

  14. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas.

    Directory of Open Access Journals (Sweden)

    German A Soler

    Full Text Available Marine Protected Areas (MPAs offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores was significantly greater (by 40% - 200% in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.

  15. Trophic state and toxic cyanobacteria density in optimization modeling of multi-reservoir water resource systems.

    Science.gov (United States)

    Sulis, Andrea; Buscarinu, Paola; Soru, Oriana; Sechi, Giovanni M

    2014-04-22

    The definition of a synthetic index for classifying the quality of water bodies is a key aspect in integrated planning and management of water resource systems. In previous works [1,2], a water system optimization modeling approach that requires a single quality index for stored water in reservoirs has been applied to a complex multi-reservoir system. Considering the same modeling field, this paper presents an improved quality index estimated both on the basis of the overall trophic state of the water body and on the basis of the density values of the most potentially toxic Cyanobacteria. The implementation of the index into the optimization model makes it possible to reproduce the conditions limiting water use due to excessive nutrient enrichment in the water body and to the health hazard linked to toxic blooms. The analysis of an extended limnological database (1996-2012) in four reservoirs of the Flumendosa-Campidano system (Sardinia, Italy) provides useful insights into the strengths and limitations of the proposed synthetic index.

  16. Trophic niche shifts driven by phytoplankton in sandy beach ecosystems

    Science.gov (United States)

    Bergamino, Leandro; Martínez, Ana; Han, Eunah; Lercari, Diego; Defeo, Omar

    2016-10-01

    Stable isotopes (δ13C and δ15N) together with chlorophyll a and densities of surf diatoms were used to analyze changes in trophic niches of species in two sandy beaches of Uruguay with contrasting morphodynamics (i.e. dissipative vs. reflective). Consumers and food sources were collected over four seasons, including sediment organic matter (SOM), suspended particulate organic matter (POM) and the surf zone diatom Asterionellopsis guyunusae. Circular statistics and a Bayesian isotope mixing model were used to quantify food web differences between beaches. Consumers changed their trophic niche between beaches in the same direction of the food web space towards higher reliance on surf diatoms in the dissipative beach. Mixing models indicated that A. guyunusae was the primary nutrition source for suspension feeders in the dissipative beach, explaining their change in dietary niche compared to the reflective beach where the proportional contribution of surf diatoms was low. The high C/N ratios in A. guyunusae indicated its high nutritional value and N content, and may help to explain the high assimilation by suspension feeders at the dissipative beach. Furthermore, density of A. guyunusae was higher in the dissipative than in the reflective beach, and cell density was positively correlated with chlorophyll a only in the dissipative beach. Therefore, surf diatoms are important drivers in the dynamics of sandy beach food webs, determining the trophic niche space and productivity. Our study provides valuable insights on shifting foraging behavior by beach fauna in response to changes in resource availability.

  17. ANALYSIS OF TERRESTRIAL PLANET FORMATION BY THE GRAND TACK MODEL: SYSTEM ARCHITECTURE AND TACK LOCATION

    Energy Technology Data Exchange (ETDEWEB)

    Brasser, R.; Ida, S. [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan); Matsumura, S. [School of Science and Engineering, Division of Physics, Fulton Building, University of Dundee, Dundee DD1 4HN (United Kingdom); Mojzsis, S. J. [Collaborative for Research in Origins (CRiO), Department of Geological Sciences, University of Colorado, UCB 399, 2200 Colorado Avenue, Boulder, Colorado 80309-0399 (United States); Werner, S. C. [The Centre for Earth Evolution and Dynamics, University of Oslo, Sem Saelandsvei 24, NO-0371 Oslo (Norway)

    2016-04-20

    The Grand Tack model of terrestrial planet formation has emerged in recent years as the premier scenario used to account for several observed features of the inner solar system. It relies on the early migration of the giant planets to gravitationally sculpt and mix the planetesimal disk down to ∼1 au, after which the terrestrial planets accrete from material remaining in a narrow circumsolar annulus. Here, we investigate how the model fares under a range of initial conditions and migration course-change (“tack”) locations. We run a large number of N-body simulations with tack locations of 1.5 and 2 au and test initial conditions using equal-mass planetary embryos and a semi-analytical approach to oligarchic growth. We make use of a recent model of the protosolar disk that takes into account viscous heating, includes the full effect of type 1 migration, and employs a realistic mass–radius relation for the growing terrestrial planets. Our results show that the canonical tack location of Jupiter at 1.5 au is inconsistent with the most massive planet residing at 1 au at greater than 95% confidence. This favors a tack farther out at 2 au for the disk model and parameters employed. Of the different initial conditions, we find that the oligarchic case is capable of statistically reproducing the orbital architecture and mass distribution of the terrestrial planets, while the equal-mass embryo case is not.

  18. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches

    OpenAIRE

    Cooper, W James; Westneat, Mark W

    2009-01-01

    Abstract Background Damselfishes (Perciformes, Pomacentridae) are a major component of coral reef communities, and the functional diversity of their trophic anatomy is an important constituent of the ecological morphology of these systems. Using shape analyses, biomechanical modelling, and phylogenetically based comparative methods, we examined the anatomy of damselfish feeding among all genera and trophic groups. Coordinate based shape analyses of anatomical landmarks were used to describe p...

  19. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals

    International Nuclear Information System (INIS)

    Schoeninger, M.J.; DeNiro, M.J.

    1984-01-01

    The stable nitrogen and carbon isotope ratios of bone collagen prepared from more than 100 animals representing 66 species of birds, fish, and mammals are presented. The delta 15 N values of bone collagen from animals that fed exclusively in the marine environment are, on average, 9 per mille more positive than those from animals that fed exclusively in the terrestrial environment: ranges for the two groups overlap by less than 1 per mille. Bone collagen delta 15 N values also serve to separate marine fish from the small number of freshwater fish we analyzed. The bone collagen delta 15 N values of birds and fish that spent part of their life cycles feeding in the marine environment and part in the freshwater environment are intermediate between those of animals that fed exclusively in one or the other system. Further, animals that fed at successive trophic levels in the marine and terrestrial environment are separated, on average, by a 3 per mille difference in the delta 15 N values of their bone collagen. Results are given and discussed. (author)

  20. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Directory of Open Access Journals (Sweden)

    Yang Zamin K

    2010-05-01

    Full Text Available Abstract Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

  1. Seasonal Trophic Shift of Littoral Consumers in Eutrophic Lake Taihu (China Revealed by a Two-Source Mixing Model

    Directory of Open Access Journals (Sweden)

    Qiong Zhou

    2011-01-01

    Full Text Available We evaluated the seasonal variation in the contributions of planktonic and benthic resources to 11 littoral predators in eutrophic Lake Taihu (China from 2004 to 2005. Seasonal fluctuations in consumer σ13C and σ15N were attributed to the combined impacts of temporal variation in isotopic signatures of basal resources and the diet shift of fishes. Based on a two-end-member mixing model, all target consumers relied on energy sources from coupled benthic and planktonic pathways, but the predominant energy source for most species was highly variable across seasons, showing seasonal trophic shift of littoral consumers. Seasonality in energy mobilization of consumers focused on two aspects: (1 the species number of consumers that relied mainly on planktonic carbon showed the lowest values in the fall and the highest during spring/summer, and (2 most consumer species showed seasonal variation in the percentages of planktonic reliance. We concluded that seasonal trophic shifts of fishes and invertebrates were driven by phytoplankton production, but benthic resources were also important seasonally in supporting littoral consumers in Meiliang Bay. Energy mobilization of carnivorous fishes was more subject to the impact of resource availability than omnivorous species.

  2. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms.

    Science.gov (United States)

    Nielsen, Jens M; Popp, Brian N; Winder, Monika

    2015-07-01

    Estimating trophic structures is a common approach used to retrieve information regarding energy pathways, predation, and competition in complex ecosystems. The application of amino acid (AA) compound-specific nitrogen (N) isotope analysis (CSIA) is a relatively new method used to estimate trophic position (TP) and feeding relationships in diverse organisms. Here, we conducted the first meta-analysis of δ(15)N AA values from measurements of 359 marine species covering four trophic levels, and compared TP estimates from AA-CSIA to literature values derived from food items, gut or stomach content analysis. We tested whether the AA trophic enrichment factor (TEF), or the (15)N enrichment among different individual AAs is constant across trophic levels and whether inclusion of δ(15)N values from multiple AAs improves TP estimation. For the TEF of glutamic acid relative to phenylalanine (Phe) we found an average value of 6.6‰ across all taxa, which is significantly lower than the commonly applied 7.6‰. We found that organism feeding ecology influences TEF values of several trophic AAs relative to Phe, with significantly higher TEF values for herbivores compared to omnivores and carnivores, while TEF values were also significantly lower for animals excreting urea compared to ammonium. Based on the comparison of multiple model structures using the metadata of δ(15)N AA values we show that increasing the number of AAs in principle improves precision in TP estimation. This meta-analysis clarifies the advantages and limitations of using individual δ(15)N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies.

  3. Looplessness in networks is linked to trophic coherence.

    Science.gov (United States)

    Johnson, Samuel; Jones, Nick S

    2017-05-30

    Many natural, complex systems are remarkably stable thanks to an absence of feedback acting on their elements. When described as networks these exhibit few or no cycles, and associated matrices have small leading eigenvalues. It has been suggested that this architecture can confer advantages to the system as a whole, such as "qualitative stability," but this observation does not in itself explain how a loopless structure might arise. We show here that the number of feedback loops in a network, as well as the eigenvalues of associated matrices, is determined by a structural property called trophic coherence, a measure of how neatly nodes fall into distinct levels. Our theory correctly classifies a variety of networks-including those derived from genes, metabolites, species, neurons, words, computers, and trading nations-into two distinct regimes of high and low feedback and provides a null model to gauge the significance of related magnitudes. Because trophic coherence suppresses feedback, whereas an absence of feedback alone does not lead to coherence, our work suggests that the reasons for "looplessness" in nature should be sought in coherence-inducing mechanisms.

  4. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: Model description

    International Nuclear Information System (INIS)

    Nikolov, Ned; Zeller, Karl F.

    2003-01-01

    A new biophysical model (FORFLUX) is presented to link ozone deposition with carbon and water cycles in terrestrial ecosystems. - A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO 2 - transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3 model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO 2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems

  5. Changes in the trophic structure of the northern Benguela before ...

    African Journals Online (AJOL)

    The dominant small pelagic fish, characteristic of upwelling systems, were replaced ... as did the weighted trophic level of the community (excluding plankton), after the ... may have altered the trophic control mechanism operating in the system, ...

  6. Spring diet and trophic partitioning in an alpine lizard community ...

    African Journals Online (AJOL)

    The influences of species interactions on habitat use, restrictions in trophic availability and evolutionary history as determinant factors are discussed. Keywords: trophic ecology, communities, pseudocommunity analysis, Lacerta perspicillata, Lacerta andreanszkyi, Podarcis vaucheri, Quedenfeldtia trachyblepharus, Morocco ...

  7. Improving Completeness of Geometric Models from Terrestrial Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Clemens Nothegger

    2011-12-01

    Full Text Available The application of terrestrial laser scanning for the documentation of cultural heritage assets is becoming increasingly common. While the point cloud by itself is sufficient for satisfying many documentation needs, it is often desirable to use this data for applications other than documentation. For these purposes a triangulated model is usually required. The generation of topologically correct triangulated models from terrestrial laser scans, however, still requires much interactive editing. This is especially true when reconstructing models from medium range panoramic scanners and many scan positions. Because of residual errors in the instrument calibration and the limited spatial resolution due to the laser footprint, the point clouds from different scan positions never match perfectly. Under these circumstances many of the software packages commonly used for generating triangulated models produce models which have topological errors such as surface intersecting triangles, holes or triangles which violate the manifold property. We present an algorithm which significantly reduces the number of topological errors in the models from such data. The algorithm is a modification of the Poisson surface reconstruction algorithm. Poisson surfaces are resilient to noise in the data and the algorithm always produces a closed manifold surface. Our modified algorithm partitions the data into tiles and can thus be easily parallelized. Furthermore, it avoids introducing topological errors in occluded areas, albeit at the cost of producing models which are no longer guaranteed to be closed. The algorithm is applied to scan data of sculptures of the UNESCO World Heritage Site Schönbrunn Palace and data of a petrified oyster reef in Stetten, Austria. The results of the method’s application are discussed and compared with those of alternative methods.

  8. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    Science.gov (United States)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  9. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    Science.gov (United States)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; hide

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  10. Echinocandin treatment of pneumocystis pneumonia in rodent models depletes cysts leaving trophic burdens that cannot transmit the infection.

    Directory of Open Access Journals (Sweden)

    Melanie T Cushion

    2010-01-01

    Full Text Available Fungi in the genus Pneumocystis cause pneumonia (PCP in hosts with debilitated immune systems and are emerging as co-morbidity factors associated with chronic diseases such as COPD. Limited therapeutic choices and poor understanding of the life cycle are a result of the inability of these fungi to grow outside the mammalian lung. Within the alveolar lumen, Pneumocystis spp., appear to have a bi-phasic life cycle consisting of an asexual phase characterized by binary fission of trophic forms and a sexual cycle resulting in formation of cysts, but the life cycle stage that transmits the infection is not known. The cysts, but not the trophic forms, express beta -1,3-D-glucan synthetase and contain abundant beta -1,3-D-glucan. Here we show that therapeutic and prophylactic treatment of PCP with echinocandins, compounds which inhibit the synthesis of beta -1,3-D-glucan, depleted cysts in rodent models of PCP, while sparing the trophic forms which remained in significant numbers. Survival was enhanced in the echincandin treated mice, likely due to the decreased beta -1,3-D-glucan content in the lungs of treated mice and rats which coincided with reductions of cyst numbers, and dramatic remodeling of organism morphology. Strong evidence for the cyst as the agent of transmission was provided by the failure of anidulafungin-treated mice to transmit the infection. We show for the first time that withdrawal of anidulafungin treatment with continued immunosuppression permitted the repopulation of cyst forms. Treatment of PCP with an echinocandin alone will not likely result in eradication of infection and cessation of echinocandin treatment while the patient remains immunosuppressed could result in relapse. Importantly, the echinocandins provide novel and powerful chemical tools to probe the still poorly understood bi-phasic life cycle of this genus of fungal pathogens.

  11. Assessment, modelization and analysis of 106 Ru experimental transfers through a freshwater trophic system

    International Nuclear Information System (INIS)

    Vray, F.

    1994-01-01

    Experiments are carried out in order to study 106 RU transfers through a freshwater ecosystem including 2 abiotic compartments (water and sediment) and 3 trophic levels (10 species). Experimental results are expressed mathematically so as they can be included into a global model which is then tested in two different situations. The comparison of the available data concerning the in situ measured concentrations to the corresponding calculated ones validates the whole procedure. Analysis of the so validated results lightens ruthenium distribution process in the environment. The rare detection of this radionuclide in organisms living in areas contaminated by known meaningful releases can be explained by a relativity high detection limit and by a slight role of the sediment as a secondary contamination source. (author). 78 figs., 18 tabs

  12. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities?

    Science.gov (United States)

    Freilich, Mara A; Wieters, Evie; Broitman, Bernardo R; Marquet, Pablo A; Navarrete, Sergio A

    2018-03-01

    Co-occurrence methods are increasingly utilized in ecology to infer networks of species interactions where detailed knowledge based on empirical studies is difficult to obtain. Their use is particularly common, but not restricted to, microbial networks constructed from metagenomic analyses. In this study, we test the efficacy of this procedure by comparing an inferred network constructed using spatially intensive co-occurrence data from the rocky intertidal zone in central Chile to a well-resolved, empirically based, species interaction network from the same region. We evaluated the overlap in the information provided by each network and the extent to which there is a bias for co-occurrence data to better detect known trophic or non-trophic, positive or negative interactions. We found a poor correspondence between the co-occurrence network and the known species interactions with overall sensitivity (probability of true link detection) equal to 0.469, and specificity (true non-interaction) equal to 0.527. The ability to detect interactions varied with interaction type. Positive non-trophic interactions such as commensalism and facilitation were detected at the highest rates. These results demonstrate that co-occurrence networks do not represent classical ecological networks in which interactions are defined by direct observations or experimental manipulations. Co-occurrence networks provide information about the joint spatial effects of environmental conditions, recruitment, and, to some extent, biotic interactions, and among the latter, they tend to better detect niche-expanding positive non-trophic interactions. Detection of links (sensitivity or specificity) was not higher for well-known intertidal keystone species than for the rest of consumers in the community. Thus, as observed in previous empirical and theoretical studies, patterns of interactions in co-occurrence networks must be interpreted with caution, especially when extending interaction

  13. Time- and depth-wise trophic niche shifts in Antarctic benthos.

    Directory of Open Access Journals (Sweden)

    Edoardo Calizza

    Full Text Available Climate change is expected to affect resource-consumer interactions underlying stability in polar food webs. Polar benthic organisms have adapted to the marked seasonality characterising their habitats by concentrating foraging and reproductive activity in summer months, when inputs from sympagic and pelagic producers increase. While this enables the persistence of biodiverse food webs, the mechanisms underlying changes in resource use and nutrient transfer are poorly understood. Thus, our understanding of how temporal and spatial variations in the supply of resources may affect food web structure and functioning is limited. By means of C and N isotopic analyses of two key Antarctic benthic consumers (Adamussium colbecki, Bivalvia, and Sterechinus neumayeri, Echinoidea and Bayesian mixing models, we describe changes in trophic niche and nutrient transfer across trophic levels associated with the long- and short-term diet and body size of specimens sampled in midsummer in both shallow and deep waters. Samplings occurred soon after the sea-ice broke up at Tethys Bay, an area characterised by extreme seasonality in sea-ice coverage and productivity in the Ross Sea. In the long term, the trophic niche was broader and variation between specimens was greater, with intermediate-size specimens generally consuming a higher number of resources than small and large specimens. The coupling of energy channels in the food web was consequently more direct than in the short term. Sediment and benthic algae were more frequently consumed in the long term, before the sea-ice broke up, while consumers specialised on sympagic algae and plankton in the short term. Regardless of the time scale, sympagic algae were more frequently consumed in shallow waters, while plankton was more frequently consumed in deep waters. Our results suggest a strong temporal relationship between resource availability and the trophic niche of benthic consumers in Antarctica. Potential

  14. Fatty acid trophic markers and trophic links among seston, crustacean zooplankton and the siphonophore Nanomia cara in Georges Basin and Oceanographer Canyon (NW Atlantic

    Directory of Open Access Journals (Sweden)

    Sergio Rossi

    2008-06-01

    Full Text Available Fatty acid concentrations expressed as percentages of total fatty acid pools in seston, stage V copepodites of Calanus finmarchicus, adults of the euphausiid Meganyctiphanes norvegica, and the physonect siphonophore Nanomia cara were used to elucidate trophic links in Georges Basin and Oceanographer Canyon in September 2003. Seston at both locations was refractory and comprised mainly of saturated fatty acids. Phytoplankton did not contribute significantly to the fatty acid composition of seston or higher trophic levels. Only four fatty acids, i.e. 14:0, 16:0, 16:1 (n–7 and 18:1 (n–7, were transferred from seston to C. finmarchicus or M. norvegica, which suggested weak trophic interactions. Fatty acids transferred from the two species of crustaceans to N. cara included the same four fatty acids, along with three polyunsaturated fatty acids found in relatively high concentrations in both crustaceans, i.e. 20:3 (n–6, 20:5 (n–3 and 22:6 (n–3. In addition, 18:1 (n–9, which occurred in relatively high concentrations only in M. norvegica, and 18:0 and 18:2 (n–6, which were found in low concentrations in both crustaceans, also appeared to be transferred to N. cara. Overall, fatty acid trophic markers proved useful for identifying trophic links to N. cara.

  15. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    Science.gov (United States)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  16. Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations.

    Science.gov (United States)

    Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D

    2015-01-01

    There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.

  17. Trophic transfer of metal nanoparticles in freshwater ecosystems

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal

    freshwater ecosystems range from a few ng/L in surface waters and up to mg/kg in sediments. Several studies have shown Ag ENPs to be toxic, bioaccumulative and harmful to aquatic biota within these concentration ranges. However, research on potential trophic transfer of Ag ENPs is limited. To investigate...... the aquatic ecosystems, Ag ENPs will undergo several transformation processes, ultimately leading to particles settling out of the water column. This will likely result in an increased concentration of ENPs in the sediment. In fact, predicted environmental concentrations of Ag ENPs in Danish and European...... freshwater food web. Future studies should concentrate on the internal distribution of Me-ENPs after uptake in both prey and predator, as this will increase the understanding of fate and effects of Me-ENPs on aquatic biota. Trophic transfer studies including more trophic levels, and higher pelagic organisms...

  18. Trophic mass-balance model of Alaska's Prince William Sound ecosystem, for the post-spill period 1994-1996

    International Nuclear Information System (INIS)

    Okey, T.A.; Pauly, D.

    1998-01-01

    The Ecopath modelling approach for the Prince William Sound (PWS) ecosystem was described. The area is the site of the 1989 Exxon Valdez oil spill (EVOS), the largest spill in U.S. history. 36,000 tonnes of crude oil spread throughout the central and southwestern PWS into the Gulf of Alaska and along the Kenai and Alaska Peninsula. The initial effects of the oil spill were catastrophic. The Ecopath modelling approach discussed in this report is aimed at providing a cohesive picture of the PWS ecosystem by constructing a mass-balanced model of food-web interactions and trophic flows using information collected since the EVOS. The model includes all biotic components of the ecosystem and provides a quantitative description of food-web interactions and relationships, as well as energy flows among components. The model can provide an understanding of how ecosystems respond to disturbances, such as oil spills. 216 refs., 74 tabs., 13 figs., 8 appendices

  19. Inter-annual variabilities in biogeophysical feedback of terrestrial ecosystem to atmosphere using a land surface model

    Science.gov (United States)

    Seo, C.; Hong, S.; Jeong, H. M.; Jeon, J.

    2017-12-01

    Biogeophysical processes of terrestrial ecosystem such as water vapor and energy flux are the key features to understand ecological feedback to atmospheric processes and thus role of terrestrial ecosystem in climate system. For example, it has been recently known that the ecological feedback through water vapor and energy flux results in regulating regional weathers and climates which is one of the fundamental functions of terrestrial ecosystem. In regional scale, water vapor flux has been known to give negative feedback to atmospheric warming, while energy flux from the surface has been known to positive feedback. In this study, we explored the inter-annual variabilities in these two biogeophysical features to see how the climate regulating functions of terrestrial ecosystem have been changed with climate change. We selected a land surface model involving vegetation dynamics that is forced by atmospheric data from NASA including precipitation, temperature, wind, surface pressure, humidity, and incoming radiations. From the land surface model, we simulated 60-year water vapor and energy fluxes from 1961 to 2010, and calculates feedbacks of terrestrial ecosystem as in radiation amount into atmosphere. Then, we analyzed the inter-annual variabilities in the feedbacks. The results showed that some mid-latitude areas showing very high variabilities in precipitation showed higher positive feedback and/or lower negative feedback. These results suggest deterioration of the biogeophyisical factor of climate regulating function over those regions.

  20. Using a GIS model to assess terrestrial salamander response to alternative forest management plans

    Science.gov (United States)

    Eric J. Gustafson; Nathan L. Murphy; Thomas R. Crow

    2001-01-01

    A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data...

  1. Does terrestrial epidemiology apply to marine systems?

    Science.gov (United States)

    McCallum, Hamish I.; Kuris, Armand M.; Harvell, C. Drew; Lafferty, Kevin D.; Smith, Garriet W.; Porter, James

    2004-01-01

    Most of epidemiological theory has been developed for terrestrial systems, but the significance of disease in the ocean is now being recognized. However, the extent to which terrestrial epidemiology can be directly transferred to marine systems is uncertain. Many broad types of disease-causing organism occur both on land and in the sea, and it is clear that some emergent disease problems in marine environments are caused by pathogens moving from terrestrial to marine systems. However, marine systems are qualitatively different from terrestrial environments, and these differences affect the application of modelling and management approaches that have been developed for terrestrial systems. Phyla and body plans are more diverse in marine environments and marine organisms have different life histories and probably different disease transmission modes than many of their terrestrial counterparts. Marine populations are typically more open than terrestrial ones, with the potential for long-distance dispersal of larvae. Potentially, this might enable unusually rapid propagation of epidemics in marine systems, and there are several examples of this. Taken together, these differences will require the development of new approaches to modelling and control of infectious disease in the ocean.

  2. FARMLAND: model for transfer of radionuclides through terrestrial foodchains

    International Nuclear Information System (INIS)

    Brown, John

    1995-01-01

    Models to stimulate the transfer of radionuclides through terrestrial foodchains have been developed at the Board and regularly used over the last 20 years. The foodchain model is named FARMLAND (Food Activity from Radionuclide Movement on LAND) and it contains a suite of submodels, each of which simulates radionuclide transfer through a different part of the foodchain. These models can be combined in various orders so that they can be used for different situations of radiological interest. The main foods considered are: green vegetables; grain products; root vegetables; fruit; milk, meat and offal from cattle; meat and offal from sheep. A large variety of elements can be considered, although the degree of complexity with which some are modelled is greater than that for others; isotopes of caesium, strontium and iodine are treated in greatest detail. (Author)

  3. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    Science.gov (United States)

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  4. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    Science.gov (United States)

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  5. Optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps

    Science.gov (United States)

    Qiu, Hong; Deng, Wenmin

    2018-02-01

    In this paper, the optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps is considered. We introduce two kinds of environmental perturbations in this model. One is called white noise which is continuous and is described by a stochastic integral with respect to the standard Brownian motion. And the other one is jumping noise which is modeled by a Lévy process. Under some mild assumptions, the critical values between extinction and persistent in the mean of each species are established. The sufficient and necessary criteria for the existence of optimal harvesting policy are established and the optimal harvesting effort and the maximum of sustainable yield are also obtained. We utilize the ergodic method to discuss the optimal harvesting problem. The results show that white noises and Lévy noises significantly affect the optimal harvesting policy while time delays is harmless for the optimal harvesting strategy in some cases. At last, some numerical examples are introduced to show the validity of our results.

  6. Trophic State and Toxic Cyanobacteria Density in Optimization Modeling of Multi-Reservoir Water Resource Systems

    Directory of Open Access Journals (Sweden)

    Andrea Sulis

    2014-04-01

    Full Text Available The definition of a synthetic index for classifying the quality of water bodies is a key aspect in integrated planning and management of water resource systems. In previous works [1,2], a water system optimization modeling approach that requires a single quality index for stored water in reservoirs has been applied to a complex multi-reservoir system. Considering the same modeling field, this paper presents an improved quality index estimated both on the basis of the overall trophic state of the water body and on the basis of the density values of the most potentially toxic Cyanobacteria. The implementation of the index into the optimization model makes it possible to reproduce the conditions limiting water use due to excessive nutrient enrichment in the water body and to the health hazard linked to toxic blooms. The analysis of an extended limnological database (1996–2012 in four reservoirs of the Flumendosa-Campidano system (Sardinia, Italy provides useful insights into the strengths and limitations of the proposed synthetic index.

  7. Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity.

    Science.gov (United States)

    Pardikes, Nicholas A; Lumpkin, Will; Hurtado, Paul J; Dyer, Lee A

    2018-01-01

    Most of earth's biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly; thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models. The results presented here will help develop realistic predictions of the relationships

  8. Study of a tri-trophic prey-dependent food chain model of interacting populations.

    Science.gov (United States)

    Haque, Mainul; Ali, Nijamuddin; Chakravarty, Santabrata

    2013-11-01

    The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf-Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. 210Po and 210Pb in a pelagic trophic chain

    International Nuclear Information System (INIS)

    Radakovitch, O.; Strady, E.; Veron, A.; Chiffoleau, J.F.; Tronczynski, J.; Harmelin-Vivien, M.

    2013-01-01

    The ANR-COSTAS program studied the bioaccumulation and biomagnification of organic and inorganic contaminants through the trophic chains of two small pelagic fish, anchovy and sardine, on the continental shelf of the Gulf of Lion (Northwestern Mediterranean Sea). 210 Po and 210 Pb were analysed at various levels of this trophic chain, as well as trace metal elements, lead isotopes and C and N isotopes which provide additional information on both biogeochemical cycles and trophic transfer. To our knowledge, this is the first time that an entire trophic chain is analysed for these two radionuclides. Water, suspended particles, phytoplankton and zooplankton were collected at 7 stations during two contrast seasons. Phyto and zooplankton were separated in 6 classes through size-sieving: 6-60 μm; 60-200; 200-500; 500-1000; 1000-2000 and > 2000 μm. Anchovy and sardine were collected also two times and analyses were performed on muscle and liver independently for both sexes

  10. Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.

    2018-01-01

    Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.

  11. Exploring the Use of Multimedia Fate and Bioaccumulation Models to Calculate Trophic Magnification Factors (TMFs)

    Science.gov (United States)

    The trophic magnification factor (TMF) is considered to be a key metric for assessing the bioaccumulation potential of organic chemicals in food webs. Fugacity is an equilibrium criterion and thus reflects the relative thermodynamic status of a chemical in the environment and in ...

  12. Equilibration of the terrestrial water, nitrogen, and carbon cycles

    OpenAIRE

    Schimel, David S.; Braswell, B. H.; Parton, W. J.

    1997-01-01

    Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that l...

  13. Riparian swallows as integrators of landscape change in a multiuse river system: implications for aquatic-to-terrestrial transfers of contaminants.

    Science.gov (United States)

    Alberts, Jeremy M; Sullivan, S Mažeika P; Kautza, A

    2013-10-01

    Recent research has highlighted the transfer of contaminants from aquatic to terrestrial ecosystems via predation of aquatic emergent insects by riparian consumers. The influence of adjacent land use and land cover (LULC) on aquatic-to-terrestrial contaminant transfer, however, has received limited attention. From 2010 to 2012, at 11 river reaches in the Scioto River basin (OH, USA), we investigated the relationships between LULC and selenium (Se) and mercury (Hg) concentrations in four species of riparian swallows. Hg concentrations in swallows were significantly higher at rural reaches than at urban reaches (t=-3.58, Pemergent insects. For example, tree swallows (Tachycineta bicolor) at urban reaches exhibited a higher proportion of aquatic prey in their diet, fed at a higher trophic level, and exhibited elevated Se levels. We also found that both Se and Hg concentrations in adult swallows were significantly higher than those observed in nestlings at both urban and rural reaches (Se: t=-2.83, P=0.033, df=3; Hg: t=-3.22, P=0.024, df=3). Collectively, our results indicate that riparian swallows integrate contaminant exposure in linked aquatic-terrestrial systems and that LULC may strongly regulate aquatic contaminant flux to terrestrial consumers. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø , Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjø llo, Solfrid Sæ tre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  15. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø, Olav R.

    2012-01-17

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  16. Mesoscale eddies are oases for higher trophic marine life.

    Directory of Open Access Journals (Sweden)

    Olav R Godø

    Full Text Available Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

  17. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America.

    Science.gov (United States)

    Medvigy, David; Moorcroft, Paul R

    2012-01-19

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.

  18. Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description

    Directory of Open Access Journals (Sweden)

    Jan Hackenberg

    2014-05-01

    Full Text Available This paper presents a method for fitting cylinders into a point cloud, derived from a terrestrial laser-scanned tree. Utilizing high scan quality data as the input, the resulting models describe the branching structure of the tree, capable of detecting branches with a diameter smaller than a centimeter. The cylinders are stored as a hierarchical tree-like data structure encapsulating parent-child neighbor relations and incorporating the tree’s direction of growth. This structure enables the efficient extraction of tree components, such as the stem or a single branch. The method was validated both by applying a comparison of the resulting cylinder models with ground truth data and by an analysis between the input point clouds and the models. Tree models were accomplished representing more than 99% of the input point cloud, with an average distance from the cylinder model to the point cloud within sub-millimeter accuracy. After validation, the method was applied to build two allometric models based on 24 tree point clouds as an example of the application. Computation terminated successfully within less than 30 min. For the model predicting the total above ground volume, the coefficient of determination was 0.965, showing the high potential of terrestrial laser-scanning for forest inventories.

  19. Testing the generality of a trophic-cascade model for plague

    Science.gov (United States)

    Collinge, S.K.; Johnson, W.C.; Ray, C.; Matchett, R.; Grensten, J.; Cully, J.F.; Gage, K.L.; Kosoy, M.Y.; Loye, J.E.; Martin, A.P.

    2005-01-01

    Climate may affect the dynamics of infectious diseases by shifting pathogen, vector, or host species abundance, population dynamics, or community interactions. Black-tailed prairie dogs (Cynomys ludovicianus) are highly susceptible to plague, yet little is known about factors that influence the dynamics of plague epizootics in prairie dogs. We investigated temporal patterns of plague occurrence in black-tailed prairie dogs to assess the generality of links between climate and plague occurrence found in previous analyses of human plague cases. We examined long-term data on climate and plague occurrence in prairie dog colonies within two study areas. Multiple regression analyses revealed that plague occurrence in prairie dogs was not associated with climatic variables in our Colorado study area. In contrast, plague occurrence was strongly associated with climatic variables in our Montana study area. The models with most support included a positive association with precipitation in April-July of the previous year, in addition to a positive association with the number of "warm" days and a negative association with the number of "hot" days in the same year as reported plague events. We conclude that the timing and magnitude of precipitation and temperature may affect plague occurrence in some geographic areas. The best climatic predictors of plague occurrence in prairie dogs within our Montana study area are quite similar to the best climatic predictors of human plague cases in the southwestern United States. This correspondence across regions and species suggests support for a (temperature-modulated) trophic-cascade model for plague, including climatic effects on rodent abundance, flea abundance, and pathogen transmission, at least in regions that experience strong climatic signals. ?? 2005 EcoHealth Journal Consortium.

  20. Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data

    Directory of Open Access Journals (Sweden)

    H. Ozdemir

    2013-10-01

    Full Text Available This paper evaluates the results of benchmark testing a new inertial formulation of the St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m and roughness conditions (distributed and composite in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1 m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1 m resolution. Alternating between a uniform composite surface friction value (n = 0.013 or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS to attenuate flow.

  1. Trophic roles of scavenger beetles in relation to decomposition stages and seasons

    Directory of Open Access Journals (Sweden)

    Noelia I. Zanetti

    2015-06-01

    Full Text Available Carcasses represent a trophic and reproductive resource or shelter for arthropods, which are a representative component of the decomposition process. Four experiments, one per season, were conducted in a semi-rural area of Bahía Blanca, Argentina, to study the trophic roles of cadaveric beetles, evaluating the abundance, composition and dominance during all decomposition stages and seasons. Species of necrophagous, necrophilous and omnivorous habits were found. Abundance, composition and dominance of beetles in relation to their trophic roles changed according to seasons and decomposition stages. Guilds and patterns of succession were established in relation to those periods. Trophic roles could be an indicator of beetle associations with decomposition stages and seasons.

  2. Diet compositions and trophic guild structure of the eastern Chukchi Sea demersal fish community

    Science.gov (United States)

    Whitehouse, George A.; Buckley, Troy W.; Danielson, Seth L.

    2017-01-01

    Fishes are an important link in Arctic marine food webs, connecting production of lower trophic levels to apex predators. We analyzed 1773 stomach samples from 39 fish species collected during a bottom trawl survey of the eastern Chukchi Sea in the summer of 2012. We used hierarchical cluster analysis of diet dissimilarities on 21 of the most well sampled species to identify four distinct trophic guilds: gammarid amphipod consumers, benthic invertebrate generalists, fish and shrimp consumers, and zooplankton consumers. The trophic guilds reflect dominant prey types in predator diets. We used constrained analysis of principal coordinates (CAP) to determine if variation within the composite guild diets could be explained by a suite of non-diet variables. All CAP models explained a significant proportion of the variance in the diet matrices, ranging from 7% to 25% of the total variation. Explanatory variables tested included latitude, longitude, predator length, depth, and water mass. These results indicate a trophic guild structure is present amongst the demersal fish community during summer in the eastern Chukchi Sea. Regular monitoring of the food habits of the demersal fish community will be required to improve our understanding of the spatial, temporal, and interannual variation in diet composition, and to improve our ability to identify and predict the impacts of climate change and commercial development on the structure and functioning of the Chukchi Sea ecosystem.

  3. Multi model and data analysis of terrestrial carbon cycle in Asia: From 2001 to 2006

    Science.gov (United States)

    Ichii, K.; Takahashi, K.; Suzuki, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.

    2009-12-01

    Accurate monitoring and modeling of the current status and their causes of interannual variations in terrestrial carbon cycle are important. Recently, many studies analyze using multiple methods (e.g. satellite data and ecosystem models) to clarify the underlain mechanisms and recent trend since each single methodology contains its own biases. The multi-model and data ensemble approach is a powerful method to clarify the current status and their underlain mechanisms. So far, many studies using multiple sources of data and models are conducted in North America, Europe, Africa, Amazon, and Japan, however, studies in monsoon Asia are lacking. In this study, we analyzed interannual variations in terrestrial carbon cycles in monsoon Asia, and evaluated current capability of remote sensing and ecosystem model to capture them based on multiple model and data sources; flux observations, remote sensing (e.g. MODIS, AVHRR, and VGT), and ecosystem models (e.g. SVM, BEAMS, CASA, Biome-BGC, LPJ, and TRIFFID). The satellite observation and ecosystem models show clear characteristics in interannual variabilities in satellite-based NDVI and model-based GPP. These are characterized by (1) spring NDVI and modeled GPP anomalies related to temperature anomaly in mid and high latitudinal areas (positive anomalies in 2002 and 2005 and negative one in 2006), (2) NDVI and GPP anomalies in southeastern and central Asia related to precipitation (e.g. India from 2003-2006), and (3) summer NDVI and GPP anomalies in 2003 related to strong anomalies in solar radiations. NDVI anomalies related to radiation ones (2003 summer) were not accurately captured by terrestrial ecosystem models. For example, LPJ model rather shows GPP positive anomalies in Far East Asia regions probably caused by positive precipitation anomalies. Further analysis requires improvement of models to reproduce more consistent spatial patterns in NDVI anomaly, and longer term analysis (e.g. after 1982).

  4. Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems

    Science.gov (United States)

    Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise

    2015-01-01

    In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.

  5. Aspects of the trophic ecology of Liza falcipinnis (Valenciennes 1836)

    African Journals Online (AJOL)

    Aspects of the trophic ecology of Liza falcipinnis (Valenciennes) were studied in the Cross River Estuary (CRE) east of the Niger Delta (Nigeria). The trophic spectrum showed that L. falcipinnis fed on a wide variety of food resources. From the index of relative importance (IRI), L. falcipinnis fed primarily on diatoms, FPOM, ...

  6. Pizza or Pancake? Formation Models of Gas Escape Biosignatures in Terrestrial and Martian Sediments

    Science.gov (United States)

    Bonaccorsi, R.; Fairen, A. G.; Baker, L.; McKay, C. P.; Willson, D.

    2016-05-01

    Fine-grained sedimentary hollowed structures were imaged in Gale Crater, but no biomarkers identified to support biology. Our observation-based (gas escape) terrestrial model could inform on possible martian paleoenvironments at time of formation.

  7. Community structure and trophic ecology of megabenthic fauna from the deep basins in the Interior Sea of Chiloé, Chile (41-43° S)

    Science.gov (United States)

    Zapata-Hernández, Germán; Sellanes, Javier; Thiel, Martin; Henríquez, Camila; Hernández, Sebastián; Fernández, Julio C. C.; Hajdu, Eduardo

    2016-11-01

    Estuarine environments are complex ecological systems, which depend on multiple inputs of organic sources that could support their benthic communities. The deep-water megabenthic communities of the Interior Sea of Chiloé (ISCh, northern part of the fjord region of Chile) were studied to characterize their taxonomic composition and to trace the energy pathways supporting them by using stable isotope analysis (SIA). Megabenthic and demersal organisms as well as sunken macroalgal debris and terrestrial organic matter (TOM: wood, leaves, branches) were obtained by bottom trawling along an estuarine gradient covering 100-460 m water depth. Additionally, particulate organic matter (POM) and the sedimentary organic matter (SOM) were sampled and carbon (δ13C) and nitrogen (δ15N) isotope ratios were determined for all these organisms and potential food sources. A total of 140 taxa were obtained, including invertebrates (e.g. polychaetes, mollusks, crustaceans and echinoderms) bony fishes, rays and sharks. Based on the stable isotope values it was possible to infer a strong dependence on primary production derived from phytoplankton which is exported to the benthos. A potentially important contribution from sunken macroalgae to megabenthic consumers was established only for some invertebrates, such as the irregular echinoid Tripylaster philippii and the decapod Eurypodius latreillii. The trophic structure metrics suggest a similar isotopic niche width, trophic diversity and species packaging in the food webs among the major basins in the ISCh. It is thus concluded that the benthic food webs are supported principally by surface primary production, but macroalgal subsidies could be exploited by selected invertebrate taxa (e.g. detritivores) and terrestrial carbon pathways are important for certain specialized taxa (e.g. Xylophaga dorsalis).

  8. Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders

    Science.gov (United States)

    2016-12-01

    1 AWARD NUMBER: W81XWH-14-1-0433 TITLE: Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders PRINCIPAL INVESTIGATOR: Anis...SUBTITLE 5a. CONTRACT NUMBER Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders 5b. GRANT NUMBER W81XWH-14-1-0433 5c. PROGRAM...chloride co-transporters that control EGABA could be used as a corrective strategy for the synaptic and circuit disruptions demonstrated in the

  9. Feeding habits and trophic levels of some demersal fish species in the Persian Gulf (Bushehr Province) using Ecopath model

    OpenAIRE

    Vahabnezhad, Arezoo

    2015-01-01

    A trophic study was carried out in February of 2012 to January 2013 on the ecosystem in the Persian Gulf, Bushehr provience. A total of 2,948 samples of stomach contents were analyzed based on the weight and number of food items and were identified about 40 preys. Crustacean and bony fish were as a main prey in most of the stomach contents . The mean average trophic level was estimated at 3.6 by Ecopath software. In this research, the mean level were studied between eight species varied fr...

  10. Use of Stable Carbon and Nitrogen Isotopes for Trophic Level Evaluation and Food Webs Reconstruction in the Bay of Biscay : Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Chouvelon, T.; Caurant, F.; Mendez Fernandez, P.; Bustamante, P. [Littoral Environnement et Societes, La Rochelle (France); Spitz, J. [Centre de Recherche sur les Mammiferes Marins, La Rochelle (France)

    2013-07-15

    Assessing species' trophic level is one key aspect of ecosystem models, providing an indicator to monitor trophic links and ecosystem changes. The stable isotope ratios (SIR) of carbon and nitrogen provide longer term information on the average diet of consumers than the traditional stomach content method. However, using SIR in predators implies a good knowledge of the factors influencing prey species signature and lower trophic levels themselves, such as spatial and temporal variations. In this study, 129 species belonging to several taxa (i.e. crustaceans, molluscs, fish, marine mammals) from the Bay of Biscay where analysed for their isotopic signatures. Results confirmed the existence of several trophic food webs with probable different baseline signatures in this area, an essential consideration when using the isotopic tool for calculating species trophic level and potential evolution in space and time. Results demonstrated a spatial gradient from the shoreline to the oceanic domain for both carbon and nitrogen. (author)

  11. Trophic structure of macroinvertebrates in tropical pasture streams

    Directory of Open Access Journals (Sweden)

    Bruna Neves da Silveira-Manzotti

    Full Text Available Abstract: Aim The aim of this study was to describe the diet of stream macroinvertebrates and to determine their trophic groups. Methods Invertebrates were sampled with D nets in three pasture streams. They were identified to genus level and submitted to gut content analysis, except for fluid feeders such as hemipterans, to which diet data was obtained from the literature. Trophic groups were determined based on a similarity analysis using the Bray-Curtis similarity coefficient. Results Five trophic groups were defined: fine-detritivores (feed mostly on fine particulate organic matter - FPOM, coarse-detritivores/herbivores (feed mostly on coarse particulate organic matter - CPOM - and plant material, omnivores, specialist-predators (prey upon aquatic insects only, and generalist-predators. Ephemeroptera, Diptera (except Tanypodinae, Coleoptera, and Trichoptera (except Smicridea were detritivores. The caddis Macronema (Trichoptera fed exclusively on plant detritus and Tanypodinae and Smicridea were classified as omnivores. The odonate families Calopterygidae and Gomphidae were classified as specialist-predators, while Macrobrachium (Decapoda, Belostoma, and Limnocoris (Hemiptera were generalist-predators. Conclusions The great quantity and frequency of occurrence of FPOM consumed by most taxa highlight the importance of this food resource for macroinvertebrate communities from tropical streams. Furthermore, observed variations on trophic group assignment for some taxa indicate the generalist and opportunistic nature of these aquatic invertebrates. Such findings reinforce the importance of conducting gut content analysis on macroinvertebrates to understand their role in the structure and functioning of tropical streams.

  12. Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem

    Science.gov (United States)

    2015-09-30

    Foraging patterns: model-data comparison . Simulated (colored circles) and observed (black circles) foraging locations for male sea lion individuals off...focusing on trophic interactions affecting habitat utilization and foraging patterns of California sea lions (CSL) in the California Current Large Marine...by considering patterns of covariability between environmental variables (e.g., temperature, primary production) and foraging patterns and success of

  13. Dynamic modeling system for the transfer of radioactivity in terrestrial food chains

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Linsley, G.S.

    1981-01-01

    A dynamic modeling system is described for the transfer of radionuclides in terrestrial food chains. The main features of the system are its ability to predict the time dependence of the major transfer processes and its flexibility and applicability to a range of contamination scenarios. The modeling system is regarded as a basic framework on which more realistic models can be based, given the availability of reliable environmental transfer data. An example of such a development is included for 90 Sr in the pasture-cow-milk pathway. The model predicts annual average concentrations of 90 Sr in milk caused by fallout in the United Kingdom to within 15% of measured values for over most of the 20-y period for which data exist. It makes possible the evaluation of the time dependence of the contributions of various transfer processes. Following acute releases to the atmosphere or releases in any other contamination scenario where direct deposition is absent, certain pathways often not considered in food-chain models, such as the external contamination of plants caused by resuspension processes or the ingestion of contaminants together with soil by grazing animals, are shown to be potentially important in the transfer of activity to man. The main application of dynamic food-chain models is the prediction of the consequences of accidental releases to the terrestrial environment. The predictions can be used in planning countermeasures and in assessing the health, economic, and social impacts of accidental release

  14. Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2009-04-01

    Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.

  15. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling

    Science.gov (United States)

    Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.

  16. A Trophic Flow Model of the Caeté Mangrove Estuary (North Brazil) with Considerations for the Sustainable Use of its Resources

    Science.gov (United States)

    Wolff, M.; Koch, V.; Isaac, V.

    2000-06-01

    The Caeté Estuary lies within the world's second largest mangrove region, 200 km south-east of the Amazon delta. It has an extension of about 220 km2and is subjected to a considerable human impact through intensive harvest of mangrove crabs (Ucides cordatus) and logging of mangroves. In order to integrate available information on biomass, catches, food spectrum and dynamics of the main species populations of the system, a trophic steady state model of 19 compartments was constructed using the ECOPATH II software (Christensen & Pauly, 1992). Ninety-nine percent of total system biomass is made up by mangroves (Rhizophora mangle, Avicennia germinans andLaguncularia racemosa), which are assumed to cover about 45% of the total area and contribute about 60% to the system's primary production. The remaining biomass (132 g m-2) is distributed between the pelagic and benthic domains in proportions of 10% and 90% respectively. Through litter fall, mangroves inject the main primary food source into the system, which is either consumed directly by herbivores (principally land crabs, Ucides cordatus) or, when already metabolized by bacteria, by detritivors (principally fiddler crabs, Uca spp.). These two groups are prominent in terms of biomass (80 g and 14·5 g m-2), and food intake (1120 g m-2 yr-1and 1378 g m-2 yr-1respectively). According to the model estimates, energy flow through the fish and shrimp compartments is of relatively low importance for the energy cycling within the system, a finding which is contrary to the situation in other mangrove estuaries reported in the literature. The dominance of mangrove epibenthos is attributed to the fact that a large part of the system's production remains within the mangrove forest as material export to the estuary is restricted to spring tides, when the forest is completely indundated. This is also the reason for the low abundance of suspension feeders, which are restricted to a small belt along the Caeté River and the small

  17. The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP: experimental design and protocols

    Directory of Open Access Journals (Sweden)

    C. Goldblatt

    2017-11-01

    Full Text Available Accurate radiative transfer calculation is fundamental to all climate modelling. For deep palaeoclimate, and increasingly terrestrial exoplanet climate science, this brings both the joy and the challenge of exotic atmospheric compositions. The challenge here is that most standard radiation codes for climate modelling have been developed for modern atmospheric conditions and may perform poorly away from these. The palaeoclimate or exoclimate modeller must either rely on these or use bespoke radiation codes, and in both cases rely on either blind faith or ad hoc testing of the code. In this paper, we describe the protocols for the Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP to systematically address this. This will compare as many radiation codes used for palaeoclimate or exoplanets as possible, with the aim of identifying the ranges of far-from-modern atmospheric compositions in which the codes perform well. This paper describes the experimental protocol and invites community participation in the project through 2017–2018.

  18. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    Science.gov (United States)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  19. Study of silver-110M transfer mechanisms in freshwater. Conceiving and utilization of an experimental model of ecosystem and of a mathematical model to simulate the radionuclide through a trophic chain

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.

    1990-10-01

    Uptake and retention of 110m Ag are quantified from laboratory studies carried out on an experimental freshwater ecosystem composed by two abiotic units, water and sediment, and by four trophic levels: primary producer (Scenedesmus obliquus), first order consumers (Daphnia magna, Gammarus pulex, Chrionomus sp.), second order consumer (Cyprinus carpio) and third order one (Salmo trutta). The chosen analytical process consists in expressing each transfer by a mathematical equation which formulation is based on a theoric analysis. Experiments allow to calibrate parameters of these equations for each unit of the food chain. All experimental data concerning 110m Ag uptake emphasize the radioprotection implications of this radioelement, because of the high values of the estimated radioecological parameters. On the basis of the results obtained, a determinist mathematical model has been conceived to simulate the radionuclide distribution in the food chain as a function of a chronic or acute contamination mode. Its application gives the development with time of the mean 110m Ag concentration values for each trophic level. The first approaches based on the analysis of the results of field studies, carried out on ecosystems affected by chronic pollution (Rhone river) or acute one (as a consequence of the Chernobyl accident), give to the model an important explicative and global predictive quality. The age of the fish, their dietary habits which vary according to the annual cycle of the prey species and with theirposition in the food chain, appear such as essential parameters. The trophic pathway is clearly predominant whatever the contamination mode and, explains, for acute exposure, why accumulation of 110m Ag can be prolonged for a long time after the surrounding environment contamination [fr

  20. Thiacloprid affects trophic interaction between gammarids and mayflies

    International Nuclear Information System (INIS)

    Englert, D.; Bundschuh, M.; Schulz, R.

    2012-01-01

    Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator–prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption of Gammarus fossarum (Amphipoda) were assessed over 96 h (n = 13–17) in conjunction with its predation on Baetis rhodani (Ephemeroptera) nymphs. The predation by Gammarus increased significantly at 0.50–1.00 μg/L. Simultaneously, its leaf consumption decreased with increasing thiacloprid concentration. As a consequence of the increased predation at 1.00 μg/L, gammarids' dry weight rose significantly by 15% compared to the control. At 4.00 μg/L, the reduced leaf consumption was not compensated by an increase in predation causing a significantly reduced dry weight of Gammarus (∼20%). These results may finally suggest that thiacloprid adversely affects trophic interactions, potentially translating into alterations in ecosystem functions, like leaf litter breakdown and aquatic-terrestrial subsidies. - Highlights: ► Field relevant thiacloprid concentrations affected gammarid and mayfly interaction. ► Gammarus leaf consumption and predation success is adversely affected. ► Gammarus growth increased due to higher predation at 1.0 μg thiacloprid/L. ► The study's results are discussed in the context of ecosystem functions. - Field relevant thiacloprid concentrations affect species interactions, which may translate to alterations in ecosystem functions.

  1. An isotopic investigation of mercury accumulation in terrestrial food webs adjacent to an Arctic seabird colony

    International Nuclear Information System (INIS)

    Choy, Emily S.; Gauthier, Martine; Mallory, Mark L.; Smol, John P.; Douglas, Marianne S.V.; Lean, David; Blais, Jules M.

    2010-01-01

    At Cape Vera (Devon Island, Nunavut, Canada), a seabird colony of northern fulmars (Fulmarus glacialis) congregates and releases nutrients through the deposition of guano to the coastal terrestrial environment, thus creating nutrient-fertilized habitats important to insects, birds, and mammals. Here we determined whether mercury was similarly enriched in various terrestrial food web components in this High Arctic coastal ecosystem due to seabird inputs. Stable isotopes (δ 15 N, δ 13 C) were used to identify trophic linkages and possible routes of contaminant transfer in the food web. Values of δ 15 N were significantly higher in lichens and certain plants collected closer to the bird colony, demonstrating a gradient of seabird influence, and were higher at Cape Vera than our reference site at Cape Herschel, on eastern Ellesmere Island, an area relatively unaffected by seabirds. In contrast, δ 13 C showed little variation among terrestrial species, suggesting minimal influence by seabirds. Concentrations of total mercury (THg) in primary producers and phyto/zooplankton were not significantly correlated with distance from the seabird colony or δ 15 N values, and were similar to other taxa from the High Arctic. Our results provide novel data on THg in several Arctic taxa where concentrations have not been reported previously. Moreover, the analyses indicate that δ 15 N is significantly enriched in the adjacent environment by guano fertilization, but our study was unable to show an enrichment of THg and δ 13 C in the terrestrial food web near the seabird colony.

  2. Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications

    Science.gov (United States)

    Mohammed, Hani Mahmoud

    This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an

  3. Trigeminal trophic syndrome

    Directory of Open Access Journals (Sweden)

    Parimalam Kumar

    2014-01-01

    Full Text Available Trigeminal trophic syndrome (TTS is a rare cause of facial ulceration, consequent to damage to the trigeminal nerve or its central sensory connections. We reporta case of TTS in a 48-year-old woman with Bell′s palsy following herpes zoster infection. The patient was treated and counseled. There hasnot been any recurrence for 1 year and the patient is being followed-up. The diagnosis of TTS should be suspected when there is unilateral facial ulceration, especially involving the ala nasi associated with sensory impairment.

  4. Trophic cascades of bottom-up and top-down forcing on nutrients and plankton in the Kattegat, evaluated by modelling

    DEFF Research Database (Denmark)

    Petersen, Marcell Elo; Maar, Marie; Larsen, Janus

    2017-01-01

    The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model....... On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient...

  5. Modelling of resuspension, seasonality and losses during food processing. First report of the VAMP terrestrial working group

    International Nuclear Information System (INIS)

    1992-05-01

    This is the first report of the Terrestrial Working Group of the Coordinated Research Programme. ''The validation of models for the transfer of radionuclides in terrestrial, urban and aquatic environments and the acquisition of data for that purpose''. The programme seeks to use information on the environmental behaviour of radionuclides available after the Chernobyl accident to test the reliability of assessment models. The models themselves are useful for assessing the radiological impact of all parts of the nuclear fuel cycle. This report contains reviews of three topics: resuspension of radioactive particles; removal of radionuclides during food processing; and seasonality of radioactive contamination of food. The three reviews have been indexed separately. Refs, figs and tabs

  6. Measuring variability in trophic status in the Lake Waco/Bosque River Watershed

    Directory of Open Access Journals (Sweden)

    Rodriguez Angela D

    2008-01-01

    Full Text Available Abstract Background Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. Methods We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP in response to nutrient enrichment (nitrogen and phosphorus. We evaluated the lotic ecosystem trophic status index (LETSI using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. Results The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02 located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05 were the next most enriched sites. Trophic class varied for enriched sites over seasons. Conclusion Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show

  7. RAMS Model for Terrestrial Pathways Version 3. 0 (for microcomputers). Model-Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Niebla, E.

    1989-01-01

    The RAMS Model for Terrestrial Pathways is a computer program for calculation of numeric criteria for land application and distribution and marketing of sludges under the sewage-sludge regulations at 40 CFR Part 503. The risk-assessment models covered assume that municipal sludge with specified characteristics is spread across a defined area of ground at a known rate once each year for a given number of years. Risks associated with direct land application of sludge applied after distribution and marketing are both calculated. The computer program calculates the maximum annual loading of contaminants that can be land applied and still meet the risk criteria specified as input. Software Description: The program is written in the Turbo/Basic programming language for implementation on IBM PC/AT or compatible machines using DOS 3.0 or higher operating system. Minimum core storage is 512K.

  8. Development of a Terrestrial Modeling System: The China-wide Demonstration

    Science.gov (United States)

    Duan, Q.; Dai, Y.; Zheng, X.; Ye, A.; Chen, Z.; Shangguang, W.

    2010-12-01

    A terrestrial modeling system (TMS) is being developed at Beijing Normal University. The purposes of TMS are (1) to provide a land surface parameterization scheme fully capable of being coupled with and climate and Earth system models of different scales; (2) to provide a standalone platform for simulation and prediction of land surface processes; and (3) to provide a platform for studying human-Earth system interactions. This system will build on and extend existing capabilities at BNU, including the Common Land Model (CoLM) system, high-resolution atmospheric forcing data sets, high-resolution soil and vegetation data sets, and high-performance computing facilities and software. This presentation describes the system design and demonstrates the initial capabilities of TMS in simulating water and energy fluxes over the continental China for a multi-year period.

  9. Combining lightning leader and relativistic feedback discharge models of terrestrial gamma-ray flashes

    Science.gov (United States)

    Dwyer, J. R.

    2016-12-01

    Lightning leader models of terrestrial gamma-ray flashes (TGFs) are based on the observations that leaders emit bursts of hard x-rays. These x-rays are thought to be generated by runaway electrons created in the high-field regions associated with the leader tips and/or streamers heads. Inside a thunderstorm, it has been proposed that these runaway electrons may experience additional relativistic runaway electron avalanche (RREA) multiplication, increasing the number and the average energy of the electrons, and possibly resulting in a TGF. When modeling TGFs it is important to include the discharge currents resulting from the ionization produced by the runaway electrons, since these currents may alter the electric fields and affect the TGF. In addition, relativistic feedback effects, caused by backward propagating positrons and backscattered x-rays, need to be included, since relativistic feedback limits the size of the electric field and the amount of a RREA multiplication that may occur. In this presentation, a lightning leader model of terrestrial gamma-ray flashes that includes the effects of the discharge currents and relativistic feedback will be described and compared with observations.

  10. Short-chain chlorinated paraffins in terrestrial bird species inhabiting an e-waste recycling site in South China.

    Science.gov (United States)

    Luo, Xiao-Jun; Sun, Yu-Xin; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian

    2015-03-01

    Short-chain chlorinated paraffins (SCCPs) are under review by the Stockholm Convention on Persistent Organic Pollutants. Currently, limited data are available about SCCPs in terrestrial organisms. In the present study, SCCP concentration in the muscles of seven terrestrial bird species (n = 38) inhabiting an e-waste recycling area in South China was determined. This concentration varied from 620 to 17,000 ng/g lipid. Resident birds accumulated significantly higher SCCP concentrations than migratory birds (p < 0.01). Trophic magnification was observed for migratory bird species but not for resident, which was attributed to high heterogeneity of SCCP in e-waste area. Two different homologue group patterns were observed in avian samples. The first pattern was found in five bird species dominated by C10 and C11 congeners, while the second was found in the remains, which show rather equal abundance of homologue groups. This may be caused by two sources of SCCPs (local and e-waste) in the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    Science.gov (United States)

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  12. Distributions and natural levels of related metals in a trophic pathway

    International Nuclear Information System (INIS)

    Lemons, J.D.

    1976-06-01

    The first objective was to test the hypothesis that metal distributions and trends in organisms are, in part, a function of metal positions in the periodic table in unpolluted ecosystems. The data have shown that large soil crustal abundance differences of related elements (e.g. alkali metals) are proportionately approximated in higher organisms. Concentration factors for related nutritious and nonessential and toxic metals were determined along a trophic pathway. When the concentration factors were reported as the concentration of a particular metal by itself, all metal concentrations increased along the trophic pathway. The second objective of this study was to test the hypothesis that distributions and natural levels of chemically related nonessential and toxic metals can better be known when the metals are reported as a ratio, in ash, of the nonessential or toxic metal to its chemically related nutritious metal (e.g. strontium/calcium) as the metals are transferred through trophic pathways. The data have shown that when this method of reporting metal abundances in trophic levels is used, nonessential and toxic metals are discriminated against, relative to their chemically related nutritious metal, as the metals are transferred through the trophic pathway levels. The third objective was designed to test the hypothesis that surface deposition of toxic metals upon plants influences the trends of metal abundances through trophic pathways. This study indicates that metal pollution in the form of deposition upon plant surfaces bypasses the discrimination mechanisms in plants, and consequently elevates the total body burden in herbivores. It is likely that there is no herbivore defense for this type of metal exposure, because herbivores have probably come to rely, in part, upon the discriminatory mechanism of plants throughout the course of evolutionary history to keep toxic metal burdens low

  13. The trophic responses of two different rodent-vector-plague systems to climate change.

    Science.gov (United States)

    Xu, Lei; Schmid, Boris V; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr; Zhang, Zhibin

    2015-02-07

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. The trophic responses of two different rodent–vector–plague systems to climate change

    Science.gov (United States)

    Xu, Lei; Schmid, Boris V.; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr.; Zhang, Zhibin

    2015-01-01

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change. PMID:25540277

  15. Existence of limit cycles in a three level trophic chain with Lotka–Volterra and Holling type II functional responses

    International Nuclear Information System (INIS)

    Castellanos, Víctor; Chan-López, Ramón E.

    2017-01-01

    In this paper we analyze a three level trophic chain model, considering a logistic growth for the lowest trophic level, a Lotka–Volterra and Holling type II functional responses for predators in the middle and in the cusp in the chain, respectively. The differential system is based on the Leslie–Gower scheme. We establish conditions on the parameters that guarantee the coexistence of populations in the habitat. We find that an Andronov–Hopf bifurcation takes place. The first Lyapunov coefficient is computed explicitly and we show the existence of a stable limit cycle. Numerically, we observe a strange attractor and there exist evidence of the model to exhibit chaotic dynamics.

  16. Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment.

    Directory of Open Access Journals (Sweden)

    Adam D Hughes

    Full Text Available The trophic interactions of sea urchins are known to be the agents of phase shifts in benthic marine habitats such as tropical and temperate reefs. In temperate reefs, the grazing activity of sea urchins has been responsible for the destruction of kelp forests and the formation of 'urchin barrens', a rocky habitat dominated by crustose algae and encrusting invertebrates. Once formed, these urchin barrens can persist for decades. Trophic plasticity in the sea urchin may contribute to the stability and resilience of this alternate stable state by increasing diet breadth in sea urchins. This plasticity promotes ecological connectivity and weakens species interactions and so increases ecosystem stability. We test the hypothesis that sea urchins exhibit trophic plasticity using an approach that controls for other typically confounding environmental and genetic factors. To do this, we exposed a genetically homogenous population of sea urchins to two very different trophic environments over a period of two years. The sea urchins exhibited a wide degree of phenotypic trophic plasticity when exposed to contrasting trophic environments. The two populations developed differences in their gross morphology and the test microstructure. In addition, when challenged with unfamiliar prey, the response of each group was different. We show that sea urchins exhibit significant morphological and behavioural phenotypic plasticity independent of their environment or their nutritional status.

  17. Meta-analysis review of fish trophic level at marine protected areas based on stable isotopes data

    Directory of Open Access Journals (Sweden)

    J. J. de LOPE ARIAS

    2016-04-01

    Full Text Available Stable isotopes (δ15N are used to determine trophic level in marine food webs. We assessed if Marine Protected Areas (MPAs affect trophic level of fishes based on stable isotopes on the Western Mediterranean. A total of 22 studies including 600 observations were found and the final dataset consisted of 11 fish species and 146 observations comparing trophic level inside and outside MPAs. The database was analysed by meta-analysis and the covariate selected was the level of protection (inside vs. outside MPAs. The results indicate significant difference between trophic levels inside and outside MPAs. However, results differ from expectations since the trophic level inside was lower than outside MPAs. Three habitats were analysed (coastal lagoons, demersal and littoral and significant differences were found among them. Trophic level was higher in demersal habitats than in coastal lagoons and littoral areas. No significant differences were found in species classified by trophic functional groups. We consider several hypotheses explaining the obtained results linked to protection level of the MPAs, time since protection and MPAs size. We debate the suitability of using the stable isotope (δ15N as direct indicator of trophic level in evaluating MPAs effects on food webs.

  18. Trophic ecomorphology of Siluriformes (Pisces, Osteichthyes) from a tropical stream.

    Science.gov (United States)

    Pagotto, J P A; Goulart, E; Oliveira, E F; Yamamura, C B

    2011-05-01

    The present study analysed the relationship between morphology and trophic structure of Siluriformes (Pisces, Osteichthyes) from the Caracu Stream (22º 45' S and 53º 15' W), a tributary of the Paraná River (Brazil). Sampling was carried out at three sites using electrofishing, and two species of Loricariidae and four of Heptapteridae were obtained. A cluster analysis revealed the presence of three trophic guilds (detritivores, insectivores and omnivores). Principal components analysis demonstrated the segregation of two ecomorphotypes: at one extreme there were the detritivores (Loricariidae) with morphological structures that are fundamental in allowing them to fix themselves to substrates characterised by rushing torrents, thus permitting them to graze on the detritus and organic materials encrusted on the substrate; at the other extreme of the gradient there were the insectivores and omnivores (Heptapteridae), with morphological characteristics that promote superior performance in the exploitation of structurally complex habitats with low current velocity, colonised by insects and plants. Canonical discriminant analysis revealed an ecomorphological divergence between insectivores, which have morphological structures that permit them to capture prey in small spaces among rocks, and omnivores, which have a more compressed body and tend to explore food items deposited in marginal backwater zones. Mantel tests showed that trophic structure was significantly related to the body shape of a species, independently of the phylogenetic history, indicating that, in this case, there was an ecomorphotype for each trophic guild. Therefore, the present study demonstrated that the Siluriformes of the Caracu Stream were ecomorphologically structured and that morphology can be applied as an additional tool in predicting the trophic structure of this group.

  19. Trophic ecomorphology of Siluriformes (Pisces, Osteichthyes from a tropical stream

    Directory of Open Access Journals (Sweden)

    JPA Pagotto

    Full Text Available The present study analysed the relationship between morphology and trophic structure of Siluriformes (Pisces, Osteichthyes from the Caracu Stream (22º 45' S and 53º 15' W, a tributary of the Paraná River (Brazil. Sampling was carried out at three sites using electrofishing, and two species of Loricariidae and four of Heptapteridae were obtained. A cluster analysis revealed the presence of three trophic guilds (detritivores, insectivores and omnivores. Principal components analysis demonstrated the segregation of two ecomorphotypes: at one extreme there were the detritivores (Loricariidae with morphological structures that are fundamental in allowing them to fix themselves to substrates characterised by rushing torrents, thus permitting them to graze on the detritus and organic materials encrusted on the substrate; at the other extreme of the gradient there were the insectivores and omnivores (Heptapteridae, with morphological characteristics that promote superior performance in the exploitation of structurally complex habitats with low current velocity, colonised by insects and plants. Canonical discriminant analysis revealed an ecomorphological divergence between insectivores, which have morphological structures that permit them to capture prey in small spaces among rocks, and omnivores, which have a more compressed body and tend to explore food items deposited in marginal backwater zones. Mantel tests showed that trophic structure was significantly related to the body shape of a species, independently of the phylogenetic history, indicating that, in this case, there was an ecomorphotype for each trophic guild. Therefore, the present study demonstrated that the Siluriformes of the Caracu Stream were ecomorphologically structured and that morphology can be applied as an additional tool in predicting the trophic structure of this group.

  20. Bioaccumulation and biomagnification of mercury in African lakes: The importance of trophic status

    Energy Technology Data Exchange (ETDEWEB)

    Poste, Amanda E., E-mail: amanda.poste@niva.no [Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo (Norway); Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Muir, Derek C.G. [Aquatic Contaminants Research Division, Environment Canada, 867 Lakeshore Drive, Burlington, ON L7R 4A6 (Canada); Guildford, Stephanie J.; Hecky, Robert E. [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Large Lakes Observatory, University of Minnesota Duluth, 2205 East Fifth Street, Duluth, MN 55812 (United States)

    2015-02-15

    Despite the global prevalence of both mercury (Hg) contamination and anthropogenic eutrophication, relatively little is known about the behavior of Hg in eutrophic and hypereutrophic systems or the effects of lake trophic status on Hg uptake and trophodynamics. In the current study we explore Hg trophodynamics at 8 tropical East African study sites ranging from mesotrophic to hypereutrophic, in order to assess the influence of lake trophic status on Hg uptake and biomagnification. Comprehensive water, plankton and fish samples were collected for analysis of total mercury (THg) and stable carbon and nitrogen isotopic ratios. We found evidence that uptake of THg into phytoplankton tended to be lower in higher productivity systems. THg concentrations in fish were generally low, and THg trophic magnification factors (TMFs; representing the average increase in contaminant concentrations from one trophic level to the next) ranged from 1.9 to 5.6. Furthermore TMFs were significantly lower in hypereutrophic lakes than in meso- and eutrophic lakes, and were negatively related to chlorophyll a concentrations both across our study lakes, and across African lakes for which literature data were available. These observations suggest that THg concentrations were strongly influenced by trophic status, with year-round high phytoplankton and fish growth rates reducing the potential for high THg in fish in these productive tropical lakes. - Highlights: • We characterized Hg in water and biota from 8 East African study sites. • Hg concentrations in fish were low and should not pose a risk to human consumers. • Hg uptake and biomagnification rates were negatively related to trophic status. • Growth dilution in phytoplankton and consumer trophic levels led to low fish Hg.

  1. Bioaccumulation and biomagnification of mercury in African lakes: The importance of trophic status

    International Nuclear Information System (INIS)

    Poste, Amanda E.; Muir, Derek C.G.; Guildford, Stephanie J.; Hecky, Robert E.

    2015-01-01

    Despite the global prevalence of both mercury (Hg) contamination and anthropogenic eutrophication, relatively little is known about the behavior of Hg in eutrophic and hypereutrophic systems or the effects of lake trophic status on Hg uptake and trophodynamics. In the current study we explore Hg trophodynamics at 8 tropical East African study sites ranging from mesotrophic to hypereutrophic, in order to assess the influence of lake trophic status on Hg uptake and biomagnification. Comprehensive water, plankton and fish samples were collected for analysis of total mercury (THg) and stable carbon and nitrogen isotopic ratios. We found evidence that uptake of THg into phytoplankton tended to be lower in higher productivity systems. THg concentrations in fish were generally low, and THg trophic magnification factors (TMFs; representing the average increase in contaminant concentrations from one trophic level to the next) ranged from 1.9 to 5.6. Furthermore TMFs were significantly lower in hypereutrophic lakes than in meso- and eutrophic lakes, and were negatively related to chlorophyll a concentrations both across our study lakes, and across African lakes for which literature data were available. These observations suggest that THg concentrations were strongly influenced by trophic status, with year-round high phytoplankton and fish growth rates reducing the potential for high THg in fish in these productive tropical lakes. - Highlights: • We characterized Hg in water and biota from 8 East African study sites. • Hg concentrations in fish were low and should not pose a risk to human consumers. • Hg uptake and biomagnification rates were negatively related to trophic status. • Growth dilution in phytoplankton and consumer trophic levels led to low fish Hg

  2. Trophic specialization influences the rate of environmental niche evolution in damselfishes (Pomacentridae).

    Science.gov (United States)

    Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B; Zimmermann, Niklaus E; Salamin, Nicolas

    2012-09-22

    The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.

  3. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Directory of Open Access Journals (Sweden)

    M. Adloff

    2018-04-01

    Full Text Available In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP-type simulations starting from climates representing the Last Glacial Maximum (LGM and pre-industrial times (PI. In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon–climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon–climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon–climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment

  4. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Science.gov (United States)

    Adloff, Markus; Reick, Christian H.; Claussen, Martin

    2018-04-01

    In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment

  5. Terrestrial nitrogen cycling in Earth system models revisited

    Science.gov (United States)

    Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke

    2016-01-01

    Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.

  6. Diet and trophic groups of an aquatic insect community in a tropical stream

    Directory of Open Access Journals (Sweden)

    R. L. Motta

    Full Text Available The diet and trophic groups of an assemblage of aquatic insects were studied in a tropical stream. Genera of the orders Ephemeroptera, Odonata, Plecoptera, Lepidoptera, and Hemiptera showed feeding specialization. Others, such as Trichoptera, Coleoptera, and Diptera, showed great diet variation with genera of different trophic groups. Seasonal variation of insect diet, evident only for some genera of the orders Trichoptera, Lepidoptera, Coleoptera, and Diptera, was due to the differences observed in community composition and to generalist habits of these genera. However, the seasonal comparison of trophic groups showed no significant statistical differences. The great importance of organic matter, a non-limited resource, in the diet of Ribeirão do Atalho aquatic insects may be the explanation for the trophic stability in this community organization.

  7. Trophic state of the wetland “Gota e´Leche, Yotoco, Valle del Cauca state, Colombia. Based on biological, physichal and chemical parameters

    Directory of Open Access Journals (Sweden)

    Juan Díaz P

    2017-01-01

    Full Text Available One of the most representative wetlands Cauca Valley State is the one called “Gota e’ Leche”, located in the town of Yotoco. This ecosystem is important because it is the habitat of many species of animals and native plants. The region where is located is a tropical dry forest (Bs-T (HOLDRIDGE, 1978. The wetland has had numerous trophic changes because the anthropogenic activities carry on the area (sugar mills, farmers, etc., This study determined the trophic state of the wetland using biological parameters such as primary productivity, chlorophyll, riparian flora and aquatic macro invertebrates, as well as physical and chemical such as water temperature, salinity, dissolved gases and others. According to our data, we determined that the wetland has a eutrophic state prone to hyper eutrophication. The system is continuously subjected to disturbance by human activities that change the characteristics of the ecosystem. As an indicator of this change, it is noticeable that in some sectors the marshy vegetation shows succession process belonging to a transition between aquatic and terrestrial ecosystems. For this reason, it is important the get more and meaningful knowledge of their successional stage in order to implement actions that will enable their restoration and conservation.

  8. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior

    Science.gov (United States)

    Dean E. Pearson

    2009-01-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa...

  9. Trophic availability buffers the detrimental effects of clogging in an alpine stream.

    Science.gov (United States)

    Doretto, Alberto; Bona, Francesca; Piano, Elena; Zanin, Ilaria; Eandi, Anna Chiara; Fenoglio, Stefano

    2017-08-15

    Clogging, the streambed colmation by fine sediments, is an important widespread source of impact affecting freshwaters. Alterations in stream morphology and hydrology, added to the effects of global climate change, are responsible for this phenomenon, that is particularly pernicious in mountainous lotic systems naturally characterized by coarse substrates. Among the studies investigating this issue some were descriptive, while others used artificial substrates to compare ongoing fine sediment accumulation and macroinvertebrate assemblage recruitment. Other studies used from the outset artificial substrates arranged with different levels of clogging. Our study fits into this line, but adding an innovative element simulating different availability of coarse particulate organic matter, i.e. the main trophic input in low-order, mountainous stream. To investigate how clogging and CPOM can influence macroinvertebrate communities, we placed 135 artificial substrates in the upper Po river (NW Italy). We set up a three way factorial design with three different levels of sedimentation and terrestrial leaf material. Artificial substrates were removed on three different dates. Benthic invertebrates were identified and classified according to their bio-ecological traits. We also measured macroinvertebrate dry mass and CPOM degradation in the different trap types. Our findings show that clogging acts as a selective filter influencing taxa richness, density, functional composition and biomass of benthic assemblage. Moreover, fine sediments affect the energetic dynamics in the river ecosystem, decreasing the mass loss rate of terrestrial leaves. Interestingly, our results clearly demonstrate that high availability of CPOM can buffer the negative effect of clogging, suggesting that an adequate input of allochthonous organic matter may lessen the impact of fine sediment deposition. Because land use transformation and removal of wooded riparian areas increase clogging and

  10. Element patterns in albatrosses and petrels: Influence of trophic position, foraging range, and prey type

    International Nuclear Information System (INIS)

    Anderson, O.R.J.; Phillips, R.A.; Shore, R.F.; McGill, R.A.R.; McDonald, R.A.; Bearhop, S.

    2010-01-01

    We investigated the concentrations of 22 essential and non-essential elements among a community of Procellariiformes (and their prey) to identify the extent to which trophic position and foraging range governed element accumulation. Stable isotope analysis (SIA) was used to characterise trophic (δ 15 N) and spatial patterns (δ 13 C) among species. Few consistent patterns were observed in element distributions among species and diet appeared to be highly influential in some instances. Arsenic levels in seabird red blood cells correlated with δ 15 N and δ 13 C, demonstrating the importance of trophic position and foraging range for arsenic distribution. Arsenic concentrations in prey varied significantly across taxa, and in the strength of association with δ 15 N values (trophic level). In most instances, element patterns in Procellariiformes showed the clearest separation among species, indicating that a combination of prey selection and other complex species-specific characteristics (e.g. moult patterns) were generally more important determining factors than trophic level per se. - Trophic position, foraging range, and prey type were found to influence element compositions and concentrations in Procellariiformes from South Georgia.

  11. Development of Large Concrete Object Geometrical Model Based on Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Zaczek-Peplinska Janina

    2015-02-01

    Full Text Available The paper presents control periodic measurements of movements and survey of concrete dam on Dunajec River in Rożnów, Poland. Topographical survey was conducted using laser scanning technique. The goal of survey was data collection and creation of a geometrical model. Acquired cross- and horizontal sections were utilised to create a numerical model of object behaviour at various load depending of changing level of water in reservoir. Modelling was accomplished using finite elements technique. During the project an assessment was conducted to terrestrial laser scanning techniques for such type of research of large hydrotechnical objects such as gravitational water dams. Developed model can be used to define deformations and displacement prognosis.

  12. Long term patterns in the late summer trophic niche of the invasive pumpkinseed sunfish Lepomis gibbosus

    Directory of Open Access Journals (Sweden)

    Gkenas C.

    2016-01-01

    Full Text Available Quantifying the trophic dynamics of invasive species in novel habitats is important for predicting the success of potential invaders and evaluating their ecological effects. The North American pumpkinseed sunfish Lepomis gibbosus is a successful invader in Europe, where it has caused negative ecological effects primarily through trophic interactions. Here, we quantified variations in the late summer trophic niche of pumpkinseed during establishment and integration in the mainstem of the Guadiana river, using stomach content analyses over a period of 40 years. Pumpkinseed showed a shift from trophic specialization during establishment to trophic generalism during integration. These results were concomitant with an increase in diet breadth that was accompanied by higher individual diet specialization particularly in large individuals. Irrespective of their drivers, these changes in trophic niche suggest that the potential ecological effects of pumpkinseed on recipient ecosystems can vary temporally along the invasion process.

  13. Biogeographical region and host trophic level determine carnivore endoparasite richness in the Iberian Peninsula.

    Science.gov (United States)

    Rosalino, L M; Santos, M J; Fernandes, C; Santos-Reis, M

    2011-05-01

    We address the question of whether host and/or environmental factors might affect endoparasite richness and distribution, using carnivores as a model. We reviewed studies published in international peer-reviewed journals (34 areas in the Iberian Peninsula), describing parasite prevalence and richness in carnivores, and collected information on site location, host bio-ecology, climate and detected taxa (Helminths, Protozoa and Mycobacterium spp.). Three hypotheses were tested (i) host based, (ii) environmentally based, and (iii) hybrid (combination of environmental and host). Multicollinearity reduced candidate variable number for modelling to 5: host weight, phylogenetic independent contrasts (host weight), mean annual temperature, host trophic level and biogeographical region. General Linear Mixed Modelling was used and the best model was a hybrid model that included biogeographical region and host trophic level. Results revealed that endoparasite richness is higher in Mediterranean areas, especially for the top predators. We suggest that the detected parasites may benefit from mild environmental conditions that occur in southern regions. Top predators have larger home ranges and are likely to be subjected to cascading effects throughout the food web, resulting in more infestation opportunities and potentially higher endoparasite richness. This study suggests that richness may be more affected by historical and regional processes (including climate) than by host ecological processes.

  14. Community Decadal Panel for Terrestrial Analogs to Mars

    Science.gov (United States)

    Barlow, N. G.; Farr, T.; Baker, V. R.; Bridges, N.; Carsey, F.; Duxbury, N.; Gilmore, M. S.; Green, J. R.; Grin, E.; Hansen, V.; Keszthelyi, L.; Lanagan, P.; Lentz, R.; Marinangeli, L.; Morris, P. A.; Ori, G. G.; Paillou, P.; Robinson, C.; Thomson, B.

    2001-11-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites for Mars, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel is considering the following two key questions: (1) How do terrestrial analog studies tie in to the MEPAG science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel is considering the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  15. TAME - the terrestrial-aquatic model of the environment: model definition

    International Nuclear Information System (INIS)

    Klos, R.A.; Mueller-Lemans, H.; Dorp, F. van; Gribi, P.

    1996-10-01

    TAME - the Terrestrial-Aquatic Model of the Environment is a new computer model for use in assessments of the radiological impact of the release of radionuclides to the biosphere, following their disposal in underground waste repositories. Based on regulatory requirements, the end-point of the calculations is the maximum annual individual dose to members of a hypothetical population group inhabiting the biosphere region. Additional mid- and end-points in the TAME calculations are dose as function of time from eleven exposure pathways, foodstuff concentrations and the distribution of radionuclides in the modelled biosphere. A complete description of the mathematical representations of the biosphere in TAME is given in this document, based on a detailed review of the underlying conceptual framework for the model. Example results are used to illustrate features of the conceptual and mathematical models. The end-point of dose is shown to be robust for the simplifying model assumptions used to define the biosphere for the example calculations. TAME comprises two distinct sub-models - one representing the transport of radionuclides in the near-surface environment and one for the calculation of dose to individual inhabitants of that biosphere. The former is the result of a detailed review of the modelling requirements for such applications and is based on a comprehensive consideration of all features, events and processes (FEPs) relevant to Swiss biospheres, both in the present-day biosphere and in potential future biosphere states. Representations of the transport processes are derived from first principles. Mass balance for water and solid material fluxes is used to determine the rates of contaminant transfer between components of the biosphere system. The calculation of doses is based on existing representations of exposure pathways and draws on experience both from Switzerland and elsewhere. (author) figs., tabs., refs

  16. TAME - the terrestrial-aquatic model of the environment: model definition

    Energy Technology Data Exchange (ETDEWEB)

    Klos, R.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mueller-Lemans, H. [Tergoso AG fuer Umweltfragen, Sargans (Switzerland); Dorp, F. van [Nationale Genossenschaft fuer die Lagerung Radioaktiver Abfaelle (NAGRA), Baden (Switzerland); Gribi, P. [Colenco AG, Baden (Switzerland)

    1996-10-01

    TAME - the Terrestrial-Aquatic Model of the Environment is a new computer model for use in assessments of the radiological impact of the release of radionuclides to the biosphere, following their disposal in underground waste repositories. Based on regulatory requirements, the end-point of the calculations is the maximum annual individual dose to members of a hypothetical population group inhabiting the biosphere region. Additional mid- and end-points in the TAME calculations are dose as function of time from eleven exposure pathways, foodstuff concentrations and the distribution of radionuclides in the modelled biosphere. A complete description of the mathematical representations of the biosphere in TAME is given in this document, based on a detailed review of the underlying conceptual framework for the model. Example results are used to illustrate features of the conceptual and mathematical models. The end-point of dose is shown to be robust for the simplifying model assumptions used to define the biosphere for the example calculations. TAME comprises two distinct sub-models - one representing the transport of radionuclides in the near-surface environment and one for the calculation of dose to individual inhabitants of that biosphere. The former is the result of a detailed review of the modelling requirements for such applications and is based on a comprehensive consideration of all features, events and processes (FEPs) relevant to Swiss biospheres, both in the present-day biosphere and in potential future biosphere states. Representations of the transport processes are derived from first principles. Mass balance for water and solid material fluxes is used to determine the rates of contaminant transfer between components of the biosphere system. The calculation of doses is based on existing representations of exposure pathways and draws on experience both from Switzerland and elsewhere. (author) figs., tabs., refs.

  17. Assessing doses to terrestrial wildlife at a radioactive waste disposal site: Inter-comparison of modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, M.P., E-mail: mathew.johansen@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW, 2232 (Australia); Barnett, C.L., E-mail: clb@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster (United Kingdom); Beresford, N.A., E-mail: nab@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster (United Kingdom); Brown, J.E., E-mail: justin.brown@nrpa.no [Norwegian Radiation Protection Authority, Oesteraas (Norway); Cerne, M., E-mail: marko.cerne@ijs.si [Jozef Stefan Institute, Ljubljana (Slovenia); Howard, B.J., E-mail: bjho@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster (United Kingdom); Kamboj, S., E-mail: skamboj@anl.gov [Argonne National Laboratory, IL (United States); Keum, D.-K., E-mail: dkkeum@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Smodis, B. [Jozef Stefan Institute, Ljubljana (Slovenia); Twining, J.R., E-mail: jrt@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW, 2232 (Australia); Vandenhove, H., E-mail: hvandenh@sckcen.be [Belgian Nuclear Research Centre, Mol (Belgium); Vives i Batlle, J., E-mail: jvbatll@sckcen.be [Belgian Nuclear Research Centre, Mol (Belgium); Wood, M.D., E-mail: m.d.wood@salford.ac.uk [University of Salford, Manchester (United Kingdom); Yu, C., E-mail: cyu@anl.gov [Argonne National Laboratory, IL (United States)

    2012-06-15

    Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines. - Highlights: Black-Right-Pointing-Pointer Assessment of modelled dose rates to terrestrial biota from radionuclides. Black-Right-Pointing-Pointer The substantial variation among current approaches is quantifiable. Black-Right-Pointing-Pointer The dominant variable was soil

  18. Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis

    International Nuclear Information System (INIS)

    Lavoie, Raphael A.; Hebert, Craig E.; Rail, Jean-Francois; Braune, Birgit M.; Yumvihoze, Emmanuel; Hill, Laura G.; Lean, David R.S.

    2010-01-01

    Even at low concentrations in the environment, mercury has the potential to biomagnify in food chains and reaches levels of concern in apex predators. The aim of this study was to relate the transfer of total mercury (THg) and methylmercury (MeHg) in a Gulf of St. Lawrence food web to the trophic structure, from primary consumers to seabirds, using stable nitrogen (δ 15 N) and carbon (δ 13 C) isotope analysis and physical environmental parameters. The energy reaching upper trophic level species was principally derived from pelagic primary production, with particulate organic matter (POM) at the base of the food chain. We developed a biomagnification factor (BMF) taking into account the various prey items consumed by a given predator using stable isotope mixing models. This BMF provides a more realistic estimation than when using a single prey. Lipid content, body weight, trophic level and benthic connection explained 77.4 and 80.7% of the variation in THg and MeHg concentrations, respectively in this food web. When other values were held constant, relationships with lipid and benthic connection were negative whereas relationships with trophic level and body weight were positive. Total Hg and MeHg biomagnified in this food web with biomagnification power values (slope of the relationship with δ 15 N) of 0.170 and 0.235, respectively on wet weight and 0.134 and 0.201, respectively on dry weight. Values of biomagnification power were greater for pelagic and benthopelagic species compared to benthic species whereas the opposite trend was observed for levels at the base of the food chain. This suggests that Hg would be readily bioavailable to organisms at the base of the benthic food chain, but trophic transfer would be more efficient in each trophic level of pelagic and benthopelagic food chains.

  19. Trophic Ecology of Benthic Marine Invertebrates with Bi-Phasic Life Cycles: What Are We Still Missing?

    Science.gov (United States)

    Calado, Ricardo; Leal, Miguel Costa

    2015-01-01

    The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. © 2015 Elsevier Ltd. All rights reserved.

  20. Vitamin D and muscle trophicity.

    Science.gov (United States)

    Domingues-Faria, Carla; Boirie, Yves; Walrand, Stéphane

    2017-05-01

    We review recent findings on the involvement of vitamin D in skeletal muscle trophicity. Vitamin D deficiencies are associated with reduced muscle mass and strength, and its supplementation seems effective to improve these parameters in vitamin D-deficient study participants. Latest investigations have also evidenced that vitamin D is essential in muscle development and repair. In particular, it modulates skeletal muscle cell proliferation and differentiation. However, discrepancies still exist about an enhancement or a decrease of muscle proliferation and differentiation by the vitamin D. Recently, it has been demonstrated that vitamin D influences skeletal muscle cell metabolism as it seems to regulate protein synthesis and mitochondrial function. Finally, apart from its genomic and nongenomic effects, recent investigations have demonstrated a genetic contribution of vitamin D to muscle functioning. Recent studies support the importance of vitamin D in muscle health, and the impact of its deficiency in regard to muscle mass and function. These 'trophic' properties are of particular importance for some specific populations such as elderly persons and athletes, and in situations of loss of muscle mass or function, particularly in the context of chronic diseases.

  1. Detecting robust signals of interannual variability of gross primary productivity in Asia from multiple terrestrial carbon cycle models and long-term satellite-based vegetation data

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.

    2014-12-01

    Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently

  2. The geometry of terrestrial laser scanning; identification of errors, modeling and mitigation of scanning geometry

    NARCIS (Netherlands)

    Soudarissanane, S.S.

    2016-01-01

    Over the past few decades, Terrestrial Laser Scanners are increasingly being used in a broad spectrum of applications, from surveying to civil engineering, medical modeling and forensics. Especially surveying applications require on one hand a quickly obtainable, high resolution point cloud but also

  3. Enhanced understanding of ectoparasite: host trophic linkages on coral reefs through stable isotope analysis

    Science.gov (United States)

    Demopoulos, Amanda W. J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  4. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis

    Directory of Open Access Journals (Sweden)

    Amanda W.J. Demopoulos

    2015-04-01

    Full Text Available Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi and permanently parasitic cymothoids (Anilocra. To further track the transfer of fish-derived carbon (energy from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in 13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  5. Evolutionary trade-offs in plants mediate the strength of trophic cascades.

    Science.gov (United States)

    Mooney, Kailen A; Halitschke, Rayko; Kessler, Andre; Agrawal, Anurag A

    2010-03-26

    Predators determine herbivore and plant biomass via so-called trophic cascades, and the strength of such effects is influenced by ecosystem productivity. To determine whether evolutionary trade-offs among plant traits influence patterns of trophic control, we manipulated predators and soil fertility and measured impacts of a major herbivore (the aphid Aphis nerii) on 16 milkweed species (Asclepias spp.) in a phylogenetic field experiment. Herbivore density was determined by variation in predation and trade-offs between herbivore resistance and plant growth strategy. Neither herbivore density nor predator effects on herbivores predicted the cascading effects of predators on plant biomass. Instead, cascade strength was strongly and positively associated with milkweed response to soil fertility. Accordingly, contemporary patterns of trophic control are driven by evolutionary convergent trade-offs faced by plants.

  6. [Trophic niche partitioning of pelagic sharks in Central Eastern Pacific inferred from stable isotope analysis.

    Science.gov (United States)

    Li, Yun Kai; Gao, Xiao di; Wang, Lin Yu; Fang, Lin

    2018-01-01

    As the apex predators of the open ocean ecosystems, pelagic sharks play important roles in stabilizing the marine food web through top-down control. Stable isotope analysis is a powerful tool to investigate the feeding ecology. The carbon and nitrogen isotope ratios can be used to trace food source and evaluate the trophic position of marine organisms. In this study, the isotope values of 130 pelagic sharks from 8 species in Central Eastern Pacific were analyzed and their trophic position and niche were calculated to compare the intra/inter-specific resource partitioning in the Central Eastern Pacific ecosystem. The results exhibited significant differences in both carbon and nitrogen isotope values among the shark species. The trophic levels ranged from 4.3 to 5.4 in the Central Eastern Pacific shark community. The trophic niche of blue sharks and shortfin mako sharks showed no overlap with the other shark species, exhibiting unique ecological roles in the open ocean food web. These data highlighted the diverse roles among pelagic sharks, supporting previous findings that this species is not trophically redundant and the trophic niche of pelagic sharks can not be simply replaced by those of other top predator species.

  7. Baseline identification in stable -isotope studies of temperate lotic systems and implications for calculated trophic positions

    DEFF Research Database (Denmark)

    Kristensen, Peter Brinkmann; Riis, Tenna; Dylmer, Hans Erik

    2016-01-01

    of two common fish species (three-spined stickleback, Gasterosteus aculeatus, and brown trout Salmo trutta) differed markedly depending on the baseline chosen. The estimated trophic position was lowest when based on Baetidae and highest when using Simuliidae. The trophic position of Gasterosteus...... aculeatus was independent of land use (proxy used=%nature) when based on Gammarus pulex and Simuliidae, and the trophic position of Salmo trutta was independent of land use when based on Simuliidae only. The trophic position estimates based on Baetidae and mean primary consumers correlated with %nature...

  8. Estimation Terrestrial Net Primary Productivity Based on CASA Model: a Case Study in Minnan Urban Agglomeration, China

    International Nuclear Information System (INIS)

    Hua, L Z; Liu, H; Zhang, X L; Zheng, Y; Man, W; Yin, K

    2014-01-01

    Net Primary Productivity (NPP) is a key component of the terrestrial carbon cycle. The research of net primary productivity will help in understanding the amount of carbon fixed by terrestrial vegetation and its influencing factors. Model simulation is considered as a cost-effective and time-efficient method for the estimation of regional and global NPP. In the paper, a terrestrial biosphere model, CASA (Carnegie Ames Stanford Approach), was applied to estimate monthly NPP in Minnan urban agglomeration (i.e. Xiamen, Zhangzhou and Quanzhou cities) of Fujian province, China, in 2009 and 2010, by incorporating satellite observation of SPOT Vegetation NDVI data together with other climatic parameters and landuse map. The model estimates average annual terrestrial NPP of Minnan area as 16.3 million Mg C. NPP decreased from southwest to the northeast. The higher NPP values exceeding 720 gC·m − 2 ·a −1 showed in North Zhangzhou city and lower values under 500 gC·m − 2 ·a −1 showed in the some areas of northeast Quanzhou city. Seasonal variations of NPP were large. It was about 45% of the total annual NPP in the three months in summer, and the NPP values were very low in winter. From 2009 to 2010, the value of annual NPP showed a slightly decrease trend, approximately 7.8% because the annual temperature for 2010 decline 13.6% compared with 2009 in despite of an increase in rainfall of about 34.3%. The results indicate that temperature was a main limiting factor on vegetation growth, but water is not a limiting factor in the rainy area

  9. Tempo of trophic evolution and its impact on mammalian diversification.

    Science.gov (United States)

    Price, Samantha A; Hopkins, Samantha S B; Smith, Kathleen K; Roth, V Louise

    2012-05-01

    Mammals are characterized by the complex adaptations of their dentition, which are an indication that diet has played a critical role in their evolutionary history. Although much attention has focused on diet and the adaptations of specific taxa, the role of diet in large-scale diversification patterns remains unresolved. Contradictory hypotheses have been proposed, making prediction of the expected relationship difficult. We show that net diversification rate (the cumulative effect of speciation and extinction), differs significantly among living mammals, depending upon trophic strategy. Herbivores diversify fastest, carnivores are intermediate, and omnivores are slowest. The tempo of transitions between the trophic strategies is also highly biased: the fastest rates occur into omnivory from herbivory and carnivory and the lowest transition rates are between herbivory and carnivory. Extant herbivore and carnivore diversity arose primarily through diversification within lineages, whereas omnivore diversity evolved by transitions into the strategy. The ability to specialize and subdivide the trophic niche allowed herbivores and carnivores to evolve greater diversity than omnivores.

  10. Species richness and trophic diversity increase decomposition in a co-evolved food web.

    Directory of Open Access Journals (Sweden)

    Benjamin Baiser

    Full Text Available Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.

  11. [Applications of stable isotope analysis in the trophic ecology studies of cephalopods].

    Science.gov (United States)

    Li, Yun-Kai; Gong, Yi; Chen, Xin-Jun

    2014-05-01

    Cephalopods play an important role in marine food webs, however, knowledge about their complex life history, especially their feeding ecology, remains limited. With the rapidly increasing use of stable isotope analysis (SIA) in ecology, it becomes a powerful tool and complement of traditional methods for investigating the trophic ecology and migration patterns of invertebrates. Here, after summarizing the current methods for trophic ecology investigation of cephalopods, applications of SIA in studying the trophic ecology of cephalopods were reviewed, including the key issues such as standardization of available tissues for SIA analyzing, diet shift and migration patterns of cephalopods, with the aim of advancing its application in the biology of cephalopods in the future.

  12. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    Science.gov (United States)

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony; Safta, Cosmin; Munger, William

    2017-09-01

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.

  13. Wolves trigger a trophic cascade to berries as alternative food for grizzly bears.

    Science.gov (United States)

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2015-05-01

    This is a Forum article in response to: Barber-Meyer, S. (2015) Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods? Journal of Animal Ecology, 83, doi: 10.1111/1365-2656.12338. We used multiple data sets and study areas as well as several lines of evidence to investigate potential trophic linkages in Yellowstone National Park. Our results suggest that a trophic cascade from wolves to elk to berry production to berry consumption by grizzly bears may now be underway in the Park. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  14. Application of a terrestrial ecosystem model (ORCHIDEE-STICS) in simulating energy and CO2 fluxes in Asian rice croplands

    Science.gov (United States)

    Wang, X.; Piao, S.; Ciais, P.; Vuichard, N.

    2012-12-01

    Process-based terrestrial ecosystem models have shown great potentials in predicting the response of managed ecosystems to environmental changes. However, the simulated water and carbon fluxes over rice ecosystems in tropical Asia are still subject to large uncertainties, partly due to poorly constrained parameters in the models. Here, a terrestrial ecosystem model incorporating a more realistic crop module (ORCHIDEE-STICS) was calibrated against in-situ flux data and observed and remotely sensed leaf area indexes over rice ecosystems in Asia. The key parameters adjusted include maximum photosynthetic carboxylation rate (Vcmax) and electron transport rate (Vjmax), temperature sensitivity of heterotrophic respiration (Q10) and a series of critical thresholds for different crop development stages. Compared with the observations, the calibrated model more realistically simulated the seasonal and year-to-year variation of the observed water and carbon fluxes with reductions in the root mean square difference and better timing in the crop development stages. Sensitivity tests further reveal that management practices like the timing of transplanting and draining could affect the seasonal and inter-annual variation of the net carbon exchange, suggesting that the absence of explicit accounting the change of management practices in the terrestrial ecosystem models may induce large uncertainties in predicting cropland ecosystem response to future climate change.

  15. Limited trophic partitioning among sympatric delphinids off a tropical oceanic atoll.

    Directory of Open Access Journals (Sweden)

    Hillary Young

    Full Text Available Understanding trophic relationships among marine predators in remote environments is challenging, but it is critical to understand community structure and dynamics. In this study, we used stable isotope analysis of skin biopsies to compare the isotopic, and thus, trophic niches of three sympatric delphinids in the waters surrounding Palmyra Atoll, in the Central Tropical Pacific: the melon-headed whale (Peponocephala electra, Gray's spinner dolphin (Stenella longirostris longirostris, and the common bottlenose dolphin (Tursiops truncatus. δ15N values suggested that T. truncatus occupied a significantly higher trophic position than the other two species. δ13C values did not significantly differ between the three delphinds, potentially indicating no spatial partitioning in depth or distance from shore in foraging among species. The dietary niche area-determined by isotopic variance among individuals-of T. truncatus was also over 30% smaller than those of the other species taken at the same place, indicating higher population specialization or lower interindividual variation. For P. electra only, there was some support for intraspecific variation in foraging ecology across years, highlighting the need for temporal information in studying dietary niche. Cumulatively, isotopic evidence revealed surprisingly little evidence for trophic niche partitioning in the delphinid community of Palmyra Atoll compared to other studies. However, resource partitioning may happen via other behavioral mechanisms, or prey abundance or availability may be adequate to allow these three species to coexist without any such partitioning. It is also possible that isotopic signatures are inadequate to detect trophic partitioning in this environment, possibly because isotopes of prey are highly variable or insufficiently resolved to allow for differentiation.

  16. Using remote-sensing and the Simple Biosphere model (SiB4) to analyze the seasonality and productivity of the terrestrial biosphere.

    Science.gov (United States)

    Cheeseman, M.; Denning, S.; Baker, I. T.

    2017-12-01

    Understanding the variability and seasonality of carbon fluxes from the terrestrial biosphere is integral to understanding the mechanisms and drivers of the global carbon cycle. However, there are many regions across the globe where in situ observations are sparse, such as the Amazon rainforest and the African Sahel. The latest version of the Simple-Biosphere model (SiB4) predicts a suite of biophysical variables such as terrestrial carbon flux (GPP), solar induced fluorescence (SIF), fraction of photosynthetically active radiation (FPAR), and leaf area index (LAI). By comparing modeled values to a suite of satellite and in situ observations we produce a robust analysis of the seasonality and productivity of the terrestrial biosphere in a variety of biome types across the globe.

  17. The Limits of Acclimation of land plants in a Terrestrial Ecosystems Model

    Science.gov (United States)

    Kothavala, Zavareh

    2014-05-01

    In this study, we examine the role of the terrestrial carbon cycle and the ability of different plant types to acclimate to a changing climate at the centennial scale using a global ecosystems model with updated biogeochemical processes related to moisture, carbon, and nitrogen. Elevated level of atmospheric carbon dioxide (CO2) increases CO2 fertilization, resulting in more CO2 uptake by vegetation, whereas the concomitant warming increases autotrophic and heterotrophic respiration, releasing CO2 to the atmosphere. Additionally, warming will enhance photosynthesis if current temperatures are below the optimal temperature for plant growth, while it will reduce photosynthesis if current temperatures are above the optimal temperature for plant growth. We present a series of ensemble simulations to evaluate the ability of plants to acclimate to changing conditions over the last century and how this affects the terrestrial carbon sink. A set of experiments related to (a) the varying relationship between CO2 fertilization and the half saturation constant, (b) the factors related to gross primary productivity and maintenance respiration, and (c) the variables related to heterotrophic respiration, were conducted with thirteen plant functional types. The experiments were performed using the Terrestrial Ecosystem Model (TEM) with a present-day vegetation distribution without the effects of natural or human disturbance, and a closed Nitrogen cycle, at a half-degree resolution over the globe. The experiment design consisted of eight scenarios that are consistent with past and future ecosystem conditions, presented in other scientific studies. The significance of model trends related to runoff, soil moisture, soil carbon, Net Primary Productivity (NPP), crop yield, and Net Ecosystem Productivity (NEP) for different seasons, as well as surface temperature, precipitation, vapor pressure, and photosynthetically active radiation are analyzed for various ecosystems at the global

  18. Trophic transfer of metal-based nanoparticles in aquatic environments

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal; Selck, Henriette; Winther-Nielsen, Margrethe

    2016-01-01

    Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic environm......Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic...... environment where they have been shown to be taken up by a variety of species. Therefore, there is a possibility that Me-ENPs will enter and pass through aquatic food webs, but research on this topic is limited. In this tutorial review, we discuss the factors contributing to trophic transfer of Me......-ENPs, and where this information is scarce, we utilize the existing literature on aqueous metal trophic transfer as a potential starting point for greater mechanistic insight and for setting directions for future studies. We identify four key factors affecting trophic transfer of Me-ENPs: (1) environmental...

  19. A theory of ionospheric dynamo for complete model of terrestrial space at high and medium latitudes

    International Nuclear Information System (INIS)

    Vardanyan, Yu.S.

    1992-01-01

    A multi-layer model of terrestrial cosmic space at high and medium latitudes is considered in the approximation of infinite conductivity of the Earth taking into account the ambipolar diffusion processes in upper layers of ionosphere. 14 refs

  20. Does litter size variation affect models of terrestrial carnivore extinction risk and management?

    Directory of Open Access Journals (Sweden)

    Eleanor S Devenish-Nelson

    Full Text Available Individual variation in both survival and reproduction has the potential to influence extinction risk. Especially for rare or threatened species, reliable population models should adequately incorporate demographic uncertainty. Here, we focus on an important form of demographic stochasticity: variation in litter sizes. We use terrestrial carnivores as an example taxon, as they are frequently threatened or of economic importance. Since data on intraspecific litter size variation are often sparse, it is unclear what probability distribution should be used to describe the pattern of litter size variation for multiparous carnivores.We used litter size data on 32 terrestrial carnivore species to test the fit of 12 probability distributions. The influence of these distributions on quasi-extinction probabilities and the probability of successful disease control was then examined for three canid species - the island fox Urocyon littoralis, the red fox Vulpes vulpes, and the African wild dog Lycaon pictus. Best fitting probability distributions differed among the carnivores examined. However, the discretised normal distribution provided the best fit for the majority of species, because variation among litter-sizes was often small. Importantly, however, the outcomes of demographic models were generally robust to the distribution used.These results provide reassurance for those using demographic modelling for the management of less studied carnivores in which litter size variation is estimated using data from species with similar reproductive attributes.

  1. Trophic relationships in an Arctic food web and implications for trace metal transfer

    Energy Technology Data Exchange (ETDEWEB)

    Dehn, Larissa-A. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)]. E-mail: ftld@uaf.edu; Follmann, Erich H. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Thomas, Dana L. [Department of Mathematical Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-6660 (United States); Sheffield, Gay G. [Alaska Department of Fish and Game, Fairbanks, Division of Wildlife Conservation, Fairbanks, Alaska, 99701-1599 (United States); Rosa, Cheryl [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); Duffy, Lawrence K. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States); O' Hara, Todd M. [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, 99775-7000 (United States)

    2006-06-01

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon ({delta} {sup 13}C) and nitrogen ({delta} {sup 15}N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on {delta} {sup 15}N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean {delta} {sup 15}N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of

  2. Trophic relationships in an Arctic food web and implications for trace metal transfer

    International Nuclear Information System (INIS)

    Dehn, Larissa-A.; Follmann, Erich H.; Thomas, Dana L.; Sheffield, Gay G.; Rosa, Cheryl; Duffy, Lawrence K.; O'Hara, Todd M.

    2006-01-01

    Tissues of subsistence-harvested Arctic mammals were analyzed for silver (Ag), cadmium (Cd), and total mercury (THg). Muscle (or total body homogenates of potential fish and invertebrate prey) was analyzed for stable carbon (δ 13 C) and nitrogen (δ 15 N) isotopes to establish trophic interactions within the Arctic food chain. Food web magnification factors (FWMFs) and biomagnification factors for selected predator-prey scenarios (BMFs) were calculated to describe pathways of heavy metals in the Alaskan Arctic. FWMFs in this study indicate that magnification of selected heavy metals in the Arctic food web is not significant. Biomagnification of Cd occurs mainly in kidneys; calculated BMFs are higher for hepatic THg than renal THg for all predator-prey scenarios with the exception of polar bears (Ursus maritimus). In bears, the accumulation of renal THg is approximately 6 times higher than in liver. Magnification of hepatic Ag is minimal for all selected predator-prey scenarios. Though polar bears occupy a higher trophic level than belugas (Delphinapterus leucas), based on δ 15 N, the metal concentrations are either not statistically different between the two species or lower for bears. Similarly, concentrations of renal and hepatic Cd are significantly lower or not statistically different in polar bears compared to ringed (Phoca hispida) and bearded seals (Erignathus barbatus), their primary prey. THg, on the other hand, increased significantly from seal to polar bear tissues. Mean δ 15 N was lowest in muscle of Arctic fox (Alopex lagopus) and foxes also show the lowest levels of Hg, Cd and Ag in liver and kidney compared to the other species analyzed. These values are in good agreement with a diet dominated by terrestrial prey. Metal deposition in animal tissues is strongly dependent on biological factors such as diet, age, sex, body condition and health, and caution should be taken when interpreting magnification of dynamic and actively regulated trace metals

  3. Evaluation of the Trophic Level of Kune and Vain Lagoons in Albania, Using Phytoplankton as a Bioindicator

    Directory of Open Access Journals (Sweden)

    Anni Koci Kallfa

    2014-03-01

    Full Text Available Concentration of chlorophyll is an adequate parameter for assessing the trophic state of lagoon ecosystems. Objectives of this study are: selection of a system of bioindicators to enable a good qualitative evaluation of the trophic state of the lagoons and their dynamics; evaluation of seasonal water quality variability and comparison between lagoons. The trophic state of the lagoons is analysed every month over the year. Water samples are retrieved at four different sites (exact coordinates each month, sites that are representative of different water circulation systems at each lagoon. The trophic level in the respective lagoons is thus assessed through selection of an adequate system of bioindicators, in order to observe the oscillations of the amount of chlorophyll and therefore to determine the level of eutrophication. Based on the above parameters, the comparison of the trophic state in these two lagoons has shown that they have different trophic states.

  4. Accurate Treatment of Collisions and Water-Delivery in Models of Terrestrial Planet Formation

    Science.gov (United States)

    Haghighipour, Nader; Maindl, Thomas; Schaefer, Christoph

    2017-10-01

    It is widely accepted that collisions among solid bodies, ignited by their interactions with planetary embryos is the key process in the formation of terrestrial planets and transport of volatiles and chemical compounds to their accretion zones. Unfortunately, due to computational complexities, these collisions are often treated in a rudimentary way. Impacts are considered to be perfectly inelastic and volatiles are considered to be fully transferred from one object to the other. This perfect-merging assumption has profound effects on the mass and composition of final planetary bodies as it grossly overestimates the masses of these objects and the amounts of volatiles and chemical elements transferred to them. It also entirely neglects collisional-loss of volatiles (e.g., water) and draws an unrealistic connection between these properties and the chemical structure of the protoplanetary disk (i.e., the location of their original carriers). We have developed a new and comprehensive methodology to simulate growth of embryos to planetary bodies where we use a combination of SPH and N-body codes to accurately model collisions as well as the transport/transfer of chemical compounds. Our methodology accounts for the loss of volatiles (e.g., ice sublimation) during the orbital evolution of their careers and accurately tracks their transfer from one body to another. Results of our simulations show that traditional N-body modeling of terrestrial planet formation overestimates the amount of the mass and water contents of the final planets by over 60% implying that not only the amount of water they suggest is far from being realistic, small planets such as Mars can also form in these simulations when collisions are treated properly. We will present details of our methodology and discuss its implications for terrestrial planet formation and water delivery to Earth.

  5. An effective hierarchical model for the biomolecular covalent bond: an approach integrating artificial chemistry and an actual terrestrial life system.

    Science.gov (United States)

    Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu

    2009-01-01

    Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.

  6. Trophic model of the outer continental shelf and upper slope demersal community of the southeastern Brazilian Bight

    Directory of Open Access Journals (Sweden)

    Marcela C. Nascimento

    2012-10-01

    Full Text Available It is increasingly recognized that demersal communities are important for the functioning of continental shelf and slope ecosystems around the world, including tropical regions. Demersal communities are most prominent in areas of high detritus production and transport, and they link benthic and pelagic biological communities. To understand the structure and role of the demersal community on the southeastern Brazilian Bight, we constructed a trophodynamic model with 37 functional groups to represent the demersal community of the outer continental shelf and upper slope of this area, using the Ecopath with Ecosim 6 (EwE approach and software. The model indicates high production and biomass of detritus and benthic invertebrates, and strong linkages of these components to demersal and pelagic sub-webs. The level of omnivory indexes in this ecosystem was high, forming a highly connected trophic web reminiscent of tropical land areas. Although high levels of ascendency may indicate resistance and resilience to disturbance, recent and present fisheries trends are probably degrading the biological community and related ecosystem services.

  7. Evolving dynamical regimes during secular cooling of terrestrial planets : insights and inferences from numerical models

    NARCIS (Netherlands)

    Thienen, Peter van

    2003-01-01

    Although plate tectonics is the present-day mode of geodynamics on Earth, it is not so on Mars and Venus, and probably also not during the early history of the Earth. In this thesis, the conditions under which plate tectonics may operate on terrestrial planets are investigated. Numerical model

  8. European-wide simulations of croplands using an improved terrestrial biosphere model: Phenology and productivity

    Science.gov (United States)

    Smith, P. C.; de Noblet-Ducoudré, N.; Ciais, P.; Peylin, P.; Viovy, N.; Meurdesoif, Y.; Bondeau, A.

    2010-03-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work combines the terrestrial biosphere model Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE), for vegetation productivity, water balance, and soil carbon dynamics, and the generic crop model Simulateur Multidisciplinaire pour les Cultures Standard (STICS), for phenology, irrigation, nitrogen balance, and harvest. The ORCHIDEE-STICS model, relying on three plant functional types for the representation of temperate agriculture, is evaluated over the last few decades at various spatial and temporal resolutions. The simulated leaf area index seasonal cycle is largely improved relative to the original ORCHIDEE simulating grasslands, and compares favorably with remote-sensing observations (correlation doubles over Europe). Crop yield is derived from annual net primary productivity and compared with wheat and grain maize harvest data for five European countries. Discrepancies between 30 year mean simulated and reported yields are large in Mediterranean countries. Interannual variability amplitude expressed relative to the mean is reduced toward the observed variability (≈10%) when using ORCHIDEE-STICS. Overall, this study highlights the importance of accounting for the specific phenologies of crops sown both in winter and in spring and for irrigation applied to spring crops in regional/global models of the terrestrial carbon cycle. Limitations suggest to account for temporal and spatial variability in agricultural practices for further simulation improvement.

  9. Trophic interactions among the heterotrophic components of plankton in man-made peat pools

    Directory of Open Access Journals (Sweden)

    Michał Niedźwiecki

    2017-03-01

    Full Text Available Man-made peat pools are permanent freshwater habitats developed due to non-commercial man-made peat extraction. Yet, they have not been widely surveyed in terms of ecosystem functioning, mainly regarding the complexity of heterotrophic components of the plankton. In this study we analysed distribution and trophic interrelations among heterotrophic plankton in man-made peat pools located in different types of peatbogs. We found that peat pools showed extreme differences in environmental conditions that occurred to be important drivers of distribution of microplankton and metazooplankton. Abundance of bacteria and protozoa showed significant differences, whereas metazooplankton was less differentiated in density among peat pools. In all peat pools stress-tolerant species of protozoa and metazoa were dominant. In each peat pool five trophic functional groups were distinguished. The abundance of lower functional trophic groups (bacteria, heterotrophic nanoflagellates (HNF and ciliates feeding on bacteria and HNF was weakly influenced by environmental drivers and was highly stable in all peat pool types. Higher functional trophic groups (naupli, omnivorous and carnivorous ciliates, cladocerans, adult copepods and copepodites were strongly influenced by environmental variables and exhibited lower stability. Our study contributes to comprehensive knowledge of the functioning of peat bogs, as our results have shown that peat pools are characterized by high stability of the lowest trophic levels, which can be crucial for energy transfer and carbon flux through food webs.

  10. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs.

    Science.gov (United States)

    Monterroso, Pedro; Garrote, Germán; Serronha, Ana; Santos, Emídio; Delibes-Mateos, Miguel; Abrantes, Joana; Perez de Ayala, Ramón; Silvestre, Fernando; Carvalho, João; Vasco, Inês; Lopes, Ana M; Maio, Elisa; Magalhães, Maria J; Mills, L Scott; Esteves, Pedro J; Simón, Miguel Ángel; Alves, Paulo C

    2016-10-31

    Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60-70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs.

  11. Trophic structure of the fouling community in Odessa Bay (Black Sea

    Directory of Open Access Journals (Sweden)

    A. Y. Varigin

    2016-06-01

    Full Text Available The trophic structure of the coastal fouling community of Odessa Bay (Black Sea, which was composed of 10 species of macrophytes, 57 invertebrate species and 4 species of fish, was determined. The basic trophic relationship between organisms composing the community is shown. A minimization of interspecific trophic competition within the community is noted. The main sources of food material entering the fouling community were determined. We show that a significant proportion of food in the form of detritus, dissolved organic matter and small planktonic organisms enters the community from the water column. Filtration and pumping activity of sestonophage-organisms, particularly mussels, helps to attract food material to the community. Primary producers of the community are macrophytes and microphytes, which develop on account of their photosynthetic activity and ensure the provision of food to herbivores. The trophic group of detritophages consumes different fractions of the detritus which accumulates in the byssus threads of bivalve molluscs. In this context, mussel druses act as sediment traps, collecting detritus. Numerous polyphages, which are essentially omnivores and do not usually lack food material, were noted in the community. A small group of carnivorous invertebrates, whose representatives actively attack small animals, was identified. The abundance of these species in the community was about 1%, and their biomass less than 0.6%. Fish living in macrophyte weeds are the consumers in the community. We determined that the highest relative abundance (over 36% in the fouling community was reached by sestonophages and polyphages. We found that the undisputed leader in the relative biomass (over 97% in the fouling community ofOdessaBaywas the sestonophages (mainly composed of mussels. We determined that the trophic structure index of the community was 0.94, which confirms the significant dominance in biomass of bivalves over other species in

  12. Trophic Niche Differentiation in Rodents and Marsupials Revealed by Stable Isotopes.

    Directory of Open Access Journals (Sweden)

    Mauro Galetti

    Full Text Available Tropical rainforests support the greatest diversity of small mammals in the world, yet we have little understanding about the mechanisms that promote the coexistence of species. Diet partitioning can favor coexistence by lessening competition, and interspecific differences in body size and habitat use are usually proposed to be associated with trophic divergence. However, the use of classic dietary methods (e.g. stomach contents is challenging in small mammals, particularly in community-level studies, thus we used stable isotopes (δ13C and δ15N to infer about trophic niche. We investigated i how trophic niche is partitioned among rodent and marsupial species in three Atlantic forest sites and ii if interspecific body size and locomotor habit inequalities can constitute mechanisms underlying the isotopic niche partitioning. We found that rodents occupied a broad isotopic niche space with species distributed in different trophic levels and relying on diverse basal carbon sources (C3 and C4 plants. Surprisingly, on the other hand, marsupials showed a narrow isotopic niche, both in δ13C and δ15N dimensions, which is partially overlapped with rodents, contradicting their description as omnivores and generalists proposed classic dietary studies. Although body mass differences did not explained the divergence in isotopic values among species, groups of species with different locomotor habit presented clear differences in the position of the isotopic niche space, indicating that the use of different forest strata can favor trophic niche partitioning in small mammals communities. We suggest that anthropogenic impacts, such as habitat modification (logging, harvesting, can simplify the vertical structure of ecosystems and collapse the diversity of basal resources, which might affect negatively small mammals communities in Atlantic forests.

  13. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  14. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  15. Alternative treatment of ovarian cysts with Tribulus terrestris extract: a rat model.

    Science.gov (United States)

    Dehghan, A; Esfandiari, A; Bigdeli, S Momeni

    2012-02-01

    Tribulus terrestris has long been used in traditional medicine to treat impotency and improve sexual functions in man. The aim of this study was to evaluate the efficiency of T. terrestris extract in the treatment of polycystic ovary (PCO) in Wistar rat. Estradiol valerate was injected to 15 mature Wistar rats to induce PCO. Rats were randomly divided into three groups (control, low-dose and high-dose groups) of five each and received 0, 5 and 10 mg of T. terrestris extract, respectively.Treatments began on days 50 and 61 after estradiol injection; at the same time, vaginal smear was prepared. The ovaries were removed on day 62, and histological sections were prepared accordingly. The number and diameter of corpora lutea, thickness of the theca interna layer and the number of all follicles were evaluated in both ovaries. In comparison with the control group, the number of corpora lutea and primary and secondary follicles significantly increased following T. terrestris treatment; however, the number of ovarian cysts significantly decreased. It can be concluded that T. terrestris have a luteinizing effect on ovarian cysts, which may relate to its gonadotropin-like activity; also, a high dose of the extract can efficiently remove ovarian cysts and resume ovarian activity. © 2011 Blackwell Verlag GmbH.

  16. Trophic significance of the kelp Laminaria digitata (Lamour.) for the associated food web: a between-sites comparison

    Science.gov (United States)

    Schaal, Gauthier; Riera, Pascal; Leroux, Cédric

    2009-12-01

    This study aimed at establishing the trophic significance of the kelp Laminaria digitata for consumers inhabiting two rocky shores of Northern Brittany (France), displaying contrasted ecological conditions. The general trophic structure did not vary between these two sites, with a wide diversity of filter-feeders and predators, and only 14% of the species sampled belonging to the grazers' trophic group. The diversity of food sources fueling the food web appeared also similar. The food webs comprised four trophic levels and the prevalence of omnivory appeared relatively low compared to previous studies in the same area. Conversely, to the food web structure, which did not differ, the biochemical composition of L. digitata differed between the two sites, and was correlated to a larger diversity of grazers feeding on this kelp in sheltered conditions. This indicated that the spatial variability occurring in the nutritive value of L. digitata is likely to deeply affect the functioning of kelp-associated food webs. The contribution of L. digitata-derived organic matter to the diet of filter-feeders inhabiting these two environments was assessed using the mixing model Isosource, which showed the higher contribution of kelp matter in sheltered conditions. These results highlight the spatial variability that may occur in the functioning of kelp-associated food webs. Moreover, this suggests that hydrodynamics is likely to control the availability of kelp-derived organic matter to local filter-feeders, probably through an increase of detritus export in exposed areas.

  17. A case study on the historical peninsula of Istanbul based on three-dimensional modeling by using photogrammetry and terrestrial laser scanning.

    Science.gov (United States)

    Ergun, Bahadir; Sahin, Cumhur; Baz, Ibrahim; Ustuntas, Taner

    2010-06-01

    Terrestrial laser scanning is a popular methodology that is used frequently in the process of documenting historical buildings and cultural heritage. The historical peninsula region sprawls over an area of approximately 1,500 ha and is one of the main aggregate areas of the historical buildings in Istanbul. In this study, terrestrial laser scanning and close range photogrammetry techniques are integrated into each other to create a 3D city model of this part of Istanbul, including some of the buildings that represent the most brilliant areas of Byzantine and Ottoman Empires. Several terrestrial laser scanners with their different specifications were used to solve various geometric scanning problems for distinct areas of the subject city. Photogrammetric method was used for the documentation of the façades of these historical buildings for architectural purposes. This study differentiates itself from the similar ones by its application process that focuses on the geometry, the building texture, and density of the study area. Nowadays, the largest-scale studies among 3D modeling studies, in terms of the methodology of measurement, are urban modeling studies. Because of this large scale, the application of 3D urban modeling studies is executed in a gradual way. In this study, a modeling method based on the façades of the streets was used. In addition, the complimentary elements for the process of modeling were combined in several ways. A street model was presented as a sample, as being the subject of the applied study. In our application of 3D modeling, the modeling based on close range photogrammetry and the data of combined calibration with the data of terrestrial laser scanner were used in a compatible way. The final work was formed with the pedestal data for 3D visualization.

  18. Soil and terrestrial biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO 2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  19. FARMLAND. A dynamic model for the transfer of radionuclides through terrestrial foodchains

    International Nuclear Information System (INIS)

    Brown, J.; Simmonds, J.R.

    1995-01-01

    Models to simulate the transfer of radionuclides through terrestrial foods have been developed at NRPB and regularly used over the last 20 years. The foodchain model is named FARMLAND (Food Activity from Radionuclide Movement on LAND) and it contains a suite of submodels, each of which simulates radionuclide transfer through a different part of the foodchain. These models can be combined in various orders so that they can be used for different situations of radiological interest. The main foods considered are green vegetables, grain products, root vegetables, milk, meat and offal from cattle, and meat and offal from sheep. A large variety of elements can be considered, although the degree of complexity with which some are modelled is greater than that for others: isotopes of caesium, strontium and iodine are treated in greatest detail. This report gives an overview of the FARMLAND model with the aim of consolidating all the information on the model available in past NRPB publications. In addition, recent model developments are described. (Author)

  20. D Model of AL Zubarah Fortress in Qatar - Terrestrial Laser Scanning VS. Dense Image Matching

    Science.gov (United States)

    Kersten, T.; Mechelke, K.; Maziull, L.

    2015-02-01

    In September 2011 the fortress Al Zubarah, built in 1938 as a typical Arabic fortress and restored in 1987 as a museum, was recorded by the HafenCity University Hamburg using terrestrial laser scanning with the IMAGER 5006h and digital photogrammetry for the Qatar Museum Authority within the framework of the Qatar Islamic Archaeology and Heritage Project. One goal of the object recording was to provide detailed 2D/3D documentation of the fortress. This was used to complete specific detailed restoration work in the recent years. From the registered laser scanning point clouds several cuttings and 2D plans were generated as well as a 3D surface model by triangle meshing. Additionally, point clouds and surface models were automatically generated from digital imagery from a Nikon D70 using the open-source software Bundler/PMVS2, free software VisualSFM, Autodesk Web Service 123D Catch beta, and low-cost software Agisoft PhotoScan. These outputs were compared with the results from terrestrial laser scanning. The point clouds and surface models derived from imagery could not achieve the same quality of geometrical accuracy as laser scanning (i.e. 1-2 cm).

  1. Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content

    Science.gov (United States)

    Norton, Alexander J.; Rayner, Peter J.; Koffi, Ernest N.; Scholze, Marko

    2018-04-01

    The synthesis of model and observational information using data assimilation can improve our understanding of the terrestrial carbon cycle, a key component of the Earth's climate-carbon system. Here we provide a data assimilation framework for combining observations of solar-induced chlorophyll fluorescence (SIF) and a process-based model to improve estimates of terrestrial carbon uptake or gross primary production (GPP). We then quantify and assess the constraint SIF provides on the uncertainty in global GPP through model process parameters in an error propagation study. By incorporating 1 year of SIF observations from the GOSAT satellite, we find that the parametric uncertainty in global annual GPP is reduced by 73 % from ±19.0 to ±5.2 Pg C yr-1. This improvement is achieved through strong constraint of leaf growth processes and weak to moderate constraint of physiological parameters. We also find that the inclusion of uncertainty in shortwave down-radiation forcing has a net-zero effect on uncertainty in GPP when incorporated into the SIF assimilation framework. This study demonstrates the powerful capacity of SIF to reduce uncertainties in process-based model estimates of GPP and the potential for improving our predictive capability of this uncertain carbon flux.

  2. Trophic magnification of PCBs and Its relationship to the octanol-water partition coefficient.

    Science.gov (United States)

    Walters, David M; Mills, Marc A; Cade, Brian S; Burkard, Lawrence P

    2011-05-01

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (K(OW)) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (δ¹⁵N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from δ¹⁵N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log K(OW), as did the predictive power (r²) of individual TP-PCB regression models used to calculate TMFs. We developed log K(OW)-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of K(OW) on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent K(OW) effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by K(OW)) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical K(OW) and bioaccumulation from field studies are more generalized than previously recognized.

  3. Assessing mesozooplankton trophic levels in the Baltic Sea and North Sea: A stable isotope study

    OpenAIRE

    Agurto, Cristian

    2007-01-01

    For decades, ecologists have studied trophic interaction in aquatic systems, and described the food web structure of dominant ecological groups based on gut content analyses. The conception of these interactions may, however, be biased by the lack of couplings to the microbial food web and direct errors in diet analyses (e.g. differences in digestion rate between food types). In this thesis, I examined the planktonic food web by analyzing the trophic structure (i.e. trophic levels) with an al...

  4. Assimilating GRACE terrestrial water storage data into a conceptual hydrology model for the River Rhine

    Science.gov (United States)

    Widiastuti, E.; Steele-Dunne, S. C.; Gunter, B.; Weerts, A.; van de Giesen, N.

    2009-12-01

    Terrestrial water storage (TWS) is a key component of the terrestrial and global hydrological cycles, and plays a major role in the Earth’s climate. The Gravity Recovery and Climate Experiment (GRACE) twin satellite mission provided the first space-based dataset of TWS variations, albeit with coarse resolution and limited accuracy. Here, we examine the value of assimilating GRACE observations into a well-calibrated conceptual hydrology model of the Rhine river basin. In this study, the ensemble Kalman filter (EnKF) and smoother (EnKS) were applied to assimilate the GRACE TWS variation data into the HBV-96 rainfall run-off model, from February 2003 to December 2006. Two GRACE datasets were used, the DMT-1 models produced at TU Delft, and the CSR-RL04 models produced by UT-Austin . Each center uses its own data processing and filtering methods, yielding two different estimates of TWS variations and therefore two sets of assimilated TWS estimates. To validate the results, the model estimated discharge after the data assimilation was compared with measured discharge at several stations. As expected, the updated TWS was generally somewhere between the modeled and observed TWS in both experiments and the variance was also lower than both the prior error covariance and the assumed GRACE observation error. However, the impact on the discharge was found to depend heavily on the assimilation strategy used, in particular on how the TWS increments were applied to the individual storage terms of the hydrology model.

  5. Development and application of terrestrial food-chain models to assess health risks to man from releases of pollutants to the environment

    International Nuclear Information System (INIS)

    Kaye, S.V.; Hoffman, O.; McDowell-Boyer, L.M.; Baes, C.F.

    1982-01-01

    The paper reviews development and application of mathematical models used to predict the terrestrial food-chain transport of pollutants of potential importance to human health. A distinction is made between models developed specifically for assessment applications and models which may function as research tools. Differentiation is also made between models whose structure is based on steady-state relationships among food-chain compartments and dynamic models developed to simulate food-chain and pollutant kinetics. The strengths and weaknesses of these models are related to the needs of the model-user, the availability of relevant data for parameter quantification, and the feasibility for model validation. For assessment purposes, an optimum level of structural complexity will be achieved when all parameters are readily measurable and predictive error due to unforeseen correlations among parameters is small. The optimum level of simplification, however, will be determined by model validation results and the ease of model implementation. Most examples are derived from models used to assess the terrestrial food-chain transport of radionuclides because assessment methodologies for other types of pollutants are only at an early stage of development. It is concluded that current limitations in parameter quantification and model validation will probably restrict most assessment applications of terrestrial food-chain models to a type of screening calculation. However, once pollutant releases actually occur, environmental monitoring will be necessary to ensure that potential model misprediction does not result in unacceptable consequences. (author)

  6. Development and application of terrestrial food chain models to assess health risks to man and releases of pollutants to the environment

    International Nuclear Information System (INIS)

    Kaye, S.V.; Hoffman, F.O.; McDowell-Boyer, L.M.; Baes, C.F.

    1981-01-01

    This paper reviews the development and application of mathematical models used to predict the terrestrial food chain transport of pollutants of potential importance to human health. A distinction is made between models developed specifically for assessment applications and models which may function as research tools. Differentiation is also made between models whose structure is based on steady-state relationships among food chain compartments and dynamic models developed to simulate food chain and pollutant kinetics. The strengths and weaknesses of these models are related to the needs of the model user, the availability of relevant data for parameter quantification, and the feasibility for model validation. For assessment purposes, an optimum level of structural complexity will be achieved when all parameters are readily measurable and predictive error due to unforeseen correlations among parameters is small. The optimum level of simplification, however, will be determined by model validation results and the ease of model implementation. Most examples are derived from models used to assess the terrestrial food chain transport of radionuclides because assessment methodologies for other types of pollutants are only at an early stage of development. It is concluded that current limitations in parameter quantification and model validation will probably restrict most assessment applications of terrestrial food chain models to a type of screening calculation. However, once pollutant releases actually occur, environmental monitoring will be necessary to ensure that potential model misprediction does not result in unacceptable consequences

  7. Bioenergetics, Trophic Ecology, and Niche Separation of Tunas.

    Science.gov (United States)

    Olson, R J; Young, J W; Ménard, F; Potier, M; Allain, V; Goñi, N; Logan, J M; Galván-Magaña, F

    Tunas are highly specialized predators that have evolved numerous adaptations for a lifestyle that requires large amounts of energy consumption. Here we review our understanding of the bioenergetics and feeding dynamics of tunas on a global scale, with an emphasis on yellowfin, bigeye, skipjack, albacore, and Atlantic bluefin tunas. Food consumption balances bioenergetics expenditures for respiration, growth (including gonad production), specific dynamic action, egestion, and excretion. Tunas feed across the micronekton and some large zooplankton. Some tunas appear to time their life history to take advantage of ephemeral aggregations of crustacean, fish, and molluscan prey. Ontogenetic and spatial diet differences are substantial, and significant interdecadal changes in prey composition have been observed. Diet shifts from larger to smaller prey taxa highlight ecosystem-wide changes in prey availability and diversity and provide implications for changing bioenergetics requirements into the future. Where tunas overlap, we show evidence of niche separation between them; resources are divided largely by differences in diet percentages and size ranges of prey taxa. The lack of long-term data limits the ability to predict impacts of climate change on tuna feeding behaviour. We note the need for systematic collection of feeding data as part of routine monitoring of these species, and we highlight the advantages of using biochemical techniques for broad-scale analyses of trophic relations. We support the continued development of ecosystem models, which all too often lack the regional-specific trophic data needed to adequately investigate climate and fishing impacts. © 2016 Elsevier Ltd. All rights reserved.

  8. Terrestrial magnetospheric imaging: Numerical modeling of low energy neutral atoms

    International Nuclear Information System (INIS)

    Moore, K.R.; Funsten, H.O.; McComas, D.J.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Imaging of the terrestrial magnetosphere can be performed by detection of low energy neutral atoms (LENAs) that are produced by charge exchange between magnetospheric plasma ions and cold neutral atoms of the Earth's geocorona. As a result of recent instrumentation advances it is now feasible to make energy-resolved measurements of LENAs from less than I key to greater than 30 key. To model expected LENA fluxes at a spacecraft, we initially used a simplistic, spherically symmetric magnetospheric plasma model. 6 We now present improved calculations of both hydrogen and oxygen line-of-sight LENA fluxes expected on orbit for various plasma regimes as predicted by the Rice University Magnetospheric Specification Model. We also estimate expected image count rates based on realistic instrument geometric factors, energy passbands, and image accumulation intervals. The results indicate that presently proposed LENA instruments are capable of imaging of storm time ring current and potentially even quiet time ring current fluxes, and that phenomena such as ion injections from the tail and subsequent drifts toward the dayside magnetopause may also be deduced

  9. Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood.

    Science.gov (United States)

    Bibus, Douglas M

    2015-03-01

    Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society.

  10. Evolutionary tracks of the terrestrial planets

    International Nuclear Information System (INIS)

    Matsui, Takafumi; Abe, Yutaka

    1987-01-01

    On the basis of the model proposed by Matsui and Abe, the authors show that two major factors - distance from the Sun and the efficiency of retention of accretional energy - control the early evolution of the terrestrial planets. A diagram of accretional energy versus the optical depth of a proto-atmosphere provides a means to follow the evolutionary track of surface temperature of the terrestrial planets and an explanation for why the third planet in our solar system is an 'aqua'-planet. 15 refs; 3 figs

  11. Terrestrial N Cycling And C Storage: Some Insights From A Process-based Land Surface Model

    Science.gov (United States)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2008-12-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation, and soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. O-CN is run for three free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge, Aspen), and reproduces observed magnitudes of changes in net primary productivity, foliage area and foliage N content. Several alternative hypotheses concerning the control of N on vegetation growth and decomposition, including effects of diluting foliage N concentrations, down-regulation of photosynthesis and respiration, acclimation of C allocation patterns and biological N fixation, are tested with respect to their effect on long- term C sequestration estimate. Differences in initial N availability, small transient changes in N inputs and the assumed plasticity of C:N stoichiometry can lead to substantial differences in the simulated long-term changes in productivity and C sequestration. We discuss the capacity of observations obtained at FACE sites to evaluate these alternative hypotheses, and investigate implications of a transient versus instantaneous increase in atmospheric carbon dioxide for the magnitude of the simulated limiting effect of N on C cycling. Finally, we re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric CO2, N deposition and climatic changes over the 21st century.

  12. Diet Composition and Trophic Ecology of Northeast Pacific Ocean Sharks.

    Science.gov (United States)

    Bizzarro, Joseph J; Carlisle, Aaron B; Smith, Wade D; Cortés, Enric

    Although there is a general perception of sharks as large pelagic, apex predators, most sharks are smaller, meso- and upper-trophic level predators that are associated with the seafloor. Among 73 shark species documented in the eastern North Pacific (ENP), less than half reach maximum lengths >200cm, and 78% occur in demersal or benthic regions of the continental shelf or slope. Most small (≤200cm) species (e.g., houndsharks) and demersal, nearshore juveniles of larger species (e.g., requiem sharks) consume small teleosts and decapod crustaceans, whereas large species in pelagic coastal and oceanic environments feed on large teleosts and squids. Several large, pelagic apex predator species occur in the ENP, but the largest species (i.e., Basking Shark, Whale Shark) consume zooplankton or small nekton. Size-based dietary variability is substantial for many species, and segregation of juvenile and adult foraging habitats also is common (e.g., Horn Shark, Shortfin Mako). Temporal dietary differences are most pronounced for temperate, nearshore species with wide size ranges, and least pronounced for smaller species in extreme latitudes and deep-water regions. Sympatric sharks often occupy various trophic positions, with resource overlap differing by space and time and some sharks serving as prey to other species. Most coastal species remain in the same general region over time and feed opportunistically on variable prey inputs (e.g., season migrations, spawning, or recruitment events), whereas pelagic, oceanic species actively seek hot spots of prey abundance that are spatiotemporally variable. The influence of sharks on ecosystem structure and regulation has been downplayed compared to that of large teleosts species with higher per capita consumption rates (e.g., tunas, billfishes). However, sharks also exert indirect influences on prey populations by causing behavioural changes that may result in restricted ranges and reduced fitness. Except for food web modelling

  13. Use of satellite imagery to assess the trophic state of Miyun Reservoir, Beijing, China

    International Nuclear Information System (INIS)

    Wang Zhengjun; Hong Jianming; Du Guisen

    2008-01-01

    The objective of this research is to explore an appropriate way of monitoring and assessing water quality by satellite remote sensing techniques in the Miyun reservoir of Beijing, China. Two scene Thematic Mapper images in May and October of 2003 were acquired and simultaneous in situ measurements, sampling and analysis were conducted. Statistical analysis indicates that satellite-based normalized ratio vegetation index (NRVI) and in situ measured water chlorophyll a (Chl-a) concentration have very high correlation. Two linear regression models with high determination coefficients were constructed for NRVI and Chl-a of sample points. According to the modified trophic state index map, water quality in the western section of Miyun reservoir was consistently higher than in the eastern section during the two months tested. The trophic grade of the eastern reservoir remained mesotrophic with a tendency for eutrophication. - Remote sensing techniques can effectively monitor the change of water quality with time and space

  14. Biotransformation and Incorporation into Proteins along a Simulated Terrestrial Food Chain

    Energy Technology Data Exchange (ETDEWEB)

    Unrine, J.M., B.P. Jackson and W.A. Hopkins

    2007-01-01

    Selenium is an essential trace element in vertebrates, but there is a narrow concentration range between dietary requirement and toxicity threshold. Although a great deal is known about the biochemistry of Se from a nutritional perspective, considerably less attention has been focused on the specific biochemistry of Se as an environmental toxicant. Recent advances in hyphenated analytical techniques have provided the capability of quantifying specific chemical forms of Se in biological tissues as well as the distribution of Se among macromolecules. We applied liquid chromatography coupled to inductively coupled plasma mass spectrometry to investigate biotransformations of selenomethionine along a simulated terrestrial food chain consisting of selenomethionine exposed crickets (Acheta domesticus) fed to western fence lizards (Sceloporus occidentalis). Evidence was obtained for selenomethionine biotransformation as well as for sex-specific differences in the metabolism of Se compounds and their subsequent incorporation into proteins in the lizard. The results demonstrate the complexities involved in trophic transfer of Se due to the potential for extensive biotransformation and the species- and even sex-specific nature of these biotransformations.

  15. Trophic position of soil nematodes in boreal forests as indicated by stable isotope analysis

    Science.gov (United States)

    Kudrin, Alexey; Tsurikov, Sergey

    2016-04-01

    Despite the well-developed trophic classification of soil nematodes, their position in soil food webs is still little understood. Observed deviations from the typical feeding strategy indicate that a simplified trophic classification probably does not fully reflect actual trophic interactions. Furthermore, the extent and functional significance of nematodes as prey for other soil animals remains unknown. Stable isotope analysis (SIA) is powerful tool for investigating the structure of soil food webs, but its application to the study of soil nematodes has been limited to only a few studies. We used stable isotope analysis to gain a better understanding of trophic links of several groups of soil nematodes in two boreal forests on albeluvisol. We investigated four taxonomic groups of nematodes: Mononchida, Dorylaimida, Plectidae and Tylenchidae (mostly from the genus Filenchus), that according to the conventional trophic classification represent predators, omnivores, bacterivores and root-fungal feeders, respectively. To assess the trophic position of nematodes, we used a comparison against a set of reference species including herbivorous, saprophagous and predatory macro-invertebrates, oribatid and mesostigmatid mites, and collembolans. Our results suggest that trophic position of the investigated groups of soil nematodes generally corresponds to the conventional classification. All nematodes were enriched in 13C relative to Picea abies roots and litter, and mycorrhizal fungal mycelium. Root-fungal feeders Tylenchidae had δ15N values similar to those of earthworms, enchytraeids and Entomobrya collembolans, but slightly lower δ13C values. Bacterivorous Plectidae were either equal or enriched in 15N compared with saprophagous macroinvertebrates and most mesofauna species. Omnivorous Dorylaimida and predatory Mononchida were further enriched in 15N and their isotopic signature was similar to that of predatory arthropods. These data confirm a clear separation of

  16. Trophic structure and feeding rates of forest soil invertebrate populations

    Energy Technology Data Exchange (ETDEWEB)

    McBrayer, J F; Reichle, D E

    1971-01-01

    Trophic level relationships of a soil invertebrate community were determined using the transient behavior of cesium-137 in experimental soil microcosms. Feeding rates were estimated from radionuclide mass balance equations using radiocesium uptake coefficients, equilibrium concentrations of /sup 137/Cs in consumers, and /sup 137/Cs composition of food bases. The fungivore trophic level included Scatopsidae larvae (Diptera), Enchytraeida (Annelida), Entomobryidae and Onychiuridae (Collembola), Rhodacaridae (Mesostigmata), and Oribatulidae, Camasiidae, Carabodidae, and Cymbaeremaeidae (Oribatei). Approximately 60% of the total faunal biomass occurred in the fungivore trophic level. Fungivores averaged 7.0 +/- 2.4% dry body weight ingested per day. Cecidomyiidae larvae (Diptera), Diplopoda, Isotomidae (Collembola), Uropodina, and Phthiracaridae (Oribatei) were determined to be surface-feeding saprophages. Subsurface-feeding saprophages included Symphyla, Cillibidae (Uropidina), and Palaeacaridae and Epilohmannidae (Oribatei). Surface-feeding saprophages averaged 1.0 +/- 0.4% dry body weight ingested per day. Feeding rates were not calculated for saprophages feeding within the mineral soil horizon. Predators included Dolichopodidae larvae (Diptera), gamasine mites, and the Scutacaridae and other prostigmatid mites. Predators averaged 2.5 +/- 1.0% dry body weight ingested per day. 15 references, 3 figures, 3 tables.

  17. The Investigation of Accuracy of 3 Dimensional Models Generated From Point Clouds with Terrestrial Laser Scanning

    Science.gov (United States)

    Gumus, Kutalmis; Erkaya, Halil

    2013-04-01

    In Terrestrial laser scanning (TLS) applications, it is necessary to take into consideration the conditions that affect the scanning process, especially the general characteristics of the laser scanner, geometric properties of the scanned object (shape, size, etc.), and its spatial location in the environment. Three dimensional models obtained with TLS, allow determining the geometric features and relevant magnitudes of the scanned object in an indirect way. In order to compare the spatial location and geometric accuracy of the 3-dimensional model created by Terrestrial laser scanning, it is necessary to use measurement tools that give more precise results than TLS. Geometric comparisons are performed by analyzing the differences between the distances, the angles between surfaces and the measured values taken from cross-sections between the data from the 3-dimensional model created with TLS and the values measured by other measurement devices The performance of the scanners, the size and shape of the scanned objects are tested using reference objects the sizes of which are determined with high precision. In this study, the important points to consider when choosing reference objects were highlighted. The steps up to processing the point clouds collected by scanning, regularizing these points and modeling in 3 dimensions was presented visually. In order to test the geometric correctness of the models obtained by Terrestrial laser scanners, sample objects with simple geometric shapes such as cubes, rectangular prisms and cylinders that are made of concrete were used as reference models. Three dimensional models were generated by scanning these reference models with Trimble Mensi GS 100. The dimension of the 3D model that is created from point clouds was compared with the precisely measured dimensions of the reference objects. For this purpose, horizontal and vertical cross-sections were taken from the reference objects and generated 3D models and the proximity of

  18. Assessing trophic linkages in and around offshore wind farms using two high-speed optical sensors

    Science.gov (United States)

    Dudeck, Tim; Hufnagl, Marc; Auch, Dominik; Eckhardt, André; Möller, Klas-Ove; van Beusekom, Justus; Walter, Bettina; Möllmann, Christian; Floeter, Jens

    2016-04-01

    In search for clean, renewable energy sources European countries have built and planned numerous Offshore Wind Farms (OWF) in the North Sea region. While some research has been carried out on their influence on marine mammals and bottom-dwelling organisms, less is known about fish and lower trophic levels in these areas. Yet, marine mammals purposely seek these structures and there are indications that there are higher chances of fish encounters. However, the local bottom-up effects probably driving these aggregations of higher trophic level organisms are poorly understood. In this study we show preliminary results of primary and secondary production in and around German OWFs in the North Sea using a Laser Optical Particle Counter and a Video Plankton Recorder. With the two sensors working simultaneously on the TRIAXUS system at high speed, we were able to investigate and ground-truth size-spectrum changes on a very high spatial resolution making it possible to detect OWF effects from local to larger scales. Our results show new possibilities in OWF research and the necessity to collect highly resolved field data for meaningful results in these dynamic environments. Furthermore, the use of size spectra simplifies the integration of energy flow through low and medium trophic levels into biogeochemical models by using only a single automatically measurable variable such as size.

  19. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration.

    Science.gov (United States)

    Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-01-29

    Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.

  20. Trophic and neurotrophic factors in human pituitary adenomas (Review).

    Science.gov (United States)

    Spoletini, Marialuisa; Taurone, Samanta; Tombolini, Mario; Minni, Antonio; Altissimi, Giancarlo; Wierzbicki, Venceslao; Giangaspero, Felice; Parnigotto, Pier Paolo; Artico, Marco; Bardella, Lia; Agostinelli, Enzo; Pastore, Francesco Saverio

    2017-10-01

    The pituitary gland is an organ that functionally connects the hypothalamus with the peripheral organs. The pituitary gland is an important regulator of body homeostasis during development, stress, and other processes. Pituitary adenomas are a group of tumors arising from the pituitary gland: they may be subdivided in functional or non-functional, depending on their hormonal activity. Some trophic and neurotrophic factors seem to play a key role in the development and maintenance of the pituitary function and in the regulation of hypothalamo-pituitary-adrenocortical axis activity. Several lines of evidence suggest that trophic and neurotrophic factors may be involved in pituitary function, thus suggesting a possible role of the trophic and neurotrophic factors in the normal development of pituitary gland and in the progression of pituitary adenomas. Additional studies might be necessary to better explain the biological role of these molecules in the development and progression of this type of tumor. In this review, in light of the available literature, data on the following neurotrophic factors are discussed: ciliary neurotrophic factor (CNTF), transforming growth factors β (TGF‑β), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), vascular endothelial growth inhibitor (VEGI), fibroblast growth factors (FGFs) and epidermal growth factor (EGF) which influence the proliferation and growth of pituitary adenomas.

  1. Integrate Data into Scientific Workflows for Terrestrial Biosphere Model Evaluation through Brokers

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Du, F.; Dasgupta, A.; Poco, J.; Huntzinger, D. N.; Schwalm, C. R.; Boldrini, E.; Santoro, M.; Pearlman, J.; Pearlman, F.; Nativi, S.; Khalsa, S.

    2013-12-01

    Terrestrial biosphere models (TBMs) have become integral tools for extrapolating local observations and process-level understanding of land-atmosphere carbon exchange to larger regions. Model-model and model-observation intercomparisons are critical to understand the uncertainties within model outputs, to improve model skill, and to improve our understanding of land-atmosphere carbon exchange. The DataONE Exploration, Visualization, and Analysis (EVA) working group is evaluating TBMs using scientific workflows in UV-CDAT/VisTrails. This workflow-based approach promotes collaboration and improved tracking of evaluation provenance. But challenges still remain. The multi-scale and multi-discipline nature of TBMs makes it necessary to include diverse and distributed data resources in model evaluation. These include, among others, remote sensing data from NASA, flux tower observations from various organizations including DOE, and inventory data from US Forest Service. A key challenge is to make heterogeneous data from different organizations and disciplines discoverable and readily integrated for use in scientific workflows. This presentation introduces the brokering approach taken by the DataONE EVA to fill the gap between TBMs' evaluation scientific workflows and cross-organization and cross-discipline data resources. The DataONE EVA started the development of an Integrated Model Intercomparison Framework (IMIF) that leverages standards-based discovery and access brokers to dynamically discover, access, and transform (e.g. subset and resampling) diverse data products from DataONE, Earth System Grid (ESG), and other data repositories into a format that can be readily used by scientific workflows in UV-CDAT/VisTrails. The discovery and access brokers serve as an independent middleware that bridge existing data repositories and TBMs evaluation scientific workflows but introduce little overhead to either component. In the initial work, an OpenSearch-based discovery broker

  2. Isotope niche dimension and trophic overlap between bigheaded carps and native filter-feeding fish in the lower Missouri River, USA

    Science.gov (United States)

    Wang, Jianzhu; Chapman, Duane C.; Xu, Jun; Wang, Yang; Gu, Binhe

    2018-01-01

    Stable carbon and nitrogen isotope values (δ13C and δ15N) were used to evaluate trophic niche overlap between two filter-feeding fishes (known together as bigheaded carp) native to China, silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), and three native filter-feeding fish including bigmouth buffalo (Ictiobus cyprinellus), gizzard shad (Dorosoma cepedianum) and paddlefish (Polyodon spathula) in the lower Missouri River, USA, using the Bayesian Stable Isotope in R statistics. Results indicate that except for bigmouth buffalo, all species displayed similar trophic niche size and trophic diversity. Bigmouth buffalo occupied a small trophic niche and had the greatest trophic overlap with silver carp (93.6%) and bighead carp (94.1%) followed by gizzard shad (91.0%). Paddlefish had a trophic niche which relied on some resources different from those used by other species, and therefore had the lowest trophic overlap with bigheaded carp and other two native fish. The trophic overlap by bigheaded carp onto native fish was typically stronger than the reverse effects from native fish. Average niche overlap between silver carp and native species was as high as 71%, greater than niche overlap between bighead carp and native fish (64%). Our findings indicate that bigheaded carps are a potential threat to a diverse and stable native fish community.

  3. ON THE MIGRATION OF JUPITER AND SATURN: CONSTRAINTS FROM LINEAR MODELS OF SECULAR RESONANT COUPLING WITH THE TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Agnor, Craig B.; Lin, D. N. C.

    2012-01-01

    We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. Using a modified secular model we have identified six secular resonances between the ν 5 frequency of Jupiter and Saturn and the four apsidal eigenfrequencies of the terrestrial planets (g 1-4 ). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. Because of the small amplitudes of the j = 2, 3 terrestrial eigenmodes the g 2 – ν 5 and g 3 – ν 5 resonances provide the strongest constraints on giant planet migration. If Jupiter and Saturn migrated with eccentricities comparable to their present-day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration (τ ∼ 5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g., τ ∼< 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j = 2, 3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Results of orbital integrations show that very short migration timescales (τ < 0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets' eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9 ± 0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant

  4. Variations and trends of terrestrial NPP and its relation to climate ...

    Indian Academy of Sciences (India)

    Using global terrestrial ecosystem net primary productivity (NPP) data, we validated the simulated multi-model ensemble ..... tion on the solar radiation at six Canadian stations; Solar ... balance have enhanced the terrestrial carbon sink in the.

  5. Temporal changes in periphytic meiofauna in lakes of different trophic states

    Directory of Open Access Journals (Sweden)

    Kurt Pettersson

    2012-01-01

    Full Text Available Meiofaunal organisms in the periphyton of stony hard-substrates (epilithon were studied in three Swedish lakes with different trophic states (oligo-, meso- and eutrophic with respect to seasonal successions in abundance, biomass, and production. Over a period of 2 years, the meiofaunal population of all three lakes fluctuated greatly, with densities varying up to nine-fold within a season. In the oligotrophic lake, a significant decrease in meiofauna in winter was striking, whereas in the other two lakes, richer in nutrients, there was a pronounced peak in early summer. Although the lakes, on average, did not differ in epilithic organic and inorganic material, the differences in meiofaunal abundance, biomass, and production were significant. Correlation analysis revealed that altogether the meiofaunal biomass was positively related to the lakes’ trophic state (total phosphorus, while the meiofaunal abundance and production along the trophic spectrum displayed a humped-shape distribution, with maximum values measured in the mesotrophic Lake Erken (1324 ind cm-2 and 2249 mg DW cm-2 y-1. Nematodes were the dominant meiofaunal group in the epilithon of all three lakes, accounting for up to 58% in abundance, 33% in biomass and 55% in production of the whole meiofaunal community. However, their relative importance tended to decrease with increasing trophic state. Beside nematodes, rotifers, oligochaetes, copepods and tardigrades were also found in large numbers in the epilithon. Overall, the results demonstrated that, due to their high abundance, biomass, and production, meiofaunal organisms play an important role in epilithic communities.

  6. Trophic web structure and ecosystem attributes of a temperate estuarine system (Ria de Aveiro, Portugal

    Directory of Open Access Journals (Sweden)

    Eva García-Seoane

    2015-11-01

    Full Text Available Estuaries are among the most productive ecosystems and simultaneously among the most threatened by conflicting human activities, which damage their ecological functions. Describing and attempting to understand the structure and functioning of estuaries is an essential step for maintaining and restoring the quality of estuarine ecosystems. The objective of this study was to obtain insights into the ecosystem structure and functioning of Ria de Aveiro. The study area is a coastal lagoon located on the Northwest Atlantic coast of Portugal, which is connected to the sea through an artificial channel. The ECOPATH software was used to create a static balanced trophic food web model of the tidal part of Ria de Aveiro. The model considers 26 functional groups, including birds, fish, invertebrates, seagrasses, zooplankton, phytoplankton and detritus. Few adjustments were necessary for the input parameters because most of the data were based on direct observations or compiled from literature based on the study site. The trophic interactions within the food web of Riade Aveiro and the transference of energy between functional groups were quantitatively represented. Finally, the keystone index was defined for each functional group.

  7. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    Science.gov (United States)

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.

  8. Vacuum therapy of trophic ulcer of lower extremities, presented in patients with DFS

    Directory of Open Access Journals (Sweden)

    Yurkova R.A.

    2017-01-01

    Full Text Available the article has analyzed the results of treatment of 67 patients with diabetic foot syndrome (DFS, complicated by feet trophic ulcers, using the vacuum bandages. Patients were divided into 2 groups: the control group had a traditional treatment and the studied one had vacuum bandages applied to the trophic ulcers. The results confirmed an assured decrease in the duration of patients’ treatment and hospitalization in the hospital.

  9. Reorganization of a marine trophic network along an inshore-offshore gradient due to stronger pelagic-benthic coupling in coastal areas

    Science.gov (United States)

    Kopp, Dorothée; Lefebvre, Sébastien; Cachera, Marie; Villanueva, Maria Ching; Ernande, Bruno

    2015-01-01

    Recent theoretical considerations have highlighted the importance of the pelagic-benthic coupling in marine food webs. In continental shelf seas, it was hypothesized that the trophic network structure may change along an inshore-offshore gradient due to weakening of the pelagic-benthic coupling from coastal to offshore areas. We tested this assumption empirically using the eastern English Channel (EEC) as a case study. We sampled organisms from particulate organic matter to predatory fishes and used baseline-corrected carbon and nitrogen stable isotope ratios (δ13C and δ15N) to determine their trophic position. First, hierarchical clustering on δ13C and δ15N coupled to bootstrapping and estimates of the relative contribution of pelagic and benthic carbon sources to consumers' diet showed that, at mesoscale, the EEC food web forms a continuum of four trophic levels with trophic groups spread across a pelagic and a benthic trophic pathway. Second, based on the same methods, a discrete approach examined changes in the local food web structure across three depth strata in order to investigate the inshore-offshore gradient. It showed stronger pelagic-benthic coupling in shallow coastal areas mostly due to a reorganization of the upper consumers relative to the two trophic pathways, benthic carbon sources being available to pelagic consumers and, reciprocally, pelagic sources becoming accessible to benthic species. Third a continuous approach examined changes in the mean and variance of upper consumers' δ13C and δ15N with depth. It detected a significant decrease in δ13C variance and a significant increase in δ15N variance as depth increases. A theoretical two-source mixing model showed that an inshore-offshore decrease in the pelagic-benthic coupling was a sufficient condition to produce the δ13C variance pattern, thus supporting the conclusions of the discrete approach. These results suggest that environmental gradients such as the inshore-offshore one should

  10. Spatial vision in Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Aravin eChakravarthi

    2016-02-01

    Full Text Available Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg-1 of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana and another bumblebee species (B. impatiens. We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.09 cycles deg-1 and 1.26. for 0.18 cycles deg-1.

  11. Trophic enrichment factors for blood serum in the European badger (Meles meles.

    Directory of Open Access Journals (Sweden)

    David J Kelly

    Full Text Available Ecologists undertaking stable isotopic analyses of animal diets require trophic enrichment factors (TEFs for the specific animal tissues that they are studying. Such basic data are available for a small number of species, so values from trophically or phylogenetically similar species are often substituted for missing values. By feeding a controlled diet to captive European badgers (Meles meles we determined TEFs for carbon and nitrogen in blood serum. TEFs for nitrogen and carbon in blood serum were +3.0 ± 0.4‰ and +0.4 ± 0.1‰ respectively. The TEFs for serum in badgers are notably different from those published for the red fox (Vulpes vulpes. There is currently no data for TEFs in the serum of other mustelid species. Our data show that species sharing similar niches (red fox do not provide adequate proxy values for TEFs of badgers. Our findings emphasise the importance of having species-specific data when undertaking trophic studies using stable isotope analysis.

  12. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition.

    Science.gov (United States)

    Potapov, Anton M; Tiunov, Alexei V; Scheu, Stefan

    2018-06-19

    Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13 C as compared to plant litter. This 'detrital shift' likely reflects preferential uptake of 13 C-enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15 N and 13 C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15 N resulting in overlap in isotope ratios between soil-dwelling detritivores and litter-dwelling predators. By contrast, 13 C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non

  13. Trophic structure and biomass distribution of macrobenthos on ...

    African Journals Online (AJOL)

    The trophic structure and biomass of macrobenthos on both wave-sheltered, rocky intertidal shores and semi-exposed ones at seven localities in the Tsitsikamma Marine Protected Area were compared. In the Cochlear zone and entire intertidal (Cochlear- and Balanoid zones combined) biomass values of invertebrates and ...

  14. Lightning leader models of terrestrial gamma-ray flashes

    Science.gov (United States)

    Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.

    2017-12-01

    Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because lightning leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the high-field regions near the leader tips, models of TGFs have been developed by several groups that assume a similar production mechanism of runaway electrons from lightning leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since lightning propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from lightning near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from lightning and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the lightning leader models of TGFs.

  15. Table scraps: inter-trophic food provisioning by pumas.

    Science.gov (United States)

    Elbroch, L Mark; Wittmer, Heiko U

    2012-10-23

    Large carnivores perform keystone ecological functions through direct predation, or indirectly, through food subsidies to scavengers or trophic cascades driven by their influence on the distributions of their prey. Pumas (Puma concolor) are an elusive, cryptic species difficult to study and little is known about their inter-trophic-level interactions in natural communities. Using new GPS technology, we discovered that pumas in Patagonia provided 232 ± 31 kg of edible meat/month/100 km(2) to near-threatened Andean condors (Vultur gryphus) and other members of a diverse scavenger community. This is up to 3.1 times the contributions by wolves (Canis lupus) to communities in Yellowstone National Park, USA, and highlights the keystone role large, solitary felids play in natural systems. These findings are more pertinent than ever, for managers increasingly advocate controlling pumas and other large felids to bolster prey populations and mitigate concerns over human and livestock safety, without a full understanding of the potential ecological consequences of their actions.

  16. Coexistence of Terrestrial and HAP 3G Networks during Disaster Scenarios

    Directory of Open Access Journals (Sweden)

    P. Pechac

    2008-12-01

    Full Text Available The aim of this paper is to show the possible coexistence of an HAP and a terrestrial component of 3G networks at a single carrier frequency. The main goal is to compare the basic parameters of terrestrial and HAP com-ponent 3G networks modeled in suburban (macrocell and urban (macro/microcell areas and to demonstrate the way they impact on each other. This study should present what we assume are the better capabilities of HAP 3G networks compared to their terrestrial counterparts. The parameters of the HAP and terrestrial component of 3G networks, were the terrestrial cells to be disabled during disasters, are also presented.

  17. Subcellular controls of mercury trophic transfer to a marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-09-15

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  18. Interannual variability in lower trophic levels on the Alaskan Shelf

    Science.gov (United States)

    Batten, Sonia D.; Raitsos, Dionysios E.; Danielson, Seth; Hopcroft, Russell; Coyle, Kenneth; McQuatters-Gollop, Abigail

    2018-01-01

    This study describes results from the first 16 years of the Continuous Plankton Recorder (CPR) program that has sampled the lower trophic levels (restricted to larger, hard-shelled phytoplankton and robust zooplankton taxa) on the Alaskan shelf. Sampling took place along transects from the open ocean across the shelf (to the entrance to Prince William Sound from 2000 to 2003 and into Cook Inlet from 2004 to 2015) to provide plankton abundance data, spring through autumn of each year. We document interannual variability in concentration and composition of the plankton community of the region over this time period. At least in part and through correlative relationships, this can be attributed to changes in the physical environment, particularly direct and indirect effects of temperature. For example; spring mixed layer depth is shown to influence the timing of the spring diatom peak and warmer years are biased towards smaller copepod species. A significant positive relationship between temperature, diatom abundance and zooplankton biomass existed from 2000 to 2013 but was not present in the warm years of 2014 and 2015. These results suggest that anomalous warming events, such as the "heat wave" of 2014-2015, could fundamentally influence typical lower trophic level patterns, possibly altering trophic interactions.

  19. Subcellular controls of mercury trophic transfer to a marine fish

    International Nuclear Information System (INIS)

    Dang Fei; Wang Wenxiong

    2010-01-01

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  20. Effects of trophic skewing of species richness on ecosystem functioning in a diverse marine community.

    Directory of Open Access Journals (Sweden)

    Pamela L Reynolds

    Full Text Available Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs, while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms generally emerged in communities with greater predator to prey richness (the more top-rich food webs. These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.

  1. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity.

    Science.gov (United States)

    Vavrek, Matthew J

    2016-09-01

    During the Mesozoic (242-66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species-area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. © 2016 The Author(s).

  2. End-to-end network models encompassing terrestrial, wireless, and satellite components

    Science.gov (United States)

    Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.

    2004-08-01

    Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.

  3. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  4. Influence of relative trophic position and carbon source on selenium bioaccumulation in turtles from a coal fly-ash spill site

    International Nuclear Information System (INIS)

    Van Dyke, James U.; Hopkins, William A.; Jackson, Brian P.

    2013-01-01

    Selenium (Se) is a bioaccumulative constituent of coal fly-ash that can disrupt reproduction of oviparous wildlife. In food webs, the greatest enrichment of Se occurs at the lowest trophic levels, making it readily bioavailable to higher consumers. However, subsequent enrichment at higher trophic levels is less pronounced, leading to mixed tendencies for Se to biomagnify. We used stable isotopes ( 15 N and 13 C) in claws to infer relative trophic positions and relative carbon sources, respectively, of seven turtle species near the site of a recently-remediated coal fly-ash spill. We then tested whether Se concentrations differed with relative trophic position or relative carbon source. We did not observe a strong relationship between δ 15 N and Se concentration. Instead, selenium concentrations decreased with increasing δ 13 C among species. Therefore, in an assemblage of closely-related aquatic vertebrates, relative carbon source was a better predictor of Se bioaccumulation than was relative trophic position. -- Highlights: •Stable isotope results showed trophic separation among turtle species. •Selenium concentrations did not biomagnify with relative trophic position. •Selenium concentrations decreased with increasing δ 13 C among species. •Carbon source influenced Se bioaccumulation in an assemblage of related vertebrates. -- Stable isotope differences indicate that claw selenium concentrations differ among relative carbon sources, and not among relative trophic positions, in an assemblage of aquatic turtles

  5. Future of Plant Functional Types in Terrestrial Biosphere Models

    Science.gov (United States)

    Wullschleger, S. D.; Euskirchen, E. S.; Iversen, C. M.; Rogers, A.; Serbin, S.

    2015-12-01

    Earth system models describe the physical, chemical, and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modelers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current, and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration, and shrub expansion. However, representation of above- and especially belowground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water, and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology, and remote sensing will be

  6. Terrestrial Analogs to Mars: NRC Community Panel Decadal Report

    Science.gov (United States)

    Farr, T. G.

    2002-12-01

    A report was completed recently by a Community Panel for the NRC Decadal Study of Solar System Exploration. The desire was for a review of the current state of knowledge and for recommendations for action over the next decade. The topic of this panel, Terrestrial Analogs to Mars, was chosen to bring attention to the need for an increase in analog studies in support of the increased pace of Mars exploration. It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all of these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the overarching science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel considered the issues of data collection and archiving, value of field workshops, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities. Parts of this work were performed under contract to NASA.

  7. Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches.

    Science.gov (United States)

    Johansen, M P; Barnett, C L; Beresford, N A; Brown, J E; Černe, M; Howard, B J; Kamboj, S; Keum, D-K; Smodiš, B; Twining, J R; Vandenhove, H; Vives i Batlle, J; Wood, M D; Yu, C

    2012-06-15

    Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Contaminant exposure in terrestrial vertebrates

    International Nuclear Information System (INIS)

    Smith, Philip N.; Cobb, George P.; Godard-Codding, Celine; Hoff, Dale; McMurry, Scott T.; Rainwater, Thomas R.; Reynolds, Kevin D.

    2007-01-01

    Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research. - Both biotic and abiotic factors determine chemical exposure for terrestrial vertebrates

  9. Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements

    Science.gov (United States)

    Katata, Genki

    2014-07-01

    Recent progress in modeling fogwater (and low cloud water) deposition over terrestrial ecosystems during fogwater droplet interception by vegetative surfaces is reviewed. Several types of models and parameterizations for fogwater deposition are discussed with comparing assumptions, input parameter requirements, and modeled processes. The relationships among deposition velocity of fogwater (Vd) in model results, wind speed, and plant species structures associated with literature values are gathered for model validation. Quantitative comparisons between model results and observations in forest environments revealed differences as large as 2 orders of magnitude, which are likely caused by uncertainties in measurement techniques over heterogeneous landscapes. Results from the literature review show that Vd values ranged from 2.1 to 8.0 cm s-1 for short vegetation, whereas Vd = 7.7-92 cm s-1 and 0-20 cm s-1 for forests measured by throughfall-based methods and the eddy covariance method, respectively. This review also discusses the current understanding of the impacts of fogwater deposition on atmosphere-land interactions and over complex terrain based on results from numerical studies. Lastly, future research priorities in innovative modeling and observational approaches for model validation are outlined.

  10. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Science.gov (United States)

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  11. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach.

    Science.gov (United States)

    Hübner, Lena; Pennings, Steven C; Zimmer, Martin

    2015-08-01

    Distinct habitats are often linked through fluxes of matter and migration of organisms. In particular, intertidal ecotones are prone to being influenced from both the marine and the terrestrial realms, but whether or not small-scale migration for feeding, sheltering or reproducing is detectable may depend on the parameter studied. Within the ecotone of an upper saltmarsh in the United States, we investigated the sex-specific movement of the semi-terrestrial crab Armases cinereum using an approach of determining multiple measures of across-ecotone migration. To this end, we determined food preference, digestive abilities (enzyme activities), bacterial hindgut communities (genetic fingerprint), and the trophic position of Armases and potential food sources (stable isotopes) of males versus females of different sub-habitats, namely high saltmarsh and coastal forest. Daily observations showed that Armases moved frequently between high-intertidal (saltmarsh) and terrestrial (forest) habitats. Males were encountered more often in the forest habitat, whilst gravid females tended to be more abundant in the marsh habitat but moved more frequently. Food preference was driven by both sex and habitat. The needlerush Juncus was preferred over three other high-marsh detrital food sources, and the periwinkle Littoraria was the preferred prey of male (but not female) crabs from the forest habitats; both male and female crabs from marsh habitat preferred the fiddler crab Uca over three other prey items. In the field, the major food sources were clearly vegetal, but males have a higher trophic position than females. In contrast to food preference, isotope data excluded Uca and Littoraria as major food sources, except for males from the forest, and suggested that Armases consumes a mix of C4 and C3 plants along with animal prey. Digestive enzyme activities differed significantly between sexes and habitats and were higher in females and in marsh crabs. The bacterial hindgut community

  12. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  13. Effect of stock size, climate, predation, and trophic status on recruitment of alewives in Lake Ontario, 1978-2000

    Science.gov (United States)

    O'Gorman, Robert; Lantry, Brian F.; Schneider, Clifford P.

    2004-01-01

    The population of alewives Alosa pseudoharengus in Lake Ontario is of great concern to fishery managers because alewives are the principal prey of introduced salmonines and because alewives negatively influence many endemic fishes. We used spring bottom trawl catches of alewives to investigate the roles of stock size, climate, predation, and lake trophic status on recruitment of alewives to age 2 in Lake Ontario during 1978–2000. Climate was indexed from the temperature of water entering a south-shore municipal treatment plant, lake trophic status was indexed by the mean concentration of total phosphorus (TP) in surface water in spring, and predation was indexed by the product of the number of salmonines stocked and relative, first-year survival of Chinook salmonOncorhynchus tshawytscha. A Ricker-type parent–progeny model suggested that peak production of age-1 alewives could occur over a broad range of spawning stock sizes, and the fit of the model was improved most by the addition of terms for spring water temperature and winter duration. With the addition of the two climate terms, the Ricker model indicated that when water was relatively warm in spring and the winter was relatively short, peak potential production of young was nine times higher than when water temperature and winters were average, and 73 times higher than when water was cold in spring and winters were long. Relative survival from age 1 to recruitment at age 2 was best described by a multiple linear regression with terms for adult abundance, TP, and predation. Mean recruitment of age-2 fish in the 1978–1998 year-classes predicted by using the two models in sequence was only about 20% greater than the observed mean recruitment. Model estimates fit the measured data exceptionally well for all but the largest four year-classes, which suggests that the models will facilitate improvement in estimates of trophic transfer due to alewives.

  14. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Railsback, Steven F; Harvey, Bret C

    2013-02-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can address feedbacks but does not provide foraging theory for unique individuals in variable environments. 'State- and prediction-based theory' (SPT) is a new approach that combines existing trade-off methods with routine updating: individuals regularly predict future food availability and risk from current conditions to optimize a fitness measure. SPT can reproduce a variety of realistic foraging behaviors and trait-mediated trophic interactions with feedbacks, even when the environment is unpredictable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan

    2012-01-01

    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP. PMID:22470515

  16. Trophic transfer of soil arsenate and associated toxic effects in a plant-aphid-parasitoid system

    Science.gov (United States)

    Lee, Y. S.; Wee, J.; Lee, M.; Hong, J.; Cho, K.

    2017-12-01

    Terrestrial toxic effects of soil arsenic were studied using a model system consisting of soil which artificially treated with arsenic, Capsicum annum,Myzus persicae and Aphidus colemani. We investigated the transfer of arsenic in a soil-plant-aphid system and toxic effect of elevated arsenic through a plant-aphid-parasitoid system. To remove the effect of poor plant growth on aphid performance, test concentrations which have a no effect on health plant growth were selected. Arsenic concentration of growth medium, plant tissues (root, stem, leaf) aphids were measured to observe the arsenic transfer. Correlation matrix was made with arsenic in growth medium which extracted with three extractants (aquaregia, 0.01 M CaCl2 and deionized water), arsenic in plant tissues and plant performance. Toxic effects of elevated arsenic concentrations on each species were investigated at population level. Studied plant performances were dry weight of each tissue, elongation of roots and stems, area of leaves, chlorophyll content of leaves, protein content of leaves and sugar content of leaves. Mean development time, fecundity and honeydew excretion of the aphids and host choice capacity and parasitism success of the parasitoids were examined. In addition, enzyme activities of the plants and the aphids against reactive oxygen species (ROS) induced by arsenic stress were also investigated. The results suggest that arsenic concentration in plant tissues and aphids were elevated with increased concentration of arsenic in soil. Decreased fecundity and honeydew excretion of aphids were observed and decreased eclosion rate of parasitoids were observed with increased arsenic treatment in growth medium. The results showed low concentration of arsenic in soil can transfer through food chain and can impact on higher trophic level species.

  17. Selection of passerine birds as bio-sentinel of persistent organic pollutants in terrestrial environment.

    Science.gov (United States)

    Mo, Ling; Zheng, Xiaobo; Sun, Yuxin; Yu, Lehuan; Luo, Xiaojun; Xu, Xiangrong; Qin, Xiaoquan; Gao, Yongli; Mai, Bixian

    2018-08-15

    A broad suite of persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and dichlorodiphenyltrichloroethane (DDT) and its metabolites, were analyzed in pectoral muscle of eight terrestrial passerine bird species from an extensive e-waste recycling site in South China. Concentrations of PCBs, PBDEs, and DDTs in bird samples ranged from 1260-279,000, 121-14,200, and 31-7910ng/g lipid weight, respectively. Insectivorous birds had significantly higher levels of PCBs, PBDEs, and DDTs than those in granivorous birds. Concentrations of POPs in resident insectivorous birds were significantly greater than those in migrant insectivorous birds. PCBs were the predominant pollutants in all bird species from the e-waste site, followed by PBDEs and DDTs, indicating that PCBs were mainly derived from e-wastes. The granivorous birds had higher proportions of hepta-CBs in total PCBs and higher proportions of octa- to deca-BDEs in total PBDEs compared with the insectivorous birds. The various dietary sources, migration behavior, and possible biotransformation were suspected as reasons of the distinct profiles of POPs in different bird species. The δ 15 N values were significantly and positively correlated with concentrations of POPs in resident insectivorous birds, but not in other passerine bird species, suggesting the influence of trophic levels on bioaccumulation of POPs in resident insectivorous birds. The resident insectivorous birds seem to be promising bio-sentinel of POPs in terrestrial environment around the e-waste sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Terrestrial spreading centers under Venus conditions - Evaluation of a crustal spreading model for Western Aphrodite Terra

    Science.gov (United States)

    Sotin, C.; Senske, D. A.; Head, J. W.; Parmentier, E. M.

    1989-01-01

    The model of Reid and Jackson (1981) for terrestrial spreading centers is applied to Venus conditions. On the basis of spreading rate, mantle temperature, and surface temperature, the model predicts both isostatic topography and crustal thickness. The model and Pioneer Venus altimetry and gravity data are used to test the hypothesis of Head and Crumpler (1987) that Western Aphrodite Terra is the location of crustal spreading on Venus. It is concluded that a spreading center model for Ovda Regio in Western Aphrodite Terra could account for the observed topography and line-of-sight gravity anomalies found in the Pioneer data.

  19. A High-Resolution Terrestrial Modeling System (TMS): A Demonstration in China

    Science.gov (United States)

    Duan, Q.; Dai, Y.; Zheng, X.; Ye, A.; Ji, D.; Chen, Z.

    2013-12-01

    This presentation describes a terrestrial modeling system (TMS) developed at Beijing Normal University. The TMS is designed to be driven by multi-sensor meteorological and land surface observations, including those from satellites and land based observing stations. The purposes of the TMS are (1) to provide a land surface parameterization scheme fully capable of being coupled with the Earth system models; (2) to provide a standalone platform for retrospective historical simulation and for forecasting of future land surface processes at different space and time scales; and (3) to provide a platform for studying human-Earth system interactions and for understanding climate change impacts. This system is built on capabilities among several groups at BNU, including the Common Land Model (CoLM) system, high-resolution atmospheric forcing data sets, high resolution land surface characteristics data sets, data assimilation and uncertainty analysis platforms, ensemble prediction platform, and high-performance computing facilities. This presentation intends to describe the system design and demonstrate the capabilities of TMS with results from a China-wide application.

  20. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.

    Science.gov (United States)

    Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping

    2017-11-01

    Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Terrestrial water fluxes dominated by transpiration.

    Science.gov (United States)

    Jasechko, Scott; Sharp, Zachary D; Gibson, John J; Birks, S Jean; Yi, Yi; Fawcett, Peter J

    2013-04-18

    Renewable fresh water over continents has input from precipitation and losses to the atmosphere through evaporation and transpiration. Global-scale estimates of transpiration from climate models are poorly constrained owing to large uncertainties in stomatal conductance and the lack of catchment-scale measurements required for model calibration, resulting in a range of predictions spanning 20 to 65 per cent of total terrestrial evapotranspiration (14,000 to 41,000 km(3) per year) (refs 1, 2, 3, 4, 5). Here we use the distinct isotope effects of transpiration and evaporation to show that transpiration is by far the largest water flux from Earth's continents, representing 80 to 90 per cent of terrestrial evapotranspiration. On the basis of our analysis of a global data set of large lakes and rivers, we conclude that transpiration recycles 62,000 ± 8,000 km(3) of water per year to the atmosphere, using half of all solar energy absorbed by land surfaces in the process. We also calculate CO2 uptake by terrestrial vegetation by connecting transpiration losses to carbon assimilation using water-use efficiency ratios of plants, and show the global gross primary productivity to be 129 ± 32 gigatonnes of carbon per year, which agrees, within the uncertainty, with previous estimates. The dominance of transpiration water fluxes in continental evapotranspiration suggests that, from the point of view of water resource forecasting, climate model development should prioritize improvements in simulations of biological fluxes rather than physical (evaporation) fluxes.

  2. Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: Case studies of two polar seabirds

    International Nuclear Information System (INIS)

    Brasso, Rebecka L.; Polito, Michael J.

    2013-01-01

    Highlights: • Ecosystem-specific baseline and consumer δ 15 N paired for population-specific trophic level. • Source of population-level variation in mercury exposure identified in two seabirds. • High mercury and trophic position suggests trophic driver of population-level variation. • Trophic similarities, differing mercury reveals geographic differences in bioavailability. -- Abstract: The incorporation of quantitative trophic level analysis in ecotoxicological studies provides explanatory power to identify the factors, trophic or environmental, driving population-level variation in mercury exposure at large geographic scales. In the Antarctic marine ecosystem, mercury concentrations and stable isotope values in Adélie penguins (Pygoscelis adeliae) were compared between the Antarctic Peninsula and the Ross Sea. Correcting tissue δ 15 N values for baseline δ 15 N values revealed population-level differences in trophic position which contributes to differences in mercury. Data from Thick-billed murres (Uria lomvia) were synthesized from published values from Baffin Bay and Svalbard to demonstrate the utility of baseline δ 15 N values in identifying differences in environmental mercury exposure independent of diet. Here, we demonstrate the importance of calculating population-specific trophic level data to uncover the source of variation in mercury concentrations between geographically distinct populations of marine predators

  3. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Biome-BGC is a computer program that estimates fluxes and storage of energy, water, carbon, and nitrogen for the vegetation and soil components of terrestrial...

  4. Review of the ecological parameters of radionuclide turnover in vertebrate food chains

    International Nuclear Information System (INIS)

    Kitchings, T.; DiGregorio, D.; Van Voris, P.

    1976-01-01

    Ecological studies of radionuclides in the environment have a long tradition in developing the capability to identify and predict movement and concentration of nuclides in agricultural food chains leading to man. Food chain pathways and transfer coefficients for the nonagricultural portions of natural and managed ecosystems characteristic of affected habitats adjacent to nuclear facilities have not been adequately characterized to establish reliable models for radionuclide releases. This information is necessary in order to assess the impact that such installations will have on the biota of natural ecosystems. Since food chains are the major processes transferring elements from one trophic level to another in terrestrial ecosystems, information is needed on the (a) food-chain transfer pathways, (b) bioconcentration by each trophic component and (c) turnover rates by receptor organisms. These data are prerequisite inputs for food-chain transport models and can be correlated with species characteristics (e.g., body weight and feeding habits), to provide indices for predictive calculations. Application of these models for radionuclide transfer can aid in the assessment of radioactive releases from nuclear reactor facilities to terrestrial nonagricultural food chains

  5. Influence of rainfall on the trophic status of a brazilian semiarid reservoir - doi: 10.4025/actascibiolsci.v35i4.18261

    Directory of Open Access Journals (Sweden)

    Francisco Ítalo Barbosa Chaves

    2013-07-01

    Full Text Available This study evaluated the trophic conditions of the reservoir located in the urban perimeter of the town General Sampaio, semiarid region of the Ceará State, Brazil and its relationship with seasonal variation in rainfall between 2010 and 2011. It was obtained data for Secchi disk transparency, total phosphorus, and chlorophyll a to calculate the Trophic State Index (TSI, as well as rainfall data. The Trophic State Index (TSI proposed by Carlson (1977 and modified by Toledo Junior (1990 was used to test the influence of the seasonal variation in rainfall on hydrological variables and on trophic conditions of the reservoir in 2010 and 2011. There was seasonal variability in variables analyzed between climatic periods (rainy and dry and trophic conditions determined through the trophic index indicated conditions ranging from oligotrophic to eutrophic during the two years analyzed in this reservoir. Under these circumstances, one may conclude that the trophic status is related to seasonal fluctuations in the hydrology of the system controlled by rainfall, which is a common feature of semiarid regions.

  6. Trophic relationships of hake ( Merluccius capensis and M ...

    African Journals Online (AJOL)

    The trophic relationships of two hake species (Merluccius capensis and M. paradoxus) and three shark species (Centrophorus squamosus, Deania calcea and D. profundorum) were investigated using nitrogen and carbon stable isotope signatures (δ15N and δ13C) of their muscle tissues. The sharks were more enriched in ...

  7. Direct determination of fatty acids in fish tissues: quantifying top predator trophic connections.

    Science.gov (United States)

    Parrish, Christopher C; Nichols, Peter D; Pethybridge, Heidi; Young, Jock W

    2015-01-01

    Fatty acids are a valuable tool in ecological studies because of the large number of unique structures synthesized. They provide versatile signatures that are being increasingly employed to delineate the transfer of dietary material through marine and terrestrial food webs. The standard procedure for determining fatty acids generally involves lipid extraction followed by methanolysis to produce methyl esters for analysis by gas chromatography. By directly transmethylating ~50 mg wet samples and adding an internal standard it was possible to greatly simplify the analytical methodology to enable rapid throughput of 20-40 fish tissue fatty acid analyses a day including instrumental analysis. This method was verified against the more traditional lipid methods using albacore tuna and great white shark muscle and liver samples, and it was shown to provide an estimate of sample dry mass, total lipid content, and a condition index. When large fatty acid data sets are generated in this way, multidimensional scaling, analysis of similarities, and similarity of percentages analysis can be used to define trophic connections among samples and to quantify them. These routines were used on albacore and skipjack tuna fatty acid data obtained by direct methylation coupled with literature values for krill. There were clear differences in fatty acid profiles among the species as well as spatial differences among albacore tuna sampled from different locations.

  8. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes?

    Science.gov (United States)

    Jones, Stuart E.; Solomon, Christopher T.; Weidel, Brian C.

    2012-01-01

    Cross-ecosystem fluxes are ubiquitous in food webs and are generally thought of as subsidies to consumer populations. Yet external or allochthonous inputs may in fact have complex and habitat-specific effects on recipient ecosystems. In lakes, terrestrial inputs of organic carbon contribute to basal resource availability, but can also reduce resource availability via shading effects on phytoplankton and periphyton. Terrestrial inputs might therefore either subsidise or subtract from consumer production. We developed and parameterised a simple model to explore this idea. The model estimates basal resource supply and consumer production given lake-level characteristics including total phosphorus (TP) and dissolved organic carbon (DOC) concentration, and consumer-level characteristics including resource preferences and growth efficiencies. Terrestrial inputs diminished primary production and total basal resource supply at the whole-lake level, except in ultra-oligotrophic systems. However, this system-level generalisation masked complex habitat-specific effects. In the pelagic zone, dissolved and particulate terrestrial carbon inputs were available to zooplankton via several food web pathways. Consequently, zooplankton production usually increased with terrestrial inputs, even as total whole-lake resource availability decreased. In contrast, in the benthic zone the dominant, dissolved portion of the terrestrial carbon load had predominantly negative effects on resource availability via shading of periphyton. Consequently, terrestrial inputs always decreased zoobenthic production except under extreme and unrealistic parameterisations of the model. Appreciating the complex and habitat-specific effects of allochthonous inputs may be essential for resolving the effects of cross-habitat fluxes on consumers in lakes and other food webs.

  9. Modelling exposure of oceanic higher trophic-level consumers to polychlorinated biphenyls: pollution 'hotspots' in relation to mass mortality events of marine mammals.

    Science.gov (United States)

    Handoh, Itsuki C; Kawai, Toru

    2014-08-30

    Marine mammals in the past mass mortality events may have been susceptible to infection because their immune systems were suppressed through the bioaccumulation of environmental pollutants such as polychlorinated biphenyls (PCBs). We compiled mortality event data sets of 33 marine mammal species, and employed a Finely-Advanced Transboundary Environmental model (FATE) to model the exposure of the global fish community to PCB congeners, in order to define critical exposure levels (CELs) of PCBs above which mass mortality events are likely to occur. Our modelling approach enabled us to describe the mass mortality events in the context of exposure of higher-trophic consumers to PCBs and to identify marine pollution 'hotspots' such as the Mediterranean Sea and north-western European coasts. We demonstrated that the CELs can be applied to quantify a chemical pollution Planetary Boundary, under which a safe operating space for marine mammals and humanity can exist. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    Science.gov (United States)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  11. Changes of global terrestrial carbon budget and major drivers in recent 30 years simulated using the remote sensing driven BEPS model

    Science.gov (United States)

    Ju, W.; Chen, J.; Liu, R.; Liu, Y.

    2013-12-01

    The process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with spatially distributed leaf area index (LAI), land cover, soil, and climate data to simulate the carbon budget of global terrestrial ecosystems during the period from 1981 to 2008. The BEPS model was first calibrated and validated using gross primary productivity (GPP), net primary productivity (NPP), and net ecosystem productivity (NEP) measured in different ecosystems across the word. Then, four global simulations were conducted at daily time steps and a spatial resolution of 8 km to quantify the global terrestrial carbon budget and to identify the relative contributions of changes in climate, atmospheric CO2 concentration, and LAI to the global terrestrial carbon sink. The long term LAI data used to drive the model was generated through fusing Moderate Resolution Imaging Spectroradiometer (MODIS) and historical Advanced Very High Resolution Radiometer (AVHRR) data pixel by pixel. The meteorological fields were interpolated from the 0.5° global daily meteorological dataset produced by the land surface hydrological research group at Princeton University. The results show that the BEPS model was able to simulate carbon fluxes in different ecosystems. Simulated GPP, NPP, and NEP values and their temporal trends exhibited distinguishable spatial patterns. During the period from 1981 to 2008, global terrestrial ecosystems acted as a carbon sink. The averaged global totals of GPP NPP, and NEP were 122.70 Pg C yr-1, 56.89 Pg C yr-1, and 2.76 Pg C yr-1, respectively. The global totals of GPP and NPP increased greatly, at rates of 0.43 Pg C yr-2 (R2=0.728) and 0.26 Pg C yr-2 (R2=0.709), respectively. Global total NEP did not show an apparent increasing trend (R2= 0.036), averaged 2.26 Pg C yr-1, 3.21 Pg C yr-1, and 2.72 Pg C yr-1 for the periods from 1981 to 1989, from 1990 to 1999, and from 2000 to 2008, respectively. The magnitude and temporal trend of global

  12. Analyzing the trophic link between the mesopelagic microbial loop and zooplankton from observed depth profiles of bacteria and protozoa

    Directory of Open Access Journals (Sweden)

    T. Tanaka

    2005-01-01

    Full Text Available It is widely recognized that organic carbon exported to the ocean aphotic layer is significantly consumed by heterotrophic organisms such as bacteria and zooplankton in the mesopelagic layer. However, very little is known for the trophic link between bacteria and zooplankton or the function of the microbial loop in this layer. In the northwestern Mediterranean, recent studies have shown that viruses, bacteria, heterotrophic nanoflagellates, and ciliates distribute down to 2000 m with group-specific depth-dependent decreases, and that bacterial production decreases with depth down to 1000 m. Here we show that such data can be analyzed using a simple steady-state food chain model to quantify the carbon flow from bacteria to zooplankton over the mesopelagic layer. The model indicates that bacterial mortality by viruses is similar to or 1.5 times greater than that by heterotrophic nanoflagellates, and that heterotrophic nanoflagellates transfer little of bacterial production to higher trophic levels.

  13. Modeling the effects of dispersal on predicted contemporary and future fisher (Martes pennanti) distribution in the U.S

    Science.gov (United States)

    Lucretia Olson; M. Schwartz

    2013-01-01

    Many species at high trophic levels are predicted to be impacted by shifts in habitat associated with climate change. While temperate coniferous forests are predicted to be one of the least affected ecosystems, the impact of shifting habitat on terrestrial carnivores that live within these ecosystems may depend on the dispersal rates of the species and the patchiness...

  14. Magnetic reconnection in the terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    An overview is given of quantitative comparisons between measured phenomena in the terrestrial magnetosphere thought to be associated with magnetic reconnection, and related theoretical predictions based on Petschek's simple model. Although such a comparison cannot be comprehensive because of the extended nature of the process and the relatively few in situ multipoint measurements made to date, the agreement is impressive where comparisons have been possible. This result leaves little doubt that magnetic reconnection does indeed occur in the terrestrial magnetosphere. The maximum reconnection rate, expressed in terms of the inflow Mach number, M/sub A/, is measured to be M/sub A/ = 0.2 +- 0.1

  15. Macrophytes shape trophic niche variation among generalist fishes.

    Directory of Open Access Journals (Sweden)

    Ivana Vejříková

    Full Text Available Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N and carbon (δ13C isotopic mixing models, perch (Perca fluviatilis L. and rudd (Scardinius erythrophthalmus (L. showed larger individual variation (i.e., variance in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.. Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence

  16. Macrophytes shape trophic niche variation among generalist fishes

    Science.gov (United States)

    Vejřík, Lukáš; Šmejkal, Marek; Čech, Martin; Sajdlová, Zuzana; Frouzová, Jaroslava; Kiljunen, Mikko; Peterka, Jiří

    2017-01-01

    Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall

  17. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs

    International Nuclear Information System (INIS)

    France, R.L.; Peters, R.H.

    1997-01-01

    Data from 35 published studies were collated to examine patterns in the trophic enrichment of 13 C of consumers. Because both δ 13 C and δ 14 N vary systematically across ecosystems, it was necessary to standardize for such differences before combining data from numerous sources. Relationships of these measures of ecosystem-standardized δ 13 C to ecosystem-standardized trophic position (Δδ 15 N) for freshwater, estuarine, coastal, and open-ocean and for all aquatic ecosystems yielded regression equations of low predictive capability (average of 20% explained variance in δ 13 C). However, differences were observed in the slopes between δ 13 C and standardized trophic position when data were examined study-specifically: the average trophic fractionation of 13 C was found to increase from +0.2micron for freshwater to +0.5micron for estuarine to +0.8micron for coastal, and to +1.1micron for open-ocean food webs. This ecosystem-specific gradient in 13 C enrichment for consumers supports previous findings of a similar continuum existing for zooplankton - particulate organic matter differences in δ 13 C. Possible mechanisms to explain these ecosystem-specific patterns in 13 C enrichment may be related to the relative importance of detritus, heterotrophic respiration, partial reliance on alternative food sources, and lipid influences in the different ecosystems. (author)

  18. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5 ... water cycles and predict the effect of climate change on terrestrial ecosystems, it is ... Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri .... Influence of nutrient input on the trophic state of a tropical brackish water lagoon.

  20. Trophic relationships between macroinvertebrates and fish in a pampean lowland stream (Argentina

    Directory of Open Access Journals (Sweden)

    María V. López van Oosterom

    2013-03-01

    Full Text Available The diet and trophic relationships between the macroinvertebrates Phyllogomphoides joaquini Rodrigues Capítulo, 1992 and Coenagrionidae (Odonata, Chironomidae (Diptera, Diplodon delodontus (Lamarck, 1919 (Bivalvia: Hyriidae, and Pomacea canaliculata (Lamarck, 1822 (Gastropoda: Ampulariidae and the fishes Pimelodella laticeps Eigenmann, 1917 (Heptapteridae and Bryconamericus iheringii (Boulenger, 1887 (Characidae in a temperate lowland lotic system in Argentina were assessed on the basis of gut contents and stable-isotope analyses. The feeding strategies were analyzed by the AMUNDSEN method. Relative food items contribution for the taxa studied indicated a generalist-type trophic strategy. In macroinvertebrates, in general, the values of stable isotope confirmed the result of the analysis of gut contents. With the fish, stable-isotope analysis demonstrated that both species are predators, although B. iheringii exhibited a more omnivorous behaviour. These feeding studies allowed us to determine the trophic relationships among taxa studied. Detritus and diatoms were a principal source of food for all the macroinvertebrates studied. In La Choza stream the particulate organic matter is a major no limited food resource, has a significant influence upon the community.

  1. Coastal niches for terrestrial predators: a stable isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Mellbrand, K.; Hamback, P.A., E-mail: peter.hamback@botan.su.se [Stockholm Univ., Dept. of Botany, Stockholm (Sweden)

    2010-12-15

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  2. Coastal niches for terrestrial predators: a stable isotope study

    International Nuclear Information System (INIS)

    Mellbrand, K.; Hamback, P.A.

    2010-01-01

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  3. Phenological sensitivity to climate across taxa and trophic levels

    DEFF Research Database (Denmark)

    Thackeray, Stephen J.; Henrys, Peter; Hemming, Deborah

    2016-01-01

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate...

  4. Assessing Trophic Position and Mercury Accumulation in Sanpping Turtles

    Science.gov (United States)

    This study determined the trophic position and the total mercury concentrations of snapping turtles (Chelydra serpentina) captured from 26 freshwater sites in Rhode Island. Turtles were captured in baited wire cages, and a non-lethal sampling technique was used in which tips of ...

  5. Stable Isotopes from Museum Specimens May Provide Evidence of Long-Term Change in the Trophic Ecology of a Migratory Aerial Insectivore

    Directory of Open Access Journals (Sweden)

    Philina A. English

    2018-02-01

    Full Text Available Identifying the mechanisms of ecological change is challenging in the absence of long-term data, but stable isotope ratios of museum specimen tissues may provide a record of diet and habitat change through time. Aerial insectivores are experiencing the steepest population declines of any avian guild in North America and one hypothesis for these population declines is a reduction in the availability of prey. If reduced prey availability is due to an overall reduction in insect abundance, we might also expect populations of higher trophic level insects to have declined most due to their greater sensitivity to a variety of disturbance types. Because nitrogen isotope ratios (δ15N tend to increase with trophic-level, while δ13C generally increases with agricultural intensification, we used δ15N and δ13C values of bird tissues grown in winter (claw and during breeding (feathers from museum specimens spanning 1880–2005, and contemporary samples from breeding birds (2011–2013 to test for diet change in a migratory nocturnal aerial insectivore, Eastern Whip-poor-will (Antrostomus vociferus breeding in Ontario, Canada. To test if environmental baselines have changed as a result of synthetic N fertilizer use, habitat conversion or climate, we also sampled δ15N values of three potential prey species collected from across the same geographic region and time period. Over the past 100 years, we found a significant decline in δ15N in tissues grown on both the breeding and wintering grounds. Prey species did not show a corresponding temporal trend in δ15N values, but our power to detect such a trend was limited due to higher sample variance. Amongst contemporary bird samples, δ15N values did not vary with sex or breeding site, but nestlings had lower δ15N values than adults. These results are consistent with the hypothesis that aerial insectivore populations are declining due to changes in abundance of higher trophic-level prey, but we caution that

  6. Adaptation of benthic invertebrates to food sources along marine-terrestrial boundaries as indicated by carbon and nitrogen stable isotopes

    Science.gov (United States)

    Lange, G.; Haynert, K.; Dinter, T.; Scheu, S.; Kröncke, I.

    2018-01-01

    Frequent environmental changes and abiotic gradients of the Wadden Sea require appropriate adaptations of the local organisms and make it suitable for investigations on functional structure of macrozoobenthic communities from marine to terrestrial boundaries. To investigate community patterns and food use of the macrozoobenthos, a transect of 11 stations was sampled for species number, abundance and stable isotope values (δ13C and δ15N) of macrozoobenthos and for stable isotope values of potential food resources. The transect was located in the back-barrier system of the island of Spiekeroog (southern North Sea, Germany). Our results show that surface and subsurface deposit feeders, such as Peringia ulvae and different oligochaete species, dominated the community, which was poor in species, while species present at the transect stations reached high abundance. The only exception was the upper salt marsh with low abundances but higher species richness because of the presence of specialized semi-terrestrial and terrestrial taxa. The macrozoobenthos relied predominantly on marine resources irrespective of the locality in the intertidal zone, although δ13C values of the consumers decreased from - 14.1 ± 1.6‰ (tidal flats) to - 21.5 ± 2.4‰ (salt marsh). However, the ubiquitous polychaete Hediste diversicolor showed a δ15N enrichment of 2.8‰ (an increase of about one trophic level) from bare sediments to the first vegetated transect station, presumably due to switching from suspension or deposit feeding to predation on smaller invertebrates. Hence, we conclude that changes in feeding mode represent an important mechanism of adaptation to different Wadden Sea habitats.

  7. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N; Schwalm, Christopher R; Michalak, Anna M; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-01

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO 2 ) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901-2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10 15  g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr -1 with a median value of 51 Pg C yr -1 during 2001-2010. The largest uncertainty in SOC stocks exists in the 40-65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901-2010 ranges from -70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO 2 and nitrogen deposition over intact ecosystems increased SOC stocks-even though the responses varied

  8. Trophic level stability-inducing effects of predaceous early juvenile fish in an estuarine mesocosm study.

    Directory of Open Access Journals (Sweden)

    Ryan J Wasserman

    Full Text Available Classically, estuarine planktonic research has focussed largely on the physico-chemical drivers of community assemblages leaving a paucity of information on important biological interactions.Within the context of trophic cascades, various treatments using in situ mesocosms were established in a closed estuary to highlight the importance of predation in stabilizing estuarine plankton abundances. Through either the removal (filtration or addition of certain planktonic groups, five different trophic systems were established. These treatments contained varied numbers of trophic levels and thus different "predators" at the top of the food chain. The abundances of zooplankton (copepod and polychaete, ciliate, micro-flagellate, nano-flagellate and bacteria were investigated in each treatment, over time. The reference treatment containing apex zooplanktivores (early juvenile mullet and plankton at natural densities mimicked a natural, stable state of an estuary. Proportional variability (PV and coefficient of variation (CV of temporal abundances were calculated for each taxon and showed that apex predators in this experimental ecosystem, when compared to the other systems, induced stability. The presence of these predators therefore had consequences for multiple trophic levels, consistent with trophic cascade theory.PV and CV proved useful indices for comparing stability. Apex predators exerted a stabilizing pressure through feeding on copepods and polychaetes which cascaded through the ciliates, micro-flagellates, nano-flagellates and bacteria. When compared with treatments without apex predators, the role of predation in structuring planktonic communities in closed estuaries was highlighted.

  9. Dilution of 210Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment-water interactions

    International Nuclear Information System (INIS)

    Binford, M.W.; Brenner, M.

    1986-01-01

    Lake sediments reflect conditions in the water column and can be used for rapid, integrative measurements of limnological variables. Examination of 210 Pb-dated cores from 12 Florida lakes of widely differing trophic state (expressed as Carlson's trophic state index: TSI) shows that net accumulation rate of organic matter is related to primary productivity in the water column. In 26 other lakes the activity of unsupported 210 Pb g -1 organic matter in surficial sediments is inversely related to trophic state and, therefore, to organic accumulation rate. From this observation, the authors develop a new method that uses fallout 210 Pb as a dilution tracer to calculate net sedimentary accumulation rates of any material in surface mud. They demonstrate strong relationships between net loss rate of biologically important materials (C, N, P, and pigments) and their respective water concentrations (expressed as TSI). Multiple regression models incorporating net sediment accumulation rates of all four variables explain up to 70% of the lake-to-lake variation of TSI. The 210 Pb-dilution method has application for studies for material cycling, paleolimnology, and sediment accumulation processes

  10. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)

    NARCIS (Netherlands)

    Huerta Lwanga, Esperanza; Gertsen, H.F.; Gooren, H.; Peters, P.D.; Salanki, T.E.; Ploeg, van der M.J.C.; Besseling, E.; Koelmans, A.A.; Geissen, V.

    2016-01-01

    Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, <150 μm)

  11. Sensitivity analysis of the terrestrial food chain model FOOD III

    International Nuclear Information System (INIS)

    Zach, Reto.

    1980-10-01

    As a first step in constructing a terrestrial food chain model suitable for long-term waste management situations, a numerical sensitivity analysis of FOOD III was carried out to identify important model parameters. The analysis involved 42 radionuclides, four pathways, 14 food types, 93 parameters and three percentages of parameter variation. We also investigated the importance of radionuclides, pathways and food types. The analysis involved a simple contamination model to render results from individual pathways comparable. The analysis showed that radionuclides vary greatly in their dose contribution to each of the four pathways, but relative contributions to each pathway are very similar. Man's and animals' drinking water pathways are much more important than the leaf and root pathways. However, this result depends on the contamination model used. All the pathways contain unimportant food types. Considering the number of parameters involved, FOOD III has too many different food types. Many of the parameters of the leaf and root pathway are important. However, this is true for only a few of the parameters of animals' drinking water pathway, and for neither of the two parameters of mans' drinking water pathway. The radiological decay constant increases the variability of these results. The dose factor is consistently the most important variable, and it explains most of the variability of radionuclide doses within pathways. Consideration of the variability of dose factors is important in contemporary as well as long-term waste management assessment models, if realistic estimates are to be made. (auth)

  12. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    Science.gov (United States)

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  13. Trophic ecology and food consumption of fishes in a hypersaline tropical lagoon.

    Science.gov (United States)

    Almeida-Silva, P H; Tubino, R A; Zambrano, L C; Hunder, D A; Garritano, S R; Monteiro-Neto, C

    2015-06-01

    This study evaluated the trophic ecology (diet composition, trophic strategy, similarities and overlap between species, feeding period and food consumption) of six benthivorous fish species in Araruama Lagoon, the largest hypersaline tropical lagoon on the east coast of South America, with an area of 210 km(2) and an average salinity of 52. The burrfish Chilomycterus spinosus fed on Anomalocardia flexuosa shell deposits, ingesting associated fauna. The caitipa mojarra Diapterus rhombeus differed from all other species, having not only the highest proportions of algae and Nematoda, but also feeding on polychaete tentacles. The two mojarras Eucinostomus spp. showed similar trophic strategies, feeding mostly on Polychaeta. The corocoro grunt Orthopristis ruber also fed mainly on Polychaeta, but differed from Eucinostomus spp. in secondary items. The whitemouth croacker Micropogonias furnieri fed mainly on small Crustacea at night, showing a high number of secondary prey items with low frequencies and high prey-specific abundance. The daily food consumption (g food g(-1) fish mass) for Eucinostomus argenteus was 0·012 and was 0·031 and 0·027 for M. furnieri in two different sampling events. The diet similarities between Araruama Lagoon and other brackish and marine environments indicate that hypersalinity is not a predominant factor shaping the trophic ecology of fishes in this lagoon. The stability of hypersaline conditions, without a pronounced gradient, may explain the presence of several euryhaline fishes and invertebrates well adapted to this condition, resulting in a complex food web. © 2015 The Fisheries Society of the British Isles.

  14. Analytical, Experimental, and Modelling Studies of Lunar and Terrestrial Rocks

    Science.gov (United States)

    Haskin, Larry A.

    1997-01-01

    The goal of our research has been to understand the paths and the processes of planetary evolution that produced planetary surface materials as we find them. Most of our work has been on lunar materials and processes. We have done studies that obtain geological knowledge from detailed examination of regolith materials and we have reported implications for future sample-collecting and on-surface robotic sensing missions. Our approach has been to study a suite of materials that we have chosen in order to answer specific geologic questions. We continue this work under NAG5-4172. The foundation of our work has been the study of materials with precise chemical and petrographic analyses, emphasizing analysis for trace chemical elements. We have used quantitative models as tests to account for the chemical compositions and mineralogical properties of the materials in terms of regolith processes and igneous processes. We have done experiments as needed to provide values for geochemical parameters used in the models. Our models take explicitly into account the physical as well as the chemical processes that produced or modified the materials. Our approach to planetary geoscience owes much to our experience in terrestrial geoscience, where samples can be collected in field context and sampling sites revisited if necessary. Through studies of terrestrial analog materials, we have tested our ideas about the origins of lunar materials. We have been mainly concerned with the materials of the lunar highland regolith, their properties, their modes of origin, their provenance, and how to extrapolate from their characteristics to learn about the origin and evolution of the Moon's early igneous crust. From this work a modified model for the Moon's structure and evolution is emerging, one of globally asymmetric differentiation of the crust and mantle to produce a crust consisting mainly of ferroan and magnesian igneous rocks containing on average 70-80% plagioclase, with a large

  15. Diet and trophic niche of Lithobates catesbeianus (Amphibia: Anura

    Directory of Open Access Journals (Sweden)

    Peterson T. Leivas

    2012-10-01

    Full Text Available Lithobates catesbeianus (Shaw, 1802 is an invasive anuran introduced in Brazil that is associated with the displacement and the decline of populations of native species worldwide. There is evidence that biological invasions are facilitated by certain attributes of the invading species, for instance niche breath, and that invasive species have a broader ecological niche with respect to native ones. We designed a study to ascertain the temporal, ontogenetic, and sex differences in the niche dynamics of the American bullfrog. We sampled monthly from June 2008 to May 2009 in the state of Paraná, southern Brazil. For each individual, we gathered biometric and stomach content data. We then estimated the niche breath of the juveniles and adults, and compared it between the sexes. A total of 104 females and 77 males were sampled. Lithobates catesbeianus has a generalist diet, preying upon invertebrates and vertebrates. Even though the diet of the studied population varied seasonally, it did not differ between the sexes nor did it respond to biometric variables. Niche breadth was more restricted in the winter than in the autumn. The trophic niche of juveniles and adults did not overlap much when compared with the trophic niche overlap between males and females. Adult males and females had a considerable niche overlap, but females had a broader trophic niche than males in the winter and in the spring. These niche characteristics point to an opportunistic predation strategy that may have facilitated the process of invasion and establishment of this species in the study area.

  16. Short Communication: Growth of seaweed Eucheuma cottonii in multi trophic sea farming systems at Gerupuk Bay, Central Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    SUKIMAN

    2014-05-01

    Full Text Available Sukiman, Faturrahman, Rohyani IS, Ahyadi H. 2014. Growth of seaweed Eucheuma cottonii in multi trophic sea farming systems at Gerupuk Bay, Central Lombok, Indonesia. Nusantara Bioscience 6: 82-85. Eucheuma cottonii is a seaweed commodity that has a high economic value because it contains compounds used as raw materials for industries. Various methods of seaweed farming have been developed, one of which is a system of cultivation Multi Trophic Sea Farming. This study aimed to analyze the growth of E. cottonii by observing the production of biomass in four trophic combinations in the system Multi Trophic Sea Farming. The study was conducted in the area of the marine aquaculture Gerupuk bay, Central Lombok, Indonesia. Experiments were performed on four plots cages with trophic combination treatment as follows: K1 (E. cottonii-lobster-abalone, K2 (E. cottonii-abalone-red carp, K3 (E. cottonii-abalone-grouper, and K4 (E. cottonii-abalone-pomfret fish. Seedling of E. cottonii weighing 50 g was tied to a rope and placed at a depth of 5 cm, 50 cm, 100 cm and 150 cm. Measurement of biomass production was done every ten days until the thirtieth day. The highest biomass production of E. cottonii was obtained in K3 trophic combination (E. cottonii-abalone-grouper fish with a depth of seedlings of 5 cm. The combination of K3 trophic is recommended for cultivation of seaweed in the MTSF system.

  17. Laboratory and field assessment of uranium trophic transfer efficiency in the crayfish Orconectes limosus fed the bivalve C. fluminea

    International Nuclear Information System (INIS)

    Simon, Olivier; Garnier-Laplace, Jacqueline

    2005-01-01

    At present, ecotoxicological information regarding the impact of natural uranium (U) on freshwater ecosystems via the trophic contamination route is scarce. We generated an experimental trophic food chain involving the prey species, Corbicula fluminea, and a predator, Orconectes limosus, for a 10-day and a 30-day feeding periods (food ration: one whole soft body/day/crayfish). We studied the efficiency of U trophic transfer and the distribution of U in the predator. During the test, we varied the quantity of dietary U (from beforehand contaminated bivalves at concentrations ranging from 0.9 ± 0.1 to 20.2 ± 9 μg/g fw provided to each crayfish over the 10 days) applying a daily feeding rate equal to 3.9 ± 0.8% fw. The efficiency of U trophic transfer from clams to crayfish varied between 1 and 13% depending on the prey exposure modalities. Accumulation of U was observed in the digestive gland but also in gills, in the muscle, and in the molt of the crayfish after trophic exposure treatments. Under high-level exposure conditions, the digestive gland was the main target-organ, however a significant accumulation was also observed in the stomach. With regard to low levels of trophic exposure, accumulation of U in gills, in the stomach, and in the digestive gland was of the same order of magnitude. Longer exposure period which incorporated a crayfish molt, resulted in a decrease of trophic transfer ratio and a modified U tissue distribution

  18. Unrevealing Parasitic Trophic Interactions—A Molecular Approach for Fluid-Feeding Fishes

    Directory of Open Access Journals (Sweden)

    Karine O. Bonato

    2018-03-01

    Full Text Available Fish diets have been traditionally studied through the direct visual identification of food items found in their stomachs. Stomach contents of Vandeliinae and Stegophilinae (family Trichomycteridae parasite catfishes, however, cannot be identified by usual optical methods due to their mucophagic, lepidophagic, or hematophagic diets, in such a way that the trophic interactions and the dynamics of food webs in aquatic systems involving these catfishes are mostly unknown. The knowledge about trophic interactions, including difficult relation between parasites and hosts, are crucial to understand the whole working of food webs. In this way, molecular markers can be useful to determine the truly hosts of these catfishes, proving a preference in their feeding behavior for specific organisms and not a generalist. Sequences of cytochrome oxidase subunit 1 (COI were successfully extracted and amplified from mucus or scales found in the stomach contents of two species of stegophilines, Homodiaetus anisitsi, and Pseudostegophilus maculatus, to identify the host species. The two species were found to be obligatory mucus-feeders and occasionally lepidophagic. Selection of host species is associated to host behavior, being constituted mainly by substrate-sifting benthivores. Characiformes are preferred hosts, but host choice depends on what characiform species are available in their environments, usually corresponding to the most abundant species. This is the first time that host species of parasitic fishes bearing mucophagous habits are identified, and demonstrates the effectiveness of the extraction and amplification of mitochondrial DNA from the ingested mucus in gut contents. The molecular markers effectively allowed determine parasite preferences and helps in better understanding the food web and trophic interaction on which fish species are involved. Despite, the methodology applied here can be used for an infinitive of organisms improving ecological

  19. Fatty acid biomarkers: validation of food web and trophic markers using C-13-labelled fatty acids in juvenile sandeel ( Ammodytes tobianus )

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; St. John, Michael

    2004-01-01

    A key issue in marine science is parameterizing trophic interactions in marine food webs, thereby developing an understanding of the importance of top-down and bottom-up controls on populations of key trophic players. This study validates the utility of fatty acid food web and trophic markers usi......), respectively. Lack of temporal trends in nonlabelled fatty acids confirmed the conservative incorporation of labelled fatty acids by the fish.......A key issue in marine science is parameterizing trophic interactions in marine food webs, thereby developing an understanding of the importance of top-down and bottom-up controls on populations of key trophic players. This study validates the utility of fatty acid food web and trophic markers using...... C-13-labelled fatty acids to verify the conservative incorporation of fatty acid tracers by juvenile sandeel (Ammodytes tobianus) and assess their uptake, clearance, and metabolic turnover rates. Juvenile sandeel were fed for 16 days in the laboratory on a formulated diet enriched in (13)C16...

  20. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches

    Directory of Open Access Journals (Sweden)

    Cooper W James

    2009-01-01

    Full Text Available Abstract Background Damselfishes (Perciformes, Pomacentridae are a major component of coral reef communities, and the functional diversity of their trophic anatomy is an important constituent of the ecological morphology of these systems. Using shape analyses, biomechanical modelling, and phylogenetically based comparative methods, we examined the anatomy of damselfish feeding among all genera and trophic groups. Coordinate based shape analyses of anatomical landmarks were used to describe patterns of morphological diversity and determine positions of functional groups in a skull morphospace. These landmarks define the lever and linkage structures of the damselfish feeding system, and biomechanical analyses of this data were performed using the software program JawsModel4 in order to calculate the simple mechanical advantage (MA employed by different skull elements during feeding, and to compute kinematic transmission coefficients (KT that describe the efficiency with which angular motion is transferred through the complex linkages of damselfish skulls. Results Our results indicate that pomacentrid planktivores are significantly different from other damselfishes, that biting MA values and protrusion KT ratios are correlated with pomacentrid trophic groups more tightly than KT scores associated with maxillary rotation and gape angle, and that the MAs employed by their three biting muscles have evolved independently. Most of the biomechanical parameters examined have experienced low levels of phylogenetic constraint, which suggests that they have evolved quickly. Conclusion Joint morphological and biomechanical analyses of the same anatomical data provided two reciprocally illuminating arrays of information. Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding. Our

  1. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches.

    Science.gov (United States)

    Cooper, W James; Westneat, Mark W

    2009-01-30

    Damselfishes (Perciformes, Pomacentridae) are a major component of coral reef communities, and the functional diversity of their trophic anatomy is an important constituent of the ecological morphology of these systems. Using shape analyses, biomechanical modelling, and phylogenetically based comparative methods, we examined the anatomy of damselfish feeding among all genera and trophic groups. Coordinate based shape analyses of anatomical landmarks were used to describe patterns of morphological diversity and determine positions of functional groups in a skull morphospace. These landmarks define the lever and linkage structures of the damselfish feeding system, and biomechanical analyses of this data were performed using the software program JawsModel4 in order to calculate the simple mechanical advantage (MA) employed by different skull elements during feeding, and to compute kinematic transmission coefficients (KT) that describe the efficiency with which angular motion is transferred through the complex linkages of damselfish skulls. Our results indicate that pomacentrid planktivores are significantly different from other damselfishes, that biting MA values and protrusion KT ratios are correlated with pomacentrid trophic groups more tightly than KT scores associated with maxillary rotation and gape angle, and that the MAs employed by their three biting muscles have evolved independently. Most of the biomechanical parameters examined have experienced low levels of phylogenetic constraint, which suggests that they have evolved quickly. Joint morphological and biomechanical analyses of the same anatomical data provided two reciprocally illuminating arrays of information. Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding. Our data support a tight and biomechanically defined link

  2. An investigation of Martian and terrestrial dust devils

    Science.gov (United States)

    Ringrose, Timothy John

    2004-10-01

    It is the purpose of this work to provide an insight into the theoretical and practical dynamics of dust devils and how they are detected remotely from orbit or in situ on planetary surfaces. There is particular interest in the detection of convective vortices on Mars; this has been driven by involvement in the development of the Beagle 2 Environmental Sensor Suite. This suite of sensors is essentially a martian weather station and will be the first planetary lander experiment specifically looking for the presence of dust devils on Mars. Dust devils are characterised by their visible dusty core and intense rotation. The physics of particle motion, including dust lofting and the rotational dynamics within convective vortices are explained and modelled. This modelling has helped in identifying dust devils in meteorological data from both terrestrial and martian investigations. An automated technique for dust devil detection using meteorological data has been developed. This technique searches data looking for the specific vortex signature as well as detecting other transient events. This method has been tested on both terrestrial and martian data with surprising results. 38 possible convective vortices were detected in the first 60 sols of the Viking Lander 2 meteorological data. Tests were also carried out on data from a terrestrial dust devil campaign, which provided conclusive evidence from visual observations of the reliability of this technique. A considerable amount of this work does focus on terrestrial vortices. This is to aid in the understanding of dust devils, specifically how, why and when they form. Both laboratory and terrestrial fieldwork is investigated, providing useful data on the general structure of dust devils.

  3. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the

  4. Trait- and size-based descriptions of trophic links in freshwater food webs: current status and perspectives

    Directory of Open Access Journals (Sweden)

    David S. Boukal

    2014-04-01

    Full Text Available Biotic interactions in aquatic communities are dominated by predation, and the distribution of trophic link strengths in aquatic food webs crucially impacts their dynamics and stability. Although individual body size explains a large proportion of variation in trophic link strengths in aquatic habitats, current predominately body size-based views can gain additional realism by incorporating further traits. Functional traits that potentially affect the strength of trophic links can be classified into three groups: i body size, ii traits that identify the spatiotemporal overlap between the predators and their prey, and iii predator foraging and prey vulnerability traits, which are readily available for many taxa. Relationship between these trait groups and trophic link strength may be further modified by population densities, habitat complexity, temperature and other abiotic factors. I propose here that this broader multi-trait framework can utilize concepts, ideas and existing data from research on metabolic ecology, ecomorphology, animal personalities and role of habitats in community structuring. The framework can be used to investigate non-additive effects of traits on trophic interactions, shed more light on the structuring of local food webs and evaluate the merits of taxonomic and functional group approaches in the description of predator-prey interactions. Development of trait- and size-based descriptions of food webs could be particularly fruitful in limnology given the relative paucity of well resolved datasets in standing waters. 

  5. Data base for terrestrial food pathways dose commitment calculations

    International Nuclear Information System (INIS)

    Bailey, C.E.

    1979-01-01

    A computer program is under development to allow calculation of the dose-to-man in Georgia and South Carolina from ingestion of radionuclides in terrestrial foods resulting from deposition of airborne radionuclides. This program is based on models described in Regulatory Guide 1.109 (USNRC, 1977). The data base describes the movement of radionuclides through the terrestrial food chain, growth and consumption factors for a variety of radionuclides

  6. Evaluation on Biofilter in Recirculating Integrated Multi-Trophic Aquaculture

    Directory of Open Access Journals (Sweden)

    S. Sumoharjo

    2013-06-01

    Full Text Available Integrated multi-trophic aquaculture pays more attention as a bio-integrated food production system that serves as a model of sustainable aquaculture, minimizes waste discharge, increases diversity and yields multiple products. The objectives of this research were to analyze the efficiency of total ammonia nitrogen biofiltration and its effect on carrying capacity of fish rearing units. Pilot-scale bioreactor was designed with eight run-raceways (two meters of each that assembled in series. Race 1-3 were used to stock silky worm (Tubifex sp as detrivorous converter, then race 4-8 were used to plant three species of leaf-vegetable as photoautotrophic converters, i.e; spinach (Ipomoea reptana, green mustard (Brassica juncea and basil (Ocimum basilicum. The three plants were placed in randomized block design based on water flow direction. Mass balance of nutrient analysis, was applied to figure out the efficiency of bio-filtration and its effect on carrying capacity of rearing units. The result of the experiment showed that 86.5 % of total ammonia nitrogen removal was achieved in 32 days of culturing period. This efficiency able to support the carrying capacity of the fish tank up to 25.95 kg/lpm with maximum density was 62.69 kg/m3 of fish biomass productionDoi: http://dx.doi.org/10.12777/ijse.4.2.2013.80-85 [How to cite this article: Sumoharjo, S.  and Maidie, A. (2013. Evaluation on Biofilter in Recirculating Integrated Multi-Trophic Aquaculture.  International Journal of  Science and Engineering, 4(2,80-85. Doi: http://dx.doi.org/10.12777/ijse.4.2.2013.80-85

  7. Measurement and simulation of unmyelinated nerve electrostimulation: Lumbricus terrestris experiment and numerical model.

    Science.gov (United States)

    Šarolić, A; Živković, Z; Reilly, J P

    2016-06-21

    The electrostimulation excitation threshold of a nerve depends on temporal and frequency parameters of the stimulus. These dependences were investigated in terms of: (1) strength-duration (SD) curve for a single monophasic rectangular pulse, and (2) frequency dependence of the excitation threshold for a continuous sinusoidal current. Experiments were performed on the single-axon measurement setup based on Lumbricus terrestris having unmyelinated nerve fibers. The simulations were performed using the well-established SENN model for a myelinated nerve. Although the unmyelinated experimental model differs from the myelinated simulation model, both refer to a single axon. Thus we hypothesized that the dependence on temporal and frequency parameters should be very similar. The comparison was made possible by normalizing each set of results to the SD time constant and the rheobase current of each model, yielding the curves that show the temporal and frequency dependencies regardless of the model differences. The results reasonably agree, suggesting that this experimental setup and method of comparison with SENN model can be used for further studies of waveform effect on nerve excitability, including unmyelinated neurons.

  8. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae).

    Science.gov (United States)

    Huerta Lwanga, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A; Geissen, Violette

    2016-03-01

    Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, digestion of ingested organic matter, microplastic was concentrated in cast, especially at the lowest dose (i.e., 7% in litter) because that dose had the highest proportion of digestible organic matter. Whereas 50 percent of the microplastics had a size of earthworms. These concentration-transport and size-selection mechanisms may have important implications for fate and risk of microplastic in terrestrial ecosystems.

  9. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations

    Science.gov (United States)

    Yunjun Yao; Shunlin Liang; Xianglan Li; Shaomin Liu; Jiquan Chen; Xiaotong Zhang; Kun Jia; Bo Jiang; Xianhong Xie; Simon Munier; Meng Liu; Jian Yu; Anders Lindroth; Andrej Varlagin; Antonio Raschi; Asko Noormets; Casimiro Pio; Georg Wohlfahrt; Ge Sun; Jean-Christophe Domec; Leonardo Montagnani; Magnus Lund; Moors Eddy; Peter D. Blanken; Thomas Grunwald; Sebastian Wolf; Vincenzo Magliulo

    2016-01-01

    The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the globalhydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs)in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison...

  10. Researching on Real 3d Modeling Constructed with the Oblique Photogrammetry and Terrestrial Photogrammetry

    Science.gov (United States)

    Han, Youmei; Jiao, Minglian; Shijuan

    2018-04-01

    With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  11. From COST 271 to 296 EU actions on ionospheric monitoring and modelling for terrestrial and Earth space radio systems

    Science.gov (United States)

    Zolesi, B.; Cander, Lj. R.; Altadill, D.

    The ionospheric community has long been aware that co-operative research on an international basis is essential to deal with temporal and spatial changes in the ionosphere that influence the performance of terrestrial and Earth-space radio systems. The EU COST (Co-operation in the field of Scientific and Technical Research) 271 Action on "Effects of the Upper Atmosphere on Terrestrial and Earth-space Communications" has had during the period of October 2000-August 2004 the following main objectives: (1) to evaluate the influence of upper atmospheric conditions on terrestrial and Earth-space communications, (2) to develop methods and techniques to improve ionospheric models over Europe for telecommunication and navigation applications and (3) to transfer the results to the appropriate radiocommunication study groups of the International Telecommunication Union (ITU-R) and other national and international organizations dealing with the modern communication systems. At the beginning of 2005 the new 296 Action in the COST Telecommunications, Information Science and Technology domain on "Mitigation of Ionospheric Effects on Radio Systems (MIERS)" was approved for the period 2005-2009. The main objectives of the MIERS are: (a) to support and enhanced the existing European facilities for historical and real-time digital ionospheric data collection and exchange; (b) to develop an integrated approach to ionospheric modelling, create the mechanism needed to ingest processed data into models, extend and develop suitable mitigation models and define the protocols needed to link models together; and (c) to strengthen the areas of expertise that already exist by stimulating closer cooperation between scientists and users, focusing the scope of all the previous COST ionospheric related studies to the mitigation of ionospheric effects on radio systems. This paper summarises briefly how the major objectives of the COST271 Action have been achieved and what are the most important

  12. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems.

    Science.gov (United States)

    Paynter, Ian; Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-04-06

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results.

  13. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula

    Science.gov (United States)

    Chen, Mianrun; Kim, Dongyoung; Liu, Hongbin; Kang, Chang-Keun

    2018-04-01

    Trophic preference (i.e., food resources and trophic levels) of different copepod groups was assessed along a salinity gradient in the temperate estuarine Gwangyang Bay of Korea, based on seasonal investigation of taxonomic results in 2015 and stable isotope analysis incorporating multiple linear regression models. The δ13C and δ15N values of copepods in the bay displayed significant spatial heterogeneity as well as seasonal variations, which were indicated by their significant relationships with salinity and temperature, respectively. Both spatial and temporal variations reflected those in isotopic values of food sources. The major calanoid groups (marine calanoids and brackish water calanoids) had a mean trophic level of 2.2 relative to nanoplankton as the basal food source, similar to the bulk copepod assemblage; however, they had dissimilar food sources based on the different δ13C values. Calanoid isotopic values indicated a mixture of different genera including species with high δ15N values (e.g., Labidocera, Sinocalanus, and Tortanus), moderate values (Calanus sinicus, Centropages, Paracalanus, and Acartia), and relatively low δ15N values (Eurytemora pacifica and Pseudodiaptomus). Feeding preferences of different copepods probably explain these seasonal and spatial patterns of the community trophic niche. Bayesian mixing model calculations based on source materials of two size fractions of particulate organic matter (nanoplankton at simple energy flow of the planktonic food web of Gwangyang Bay: from primary producers (nanoplankton) and a mixture of primary producers and herbivores (microplankton) through omnivores (Acartia, Calanus, Centropages, and Paracalanus) and detritivores (Pseudodiaptomus, Eurytemora, and harpacticoids) to carnivores (Corycaeus, Tortanus, Labidocera, and Sinocalanus).

  14. Effect of the riparian vegetation removal on the trophic network of Neotropical stream fish assemblage

    Directory of Open Access Journals (Sweden)

    Pedro Sartori Manoel

    2018-02-01

    Full Text Available The study of the diet of fish is an important tool to assess different levels of environmental degradation, since the availability of food in the environment is a key factor for the fish occurrence. The removal of riparian vegetation usually degrades environmental quality, as this vegetation has an important role in providing energy to the ecosystem. This study investigates the effects of the removal of riparian vegetation on the fish assemblage trophic network. The study was carried out in two stretches of a southeastern Brazilian stream, one in a forest fragment and another in a pasture, during the wet and dry seasons of 2014. We analyzed the items consumed by each fish species using the frequency of occurrence and area of each item, which were combined to calculate the alimentary index, which was used to determine the food niche overlap of the fish and the specialization index of the trophic network. Aquatic Hexapoda, vegetal debris and organic matter dominated the trophic network of the two stretches. We detected higher values of food niche overlap in the forested stretch and more complex trophic networks in the pasture stretch. We found few seasonal variations in the items consumed and calculated indices in both stretches studied. The presence of grass on the banks in the pasture stretch and the importation of food resources from the upstream area may have provided a higher diversity of resources and consequently showed a more complex trophic network when compared to the forested stretch.

  15. The terrestrial carbon cycle on the regional and global scale : modeling, uncertainties and policy relevance

    NARCIS (Netherlands)

    Minnen, van J.G.

    2008-01-01

    Contains the chapters: The importance of three centuries of climate and land-use change for the global and regional terrestrial carbon cycle; and The terrestrial C cycle and its role in the climate change policy

  16. Trait-mediated diversification in nematode predator–prey systems

    NARCIS (Netherlands)

    Mulder, C.; Helder, J.; Vervoort, M.T.W.; Vonk, J.A.

    2011-01-01

    Nematodes are presumably the most numerous Metazoans in terrestrial habitats. They are represented at all trophic levels and are known to respond to nutrient limitation, prey availability, and microbial resources. Predatory nematodes reside at the highest trophic level, and as such their feeding

  17. The Comparison of Propagation Model for Terrestrial Trunked Radio (TETRA

    Directory of Open Access Journals (Sweden)

    Ayu Kartika R

    2013-12-01

    Full Text Available A system of digital radio Terrestrial Trunked Radio (TETRA is designed for communication which need specialility, better privacy, better quality of audio with speed transmission data and access capacity to the internet and telephone network. TETRA system of TMO and DMO operation mode which has wide coverage and reliable than the interference so that the TETRA planning needs a propagation model which corresponding with environment. Therefore, this research compare a pathloss value of calculation of propagation model such as Free Space Loss, Wickson, Bacon, CEPT SE21, Ericsson (9999, ITU-R SM 2028 and Okumura Hata based on the environment are clutter urban, sub urban dan rural. The calculation of pathloss provide that Bacon propagation model is an corresponding model for DMO operation mode with a frequency of 380 MHz, height handhelds 1.5 m and 2 m with pathloss value of 76.82 dB at a distance of 100 m and 113.63 dB at a distance of 1 km while the 400 MHz frequency pathloss value of 77.08 dB at a distance of 100 m and 113.6 dB at a distance of 1 km. The propagation model which corresponding to the TMO operation mode with a frequency of 400 MHz distance of 1 km, the transmitter antenna height (hb 30 m and receiver antenna height (hm 1.5 m is a model of Ericsson (9999 on urban clutter with pathloss value of 96.4 dB, the model ITU-R SM2028 in suburban clutter with a pathloss value of 101.13 dB, and the model ITU-R SM2028 on rural clutter with pathloss value of 83.59 dB. Keywords: TETRA, propagation model, urban, suburban, rural

  18. Willow on Yellowstone's northern range: evidence for a trophic cascade?

    Science.gov (United States)

    Beyer, Hawthorne L; Merrill, Evelyn H; Varley, Nathan; Boyce, Mark S

    2007-09-01

    Reintroduction of wolves (Canis lupus) to Yellowstone National Park in 1995-1996 has been argued to promote a trophic cascade by altering elk (Cervus elaphus) density, habitat-selection patterns, and behavior that, in turn, could lead to changes within the plant communities used by elk. We sampled two species of willow (Salix boothii and S. geyeriana) on the northern winter range to determine whether (1) there was quantitative evidence of increased willow growth following wolf reintroduction, (2) browsing by elk affected willow growth, and (3) any increase in growth observed was greater than that expected by climatic and hydrological factors alone, thereby indicating a trophic cascade caused by wolves. Using stem sectioning techniques to quantify historical growth patterns we found an approximately twofold increase in stem growth-ring area following wolf reintroduction for both species of willow. This increase could not be explained by climate and hydrological factors alone; the presence of wolves on the landscape was a significant predictor of stem growth above and beyond these abiotic factors. Growth-ring area was positively correlated with the previous year's ring area and negatively correlated with the percentage of twigs browsed from the stem during the winter preceding growth, indicating that elk browse impeded stem growth. Our results are consistent with the hypothesis of a behaviorally mediated trophic cascade on Yellowstone's northern winter range following wolf reintroduction. We suggest that the community-altering effects of wolf restoration are an endorsement of ecological-process management in Yellowstone National Park.

  19. First direct evidence of a vertebrate three-level trophic chain in the fossil record.

    Science.gov (United States)

    Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H J

    2008-01-22

    We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time.

  20. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks

    International Nuclear Information System (INIS)

    House, J.I.; Prentice, I.C.; Heimann, M.; Ramankutty, N.

    2003-01-01

    The magnitude and location of terrestrial carbon sources and sinks remains subject to large uncertainties. Estimates of terrestrial CO 2 fluxes from ground-based inventory measurements typically find less carbon uptake than inverse model calculations based on atmospheric CO 2 measurements, while a wide range of results have been obtained using models of different types. However, when full account is taken of the processes, pools, time scales and geographic areas being measured, the different approaches can be understood as complementary rather than inconsistent, and can provide insight as to the contribution of various processes to the terrestrial carbon budget. For example, quantitative differences between atmospheric inversion model estimates and forest inventory estimates in northern extratropical regions suggest that carbon fluxes to soils (often not accounted for in inventories), and into non-forest vegetation, may account for about half of the terrestrial uptake. A consensus of inventory and inverse methods indicates that, in the 1980s, northern extratropical land regions were a large net sink of carbon, and the tropics were approximately neutral (albeit with high uncertainty around the central estimate of zero net flux). The terrestrial flux in southern extratropical regions was small. Book-keeping model studies of the impacts of land-use change indicated a large source in the tropics and almost zero net flux for most northern extratropical regions; similar land use change impacts were also recently obtained using process-based models. The difference between book-keeping land-use change model studies and inversions or inventories was previously interpreted as a 'missing' terrestrial carbon uptake. Land-use change studies do not account for environmental or many management effects (which are implicitly included in inventory and inversion methods). Process-based model studies have quantified the impacts of CO 2 fertilisation and climate change in addition to

  1. V. Terrestrial vertebrates

    Science.gov (United States)

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  2. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia).

    Science.gov (United States)

    Agha, Ramsy; Saebelfeld, Manja; Manthey, Christin; Rohrlack, Thomas; Wolinska, Justyna

    2016-10-13

    Parasites are rarely included in food web studies, although they can strongly alter trophic interactions. In aquatic ecosystems, poorly grazed cyanobacteria often dominate phytoplankton communities, leading to the decoupling of primary and secondary production. Here, we addressed the interface between predator-prey and host-parasite interactions by conducting a life-table experiment, in which four Daphnia galeata genotypes were maintained on quantitatively comparable diets consisting of healthy cyanobacteria or cyanobacteria infected by a fungal (chytrid) parasite. In four out of five fitness parameters, at least one Daphnia genotype performed better on parasitised cyanobacteria than in the absence of infection. Further treatments consisting of purified chytrid zoospores and heterotrophic bacteria suspensions established the causes of improved fitness. First, Daphnia feed on chytrid zoospores which trophically upgrade cyanobacterial carbon. Second, an increase in heterotrophic bacterial biomass, promoted by cyanobacterial decay, provides an additional food source for Daphnia. In addition, chytrid infection induces fragmentation of cyanobacterial filaments, which could render cyanobacteria more edible. Our results demonstrate that chytrid parasitism can sustain zooplankton under cyanobacterial bloom conditions, and exemplify the potential of parasites to alter interactions between trophic levels.

  3. The protozooplankton-ichthyoplankton trophic link: an overlooked aspect of aquatic food webs.

    Science.gov (United States)

    Montagnes, David J S; Dower, John F; Figueiredo, Gisela M

    2010-01-01

    Since the introduction of the microbial loop concept, awareness of the role played by protozooplankton in marine food webs has grown. By consuming bacteria, and then being consumed by metazooplankton, protozoa form a trophic link that channels dissolved organic material into the "classic" marine food chain. Beyond enhancing energy transfer to higher trophic levels, protozoa play a key role in improving the food quality of metazooplankton. Here, we consider a third role played by protozoa, but one that has received comparatively little attention: that as prey items for ichthyoplankton. For >100 years it has been known that fish larvae consume protozoa. Despite this, fisheries scientists and biological oceanographers still largely ignore protozoa when assessing the foodweb dynamics that regulate the growth and survival of larval fish. We review evidence supporting the importance of the protozooplankton-ichthyoplankton link, including examples from the amateur aquarium trade, the commercial aquaculture industry, and contemporary studies of larval fish. We then consider why this potentially important link continues to receive very little attention. We conclude by offering suggestions for quantifying the importance of the protozooplankton-ichthyoplankton trophic link, using both existing methods and new technologies.

  4. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  5. Global change in the trophic functioning of marine food webs

    DEFF Research Database (Denmark)

    Maureaud, Aurore; Gascuel, Didier; Colléter, Mathieu

    2017-01-01

    and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI......The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches......) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950...

  6. Mercury biomagnification in a contaminated estuary food web: Effects of age and trophic position using stable isotope analyses

    International Nuclear Information System (INIS)

    Coelho, J.P.; Mieiro, C.L.; Pereira, E.; Duarte, A.C.; Pardal, M.A.

    2013-01-01

    Highlights: ► High trophic magnification potential of mercury in a temperate contaminated estuary. ► The use of age adjusted data provided better fitting to linear regression curves. ► Similar TMFs in other studies suggest stable magnification regardless of latitude. -- Abstract: The main aim of this study was to ascertain the biomagnification processes in a mercury-contaminated estuary, by clarifying the trophic web structure through stable isotope ratios. For this purpose, primary producers (seagrasses and macroalgae), invertebrates (detritivores and benthic predators) and fish were analysed for total and organic mercury and for stable carbon and nitrogen isotopic signatures. Trophic structure was accurately described by δ 15 N, while δ 13 C reflected the carbon source for each species. An increase of mercury levels was observed with trophic level, particularly for organic mercury. Results confirm mercury biomagnification to occur in this estuarine food web, especially in the organic form, both in absolute concentrations and fraction of total mercury load. Age can be considered an important variable in mercury biomagnification studies, and data adjustments to account for the different exposure periods may be necessary for a correct assessment of trophic magnification rates and ecological risk

  7. Energy and speleogenesis: Key determinants of terrestrial species richness in caves.

    Science.gov (United States)

    Jiménez-Valverde, Alberto; Sendra, Alberto; Garay, Policarp; Reboleira, Ana Sofia P S

    2017-12-01

    The aim of this study was to unravel the relative role played by speleogenesis (i.e., the process in which a cave is formed), landscape-scale variables, and geophysical factors in the determination of species richness in caves. Biological inventories from 21 caves located in the southeastern Iberian Peninsula along with partial least square (PLS) regression analysis were used to assess the relative importance of the different explanatory variables. The caves were grouped according to the similarity in their species composition; the effect that spatial distance could have on similarity was also studied using correlation between matrices. The energy and speleogenesis of caves accounted for 44.3% of the variation in species richness. The trophic level of each cave was the most significant factor in PLS regression analysis, and epigenic caves (i.e., those formed by the action of percolating water) had significantly more species than hypogenic ones (i.e., those formed by the action of upward flows in confined aquifers). Dissimilarity among the caves was very high (multiple-site β sim  = 0.92). Two main groups of caves were revealed through the cluster analysis, one formed by the western caves and the other by the eastern ones. The significant-but low-correlation found between faunistic dissimilarity and geographical distance ( r  =   .16) disappeared once the caves were split into the two groups. The extreme beta-diversity suggests a very low connection among the caves and/or a very low dispersal capacity of the species. In the region under study, two main factors are intimately related to the richness of terrestrial subterranean species in caves: the amount of organic material (trophic level) and the formation process (genesis). This is the first time that the history of a cave genesis has been quantitatively considered to assess its importance in explaining richness patterns in comparison with other factors more widely recognized.

  8. Trophic-functional patterns of biofilm-dwelling ciliates at different water depths in coastal waters of the Yellow Sea, northern China.

    Science.gov (United States)

    Abdullah Al, Mamun; Gao, Yangyang; Xu, Guangjian; Wang, Zheng; Warren, Alan; Xu, Henglong

    2018-04-01

    Vertical variations in trophic-functional patterns of biofilm-dwelling ciliates were studied in coastal waters of the Yellow Sea, northern China. A total of 50 species were identified and assigned to four trophic-functional groups (TFgrs): algivores (A), bacterivorous (B), non-selective (N) and raptors (R). The trophic-functional structures of the ciliate communities showed significant variability among different water depths: (1) with increasing water depth, relative species numbers and relative abundances of groups A and R decreased sharply whereas those of groups B and N increased gradually; (2) in terms of the frequency of occurrences, group A dominated at depths of 1-3.5 m whereas group B dominated at 5 m, while in terms of the probability density function of the trophic-functional spectrum, group A was the highest contributor at 1 m and group B was highest at the other three depths; (3) distance-based redundancy analyses revealed significant differences in trophic-functional patterns among the four depths, except between 2 and 3.5 m (P > 0.05); and (4) the trophic-functional trait diversity increased from 1 to 3.5 m and decreased sharply at 5 m. Our results suggest that the biofilm-dwelling ciliates maintain a stable trophic-functional pattern and high biodiversity at depths of 1-3.5 m. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Strontium-90 and cesium-137 migration in trophic chain of cattle

    International Nuclear Information System (INIS)

    Zotov, V.G.; Sirotkin, A.N.; Isamov, N.N.

    1983-01-01

    Technique for determination of factors of radionuclide migration in cattle trophic chain, which can be used for forecasting probable contamination of food and cattle breeding products Under Uzbekistan conditions is suggested. It is shown that the factor of biological absorption (FBA) of strontiUm 90 by plants from grey desert soils is 3.7 times higher, than of cesium 137. Mentioned differences in soil-plants migration link are leveled and their FBA in food-milk, food-bone, food-mUscles links remain practically the same during radionuclide migration from food to milk and meat. During radionuclide migration in trophic chain of cattle in food-bone and food-muscles chains the concentration of strontium 90 in bone tissUe and cesium 137 in muscle tissue takes place

  10. Quantitative Hydraulic Models Of Early Land Plants Provide Insight Into Middle Paleozoic Terrestrial Paleoenvironmental Conditions

    Science.gov (United States)

    Wilson, J. P.; Fischer, W. W.

    2010-12-01

    Fossil plants provide useful proxies of Earth’s climate because plants are closely connected, through physiology and morphology, to the environments in which they lived. Recent advances in quantitative hydraulic models of plant water transport provide new insight into the history of climate by allowing fossils to speak directly to environmental conditions based on preserved internal anatomy. We report results of a quantitative hydraulic model applied to one of the earliest terrestrial plants preserved in three dimensions, the ~396 million-year-old vascular plant Asteroxylon mackei. This model combines equations describing the rate of fluid flow through plant tissues with detailed observations of plant anatomy; this allows quantitative estimates of two critical aspects of plant function. First and foremost, results from these models quantify the supply of water to evaporative surfaces; second, results describe the ability of plant vascular systems to resist tensile damage from extreme environmental events, such as drought or frost. This approach permits quantitative comparisons of functional aspects of Asteroxylon with other extinct and extant plants, informs the quality of plant-based environmental proxies, and provides concrete data that can be input into climate models. Results indicate that despite their small size, water transport cells in Asteroxylon could supply a large volume of water to the plant's leaves--even greater than cells from some later-evolved seed plants. The smallest Asteroxylon tracheids have conductivities exceeding 0.015 m^2 / MPa * s, whereas Paleozoic conifer tracheids do not reach this threshold until they are three times wider. However, this increase in conductivity came at the cost of little to no adaptations for transport safety, placing the plant’s vegetative organs in jeopardy during drought events. Analysis of the thickness-to-span ratio of Asteroxylon’s tracheids suggests that environmental conditions of reduced relative

  11. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir

    Science.gov (United States)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif

    2018-02-01

    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  12. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-10-18

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  13. Terrestrial carbon storage dynamics: Chasing a moving target

    Science.gov (United States)

    Luo, Y.; Shi, Z.; Jiang, L.; Xia, J.; Wang, Y.; Kc, M.; Liang, J.; Lu, X.; Niu, S.; Ahlström, A.; Hararuk, O.; Hastings, A.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K. E.; Wang, Y.

    2015-12-01

    Terrestrial ecosystems have been estimated to absorb roughly 30% of anthropogenic CO2 emissions. Past studies have identified myriad drivers of terrestrial carbon storage changes, such as fire, climate change, and land use changes. Those drivers influence the carbon storage change via diverse mechanisms, which have not been unified into a general theory so as to identify what control the direction and rate of terrestrial carbon storage dynamics. Here we propose a theoretical framework to quantitatively determine the response of terrestrial carbon storage to different exogenous drivers. With a combination of conceptual reasoning, mathematical analysis, and numeric experiments, we demonstrated that the maximal capacity of an ecosystem to store carbon is time-dependent and equals carbon input (i.e., net primary production, NPP) multiplying by residence time. The capacity is a moving target toward which carbon storage approaches (i.e., the direction of carbon storage change) but usually does not attain. The difference between the capacity and the carbon storage at a given time t is the unrealized carbon storage potential. The rate of the storage change is proportional to the magnitude of the unrealized potential. We also demonstrated that a parameter space of NPP, residence time, and carbon storage potential can well characterize carbon storage dynamics quantified at six sites ranging from tropical forests to tundra and simulated by two versions (carbon-only and coupled carbon-nitrogen) of the Australian Community Atmosphere-Biosphere Land Ecosystem (CABLE) Model under three climate change scenarios (CO2 rising only, climate warming only, and RCP8.5). Overall this study reveals the unified mechanism unerlying terrestrial carbon storage dynamics to guide transient traceability analysis of global land models and synthesis of empirical studies.

  14. Biosphere modeling in waste disposal safety assessments -- An example using the terrestrial-aquatic model of the environment

    International Nuclear Information System (INIS)

    Klos, R.A.

    1998-01-01

    Geological disposal of radioactive wastes is intended to provide long-term isolation of potentially harmful radionuclides from the human environment and the biosphere. The long timescales involved pose unique problems for biosphere modeling because there are considerable uncertainties regarding the state of the biosphere into which releases might ultimately occur. The key to representing the biosphere in long-timescale assessments is the flexibility with which those aspects of the biosphere that are of relevance to dose calculations are represented, and this comes from the way in which key biosphere features, events, and processes are represented in model codes. How this is done in contemporary assessments is illustrated by the Terrestrial-Aquatic Model of the Environment (TAME), an advanced biosphere model for waste disposal assessments recently developed in Switzerland. A numerical example of the release of radionuclides from a subterranean source to an inland valley biosphere is used to illustrate how biosphere modeling is carried out and the practical ways in which meaningful quantitative results can be achieved. The results emphasize the potential for accumulation of radionuclides in the biosphere over long timescales and also illustrate the role of parameter values in such modeling

  15. Use of Shark Dental Protein to Estimate Trophic Position via Amino Acid Compound-Specific Isotope Analysis

    Science.gov (United States)

    Hayes, M.; Herbert, G.; Ellis, G.

    2017-12-01

    The diets of apex predators such as sharks are expected to change in response to overfishing of their mesopredator prey, but pre-anthropogenic baselines necessary to test for such changes are lacking. Stable isotope analysis (SIA) of soft tissues is commonly used to study diets in animals based on the bioaccumulation of heavier isotopes of carbon and nitrogen with increasing trophic level. In specimens representing pre-anthropogenic baselines, however, a modified SIA approach is needed to deal with taphonomic challenges, such as loss of soft tissues or selective loss of less stable amino acids (AAs) in other sources of organic compounds (e.g., teeth or bone) which can alter bulk isotope values. These challenges can be overcome with a compound-specific isotope analysis of individual AAs (AA-CSIA), but this first requires a thorough understanding of trophic enrichment factors for individual AAs within biomineralized tissues. In this study, we compare dental and muscle proteins of individual sharks via AA-CSIA to determine how trophic position is recorded within teeth and whether that information differs from that obtained from soft tissues. If skeletal organics reliably record information about shark ecology, then archaeological and perhaps paleontological specimens can be used to investigate pre-anthropogenic ecosystems. Preliminary experiments show that the commonly used glutamic acid/phenylalanine AA pairing may not be useful for establishing trophic position from dental proteins, but that estimated trophic position determined from alternate AA pairs are comparable to those from muscle tissue within the same species.

  16. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    International Nuclear Information System (INIS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-01-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  17. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    Science.gov (United States)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  18. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: summary of improvements and new modeling possibilities

    Science.gov (United States)

    Hidy, Dóra; Barcza, Zoltán; Marjanović, Hrvoje; Zorana Ostrogović Sever, Maša; Dobor, Laura; Gelybó, Györgyi; Fodor, Nándor; Pintér, Krisztina; Churkina, Galina; Running, Steven; Thornton, Peter; Bellocchi, Gianni; Haszpra, László; Horváth, Ferenc; Suyker, Andrew; Nagy, Zoltán

    2016-12-01

    The process-based biogeochemical model Biome-BGC was enhanced to improve its ability to simulate carbon, nitrogen, and water cycles of various terrestrial ecosystems under contrasting management activities. Biome-BGC version 4.1.1 was used as a base model. Improvements included addition of new modules such as the multilayer soil module, implementation of processes related to soil moisture and nitrogen balance, soil-moisture-related plant senescence, and phenological development. Vegetation management modules with annually varying options were also implemented to simulate management practices of grasslands (mowing, grazing), croplands (ploughing, fertilizer application, planting, harvesting), and forests (thinning). New carbon and nitrogen pools have been defined to simulate yield and soft stem development of herbaceous ecosystems. The model version containing all developments is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module; in this paper, Biome-BGCMuSo v4.0 is documented). Case studies on a managed forest, cropland, and grassland are presented to demonstrate the effect of model developments on the simulation of plant growth as well as on carbon and water balance.

  19. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  20. RESEARCHING ON REAL 3D MODELING CONSTRUCTED WITH THE OBLIQUE PHOTOGRAMMETRY AND TERRESTRIAL PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    Y. Han

    2018-04-01

    Full Text Available With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  1. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Science.gov (United States)

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  2. Trophic specialization drives morphological evolution in sea snakes.

    Science.gov (United States)

    Sherratt, Emma; Rasmussen, Arne R; Sanders, Kate L

    2018-03-01

    Viviparous sea snakes are the most rapidly speciating reptiles known, yet the ecological factors underlying this radiation are poorly understood. Here, we reconstructed dated trees for 75% of sea snake species and quantified body shape (forebody relative to hindbody girth), maximum body length and trophic diversity to examine how dietary specialization has influenced morphological diversification in this rapid radiation. We show that sea snake body shape and size are strongly correlated with the proportion of burrowing prey in the diet. Specialist predators of burrowing eels have convergently evolved a 'microcephalic' morphotype with dramatically reduced forebody relative to hindbody girth and intermediate body length. By comparison, snakes that predominantly feed on burrowing gobies are generally short-bodied and small-headed, but there is no evidence of convergent evolution. The eel specialists also exhibit faster rates of size and shape evolution compared to all other sea snakes, including those that feed on gobies. Our results suggest that trophic specialization to particular burrowing prey (eels) has invoked strong selective pressures that manifest as predictable and rapid morphological changes. Further studies are needed to examine the genetic and developmental mechanisms underlying these dramatic morphological changes and assess their role in sea snake speciation.

  3. Fish mitigate trophic depletion in marine cave ecosystems.

    Science.gov (United States)

    Bussotti, Simona; Di Franco, Antonio; Bianchi, Carlo Nike; Chevaldonné, Pierre; Egea, Lea; Fanelli, Emanuela; Lejeusne, Christophe; Musco, Luigi; Navarro-Barranco, Carlos; Pey, Alexis; Planes, Serge; Vieux-Ingrassia, Jean Vincent; Guidetti, Paolo

    2018-06-15

    Dark marine habitats are often characterized by a food-limited condition. Peculiar dark habitats include marine caves, characterized by the absence of light and limited water flow, which lead to reduced fluxes of organic matter for cave-dwelling organisms. We investigated whether the most abundant and common cave-dwelling fish Apogon imberbis has the potential to play the role of trophic vector in Mediterranean marine caves. We first analysed stomach contents to check whether repletion changes according to a nycthemeral cycle. We then identified the prey items, to see whether they belong to species associated with cave habitats or not. Finally, we assessed whether A. imberbis moves outside marine caves at night to feed, by collecting visual census data on A. imberbis density both inside and outside caves, by day and by night. The stomach repletion of individuals sampled early in the morning was significantly higher than later in the day. Most prey were typical of habitats other than caves. A. imberbis was on average more abundant within caves during the day and outside during the night. Our study supports the hypothesis regarding the crucial trophic role of A. imberbis in connecting Mediterranean marine caves with external habitats.

  4. Diet and trophic ecology of the tiger shark (Galeocerdo cuvier from South African waters.

    Directory of Open Access Journals (Sweden)

    Matthew L Dicken

    Full Text Available Knowledge of the diet and trophic ecology of apex predators is key for the implementation of effective ecosystem as well as species-based management initiatives. Using a combination of stomach content data and stable isotope analysis (δ15N and δ13C the current study provides information on size-based and sex-specific variations in diet, trophic position (TP and foraging habitat of tiger sharks (Galeocerdo cuvier caught in the KwaZulu-Natal Sharks Board bather protection program. This study presents the longest time-series and most detailed analysis of stomach content data for G. cuvier worldwide. Prey identified from 628 non-empty stomachs revealed a size-based shift in diet. Reptiles, birds, mysticetes, and large shark species increased in dietary importance with G. cuvier size, concomitant with a decrease in smaller prey such as batoids and teleosts. Seasonal and decadal shifts in diet driven primarily by changes in the importance of elasmobranchs and mammal (cetacean prey were recorded for medium sized (150-220 cm G. cuvier. Both stomach content and stable isotope analysis indicated that G. cuvier is a generalist feeder at the population level. Size-based δ13C profiles indicated a movement to offshore foraging habitats by larger G. cuvier. Calculated TP varied by method ranging from 4.0 to 5.0 (TPSCA for stomach contents and from 3.6 to 4.5 (TPscaled and TPadditive for δ15N. Large (> 220 cm G. cuvier did not feed at discrete trophic levels, but rather throughout the food web. These data provide key information on the ecological role of G. cuvier to improve the accuracy of regional food web modelling. This will enable a better understanding of the ecological impacts related to changes in the abundance of this predator.

  5. A guideline to study the feasibility domain of multi-trophic and changing ecological communities.

    Science.gov (United States)

    Song, Chuliang; Rohr, Rudolf P; Saavedra, Serguei

    2018-04-24

    The feasibility domain of an ecological community can be described by the set of environmental abiotic and biotic conditions under which all co-occurring and interacting species in a given site and time can have positive abundances. Mathematically, the feasibility domain corresponds to the parameter space compatible with positive (feasible) solutions at equilibrium for all the state variables in a system under a given model of population dynamics. Under specific dynamics, the existence of a feasible equilibrium is a necessary condition for species persistence regardless of whether the feasible equilibrium is dynamically stable or not. Thus, the size of the feasibility domain can also be used as an indicator of the tolerance of a community to random environmental variations. This has motivated a rich research agenda to estimate the feasibility domain of ecological communities. However, these methodologies typically assume that species interactions are static, or that input and output energy flows on each trophic level are unconstrained. Yet, this is different to how communities behave in nature. Here, we present a step-by-step quantitative guideline providing illustrative examples, computational code, and mathematical proofs to study systematically the feasibility domain of ecological communities under changes of interspecific interactions and subject to different constraints on the trophic energy flows. This guideline covers multi-trophic communities that can be formed by any type of interspecific interactions. Importantly, we show that the relative size of the feasibility domain can significantly change as a function of the biological information taken into consideration. We believe that the availability of these methods can allow us to increase our understanding about the limits at which ecological communities may no longer tolerate further environmental perturbations, and can facilitate a stronger integration of theoretical and empirical research. Copyright

  6. Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures

    Directory of Open Access Journals (Sweden)

    Edson Fontes Oliveira

    Full Text Available Ecomorphological patterns of the fish assemblage from the upper Paraná River floodplain, Brazil, were described and evaluated according to trophic (guilds, spatial (habitats and phylogenetic (taxonomic distances structures. The samples were obtained through the Long Term Research Project (LTER-CNPq/UEM/NUPELIA in August and October 2001. Thirty-five species were analyzed from thirty-one morphological variables. Strong significant correlations (Mantel test between morphology and trophic guilds and between morphology and taxonomy were found, while morphology and habitat revealed a weak correlation. However, the partial Mantel test showed that the correlations between morphology and trophic guilds persist even when the effect of taxonomy is discounted. The ecomorphological pattern shown by the Principal Component Analysis separated species according to locomotion structures used in feeding. At one extreme there are the piscivores and insectivores that exploit lentic habitats and have compressed bodies and well developed anal fins, while at the other there are detritivores and invertivores that exploit lotic and semi-lotic habitats and have depressed bodies and well developed pectoral, pelvic and caudal fins. Canonical Discriminant Analysis using ecomorphological variables successfully predicted 94.5% of the trophic guild ecomorphotypes, but only 57.1% of the habitat ecomorphotypes. These data indicate that the fish assemblage of the upper Paraná River floodplain is structured ecomorphologically mainly according to trophic structure rather than habitat.

  7. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health.

    Science.gov (United States)

    Carbery, Maddison; O'Connor, Wayne; Palanisami, Thavamani

    2018-06-01

    Plastic litter has become one of the most serious threats to the marine environment. Over 690 marine species have been impacted by plastic debris with small plastic particles being observed in the digestive tract of organisms from different trophic levels. The physical and chemical properties of microplastics facilitate the sorption of contaminants to the particle surface, serving as a vector of contaminants to organisms following ingestion. Bioaccumulation factors for higher trophic organisms and impacts on wider marine food webs remain unknown. The main objectives of this review were to discuss the factors influencing microplastic ingestion; describe the biological impacts of associated chemical contaminants; highlight evidence for the trophic transfer of microplastics and contaminants within marine food webs and outline the future research priorities to address potential human health concerns. Controlled laboratory studies looking at the effects of microplastics and contaminants on model organisms employ nominal concentrations and consequently have little relevance to the real environment. Few studies have attempted to track the fate of microplastics and mixed contaminants through a complex marine food web using environmentally relevant concentrations to identify the real level of risk. To our knowledge, there has been no attempt to understand the transfer of microplastics and associated contaminants from seafood to humans and the implications for human health. Research is needed to determine bioaccumulation factors for popular seafood items in order to identify the potential impacts on human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Ammonium Transformation in 14 Lakes along a Trophic Gradient

    Directory of Open Access Journals (Sweden)

    Barbara Leoni

    2018-03-01

    Full Text Available Ammonia is a widespread pollutant in aquatic ecosystems originating directly and indirectly from human activities, which can strongly affect the structure and functioning of the aquatic foodweb. The biological oxidation of NH4+ to nitrite, and then nitrate is a key part of the complex nitrogen cycle and a fundamental process in aquatic environments, having a profound influence on ecosystem stability and functionality. Environmental studies have shown that our current knowledge of physical and chemical factors that control this process and the abundance and function of involved microorganisms are not entirely understood. In this paper, the efficiency and the transformation velocity of ammonium into oxidised compounds in 14 south-alpine lakes in northern Italy, with a similar origin, but different trophic levels, are compared with lab-scale experimentations (20 °C, dark, oxygen saturation that are performed in artificial microcosms (4 L. The water samples were collected in different months to highlight the possible effect of seasonality on the development of the ammonium oxidation process. In four-liter microcosms, concentrations were increased by 1 mg/L NH4+ and the process of ammonium oxidation was constantly monitored. The time elapsed for the decrease of 25% and 95% of the initial ion ammonium concentration and the rate for that ammonium oxidation were evaluated. Principal Component Analysis and General Linear Model, performed on 56 observations and several chemical and physical parameters, highlighted the important roles of total phosphorus and nitrogen concentrations on the commencement of the oxidation process. Meanwhile, the natural concentration of ammonium influenced the rate of nitrification (µg NH4+/L day. Seasonality did not seem to significantly affect the ammonium transformation. The results highlight the different vulnerabilities of lakes with different trophic statuses.

  9. Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo-Silva, Claudio Eduardo, E-mail: ceass@biof.ufrj.br [Laboratório de Radioisótopos Eduardo Penna, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho s/n, bloco G, Sala 60, Subsolo, Ilha do Fundão, Rio de Janeiro, RJ (Brazil); Almeida, Ronaldo [Instituto Natureza e Cultura, Universidade Federal do Amazonas, Rua 1 de Maio. Colegiado de Ciências Agrárias, Benjamin Constant, Colônia, AM (Brazil); Carvalho, Dario P. [Laboratório de Radioisótopos Eduardo Penna, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho s/n, bloco G, Sala 60, Subsolo, Ilha do Fundão, Rio de Janeiro, RJ (Brazil); Ometto, Jean P.H.B. [Instituto Nacional de Pesquisas Espaciais, Centro de Ciências do Sistema Terrestre, Avenida dos Astronautas, 1758, Jardim da Granja, São José dos Campos, SP (Brazil); Camargo, Plínio B. de [Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Avenida Centenário, 303, São Dimas, Piracicaba, SP (Brazil); and others

    2016-11-15

    The present study assesses mercury biomagnification and the trophic structure of the ichthyofauna from the Puruzinho Lake, Brazilian Amazon. In addition to mercury determination, the investigation comprised the calculation of Trophic Magnification Factor (TMF) and Trophic Magnification Slope (TMS), through the measurements of stable isotopes of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in fish samples. These assessments were executed in two different scenarios, i.e., considering (1) all fish species or (2) only the resident fish (excluding the migratory species). Bottom litter, superficial sediment and seston were the sources used for generating the trophic position (TP) data used in the calculation of the TMF. Samples from 84 fish were analysed, comprising 13 species, which were categorized into four trophic guilds: iliophagous, planktivorous, omnivorous and piscivorous fish. The δ{sup 13}C values pointed to the separation of the ichthyofauna into two groups. One group comprised iliophagous and planktivorous species, which are linked to the food chains of phytoplankton and detritus. The other group was composed by omnivorous and piscivorous fish, which are associated to the trophic webs of phytoplankton, bottom litter, detritus, periphyton, as well as to food chains of igapó (blackwater-flooded Amazonian forests). The TP values suggest that the ichthyofauna from the Puruzinho Lake is part of a short food web, with three well-characterized trophic levels. Mercury concentrations and δ{sup 13}C values point to multiple sources for Hg input and transfer. The similarity in Hg levels and TP values between piscivorous and planktivorous fish suggests a comparable efficiency for the transfer of this metal through pelagic and littoral food chains. Regarding the two abovementioned scenarios, i.e., considering (1) the entire ichthyofauna and (2) only the resident species, the TMF values were 5.25 and 4.49, as well as the TMS values were 0.21 and 0.19, respectively

  10. Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian Amazon

    International Nuclear Information System (INIS)

    Azevedo-Silva, Claudio Eduardo; Almeida, Ronaldo; Carvalho, Dario P.; Ometto, Jean P.H.B.; Camargo, Plínio B. de

    2016-01-01

    The present study assesses mercury biomagnification and the trophic structure of the ichthyofauna from the Puruzinho Lake, Brazilian Amazon. In addition to mercury determination, the investigation comprised the calculation of Trophic Magnification Factor (TMF) and Trophic Magnification Slope (TMS), through the measurements of stable isotopes of carbon (δ 13 C) and nitrogen (δ 15 N) in fish samples. These assessments were executed in two different scenarios, i.e., considering (1) all fish species or (2) only the resident fish (excluding the migratory species). Bottom litter, superficial sediment and seston were the sources used for generating the trophic position (TP) data used in the calculation of the TMF. Samples from 84 fish were analysed, comprising 13 species, which were categorized into four trophic guilds: iliophagous, planktivorous, omnivorous and piscivorous fish. The δ 13 C values pointed to the separation of the ichthyofauna into two groups. One group comprised iliophagous and planktivorous species, which are linked to the food chains of phytoplankton and detritus. The other group was composed by omnivorous and piscivorous fish, which are associated to the trophic webs of phytoplankton, bottom litter, detritus, periphyton, as well as to food chains of igapó (blackwater-flooded Amazonian forests). The TP values suggest that the ichthyofauna from the Puruzinho Lake is part of a short food web, with three well-characterized trophic levels. Mercury concentrations and δ 13 C values point to multiple sources for Hg input and transfer. The similarity in Hg levels and TP values between piscivorous and planktivorous fish suggests a comparable efficiency for the transfer of this metal through pelagic and littoral food chains. Regarding the two abovementioned scenarios, i.e., considering (1) the entire ichthyofauna and (2) only the resident species, the TMF values were 5.25 and 4.49, as well as the TMS values were 0.21 and 0.19, respectively. These findings

  11. Variable δ15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    Science.gov (United States)

    Olin, Jill A.; Hussey, Nigel E.; Grgicak-Mannion, Alice; Fritts, Mark W.; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their community will be influenced with consequences for conservation and management actions. PMID:24147026

  12. Drivers of trophic amplification of ocean productivity trends in a changing climate

    Science.gov (United States)

    Stock, C. A.; Dunne, J. P.; John, J. G.

    2014-07-01

    Pronounced projected 21st century trends in regional oceanic net primary production (NPP) raise the prospect of significant redistributions of marine resources. Recent results further suggest that NPP changes may be amplified at higher trophic levels. Here, we elucidate the role of planktonic food web dynamics in driving projected changes in mesozooplankton production (MESOZP) found to be, on average, twice as large as projected changes in NPP by the latter half of the 21st century under a high emissions scenario. Globally, MESOZP was projected to decline by 7.9% but regional MESOZP changes sometimes exceeded 50%. Changes in three planktonic food web properties - zooplankton growth efficiency (ZGE), the trophic level of mesozooplankton (MESOTL), and the fraction of NPP consumed by zooplankton (zooplankton-phytoplankton coupling, ZPC), were demonstrated to be responsible for the projected amplification. Zooplankton growth efficiencies (ZGE) changed with NPP, amplifying both NPP increases and decreases. Negative amplification (i.e., exacerbation) of projected subtropical NPP declines via this mechanism was particularly strong since consumers in the subtropics already have limited surplus energy above basal metabolic costs. Increased mesozooplankton trophic level (MESOTL) resulted from projected declines in large phytoplankton production, the primary target of herbivorous mesozooplankton. This further amplified negative subtropical NPP declines but was secondary to ZGE and, at higher latitudes, was often offset by increased ZPC. Marked ZPC increases were projected for high latitude regions experiencing shoaling of deep winter mixing or decreased winter sea ice - both tending to increase winter zooplankton biomass and enhance grazer control of spring blooms. Increased ZPC amplified projected NPP increases associated with declining sea ice in the Artic and damped projected NPP declines associated with decreased mixing in the Northwest Atlantic and Southern Ocean

  13. Trophic diversity in the evolution and community assembly of loricariid catfishes

    Directory of Open Access Journals (Sweden)

    Lujan Nathan K

    2012-07-01

    Full Text Available Abstract Background The Neotropical catfish family Loricariidae contains over 830 species that display extraordinary variation in jaw morphologies but nonetheless reveal little interspecific variation from a generalized diet of detritus and algae. To investigate this paradox, we collected δ13C and δ15N stable isotope signatures from 649 specimens representing 32 loricariid genera and 82 species from 19 local assemblages distributed across South America. We calculated vectors representing the distance and direction of each specimen relative to the δ15N/δ13C centroid for its local assemblage, and then examined the evolutionary diversification of loricariids across assemblage isotope niche space by regressing the mean vector for each genus in each assemblage onto a phylogeny reconstructed from osteological characters. Results Loricariids displayed a total range of δ15N assemblage centroid deviation spanning 4.9‰, which is within the tissue–diet discrimination range known for Loricariidae, indicating that they feed at a similar trophic level and that δ15N largely reflects differences in their dietary protein content. Total range of δ13C deviation spanned 7.4‰, which is less than the minimum range reported for neotropical river fish communities, suggesting that loricariids selectively assimilate a restricted subset of the full basal resource spectrum available to fishes. Phylogenetic regression of assemblage centroid-standardized vectors for δ15N and δ13C revealed that loricariid genera with allopatric distributions in disjunct river basins partition basal resources in an evolutionarily conserved manner concordant with patterns of jaw morphological specialization and with evolutionary diversification via ecological radiation. Conclusions Trophic partitioning along elemental/nutritional gradients may provide an important mechanism of dietary segregation and evolutionary diversification among loricariids and perhaps other taxonomic

  14. Simulation of carbon isotope discrimination of the terrestrial biosphere

    Science.gov (United States)

    Suits, N. S.; Denning, A. S.; Berry, J. A.; Still, C. J.; Kaduk, J.; Miller, J. B.; Baker, I. T.

    2005-03-01

    We introduce a multistage model of carbon isotope discrimination during C3 photosynthesis and global maps of C3/C4 plant ratios to an ecophysiological model of the terrestrial biosphere (SiB2) in order to predict the carbon isotope ratios of terrestrial plant carbon globally at a 1° resolution. The model is driven by observed meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), constrained by satellite-derived Normalized Difference Vegetation Index (NDVI) and run for the years 1983-1993. Modeled mean annual C3 discrimination during this period is 19.2‰; total mean annual discrimination by the terrestrial biosphere (C3 and C4 plants) is 15.9‰. We test simulation results in three ways. First, we compare the modeled response of C3 discrimination to changes in physiological stress, including daily variations in vapor pressure deficit (vpd) and monthly variations in precipitation, to observed changes in discrimination inferred from Keeling plot intercepts. Second, we compare mean δ13C ratios from selected biomes (Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal) to the observed values from Keeling plots at these biomes. Third, we compare simulated zonal δ13C ratios in the Northern Hemisphere (20°N to 60°N) to values predicted from high-frequency variations in measured atmospheric CO2 and δ13C from terrestrially dominated sites within the NOAA-Globalview flask network. The modeled response to changes in vapor pressure deficit compares favorably to observations. Simulated discrimination in tropical forests of the Amazon basin is less sensitive to changes in monthly precipitation than is suggested by some observations. Mean model δ13C ratios for Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal biomes compare well with the few measurements available; however, there is more variability in observations than in the simulation, and modeled δ13C values for tropical forests are heavy relative to observations

  15. Ecological impact of transhumance on the trophic state of alpine lakes in Gran Paradiso National Park

    Directory of Open Access Journals (Sweden)

    Tiberti R.

    2014-01-01

    Full Text Available Transhumance – the summer transfer of livestock to highland pastures – is a traditional practice in the European Alps and is considered an integral part of the mountain ecosystem. Mountain lakes are generally oligotrophic systems and are particularly sensitive to the nutrient input caused by livestock. The aim of the present study was to quantify the impact of livestock grazing on the trophic state of high-altitude lakes in an area where transhumance is a traditional practice (Gran Paradiso National Park, Western Italian Alps, taking into account its dual value of ecosystem component and potential threat to lakes’ trophic status. The impact of flocks and herds grazing was estimated on sensitive parameters related to the trophic state of alpine lakes: water transparency, nutrient content, bacterial load and chlorophyll-a concentration. Transhumance produced a significant increase in the trophic state of lakes with high grazing pressure, but little or no effect was found at soft-impacted lakes. Even though heavy-impacted lakes represent a minority of the studied lakes (three out of twenty, we indicated conservation measures such as fencing, wastewater treatment and livestock exclosure to be tested in Gran Paradiso National Park.

  16. Enhanced Estimation of Terrestrial Loadings for TMDLs: Normalization Approach

    Science.gov (United States)

    TMDL implementation plans to remediate pathogen-impaired streams are usually based on deterministic terrestrial fate and transport (DTFT) models. A novel protocol is proposed that can effectively, efficiently, and explicitly capture the predictive uncertainty of DTFT models used to establish terres...

  17. Convergence and Divergence in a Multi-Model Ensemble of Terrestrial Ecosystem Models in North America

    Science.gov (United States)

    Dungan, J. L.; Wang, W.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.

    2009-12-01

    In support of NACP, we are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to evaluate uncertainties among ecosystem models, satellite datasets, and in-situ measurements. The models used in the experiment include public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. The reference datasets include MODIS Gross Primary Production (GPP) and Net Primary Production (NPP) products, Fluxnet measurements, and other observational data. The simulation results and the reference datasets are consistently processed and systematically compared in the climate (temperature-precipitation) space; in particular, an alternative to the Taylor diagram is developed to facilitate model-data intercomparisons in multi-dimensional space. The key findings of this study indicate that: the simulated GPP/NPP fluxes are in general agreement with observations over forests, but are biased low (underestimated) over non-forest types; large uncertainties of biomass and soil carbon stocks are found among the models (and reference datasets), often induced by seemingly “small” differences in model parameters and implementation details; the simulated Net Ecosystem Production (NEP) mainly responds to non-respiratory disturbances (e.g. fire) in the models and therefore is difficult to compare with flux data; and the seasonality and interannual variability of NEP varies significantly among models and reference datasets. These findings highlight the problem inherent in relying on only one modeling approach to map surface carbon fluxes and emphasize the pressing necessity of expanded and enhanced monitoring systems to narrow critical structural and parametrical uncertainties among ecosystem models.

  18. Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Michael C., E-mail: newman@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Xu Xiaoyu, E-mail: xiaoyu@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Condon, Anne, E-mail: anne_condon@fws.gov [U.S. Fish and Wildlife, 6669 Short Lane, Gloucester, VA 23061 (United States); Liang Lian, E-mail: liang@cebam.net [Cebam Analytical, Inc., 18804 North Creek Parkway, Suite 110, Bothell, WA 98011 (United States)

    2011-10-15

    Mercury biomagnification on the South River floodplain (Virginia, USA) was modeled at two locations along a river reach previously modeled for methylmercury movement through the aquatic trophic web. This provided an opportunity to compare biomagnification in adjoining trophic webs. Like the aquatic modeling results, methylmercury-based models provided better prediction than those for total mercury. Total mercury Food Web Magnification Factors (FWMF, fold per trophic level) for the two locations were 4.9 and 9.5. Methylmercury FWMF for the floodplain locations were higher (9.3 and 25.1) than that of the adjacent river (4.6). Previous speculation was not resolved regarding whether the high mercury concentrations observed in floodplain birds was materially influenced by river prey consumption by riparian spiders and subsequent spider movement into the trophic web of the adjacent floodplains. Results were consistent with a gradual methylmercury concentration increase from contaminated floodplain soil, to arthropod prey, and finally, to avian predators. - Highlights: > First comparison of methylmercury biomagnification in adjacent river/land food webs. > Methylmercury increased more rapidly in the terrestrial, than the aquatic, food web. > Methylmercury increased gradually from soil, to prey, and, to avian predators. - Higher methylmercury biomagnification on South River floodplain than the associated river likely explain high mercury in floodplain birds.

  19. Microbial Ecophysiology of Whey Biomethanation: Characterization of Bacterial Trophic Populations and Prevalent Species in Continuous Culture

    OpenAIRE

    Chartrain, M.; Zeikus, J. G.

    1986-01-01

    The organization and species composition of bacterial trophic groups associated with lactose biomethanation were investigated in a whey-processing chemostat by enumeration, isolation, and general characterization studies. The bacteria were spatially organized as free-living forms and as self-immobilized forms appearing in flocs. Three dominant bacterial trophic group populations were present (in most probable number per milliliter) whose species numbers varied with the substrate consumed: hyd...

  20. Review of the ecological parameters of radionuclide turnover in vertebrate food chains

    International Nuclear Information System (INIS)

    Kitchings, T.; DiGregorio, D.; Van Voris, P.

    1975-01-01

    Ecological studies of radionuclides in the environment have a long tradition in developing the capability to identify and predict movement and concentration of nuclides in agronomic food chains leading to man. Food chain pathways and transfer coefficients for the non-agronomic portions of natural and managed ecosystems characteristic of affected habitats adjacent to nuclear facilities have not been adequately characterized to establish reliable dispersion models for radionuclide releases. This information is necessary in order to assess the impact that such installations will have on the biota of natural ecosystems. Since food chains are the major processes transferring elements from one trophic level to another in terrestrial ecosystems, information is needed on the food-chain transfer pathways, bioconcentration by each trophic component, and turnover rates by receptor organisms. These data are prerequisite inputs for food-chain transport models and can be correlated with species characteristics (e.g., body weight and feeding habitats), to provide indices for predictive dispersion calculations. Application of these models for radionuclide transfer can aid in the assessment of radioactive releases from nuclear reactor facilities to terrestrial non-agronomic food chains. (U.S.)

  1. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.)

    International Nuclear Information System (INIS)

    Farrell, Paul; Nelson, Kathryn

    2013-01-01

    This study investigated the trophic transfer of microplastic from mussels to crabs. Mussels (Mytilus edulis) were exposed to 0.5 μm fluorescent polystyrene microspheres, then fed to crabs (Carcinus maenas). Tissue samples were then taken at intervals up to 21 days. The number of microspheres in the haemolymph of the crabs was highest at 24 h (15 033 ml −1 ± SE 3146), and was almost gone after 21 days (267 ml −1 ± SE 120). The maximum amount of microspheres in the haemolymph was 0.04% of the amount to which the mussels were exposed. Microspheres were also found in the stomach, hepatopancreas, ovary and gills of the crabs, in decreasing numbers over the trial period. This study is the first to show ‘natural’ trophic transfer of microplastic, and its translocation to haemolymph and tissues of a crab. This has implications for the health of marine organisms, the wider food web and humans. -- Highlights: ► Microplastic transferred in marine food chain. ► Microplastic transferred to haemolymph when ingested in food. ► Microplastic remains in organism for at least 21 days. -- This communication demonstrates trophic level transfer of microplastic particles from Mytilus edulis to Carcinus maenas

  2. Performance Analysis and Scaling Behavior of the Terrestrial Systems Modeling Platform TerrSysMP in Large-Scale Supercomputing Environments

    Science.gov (United States)

    Kollet, S. J.; Goergen, K.; Gasper, F.; Shresta, P.; Sulis, M.; Rihani, J.; Simmer, C.; Vereecken, H.

    2013-12-01

    In studies of the terrestrial hydrologic, energy and biogeochemical cycles, integrated multi-physics simulation platforms take a central role in characterizing non-linear interactions, variances and uncertainties of system states and fluxes in reciprocity with observations. Recently developed integrated simulation platforms attempt to honor the complexity of the terrestrial system across multiple time and space scales from the deeper subsurface including groundwater dynamics into the atmosphere. Technically, this requires the coupling of atmospheric, land surface, and subsurface-surface flow models in supercomputing environments, while ensuring a high-degree of efficiency in the utilization of e.g., standard Linux clusters and massively parallel resources. A systematic performance analysis including profiling and tracing in such an application is crucial in the understanding of the runtime behavior, to identify optimum model settings, and is an efficient way to distinguish potential parallel deficiencies. On sophisticated leadership-class supercomputers, such as the 28-rack 5.9 petaFLOP IBM Blue Gene/Q 'JUQUEEN' of the Jülich Supercomputing Centre (JSC), this is a challenging task, but even more so important, when complex coupled component models are to be analysed. Here we want to present our experience from coupling, application tuning (e.g. 5-times speedup through compiler optimizations), parallel scaling and performance monitoring of the parallel Terrestrial Systems Modeling Platform TerrSysMP. The modeling platform consists of the weather prediction system COSMO of the German Weather Service; the Community Land Model, CLM of NCAR; and the variably saturated surface-subsurface flow code ParFlow. The model system relies on the Multiple Program Multiple Data (MPMD) execution model where the external Ocean-Atmosphere-Sea-Ice-Soil coupler (OASIS3) links the component models. TerrSysMP has been instrumented with the performance analysis tool Scalasca and analyzed

  3. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs.

    Science.gov (United States)

    Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G

    2018-01-01

    Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.

  4. Relationship between ecomorphology and trophic segregation in four closely related sympatric fish species (Teleostei, Sciaenidae).

    Science.gov (United States)

    Blasina, Gabriela; Molina, Juan; Lopez Cazorla, Andrea; Díaz de Astarloa, Juan

    This study explores the relationship between ecomorphology and trophic segregation in four closely related sympatric fish species (Teleostei, Sciaenidae) that are known to differ in their trophic habits. Only adult specimens were analyzed: 103 Cynoscion guatucupa, 77 Pogonias cromis, 61 Micropogonias furnieri, and 48 Menticirrhus americanus. The four species presented divergent ecomorphological traits related to swimming agility, prey spotting and capture, and the potential size of prey they were able to swallow. Results suggest that these sciaenid species can partition the food resources, even though they completely overlap in space. Differences in their ecomorphological traits appear to correlate closely with the diet and consequently could explain the trophic differentiation observed. Arguably, these ecomorphological differences play a significant role in the coexistence of the adults of these sympatric fish species. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. Trophic polymorphism, habitat and diet segregation in Percichthys trucha (Pisces : Percichthyidae) in the Andes

    DEFF Research Database (Denmark)

    Ruzzante, D.E.; Walde, S.J.; Cussac, V.E.

    1998-01-01

    Divergent natural selection affecting specific trait combinations that lead to greater efficiency in resource exploitation is believed to be a major mechanism leading to trophic polymorphism and adaptive radiation. We present evidence of trophic polymorphism involving two benthic morphs within...... Percichthys trucha, a fish endemic to temperate South America. In a series of lakes located in the southern Andes, we found two morphs of P. trucha that could be distinguished on the basis of gill raker length and five other morphological measures, most of which are likely associated with the use of food...

  6. Quantifying spatially derived carrying capacity occupation: Framework for characterisation modelling and application to terrestrial acidification

    DEFF Research Database (Denmark)

    Bjørn, Anders; Margni, M.; Bulle, C.

    *year. This metric resembles that of the ecological footprint method and may be compared to the availability of land or water. The framework was applied to the terrestrial acidification impact category. The geochemical steady-state model PROFILE was used to quantify carrying capacities as deposition levels......The popularity of the ecological footprint method and the planetary boundaries concept shows an increasing interest among decision makers in comparing environmental impacts to carrying capacities of natural systems. Recently carrying capacity-based normalisation references were developed for impact...

  7. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey

    2013-01-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can...

  8. Protection by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine.

    Science.gov (United States)

    Cass, Wayne A; Peters, Laura E; Harned, Michael E; Seroogy, Kim B

    2006-08-01

    Repeated methamphetamine (METH) administration to animals can result in long-lasting decreases in striatal dopamine (DA) content. It has previously been shown that glial cell line-derived neurotrophic factor (GDNF) can reduce the DA-depleting effects of neurotoxic doses of METH. However, there are several other trophic factors that are protective against dopaminergic toxins. Thus, the present experiments further investigated the protective effect of GDNF as well as the protective effects of several other trophic factors. Male Fischer-344 rats were given an intracerebral injection of trophic factor (2-10 microg) 1 day before METH (5 mg/kg, s.c., 4 injections at 2-h intervals). Seven days later DA levels in the striatum were measured using high-performance liquid chromatography (HPLC). Initial experiments indicated that only intrastriatal GDNF, and not intranigral GDNF, was protective. Thereafter, all other trophic factors were administered into the striatum. Members of the GDNF family (GDNF, neurturin, and artemin) all provided significant protection against the DA-depleting effects of METH, with GDNF providing the greatest protection. Brain-derived neurotrophic factor, neurotrophin-3, acidic fibroblast growth factor, basic fibroblast growth factor, ciliary neurotrophic factor, transforming growth factor-alpha (TGF-alpha), heregulin beta1 (HRG-beta1), and amphiregulin (AR) provided no significant protection at the doses examined. These results suggest that the GDNF family of trophic factors can provide significant protection against the DA-depleting effects of neurotoxic doses of METH.

  9. Assessment of trophic ecomorphology in non-alligatoroid crocodylians and its adaptive and taxonomic implications.

    Science.gov (United States)

    Iijima, Masaya

    2017-08-01

    Although the establishment of trophic ecomorphology in living crocodylians can contribute to estimating feeding habits of extinct large aquatic reptiles, assessment of ecomorphological traits other than the snout shape has scarcely been conducted in crocodylians. Here, I tested the validity of the proposed trophic ecomorphological traits in crocodylians by examining the correlation between those traits and the snout shape (an established trophic ecomorphology), using 10 non-alligatoroid crocodylian species with a wide range of snout shape. I then compared the ontogenetic scaling of trophic ecomorphology to discuss its adaptive and taxonomic significance. The results demonstrated that degree of heterodonty, tooth spacing, size of supratemporal fenestra (STF), ventral extension of pterygoid flange and length of lower jaw symphysis are significantly correlated with snout shape by both non-phylogenetic and phylogenetic regression analyses. Gavialis gangeticus falls outside of 95% prediction intervals for the relationships of some traits and the snout shape, suggesting that piscivorous specialization involves the deviation from the typical transformation axis of skull characters. The comparative snout shape ontogeny revealed a universal trend of snout widening through growth in the sampled crocodylians, implying the existence of a shared size-dependent biomechanical constraint in non-alligatoroid crocodylians. Growth patterns of other traits indicated that G. gangeticus shows atypical trends for degree of heterodonty, size of STF, and symphysis length, whereas the same trends are shared for tooth spacing and ventral extension of pterygoid flange among non-alligatoroid crocodylians. These suggest that some characters are ontogenetically labile in response to prey preference shifts through growth, but other characters are in keeping with the conserved biomechanics among non-alligatoroid crocodylians. Some important taxonomic characters such as the occlusal pattern are

  10. Trophic interactions in changing landscapes: responses of soil food webs.

    NARCIS (Netherlands)

    Hedlund, K.; Griffiths, B.; Christensen, S.; Scheu, S.; Setälä, H.; Tscharntke, T.; Verhoef, H.A.

    2004-01-01

    Soil communities in landscapes that are rapidly changing due to a range of anthropogenic processes can be regarded as highly transient systems where interactions between competing species or trophic levels may be seriously disrupted. In disturbed communities dispersal in space and time has a role in

  11. Trophic position of coexisting krill species: a stable isotope approach

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Bode, Antonio; Nielsen, Torkel Gissel

    2014-01-01

    Four krill species with overlapping functional biology coexist in Greenland waters. Here, we used stable isotopes to investigate and discuss their trophic role and mode of coexistence. Bulk carbon (δ13C) and nitrogen (δ15N) stable isotope analyses of Thysanoessa longicaudata, T. inermis, T. raschii...

  12. Bioaccumulation and trophic transfer of perfluorinated compounds in a eutrophic freshwater food web

    International Nuclear Information System (INIS)

    Xu, Jian; Guo, Chang-Sheng; Zhang, Yuan; Meng, Wei

    2014-01-01

    In this study, the bioaccumulation of perfluorinated compounds from a food web in Taihu Lake in China was investigated. The organisms included egret bird species, carnivorous fish, omnivorous fish, herbivorous fish, zooplankton, phytoplankton, zoobenthos and white shrimp. Isotope analysis by δ 13 C and δ 15 N indicated that the carnivorous fish and egret were the top predators in the studied web, occupying trophic levels intermediate between 3.66 and 4.61, while plankton was at the lowest trophic level. Perfluorinated carboxylates (PFCAs) with 9–12 carbons were significantly biomagnified, with trophic magnification factors (TMFs) ranging from 2.1 to 3.7. The TMF of perfluorooctane sulfonate (PFOS) (2.9) was generally comparable to or lower than those of the PFCAs in the same food web. All hazard ratio (HR) values reported for PFOS and perfluorooctanoate (PFOA) were less than unity, suggesting that the detected levels would not cause any immediate health effects to the people in Taihu Lake region through the consumption of shrimps and fish. -- Highlights: • Biomagnification of PFCs in the food web of a eutrophic freshwater lake was studied. • Carnivorous fish and egret were the top predators while plankton was at the lowest trophic level. • PFCAs with 9–12 carbons were significantly biomagnified. • TMF of PFOS was comparable to or lower than those of the PFCAs in the same food web. • PFOS and PFOA would not cause health effects to the people via diet consumption. -- PFCs were found to be bioaccumulated and biomagnified in a food web from a eutrophic freshwater lake in subtropical area

  13. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication.

    Science.gov (United States)

    Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Qin, Boqiang; Yao, Xiaolong; Zhang, Yibo

    2017-12-26

    Chromophoric dissolved organic matter (CDOM) is an important optically active substance in aquatic environments and plays a key role in light attenuation and in the carbon, nitrogen and phosphorus biogeochemical cycles. Although the optical properties, abundance, sources, cycles, compositions and remote sensing estimations of CDOM have been widely reported in different aquatic environments, little is known about the optical properties and composition changes in CDOM along trophic gradients. Therefore, we collected 821 samples from 22 lakes along a trophic gradient (oligotrophic to eutrophic) in China from 2004 to 2015 and determined the CDOM spectral absorption and nutrient concentrations. The total nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chla) concentrations and the Secchi disk depth (SDD) ranged from 0.02 to 24.75 mg/L, 0.002-3.471 mg/L, 0.03-882.66 μg/L, and 0.05-17.30 m, respectively. The trophic state index (TSI) ranged from 1.55 to 98.91 and covered different trophic states, from oligotrophic to hyper-eutrophic. The CDOM absorption coefficient at 254 nm (a(254)) ranged from 1.68 to 92.65 m -1 . Additionally, the CDOM sources and composition parameters, including the spectral slope and relative molecular size value, exhibited a substantial variability from the oligotrophic level to other trophic levels. The natural logarithm value of the CDOM absorption, lna(254), is highly linearly correlated with the TSI (r 2  = 0.92, p 10 m -1 , respectively. The results suggested that the CDOM absorption coefficient a(254) might be a more sensitive single indicator of the trophic state than TN, TP, Chla and SDD. Therefore, we proposed a CDOM absorption coefficient and determined the threshold for defining the trophic state of a lake. Several advantages of measuring and estimating CDOM, including rapid experimental measurements, potential in situ optical sensor measurements and large-spatial-scale remote sensing estimations, make it

  14. Effects of sexual dimorphism and landscape composition on the trophic behavior of Greater Prairie-Chicken.

    Directory of Open Access Journals (Sweden)

    Beatriz Blanco-Fontao

    Full Text Available Partitioning of ecological niche is expected in lekking species that show marked sexual size dimorphism as a consequence of sex-specific ecological constraints. However, niche partitioning is uncertain in species with moderate sexual dimorphism. In addition, the ecological niche of a species may also be affected by landscape composition; particularly, agricultural fragmentation may greatly influence the trophic behavior of herbivores. We studied trophic niche variation in Greater Prairie-Chickens (Tympanuchus cupido, a grouse species that shows moderate sex-dimorphism. Greater Prairie-Chickens are native to tallgrass prairies of North America, although populations persist in less natural mosaics of cropland and native habitats. We used stable isotope analysis of carbon and nitrogen in blood, claws and feathers to assess seasonal differences in trophic niche breadth and individual specialization between male and female Greater Prairie-Chickens, and between birds living in continuous and fragmented landscapes. We found that females showed broader niches and higher individual specialization than males, especially in winter and autumn. However, differences between females and males were smaller in spring when birds converge at leks, suggesting that females and males may exhibit similar feeding behaviors during the lekking period. In addition, we found that birds living in native prairies showed greater annual trophic variability than conspecifics in agricultural mosaic landscapes. Native habitats may provide greater dietary diversity, resulting in greater diversity of feeding strategies.

  15. Towards 250 m mapping of terrestrial primary productivity over Canada

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  16. Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Science.gov (United States)

    Wollheim, W.M.; Stewart, R. J.; Aiken, George R.; Butler, Kenna D.; Morse, Nathaniel B.; Salisbury, J.

    2015-01-01

    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.

  17. [Characteristics of terrestrial ecosystem primary productivity in East Asia based on remote sensing and process-based model].

    Science.gov (United States)

    Zhang, Fang-Min; Ju, Wei-Min; Chen, Jing-Ming; Wang, Shao-Qiang; Yu, Gui-Rui; Han, Shi-Jie

    2012-02-01

    Based on the bi-linearly interpolated meteorological reanalysis data from National Centers for Environmental Prediction, USA and by using the leaf area index data derived from the GIMMS NDVI to run the process-based Boreal Ecosystems Productivity Simulator (BEPS) model, this paper simulated and analyzed the spatiotemporal characteristics of the terrestrial ecosystem gross primary productivity (GPP) and net primary productivity (NPP) in East Asia in 2000-2005. Before regional simulating and calculating, the observation GPP data of different terrestrial ecosystem in 15 experimental stations of AsiaFlux network and the inventory measurements of NPP at 1300 sampling sites were applied to validate the BEPS GPP and NPP. The results showed that BEPS could well simulate the changes in GPP and NPP of different terrestrial ecosystems, with the R2 ranging from 0.86 to 0.99 and the root mean square error (RMSE) from 0.2 to 1.2 g C x m(-2) x d(-1). The simulated values by BEPS could explain 78% of the changes in annual NPP, and the RMSE was 118 g C x m(-2) x a(-1). In 2000-2005, the averaged total GPP and total NPP of the terrestrial ecosystems in East Asia were 21.7 and 10.5 Pg C x a(-1), respectively, and the GPP and NPP exhibited similar spatial and temporal variation patterns. During the six years, the total NPP of the terrestrial ecosystems varied from 10.2 to 10.7 Pg C x a(-1), with a coefficient of variation being 2. 2%. High NPP (above 1000 g C x m(-2) x a(-1)) occurred in the southeast island countries, while low NPP (below 30 g C x m(-2) x a(-1)) occurred in the desert area of Northwest China. The spatial patterns of NPP were mainly attributed to the differences in the climatic variables across East Asia. The NPP per capita also varied greatly among different countries, which was the highest (70217 kg C x a(-1)) in Mongolia, far higher than that (1921 kg C x a(-1)) in China, and the lowest (757 kg C x a(-1)) in India.

  18. Trophic complexity and the adaptive value of damage-induced plant volatiles.

    Directory of Open Access Journals (Sweden)

    Ian Kaplan

    Full Text Available Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants "call for help" to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops.

  19. Community cascades in a marine pelagic food web controlled by the non-visual apex predator Mnemiopsis leidyi

    DEFF Research Database (Denmark)

    Tiselius, Peter; Møller, Lene Friis

    2017-01-01

    Trophic cascades are a ubiquitous feature of many terrestrial and fresh-water food webs, but have been difficult to demonstrate in marine systems with multispecies trophic levels. Here we describe significant trophic cascades in an open coastal planktonic ecosystem exposed to an introduced top...... predator. The ctenophore Mnemiopsis leidyi was monitored for an 8-year period concurrent with measures of the food web structure of the plankton and strong trophic cascades were evident. In the 5 years when M. leidyi were found, their target prey (grazing copepods) were reduced 5-fold and the primary...

  20. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    Science.gov (United States)

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon