WorldWideScience

Sample records for terrestrial primary production

  1. Biogeochemistry of Terrestrial Net Primary Production

    Science.gov (United States)

    Chapin, F. S., III; Eviner, V. T.

    2003-12-01

    Net primary production (NPP) is the amount of carbon and energy that enters ecosystems. It provides the energy that drives all biotic processes, including the trophic webs that sustain animal populations and the activity of decomposer organisms that recycle the nutrients required to support primary production. NPP not only sets the baseline for the functioning of all ecosystem components but also is the best summary variable of ecosystem processes, being the result of numerous interactions among elements, organisms, and environment. This dual role makes NPP the key integrative process in ecosystems (McNaughton et al., 1989) and thus a critical component in our understanding of ecosystem responses to the many changes that are occurring in the global environment. In this chapter, we explain the mechanisms that control NPP, including the environmental constraints on plant growth and the ways in which plants adjust to and alter these constraints.

  2. Water use efficiency of net primary production in global terrestrial ...

    Indian Academy of Sciences (India)

    Water use efficiency; global terrestrial ecosystems; MODIS; net primary production; evapotranspiration;. Köppen–Geiger climate classification. J. Earth Syst. ..... Lei Xia et al. from east to west can be observed in Europe and. South America. However, the patterns in Asia and. North America are more complex, in that the WUE.

  3. Towards 250 m mapping of terrestrial primary productivity over Canada

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  4. Variations of Terrestrial Net Primary Productivity in East Asia

    Directory of Open Access Journals (Sweden)

    Fangmin Zhang

    2012-01-01

    Full Text Available Due to the heterogeneity and complexity of terrestrial ecosystems of East Asia, a better understanding of relationships between climate change and net primary productivity (NPP distribution is important to predict future carbon dynamics. The objective of this study is to analyze the temporal-spatial patterns of NPP in East Asia (10°S - 55°N, 60 - 155°E from 1982 to 2006 using the process-based Boreal Ecosystem Productivity Simulator (BEPS model. Prior to the regional simulation, the annual simulated NPP was validated using field observed NPP demonstrating the ability of BEPS to simulate NPP in different ecosystems of East Asia.

  5. Large historical growth in global terrestrial gross primary production

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. E.; Berry, J. A.; Seibt, U.; Smith, S. J.; Montzka, S. A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M.

    2017-04-05

    Growth in terrestrial gross primary production (GPP) may provide a feedback for climate change, but there is still strong disagreement on the extent to which biogeochemical processes may suppress this GPP growth at the ecosystem to continental scales. The consequent uncertainty in modeling of future carbon storage by the terrestrial biosphere constitutes one of the largest unknowns in global climate projections for the next century. Here we provide a global, measurement-based estimate of historical GPP growth using long-term atmospheric carbonyl sulfide (COS) records derived from ice core, firn, and ambient air samples. We interpret these records using a model that relates changes in the COS concentration to changes in its sources and sinks, the largest of which is proportional to GPP. The COS history was most consistent with simulations that assume a large historical GPP growth. Carbon-climate models that assume little to no GPP growth predicted trajectories of COS concentration over the anthropogenic era that differ from those observed. Continued COS monitoring may be useful for detecting ongoing changes in GPP while extending the ice core record to glacial cycles could provide further opportunities to evaluate earth system models.

  6. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  7. Isotopic tracers for net primary productivity for a terrestrial esocystem ...

    African Journals Online (AJOL)

    Modeled estimates of heterotrophic soil respiration exceeds slightly the estimated NPP values, implying that carbon flux to and from the Volta river watershed is close to being in balance. In other words, the watershed releases annually more carbon dioxide to the atmosphere than it takes. Apart from the terrestrial carbon flux ...

  8. Patterns of new versus recycled primary production in the terrestrial biosphere

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways, a...

  9. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    NARCIS (Netherlands)

    Xia, J.; Niu, S.; Ciais, P.; Janssens, I.A.; Chen, J.; Ammann, C.; Arain, A.; Blanken, P.D.; Cescatti, A.; Moors, E.J.

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of

  10. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems

    NARCIS (Netherlands)

    Garbulsky, M.F.; Peñuelas, J.; Papale, D.; Ardö, J.; Goulden, M.L.; Kiely, G.; Richardson, A.D.; Rotenberg, E.; Veenendaal, E.M.; Filella, I.

    2010-01-01

    Aim The controls of gross radiation use efficiency (RUE), the ratio between gross primary productivity (GPP) and the radiation intercepted by terrestrial vegetation, and its spatial and temporal variation are not yet fully understood. Our objectives were to analyse and synthesize the spatial

  11. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  12. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.

    Science.gov (United States)

    Zhao, Maosheng; Running, Steven W

    2010-08-20

    Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

  13. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    Science.gov (United States)

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  14. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  15. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set

    NARCIS (Netherlands)

    Verma, M.; Friedl, M.A.; Richardson, A.D.; Kiely, G.; Cescatti, A.; Law, B.E.; Wohlfahrt, G.; Gielen, G.; Roupsard, O.; Moors, E.J.

    2014-01-01

    Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency

  16. Water use efficiency of net primary production in global terrestrial ecosystems

    Science.gov (United States)

    Xia, Lei; Wang, Fei; Mu, Xingmin; Jin, Kai; Sun, Wenyi; Gao, Peng; Zhao, Guangju

    2015-07-01

    The carbon and water cycles of terrestrial ecosystems, which are strongly coupled via water use efficiency (WUE), are influenced by global climate change. To explore the relationship between the carbon and water cycles and predict the effect of climate change on terrestrial ecosystems, it is necessary to study the WUE in global terrestrial ecosystems. In this study, the 13-year WUE (i.e., net primary production (NPP)/evapotranspiration (ET)) of global terrestrial ecosystems was calculated based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) NPP (MOD17A3) and ET (MOD16A3) products from 2000 to 2012. The results indicate that the annual average WUE decreased but not significantly, and the 13-year mean value was 868.88 mg C m -2 mm -1. The variation trend of WUE value for each pixel differed greatly across the terrestrial ecosystems. A significant variation ( Pincreased from north to south in Africa and Oceania and from east to west in Europe and South America. Both latitudinal and longitudinal gradients existed in Asia and North America. The following trends in the WUE of different continents and Köppen-Geiger climates were observed: Europe (1129.71 mg C m -2 mm -1)> Oceania (1084.46 mg C m -2 mm -1)> Africa (893.51 mg C m -2 mm -1)> South America (893.07 mg C m -2 mm -1)> North America (870.79 mg C m -2 mm -1)> Asia (738.98 mg C m -2 mm -1) and warm temperate climates (1094 mg C m -2 mm -1)> snowy climates (862 mg C m -2 mm -1)> arid climates (785 mg C m -2 mm -1)> equatorial climates (732 mg C m -2 mm -1)> polar climates (435 mg C m -2 mm -1). Based on the WUE value and the present or future rainfall, the maximum carbon that fixed in one region may be theoretically calculated. Also, under the background of global climatic change, WUE may be regarded as an important reference for allotting CO 2 emissions offsets and carbon transactions.

  17. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems

    OpenAIRE

    Ling Huang; Bin He; Aifang Chen; Haiyan Wang; Junjie Liu; Aifeng Lű; Ziyue Chen

    2016-01-01

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere ...

  18. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S. [Oak Ridge National Lab., TN (United States); Scurlock, J.M.O. [King`s College London, (England); Jennings, S.V. [Tennessee Univ., Knoxville, TN (United States)

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  19. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901-2005

    Science.gov (United States)

    Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi; Zhang, Guodong; Yan, Wei; Li, Jiaxuan; Li, Bo; Dan, Li; Fisher, Joshua B.; Gao, Zhiqiang; He, Yong; Huntzinger, Deborah; Jain, Atul K.; Mao, Jiafu; Meng, Jihua; Michalak, Anna M.; Parazoo, Nicholas C.; Peng, Changhui; Poulter, Benjamin; Schwalm, Christopher R.; Shi, Xiaoying; Sun, Rui; Tao, Fulu; Tian, Hanqin; Wei, Yaxing; Zeng, Ning; Zhu, Qiuan; Zhu, Wenquan

    2016-05-01

    Despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr-1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36% and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr-1 during 1981-2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.

  20. Estimation Terrestrial Net Primary Productivity Based on CASA Model: a Case Study in Minnan Urban Agglomeration, China

    International Nuclear Information System (INIS)

    Hua, L Z; Liu, H; Zhang, X L; Zheng, Y; Man, W; Yin, K

    2014-01-01

    Net Primary Productivity (NPP) is a key component of the terrestrial carbon cycle. The research of net primary productivity will help in understanding the amount of carbon fixed by terrestrial vegetation and its influencing factors. Model simulation is considered as a cost-effective and time-efficient method for the estimation of regional and global NPP. In the paper, a terrestrial biosphere model, CASA (Carnegie Ames Stanford Approach), was applied to estimate monthly NPP in Minnan urban agglomeration (i.e. Xiamen, Zhangzhou and Quanzhou cities) of Fujian province, China, in 2009 and 2010, by incorporating satellite observation of SPOT Vegetation NDVI data together with other climatic parameters and landuse map. The model estimates average annual terrestrial NPP of Minnan area as 16.3 million Mg C. NPP decreased from southwest to the northeast. The higher NPP values exceeding 720 gC·m − 2 ·a −1 showed in North Zhangzhou city and lower values under 500 gC·m − 2 ·a −1 showed in the some areas of northeast Quanzhou city. Seasonal variations of NPP were large. It was about 45% of the total annual NPP in the three months in summer, and the NPP values were very low in winter. From 2009 to 2010, the value of annual NPP showed a slightly decrease trend, approximately 7.8% because the annual temperature for 2010 decline 13.6% compared with 2009 in despite of an increase in rainfall of about 34.3%. The results indicate that temperature was a main limiting factor on vegetation growth, but water is not a limiting factor in the rainy area

  1. [Characteristics of terrestrial ecosystem primary productivity in East Asia based on remote sensing and process-based model].

    Science.gov (United States)

    Zhang, Fang-Min; Ju, Wei-Min; Chen, Jing-Ming; Wang, Shao-Qiang; Yu, Gui-Rui; Han, Shi-Jie

    2012-02-01

    Based on the bi-linearly interpolated meteorological reanalysis data from National Centers for Environmental Prediction, USA and by using the leaf area index data derived from the GIMMS NDVI to run the process-based Boreal Ecosystems Productivity Simulator (BEPS) model, this paper simulated and analyzed the spatiotemporal characteristics of the terrestrial ecosystem gross primary productivity (GPP) and net primary productivity (NPP) in East Asia in 2000-2005. Before regional simulating and calculating, the observation GPP data of different terrestrial ecosystem in 15 experimental stations of AsiaFlux network and the inventory measurements of NPP at 1300 sampling sites were applied to validate the BEPS GPP and NPP. The results showed that BEPS could well simulate the changes in GPP and NPP of different terrestrial ecosystems, with the R2 ranging from 0.86 to 0.99 and the root mean square error (RMSE) from 0.2 to 1.2 g C x m(-2) x d(-1). The simulated values by BEPS could explain 78% of the changes in annual NPP, and the RMSE was 118 g C x m(-2) x a(-1). In 2000-2005, the averaged total GPP and total NPP of the terrestrial ecosystems in East Asia were 21.7 and 10.5 Pg C x a(-1), respectively, and the GPP and NPP exhibited similar spatial and temporal variation patterns. During the six years, the total NPP of the terrestrial ecosystems varied from 10.2 to 10.7 Pg C x a(-1), with a coefficient of variation being 2. 2%. High NPP (above 1000 g C x m(-2) x a(-1)) occurred in the southeast island countries, while low NPP (below 30 g C x m(-2) x a(-1)) occurred in the desert area of Northwest China. The spatial patterns of NPP were mainly attributed to the differences in the climatic variables across East Asia. The NPP per capita also varied greatly among different countries, which was the highest (70217 kg C x a(-1)) in Mongolia, far higher than that (1921 kg C x a(-1)) in China, and the lowest (757 kg C x a(-1)) in India.

  2. Quantitative estimates of changes in marine and terrestrial primary productivity over the past 300 million years

    OpenAIRE

    Beerling, D. J.

    1999-01-01

    Changes in marine primary production over geological time have influenced a network of global biogeochemical cycles with corresponding feedbacks on climate. However, these changes continue to remain largely unquantified because of uncertainties in calculating global estimates from sedimentary palaeoproductivity indicators. I therefore describe a new approach to the problem using a mass balance analysis of the stable isotopes (18O/16O) of oxygen with modelled O2 fluxes and isotopic exchanges b...

  3. Isotopic tracers for net primary productivity for a terrestrial ecosystem: a case study of the Volta River basin

    International Nuclear Information System (INIS)

    Hayford, E.K.; Odamtten, G.T.; Enu-Kwesi, L.

    2006-01-01

    The coupling effect of vapour release and CO2 uptake during photosynthesis plays an important role in the carbon and hydrologic cycles. The water use efficiency (WUE) for transpiration was used in calculating the net primary productivity (NPP) for terrestrial ecosystem. Three parameters were used in calculating the water and carbon balance of the River Volta watershed. These are 1) stable isotopes of hydrogen and oxygen, 2) long-term data on precipitation and evapotranspiration, and 3) stoichiometric relations of water and carbon. Results indicate that soils in the watershed annually respire 0.199 Pg C, and that the NPP is +0.029 Pg C yr-1. This implies an annual change in CO2 to the atmosphere within the watershed. Annually, River Volta watershed receives about 380 km3 of rainfall; approximately 50 per cent of which is returned to the atmosphere through plant transpiration. Associated with annual transpiration flux is a carbon flux of 0.170 x 1015 g C yr-1 or 428 g C m-2 yr-1 from the terrestrial ecosystem. Modeled estimates of heterotrophic soil respiration exceeds slightly the estimated NPP values, implying that carbon flux to and from the Volta river watershed is close to being in balance. In other words, the watershed releases annually more carbon dioxide to the atmosphere than it takes. Apart from the terrestrial carbon flux, the balance of photosynthesis and respiration in the Volta lake was also examined. The lake was found to release carbon dioxide to the atmosphere although the magnitude of the flux is smaller than that of the terrestrial ecosystem. (au)

  4. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  5. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone?

    Science.gov (United States)

    Janis, C M; Damuth, J; Theodor, J M

    2000-07-05

    Progressive changes are observed in both the composition of mammal faunas and vegetation during the Miocene epoch [24-5 mega-annum (Ma)]. These changes are usually interpreted as a response to climatic changes. In the traditional view, forests or woodlands gradually gave way to more open habitats, with grazing (grass-eating) ungulate (hoofed) mammal species replacing the browsing (leafy-vegetation-eating) species as grasslands expanded. However, data from fossil assemblages in the Great Plains region of North America show that this faunal change was not a one-for-one replacement of browsers by grazers, as usually thought. Typical late early Miocene (17 Ma) fossil communities included extraordinarily high numbers of browsing ungulate species, comprising a fauna that cannot be directly analogized with any present-day community. Both maximum species richness of all ungulates and the proportion of browsers declined steadily in ungulate communities through the middle Miocene, to levels comparable to those of the present by the late Miocene. The resulting dramatic, cumulative loss of browsing species constitutes one of the strongest faunal signals of the late Tertiary (but was not a single "event"). We suggest that the early Miocene browser-rich communities may reflect higher levels of primary productivity in Miocene vegetation, compared with equivalent present-day vegetation types. The observed decline in species richness may represent a gradual decline in primary productivity, which would be consistent with one current hypothesis of a mid-Miocene decrease in atmospheric CO2 concentrations from higher mid-Cenozoic values.

  6. Comparison of Aerial and Terrestrial Remote Sensing Techniques for Quantifying Forest Canopy Structural Complexity and Estimating Net Primary Productivity

    Science.gov (United States)

    Fahey, R. T.; Tallant, J.; Gough, C. M.; Hardiman, B. S.; Atkins, J.; Scheuermann, C. M.

    2016-12-01

    Canopy structure can be an important driver of forest ecosystem functioning - affecting factors such as radiative transfer and light use efficiency, and consequently net primary production (NPP). Both above- (aerial) and below-canopy (terrestrial) remote sensing techniques are used to assess canopy structure and each has advantages and disadvantages. Aerial techniques can cover large geographical areas and provide detailed information on canopy surface and canopy height, but are generally unable to quantitatively assess interior canopy structure. Terrestrial methods provide high resolution information on interior canopy structure and can be cost-effectively repeated, but are limited to very small footprints. Although these methods are often utilized to derive similar metrics (e.g., rugosity, LAI) and to address equivalent ecological questions and relationships (e.g., link between LAI and productivity), rarely are inter-comparisons made between techniques. Our objective is to compare methods for deriving canopy structural complexity (CSC) metrics and to assess the capacity of commonly available aerial remote sensing products (and combinations) to match terrestrially-sensed data. We also assess the potential to combine CSC metrics with image-based analysis to predict plot-based NPP measurements in forests of different ages and different levels of complexity. We use combinations of data from drone-based imagery (RGB, NIR, Red Edge), aerial LiDAR (commonly available medium-density leaf-off), terrestrial scanning LiDAR, portable canopy LiDAR, and a permanent plot network - all collected at the University of Michigan Biological Station. Our results will highlight the potential for deriving functionally meaningful CSC metrics from aerial imagery, LiDAR, and combinations of data sources. We will also present results of modeling focused on predicting plot-level NPP from combinations of image-based vegetation indices (e.g., NDVI, EVI) with LiDAR- or image-derived metrics of

  7. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity

    Science.gov (United States)

    Chen, Jing M.; Mo, Gang; Pisek, Jan; Liu, Jane; Deng, Feng; Ishizawa, Misa; Chan, Douglas

    2012-03-01

    Sunlit and shaded leaf separation proposed by Norman (1982) is an effective way to upscale from leaf to canopy in modeling vegetation photosynthesis. The Boreal Ecosystem Productivity Simulator (BEPS) makes use of this methodology, and has been shown to be reliable in modeling the gross primary productivity (GPP) derived from CO2flux and tree ring measurements. In this study, we use BEPS to investigate the effect of canopy architecture on the global distribution of GPP. For this purpose, we use not only leaf area index (LAI) but also the first ever global map of the foliage clumping index derived from the multiangle satellite sensor POLDER at 6 km resolution. The clumping index, which characterizes the degree of the deviation of 3-dimensional leaf spatial distributions from the random case, is used to separate sunlit and shaded LAI values for a given LAI. Our model results show that global GPP in 2003 was 132 ± 22 Pg C. Relative to this baseline case, our results also show: (1) global GPP is overestimated by 12% when accurate LAI is available but clumping is ignored, and (2) global GPP is underestimated by 9% when the effective LAI is available and clumping is ignored. The clumping effects in both cases are statistically significant (p < 0.001). The effective LAI is often derived from remote sensing by inverting the measured canopy gap fraction to LAI without considering the clumping. Global GPP would therefore be generally underestimated when remotely sensed LAI (actually effective LAI by our definition) is used. This is due to the underestimation of the shaded LAI and therefore the contribution of shaded leaves to GPP. We found that shaded leaves contribute 50%, 38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen forest, broadleaf deciduous forest, evergreen conifer forest, deciduous conifer forest, shrub, C4 vegetation, and other vegetation, respectively. The global average of this ratio is 35%.

  8. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems.

    Science.gov (United States)

    Huang, Ling; He, Bin; Chen, Aifang; Wang, Haiyan; Liu, Junjie; Lű, Aifeng; Chen, Ziyue

    2016-04-19

    Drought is a main driver of interannual variation in global terrestrial net primary production. However, how and to what extent drought impacts global NPP variability is unclear. Based on the multi-timescale drought index SPEI and a satellite-based annual global terrestrial NPP dataset, we observed a robust relationship between drought and NPP in both hemispheres. In the Northern Hemisphere, the annual NPP trend is driven by 19-month drought variation, whereas that in the Southern Hemisphere is driven by 16-month drought variation. Drought-dominated NPP, which mainly occurs in semi-arid ecosystems, explains 29% of the interannual variation in global NPP, despite its 16% contribution to total global NPP. More surprisingly, drought prone ecosystems in the Southern Hemisphere, which only account for 7% of the total global NPP, contribute to 33% of the interannual variation in global NPP. Our observations support the leading role of semi-arid ecosystems in interannual variability in global NPP and highlight the great impacts of long-term drought on the global carbon cycle.

  9. Nitrogen Limitation of Terrestrial Net Primary Production: Global Patterns From Field Studies with Nitrogen Fertilization

    Science.gov (United States)

    Lebauer, D. S.; Treseder, K. K.

    2006-12-01

    Net primary production (NPP) transfers carbon from the atmospheric CO2 pool into the biosphere. Experimental evidence demonstrates that NPP is often limited by nitrogen availability. Hence, accelerated nitrogen availability due to fertilizer production, fossil fuel use, and biomass burning could stimulate global NPP. Over the next century, these nitrogen sources are expected to both increase in strength and expand from their current concentration in the temperate regions of Europe and the United States into the tropical regions of South America, Southeast Asia, and India. In order to predict future carbon budgets, it is necessary to quantify the impact of nitrogen on NPP. Currently there is no synthesis of ecosystem scale experiments that evaluates responses among biomes and across environmental gradients. The aim of this investigation is to test the prediction that nitrogen limitation is widespread, and to evaluate global patterns of NPP response to nitrogen. The present study compiles results from field-based nitrogen addition experiments in a comprehensive meta-analysis. Published studies were obtained through key word searches and referenced articles. A response metric was derived from each study based on measurements of plant growth under ambient nitrogen deposition (control) and experimental nitrogen addition (treatment). This metric is the response ratio (R): the ratio of mean growth in treatment divided by control plots. Therefore, a positive effect of nitrogen results in R>1. A meta-analysis was performed on ln(R) weighted by within-study variance. We found that most ecosystems are nitrogen limited (P<0.0001) and that average growth response to nitrogen was 32%. However, response was not uniform across biomes. Significant responses were observed in grasslands and forests (P<0.0001), but not wetlands and tundra (P=0.08 and P=0.16). While mean annual precipitation (MAP) was significantly correlated to R overall (P<0.0001), the direction of the effect varied

  10. Model estimates of net primary productivity, evaportranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States

    Science.gov (United States)

    Hanqin Tian; Guangsheng Chen; Mingliang Liu; Chi Zhang; Ge Sun; Chaoqun Lu; Xiaofeng Xu; Wei Ren; Shufen Pan; Arthur. Chappelka

    2010-01-01

    The effects of global change on ecosystem productivity and water resources in the southern United States (SUS), a traditionally ‘water-rich’ region and the ‘timber basket’ of the country, are not well quantified. We carried out several simulation experiments to quantify ecosystem net primary productivity (NPP), evapotranspiration (ET)...

  11. Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types

    Czech Academy of Sciences Publication Activity Database

    Shi, H.; Li, L.; Eamus, D.; Huete, A.; Cleverly, J.; Tian, X.; Yu, Q.; Wang, S.; Montagnani, L.; Magliulo, V.; Rotenberg, E.; Pavelka, Marian; Carrara, A.

    2017-01-01

    Roč. 72, Jan (2017), s. 153-164 ISSN 1470-160X Institutional support: RVO:67179843 Keywords : Enhanced vegetation index * Gross primary production * Land cover types * Leaf area index * MODIS * Remote sensing Subject RIV: EH - Ecology, Behaviour Impact factor: 3.898, year: 2016

  12. Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types

    Czech Academy of Sciences Publication Activity Database

    Shi, H.; Li, L.; Eamus, D.; Huete, A.; Cleverly, J.; Tian, X.; Yu, Q.; Wang, S.; Montagnani, L.; Magliulo, V.; Rotenberg, E.; Pavelka, Marian; Carrara, A.

    2017-01-01

    Roč. 72, Jan (2017), s. 153-164 ISSN 1470-160X R&D Projects: GA MŠk(CZ) LM2015061 Institutional support: RVO:67179843 Keywords : Enhanced vegetation index * Gross primary production * Land cover types * Leaf area index * MODIS * Remote sensing Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.898, year: 2016

  13. Primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Parulekar, A.H.

    nutrients and ample solar radiation frequently trigger phytoplankton blooms in coastal polynias during Antarctic summer. Energy transfer model for primary productivity has been used to derive potential exploitable fishery resources in the Indian Ocean....

  14. Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties

    Science.gov (United States)

    Exbrayat, Jean-François; Bloom, A. Anthony; Falloon, Pete; Ito, Akihiko; Smallman, T. Luke; Williams, Mathew

    2018-02-01

    Multi-model averaging techniques provide opportunities to extract additional information from large ensembles of simulations. In particular, present-day model skill can be used to evaluate their potential performance in future climate simulations. Multi-model averaging methods have been used extensively in climate and hydrological sciences, but they have not been used to constrain projected plant productivity responses to climate change, which is a major uncertainty in Earth system modelling. Here, we use three global observationally orientated estimates of current net primary productivity (NPP) to perform a reliability ensemble averaging (REA) method using 30 global simulations of the 21st century change in NPP based on the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) business as usual emissions scenario. We find that the three REA methods support an increase in global NPP by the end of the 21st century (2095-2099) compared to 2001-2005, which is 2-3 % stronger than the ensemble ISIMIP mean value of 24.2 Pg C y-1. Using REA also leads to a 45-68 % reduction in the global uncertainty of 21st century NPP projection, which strengthens confidence in the resilience of the CO2 fertilization effect to climate change. This reduction in uncertainty is especially clear for boreal ecosystems although it may be an artefact due to the lack of representation of nutrient limitations on NPP in most models. Conversely, the large uncertainty that remains on the sign of the response of NPP in semi-arid regions points to the need for better observations and model development in these regions.

  15. Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century

    Science.gov (United States)

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R. S.; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and

  16. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century.

    Science.gov (United States)

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing

  17. Satellite-based terrestrial production efficiency modeling

    Directory of Open Access Journals (Sweden)

    Obersteiner Michael

    2009-09-01

    Full Text Available Abstract Production efficiency models (PEMs are based on the theory of light use efficiency (LUE which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP monitoring. The objectives of this review are as follows: 1 to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS identified in the literature; 2 to review each model to determine potential improvements to the general PEM methodology; 3 to review the related literature on satellite-based gross primary productivity (GPP and NPP modeling for additional possibilities for improvement; and 4 based on this review, propose items for coordinated research. This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling. Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra; there is an urgent need for

  18. Satellite-based terrestrial production efficiency modeling.

    Science.gov (United States)

    McCallum, Ian; Wagner, Wolfgang; Schmullius, Christiane; Shvidenko, Anatoly; Obersteiner, Michael; Fritz, Steffen; Nilsson, Sten

    2009-09-18

    Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research.This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling.Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT) or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra); there is an urgent need for satellite-based biomass

  19. Seasonal variation of atmospheric and terrestrial nutrients and their influence on primary production in an oligotrophic coastal system-southeastern Brazil

    OpenAIRE

    Braga, Elisabete de Santis

    1999-01-01

    In an oligotrophic coastal zone, land drainage and atmospheric precipitation can temporarily modify the concentrations of specific dissolved compounds in local surface waters, mainly nutrient salts, setting up conditions for "new" primary production of phytoplankton. The Ubatuba region (23º30'S -45º06'W) is considered an oligo-mesotrophic region subject to a high average annual precipitation (- 2,000 mm). The small rivers flowing into Palmas' Inlet present outflow patterns linked to the preci...

  20. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach. I. Using remotely sensed data and ecological observations of net primary production

    International Nuclear Information System (INIS)

    Ying Ping Wang; Barrett, Damian J.

    2003-01-01

    We have developed a modelling framework that synthesizes various types of field measurements at different spatial and temporal scales. We used this modelling framework to estimate monthly means and their standard deviations of gross photosynthesis, total ecosystem production, net primary production (NPP) and net ecosystem production (NEP) for eight regions of the Australian continent between 1990 and 1998. Annual mean NPP of the Australian continent varied between 800 and 1100 Mt C/yr between 1990 and 1998, with a coefficient of variation that is defined as the ratio of standard deviation and mean between 0.24 and 0.34. The seasonal variation of NPP for the whole continent varied between 50 and 110 Mt C/month with two maxima, one in the autumn and another in the spring. NEP was most negative in the winter (a carbon sink) and was most positive (a carbon source) in the summer. However, the coefficient of variation of monthly mean NEP was very large (> 4), and consequently confidence in the predicted net carbon fluxes for any month in the period 1990-1998 for the whole continent was very low. A companion paper will apply atmospheric inverse technique to measurements of CO 2 concentration to further constrain the continental carbon cycle and reduce uncertainty in estimated mean monthly carbon fluxes

  1. A Vegetation Index to Estimate Terrestrial Gross Primary Production Capacity for the Global Change Observation Mission-Climate (GCOM-C/Second-Generation Global Imager (SGLI Satellite Sensor

    Directory of Open Access Journals (Sweden)

    Juthasinee Thanyapraneedkul

    2012-11-01

    Full Text Available To estimate global gross primary production (GPP, which is an important parameter for studies of vegetation productivity and the carbon cycle, satellite data are useful. In 2014, the Japan Aerospace Exploration Agency (JAXA plans to launch the Global Change Observation Mission-Climate (GCOM-C satellite carrying the second-generation global imager (SGLI. The data obtained will be used to estimate global GPP. The rate of photosynthesis depends on photosynthesis reduction and photosynthetic capacity, which is the maximum photosynthetic velocity at light saturation under adequate environmental conditions. Photosynthesis reduction is influenced by weather conditions, and photosynthetic capacity is influenced by chlorophyll and RuBisCo content. To develop the GPP estimation algorithm, we focus on photosynthetic capacity because chlorophyll content can be detected by optical sensors. We hypothesized that the maximum rate of low-stress GPP (called “GPP capacity” is mainly dependent on the chlorophyll content that can be detected by a vegetation index (VI. The objective of this study was to select an appropriate VI with which to estimate global GPP capacity with the GCOM-C/SGLI. We analyzed reflectance data to select the VI that has the best linear correlation with chlorophyll content at the leaf scale and with GPP capacity at canopy and satellite scales. At the satellite scale, flux data of seven dominant plant functional types and reflectance data obtained by the Moderate-resolution Imaging Spectroradiometer (MODIS were used because SGLI data were not available. The results indicated that the green chlorophyll index, CIgreen(ρNIR/ρgreen-1, had a strong linear correlation with chlorophyll content at the leaf scale (R2 = 0.87, p < 0.001 and with GPP capacity at the canopy (R2 = 0.78, p < 0.001 and satellite scales (R2 = 0.72, p < 0.01. Therefore, CIgreen is a robust and suitable vegetation index for estimating global GPP capacity.

  2. Terrestrial plant methane production and emission

    DEFF Research Database (Denmark)

    Bruhn, Dan; Møller, Ian M.; Mikkelsen, Teis Nørgaard

    2012-01-01

    In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce...... aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  3. Bacterial Growth on Photochemically Transformed Leachates from Aquatic and Terrestrial Primary Producers

    DEFF Research Database (Denmark)

    Anesio, A.M.; Nielsen, Jon Theil; Granéli, W.

    2000-01-01

    We measured bacterial growth on phototransformed dissolved organic matter (DOM) leached from eight different primary producers. Leachates (10 mg C liter-1) were exposed to artificial UVA + UVB radiation, or kept in darkness, for 20 h. DOM solutions were subsequently inoculated with lake water...... on leachate and type of bacterial growth criterion. Bacterial carbon utilization (biomass production plus respiration) over the entire incubation period (120 h) was enhanced by UV radiation of leachate from the terrestrial leaves, relative to carbon utilization in non-irradiated leachates. Conversely, carbon...

  4. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes?

    Science.gov (United States)

    Jones, Stuart E.; Solomon, Christopher T.; Weidel, Brian C.

    2012-01-01

    Cross-ecosystem fluxes are ubiquitous in food webs and are generally thought of as subsidies to consumer populations. Yet external or allochthonous inputs may in fact have complex and habitat-specific effects on recipient ecosystems. In lakes, terrestrial inputs of organic carbon contribute to basal resource availability, but can also reduce resource availability via shading effects on phytoplankton and periphyton. Terrestrial inputs might therefore either subsidise or subtract from consumer production. We developed and parameterised a simple model to explore this idea. The model estimates basal resource supply and consumer production given lake-level characteristics including total phosphorus (TP) and dissolved organic carbon (DOC) concentration, and consumer-level characteristics including resource preferences and growth efficiencies. Terrestrial inputs diminished primary production and total basal resource supply at the whole-lake level, except in ultra-oligotrophic systems. However, this system-level generalisation masked complex habitat-specific effects. In the pelagic zone, dissolved and particulate terrestrial carbon inputs were available to zooplankton via several food web pathways. Consequently, zooplankton production usually increased with terrestrial inputs, even as total whole-lake resource availability decreased. In contrast, in the benthic zone the dominant, dissolved portion of the terrestrial carbon load had predominantly negative effects on resource availability via shading of periphyton. Consequently, terrestrial inputs always decreased zoobenthic production except under extreme and unrealistic parameterisations of the model. Appreciating the complex and habitat-specific effects of allochthonous inputs may be essential for resolving the effects of cross-habitat fluxes on consumers in lakes and other food webs.

  5. Abiotic production of methane in terrestrial planets.

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  6. Terrestrial-aquatic trophic linkages support fish production in a tropical oligotrophic river.

    Science.gov (United States)

    Correa, Sandra Bibiana; Winemiller, Kirk

    2018-04-01

    Despite low in situ primary productivity, tropical oligotrophic rivers support highly diverse fish assemblages and productive fisheries. This raises the question, what energy sources support fish production in these ecosystems? We sampled fish and food resources in the floodplain of a nearly pristine, large, oligotrophic river in western Amazonia. We combined data from stomach contents and stable isotopes to test the hypothesis that floodplain forests sustain fisheries in tropical oligotrophic rivers. Analysis of stomach contents from > 800 specimens of 12 omnivorous fish species demonstrated that during the annual flood, forest plant matter dominated diets. Yet, our isotope mixing models estimated that arthropods from the forest canopy made a greater proportional contribution to fish biomass. Most of these arthropods are entirely terrestrial and, therefore, serve as trophic links between forests and fishes. Our results suggest that forest vegetation, particularly fruits, may provide much of the energy supporting metabolism and arthropods contribute significant amounts of protein for somatic growth. Moreover, the importance of terrestrial arthropods in support of fish biomass in oligotrophic rivers depends on interactions between riparian vegetation, terrestrial arthropods and flood pulse dynamics affecting accessibility of arthropods to fishes. The apparent paradox of high fish diversity in an oligotrophic river with low primary productivity may be explained, at least partially, by dynamic terrestrial-aquatic trophic linkages. This study further emphasizes the importance of seasonally flooded forests for sustaining fisheries in the Amazon.

  7. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation.

    Science.gov (United States)

    Hori, Koichi; Maruyama, Fumito; Fujisawa, Takatomo; Togashi, Tomoaki; Yamamoto, Nozomi; Seo, Mitsunori; Sato, Syusei; Yamada, Takuji; Mori, Hiroshi; Tajima, Naoyuki; Moriyama, Takashi; Ikeuchi, Masahiko; Watanabe, Mai; Wada, Hajime; Kobayashi, Koichi; Saito, Masakazu; Masuda, Tatsuru; Sasaki-Sekimoto, Yuko; Mashiguchi, Kiyoshi; Awai, Koichiro; Shimojima, Mie; Masuda, Shinji; Iwai, Masako; Nobusawa, Takashi; Narise, Takafumi; Kondo, Satoshi; Saito, Hikaru; Sato, Ryoichi; Murakawa, Masato; Ihara, Yuta; Oshima-Yamada, Yui; Ohtaka, Kinuka; Satoh, Masanori; Sonobe, Kohei; Ishii, Midori; Ohtani, Ryosuke; Kanamori-Sato, Miyu; Honoki, Rina; Miyazaki, Daichi; Mochizuki, Hitoshi; Umetsu, Jumpei; Higashi, Kouichi; Shibata, Daisuke; Kamiya, Yuji; Sato, Naoki; Nakamura, Yasukazu; Tabata, Satoshi; Ida, Shigeru; Kurokawa, Ken; Ohta, Hiroyuki

    2014-05-28

    The colonization of land by plants was a key event in the evolution of life. Here we report the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum (Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from aquatic algae to land plants. Comparison of the genome sequence with that of other algae and land plants demonstrate that K. flaccidum acquired many genes specific to land plants. We demonstrate that K. flaccidum indeed produces several plant hormones and homologues of some of the signalling intermediates required for hormone actions in higher plants. The K. flaccidum genome also encodes a primitive system to protect against the harmful effects of high-intensity light. The presence of these plant-related systems in K. flaccidum suggests that, during evolution, this alga acquired the fundamental machinery required for adaptation to terrestrial environments.

  8. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation

    Science.gov (United States)

    Hori, Koichi; Maruyama, Fumito; Fujisawa, Takatomo; Togashi, Tomoaki; Yamamoto, Nozomi; Seo, Mitsunori; Sato, Syusei; Yamada, Takuji; Mori, Hiroshi; Tajima, Naoyuki; Moriyama, Takashi; Ikeuchi, Masahiko; Watanabe, Mai; Wada, Hajime; Kobayashi, Koichi; Saito, Masakazu; Masuda, Tatsuru; Sasaki-Sekimoto, Yuko; Mashiguchi, Kiyoshi; Awai, Koichiro; Shimojima, Mie; Masuda, Shinji; Iwai, Masako; Nobusawa, Takashi; Narise, Takafumi; Kondo, Satoshi; Saito, Hikaru; Sato, Ryoichi; Murakawa, Masato; Ihara, Yuta; Oshima-Yamada, Yui; Ohtaka, Kinuka; Satoh, Masanori; Sonobe, Kohei; Ishii, Midori; Ohtani, Ryosuke; Kanamori-Sato, Miyu; Honoki, Rina; Miyazaki, Daichi; Mochizuki, Hitoshi; Umetsu, Jumpei; Higashi, Kouichi; Shibata, Daisuke; Kamiya, Yuji; Sato, Naoki; Nakamura, Yasukazu; Tabata, Satoshi; Ida, Shigeru; Kurokawa, Ken; Ohta, Hiroyuki

    2014-01-01

    The colonization of land by plants was a key event in the evolution of life. Here we report the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum (Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from aquatic algae to land plants. Comparison of the genome sequence with that of other algae and land plants demonstrate that K. flaccidum acquired many genes specific to land plants. We demonstrate that K. flaccidum indeed produces several plant hormones and homologues of some of the signalling intermediates required for hormone actions in higher plants. The K. flaccidum genome also encodes a primitive system to protect against the harmful effects of high-intensity light. The presence of these plant-related systems in K. flaccidum suggests that, during evolution, this alga acquired the fundamental machinery required for adaptation to terrestrial environments. PMID:24865297

  9. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  10. Bacterial Growth on Photochemically Transformed Leachates from Aquatic and Terrestrial Primary Producers

    DEFF Research Database (Denmark)

    Anesio, A.M.; Nielsen, Jon Theil; Granéli, W.

    2000-01-01

    We measured bacterial growth on phototransformed dissolved organic matter (DOM) leached from eight different primary producers. Leachates (10 mg C liter-1) were exposed to artificial UVA + UVB radiation, or kept in darkness, for 20 h. DOM solutions were subsequently inoculated with lake water...... on leachate and type of bacterial growth criterion. Bacterial carbon utilization (biomass production plus respiration) over the entire incubation period (120 h) was enhanced by UV radiation of leachate from the terrestrial leaves, relative to carbon utilization in non-irradiated leachates. Conversely, carbon...... utilization was reduced by radiation of the leachates from aquatic macrophytes. In a separate experiment, the stable C and N isotope composition of bacteria grown on irradiated and non-irradiated DOM was estimated. Bacterial growth on UV-irradiated DOM was enriched in 13C relative to the bacteria in the non...

  11. Global cropland monthly gross primary production in the year 2000

    NARCIS (Netherlands)

    Chen, T.; Werf, van der G.R.; Gobron, N.; Moors, E.J.; Dolman, A.J.

    2014-01-01

    Croplands cover about 12% of the ice-free terrestrial land surface. Compared with natural ecosystems, croplands have distinct characteristics due to anthropogenic influences. Their global gross primary production (GPP) is not well constrained and estimates vary between 8.2 and 14.2 Pg C yr-1. We

  12. Primary Productivity (PP_Master)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included primary production for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came...

  13. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    Science.gov (United States)

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  14. Microbial production of primary metabolites

    Science.gov (United States)

    Demain, Arnold L.

    1980-12-01

    Microbial production of primary metabolites contributes significantly to the quality of life. Through fermentation, microorganisms growing on inexpensive carbon sources can produce valuable products such as amino acids, nucleotides, organic acids, and vitamins which can be added to food to enhance its flavor or increase its nutritive value. The contribution of microorganisms will go well beyond the food industry with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum-derived products as well as the ethanol necessary for liquid fuel. The role of primary metabolites and the microbes which produce them will certainly increase in importance.

  15. Terrestrial P and Reactive N and Marine Productivity in the Late Devonian Appalachian Basin

    Science.gov (United States)

    Tuite, M. L.; Macko, S. A.

    2009-12-01

    A causal link between the Late Devonian emergence of forest ecosystems and episodic black shale deposition has been proposed by several authors. Most attribute increases in epicontinental basin productivity to elevated rates of terrestrial phosphorus weathering facilitated by the co-evolution of root systems and soils. Two reasons to suspect that an increase in the P weathering flux was not the primary cause of organic-rich shale deposition are as follows. First, most Late Devonian black shales were deposited during sea level transgressions, periods when riverine fluxes of sediment and mineral nutrients such as P to marine basins were diminished. Second, Late Devonian forests were restricted to warm, moist lowlands where P was sequestered in soils as inorganic, occluded forms. However, the export flux of reactive N from these forests to adjacent epeiric seas by riverine and atmospheric deposition was enhanced by the warm, wet climate and expanding areal extent of forests. Abundant terrestrial reactive N primed the marine eutrophication pump by extending the residence time of P in the photic zone, permitting extensive growth of primary biomass. The consequent flux of organic matter to the sea floor created anoxic bottom waters that, in turn, allowed for the remobilization of P into the water column. Based on abundance and isotopic analyses of organic and inorganic C, N, P, and S from terrestrial and marine environments within and adjacent to the Late Devonian Appalachian Basin, this latter scenario is supported.

  16. Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa

    NARCIS (Netherlands)

    Cui, Jin; Xiangming, Xiao; Merbold, L.; Arneth, A.; Veenendaal, E.M.; Kutsch, W.L.

    2013-01-01

    Accurate estimation of gross primary production (GPP) of savanna woodlands is needed for evaluating the terrestrial carbon cycle at various spatial and temporal scales. The eddy covariance (EC) technique provides continuous measurements of net CO2 exchange (NEE) between terrestrial ecosystems and

  17. Terrestrial gamma-ray flash production by lightning

    Science.gov (United States)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  18. A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria.

    Science.gov (United States)

    Kuhne, S; Strieth, D; Lakatos, M; Muffler, K; Ulber, R

    2014-12-20

    Cyanobacteria offer great potential for the production of biotechnological products for pharmaceutical applications. However, these organisms can only be cultivated efficiently using photobioreactors (PBR). Under submerged conditions though, terrestrial cyanobacteria mostly grow in a suboptimal way, which makes this cultivation-technique uneconomic and thus terrestrial cyanobacteria unattractive. Therefore, a novel emersed photobioreactor (ePBR) has been developed, which can provide the natural conditions for these organisms. Proof of concept as well as first efficiency tests are conducted using the terrestrial cyanobacteria Trichocoleus sociatus as a model organism. The initial maximum growth rate of T. sociatus (0.014±0.001h(-1)) in submerged systems could be increased by 35%. Furthermore, it is now possible to control desiccation-correlated product formation and related metabolic processes. This is shown for the production of extracellular polymeric substances (EPS). In this case the yield of 0.068±0.006g of EPS/g DW could be increased by more than seven times. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. European-wide simulations of croplands using an improved terrestrial biosphere model: Phenology and productivity

    Science.gov (United States)

    Smith, P. C.; de Noblet-Ducoudré, N.; Ciais, P.; Peylin, P.; Viovy, N.; Meurdesoif, Y.; Bondeau, A.

    2010-03-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work combines the terrestrial biosphere model Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE), for vegetation productivity, water balance, and soil carbon dynamics, and the generic crop model Simulateur Multidisciplinaire pour les Cultures Standard (STICS), for phenology, irrigation, nitrogen balance, and harvest. The ORCHIDEE-STICS model, relying on three plant functional types for the representation of temperate agriculture, is evaluated over the last few decades at various spatial and temporal resolutions. The simulated leaf area index seasonal cycle is largely improved relative to the original ORCHIDEE simulating grasslands, and compares favorably with remote-sensing observations (correlation doubles over Europe). Crop yield is derived from annual net primary productivity and compared with wheat and grain maize harvest data for five European countries. Discrepancies between 30 year mean simulated and reported yields are large in Mediterranean countries. Interannual variability amplitude expressed relative to the mean is reduced toward the observed variability (≈10%) when using ORCHIDEE-STICS. Overall, this study highlights the importance of accounting for the specific phenologies of crops sown both in winter and in spring and for irrigation applied to spring crops in regional/global models of the terrestrial carbon cycle. Limitations suggest to account for temporal and spatial variability in agricultural practices for further simulation improvement.

  20. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary...

  1. The SMAP Level 4 Carbon PRODUCT for Monitoring Terrestrial Ecosystem-Atmosphere CO2 Exchange

    Science.gov (United States)

    Jones, L. A.; Kimball, J. S.; Madani, N.; Reichle, R. H.; Glassy, J.; Ardizzone, J/

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission Level 4 Carbon (L4_C) product provides model estimates of Net Ecosystem CO2 exchange (NEE) incorporating SMAP soil moisture information as a primary driver. The L4_C product provides NEE, computed as total respiration less gross photosynthesis, at a daily time step and approximate 14-day latency posted to a 9-km global grid summarized by plant functional type. The L4_C product includes component carbon fluxes, surface soil organic carbon stocks, underlying environmental constraints, and detailed uncertainty metrics. The L4_C model is driven by the SMAP Level 4 Soil Moisture (L4_SM) data assimilation product, with additional inputs from the Goddard Earth Observing System, Version 5 (GEOS-5) weather analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. The L4_C data record extends from March 2015 to present with ongoing production. Initial comparisons against global CO2 eddy flux tower measurements, satellite Solar Induced Canopy Florescence (SIF) and other independent observation benchmarks show favorable L4_C performance and accuracy, capturing the dynamic biosphere response to recent weather anomalies and demonstrating the value of SMAP observations for monitoring of global terrestrial water and carbon cycle linkages.

  2. Water use efficiency of net primary production in global terrestrial ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5. Water use ... mg C m−2 mm−1. The WUE increased from north to south in Africa and Oceania and from east to west in Europe and South America. ... Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.

  3. Spatiotemporal patterns of terrestrial gross primary production: A review

    Czech Academy of Sciences Publication Activity Database

    Anav, A.; Friedlingstein, P.; Beer, Ch.; Cials, P.; Harper, A.; Jones, Ch.; Murray-Tortarolo, G.; Papale, Dario; Parazoo, N. C.; Peylin, P.; Piao, S.; Sitch, S.; Viovy, N.; Wiltshire, A.; Zhao, M.

    2016-01-01

    Roč. 53, č. 3 (2016), s. 785-818 ISSN 8755-1209 Institutional support: RVO:67179843 Keywords : GPP * DGVMs * ESMs * satellite * MTE Subject RIV: EH - Ecology, Behaviour Impact factor: 12.340, year: 2016

  4. Water use efficiency of net primary production in global terrestrial ...

    Indian Academy of Sciences (India)

    ET, which are influenced by numerous meteoro- logical factors, including temperature, precipita- tion and solar radiation. Additionally, plant type is an important determining factor for NPP and. ET. Climate, land-use and land-cover change also influence NPP and ET (Levy et al. 2004; Liu et al. 2008; Zhao and Yu 2008).

  5. Primary production in the Sulu Sea

    Indian Academy of Sciences (India)

    The greater primary productivity may provide the explanation for the higher deposition rate of carbon in the Sulu Sea. Although the Sulu Sea is more productive than the adjacent South China Sea, the central area can still be classified as a desert. Estimates of the new primary production in the central Sulu Sea seem to be ...

  6. Large Differences in Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models

    Directory of Open Access Journals (Sweden)

    Wenwen Cai

    2014-09-01

    Full Text Available Terrestrial gross primary production (GPP is the largest global CO2 flux and determines other ecosystem carbon cycle variables. Light use efficiency (LUE models may have the most potential to adequately address the spatial and temporal dynamics of GPP, but recent studies have shown large model differences in GPP simulations. In this study, we investigated the GPP differences in the spatial and temporal patterns derived from seven widely used LUE models at the global scale. The result shows that the global annual GPP estimates over the period 2000–2010 varied from 95.10 to 139.71 Pg C∙yr−1 among models. The spatial and temporal variation of global GPP differs substantially between models, due to different model structures and dominant environmental drivers. In almost all models, water availability dominates the interannual variability of GPP over large vegetated areas. Solar radiation and air temperature are not the primary controlling factors for interannual variability of global GPP estimates for most models. The disagreement among the current LUE models highlights the need for further model improvement to quantify the global carbon cycle.

  7. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  8. Propellant and Terrestrial Fuel Production from Atmospheric Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Build and test in a relevant environment a Mars propellant production plant of an appropriate scale for an initial demonstration on Mars. It will produce sufficient...

  9. Satellite-based modeling of gross primary production in an evergreen needleleaf forest

    Science.gov (United States)

    Xiangming Xiao; David Hollinger; John Aber; Mike Goltz; Eric A. Davidson; Qingyuan Zhang; Berrien Moore III

    2004-01-01

    The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of C02 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamcs...

  10. Method for the production of primary amines

    NARCIS (Netherlands)

    Baldenius, Kai-Uwe; Ditrich, Klaus; Breurer, Michael; Navickas, Vaidotas; Janssen, Dick; Crismaru, Ciprian; Bartsch, Sebastian

    2014-01-01

    The present invention relates to a novel enzymatically catalyzed method for the production of aliphatic primary amines, which method comprises the enzymatic oxidation of a primary aliphatic alcohol catalyzed by an alcohol dehydrogenase, amination of the resulting oxocompound catalyzed by a

  11. Deep primary production in coastal pelagic systems

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke; Richardson, Katherine; Markager, Stiig

    2014-01-01

    produced. The primary production (PP) occurring below the surface layer, i.e. in the pycnocline-bottom layer (PBL), is shown to contribute significantly to total PP. Oxygen concentrations in the PBL are shown to correlate significantly with the deep primary production (DPP) as well as with salinity...... that eutrophication effects may include changes in the structure of planktonic food webs and element cycling in the water column, both brought about through an altered vertical distribution of PP....

  12. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments

    Czech Academy of Sciences Publication Activity Database

    Wilcox, K. R.; Shi, Z.; Gherardi, L. A.; Lemoine, N. P.; Koerner, S. E.; Hoover, D. L.; Bork, E.; Byrne, K. M.; Cahill, J.; Collins, S. L.; Evans, S.M.; Gilgen, Anna K.; Holub, Petr; Jiang, L.; Knapp, A. K.; LeCain, D.; Liang, J.; Garcia-Palacios, P.; Penuelas, J.; Pockman, W. T.; Smith, M. D.; Sun, S.; White, S. R.; Yahdjian, L.; Zhu, K.; Luo, Y.

    2017-01-01

    Roč. 23, č. 10 (2017), s. 4376-4385 ISSN 1354-1013 Institutional support: RVO:86652079 Keywords : net primary productivity * terrestrial ecosystems * temperate grassland * biomass allocation * plant-communities * tallgrass prairie * climate extremes * use efficiency * united-states * global-change * aboveground net primary productivity * belowground net primary productivity * biomass allocation * climate change * grasslands * meta-analysis * root biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 8.502, year: 2016

  13. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  14. Risk assessment considerations for plant protection products and terrestrial life-stages of amphibians.

    Science.gov (United States)

    Weltje, Lennart; Ufer, Andreas; Hamer, Mick; Sowig, Peter; Demmig, Sandra; Dechet, Friedrich

    2018-04-28

    Some amphibians occur in agricultural landscapes during certain periods of their life cycle and consequently might be exposed to plant protection products (PPPs). While the sensitivity of aquatic life-stages is considered to be covered by the standard assessment for aquatic organisms (especially fish), the situation is less clear for terrestrial amphibian life-stages. In this paper, considerations are presented on how a risk assessment for PPPs and terrestrial life-stages of amphibians could be conducted. It discusses available information concerning the toxicity of PPPs to terrestrial amphibians, and their potential exposure to PPPs in consideration of aspects of amphibian biology. The emphasis is on avoiding additional vertebrate testing as much as possible by using exposure-driven approaches and by making use of existing vertebrate toxicity data, where appropriate. Options for toxicity testing and risk assessment are presented in a flowchart as a tiered approach, progressing from a non-testing approach, to simple worst-case laboratory testing, to extended laboratory testing, to semi-field enclosure tests and ultimately to full-scale field testing and monitoring. Suggestions are made for triggers to progress to higher tiers. Also, mitigation options to reduce the potential for exposure of terrestrial life-stages of amphibians to PPPs, if a risk were identified, are discussed. Finally, remaining uncertainties and research needs are considered by proposing a way forward (road map) for generating additional information to inform terrestrial amphibian risk assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    Science.gov (United States)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    The forest fire is one of the most catalysing agents which degrade an ecosystems leading to the loss of net and gross primary productivity (NPP & GPP) and carbon sequestration service. Additionally, it can suppress the efficiency of service providing capacity of an ecosystem throughout the time and space. Remote sensing-based forest fire estimation in a diverse ecosystem is very much essential for mitigating the biodiversity and productivity losses due to the forest fire. Satellite-based Land Surface Temperature (LST) has been calculated for the pre-fire and fire years to identify the burn severity hotspot across all eco-regions in the Lower Himalaya region. Several burn severity indices: Normalized Burn Ratio (NBR), Burnt Area Index (BAI), Normalized Multiband Drought Index (NMDI), Soil Adjusted Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Enhance Vegetation Index (EVI) have been used in this study to quantify the spatial and temporal changes (delta) of the selected indices. Two Light Use Efficiency (LUE) models: Carnegie- Ames-Stanford-Approach (CASA) and Vegetation Photosynthesis Model (VPM) have been used to quantify the terrestrial Net Primary Productivity (NPP) in the pre-fire and fire years across all biomes of the region. A novel approach has been preceded in this field to demonstrate the correlation between forest fire density (FFD) and NPP. A strong positive correlation was found between burn severity indices and predicted NPP: BAI and NPP (r = 0.49), NBR and NPP: (r = 0.58), EVI and NPP: (r = 0.72), SAVI and NPP: (r = 0.67), whereas, a negative association has noted between the NMDI and NPP: (r = -0.36) during the both studied years. Results have shown that the NPP is highly correlated with the forest fire density (R2 = 0.75, RMSE = 5.03 gC m-2 month-1). The estimated LST of the individual fire days has witnessed a sharp temperature increase by > 6oC - 9oC in comparison to the non-fire days clearly indicates high fire risk (in

  16. Hyperspectral Remote Sensing of Terrestrial Ecosystem Productivity from ISS

    Science.gov (United States)

    Huemmrich, K. F.; Campbell, P. K. E.; Gao, B. C.; Flanagan, L. B.; Goulden, M.

    2017-12-01

    Data from the Hyperspectral Imager for Coastal Ocean (HICO), mounted on the International Space Station (ISS), were used to develop and test algorithms for remotely retrieving ecosystem productivity. The ISS orbit introduces both limitations and opportunities for observing ecosystem dynamics. Twenty six HICO images were used from four study sites representing different vegetation types: grasslands, shrubland, and forest. Gross ecosystem production (GEP) data from eddy covariance were matched with HICO-derived spectra. Multiple algorithms were successful relating spectral reflectance with GEP, including: Spectral Vegetation Indices (SVI), SVI in a light use efficiency model framework, spectral shape characteristics through spectral derivatives and absorption feature analysis, and statistical models leading to Multiband Hyperspectral Indices (MHI) from stepwise regressions and Partial Least Squares Regression (PLSR). Algorithms were able to achieve r2 better than 0.7 for both GEP at the overpass time and daily GEP. These algorithms were successful using a diverse set of observations combining data from multiple years, multiple times during growing season, different times of day, with different view angles, and different vegetation types. The demonstrated robustness of the algorithms presented in this study over these conditions provides some confidence in mapping spatial patterns of GEP, describing variability within fields as well as the regional patterns based only on spectral reflectance information. The ISS orbit provides periods with multiple observations collected at different times of the day within a period of a few days. Diurnal GEP patterns were estimated comparing the half-hourly average GEP from the flux tower against HICO estimates of GEP (r2=0.87) if morning, midday, and afternoon observations were available for average fluxes in the time period.

  17. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    Science.gov (United States)

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  18. Consequences of ozone depletion for terrestrial plant productivity

    International Nuclear Information System (INIS)

    Teramura, A.H.

    1994-01-01

    Many plants are greatly affected by increases in UV-B radiation but there is tremendous variability in their sensitivity. Plants have evolved natural adaptations such as anatomical, morphological and biochemical features which protect them from UV-B radiation. The extent of these natural adaptations may be related to the geographic origin of the species. For example, species originating from areas receiving high ambient levels of UV-B radiation were found to be highly resistant to UV-B radiation. In sensitive species, photosynthetic activity may be reduced by direct effects on photosynthetic enzymes and metabolic pathways or by indirect effects on photosynthetic pigments or stomatal function. The fluence response of these changes has yet to be clearly demonstrated in most cases. These biochemical and physiological responses may result in reduced growth (plant height, dry weight, leaf area, etc.) photosynthetic activity and flowering. Approximately half of the species tested appear sensitive and sensitivity also differs greatly among cultivars of the same species. Increases in UV-B radiation resulting from stratospheric ozone depletion could alter productivity in some species, as shown in field studies with soybean and loblolly pine. However, in order to assess the magnitude of such changes, we must further understand the mechanisms of UV-B protection in tolerant species and damage in sensitive species as well as the potential indirect effects such as changes in competitive interactions or ecosystem processes

  19. Bacterial production in the water column of small streams highly depends on terrestrial dissolved organic carbon

    Science.gov (United States)

    Graeber, Daniel; Poulsen, Jane R.; Rasmussen, Jes J.; Kronvang, Brian; Zak, Dominik; Kamjunke, Norbert

    2016-04-01

    In the recent years it has become clear that the largest part of the terrestrial dissolved organic carbon (DOC) pool is removed on the way from the land to the ocean. Yet it is still unclear, where in the freshwater systems terrestrial DOC is actually taken up, and for streams DOC uptake was assumed to happen mostly at the stream bottom (benthic zone). However, a recent monitoring study implies that water column but not benthic bacteria are strongly affected by the amount and composition of DOM entering streams from the terrestrial zone. We conducted an experiment to compare the reaction of the bacterial production and heterotrophic uptake in the water column and the benthic zone to a standardized source of terrestrial DOC (leaf leachate from Beech litter). In detail, we sampled gravel and water from eight streams with a gradient in stream size and land use. For each stream four different treatments were incubated at 16°C for three days and each stream: filtered stream water with gravel stones (representing benthic zone bacteria) or unfiltered stream water (representing water column bacteria), both either with (n = 5) or, without (n = 3) leaf leachate. We found that the bacterial uptake of leaf litter DOC was higher for the benthic zone likely due to the higher bacterial production compared to the water column. In contrast, the bacterial production per amount of leaf leachate DOC taken up was significantly higher for the bacteria in the water column than for those in the benthic zone. This clearly indicates a higher growth efficiency with the leaf leachate DOC for the bacteria in the water column than in the benthic zone. We found a high variability for the growth efficiency in the water column, which was best explained by a negative correlation of the DOC demand with stream width (R² = 0.86, linear correlation of log-transformed data). This was not the case for the benthic zone bacteria (R² = 0.02). This implies that water column bacteria in very small streams

  20. Linkages Among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    1999-12-01

    Full Text Available Global freshwater assessments have not addressed the linkages among water vapor flows, agricultural food production, and terrestrial ecosystem services. We perform the first bottom-up estimate of continental water vapor flows, subdivided into the major terrestrial biomes, and arrive at a total continental water vapor flow of 70,000 km3/yr (ranging from 56,000 to 84,000 km3/yr. Of this flow, 90% is attributed to forests, including woodlands (40,000 km3/yr, wetlands (1400 km3/yr, grasslands (15,100 km3/yr, and croplands (6800 km3/yr. These terrestrial biomes sustain society with essential welfare-supporting ecosystem services, including food production. By analyzing the freshwater requirements of an increasing demand for food in the year 2025, we discover a critical trade-off between flows of water vapor for food production and for other welfare-supporting ecosystem services. To reduce the risk of unintentional welfare losses, this trade-off must become embedded in intentional ecohydrological landscape management.

  1. Primary productivity of the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.; Devassy, V.P.

    The average surface and column primary productivity, chl a and particulate organic carbon, estimated at 24 stations during Feb. 1979, were respectively 5.3 mg C/m3/d and 273 mg C/m2 /d; 0.03 mg/m3 and 3.64 mg/m2; and 132mg/m3 and 4.59 g/m2...

  2. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production.

    Science.gov (United States)

    Pahlow, M; van Oel, P R; Mekonnen, M M; Hoekstra, A Y

    2015-12-01

    As aquaculture becomes more important for feeding the growing world population, so too do the required natural resources needed to produce aquaculture feed. While there is potential to replace fish meal and fish oil with terrestrial feed ingredients, it is important to understand both the positive and negative implications of such a development. The use of feed with a large proportion of terrestrial feed may reduce the pressure on fisheries to provide feed for fish, but at the same time it may significantly increase the pressure on freshwater resources, due to water consumption and pollution in crop production for aquafeed. Here the green, blue and gray water footprint of cultured fish and crustaceans related to the production of commercial feed for the year 2008 has been determined for the major farmed species, representing 88% of total fed production. The green, blue and gray production-weighted average feed water footprints of fish and crustaceans fed commercial aquafeed are estimated at 1629 m3/t, 179 m3/t and 166 m3/t, respectively. The estimated global total water footprint of commercial aquafeed was 31-35 km3 in 2008. The top five contributors to the total water footprint of commercial feed are Nile tilapia, Grass carp, Whiteleg shrimp, Common carp and Atlantic salmon, which together have a water footprint of 18.2 km3. An analysis of alternative diets revealed that the replacement of fish meal and fish oil with terrestrial feed ingredients may further increase pressure on freshwater resources. At the same time economic consumptive water productivity may be reduced, especially for carnivorous species. The results of the present study show that, for the aquaculture sector to grow sustainably, freshwater consumption and pollution due to aquafeed need to be taken into account. Copyright © 2015. Published by Elsevier B.V.

  3. The GEWEX Integrated Product - An Assessment of the Terrestrial Water Cycle from Satellite Observations and Reanalysis

    Science.gov (United States)

    Kummerow, C.; Brown, P.

    2017-12-01

    The GEWEX Data and Assessments Paned (GDAP) has been working on a set of consistent products describing the water and energy budgets as well as fluxes at high spatial (1°) and temporal (3hr) resolution. Unlike individual products, the GEWEX Integrated product is careful to make assumptions consistent among algorithms and use internally derived parameters from one product (e.g. clouds from the ISCCP) as input to all other products requiring cloud information. This product was developed with two goals in mind: The first was to validate individual assumptions by cross-checking them with other products within the water and energy budget and ultimately verifying closure of the water and energy budgets within the uncertainties of each algorithm. With the recent completion of the first version of the GEWEX Integrated product, this talk will offer a first look at the consistency among the products insofar as the terrestrial water budget is concerned. Satellite observations of evaporation and precipitation will be compared to atmospheric water vapor divergences from ERA-Interim for various regions, and time scales to assess consistency among the individual estimates. The second goal was to make a available to the community, an internally consistent product that could be used to better understand climate processes and feedback. The status of this will also be discussed.

  4. Standard Test Method for Calibration of Primary Non-Concentrator Terrestrial Photovoltaic Reference Cells Using a Tabular Spectrum

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method is intended to be used for calibration and characterization of primary terrestrial photovoltaic reference cells to a desired reference spectral irradiance distribution, such as Tables G173. The recommended physical requirements for these reference cells are described in Specification E1040. Reference cells are principally used in the determination of the electrical performance of photovoltaic devices. 1.2 Primary photovoltaic reference cells are calibrated in natural sunlight using the relative spectral response of the cell, the relative spectral distribution of the sunlight, and a tabulated reference spectral irradiance distribution. 1.3 This test method requires the use of a pyrheliometer that is calibrated according to Test Method E816, which requires the use of a pyrheliometer that is traceable to the World Radiometric Reference (WRR). Therefore, reference cells calibrated according to this test method are traceable to the WRR. 1.4 This test method is a technique that may be used ...

  5. Terrestrial Hydrological Data from NASA's Hydrology Data and Information Services Center (HDISC): Products, Services, and Applications

    Science.gov (United States)

    Fang, Hongliang; Beaudoing, Hiroko K.; Mocko, David M.; Rodell, Matthew; Teng, Bill; Vollmer, Bruce

    2010-01-01

    Terrestrial hydrological variables are important in global hydrology, climate, and carbon cycle studies. The North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) have been generating a series of land surface states (soil moisture, snow, and temperature) and fluxes (evapotranspiration, radiation, and heat flux) variables. These data, hosted at and available from NASA s Hydrology Data and Information Services Center (HDISC), include the NLDAS hourly 1/8 degree products and the GLDAS 3-hourly 0.25 and 1.0 degree products. HDISC provides easy access and visualization and analysis capabilities for these products, thus reducing the time and resources spent by scientists on data management and facilitating hydrological research. Users can perform spatial and parameter subsetting, data format transformation, and data analysis operations without needing to first download the data. HDISC is continually being developed as a data and services portal that supports weather and climate forecasts, and water and energy cycle research.

  6. THE BENEFITS OF TERRESTRIAL LASER SCANNING AND HYPERSPECTRAL DATA FUSION PRODUCTS

    Directory of Open Access Journals (Sweden)

    S. J. Buckley

    2012-10-01

    Full Text Available Close range hyperspectral imaging is a developing method for the analysis and identification of material composition in many applications, such as in within the earth sciences. Using compact imaging devices in the field allows near-vertical topography to be imaged, thus bypassing the key limitations of viewing angle and resolution that preclude the use of airborne and spaceborne platforms. Terrestrial laser scanning allows 3D topography to be captured with high precision and spatial resolution. The combination of 3D geometry from laser scanning, and material properties from hyperspectral imaging allows new fusion products to be created, adding new information for solving application problems. This paper highlights the advantages of terrestrial lidar and hyperspectral integration, focussing on the qualitative and quantitative aspects, with examples from a geological field application. Accurate co-registration of the two data types is required. This allows 2D pixels to be linked to the 3D lidar geometry, giving increased quantitative analysis as classified material vectors are projected to 3D space for calculation of areas and examination of spatial relationships. User interpretation of hyperspectral results in a spatially-meaningful manner is facilitated using visual methods that combine the geometric and mineralogical products in a 3D environment. Point cloud classification and the use of photorealistic modelling enhance qualitative validation and interpretation, and allow image registration accuracy to be checked. A method for texture mapping of lidar meshes with multiple image textures, both conventional digital photos and hyperspectral results, is described. The integration of terrestrial laser scanning and hyperspectral imaging is a valuable means of providing new analysis methods, suitable for many applications requiring linked geometric and chemical information.

  7. European-wide simulations of present cropland phenology, productivity and carbon fluxes using an improved terrestrial biosphere model

    Science.gov (United States)

    Smith, P. C.; Ciais, P.; de Noblet, N.; Peylin, P.; Viovy, N.; Bondeau, A.

    2009-04-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work combines the terrestrial biosphere model ORCHIDEE (for vegetation productivity, water balance, soil carbon dynamics) and the generic crop model STICS (for phenology, irrigation, nitrogen balance, harvest). The ORCHIDEE-STICS model, relying on three plant functional types for the representation of temperate agriculture, is evaluated over the last few decades at various spatial and temporal resolutions. The simulated Leaf Area Index seasonal cycle is largely improved relative to the original ORCHIDEE simulating grasslands, and compares favourably with remote-sensing observations (the Figure of Merit in Time doubles over Europe). Crop yield is derived from annual Net Primary Productivity and compared with wheat and grain maize harvest data for five European countries. Discrepancies between 30-year mean simulated and reported yields remain large in Mediterranean countries. Interannual variability amplitude expressed relative to the mean is reduced towards the observed variability (~10%) when using ORCHIDEE-STICS. The simulated 2003 anomalous carbon source from European ecosystems to the atmosphere due to the 2003 summer heat wave is in good agreement with atmospheric inversions (~0.2 GtC, from May to October). The anomaly is twice as large in the ORCHIDEE alone simulation, owing to the unrealistically high exposure of herbaceous plants to the extreme summer conditions. Overall, this study highlights the importance of accounting for the specific phonologies of crops sown both in winter and in spring and for irrigation applied to summer crops in regional/global models of the terrestrial carbon cycle. Limitations suggest accounting for temporal and spatial variability in agricultural practices for further simulation improvement.

  8. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data

    Science.gov (United States)

    Scott V. Ollinger; Marie-Louise Smith

    2005-01-01

    Understanding spatial patterns of net primary production (NPP) is central to the study of terrestrial ecosystems, but efforts are frequently hampered by a lack of spatial information regarding factors such as nitrogen availability and site history. Here, we examined the degree to which canopy nitrogen can serve as an indicator of patterns of NPP at the Bartlett...

  9. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis

    Science.gov (United States)

    Kevin Schaefer; Christopher R. Schwalm; Chris Williams; M. Altaf Arain; Alan Barr; Jing M. Chen; Kenneth J. Davis; Dimitre Dimitrov; Timothy W. Hilton; David Y. Hollinger; Elyn Humphreys; Benjamin Poulter; Brett M. Raczka; Andrew D. Richardson; Alok Sahoo; Peter Thornton; Rodrigo Vargas; Hans Verbeeck; Ryan Anderson; Ian Baker; T. Andrew Black; Paul Bolstad; Jiquan Chen; Peter S. Curtis; Ankur R. Desai; Michael Dietze; Danilo Dragoni; Christopher Gough; Robert F. Grant; Lianhong Gu; Atul Jain; Chris Kucharik; Beverly Law; Shuguang Liu; Erandathie Lokipitiya; Hank A. Margolis; Roser Matamala; J. Harry McCaughey; Russ Monson; J. William Munger; Walter Oechel; Changhui Peng; David T. Price; Dan Ricciuto; William J. Riley; Nigel Roulet; Hanqin Tian; Christina Tonitto; Margaret Torn; Ensheng Weng; Xiaolu Zhou

    2012-01-01

    Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States...

  10. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana

    2015-12-15

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  11. SATELLITE DRIVEN ESTIMATION OF PRIMARY PRODUCTIVITY OF AGROECOSYSTEMS IN INDIA

    Directory of Open Access Journals (Sweden)

    N. R. Patel

    2012-08-01

    Full Text Available Earth observation driven ecosystem modeling have played a major role in estimation of carbon budget components such as gross primary productivity (GPP and net primary production (NPP over terrestrial ecosystems, including agriculture. The present study therefore evaluate satellite-driven vegetation photosynthesis (VPM model for GPP estimation over agro-ecosystems in India by using time series of the Normalized Difference Vegetation Index (NDVI from SPOT-VEGETATION, cloud cover observation from MODIS, coarse-grid C3/C4 crop fraction and decadal grided databases of maximum and minimum temperatures. Parameterization of VPM parameters e.g. maximum light use efficiency (ε* and Tscalar was done based on eddy-covariance measurements and literature survey. Incorporation of C3/C4 crop fraction is a modification to commonly used constant maximum LUE. Modeling results from VPM captured very well the geographical pattern of GPP and NPP over cropland in India. Well managed agro-ecosystems in Trans-Gangetic and upper Indo-Gangetic plains had the highest magnitude of GPP with peak GPP during kharif occurs in sugarcane-wheat system (western UP and it occurs in rice-wheat system (Punjab during Rabi season. Overall, croplands in these plains had more annual GPP (> 1000 g C m-2 and NPP (> 600 g C m-2 due to input-intensive cultivation. Desertic tracts of western Rajasthan showed the least GPP and NPP values. Country-level contribution of croplands to national GPP and NPP amounts to1.34 Pg C year-1 and 0.859 Pg C year-1, respectively. Modeled estimates of cropland NPP agrees well with ground-based estimates for north-western India (R2 = 0.63 and RMSE = 108 g C m-2. Future research will focus on evaluating the VPM model with medium resolution sensors such as AWiFS and MODIS for rice-wheat system and validating with eddy-covariance measurements.

  12. Models for ecological models: Ocean primary productivity

    Science.gov (United States)

    Wikle, Christopher K.; Leeds, William B.; Hooten, Mevin B.

    2016-01-01

    The ocean accounts for more than 70% of planet Earth's surface, and it processes are critically important to marine and terrestrial life.  Ocean ecosystems are strongly dependent on the physical state of the ocean (e.g., transports, mixing, upwelling, runoff, and ice dynamics(.  As an example, consider the Coastal Gulf of Alaska (CGOA) region.

  13. Assessing the Availability of Terrestrial Biotic Materials in Product Systems (BIRD

    Directory of Open Access Journals (Sweden)

    Vanessa Bach

    2017-01-01

    Full Text Available Availability of abiotic resources has been a topic of concern in recent years, resulting in several approaches being published to determine their availability on country and product level. However, the availability of biotic materials has not been analyzed to this extent yet. Therefore, an approach to determine possible limitations to availability of terrestrial biotic materials over the entire supply chain is introduced. The approach considers 24 categories overall as well as associated category indicators for the five dimensions: physical, socio-economic, abiotic, social and environmental constraints. This ensures a comprehensive availability assessment of bio-based product systems. The approach is applied to a case study comparing biodiesel produced from rapeseed and soy beans. The study shows that the determination of indicator values is feasible for most categories and their interpretation leads to meaningful conclusions. Thus, the approach leads to a more comprehensive assessment of availability aspects and supports better informed decision making in industry and policy.

  14. Primary production in the Bay of Bengal during August 1977

    Digital Repository Service at National Institute of Oceanography (India)

    Devassy, V.P.; Bhattathiri, P.M.A.; Radhakrishna, K.

    Primary production, chlorophyll @ia@@, phaeophytin, phytoplankton and particulate organic carbon (POC) were studied at 14 stations in the Bay of Bengal during August 1977. Column primary production, chlorophyll @ia@@, and phaeopigments varied from 0...

  15. Relationship between chlorophyll-a and column primary production

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Bhargava, R.M.S.

    Relationship between surface chlorophyll a and column primary production has been established to help in estimating the latter more quickly and accurately. The equation derived is Primary Production, y = 0.54 Ln Chl a - 0.6. The relationship...

  16. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary Productivity (HANPP) Collection maps the net amount of solar...

  17. Primary production in the Kattegat - past and present

    DEFF Research Database (Denmark)

    Richardson, K.; Heilmann, Jens

    1995-01-01

    when primary production is predicted to be light limited. It is, however, observable from the spring bloom and throughout the summer period when nutrients are predicted to be limiting for primary production. Finally, the primary production values recorded in the 1950s and in the period 1984...

  18. Landsat-8: Science and product vision for terrestrial global change research

    Science.gov (United States)

    Roy, David P.; Wulder, M.A.; Loveland, Thomas R.; Woodcock, C.E.; Allen, R. G.; Anderson, M. C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; Scambos, T.A.; Schaaf, Crystal B.; Schott, J.R.; Sheng, Y.; Vermote, E. F.; Belward, A.S.; Bindschadler, R.; Cohen, W.B.; Gao, F.; Hipple, J. D.; Hostert, Patrick; Huntington, J.; Justice, C.O.; Kilic, A.; Kovalskyy, Valeriy; Lee, Z. P.; Lymburner, Leo; Masek, J.G.; McCorkel, J.; Shuai, Y.; Trezza, R.; Vogelmann, James; Wynne, R.H.; Zhu, Z.

    2014-01-01

    Landsat 8, a NASA and USGS collaboration, acquires global moderate-resolution measurements of the Earth's terrestrial and polar regions in the visible, near-infrared, short wave, and thermal infrared. Landsat 8 extends the remarkable 40 year Landsat record and has enhanced capabilities including new spectral bands in the blue and cirrus cloud-detection portion of the spectrum, two thermal bands, improved sensor signal-to-noise performance and associated improvements in radiometric resolution, and an improved duty cycle that allows collection of a significantly greater number of images per day. This paper introduces the current (2012–2017) Landsat Science Team's efforts to establish an initial understanding of Landsat 8 capabilities and the steps ahead in support of priorities identified by the team. Preliminary evaluation of Landsat 8 capabilities and identification of new science and applications opportunities are described with respect to calibration and radiometric characterization; surface reflectance; surface albedo; surface temperature, evapotranspiration and drought; agriculture; land cover, condition, disturbance and change; fresh and coastal water; and snow and ice. Insights into the development of derived ‘higher-level’ Landsat products are provided in recognition of the growing need for consistently processed, moderate spatial resolution, large area, long-term terrestrial data records for resource management and for climate and global change studies. The paper concludes with future prospects, emphasizing the opportunities for land imaging constellations by combining Landsat data with data collected from other international sensing systems, and consideration of successor Landsat mission requirements.

  19. A New Global LAI Product and Its Use for Terrestrial Carbon Cycle Estimation

    Science.gov (United States)

    Chen, J. M.; Liu, R.; Ju, W.; Liu, Y.

    2014-12-01

    For improving the estimation of the spatio-temporal dynamics of the terrestrial carbon cycle, a new time series of the leaf area index (LAI) is generated for the global land surface at 8 km resolution from 1981 to 2012 by combining AVHRR and MODIS satellite data. This product differs from existing LAI products in the following two aspects: (1) the non-random spatial distribution of leaves with the canopy is considered, and (2) the seasonal variation of the vegetation background is included. The non-randomness of the leaf spatial distribution in the canopy is considered using the second vegetation structural parameter named clumping index (CI), which quantifies the deviation of the leaf spatial distribution from the random case. Using the MODIS Bidirectional Reflectance Distribution Function product, a global map of CI is produced at 500 m resolution. In our LAI algorithm, CI is used to convert the effective LAI obtained from mono-angle remote sensing into the true LAI, otherwise LAI would be considerably underestimated. The vegetation background is soil in crop, grass and shrub but includes soil, grass, moss, and litter in forests. Through processing a large volume of MISR data from 2000 to 2010, monthly red and near-infrared reflectances of the vegetation background is mapped globally at 1 km resolution. This new LAI product has been validated extensively using ground-based LAI measurements distributed globally. In carbon cycle modeling, the use of CI in addition to LAI allows for accurate separation of sunlit and shaded leaves as an important step in terrestrial photosynthesis and respiration modeling. Carbon flux measurements over 100 sites over the globe are used to validate an ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS). The validated model is run globally at 8 km resolution for the period from 1981 to 2012 using the LAI product and other spatial datasets. The modeled results suggest that changes in vegetation structure as quantified

  20. Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region

    Science.gov (United States)

    Xia, Jianyang; McGuire, A. David; Lawrence, David; Burke, Eleanor J.; Chen, Guangsheng; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Peng, Shushi; Rinke, Annette; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Hayes, Daniel J.; Huang, Kun; Ji, Duoying; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Moore, John C.; Smith, Benjamin; Sueyoshi, Tetsuo; Shi, Zheng; Yan, Liming; Liang, Junyi; Jiang, Lifen; Zhang, Qian; Luo, Yiqi

    2017-01-01

    Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246 ± 6 g C m−2 yr−1), most models produced higher NPP (309 ± 12 g C m−2 yr−1) over the permafrost region during 2000–2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982–2009, there was a twofold discrepancy among models (380 to 800 g C m−2 yr−1), which mainly resulted from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.

  1. Transfer coefficients to terrestrial food products in equilibrium assessment models for nuclear installations

    International Nuclear Information System (INIS)

    Zach, R.

    1980-09-01

    Transfer coefficients have become virtually indispensible in the study of the fate of radioisotopes released from nuclear installations. These coefficients are used in equilibrium assessment models where they specify the degree of transfer in food chains of individual radioisotopes from soil to plant products and from feed or forage and drinking water to animal products and ultimately to man. Information on transfer coefficients for terrestrial food chain models is very piecemeal and occurs in a wide variety of journals and reports. To enable us to choose or determine suitable values for assessments, we have addressed the following aspects of transfer coefficients on a very broad scale: (1) definitions, (2) equilibrium assumption, which stipulates that transfer coefficients be restricted to equilibrium or steady rate conditions, (3) assumption of linearity, that is the idea that radioisotope concentrations in food products increase linearly with contamination levels in the soil or animal feed, (4) methods of determination, (5) variability, (6) generic versus site-specific values, (7) statistical aspects, (8) use, (9) sources of currently used values, (10) criteria for revising values, (11) establishment and maintenance of files on transfer coefficients, and (12) future developments. (auth)

  2. INFLUENCE OF TRIBULUS TERRESTRIS EXTRACT SUPPLEMENTATION ON LAYING PRODUCTIVITY AND EGGS QUALITY IN JAPANESE QUAILS

    Directory of Open Access Journals (Sweden)

    Martina Nickolova

    2011-01-01

    Full Text Available The aim of the current work was to examine the influence of Bulgarian phytoproduct VemoHerb T (dry extract of Tribulus terrestris –TT on laying productivity of Japanese quails (Coturnix coturnix japonica and their egg morphological and sensor properties. A trial was organized with 52 female and 16 male Japanese quails from the breed Faraon at the age of 44 days randomly divided in four groups – control and three experimental groups, 13 female and 4 male each. All birds were fed ad libitum the same compound feed for Japanese quails. The trial lasted 10 weeks. The experimental groups received with the drink water the tested product in following daily doses: 4mg/kg body weight (10weeks; 10mg/kg body weight (the first 5 weeks of the trial; 10mg/kg body weight (10 weeks for Ist, IInd , IIInd experimental groups respectively. The addition of TT-extract improved significantly the laying productivity. It was found significant higher values of egg weight, albumen - and yolk weight in quails from IInd and IIIrd experimental groups. There was a tendency to increase the egg shell weight and egg shell thickness in all treated groups in comparison to the control group. The usе of VemoHerb T did not aggravate the sensor properties of the quails’ eggs.

  3. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?

    Science.gov (United States)

    Yulong Zhang; Conghe Song; Lawrence E. Band; Ge Sun; Junxiang Li

    2017-01-01

    Accurately monitoring global vegetation dynamics with modern remote sensing is critical for understanding the functions and processes of the biosphere and its interactions with the planetary climate. The MODerate resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) product has been a primary data source for this purpose. To date, theMODIS teamhad released...

  4. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes

    Science.gov (United States)

    Yongguang Zhang; M. Susan Moran; Mark A. Nearing; Guillermo E. Ponce Campos; Alfredo R. Huete; Anthony R. Buda; David D. Bosch; Stacey A. Gunter; Stanley G. Kitchen; W. Henry McNab; Jack A. Morgan; Mitchel P. McClaran; Diane S. Montoya; Debra P.C. Peters; Patrick J. Starks

    2013-01-01

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary...

  5. Global Patterns in Human Consumption of Net Primary Production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.

    2004-01-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.

  6. Global patterns in human consumption of net primary production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  7. Valuing ecosystem services. A shadow price for net primary production

    International Nuclear Information System (INIS)

    Richmond, Amy; Kaufmann, Robert K.; Myneni, Ranga B.

    2007-01-01

    We analyze the contribution of ecosystem services to GDP and use this contribution to calculate an empirical price for ecosystem services. Net primary production is used as a proxy for ecosystem services and, along with capital and labor, is used to estimate a Cobb Douglas production function from an international panel. A positive output elasticity for net primary production probably measures both marketed and nonmarketed contributions of ecosystems services. The production function is used to calculate the marginal product of net primary production, which is the shadow price for ecosystem services. The shadow price generally is greatest for developed nations, which have larger technical scalars and use less net primary production per unit output. The rate of technical substitution indicates that the quantity of capital needed to replace a unit of net primary production tends to increase with economic development, and this rate of replacement may ultimately constrain economic growth. (author)

  8. Environmental conditions and primary production in a Sahelian ...

    African Journals Online (AJOL)

    This is a study of the environmental conditions and primary phytoplankton production in a Sahelian shallow lake of Senegal, West ... The primary production in Guiers Lake was high; it showed a vertical gradient with production of. 2400 mgC.m-3.days-1 in surface and ...... Cyanobacteria in fish ponds. Aquatculture,. 88: 1-20.

  9. New approaches investigating production rates of in-situ produced terrestrial cosmogenic nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Merchel, Silke [CEREGE, CNRS-IRD-Universite Aix-Marseille, Aix-en-Provence (France); FZD, Dresden (Germany); Braucher, Regis; Benedetti, Lucilla; Bourles, Didier [CEREGE, CNRS-IRD-Universite Aix-Marseille, Aix-en-Provence (France)

    2010-07-01

    In-situ produced cosmogenic nuclides have proved to be valuable tools for environmental and Earth sciences. However, accurate application of this method is only possible, if terrestrial production rates in a certain environment over a certain time period and their depth-dependence within the exposed material are exactly known. Unfortunately, the existing data and models differ up to several tens of percent. Thus, one of the European project CRONUS-EU goals is the high quality calibration of the {sup 36}Cl production rate by spallation at independently dated surfaces. As part of fulfilling this task we have investigated calcite-rich samples from four medieval landslide areas in the Alps: Mont Granier, Le Claps, Dobratsch, and Veliki Vrh (330-1620 m, 1248-1442 AD). For investigating the depth-dependence of the different nuclear reactions, especially, the muon- and thermal neutron-induced contributions, we have analysed mixtures of carbonates and siliceous conglomerate samples - for {sup 10}Be, {sup 26}Al, and {sup 36}Cl - exposed at different shielding depths and taken from a core drilled in 2005 at La Ciotat, France (from surface to 11 m shielding). AMS of {sup 36}Cl was performed at LLNL and ETH, {sup 10}Be and {sup 26}Al at ASTER.

  10. Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris.

    Science.gov (United States)

    Arora, D; Chashoo, G; Singamaneni, V; Sharma, N; Gupta, P; Jaglan, S

    2018-03-01

    The discovery of known bioactive chemical leads from microbial monocultures hinders the efficiency of drug discovery programmes. Therefore, in recent years, the use of fungal-bacterial coculture experiments has gained considerable attention due to their ability to generate new bioactive leads. In this work, fungal strain Setophoma terrestris was cocultured with Bacillus amyloliquifaciens to discover novel bioactive compounds. The bioactive methanolic coculture extract was chosen for the isolation of compounds by chromatographic methods. The isolated compounds were characterized by NMR and mass spectrometric techniques. Coculture extract has resulted in the production of five blennolides. The novel compound, blennolide K was found active against PC-3 (prostate) and MCF-7 (breast) cell lines with an IC 50 value of 3·7 ± 0·6 and 4·8 ± 0·4 μmol l -1 respectively. Furthermore, the nuclear morphology study in PC-3 cells after treatment with blennolide K, demonstrated chromatin condensation, formation of apoptotic bodies and shrinkage of cells. To our knowledge, only few studies have reported the induction of bioactive compounds by coculture having long-distance inhibition morphology. This is principally due to the low occurrences of such morphology. Our study demonstrates the impact of coculture on production of new chemical leads in drug discovery programmes. © 2017 The Society for Applied Microbiology.

  11. The terrestrial silica pump.

    Directory of Open Access Journals (Sweden)

    Joanna C Carey

    Full Text Available Silicon (Si cycling controls atmospheric CO(2 concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1, accounting for 43% of the total oceanic net primary production (NPP. However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1 is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2 levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump.

  12. Assessment of net primary productivity over India using Indian geostationary satellite (INSAT-3A) data

    Science.gov (United States)

    Goroshi, S. K.; Singh, R. P.; Pradhan, R.; Parihar, J. S.

    2014-11-01

    Polar orbiting satellites (MODIS and SPOT) have been commonly used to measure terrestrial Net Primary Productivity (NPP) at regional/global scale. Charge Coupled Device (CCD) instrument on geostationary INSAT-3A platform provides a unique opportunity for continuous monitoring of ecosystem pattern and process study. An improved Carnegie-Ames-Stanford Approach (iCASA) model is one of the most expedient and precise ecosystem models to estimate terrestrial NPP. In this paper, an assessment of terrestrial NPP over India was carried out using the iCASA ecosystem model based on the INSAT CCD derived Normalized Difference Vegetation Index (NDVI) with multisource meteorological data for the year 2009. NPP estimated from the INSAT CCD followed the characteristic growth profile of most of the vegetation types in the country. NPP attained maximum during August and September, while minimum in April. Annual NPP for different vegetation types varied from 1104.55 gC m-2 year-1 (evergreen broadleaf forest) to 231.9 gC m-2 year-1 (grassland) with an average NPP of 590 gC m-2 year-1. We estimated 1.9 PgC of net carbon fixation over Indian landmass in 2009. Biome level comparison between INSAT derived NPP and MODIS NPP indicated a good agreement with the Willmott's index of agreement (d) ranging from 0.61 (Mixed forest) to 0.99 (Open Shrubland). Our findings are consistent with the earlier NPP studies in India and indicate that INSAT derived NPP has the capability to detect spatial and temporal variability of terrestrial NPP over a wide range of terrestrial ecosystems in India. Thus INSAT-3A data can be used as one of the potential satellite data source for accurate biome level carbon estimation in India.

  13. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models

    Science.gov (United States)

    Koven, C. D.; Chambers, J. Q.; Georgiou, K.; Knox, R.; Negron-Juarez, R.; Riley, W. J.; Arora, V. K.; Brovkin, V.; Friedlingstein, P.; Jones, C. D.

    2015-09-01

    To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, the situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr-1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter-model spread in

  14. Fission product release into the primary coolant

    International Nuclear Information System (INIS)

    Apperson, C.E.

    1977-01-01

    The analytic evaluation of steady state primary coolant activity is discussed. The reported calculations account for temperature dependent fuel failure in two particle types and arbitrary radioactive decay chains. A matrix operator technique implemented in the SUVIUS code is used to solve the simultaneous equations. Results are compared with General Atomic Company's published results

  15. NPP Multi-Biome: Global Primary Production Data Initiative Products, R2

    Data.gov (United States)

    National Aeronautics and Space Administration — Net primary productivity (NPP) estimates were compiled by the Global Primary Production Data Initiative (GPPDI). The database covers 2,523 individual sites and 5,164...

  16. Chemical phenomena in primary titanium production

    CSIR Research Space (South Africa)

    van Vuuren, DS

    2011-01-01

    Full Text Available TiO2 $ 490m p.a. $ 2500 p.a. Pigment Production ~20 kt TiO2 5100 kt TiO2 $ 37m p.a. $ 10000 m.p.a. Sponge Production Nil 125 kt p.a. Ti $ 1250 m.p.a. Ingot Production Nil 145 kt p.a. Ti $ 2600 m.p.a. Mill Products Nil ~90 kt p.a. Ti $ 4500 m... in Titanium Production DS van Vuuren SACI 2011 19 January 2011 Slide 2 ? CSIR 2006 www.csir.co.za Outline ? Background ? Routes to produce titanium ? Some basic physical properties ? Main process routes and key physical...

  17. Primary productivity of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Pant, A.

    Reversal of surface circulation during the monsoons, patchy nutrient distributions and high light intensity drive phytoplankton production processes in the tropical Arabian Sea. Available data are discussed in the light of these driving phenomena...

  18. The Potential of Carbonyl Sulfide as a Proxy for Gross Primary Production at Flux Tower Sites

    Science.gov (United States)

    Regional and continental scale studies of the seasonal dynamics of atmospheric carbonyl sulfide (OCS) mole fractions and leaf-level studies of plant OCS exchange have shown a close relationship with those for CO2. CO2 has sinks and sources within terrestrial ecosystems, but the primary terrestrial e...

  19. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  20. Primary production in the Sulu Sea

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    FAO 1996 The Sixth World Food Survey Food, Rome, pp. 153. ISBN 92 5 103837 6. Iverson R L 1990 Control of marine fish production; Lim- nology and Oceanography 35 1593–1604. Jones I S F 2002 Climate stabilisation and food security. In: Handbook of Microalgae Culture, (ed) A Richmond,. Blackwells (in press).

  1. Terrestrial Carbon Cycle Variability.

    Science.gov (United States)

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2 , temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1 ) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1 ), and

  2. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  3. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China.

    Science.gov (United States)

    Xu, C; Liu, M; An, S; Chen, J M; Yan, P

    2007-11-01

    Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP.

  4. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2

    Science.gov (United States)

    John S. King; Mark E. Kubiske; Kurt S. Pregitzer; George R. Hendrey; Evan P. McDonald; Christian P. Giardina; Vanessa S. Quinn; David F. Karnosky

    2005-01-01

    Concentrations of atmospheric CO2 and tropospheric ozone (O3) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO2 enrichment (FACE) technology, we exposed north...

  5. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production

    NARCIS (Netherlands)

    Pahlow, Markus; van Oel, P.R.; Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2015-01-01

    As aquaculture becomes more important for feeding the growing world population, so too do the required natural resources needed to produce aquaculture feed. While there is potential to replace fish meal and fish oil with terrestrial feed ingredients, it is important to understand both the positive

  6. The Development of Terrestrial Water Cycle Applications for SMAP Soil Moisture Data Products

    Science.gov (United States)

    Soil moisture storage sits at the locus of the terrestrial water cycle and governs the relative partitioning of precipitation into various land surface flux components. Consequently, improved observational constraint of soil moisture variations should improve our ability to globally monitor the te...

  7. ISLSCP II Global Primary Production Data Initiative Gridded NPP Data

    Data.gov (United States)

    National Aeronautics and Space Administration — Net Primary Production (NPP) is an important component of the carbon cycle and, among the pools and fluxes that make up the cycle, it is one of the steps that are...

  8. Patterns of primary production in the Red Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Qurban, M.A.; Wafar, M.; Jyothibabu, R.; Manikandan, K.P.

    This paper presents data on various parameters of primary production (chlorophyll concentration, carbon uptake, nitrogen uptake, phytoplankton groups) measured in 4 cruises in the Saudi Arabian waters of the Red Sea between 2012 and 2015...

  9. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the HANPP Collection maps the net amount of solar energy converted to plant organic matter through...

  10. Work Environment and Productivity among Primary School Teachers ...

    African Journals Online (AJOL)

    User

    Abstract. This paper examined the influence of work environment on teachers' productivity in Primary schools in Nigeria. Since primary education is the starting point for the citizen's general development and also the basic foundation for subsequent levels of education, a lot is expected from the teacher. Every education ...

  11. Chlorophyll induced fluorescence retrieved from GOME2 for improving gross primary productivity estimates of vegetation

    Science.gov (United States)

    van Leth, Thomas C.; Verstraeten, Willem W.; Sanders, Abram F. J.

    2014-05-01

    Mapping terrestrial chlorophyll fluorescence is a crucial activity to obtain information on the functional status of vegetation and to improve estimates of light-use efficiency (LUE) and global primary productivity (GPP). GPP quantifies carbon fixation by plant ecosystems and is therefore an important parameter for budgeting terrestrial carbon cycles. Satellite remote sensing offers an excellent tool for investigating GPP in a spatially explicit fashion across different scales of observation. The GPP estimates, however, still remain largely uncertain due to biotic and abiotic factors that influence plant production. Sun-induced fluorescence has the ability to enhance our knowledge on how environmentally induced changes affect the LUE. This can be linked to optical derived remote sensing parameters thereby reducing the uncertainty in GPP estimates. Satellite measurements provide a relatively new perspective on global sun-induced fluorescence, enabling us to quantify spatial distributions and changes over time. Techniques have recently been developed to retrieve fluorescence emissions from hyperspectral satellite measurements. We use data from the Global Ozone Monitoring Instrument 2 (GOME2) to infer terrestrial fluorescence. The spectral signatures of three basic components atmospheric: absorption, surface reflectance, and fluorescence radiance are separated using reference measurements of non-fluorescent surfaces (desserts, deep oceans and ice) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach is applied similar to that of Joiner et al. (2013, ACP). Here we show our first global maps of the GOME2 retrievals of chlorophyll fluorescence. First results indicate fluorescence distributions that are similar with that obtained by GOSAT and GOME2 as reported by Joiner et al. (2013, ACP), although we find slightly higher values. In view of optimizing the fluorescence retrieval, we will show the effect of the references

  12. The aphrodisiac herb Tribulus terrestris does not influence the androgen production in young men.

    Science.gov (United States)

    Neychev, V K; Mitev, V I

    2005-10-03

    The aim of the current study is to investigate the influence of Tribulus terrestris extract on androgen metabolism in young males. Twenty-one healthy young 20-36 years old men with body weight ranging from 60 to 125 kg were randomly separated into three groups-two experimental (each n=7) and a control (placebo) one (n=7). The experimental groups were named TT1 and TT2 and the subjects were assigned to consume 20 and 10 mg/kg body weight per day of Tribulus terrestris extract, respectively, separated into three daily intakes for 4 weeks. Testosterone, androstenedione and luteinizing hormone levels in the serum were measured 24 h before supplementation (clear probe), and at 24, 72, 240, 408 and 576 h from the beginning of the supplementation. There was no significant difference between Tribulus terrestris supplemented groups and controls in the serum testosterone (TT1 (mean+/-S.D.: 15.75+/-1.75 nmol/l); TT2 (mean+/-S.D.: 16.32+/-1.57 nmol/l); controls (mean+/-S.D.: 17.74+/-1.09 nmol/l) (p>0.05)), androstenedione (TT1 (mean+/-S.D.: 1.927+/-0.126 ng/ml); TT2 (mean+/-S.D.: 2.026+/-0.256 ng/ml); controls (mean+/-S.D.: 1.952+/-0.236 ng/ml) (p>0.05)) or luteinizing hormone (TT1 (mean+/-S.D.: 4.662+/-0.274U/l); TT2 (mean+/-S.D.: 4.103+/-0.869U/l); controls (mean+/-S.D.: 4.170+/-0.406U/l) (p>0.05)) levels. All results were within the normal range. The findings in the current study anticipate that Tribulus terrestris steroid saponins possess neither direct nor indirect androgen-increasing properties. The study will be extended in the clarifying the probable mode of action of Tribulus terrestris steroid saponins.

  13. Primary productivity in nearshore waters of Thal, Maharashtra coast

    Digital Repository Service at National Institute of Oceanography (India)

    Varshney, P.K.; Nair, V.R.; Abidi, S.A.H.

    Primary productivity off Thal, Maharashtra, India was evaluated at 3 stations during Feb. 1980 to Jan. 1981. The area was quite turbid and the euphotic zone never exceeded 2.5 m. Column production ranged from 0.69 to 605.21 mg C.m/2.d/2 (av. 78.2 mg...

  14. Inorganic carbon addition stimulates snow algae primary productivity.

    Science.gov (United States)

    Hamilton, Trinity L; Havig, Jeff R

    2018-01-29

    Earth has experienced glacial/interglacial oscillations accompanied by changes in atmospheric CO 2 throughout much of its history. Today over 15 million square kilometers of Earth's land surface is covered in ice including glaciers, ice caps, and ice sheets. Glaciers are teeming with life and supraglacial snow and ice surfaces are often darkened by the presence of photoautotrophic snow algae, resulting in accelerated melt due to lowered albedo. Few studies report the productivity of snow algal communities and the parameters which constrain their growth on supraglacial surfaces-key factors for quantifying biologically induced albedo effects (bio-albedo). We demonstrate that snow algae primary productivity is stimulated by the addition of inorganic carbon. Our results indicate a positive feedback between increasing CO 2 and snow algal primary productivity, underscoring the need for robust climate models of past and present glacial/interglacial oscillations to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO 2 .

  15. Human Appropriation of Net Primary Production - Can Earth Keep Up?

    Science.gov (United States)

    Imhoff, Marc L.

    2006-01-01

    The amount of Earth's vegetation or net primary production required to support human activities is powerful measure of aggregate human impacts on the biosphere. Biophysical models applied to consumption statistics were used to estimate the annual amount of net primary production in the form of elemental carbon required for food, fibre, and fuel-wood by the global population. The calculations were then compared to satellite-based estimates of Earth's average net primary production to produce a geographically explicit balance sheet of net primary production "supply" and "demand". Humans consume 20% of Earth's net primary production (11.5 petagrams carbon) annually and this percentage varies regionally from 6% (South America) to over 70% (Europe and Asia), and locally from near 0% (central Australia) to over 30,000% (New York City, USA). The uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations are vulnerable to climate change and suggest policy options for slowing future growth of NPP demand.

  16. Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells.

    Science.gov (United States)

    Kim, Hyung Sik; Lee, Jin Woo; Jang, Hari; Le, Thi Phuong Linh; Kim, Jun Gu; Lee, Moon Soon; Hong, Jin Tae; Lee, Mi Kyeong; Hwang, Bang Yeon

    2018-02-01

    A new phenolic amide, named cis-terrestriamide (7), together with ten known compounds (1-6, 8-11), were isolated from the methanolic extract of the fruits of Tribulus terrestris. The structure of 7 was elucidated on the basis of extensive analyses of 1D and 2D nuclear magnetic resonance spectroscopic and high resolution mass spectrometry data. Compounds 1, 2, 5, 6, 8, 9, and 11 exhibited inhibitory effects on the lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 cells, with IC 50 values of 18.7-49.4 μM.

  17. Relating zoobenthic and emergent terrestrial insect production to tree swallow (Tachycineta bicolor) nestling diet in oil sands wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Thoms, J.L.; Martin, J.P.; Ciborowski, J.J. [Windsor Univ., Windsor, ON (Canada); Harms, N.J.; Smits, J.E. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2009-07-01

    This study examined the influence of oil sands process materials (OSPM) on wetland macroinvertebrate community composition and production. Tree swallows are known to inhabit constructed nest boxes and forage near their nest on flying insects of terrestrial and aquatic origin. Therefore, this study evaluated the structure of wetland food webs and how it relates to the transfer of production from aquatic sediments to nestling tree swallows. The study involved 2 reference and 2 oil sands affected wetlands. Exuviae of emerging aquatic and flying insects from floating and sticky traps were collected every 3 days during the tree swallow nestling period in order to estimate benthic invertebrate composition and production. The tree swallow nest boxes, placed around the perimeter of the wetlands in spring were monitored during egg laying and incubation. Diets of the 10-14 day-old nestlings were determined by placing a ligature around the neck of each nestling, preventing the passage of food into the esophagus for 45 min. Food boluses were collected from nestlings fed by the parents during that time. The study showed that although oil sands-affected wetlands had lower aerial insect abundance, they represented over half of the total boluses collected. It was concluded that this study will help determine the ecological viability of oil sands-affected wetlands and their capability of supporting terrestrial predators that rely on zoobenthos.

  18. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) by Country and Product portion of the HANPP Collection contains tabular data on carbon-equivalents of...

  19. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    Science.gov (United States)

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (pproduction simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Clinical productivity of primary care nurse practitioners in ambulatory settings.

    Science.gov (United States)

    Xue, Ying; Tuttle, Jane

    Nurse practitioners are increasingly being integrated into primary care delivery to help meet the growing demand for primary care. It is therefore important to understand nurse practitioners' productivity in primary care practice. We examined nurse practitioners' clinical productivity in regard to number of patients seen per week, whether they had a patient panel, and patient panel size. We further investigated practice characteristics associated with their clinical productivity. We conducted cross-sectional analysis of the 2012 National Sample Survey of Nurse Practitioners. The sample included full-time primary care nurse practitioners in ambulatory settings. Multivariable survey regression analyses were performed to examine the relationship between practice characteristics and nurse practitioners' clinical productivity. Primary care nurse practitioners in ambulatory settings saw an average of 80 patients per week (95% confidence interval [CI]: 79-82), and 64% of them had their own patient panel. The average patient panel size was 567 (95% CI: 522-612). Nurse practitioners who had their own patient panel spent a similar percent of time on patient care and documentation as those who did not. However, those with a patient panel were more likely to provide a range of clinical services to most patients. Nurse practitioners' clinical productivity was associated with several modifiable practice characteristics such as practice autonomy and billing and payment policies. The estimated number of patients seen in a typical week by nurse practitioners is comparable to that by primary care physicians reported in the literature. However, they had a significantly smaller patient panel. Nurse practitioners' clinical productivity can be further improved. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A modified integrated NDVI for improving estimates of terrestrial net primary production

    Science.gov (United States)

    Running, Steven W.

    1990-01-01

    Logic is presented for a time-integrated NDVI that is modified by an AVHRR derived surface evaporation resistance factor sigma, and truncated by temperatures that cause plant dormancy, to improve environmental sensitivity. With this approach, NDVI observed during subfreezing temperatures is not integrated. Water stress-related impairment in plant activity is incorporated by reducing the effective NDVI at each integration with sigma, which is derived from the slope of the surface temperature to NDVI ratio for climatically similar zones of the scene. A comparison of surface resistance before and after an extended drought period for a 1200 sq km region of coniferous forest in Montana is presented.

  2. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    DEFF Research Database (Denmark)

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe

    2015-01-01

    GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation...

  3. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity.

    Science.gov (United States)

    Stuart-Haëntjens, Ellen J; Curtis, Peter S; Fahey, Robert T; Vogel, Christoph S; Gough, Christopher M

    2015-09-01

    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C storage. Disturbances to forests occur along a continuum of severity, from low-intensity disturbance causing the mortality or defoliation of only a subset of trees to severe stand- replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest production changes across gradients of disturbance intensity. We used a gradient of tree mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood net primary production (ANPP,) responds to a range of disturbance severities; and (2) identify mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw declined nonlinearly with rising disturbance severity, remaining stable until >60% of the total tree basal area senesced. As upper canopy openness increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level photosynthesis and growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses and a reduction in total leaf area index (LAI). As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased with rising disturbance severity, except in plots beyond the disturbance threshold. These findings provide a mechanistic explanation for a nonlinear relationship between ANPPw, and disturbance severity, in which the physiological and growth enhancement of undisturbed vegetation is proportional to the level of disturbance until a threshold is exceeded. Our results have important ecological and management implications, demonstrating that in some ecosystems moderate levels of disturbance minimally alter forest production.

  4. Nitrogenous nutrients and primary production in a tropical oceanic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; Devassy, V.P.

    Measurements of the concentrations of nitrogenous nutrients and primary production were made at 10 stations along 8 degrees N and 10 degrees N in the tropical oceanic Lakshadweep waters Inorganic nitrogen (NO3, NO2 and NH4) accounted for less than...

  5. Title: Trends in primary productivity (measured as NDVI) over mine ...

    African Journals Online (AJOL)

    chari

    Remote sensing techniques are increasingly being employed in monitoring environmental change. Vegetation indices such as normalised difference vegetation index (NDVI), are useful in estimating primary production, an important component of ecosystem function. The success of rehabilitation on mine tailings may be ...

  6. Primary wood-product industries of southern New England - 1971

    Science.gov (United States)

    James T. Bones

    1973-01-01

    The results of a complete canvass of the primary wood manufacturers in southern New England. The report contains data about wood production and receipts for the states of the region. Comparisons are made with a similar 1952 survey and trends in industrial wood output are noted.

  7. Anoxic and oxic phototrophic primary production during the Precambrian

    DEFF Research Database (Denmark)

    Ebey-Honeycutt, Christina Marie; Bjerrum, Christian J.; Canfield, Donald Eugene

    2009-01-01

    of the mixed layer often lies above the base of the photic zone . Thus, an ecosystem model for the Precambrian should reflect the net primary production (NPP) of oxygenic phototrophs in the mixed layer and anoxygenic phototrophs below (NPPox and NPPred, respectively). Satelite data and a vertically generalized...

  8. Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012

    Science.gov (United States)

    Wang, J.; Dong, J.; Yi, Y.; Lu, G.; Oyler, J.; Smith, W. K.; Zhao, M.; Liu, J.; Running, S.

    2017-01-01

    Terrestrial ecosystems have continued to provide the critical service of slowing the atmospheric CO2 growth rate. Terrestrial net primary productivity (NPP) is thought to be a major contributing factor to this trend. Yet our ability to estimate NPP at the regional scale remains limited due to large uncertainties in the response of NPP to multiple interacting climate factors and uncertainties in the driver data sets needed to estimate NPP. In this study, we introduced an improved NPP algorithm that used local driver data sets and parameters in China. We found that bias decreased by 30% for gross primary production (GPP) and 17% for NPP compared with the widely used global GPP and NPP products, respectively. From 2000 to 2012, a pixel-level analysis of our improved NPP for the region of China showed an overall decreasing NPP trend of 4.65 Tg C a-1. Reductions in NPP were largest for the southern forests of China (-5.38 Tg C a-1), whereas minor increases in NPP were found for North China (0.65 Tg C a-1). Surprisingly, reductions in NPP were largely due to decreases in solar radiation (82%), rather than the more commonly expected effects of drought (18%). This was because for southern China, the interannual variability of NPP was more sensitive to solar radiation (R2 in 0.29-0.59) relative to precipitation (R2 shortwave radiation in driving vegetation productivity for the region, especially for tropical forests.

  9. Biomass and net primary productivity of mangrove communities along the Oligohaline zone of Sundarbans, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Kamruzzaman

    2017-09-01

    Full Text Available Background The article presents the first estimates of biomass and productivity for mangrove forests along the Oligohaline zone of the Sundarbans Reserve Forest (SRF, Bangladesh. This study was conducted overone year from March 2016 to April 2017. Stand structure, above and below-ground biomass changes, and litterfall production were measured within a 2100 m2 sample plot. Methods All trees in the study plots were numbered and height (H and diameter at breast height (DBH were measured. Tree height (H and DBH for each tree were measured in March 2016 and 2017. We apply the above and belowground biomass equation for estimating the biomass of the mangrove tree species (Chave et al. Oecologia 145:87−99, 2005; Komiyama et al. J Trop Ecol 21:471–477, 2005. Litterfall was collected using 1-mm mesh litter traps with collection area of 0.42 m2. Net Primary Production (NPP was estimated by the summation method of Ogawa Primary productivity of Japanese forests: productivity of terrestrial communities, JIBP synthesis (1977 and Matsuura and Kajimoto Carbon dynamics of terrestrial ecosystem: Systems approach to global environment (2013. Results Heritiera fomes has maintained its dominance of the stand and also suffered the highest tree mortality (2.4% in the suppressed crown class. The total above-ground biomass (AGB and below-ground biomass (BGB of the studied stand was 154.8 and 84.2 Mg∙ha−1, respectively. Among the total biomass of the trees, 64.8% was allocated to AGB and 35.2% to BGB. In case of species-wise contribution of biomass allocation, Avicennia officinalis showed the highest score and Aglaia cucullata the lowest. Mean annual total litterfall was 10.1 Mg∙ha−1∙yr−1, with the maximum litterfall in winter or dry season and late summer or rainy season. The mean AGB increment and above-ground net primary productivity (AGNPP were 7.1 and 17.2 Mg∙ha−1∙yr−1, respectively. Total net primary productivity (NPP was estimated to be 21

  10. Buffer-Mediated Effects of Clearcutting on In-Pool Amphibian Productivity: Can Aquatic Processes Compensate for Terrestrial Habitat Disturbance?

    Directory of Open Access Journals (Sweden)

    Jessica S. Veysey Powell

    2016-12-01

    Full Text Available Natural resource extraction and wildlife conservation are often perceived as incompatible. For wetland-dependent amphibians, forested buffers may mitigate timber-harvest impacts, but little empirical research has focused on buffers around lentic habitats. We conducted a landscape experiment to examine how spotted salamander and wood frog reproductive output (i.e., eggmass and metamorph production respond to clearcutting mediated by buffers of different widths (i.e., uncut, 30 m buffer, 100 m buffer at ephemeral pools in an industrial forest. We found complex interactions between buffer treatment and reproductive output, which were strongly mediated by hydroperiod. Overall, reproductive output was most sensitive at 30 m-buffer pools and for salamanders, but responses diverged across productivity metrics even within these categories. Notably, for both cut treatments over time, while salamander eggmass abundance decreased, metamorph productivity (i.e., snout-vent length [SVL] and abundance tended to increase. For example, average metamorph SVLs were predicted to lengthen between 0.2 and 0.4 mm per year post-cut. Additionally, typical relationships between reproductive output and hydroperiod (as indicated by the reference treatment were disrupted for both species in both cut treatments. For example, long-hydroperiod pools produced more salamander metamorphs than short-hydroperiod pools in both the reference and 30 m-buffer treatments, but the rate of increase was lower in the 30 m-buffer treatment such that a long-hydroperiod pool in the reference treatment was predicted to produce, on average, 24 more metamorphs than a similar pool in the 30 m-buffer treatment. From a conservation perspective, our results highlight the importance of evaluating both terrestrial and aquatic responses to terrestrial habitat disturbance, since responses may be reinforcing (i.e., exert similarly positive or negative effects, with the potential for amplification in the

  11. Assessment of the magnesium primary production technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

    1981-02-01

    At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

  12. Primary Production in the Delta: Then and Now

    Directory of Open Access Journals (Sweden)

    James E. Cloern

    2016-10-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss3art1To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850. Here we describe an approach for using these metrics of land use change to: (1 produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2 convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3 use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

  13. Primary production in the Delta: Then and now

    Science.gov (United States)

    Cloern, James E.; Robinson, April; Richey, Amy; Grenier, Letitia; Grossinger, Robin; Boyer, Katharyn E.; Burau, Jon; Canuel, Elizabeth A.; DeGeorge, John F.; Drexler, Judith Z.; Enright, Chris; Howe, Emily R.; Kneib, Ronald; Mueller-Solger, Anke; Naiman, Robert J.; Pinckney, James L.; Safran, Samuel M.; Schoellhamer, David H.; Simenstad, Charles A.

    2016-01-01

    To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850). Here we describe an approach for using these metrics of land use change to: (1) produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2) convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3) use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

  14. Evaluation of Organic Proxies for Quantifying Past Primary Productivity

    Science.gov (United States)

    Raja, M.; Rosell-Melé, A.; Galbraith, E.

    2017-12-01

    Ocean primary productivity is a key element of the marine carbon cycle. However, its quantitative reconstruction in the past relies on the use of biogeochemical models as the available proxy approaches are qualitative at best. Here, we present an approach that evaluates the use of phytoplanktonic biomarkers (i.e. chlorins and alkenones) as quantitative proxies to reconstruct past changes in marine productivity. We compare biomarkers contents in a global suite of core-top sediments to sea-surface chlorophyll-a abundance estimated by satellites over the last 20 years, and the results are compared to total organic carbon (TOC). We also assess satellite data and detect satellite limitations and biases due to the complexity of optical properties and the actual defined algorithms. Our findings show that sedimentary chlorins can be used to track total sea-surface chlorophyll-a abundance as an indicator for past primary productivity. However, degradation processes restrict the application of this proxy to concentrations below a threshold value (1µg/g). Below this threshold, chlorins are a useful tool to identify reducing conditions when used as part of a multiproxy approach to assess redox sedimentary conditions (e.g. using Re, U). This is based on the link between anoxic/disoxic conditions and the flux of organic matter from the sea-surface to the sediments. We also show that TOC is less accurate than chlorins for estimating sea-surface chlorophyll-a due to the contribution of terrigenous organic matter, and the different degradation pathways of all organic compounds that TOC includes. Alkenones concentration also relates to primary productivity, but they are constrained by different processes in different regions. In conclusion, as lons as specific constraints are taken into account, our study evaluates the use of chlorins and alkenones as quantitative proxies of past primary productivity, with more accuracy than by using TOC.

  15. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  16. Benthic primary production and mineralization in a High Arctic fjord

    DEFF Research Database (Denmark)

    Attard, Karl; Hancke, Kasper; Sejr, Mikael K.

    2016-01-01

    Coastal and shelf systems likely exert major influence on Arctic Ocean functioning, yet key ecosystem processes remain poorly quantified. We employed the aquatic eddy covariance (AEC) oxygen (O2) flux method to estimate benthic primary production and mineralization in a High Arctic Greenland fjord...... light data, we estimate an annual Arctic Ocean benthic GPP of 11.5 × 107 t C yr−1. On average, this value represents 26% of the Arctic Ocean annual net phytoplankton production estimates. This scarcely considered component is thus potentially important for contemporary and future Arctic ecosystem...

  17. Fission and corrosion products behavior in primary circuits of LMFBR's

    International Nuclear Information System (INIS)

    Feuerstein, H.; Thorley, A.W.

    1987-08-01

    Most of the 20 presented papers report items belonging to more than one session. The equipment results of primary circuits of LMFBR's relative to corrosion and fission products, release and chemistry of fuel, measurement techniques and analytical procedures of sodium sampling, difficulties with radionuclides and particles, reactor experiences with EBR-II, FFTF, BR10, BOR60, BN350, BN600, JOYO, and KNK-II, DFR, PFR, RAPSODIE, PHENIX, and SUPERPHENIX, and at least the verification of codes for calculation models of radioactive products accumulation and distribution are described. All 20 papers presented at the meeting are separately indexed in the database. (DG)

  18. Aboveground net primary production decline with stand age: potential causes.

    Science.gov (United States)

    Gower, S T; McMurtrie, R E; Murty, D

    1996-09-01

    Aboveground net primary production (ANPP) commonly reaches a maximum in young forest stands and decreases by 0-76% as stands mature. However, the mechanism(s) responsible for the decline are not well understood. Current hypotheses for declining ANPP with stand age include: (1) an altered balance between photosynthetic and respiring tissues, (2) decreasing soil nutrient availability, and (3) increasing stomatal limitation leading to reduced photosynthetic rates. Recent empirical and modeling studies reveal that mechanisms (2) and (3) are largely responsible for age-related decline in ANPP for forests in cold environments. Increasing respiratory costs appear to be relatively unimportant in explaining declining productivity in ageing stands.

  19. Regulation of primary productivity rate in the equatorial Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Barber, R.T. (Duke Univ. Marine Lab., Beaufort, NC (United States)); Chavez, F.P. (Monterey Bay Aquarium Research Inst., Pacific Grove, CA (United States))

    1991-12-01

    Analysis of the Chl-specific rate of primary productivity (P{sup B}) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific In the western Pacific where there is a gradient in 60-m (NO{sub 3}) from 0 to {approximately}12 {mu}M, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 {mu}M, the productivity rate is independent of nutrient concentration and limited to {approximately}36 mg C(mg Chl){sup {minus}1} d{sup {minus}1}, or a mean euphotic zone C-specific growth rate ({mu}) of 0.47 d{sup {minus}1}. However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl){sup {minus}1} d{sup {minus}1} and {mu} = 0.57 d{sup {minus}1}, very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region.

  20. Regulation of primary productivity rate in the equatorial Pacific

    International Nuclear Information System (INIS)

    Barber, R.T.; Chavez, F.P.

    1991-01-01

    Analysis of the Chl-specific rate of primary productivity (P B ) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific? In the western Pacific where there is a gradient in 60-m [NO 3 ] from 0 to ∼12 μM, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 μM, the productivity rate is independent of nutrient concentration and limited to ∼36 mg C(mg Chl) -1 d -1 , or a mean euphotic zone C-specific growth rate (μ) of 0.47 d -1 . However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl) -1 d -1 and μ = 0.57 d -1 , very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region

  1. Recent changes in terrestrial water storage in the Upper Nile Basin: an evaluation of commonly used gridded GRACE products

    Directory of Open Access Journals (Sweden)

    M. Shamsudduha

    2017-09-01

    Full Text Available GRACE (Gravity Recovery and Climate Experiment satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS, providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage. Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data, explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS modelled by GLDAS LSMs (CLM, NOAH, VIC and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is

  2. Recent changes in terrestrial water storage in the Upper Nile Basin: an evaluation of commonly used gridded GRACE products

    Science.gov (United States)

    Shamsudduha, Mohammad; Taylor, Richard G.; Jones, Darren; Longuevergne, Laurent; Owor, Michael; Tindimugaya, Callist

    2017-09-01

    GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8-4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of

  3. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Wu, Xiaocui; Zhou, Sha; Zhang, Geli; Qin, Yuanwei; Dong, Jinwei

    2017-10-01

    Accurate estimation of the gross primary production (GPP) of terrestrial vegetation is vital for understanding the global carbon cycle and predicting future climate change. Multiple GPP products are currently available based on different methods, but their performances vary substantially when validated against GPP estimates from eddy covariance data. This paper provides a new GPP dataset at moderate spatial (500 m) and temporal (8-day) resolutions over the entire globe for 2000-2016. This GPP dataset is based on an improved light use efficiency theory and is driven by satellite data from MODIS and climate data from NCEP Reanalysis II. It also employs a state-of-the-art vegetation index (VI) gap-filling and smoothing algorithm and a separate treatment for C3/C4 photosynthesis pathways. All these improvements aim to solve several critical problems existing in current GPP products. With a satisfactory performance when validated against in situ GPP estimates, this dataset offers an alternative GPP estimate for regional to global carbon cycle studies.

  4. Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data

    Science.gov (United States)

    Madani, Nima; Kimball, John S.; Running, Steven W.

    2017-11-01

    In the light use efficiency (LUE) approach of estimating the gross primary productivity (GPP), plant productivity is linearly related to absorbed photosynthetically active radiation assuming that plants absorb and convert solar energy into biomass within a maximum LUE (LUEmax) rate, which is assumed to vary conservatively within a given biome type. However, it has been shown that photosynthetic efficiency can vary within biomes. In this study, we used 149 global CO2 flux towers to derive the optimum LUE (LUEopt) under prevailing climate conditions for each tower location, stratified according to model training and test sites. Unlike LUEmax, LUEopt varies according to heterogeneous landscape characteristics and species traits. The LUEopt data showed large spatial variability within and between biome types, so that a simple biome classification explained only 29% of LUEopt variability over 95 global tower training sites. The use of explanatory variables in a mixed effect regression model explained 62.2% of the spatial variability in tower LUEopt data. The resulting regression model was used for global extrapolation of the LUEopt data and GPP estimation. The GPP estimated using the new LUEopt map showed significant improvement relative to global tower data, including a 15% R2 increase and 34% root-mean-square error reduction relative to baseline GPP calculations derived from biome-specific LUEmax constants. The new global LUEopt map is expected to improve the performance of LUE-based GPP algorithms for better assessment and monitoring of global terrestrial productivity and carbon dynamics.

  5. Repression and recuperation of brood production in Bombus terrestris bumble bees exposed to a pulse of the neonicotinoid pesticide imidacloprid.

    Directory of Open Access Journals (Sweden)

    Ian Laycock

    Full Text Available Currently, there is concern about declining bee populations and some blame the residues of neonicotinoid pesticides in the nectar and pollen of treated crops. Bumble bees are important wild pollinators that are widely exposed to dietary neonicotinoids by foraging in agricultural environments. In the laboratory, we tested the effect of a pulsed exposure (14 days 'on dose' followed by 14 days 'off dose' to a common neonicotinoid, imidacloprid, on the amount of brood (number of eggs and larvae produced by Bombus terrestris L. bumble bees in small, standardised experimental colonies (a queen and four adult workers. During the initial 'on dose' period we observed a dose-dependent repression of brood production in colonies, with productivity decreasing as dosage increased up to 98 µg kg(-1 dietary imidacloprid. During the following 'off dose' period, colonies showed a dose-dependent recuperation such that total brood production during the 28-day pulsed exposure was not correlated with imidacloprid up to 98 µg kg(-1. Our findings raise further concern about the threat to wild bumble bees from neonicotinoids, but they also indicate some resilience to a pulsed exposure, such as that arising from the transient bloom of a treated mass-flowering crop.

  6. Joint effects of three plant protection products to the terrestrial isopod Porcellionides pruinosus and the collembolan Folsomia candida.

    Science.gov (United States)

    Santos, Miguel J G; Soares, Amadeu M V M; Loureiro, Susana

    2010-08-01

    The effects of simultaneous application of plant protection products are of concern since the uses of different products pose an additional risk to non-target soil organisms. The effects of binary combinations of dimethoate, glyphosate and spirodiclofen, an insecticide an herbicide and an acaricide, on the avoidance behaviour of the terrestrial isopod Porcellionides pruinosus and the reproductive effort of Folsomia candida were assessed using the two reference models of concentration addition (CA) and independent action (IA). Results of single exposure to the three pesticides indicated a clear dose related avoidance response of the isopods in the highest concentrations tested of the three as well as a strong decrease in collembolan adult survival and concomitant number of juveniles produced. In the combined experiments, antagonism was found in 7 out of the 12 combinations, four combinations followed the reference models, and only in one combination synergism was detected (lower doses of glyphosate and spirodiclofen applied to P. pruinosus). In conclusion, it seems that mixing and applying these products, at the recommended field application rate, does not lead to enhanced toxicity, hence limited risk is associated with the joint application of these pesticides. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Patterns of primary production in the Red Sea

    Science.gov (United States)

    Qurban, Mohammad Ali; Wafar, Mohideen; Jyothibabu, R.; Manikandan, K. P.

    2017-05-01

    This paper presents data on various parameters of primary production (chlorophyll concentration, carbon uptake, nitrogen uptake, phytoplankton groups) measured in 4 cruises in the Saudi Arabian waters of the Red Sea between 2012 and 2015. The results showed that while there was a tendency for an increase from north to south, the meridional distributions were distinguished by alternating high and low concentrations of chlorophyll, carbon uptake rates and cell densities of various phytoplankton groups, with the higher levels being associated with zonal currents and the lower values lying in between. These patterns of distributions lead us to conclude that the biological production in the Red Sea is influenced more by anticyclonic eddy, and less by meridional, circulations at any time of the year. Synthesizing the present results with earlier ones on the patterns of distributions of nutrients and the flow of Gulf of Aden Intermediate Water (GAIW), we also conclude that entrainment of GAIW in successive eddies is the cause for higher nutrients and biological production in the regions of eddy boundary currents. Data on size-fractionated carbon uptake and nitrogen uptake showed that the eddies in Red Sea favour the proliferation of producers across a range of size classes rather than one class. The amount of nutrients injected into the euphotic zone in the eddy boundary currents is probably not high enough to induce a definite shift in phytoplankton size classes, and the primary production still remains to a significant extent regenerated nutrient-driven.

  8. Validation of the Extend Suite of MOD09 and SMAC Processed Reflectance Products for Australian Terrestrial Supersites: A Case Study

    Science.gov (United States)

    Broomhall, M. A.; Chedzey, H. C.; McAtee, B.; Fearns, P.; Lynch, M. J.

    2014-12-01

    The Australian Terrestrial Ecosystem Research Network (TERN) brings together ecosystem scientists allowing them to collect, contribute, store, integrate data and collaborate across numerous disciplines. The TERN AusCover Facility comprises a national expert network that provides remote sensing data such as satellite-derive biophysical products, advanced remote sensing products and ground-validation information free and online to the research community. TERN and AusCover have collected in situ data for a number of 5 km x 5 km supersites from nearly every state and territory in Australia. These data include spectrophotometer data, sun photometer and ozonometer data, airborne and terrestrial LIDAR data and airborne hyperspectral data. As part of the AusCover facility and in conjunction with Landgate, Western Australia, Curtin University has modified the atmospheric correction and surface reflectance processing scheme from Landgate to process 12 extra MODIS bands to surface reflectance, thus providing 19 bands. This processing scheme uses the Simple Method for Atmospheric Correction (SMAC) to produce reflectance data. Until recently, only the first 7 MODIS bands were available with the MODIS institutional algorithm for surface reflectance, MOD09, but this has altered to now also provide 9 extra bands. MOD09 is based around 6S to produce reflectance data. This case study makes use of hyperspectral airborne data captured over the Credo TERN supersite to compare the surface reflectance products from MOD09 and the SMAC-based 19-band reflectance process. This work required validating the airborne data against a set in situ reflectance measurements of large calibration targets. The validated airborne data were resampled spatially and spectrally to MODIS bands and both the airborne and MODIS data were mapped to the same spatial grid. Direct pixel comparisons have been made between the airborne data and the two algorithms, and between the algorithms themselves. The algorithms

  9. Do low-mercury terrestrial resources subsidize low-mercury growth of stream fish? Differences between species along a productivity gradient.

    Directory of Open Access Journals (Sweden)

    Darren M Ward

    Full Text Available Low productivity in aquatic ecosystems is associated with reduced individual growth of fish and increased concentrations of methylmercury (MeHg in fish and their prey. However, many stream-dwelling fish species can use terrestrially-derived food resources, potentially subsidizing growth at low-productivity sites, and, because terrestrial resources have lower MeHg concentrations than aquatic resources, preventing an increase in diet-borne MeHg accumulation. We used a large-scale field study to evaluate relationships among terrestrial subsidy use, growth, and MeHg concentrations in two stream-dwelling fish species across an in-stream productivity gradient. We sampled young-of-the-year brook trout (Salvelinus fontinalis and Atlantic salmon (Salmo salar, potential competitors with similar foraging habits, from 20 study sites in streams in New Hampshire and Massachusetts that encompassed a wide range of aquatic prey biomass. Stable isotope analysis showed that brook trout used more terrestrial resources than Atlantic salmon. Over their first growing season, Atlantic salmon tended to grow larger than brook trout at sites with high aquatic prey biomass, but brook grew two-fold larger than Atlantic salmon at sites with low aquatic prey biomass. The MeHg concentrations of brook trout and Atlantic salmon were similar at sites with high aquatic prey biomass and the MeHg concentrations of both species increased at sites with low prey biomass and high MeHg in aquatic prey. However, brook trout had three-fold lower MeHg concentrations than Atlantic salmon at low-productivity, high-MeHg sites. These results suggest that differential use of terrestrial resource subsidies reversed the growth asymmetry between potential competitors across a productivity gradient and, for one species, moderated the effect of low in-stream productivity on MeHg accumulation.

  10. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  11. Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; hide

    2016-01-01

    Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.

  12. Effects of radioactive by-products along the extraction of rare earth elements on aquatic and terrestrial organisms

    International Nuclear Information System (INIS)

    Findeiss, Matthias

    2016-01-01

    Lanthanides, also called rare earth elements (REE) are key elements in modern technologies and especially in green technologies such as energy generation through wind power. Thus, they are of considerable economic importance with a global production of around 124 000 t REE per year. A detailed environmental assessment with identification of all risks is the foundation to assess the sustainability of mining, processing and separation processes. Rare earth elements usually are found together with actinides such as uranium and thorium. Therefore, actinides and their decay products are simultaneously enriched during the processing of REE. In addition to conventional REE minerals such as monazite or bastnasite, the mineral eudialyte can be used as a REE source. Even though, the total share of REE is low, the most important REE needed for industrial usages are strongly represented in eudialyte. Furthermore, the proportion of radioactive impurities is very low. Eudialyte is currently not used as source mineral, but might play a bigger role on the global market in the future.Little information about the environmental impacts of REE-production is available to the public, in particular with regard to its radioactive by-products. Thorium is the most prominent of these and has therefore been characterized in detail for its ecotoxicity. A first goal of this work was to evaluate the a- emitter thorium and its impact on the environment. To this aim, an intensive literature search was conducted and results were prepared including the long-term effects of thorium dust and gaseous emissions. Therefore and because ecotoxicological testing of gaseous emissions was technically difficult and environmentally less relevant - unlike its immense impact for exposed industrial workers and bystanders - the water effluent und solid waste streams were investigated with aquatic and terrestrial toxicological experiments. The knowledge gained is meant to supplement the missing data for thorium. A

  13. Potential terrestrial fate and effects on soil biota of a coal liquefaction product spill

    Energy Technology Data Exchange (ETDEWEB)

    Strayer, R.F.; Edwards, N.T.; Walton, B.T.; Charles-Shannon, V.

    1983-01-01

    Contaminated soil samples collected from the site of a coal liquefaction product spill were used to study potential fates and effects of this synthetic fuel. Simulated weathering in the laboratory caused significant changes in residual oil composition. Soil column leachates contained high phenol levels that decreased exponentially over time. Toxicity tests demonstrated that the oil-contaminated soil was phytotoxic and caused embryotoxic and teratogenic effects on eggs of the cricket Acheta domesticus.

  14. Improved assessment of gross and net primary productivity of Canada's landmass

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  15. Studies of activation products in the terrestrial environment of three swedish nuclear power stations

    International Nuclear Information System (INIS)

    Ingemansson, T.; Erlandsson, B.; Mattsson, S.

    1982-01-01

    Samples of sewage sludge, lichen (Cladonia alpestris), soil and ground level air have been analysed for activation products released to the atmosphere from the three Swedish nuclear power stations at Simpevarp near Oskarshamn, Ringhals and Barsebaeck. The activity concentration of the activation products in the sludge can be arranged in the following sequence: 60 Co > 65 Zn > 58 Co 54 Mn. There is agreement between the time variation of the activity concentration in the sludge and the reported releases to the air from the power stations. The measured activity ratio 58 Co/ 60 Co in sludge does not significantly differ from that reported in the releases to the air. The activity concentration in sludge sedimented from incoming waste water has been used to get better time resolution than using only digested sludge from the final step of the plant. These studies have shown that the activity concentration of 60 Co increases substantially with the first rain run-off that reaches the sewage plant and then falls off rapidly. Measurements on samples of lichen and underlying soil show that the radioactive cobalt isotopes ( 58 Co and 60 Co) have a short mean residence time in the lichen carpet compared to most fission products present in global fall-out. (author)

  16. A new net primary production estimating model using NOAA-AVHRR applied to the Haihe Basin, China

    Science.gov (United States)

    Xu, Xingang; Wu, Bingfang; Li, Qiangzi; Meng, Jihua; Zhang, Fengli

    2006-10-01

    Terrestrial net primary production (NPP), as an important component of carbon cycle on land, not only indicates directly the production level of vegetation community on land, but also shows the status of terrestrial ecosystem. What's more, NPP is also a determinant of carbon sinks on land and a key regulator of ecological processes, including interactions among tropic levels. In the study, three existing models are combined with each other to assess net primary production in Haihe Basin, China. The photosynthetically active radiation (PAR) model of Monteith is used for the calculation of absorbed photosynthetically active radiation (APAR), the light utilization efficiency model of Potter et al. is used for determining the light utilization efficiency, and the surface energy balance system (SEBS) of Su is used into Potter's model to describe water stress in land wetness conditions. To assess NPP, We use NOAA-AVHRR data from November 2003 to September 2004 and the corresponding daily data of temperature and hours of sunshine obtained from meteorological stations in Haihe Basin, China. After atmospheric, geometrical and radiant corrections, every ten days NOAA data are processed to become an image of NDVI by means of the maximal value composition method (MVC) in order to eliminate some noises. Using these data, we compute NPP in spring season and spring season of 2004 in Haihe Basin, China. The result shows, in Haihe Basin, NPP for spring season is averaged to 336.10gC•m -2, and 709.16 gC•m -2 for autumn season. In spatial distribution, NPP is greater in both ends than in middle for spring season, and decrease increasingly from north to south for autumn season. Future work should rely on the integration of high and low resolution images to assess net primary production, which will probably have more accurately estimation.

  17. Exploring Global Patterns in Human Appropriation of Net Primary Production Using Earth Observation Satellites and Statistical Data

    Science.gov (United States)

    Imhoff, M.; Bounoua, L.

    2004-12-01

    A unique combination of satellite and socio-economic data were used to explore the relationship between human consumption and the carbon cycle. Biophysical models were applied to consumption data to estimate the annual amount of Earth's terrestrial net primary production humans require for food, fiber and fuel using the same modeling architecture as satellite-supported NPP measurements. The amount of Earth's NPP required to support human activities is a powerful measure of the aggregate human impacts on the biosphere and indicator of societal vulnerability to climate change. Equations were developed estimating the amount of landscape-level NPP required to generate all the products consumed by 230 countries including; vegetal foods, meat, milk, eggs, wood, fuel-wood, paper and fiber. The amount of NPP required was calculated on a per capita basis and projected onto a global map of population to create a spatially explicit map of NPP-carbon demand in units of elemental carbon. NPP demand was compared to a map of Earth's average annual net primary production or supply created using 17 years (1982-1998) of AVHRR vegetation index to produce a geographically accurate balance sheet of terrestrial NPP-carbon supply and demand. Globally, humans consume 20 percent of Earth's total net primary production on land. Regionally the NPP-carbon balance percentage varies from 6 to over 70 percent and locally from near 0 to over 30,000 percent in major urban areas. The uneven distribution of NPP-carbon supply and demand, indicate the degree to which various human populations rely on NPP imports, are vulnerable to climate change and suggest policy options for slowing future growth in NPP demand.

  18. Comparison of Gross Primary Productivity Derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Junbang Wang

    2014-03-01

    Full Text Available Gross primary production (GPP plays an important role in the net ecosystem exchange of CO2 between the atmosphere and terrestrial ecosystems. It is particularly important to monitor GPP in Southeast Asia because of increasing rates of tropical forest degradation and deforestation in the region in recent decades. The newly available, improved, third generation Normalized Difference Vegetation Index (NDVI3g from the Global Inventory Modelling and Mapping Studies (GIMMS group provides a long temporal dataset, from July 1981 to December 2011, for terrestrial carbon cycle and climate response research. However, GIMMS NDVI3g-based GPP estimates are not yet available. We applied the GLOPEM-CEVSA model, which integrates an ecosystem process model and a production efficiency model, to estimate GPP in Southeast Asia based on three independent results of the fraction of photosynthetically active radiation absorbed by vegetation (FPAR from GIMMS NDVI3g (GPPNDVI3g, GIMMS NDVI1g (GPPNDVI1g, and the Moderate Resolution Imaging Spectroradiometer (MODIS MOD15A2 FPAR product (GPPMOD15. The GPP results were validated using ground data from eddy flux towers located in different forest biomes, and comparisons were made among the three GPPs as well as the MOD17A2 GPP products (GPPMOD17. Based on validation with flux tower derived GPP estimates the results show that GPPNDVI3g is more accurate than GPPNDVI1g and is comparable in accuracy with GPPMOD15. In addition, GPPNDVI3g and GPPMOD15 have good spatial-temporal consistency. Our results indicate that GIMMS NDVI3g is an effective dataset for regional GPP simulation in Southeast Asia, capable of accurately tracking the variation and trends in long-term terrestrial ecosystem GPP dynamics.

  19. Effects of topography on simulated net primary productivity at landscape scale.

    Science.gov (United States)

    Chen, X F; Chen, J M; An, S Q; Ju, W M

    2007-11-01

    Local topography significantly affects spatial variations of climatic variables and soil water movement in complex terrain. Therefore, the distribution and productivity of ecosystems are closely linked to topography. Using a coupled terrestrial carbon and hydrological model (BEPS-TerrainLab model), the topographic effects on the net primary productivity (NPP) are analyzed through four modelling experiments for a 5700 km(2) area in Baohe River basin, Shaanxi Province, northwest of China. The model was able to capture 81% of the variability in NPP estimated from tree rings, with a mean relative error of 3.1%. The average NPP in 2003 for the study area was 741 gCm(-2)yr(-1) from a model run including topographic effects on the distributions of climate variables and lateral flow of ground water. Topography has considerable effect on NPP, which peaks near 1350 m above the sea level. An elevation increase of 100 m above this level reduces the average annual NPP by about 25 gCm(-2). The terrain aspect gives rise to a NPP change of 5% for forests located below 1900 m as a result of its influence on incident solar radiation. For the whole study area, a simulation totally excluding topographic effects on the distributions of climatic variables and ground water movement overestimated the average NPP by 5%.

  20. Transfer of radionuclides by terrestrial food products from semi-natural ecosystems to humans

    International Nuclear Information System (INIS)

    Howard, B.J.

    1996-01-01

    The potential radiological significance of radionuclide transfer to humans via foodstuffs derived from semi-natural ecosystems has become apparent since the Chernobyl accident. Foodchain models developed before this time usually did not take such transfers into account. The processes leading to contamination of food in these environments are complex and current understanding of the transfer mechanisms is incomplete. For these reasons the approach adopted in Chapter 3 is to represent, by means of aggregated parameters, the empirical relationships between ground deposits and concentration in the food product. 107 refs, 2 figs, 9 tabs

  1. Using remote-sensing and the Simple Biosphere model (SiB4) to analyze the seasonality and productivity of the terrestrial biosphere.

    Science.gov (United States)

    Cheeseman, M.; Denning, S.; Baker, I. T.

    2017-12-01

    Understanding the variability and seasonality of carbon fluxes from the terrestrial biosphere is integral to understanding the mechanisms and drivers of the global carbon cycle. However, there are many regions across the globe where in situ observations are sparse, such as the Amazon rainforest and the African Sahel. The latest version of the Simple-Biosphere model (SiB4) predicts a suite of biophysical variables such as terrestrial carbon flux (GPP), solar induced fluorescence (SIF), fraction of photosynthetically active radiation (FPAR), and leaf area index (LAI). By comparing modeled values to a suite of satellite and in situ observations we produce a robust analysis of the seasonality and productivity of the terrestrial biosphere in a variety of biome types across the globe.

  2. Software sensor for primary metabolite production case of alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G.; Dahhou, B.; Queinnec, I. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Goma, G. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1995-12-31

    This paper investigate the application of an observer for state and parameter estimation to batch, continuous and fed batch fermentations for alcohol production taken as model for a primary metabolite production. This observer is provided to palliate the lack of suitable sensors for on-line biomass and ethanol concentrations measurements and to estimate the time varying specific growth rate. Estimates are obtained from an interlaced structure filter based on a `modified extended Kalman filter` by using on-line measurements of carbon dioxide outflow rate and substrate concentration. The filter algorithm was tested during batch, continuous and fed batch fermentation processes. The filter behaviour observed in the experiments gives good results with an agreement theory/practice. (authors) 18 refs.

  3. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  4. Production and New Extraction Method of Polyketide Red Pigments Produced by Ascomycetous Fungi from Terrestrial and Marine Habitats

    Science.gov (United States)

    Lebeau, Juliana; Venkatachalam, Mekala; Fouillaud, Mireille; Petit, Thomas; Vinale, Francesco; Dufossé, Laurent; Caro, Yanis

    2017-01-01

    The use of ascomycetous fungi as pigment producers opens the way to an alternative to synthetic dyes, especially in the red-dye industries, which have very few natural pigment alternatives. The present paper aimed to bio-prospect and screen out 15 selected ascomycetous fungal strains, originating from terrestrial and marine habitats belonging to seven different genera (Penicillium, Talaromyces, Fusarium, Aspergillus, Trichoderma, Dreschlera, and Paecilomyces). We identified four strains, Penicillium purpurogenum rubisclerotium, Fusarium oxysporum, marine strains identified as Talaromyces spp., and Trichoderma atroviride, as potential red pigment producers. The extraction of the pigments is a crucial step, whereby the qualitative and quantitative compositions of each fungal extract need to be respected for reliable identification, as well as preserving bioactivity. Furthermore, there is a growing demand for more sustainable and cost-effective extraction methods. Therefore, a pressurized liquid extraction technique was carried out in this study, allowing a greener and faster extraction step of the pigments, while preserving their chemical structures and bioactivities in comparison to conventional extraction processes. The protocol was illustrated with the production of pigment extracts from P. purpurogenum rubisclerotium and Talaromyces spp. Extracts were analyzed by high-performance liquid-chromatography combined with photodiode array-detection (HPLC-DAD) and high-resolution mass spectrometry (UHPLC-HRMS). The more promising strain was the isolate Talaromyces spp. of marine origin. The main polyketide pigment produced by this strain has been characterized as N-threoninerubropunctamine, a non-toxic red Monascus-like azaphilone pigment. PMID:29371552

  5. Production and New Extraction Method of Polyketide Red Pigments Produced by Ascomycetous Fungi from Terrestrial and Marine Habitats.

    Science.gov (United States)

    Lebeau, Juliana; Venkatachalam, Mekala; Fouillaud, Mireille; Petit, Thomas; Vinale, Francesco; Dufossé, Laurent; Caro, Yanis

    2017-06-28

    The use of ascomycetous fungi as pigment producers opens the way to an alternative to synthetic dyes, especially in the red-dye industries, which have very few natural pigment alternatives. The present paper aimed to bio-prospect and screen out 15 selected ascomycetous fungal strains, originating from terrestrial and marine habitats belonging to seven different genera ( Penicillium , Talaromyces , Fusarium , Aspergillus , Trichoderma , Dreschlera , and Paecilomyces ). We identified four strains, Penicillium purpurogenum rubisclerotium , Fusarium oxysporum , marine strains identified as Talaromyces spp., and Trichoderma atroviride , as potential red pigment producers. The extraction of the pigments is a crucial step, whereby the qualitative and quantitative compositions of each fungal extract need to be respected for reliable identification, as well as preserving bioactivity. Furthermore, there is a growing demand for more sustainable and cost-effective extraction methods. Therefore, a pressurized liquid extraction technique was carried out in this study, allowing a greener and faster extraction step of the pigments, while preserving their chemical structures and bioactivities in comparison to conventional extraction processes. The protocol was illustrated with the production of pigment extracts from P. purpurogenum rubisclerotium and Talaromyces spp. Extracts were analyzed by high-performance liquid-chromatography combined with photodiode array-detection (HPLC-DAD) and high-resolution mass spectrometry (UHPLC-HRMS). The more promising strain was the isolate Talaromyces spp. of marine origin. The main polyketide pigment produced by this strain has been characterized as N -threoninerubropunctamine, a non-toxic red Monascus -like azaphilone pigment.

  6. Phosphates at the Surface of Mars: Primary Deposits and Alteration Products

    Science.gov (United States)

    Yen, Albert S.; Gellert, Ralf; Clark, Benton C.; Ming, Douglas W.; Mittlefehldt, David W.; Arvidson, Raymond E.; McSween, Harry Y., Jr.; Schroder, Christian

    2014-01-01

    Phosphorus is an essential element in terrestrial organisms and thus characterizing the occurrences of phosphate phases at the martian surface is crucial in the assessment of habitability. The Alpha Particle X-Ray Spectrometers onboard Spirit, Opportunity and Curiosity discovered a variety of primary and secondary phosphate phases allowing direct comparisons across the three landing sites. The Spirit rover at Gusev Crater encountered the "Wishstone/Watchtower" class of P-rich (up to 5.2 wt% P2O5) rocks interpreted to be alkaline volcanic rocks with a physical admixture of approximately 10 to 20% merrillite [Usui et al 2008]. These rocks are characterized by elevated Ti and Y and anomalously low Cr and Ni, which could largely reflect the nature of the protoliths: Evolved magmatic rocks. Many of these chemical signatures are also found in pyroclastic deposits at nearby "Home Plate" and in phosphate precipitates derived from fluid interactions with these rocks ("Paso Robles" soils). The Opportunity rover at Meridiani Planum recently analyzed approximately 4 cm clast in a fine-grained matrix, one of numerous rocks of similar appearance at the rim of Endeavour Crater. This clast, "Sarcobatus," has minor enrichments in Ca and P relative to the matrix, and like the P-rich rocks at Gusev, Sarcobatus also shows elevated Al and Ti. On the same segment of the Endeavour rim, subsurface samples were found with exceptional levels of Mn (approximately 3.5 wt% MnO). These secondary and likely aqueous deposits contain strong evidence for associated Mg-sulfate and Ca-phosphate phases. Finally, the Curiosity traverse at Gale crater encountered P-rich rocks compositionally comparable to Wishstone at Gusev, including elevated Y. Phosphorous-rich rocks with similar chemical characteristics are prevalent on Mars, and the trace and minor element signatures provide constraints on whether these are primary deposits, secondary products of physical weathering or secondary products of chemical

  7. Phosphates at the Surface of Mars: Primary Deposits and Alteration Products

    Science.gov (United States)

    Yen, A. S.; Gellert, R.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. W.; Arvidson, R. E.; McSween, H. Y., Jr.; Schröder, C.

    2014-12-01

    Phosphorus is an essential element in terrestrial organisms and thus characterizing the occurrences of phosphate phases at the martian surface is crucial in the assessment of habitability. The Alpha Particle X-Ray Spectrometers onboard Spirit, Opportunity and Curiosity discovered a variety of primary and secondary phosphate phases allowing direct comparisons across the three landing sites. The Spirit rover at Gusev Crater encountered the "Wishstone/Watchtower" class of P-rich (up to 5.2 wt% P2O5) rocks interpreted to be alkaline volcanic rocks with a physical admixture of ~10 to 20% merrillite [Usui et al 2008]. These rocks are characterized by elevated Ti and Y and anomalously low Cr and Ni, which could largely reflect the nature of the protoliths: Evolved magmatic rocks. Many of these chemical signatures are also found in pyroclastic deposits at nearby "Home Plate" and in phosphate precipitates derived from fluid interactions with these rocks ("Paso Robles" soils). The Opportunity rover at Meridiani Planum recently analyzed a ~4 cm clast in a fine-grained matrix, one of numerous rocks of similar appearance at the rim of Endeavour Crater. This clast, "Sarcobatus," has minor enrichments in Ca and P relative to the matrix, and like the P-rich rocks at Gusev, Sarcobatus also shows elevated Al and Ti. On the same segment of the Endeavour rim, subsurface samples were found with exceptional levels of Mn (~3.5 wt% MnO). These secondary and likely aqueous deposits contain strong evidence for associated Mg-sulfate and Ca-phosphate phases. Finally, the Curiosity traverse at Gale crater encountered P-rich rocks compositionally comparable to Wishstone at Gusev, including elevated Y. Phosphorous-rich rocks with similar chemical characteristics are prevalent on Mars, and the trace and minor element signatures provide constraints on whether these are primary deposits, secondary products of physical weathering, or secondary products of chemical weathering.

  8. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China.

    Directory of Open Access Journals (Sweden)

    Xiaoxu Jia

    Full Text Available Clarifying spatial variations in aboveground net primary productivity (ANPP and precipitation-use efficiency (PUE of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP and precipitation seasonal distribution (PSD], biotic [leaf area index (LAI] and abiotic [slope gradient, aspect, soil water storage (SWS and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.

  9. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China.

    Science.gov (United States)

    Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei

    2015-01-01

    Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.

  10. Looking Past Primary Productivity: Benchmarking System Processes that Drive Ecosystem Level Responses in Models

    Science.gov (United States)

    Cowdery, E.; Dietze, M.

    2017-12-01

    As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentration are highly variable and contain a considerable amount of uncertainty. Benchmarking model predictions against data are necessary to assess their ability to replicate observed patterns, but also to identify and evaluate the assumptions causing inter-model differences. We have implemented a novel benchmarking workflow as part of the Predictive Ecosystem Analyzer (PEcAn) that is automated, repeatable, and generalized to incorporate different sites and ecological models. Building on the recent Free-Air CO2 Enrichment Model Data Synthesis (FACE-MDS) project, we used observational data from the FACE experiments to test this flexible, extensible benchmarking approach aimed at providing repeatable tests of model process representation that can be performed quickly and frequently. Model performance assessments are often limited to traditional residual error analysis; however, this can result in a loss of critical information. Models that fail tests of relative measures of fit may still perform well under measures of absolute fit and mathematical similarity. This implies that models that are discounted as poor predictors of ecological productivity may still be capturing important patterns. Conversely, models that have been found to be good predictors of productivity may be hiding error in their sub-process that result in the right answers for the wrong reasons. Our suite of tests have not only highlighted process based sources of uncertainty in model productivity calculations, they have also quantified the patterns and scale of this error. Combining these findings with PEcAn's model sensitivity analysis and variance decomposition strengthen our ability to identify which processes

  11. Computing the net primary productivity for a Savanna- Dominated ...

    African Journals Online (AJOL)

    ... 1015gCyr–1 or 428 gCm-2 from the terrestrial ecosystem. Modelled estimates of heterotrophic soil respiration in this study slightly exceeded the NPP estimates, implying a small source of CO2 to the atmosphere. This condition does not favour the postulated existence of a major sink of atmospheric CO2 in the Volta basin.

  12. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    Science.gov (United States)

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  13. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential.

    Science.gov (United States)

    Boysen, Lena R; Lucht, Wolfgang; Gerten, Dieter

    2017-10-01

    Large-scale biomass plantations (BPs) are a common factor in climate mitigation scenarios as they promise double benefits: extracting carbon from the atmosphere and providing a renewable energy source. However, their terrestrial carbon dioxide removal (tCDR) potentials depend on important factors such as land availability, efficiency of capturing biomass-derived carbon and the timing of operation. Land availability is restricted by the demands of future food production depending on yield increases and population growth, by requirements for nature conservation and, with respect to climate mitigation, avoiding unfavourable albedo changes. We integrate these factors in one spatially explicit biogeochemical simulation framework to explore the tCDR opportunity space on land available after these constraints are taken into account, starting either in 2020 or 2050, and lasting until 2100. We find that assumed future needs for nature protection and food production strongly limit tCDR potentials. BPs on abandoned crop and pasture areas (~1,300 Mha in scenarios of either 8.0 billion people and yield gap reductions of 25% until 2020 or 9.5 billion people and yield gap reductions of 50% until 2050) could, theoretically, sequester ~100 GtC in land carbon stocks and biomass harvest by 2100. However, this potential would be ~80% lower if only cropland was available or ~50% lower if albedo decreases were considered as a factor restricting land availability. Converting instead natural forest, shrubland or grassland into BPs could result in much larger tCDR potentials ̶ but at high environmental costs (e.g. biodiversity loss). The most promising avenue for effective tCDR seems to be improvement of efficient carbon utilization pathways, changes in dietary trends or the restoration of marginal lands for the implementation of tCDR. © 2017 John Wiley & Sons Ltd.

  14. Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by MODIS data

    Science.gov (United States)

    Liu, Yibo; Ju, Weimin; He, Honglin; Wang, Shaoqiang; Sun, Rui; Zhang, Yuandong

    2013-03-01

    Net primary productivity (NPP) is an important component of the terrestrial carbon cycle. Accurately mapping the spatial-temporal variations of NPP in China is crucial for global carbon cycling study. In this study the process-based Boreal Ecosystem Productivity Simulator (BEPS) was employed to study the changes of NPP in China's ecosystems for the period from 2000 to 2010. The BEPS model was first validated using gross primary productivity (GPP) measured at typical flux sites and forest NPP measured at different regions. Then it was driven with leaf area index (LAI) inversed from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance and land cover products and meteorological data interpolated from observations at 753 national basic meteorological stations to simulate NPP at daily time steps and a spatial resolution of 500 m from January 1, 2000 to December 31, 2010. Validations show that BEPS is able to capture the seasonal variations of tower-based GPP and the spatial variability of forest NPP in different regions of China. Estimated national total of annual NPP varied from 2.63 to 2.84Pg C·yr-1, averaging 2.74 Pg C·yr-1 during the study period. Simulated terrestrial NPP shows spatial patterns decreasing from the east to the west and from the south to the north, in association with land cover types and climate. South-west China makes the largest contribution to the national total of NPP while NPP in the North-west account for only 3.97% of the national total. During the recent 11 years, the temporal changes of NPP were heterogamous. NPP increased in 63.8% of China's landmass, mainly in areas north of the Yangtze River and decreased in most areas of southern China, owing to the low temperature freezing in early 2008 and the severe drought in late 2009.

  15. Nonlinear Variations of Net Primary Productivity and Its Relationship with Climate and Vegetation Phenology, China

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2017-09-01

    Full Text Available Net primary productivity (NPP is an important component of the terrestrial carbon cycle. In this study, NPP was estimated based on two models and Moderate Resolution Imaging Spaectroradiometer (MODIS data. The spatiotemporal patterns of NPP and the correlations with climate factors and vegetation phenology were then analyzed. Our results showed that NPP derived from MODIS performed well in China. Spatially, NPP decreased from the southeast toward the northwest. Temporally, NPP showed a nonlinear increasing trend at a national scale, but the magnitude became slow after 2004. At a regional scale, NPP in Northern China and the Tibetan Plateau showed a nonlinear increasing trend, while the NPP decreased in most areas of Southern China. The decreases in NPP were more than offset by the increases. At the biome level, all vegetation types displayed an increasing trend, except for shrub and evergreen broad forests (EBF. Moreover, a turning point year occurred for all vegetation types, except for EBF. Generally, climatic factors and Length of Season were all positively correlated with the NPP, while the relationships were much more diverse at a regional level. The direct effect of solar radiation on the NPP was larger (0.31 than precipitation (0.25 and temperature (0.07. Our results indicated that China could mitigate climate warming at a regional and/or global scale to some extent during the time period of 2001–2014.

  16. Effects of climate warming on net primary productivity in China during 1961-2010.

    Science.gov (United States)

    Gu, Fengxue; Zhang, Yuandong; Huang, Mei; Tao, Bo; Guo, Rui; Yan, Changrong

    2017-09-01

    The response of ecosystems to different magnitudes of climate warming and corresponding precipitation changes during the last few decades may provide an important reference for predicting the magnitude and trajectory of net primary productivity (NPP) in the future. In this study, a process-based ecosystem model, Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA), was used to investigate the response of NPP to warming at both national and subregional scales during 1961-2010. The results suggest that a 1.3°C increase in temperature stimulated the positive changing trend in NPP at national scale during the past 50 years. Regardless of the magnitude of temperature increase, warming enhanced the increase in NPP; however, the positive trend of NPP decreased when warming exceeded 2°C. The largest increase in NPP was found in regions where temperature increased by 1-2°C, and this rate of increase also contributed the most to the total increase in NPP in China's terrestrial ecosystems. Decreasing precipitation depressed the positive trend in NPP that was stimulated by warming. In northern China, warming depressed the increasing trend of NPP and warming that was accompanied by decreasing precipitation led to negative changing trends in NPP in large parts of northern China, especially when warming exceeded 2°C. However, warming stimulated the increase in NPP until warming was greater than 2°C, and decreased precipitation helped to increase the NPP in southern China.

  17. Evaluation of modelled net primary production using MODIS and landsat satellite data fusion

    Directory of Open Access Journals (Sweden)

    Steven Jay

    2016-06-01

    Full Text Available Abstract Background To improve estimates of net primary production for terrestrial ecosystems of the continental United States, we evaluated a new image fusion technique to incorporate high resolution Landsat land cover data into a modified version of the CASA ecosystem model. The proportion of each Landsat land cover type within each 0.004 degree resolution CASA pixel was used to influence the ecosystem model result by a pure-pixel interpolation method. Results Seventeen Ameriflux tower flux records spread across the country were combined to evaluate monthly NPP estimates from the modified CASA model. Monthly measured NPP data values plotted against the revised CASA model outputs resulted in an overall R2 of 0.72, mainly due to cropland locations where irrigation and crop rotation were not accounted for by the CASA model. When managed and disturbed locations are removed from the validation, the R2 increases to 0.82. Conclusions The revised CASA model with pure-pixel interpolated vegetation index performed well at tower sites where vegetation was not manipulated or managed and had not been recently disturbed. Tower locations that showed relatively low correlations with CASA-estimated NPP were regularly disturbed by either human or natural forces.

  18. Localisation of primary food production in Finland: production potential and environmental impacts of food consumption patterns

    Directory of Open Access Journals (Sweden)

    H. RISKU-NORJA

    2008-12-01

    Full Text Available The potential for and environmental consequences of localising primary production of food were investigated by considering different food consumption patterns, based on conventional and organic production. Environmental impact was assessed according to agricultural land use and numbers of production animals, both of which depend on food consumption. The results were quantified in terms of nutrient balances, greenhouse gas and acid emissions and the diversity of crop cultivation, which indicate eutrophication of watersheds, climate change and landscape changes, respectively. The study region was able to satisfy its own needs for all farming and food consumption scenarios. Dietary choice had a marked impact on agricultural land use and on the environmental parameters considered. Organic farming for local food production resulted in higher greenhouse gas emissions. Compared with mixed diets, the vegetarian diet was associated with lower emissions and nutrient surpluses, but also with reduced crop diversity. The arable areas allocated to leys and pastures were also smaller. The study area represents a predominantly rural region and is a net exporter of agricultural produce. Therefore, only part of the environmental impact of food production results from local needs. Both the differences among the dietary options and the overall environmental benefit of localised primary food production were greatly reduced when considering total agricultural production of the region. Much of the negative impact of agriculture is due to food consumption in the densely populated urban areas, but the consequences are mainly felt in the production areas. The environmental impacts of localisation of primary food production for the rural areas are small and inconsistent. The results indicate the importance of defining ‘local’ on a regional basis and including the urban food sinks in impact assessment.;

  19. Aquatic primary production in a high-CO2 world.

    Science.gov (United States)

    Low-Décarie, Etienne; Fussmann, Gregor F; Bell, Graham

    2014-04-01

    Here, we provide a review of the direct effect of increasing CO2 on aquatic primary producers through its function as a source of carbon, focusing our analysis on the interpretation of this increase as an increase in the availability of a resource. This provides an interesting context to evaluate ecological and evolutionary theories relating to nutrient availability and leads us to: the assessment of theories about limitation of productivity and the integration of CO2 into the co-limitation paradigm; the prediction of community composition and of change in communities from known changes in the environment; and evaluation of the potential for evolutionary adaptation in conditions that increase growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Monitoring residue in animals and primary products of animal origin

    Directory of Open Access Journals (Sweden)

    Janković Saša

    2008-01-01

    Full Text Available The objective of control and systematic monitoring of residue is to secure, by the examination of a corresponding number of samples, the efficient monitoring of the residue level in tissues and organs of animals, as well as in primary products of animal origin. This creates possibilities for the timely taking of measures toward the securing of food hygiene of animal origin and the protection of public health. Residue can be a consequence of the inadequate use of medicines in veterinary medicine and pesticides in agriculture and veterinary medicine, as well as the polluting of the environment with toxic elements, dioxins, polychlorinated biphenyls, and others. Residue is being monitored in Serbia since 1972, and in 2004, national monitoring was brought to the level of EU countries through significant investments by the Ministry of Agriculture, Forestry and Water Management. This is also evident in the EU directives which permit exports of all kinds of meat and primary products of animal origin, covered by the Residue Monitoring Program. The program of systematic examinations of residue has been coordinated with the requirements of the European Union, both according to the type of examined substance, as well as according to the number of samples and the applied analytical techniques. In addition to the development of methods and the including of new harmful substances into the monitoring programme, it is also necessary to coordinate the national regulations that define the maximum permitted quantities of certain medicines and contaminants with the EU regulations, in order to protect the health of consumers as efficiently as possible, and for the country to take equal part in international trade.

  1. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data

    CSIR Research Space (South Africa)

    Sjöström, M

    2013-04-01

    Full Text Available to global studies of the terrestrial carbon budget, climate change and natural resources. In this study we evaluated the MOD17A2 product and its driver data by using in situ measurements of meteorology and eddy covariance GPP for 12 African sites. MOD17A2...

  2. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012

    Science.gov (United States)

    Li, Zhen; Pan, Jinghu

    2018-03-01

    Net primary productivity (NPP) is recognized as an important index of ecosystem conditions and a key variable of the terrestrial carbon cycle. It also represents the comprehensive effects of climate change and anthropogenic activity on terrestrial vegetation. In this study, the temporal-spatial pattern of NPP for the period 2001-2012 was analyzed using a remote sensing-based carbon model (i.e., the Carnegie-Ames-Stanford Approach, CASA) in addition to other methods, such as linear trend analysis, standard deviation, and the Hurst index. Temporally, NPP showed a significant increasing trend for the arid region of Northwest China (ARNC), with an annual increase of 2.327 g C. Maximum and minimum productivity values appeared in July and December, respectively. Spatially, the NPP was relatively stable in the temperate and warm-temperate desert regions of Northwest China, while temporally, it showed an increasing trend. However, some attention should be given to the northwestern warm-temperate desert region, where there is severe continuous degradation and only a slight improvement trend.

  3. Regional contribution to variability and trends of global gross primary productivity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min; Rafique, Rashid; Asrar, Ghassem R.; Bond-Lamberty, Ben; Ciais, Philippe; Zhao, Fang; Reyer, Christopher P. O.; Ostberg, Sebastian; Chang, Jinfeng; Ito, Akihiko; Yang, Jia; Zeng, Ning; Kalnay, Eugenia; West, Tristram; Leng, Guoyong; Francois, Louis; Munhoven, Guy; Henrot, Alexandra; Tian, Hanqin; Pan, Shufen; Nishina, Kazuya; Viovy, Nicolas; Morfopoulos, Catherine; Betts, Richard; Schaphoff, Sibyll; Steinkamp, Jörg; Hickler, Thomas

    2017-09-28

    Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000-2010 total global GPP estimated from the model ensemble to be 117±13 Pg C yr-1 (mean ± 1 standard deviation), which was higher than MODIS (112 Pg C yr-1), and close to the MTE (120 Pg C yr-1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.

  4. Influence of ground level enhancements on the terrestrial production of {sup 10}Be, {sup 14}C and {sup 36}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Konstantin; Heber, Bernd [IEAP, Christian-Albrechts-Universitaet zu Kiel, Kiel (Germany); Beer, Juerg [Swiss Federal Institute of Aquatic Science and Technology, EAWAG (Switzerland); Tylka, Allan J. [Space Science Division, Naval Research Laboratory, Washington, DC (United States); Dietrich, William F. [Praxis, Inc., Alexandria, VA (United States)

    2014-07-01

    Cosmogenic radionuclides are a product of the interaction of primary cosmic rays, in particular galactic cosmic rays (GCRs), with the Earth's atmosphere. But only primary particles with energies above several 100 MeV can trigger the necessary reaction chains. Because GCRs are modulated by the solar activity on their way through the interplanetary medium the GCR-induced cosmogenic radionuclide production is anti-correlated to the solar cycle. During phases of strong solar activity also solar energetic particle (SEP) events occur frequently. In particular SEP events which can be detected by ground-based instruments, so-called ground level enhancements (GLEs), may strongly contribute to the cosmogenic radionuclide production. Beside the variation due to the modulation of GCRs we investigate the influence of 58 GLEs, which occurred within the past five solar cycles and discuss the possibility to detect such events in present ice-core and tree-ring records. In addition, an estimate for the probability to find such events over the past 10'000 years, also known as Holocene, during different modulation conditions are given.

  5. Potential role of large oceanic diatoms in new primary production

    Science.gov (United States)

    Goldman, Joel C.

    1993-01-01

    Very large phytoplankton species >50 μm in size, particularly diatoms, generally are found in background numbers throughout the euphotic zone of oceanic waters. Yet, when responding to episodic injections of new nutrients across the nutricline at the base of the euphotic zone these phototrophs may make a disproportionately large contribution to new primary production. To test this concept, we isolated a group of large diatoms from the Sargasso Sea and found that the specific growth rate of several of these species in culture was great enough at the ≈2% light level in oligotrophic waters to meet the requirements of several hypothetical scenarios in which annual rates of new production from the sum of one or more episodic blooms were equal to contemporary estimates. Two of the fast-growing species, Stephanopyxis palmeriana (Greville) Grunow and Pseudoguinardia recta von Stosch, formed giant flocculant masses while growing. Such masses could sink rapidly out of the euphotic zone or be a direct food source for invertebrates or fish higher up the food chain. Not only would a short, simple trophic system with low losses result, but the events would virtually be impossible to observe with conventional sampling.

  6. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peijuan; Xie, Donghui; Zhou, Yuyu; E, Youhao; Zhu, Qijiang

    2014-01-16

    The ecological structure in the arid and semi-arid region of Northwest China with forest, grassland, agriculture, Gobi, and desert, is complex, vulnerable, and unstable. It is a challenging and sustaining job to keep the ecological structure and improve its ecological function. Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity simulator (BEPS) model provides the possibility of NPP modeling in terrestrial ecosystem, but it has some limitations for application in arid and semi-arid regions. In this paper we improve the BEPS model, in terms of its water cycle by adding the processes of infiltration and surface runoff, to be applicable in arid and semi-arid regions. We model the NPP of forest, grass, and crop in Gansu Province as an experimental area in Northwest China in 2003 using the improved BEPS model, parameterized with moderate resolution remote sensing imageries and meteorological data. The modeled NPP using improved BEPS agrees better with the ground measurements in Qilian Mountain than that with original BEPS, with a higher R2 of 0.746 and lower root mean square error (RMSE) of 46.53 gC/m2 compared to R2 of 0.662 and RMSE of 60.19 gC/m2 from original BEPS. The modeled NPP of three vegetation types using improved BEPS show evident differences compared to that using original BEPS, with the highest difference ratio of 9.21% in forest and the lowest value of 4.29% in crop. The difference ratios between different vegetation types lie on the dependence on natural water sources. The modeled NPP in five geographic zones using improved BEPS are higher than those with original BEPS, with higher difference ratio in dry zones and lower value in wet zones.

  7. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    Directory of Open Access Journals (Sweden)

    Mathias Neumann

    2016-06-01

    Full Text Available Net primary production (NPP is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also agrees with NFI NPP across scales (from continental, regional to country and gradients (elevation, location, tree age, dominant species, etc.. The agreement is particularly good for elevation, dominant species or tree height. This suggests that using improved climate data allows the MOD17 algorithm to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and NFI NPP can be related to differences in stand density due to forest management and the national carbon estimation methods. With this study, we provide a consistent, temporally continuous and spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can be used to assess climate change impacts on ecosystems or the potential biomass supply of the European forests for an increasing bio-based economy. MODIS EURO data are made freely available at ftp://palantir.boku.ac.at/Public/MODIS_EURO.

  8. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.

    Science.gov (United States)

    Cleveland, Cory C; Townsend, Alan R; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M C; Chuyong, George; Dobrowski, Solomon Z; Grierson, Pauline; Harms, Kyle E; Houlton, Benjamin Z; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C; Sierra, Carlos A; Silver, Whendee L; Tanner, Edmund V J; Wieder, William R

    2011-09-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations - especially in lowland forests - to elucidate the most important nutrient interactions and controls. © 2011 Blackwell Publishing Ltd/CNRS.

  9. Spatial scaling of net primary productivity using subpixel landcover information

    Science.gov (United States)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  10. Primary productivity and climate change in Austrian lowland rivers.

    Science.gov (United States)

    Zoboli, Ottavia; Schilling, Katerina; Ludwig, Anna-Lena; Kreuzinger, Norbert; Zessner, Matthias

    2018-01-01

    There is increasing evidence of water temperature being a key controlling factor of stream ecosystem metabolism. Although the focus of research currently lies on carbon emissions from fluvial networks and their potential role as positive climate feedback, it is also important to estimate the risk of eutrophication streams will be exposed to in the future. In this work, a methodological approach is developed to create a scientific basis for such assessment and is applied to two Austrian lowland rivers with significantly different characteristics. Gross primary productivity (GPP) is determined through the open diel oxygen method and its temperature dependence is quantified based on the metabolic theory of ecology. This relationship is combined with the outcomes of a climate change scenario obtained through a novel integrated modelling framework. Results indicate that in both rivers, a 1.5°C warming would provoke an increase of GPP of 7-9% and that such an increase would not be limited by nutrient availability. The results further suggest that the situation for the relatively shallow river might be more critical, given that its GPP values in summer are five times higher than in the deeper murky river.

  11. Precipitation and Carbon-Water Coupling Jointly Control the Interannual Variability of Global Land Gross Primary Production

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julian; Dong, Jinwei; hide

    2016-01-01

    Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

  12. Emergent constraints on projections of declining primary production in the tropical oceans

    Science.gov (United States)

    Kwiatkowski, Lester; Bopp, Laurent; Aumont, Olivier; Ciais, Philippe; Cox, Peter M.; Laufkötter, Charlotte; Li, Yue; Séférian, Roland

    2017-04-01

    Marine primary production is a fundamental component of the Earth system, providing the main source of food and energy to the marine food web, and influencing the concentration of atmospheric CO 2 (refs ,). Earth system model (ESM) projections of global marine primary production are highly uncertain with models projecting both increases and declines of up to 20% by 2100. This uncertainty is predominantly driven by the sensitivity of tropical ocean primary production to climate change, with the latest ESMs suggesting twenty-first-century tropical declines of between 1 and 30% (refs ,). Here we identify an emergent relationship between the long-term sensitivity of tropical ocean primary production to rising equatorial zone sea surface temperature (SST) and the interannual sensitivity of primary production to El Niño/Southern Oscillation (ENSO)-driven SST anomalies. Satellite-based observations of the ENSO sensitivity of tropical primary production are then used to constrain projections of the long-term climate impact on primary production. We estimate that tropical primary production will decline by 3 +/- 1% per kelvin increase in equatorial zone SST. Under a business-as-usual emissions scenario this results in an 11 +/- 6% decline in tropical marine primary production and a 6 +/- 3% decline in global marine primary production by 2100.

  13. Benthic Light Availability Improves Predictions of Riverine Primary Production

    Science.gov (United States)

    Kirk, L.; Cohen, M. J.

    2017-12-01

    Light is a fundamental control on photosynthesis, and often the only control strongly correlated with gross primary production (GPP) in streams and rivers; yet it has received far less attention than nutrients. Because benthic light is difficult to measure in situ, surrogates such as open sky irradiance are often used. Several studies have now refined methods to quantify canopy and water column attenuation of open sky light in order to estimate the amount of light that actually reaches the benthos. Given the additional effort that measuring benthic light requires, we should ask if benthic light always improves our predictions of GPP compared to just open sky irradiance. We use long-term, high-resolution dissolved oxygen, turbidity, dissolved organic matter (fDOM), and irradiance data from streams and rivers in north-central Florida, US across gradients of size and color to build statistical models of benthic light that predict GPP. Preliminary results on a large, clear river show only modest model improvements over open sky irradiance, even in heavily canopied reaches with pulses of tannic water. However, in another spring-fed river with greater connectivity to adjacent wetlands - and hence larger, more frequent pulses of tannic water - the model improved dramatically with the inclusion of fDOM (model R2 improved from 0.28 to 0.68). River shade modeling efforts also suggest that knowing benthic light will greatly enhance our ability to predict GPP in narrower, forested streams flowing in particular directions. Our objective is to outline conditions where an assessment of benthic light conditions would be necessary for riverine metabolism studies or management strategies.

  14. [Migration of monomers and primary aromatic amines from nylon products].

    Science.gov (United States)

    Mutsuga, Motoh; Yamaguchi, Miku; Ohno, Hiroyuki; Kawamura, Yoko

    2010-01-01

    Migration of 2 kinds of monomer and 21 kinds of primary aromatic amines (PAAs) from 21 kinds of nylon products such as turners, ladles and wrap film were determined. Samples were classified as regards materials by mean of pyrolysis-GC/MS. One sample was classified as nylon 6, 15 samples as nylon 66 and three samples as nylon 6/66 copolymers, while two samples were laminate of nylon 6 with polyethylene or polypropylene. All of the nylon 66 samples contained a small amount of ε-caprolactam (CPL), which is the nylon 6 monomer. Migration levels of monomers and PAAs at 60°C for 30 min into 20% ethanol were measured by LC/MS/MS. CPL was detected at the level of 0.015-38 µg/mL from all samples, excluding one wrap film sample, and 1,6-hexamethylenediamine was detected at the level of 0.002-0.013 µg/mL from all nylon 66 samples and one nylon 6/66 sample. In addition, 0.006-4.3 µg/mL of 4,4'-diaminodiphenylmethane from three samples, 0.032-0.23 µg/mL of aniline from four samples, 0.001 µg/mL of 4-chloroaniline from two samples, and 0.002 µg/mL of 2-toluidine and 0.066 mg/mL of 1-naphthylamine from one sample each were detected. The migration levels at 95 or 121°C were about 3 and 10 times the 60°C levels, respectively.

  15. Terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Pande, D.C.; Agarwal, D.C.

    1982-01-01

    This paper presents a review about terrestrial magnetosphere. During the last few years considerable investigation have been carried out about the properties of Solar Wind and its interaction with planetary magnetic fields. It is therefore of high importance to accumulate all the investigations in a comprehensive form. The paper reviews the property of earth's magnetosphere, magnetosheath, magneto pause, polar cusps, bow shook and plasma sheath. (author)

  16. Disturbance severity and net primary production resilience of a Great Lakes forest ecosystem

    Science.gov (United States)

    Goodrich-Stuart, E. J.; Fahey, R.; De La Cruz, A.; Gough, C. M.

    2013-12-01

    As many Eastern deciduous forests of North America transition from early to mid-succession, the future of regional terrestrial carbon (C) storage is uncertain. The gradual, patchy senescence of early-successional trees accompanying this transition is comparable in severity to moderate disturbances such as silvicultural thinnings or insect outbreaks. While stand-replacing disturbance causes forests to temporarily become C sources, more moderate disturbances may inflict little to no decline in C sequestration. Identifying the disturbance severity at which net primary production (NPP) declines and the underlying mechanisms that drive forest C storage resistance to disturbance is increasingly important as moderate disturbances increase in frequency and extent across the region. The Forest Accelerated Succession ExperimenT (FASET) at the University of Michigan Biological Station subjected 39 ha of forest to moderate disturbance in 2008 by advancing age-related tree mortality through the stem girdling of early successional aspen and birch. Stand-scale disturbance severity, expressed as relative basal area of girdled aspen and birch, was 39% but plot-scale severity varied substantially within the experimental area (9 to 66% in 0.1 ha plots) because of the heterogeneous distribution of aspen and birch. We used this disturbance severity gradient to examine: 1) the relationship between NPP resilience and disturbance severity; 2) the disturbance severity at which NPP resilience prompts a shift in dominance from canopy to subcanopy vegetation; 3) how NPP resilience relates to disturbance-driven changes in resource-use efficiency, and 4) how disturbance severity shapes emerging forest communities We found that NPP is highly resilient to low to moderate levels of disturbance, but that production declines once a higher disturbance threshold is exceeded. Several complementary mechanisms, including canopy structural reorganization and the reallocation of growth-limiting light and

  17. Altered primary production during mass-extinction events

    NARCIS (Netherlands)

    van de Schootbrugge, B.; Gollner, S.

    2013-01-01

    The Big Five mass-extinction events are characterized by dramatic changes in primary producers. Initial disturbance to primary producers is usually followed by a succession of pioneers that represent qualitative and quantitative changes in standing crops of land plants and/or phytoplankton. On land,

  18. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination

    Science.gov (United States)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.

    2011-12-01

    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  19. Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem

    Directory of Open Access Journals (Sweden)

    Kevin M. Geyer

    2017-07-01

    Full Text Available Primary production is the fundamental source of energy to foodwebs and ecosystems, and is thus an important constraint on soil communities. This coupling is particularly evident in polar terrestrial ecosystems where biological diversity and activity is tightly constrained by edaphic gradients of productivity (e.g., soil moisture, organic carbon availability and geochemical severity (e.g., pH, electrical conductivity. In the McMurdo Dry Valleys of Antarctica, environmental gradients determine numerous properties of soil communities and yet relatively few estimates of gross or net primary productivity (GPP, NPP exist for this region. Here we describe a survey utilizing pulse amplitude modulation (PAM fluorometry to estimate rates of GPP across a broad environmental gradient along with belowground microbial diversity and decomposition. PAM estimates of GPP ranged from an average of 0.27 μmol O2/m2/s in the most arid soils to an average of 6.97 μmol O2/m2/s in the most productive soils, the latter equivalent to 217 g C/m2/y in annual NPP assuming a 60 day growing season. A diversity index of four carbon-acquiring enzyme activities also increased with soil productivity, suggesting that the diversity of organic substrates in mesic environments may be an additional driver of microbial diversity. Overall, soil productivity was a stronger predictor of microbial diversity and enzymatic activity than any estimate of geochemical severity. These results highlight the fundamental role of environmental gradients to control community diversity and the dynamics of ecosystem-scale carbon pools in arid systems.

  20. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  1. Eastern white pine: production, markets, and marketing of primary manufacturers

    Science.gov (United States)

    Delton Alderman; Paul Duvall; Robert Smith; Scott Bowe

    2007-01-01

    Eastern white pine (EWP) production and manufacturing have been a staple of the forest products industry since the arrival of the first settlers in the United States. Current EWP market segments range from cabinets to flooring to log cabins to moulding to toys. Today's EWP producers and manufacturers are faced with unprecedented challenges from substitute products...

  2. MODIS/Terra Net Primary Production Yearly L4 Global 1km SIN Grid V055

    Data.gov (United States)

    National Aeronautics and Space Administration — The Moderate-resolution Imaging Spectroradiometer (MODIS) Net Primary Productivity (NPP) product (MOD17A3) defines the rate at which all plants in an ecosystem...

  3. Primary production in the Bay of Bengal during southwest monsoon of 1978

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.; Devassy, V.P.; Radhakrishna, K.

    Measurements of primary production, chlorophyll a and particulate organic carbon were made at 33, 43 and 44 stations respectively during August-September of 1978. The average surface production, chlorophyll a and particulate organic carbon values...

  4. MODIS/Terra Net Primary Production Yearly L4 Global 500m SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOD17A3H Version 6 product provides information about annual (yearly) Net Primary Production at 500 meter pixel resolution. Annual NPP is derived from the sum of...

  5. MODIS/Aqua Net Primary Production Yearly L4 Global 500m SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MYD17A3H Version 6 product provides information about annual (yearly) Net Primary Production at 500 meter pixel resolution. Annual NPP is derived from the sum of...

  6. Primary Productivity, NASA Aqua MODIS and GOES Imager, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  7. Primary Productivity, NASA Aqua MODIS, 4.4 km, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific evaluation by professional...

  8. Primary Productivity, SeaWiFS and Pathfinder, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from SeaWiFS Chl a, Pathfinder SST, and SeaWiFS PAR data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  9. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    Science.gov (United States)

    Goodge, John W.

    2018-02-01

    Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central

  10. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    Science.gov (United States)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  11. Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing

    Science.gov (United States)

    Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.

    2017-11-01

    Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells 2 μm to total

  12. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required......The production of construction materials is very energy intensive and requires large quantities of fossil fuels.Asphalt is the major road paving material in Europe and is being produced primarily in stationary batch mixasphalt factories. The production process requiring the most energy...... is further evaluated during hours without asphalt production.The challenges of having varying seasonal production can be solved by this integration of the production unitto the utility system. The results show the economic and technical feasibility of using biomass for processheating in the asphalt factory...

  13. Measuring feeding traits of a range of litter-consuming terrestrial snails: leaf litter consumption, faeces production and scaling with body size.

    Science.gov (United States)

    Astor, Tina; Lenoir, Lisette; Berg, Matty P

    2015-07-01

    Plant litter decomposition is an essential ecosystem function that contributes to energy and nutrient cycling above- and belowground. Terrestrial gastropods can affect this process in various ways: they consume and fragment leaf litter and create suitable habitats for microorganisms through the production of faeces and mucus. We assessed the contributions of ten litter-feeding terrestrial snail species to leaf litter mass loss and checked whether consumption rate and faeces production scale with body size (i.e. shell size and shape), which may indicate that morphological traits can serve as proxies for consumption rate. Additionally, we compared the consumption rates of a subset of these species among litter types of two plant species which differ in resource quality (Fraxinus excelsior and Betula pendula). These snail species differed in their litter consumption rates. Consumption rates differed between the two litter types, whereas the rank order of litter consumption by the different species was independent of litter quality. Consumption rate and faeces production were positively related to shell size, whereas relative consumption rate and faeces production were related to shell shape, with more elongated snail species having lower relative consumption rates and faeces production rates. Our results show that easily measurable morphological traits scale with the feeding traits of snails, and represent useful proxies for consumption rate and faeces production, which are laborious to measure. Thus, estimated potential total consumption rates of snail communities along environmental gradients may be inferred from shell-size distributions. Our study contributes to a systematic trait-based evaluation of the importance of gastropods to litter decomposition.

  14. Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems

    NARCIS (Netherlands)

    Sjöström, M.; Ardö, J.; Arneth, A.; Veenendaal, E.M.

    2011-01-01

    One of the most frequently applied methods for integrating controls on primary production through satellite data is the light use efficiency (LUE) approach, which links vegetation gross or net primary productivity (GPP or NPP) to remotely sensed estimates of absorbed photosynthetically active

  15. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean

    Science.gov (United States)

    Tilstone, Gavin H.; Lange, Priscila K.; Misra, Ankita; Brewin, Robert J. W.; Cain, Terry

    2017-11-01

    Micro-phytoplankton is the >20 μm component of the phytoplankton community and plays a major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this paper we use both in situ data and a satellite model to estimate the contribution of micro-phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-phytoplankton primary production was highest in the South Subtropical Convergence (SSTC ∼ 409 ± 720 mg C m-2 d-1), where it contributed between 38 % of the total PP, and was lowest in the North Atlantic Gyre province (NATL ∼ 37 ± 27 mg C m-2 d-1), where it represented 18 % of the total PP. Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (PmB) (∼5 mg C (mg Chl a)-1 h-1) followed by nano- (∼4 mg C (mg Chl a)-1 h-1) and pico- (∼2 mg C (mg Chl a)-1 h-1). The highest PmB was recorded in the NATL and lowest in the North Atlantic Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to parameterise a remote sensing model of size-fractionated PP, which explained 84 % of the micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was applied to the SeaWiFS time series from 1998-2010, which illustrated that micro-phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and South Subtropical Convergence (SSTC

  16. Production and Utilization of Core-Textbooks in Primary School ...

    African Journals Online (AJOL)

    Research has shown that textbooks can improve primary school children educational achievement. There are different key players (authors, booksellers, publishers, printers, libraries and readers) in the book industry who contributes to the development of textbooks. These stakeholders have specific roles to play and cannot ...

  17. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems.

    Directory of Open Access Journals (Sweden)

    Heather L Kimball

    Full Text Available Gross primary production (GPP is the Earth's largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1 with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.

  18. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter. During both spring and fall inter-monsoons, this sea remains warm and stratified with low production as surface waters are oligotrophic. Inter-annual variability in physical forcing ...

  19. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    Using in situ data collected during 1992-1997, under the Indian programme of Joint Global Ocean Flux Study (JGOFS), we show that the biological productivity of the Arabian Sea is tightly coupled to the physical forcing mediated through nutrient availability. The Arabian Sea becomes productive in summer not only along ...

  20. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    Using in situ data collected during 1992--1997, under the Indian programme of Joint Global Ocean Flux. Study (JGOFS), we show that the biological productivity of the Arabian Sea is tightly coupled to the physical forcing mediated through nutrient availability. The Arabian Sea becomes productive in summer not only along ...

  1. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  2. Estimating gross primary productivity of a tropical forest ecosystem ...

    Indian Academy of Sciences (India)

    Pramit Kumar Deb Burman

    2017-10-06

    Oct 6, 2017 ... Data products from different satellites such as Moderate Resolution Imaging Spectroradiome- ter (MODIS) .... tions from MODIS, a satellite product. Finally, we assess the carbon sequestration potential of the ..... Although this fashion of variation of MODIS LAI agrees largely with the variation of the in situ ...

  3. Reduction of net primary productivity in southern China caused by abnormal low-temperature freezing in winter of 2008 detected by a remote sensing-driven ecosystem model

    Science.gov (United States)

    Ju, W.; Liu, Y.; Zhou, Y.; Zhu, G.

    2011-12-01

    Terrestrial carbon cycle is an important determinant of global climate change and affected by various factors, including climate, CO2 concentration, atmospheric nitrogen deposition and human activities. Extreme weather events can significantly regulate short-term even long-term carbon exchanges between terrestrial ecosystems and the atmosphere. During the period from the middle January to the middle February 2008, Southern China was seriously hit by abnormal low-temperature freezing, which caused serous damages to forests and crops. However, the reduction of net primary productivity (NPP) of terrestrial ecosystems caused by this extremely abnormal weather event has not been quantitatively investigated. In this study, the Boreal Ecosystem Productivity Simulator (BEPS) model was employed to assess the reduction of NPP in Southern China caused by the abnormal low-temperature freezing. Prior to the regional simulation, the BEPS model was validated using measured NPP in different ecosystems, demonstrating the ability of this model to simulate NPP reliably in China. Then, it was forced using meteorological data interpolated from observations of weather stations and leaf area index inversed from MODIS reflectance data to simulate national wide NPP at a 500 m resolution for the period from 2003 to 2008. The departures of NPP in 2008 from the means during 2003-2007 were used as the indicator of NPP reduction caused by the low-temperature freezing. It was found out that NPP in 2008 decreased significantly in forests of Southern China, especially in Guangdong, Fujian, Zhejiang, Guangxi, Jiangxi, and Hunan Provinces, in which the low-temperature freeing was more serious. The annul reduction of NPP was above 150 g C/m^2/yr in these areas. Key words: Net Primary Productivity, low-temperature freezing, BEPS model, MODIS Correspondence author: Weimin Ju Email:juweimin@nju.edu.cn

  4. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.

    Science.gov (United States)

    Riutta, Terhi; Malhi, Yadvinder; Kho, Lip Khoon; Marthews, Toby R; Huaraca Huasco, Walter; Khoo, MinSheng; Tan, Sylvester; Turner, Edgar; Reynolds, Glen; Both, Sabine; Burslem, David F R P; Teh, Yit Arn; Vairappan, Charles S; Majalap, Noreen; Ewers, Robert M

    2018-01-24

    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha -1  year -1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests. © 2018 John Wiley & Sons Ltd.

  5. Diagnostic extrapolation of gross primary production from flux tower sites to the globe

    Science.gov (United States)

    Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Baldocchi, Dennis; Luyssaert, Sebastiaan; Papale, Dario

    2010-05-01

    The uptake of atmospheric CO2 by plant photosynthesis is the largest global carbon flux and is thought of driving most terrestrial carbon cycle processes. While the photosynthesis processes at the leaf and canopy levels are quite well understood, so far only very crude estimates of its global integral, the Gross Primary Production (GPP) can be found in the literature. Existing estimates have been lacking sound empirical basis. Reasons for such limitations lie in the absence of direct estimates of ecosystem-level GPP and methodological difficulties in scaling local carbon flux measurements to global scale across heterogeneous vegetation. Here, we present global estimates of GPP based on different diagnostic approaches. These up-scaling schemes integrated high-resolution remote sensing products, such as land cover, the fraction of photosynthetically active radiation (fAPAR) and leaf-area index, with carbon flux measurements from the global network of eddy covariance stations (FLUXNET). In addition, meteorological datasets from diverse sources and river runoff observations were used. All the above-mentioned approaches were also capable of estimating uncertainties. With six novel or newly parameterized and highly diverse up-scaling schemes we consistently estimated a global GPP of 122 Pg C y-1. In the quantification of the total uncertainties, we considered uncertainties arising from the measurement technique and data processing (i.e. partitioning into GPP and respiration). Furthermore, we accounted for the uncertainties of drivers and the structural uncertainties of the extrapolation approach. The total propagation led to a global uncertainty of 15 % of the mean value. Although our mean GPP estimate of 122 Pg C y-1 is similar to the previous postulate by Intergovernmental Panel on Climate Change in 2001, we estimated a different variability among ecoregions. The tropics accounted for 32 % of GPP showing a greater importance of tropical ecosystems for the global carbon

  6. Yields of primary products from chloroethylenes in air under electron beam irradiation

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki; Hashimoto, Shoji; Kojima, Takuji

    2003-01-01

    The quantitative analysis of toxic primary irradiation products was carried out for the development of the purification technology of chloroethylenes/air mixtures using an electron beam (EB). Degradation of chloroethylenes in humid air proceeded through the formation of primary products retaining a carbon-carbon (C-C) bond such as chloroacetyl chlorides and chloroacetyl aldehyde as well as that of primary products of COCl 2 and HCOCl through C-C bond cleavage. Chloroethylenes having one carbon bonded to two Cl atoms was decomposed into the primary products retaining a C-C bond prior to breaking a C-C bond. The number of Cl atoms of a chloroethylene molecule enhanced the formation ratio of primary products retaining a C-C bond. On the other hand, chloroethylene having two carbons bonded to one Cl atom was degraded thought the scission of a C-C bond predominantly C-C bond maintenance. (author)

  7. [Relationship between primary lactose malabsorption and consumption of dairy products].

    Science.gov (United States)

    Escribano Subias, J; Sanz Manrique, N; Villa Elizaga, I; Tormo Carnicé, R

    1993-02-01

    This study was designed to determine the influence of lactose malabsorption on the consumption of dairy products. We studied 157 children and 43 adults. The Breath-hydrogen test was used to define their level of lactose digestion. The prevalence of lactose maldigesters was 12%. We found a large relationship between the consumption of milk and milk products and age. Malabsorbers consumed more fermented dairy products (ripened cheese and yogurt) than did absorbers (p butter, cream cheese and global lactose than the maldigesters (p < 0.05). Lactose intolerance, familiar consumption and geographic origins had little influence on an individual's consumption habits.

  8. Terrestrial radioecology

    International Nuclear Information System (INIS)

    Ohmomo, Yoichiro

    1992-01-01

    Environmental radioecology is a science of studying radionuclide transfer and distribution in the environmental ecosystem and the effects of radiation of the ecosystem. This review highlights radionuclide transfer to crops. There is, however, limited data available on this field in Japan. Therefore, a history of environmental radioecological study in Japan is briefly mentioned: radioecological study has been reflected by social backgrounds, including nuclear explosion and peaceful application of radionuclides. In view of the relationship between siting of nuclear installations and dietary habits for Japanese, research on hydrological radioecology has actually preceded that of terrestrial radioecology. Transfer parameters are discussed in terms of deposition velosity, interception fraction, environmental halftimes, and transfer coefficients from soils to crops. (N.K.) 50 refs

  9. Global resistance and resilience of primary production following extreme drought are predicted by mean annual precipitation

    Science.gov (United States)

    Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.

    2017-12-01

    Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.

  10. Relationships Between Plankton Primary Productivity, Biotic and Abiotic Variables of Carp Fish Ponds

    Directory of Open Access Journals (Sweden)

    Doychin I. Terziyski

    2016-12-01

    Full Text Available Experiments measuring primary productivity, biotic and abiotic environmental factors in carp ponds were carried out within three consecutive years (2004, 2005 and 2006. The aim of the study was investigation of the relations between the biotic and abiotic variables, their influence on the primary productivity and the effect of manuring on the fish ponds. The influence of environmental factors onto primary productivity was investigated in ponds with and without organic manure. Nitrate nitrogen demonstrated the closest relationship with the gross primary productivity followed by chlorophyll a level and N/P ratio in manured ponds. When no manuring was applied, the importance of the nutrients along the food chain: nutrients– phytoplankton – zooplankton decreased. Trends, which can be used for increasing of productivity in carp ponds, were obtained. They give indications to improve the existing practices for better management of production efficiency and water quality in fish farms.

  11. Production of Be-10 and Al-26 by cosmic rays in terrestrial quartz in situ and implications for erosion rates

    Science.gov (United States)

    Nishiizumi, K.; Arnold, J. R.; Lal, D.; Klein, J.; Middleton, R.

    1986-01-01

    Results of determinations of Be-10 and Al-26 produced by cosmic rays in situ in several terrestrial rock samples exposed at altitudes of 1-4 km are presented. The theoretical saturation values for these isotopes produced in quartz at the earth's surface are shown and discussed, and the expected isotope concentrations are considered in terms of a simple exosure history model which occurs without change in the altitude of the sample. The advantages of using Be-10 and Al-26 in this application, as opposed to C1-36, are discussed. The results demonstrate the feasibility of quantitatively measuring Be-10 and Al-26 produced in situ by cosmic rays in quartz and the possible applications of these isotopes as a pair for studying continental weathering/erosion processes.

  12. Remote sensing-based estimation of gross primary production in a subalpine grassland

    Directory of Open Access Journals (Sweden)

    M. Rossini

    2012-07-01

    Full Text Available This study investigates the performances in a terrestrial ecosystem of gross primary production (GPP estimation of a suite of spectral vegetation indexes (VIs that can be computed from currently orbiting platforms. Vegetation indexes were computed from near-surface field spectroscopy measurements collected using an automatic system designed for high temporal frequency acquisition of spectral measurements in the visible near-infrared region. Spectral observations were collected for two consecutive years in Italy in a subalpine grassland equipped with an eddy covariance (EC flux tower that provides continuous measurements of net ecosystem carbon dioxide (CO2 exchange (NEE and the derived GPP.

    Different VIs were calculated based on ESA-MERIS and NASA-MODIS spectral bands and correlated with biophysical (Leaf area index, LAI; fraction of photosynthetically active radiation intercepted by green vegetation, fIPARg, biochemical (chlorophyll concentration and ecophysiological (green light-use efficiency, LUEg canopy variables. In this study, the normalized difference vegetation index (NDVI was the index best correlated with LAI and fIPARg (r = 0.90 and 0.95, respectively, the MERIS terrestrial chlorophyll index (MTCI with leaf chlorophyll content (r = 0.91 and the photochemical reflectance index (PRI551, computed as (R531-R551/(R531+R551 with LUEg (r = 0.64.

    Subsequently, these VIs were used to estimate GPP using different modelling solutions based on Monteith's light-use efficiency model describing the GPP as driven by the photosynthetically active radiation absorbed by green vegetation (APARg and by the efficiency (ε with which plants use the absorbed radiation to fix carbon via photosynthesis. Results show that GPP can be successfully modelled

  13. Evaluating Ecohydrological Impacts of Vegetation Activities on Climatological Perspectives Using MODIS Gross Primary Productivity and Evapotranspiration Products at Korean Regional Flux Network Site

    Directory of Open Access Journals (Sweden)

    Minha Choi

    2013-05-01

    Full Text Available Accurate assessments of spatio-temporal variations in gross primary productivity (GPP, evapotranspiration (ET, and water use efficiency (WUE play a crucial role in the evaluation of carbon and water balance as well as have considerable effects on climate change. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS products were used to quantify the mean annual GPP and ET at Korean regional flux network site. We found that the seasonal mean values of WUE were 2.86 to 2.92 g∙C∙g∙H2O−1 in the dormant season and 1.81 to 1.88 g∙C∙g∙H2O−1 in the growing season during 2007 and 2008. The WUE was relatively stable during the growing season and tended to vary in the dormant season. Remote sensing data obtained by the MODIS satellite were appeared to be effective to improve our understanding of the spatio-temporal variation of ecohydrological parameters which have not yet been investigated in a number of previous articles. Based on the results of this study, we summarize the interactions between carbon and water circulation in terrestrial ecosystems and how their ecological procedures generated by the photosynthesis of vegetation influence in climatological perspectives.

  14. Interannual Variation in Phytoplankton Class-Specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (50, the equivalent of 20 PgC y-1. Coccolithophores and chlorophytes each contributed to 20 (7 PgC y-1 of the total primary production and cyanobacteria represented about 10 (4 PgC y(sub-1) of the total primary production. Primary production by diatoms was highest in high latitude (45) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4 (1-2 PgC y-1. We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nio Index, MEI) and regional climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p 0.05) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatomscyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on the class-specific primary production in the Southern Ocean. These results provide a modeling and

  15. Sensible use of primary energy in organic greenhouse production

    NARCIS (Netherlands)

    Stanghellini, C.; Baptista, F.; Eriksson, Evert; Gilli, Celine; Giuffrida, F.; Kempkes, F.L.K.; Munoz, P.; Stepowska, Agnieszka; Montero, J.I.

    2016-01-01

    Review of the major sources for energy consumption in organic greenhouse horticulture and analyse of the options available to reduce energy consumption or, at least, increase the energy use efficiency of organic production in greenhouses. At the moment, the best way to match demand and availability

  16. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    Jet and lateral advection of nutrient-rich upwelled waters from Arabia. Productivity in the southern part of the central Arabian Sea, on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region ...

  17. Assessing the relationship between microwave vegetation optical depth and gross primary production

    Science.gov (United States)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Liu, Yi Y.; Miralles, Diego G.; Parinussa, Robert; van der Schalie, Robin; Vreugdenhil, Mariette; Schwalm, Christopher R.; Tramontana, Gianluca; Camps-Valls, Gustau; Dorigo, Wouter A.

    2018-03-01

    At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time

  18. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems

    KAUST Repository

    Houborg, Rasmus

    2015-05-05

    Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants and in response to changes in leaf nitrogen (N) availability, plant phenology and environmental conditions. Houborg et al. (2013) outlined a semi-mechanistic relationship between V max 25 (Vmax normalized to 25 °C) and Chll based on inter-linkages between V max 25 , Rubisco enzyme kinetics, N and Chll. Here, these relationships are parameterized for a wider range of important agricultural crops and embedded within the leaf photosynthesis-conductance scheme of the Community Land Model (CLM), bypassing the questionable use of temporally invariant and broadly defined plant functional type (PFT) specific V max 25 values. In this study, the new Chll constrained version of CLM is refined with an updated parameterization scheme for specific application to soybean and maize. The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35–55 μg cm−2 for maize and 20–35 μg cm−2 for soybean) are

  19. Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile; Gregg, Watson

    2014-01-01

    Phytoplankton is responsible for over half of the net primary production on earth. The knowledge on the contribution of various phytoplankton groups to the total primary production is still poorly understood. Data from satellite observations suggest that for upwelling regions, photosynthetic rates by microplankton is higher than that of nanoplankton but that when the spatial extent is considered, the production by nanoplankton is comparable or even larger than microplankton. Here, we used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. Globally, diatoms were the group that contributed the most to the total phytoplankton production (approx. 50%) followed by coccolithophores and chlorophytes. Primary production by diatoms was highest in high latitude (>45 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nino Index, MEI) and 'regional' climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  20. Terrestrial biogeochemical cycles - Global interactions with the atmosphere and hydrology

    Science.gov (United States)

    Schimel, David S.; Parton, William J.; Kittel, Timothy G. F.

    1991-01-01

    A review is presented of developments in ecosystem theory, remote sensing, and geographic information systems that support new endeavors in spatial modeling. A paradigm has emerged to predict ecosystem behavior based on understanding responses to multiple resources. Ecosystem models couple primary production to decomposition and nutrient availability utilizing this paradigm. It is indicated that coupling of transport and ecosystem processes alters the behavior of earth system components (terrestrial ecosystems, hydrology, and the atmosphere) from that of an uncoupled model.

  1. Terrestrial ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The main effort of the Terrestrial Ecology Division has been redirected to a comprehensive study of the Espiritu Santo Drainage Basin located in northeastern Puerto Rico. The general objective are to provide baseline ecological data for future environmental assessment studies at the local and regional levels, and to provide through an ecosystem approach data for the development of management alternatives for the wise utilization of energy, water, and land resources. The interrelationships among climate, vegetation, soils, and man, and their combined influence upon the hydrologic cycle will be described and evaluated. Environmental management involves planning and decision making, and both require an adequate data base. At present, little is known about the interworkings of a complete, integrated system such as a drainage basin. A literature survey of the main research areas confirmed that, although many individual ecologically oriented studies have been carried out in a tropical environment, few if any provide the data base required for environmental management. In view of rapidly changing socio-economic conditions and natural resources limitations, management urgently requires data from these systems: physical (climatological), biological, and cultural. This integrated drainage basin study has been designed to provide such data. The scope of this program covers the hydrologic cycle as it is affected by the interactions of the physical, biological, and cultural systems

  2. LIFE CYCLE OF THE PHARMACEUTICAL PRODUCT AND PRIMARY STRATEGIC GOALS

    Directory of Open Access Journals (Sweden)

    Cristina\tCIOT

    2015-12-01

    Full Text Available In addition to innovation, production at high standards, market and marketing policy, pharmaceutical companies need strategies that could cope with apparent contradictions, convergences and divergences, centralisation and involution, at the global and local level, focus and liberty, domestic production and external supply, ownership and alliances, networks and hierarchies, science or market orientation, all these being part of the essence of a profitable and expanding pharmaceutical company. Specialists appreciate that the 20 century will remain in the collective memory for its technological achievements, including a better understanding of the atomic structure, „information explosion” encouraged by the progress of the computer technology, the news from space exploration. If one wants to evaluate its importance in terms of impact on people’s lives, the 20 century could be called THE DRUG AREA. Many experts agree that, at the end of this century, pharmaceutical products would have a higher importance for our lives due to the special progress in neurobiology, immunology, molecular biology, cellular differentiation, cell membrane and genetic studies. In the pharmaceutical industry, important funds are directed towards research and development, while few understand and appreciate the contribution brought by the pharmaceutical marketing system and by the professionals in this field. These ones make the drug accessible at the right time and place, in the required quantity, at a reasonable price and with all the information required.

  3. The annual cycle of primary productivity in a tropical estuary: the inner regions of the Golfo de Nicoya, Costa Rica.

    Science.gov (United States)

    Gocke, K; Cortés, J; Murillo, M M

    2001-12-01

    A one year cycle of primary productivity (PP) was studied using the "light and dark bottle" technique in the Golfo de Nicoya, located at 10 degrees N and 85 degrees W at the Pacific coast of Costa Rica. Samples were always incubated at 0, 1, 2, 3 and 4 m depth for 5 hrs from 8:30 till 13:30. The measurements were performed twice per month, first around high tide and one week later at low tide to account for tidal influences. This routine study was supplemented by special measurements about regional and short-term variations of primary productivity using the 14C-method, which mainly served to account for the shortcomings of the routinely employed incubation technique. The upper Golfo de Nicoya is an extremely productive, phytoplankton dominated estuarine system with an annual gross PP of 1037, a net PP of 610 and a community respiration of 427 g C m(-2) a(-1). Highest monthly PP values occurred during the dry season and at the beginning of the rainy season. Peaks in primary productivity coincided with massive blooms of red tide forming algae. Internal biological dynamics, estuarine circulation and land run-off are the most important nutrient sources. High water turbidity reduces the euphotic layer to 4-5 m depth, making the underwater light regime the rate limiting factor. On an annual basis, 41% of the organic carbon produced in the system is already consumed in the euphotic layer. Considering the entire water column (mean depth at mean tidal water level is around 7.7 m) 79% is consumed in the pelagial. Taking into account the organic material consumed and stored in the sediments the carbon budget of the upper gulf is probably balanced. Since, however, the system receives a considerable amount of organic material from its terrestrial surroundings (especially from the mangrove forests), a surplus of organic carbon is exported from the upper Golfo de Nicoya, which enhances the overall water productivity of the lower gulf and the adjacent area.

  4. Effect of cobalt on the primary productivity of Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.M.; Panigrahi, S.; Azeez, P.A.

    1987-10-01

    Cobalt, a micronutrient for biological organisms, is a metal of wide use. Main sources of Co to the environment are combustion of fossil fuels, smelters, cobalt processing facilities, sewage and industrial wastes. Atomic power plants and nuclear weapon detonations form an important source of radioisotopes of this metal to the environment. Cobalt has been included in the 14 toxic trace elements of critical importance from the point of view of environmental pollution and health hazards. Cobalt deficiency leads to diseases like stunted growth. At toxic level, Co inhibits heme biosynthesis and enzyme activities. The present study reports the effect of cobalt on biomass productivity of blue-green alga Spirulina platensis.

  5. Effects of adding aqueous extract of Tribulus terrestris to diet on productive performance, egg quality characteristics, and blood biochemical parameters of laying hens reared under low ambient temperature (6.8 ± 3 °C)

    Science.gov (United States)

    Akbari, Mohsen; Torki, Mehran

    2016-06-01

    A study was conducted using 144 laying hens to evaluate the effects of adding aqueous extract of Tribulus terrestris to diets on productive performance, egg quality traits, and some blood parameters of laying hens reared under cold stress condition (6.8 ± 3 °C). The birds were randomly assigned to each of four dietary treatments (C, T1, T2, and T3) with six replicate cages of six birds. Diet inclusion of aqueous extract of T. terrestris at the rate of 10, 20, and 30 ml/Lit offered to groups T1, T2, and T3, respectively, while group C served as the control diet with no addition. Feed intake (FI), feed conversion ratio (FCR), egg weight (EW), egg production (EP), and egg mass (EM) were evaluated during the 42-day trial period. The EP and EM increased, whereas FCR decreased ( P terrestris has beneficial effects on productive performance of laying hens reared under cold stress condition.

  6. Terrestrial radioactivity monitoring programme (TRAMP) report for 1994. Radioactivity in food and agricultural products in England and Wales

    International Nuclear Information System (INIS)

    1995-01-01

    The Ministry of Agriculture and Fisheries monitoring programmes for radioactivity in the terrestrial environment of the United Kingdom during 1994 are described. The results of the analyses performed with a commentary are presented. Two complimentary programmes, TRAMP and FARM, are used to ensure that radiation doses received by the public from the consumption of foodstuffs are controlled ion accordance with national and international guidelines. TRAMP concentrates on the monitoring of agricultural produce from the vicinity of the 23 licensed nuclear sites in England and Wales. The focus of FARM is the safety of the general food supply through natural food monitoring; a representative selection of industrial and landfill sites which provide potential sources of radionuclide contamination of the food chain is also monitored. In addition, monitoring programmes are undertaken for airborne grass and soil contamination in the neighbourhood of 18 nuclear sites. The overall conclusion drawn from the results presented is that public exposure to anthropogenic radioactivity due to the consumption of milk and foodstuffs grown around licensed nuclear sites in 1994 was well within acceptable limits. (67 references; 97 tables). (UK)

  7. Inflectional morphology in primary progressive aphasia: an elicited production study.

    Science.gov (United States)

    Wilson, Stephen M; Brandt, Temre H; Henry, Maya L; Babiak, Miranda; Ogar, Jennifer M; Salli, Chelsey; Wilson, Lisa; Peralta, Karen; Miller, Bruce L; Gorno-Tempini, Maria Luisa

    2014-09-01

    Inflectional morphology lies at the intersection of phonology, syntax and the lexicon, three language domains that are differentially impacted in the three main variants of primary progressive aphasia (PPA). To characterize spared and impaired aspects of inflectional morphology in PPA, we elicited inflectional morphemes in 48 individuals with PPA and 13 healthy age-matched controls. We varied the factors of regularity, frequency, word class, and lexicality, and used voxel-based morphometry to identify brain regions where atrophy was predictive of deficits on particular conditions. All three PPA variants showed deficits in inflectional morphology, with the specific nature of the deficits dependent on the anatomical and linguistic features of each variant. Deficits in inflecting low-frequency irregular words were associated with semantic PPA, with lexical/semantic deficits, and with left temporal atrophy. Deficits in inflecting pseudowords were associated with non-fluent/agrammatic and logopenic variants, with phonological deficits, and with left frontal and parietal atrophy. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Solubility of simulated PWR primary circuit corrosion products

    International Nuclear Information System (INIS)

    Kunig, R.H.; Sandler, Y.L.

    1986-08-01

    The solubility behavior of non-stoichiometric nickel ferrites, nickel-cobalt ferrites, and magnetite, as model substances for the corrosion products (''crud'') formed in nuclear pressurized water reactors, was studied in a flow system in aqueous solutions of lithium hydroxide, boric acid, and hydrogen with pH, temperature, and hydrogen concentrations as parameters. Below the temperature region of 300 to 330 0 C, at hydrogen concentrations of 25 to 40 cm 3 /kg H 2 O as used during reactor operation, the solubility of nickel-cobalt ferrite is the same as that of Ni and Co/sub x/Fe/sub 3-x/O 4 (x 3 /kg of hydrogen, the equilibrium iron and nickel solubilities increase congruently down to about 100 0 C, in a manner consistent with the solubility of Fe 3 O 4 , but sharply decline at lower temperatures, apparently due to formation of a borated layer. A cooldown experiment on a time scale of a typical Westinghouse reactor shutdown, as well as static experiments carried out on various ferrite samples at 60 0 C show that after addition of oxygen or peroxide evolution of nickel (and possibly cobalt) above the equilibrium solubility in hydrogen depends on the presence of dissociation products prior to oxidation. Thermodynamic calculations of various reduction and oxidative decomposition reactions for stoichiometric and non-stoichiometric nickel ferrite and cobalt ferrite are presented. Their significance to evolutions of nickel and cobalt on reactor shutdown is discussed. 30 refs., 38 figs., 34 tabs

  9. Patchiness of phytoplankton and primary production in Liaodong Bay, China

    Science.gov (United States)

    Laws, Edward A.; Zhang, Haibo; Ye, Siyuan; Yuan, Hongming; Liu, Haiyue

    2017-01-01

    A comprehensive study of water quality, phytoplankton biomass, and photosynthetic rates in Liaodong Bay, China, during June and July of 2013 revealed two large patches of high biomass and production with dimensions on the order of 10 km. Nutrient concentrations were above growth-rate-saturating concentrations throughout the bay, with the possible exception of phosphate at some stations. The presence of the patches therefore appeared to reflect the distribution of water temperature and variation of light penetration restricted by water turbidity. There was no patch of high phytoplankton biomass or production in a third, linear patch of water with characteristics suitable for rapid phytoplankton growth; the absence of a bloom in that patch likely reflected the fact that the width of the patch was less than the critical size required to overcome losses of phytoplankton to turbulent diffusion. The bottom waters of virtually all of the eastern half of the bay were below the depth of the mixed layer, and the lowest bottom water oxygen concentrations, 3–5 mg L–1, were found in that part of the bay. The water column in much of the remainder of the bay was within the mixed layer, and oxygen concentrations in both surface and bottom waters exceeded 5 mg L–1. PMID:28235070

  10. Remote sensing of oceanic primary production: Computations using a spectral model

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Platt, T.; Caverhill, C.M.; Warnock, R.E.; Lewis, M.R.

    A spectral model of underwater irradiance is coupled with a spectral version of the photosynthesis-light relationship to compute oceanic primary production. The results are shown to be significantly different from those obtained using...

  11. ISLSCP II GPPDI, Net Primary Productivity (NPP) Class B Point Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Global Primary Production Data Initiative (GPPDI) was set up as a Focus 1 activity of the IGBP Data and Information System, a coordinated international...

  12. ISLSCP II GPPDI, Net Primary Productivity (NPP) Class B Point Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Primary Production Data Initiative (GPPDI) was set up as a Focus 1 activity of the IGBP Data and Information System, a coordinated international program...

  13. HANPP Collection: Global Patterns in Human Appropriation of Net Primary Productivity (HANPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  14. Primary productivity in the Karwar Bay, Karnataka, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, U.G.; Naik, R.K.; Nayak, V.N.

    The measurement of primary production is of great importance because of its significance to the problems of aquatic ecology and fishery management. The interaction of light intensity, temperature and nutrient levels determines the photosynthetic...

  15. NODC Standard Format Primary Productivity 1 (F029) Data (1958-1983) (NODC Accession 0014152)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains data from measurements of primary productivity. The data are collected to provide information on nutrient levels and nutrient flow in offshore...

  16. Phytoplankton pigments and primary production around the oil fields off Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.J.; Ramaiah, Neelam; Mehta, P.; Krishnakumari, L.; Nair, V.R.

    Studies on phytoplankton pigments, primary productivity and particulate organic carbon were made at 21 locations off Bombay (Maharashtra, India) and adjacent waters during the 48th cruise of @iORV Sagar Kanya@@ in December 1988 to January 1989...

  17. UV radiation and natural fluorescence linked primary production in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; KrishnaKumari, L; Bhattathiri, P.M.A.; Chandramohan, D.

    fluorescence (upwelled radiance at 683 run), scalar irradiance (photosynthetically active radiation, PAR), computed primary production (pp), diffuse attenuation coefficient, UV B(308 and 320 ran) and UV A (340 and 380 nm) radiation, and water temperature...

  18. NOx from cement production - reduction by primary measures

    DEFF Research Database (Denmark)

    Jensen, Lars Skaarup

    1999-01-01

    , calciner operation, fuel properties and on the NOx level from the rotary kiln. The low-NOx calciner types presently marketed are based on combinations of reburning, air staging and temperature control and seem equivalent in their ability to restrict NOx formation. If fuels with a significant volatile...... is the most energy demanding process, takes place at lower temperature in the calciner. When dealing with NOx from solid fuel combustion it is important to consider reactions of volatile contents and char separately.Chapter 4 presents an overview of NOx from cement production. Thermal NOx dominates from...... content (> 25%) are used, net reduction of kiln NOx typically takes place in calciners, whereas net NOx formation takes place when low-volatile fuels (...

  19. Corrosion products behaviour under VVER primary coolant conditions

    International Nuclear Information System (INIS)

    Grygar, T.; Zmitko, M.

    2002-01-01

    The aim of this work was to collect data on thermodynamic stability of Cr, Fe, and Ni oxides, mechanisms of hydrothermal corrosion of stainless steels and to compare the real observation with the theory. We found that the electrochemical potential and pH in PWR and VVER are close to the thermodynamic boundary between two fields of stable spinel type oxides. The ways of degradation of the passivating layers due to changes in water chemistry were considered and PWR and VVER systems were found to be potentially endangered by reductive attack. In certain VVER systems the characteristics of the passivating layer on steels and also concentration of soluble corrosion products seem to be in contradiction with the theoretical expectations. (author)

  20. Pathways between primary production and fisheries yields of large marine ecosystems.

    Directory of Open Access Journals (Sweden)

    Kevin D Friedland

    Full Text Available The shift in marine resource management from a compartmentalized approach of dealing with resources on a species basis to an approach based on management of spatially defined ecosystems requires an accurate accounting of energy flow. The flow of energy from primary production through the food web will ultimately limit upper trophic-level fishery yields. In this work, we examine the relationship between yield and several metrics including net primary production, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production. We also evaluate the relationship between yield and two additional rate measures that describe the export of energy from the pelagic food web, particle export flux and mesozooplankton productivity. We found primary production is a poor predictor of global fishery yields for a sample of 52 large marine ecosystems. However, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production were positively associated with yields. The latter two measures provide greater mechanistic insight into factors controlling fishery production than chlorophyll concentration alone. Particle export flux and mesozooplankton productivity were also significantly related to yield on a global basis. Collectively, our analyses suggest that factors related to the export of energy from pelagic food webs are critical to defining patterns of fishery yields. Such trophic patterns are associated with temperature and latitude and hence greater yields are associated with colder, high latitude ecosystems.

  1. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    J. W. Goodge

    2018-02-01

    Full Text Available Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2–2.0 Ga granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho of about 2.6  ±  1.9 µW m−3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo ranging from 33 to 84 mW m−2 and an average of 48.0  ±  13.6 mW m−2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal

  2. Laminated sediments from the central Peruvian continental slope: A 500 year record of upwelling system productivity, terrestrial runoff and redox conditions

    Science.gov (United States)

    Sifeddine, A.; Gutiérrez, D.; Ortlieb, L.; Boucher, H.; Velazco, F.; Field, D.; Vargas, G.; Boussafir, M.; Salvatteci, R.; Ferreira, V.; García, M.; Valdés, J.; Caquineau, S.; Mandeng Yogo, M.; Cetin, F.; Solis, J.; Soler, P.; Baumgartner, T.

    2008-10-01

    Sedimentological studies including X-ray digital analyses, mineralogy, inorganic contents, and organic geochemistry on cores of laminated sediments accumulated in the oxygen minimum zone of the central Peruvian margin reveal variable oceanographic and climate conditions during the last 500 yr. Coherent upcore variations in sedimentological and geochemical markers in box cores taken off Pisco (B0405-6) and Callao (B0405-13) indicate that variability in the climate proxies examined has regional significance. Most noteworthy is a large shift in proxies at ˜1820 AD, as determined by 210Pb and 14C radiometric dating. This shift is characterized by an increase in total organic carbon (TOC) in parallel with an abrupt increase in the enrichment factor for molybdenum Mo indicating a regional intensification of redox conditions, at least at the sediment water interface. In addition there was lower terrestrial input of quartz, feldspar and clays to the margin. Based on these results, we interpret that during several centuries prior to 1820, which corresponds to the little ice age (LIA), the northern Humboldt current region was less productive and experienced higher terrestrial input related to more humid conditions on the continent. These conditions were probably caused by a southward displacement of the inter-tropical convergence zone and the subtropical high pressure cell during the LIA. Since 1870, increases in TOC and terrigenous mineral fluxes suggest an increase of wind-driven upwelling and higher productivity. These conditions continued to intensify during the late 20th century, as shown by instrumental records of wind forcing.

  3. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects.

    Science.gov (United States)

    Duis, Karen; Coors, Anja

    2016-01-01

    Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the ingestion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplastics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be

  4. Terrestrial gross carbon dioxide uptake : Global distribution and covariation with climate

    NARCIS (Netherlands)

    Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M. Altaf; Baldocchi, Dennis D.; Bonan, Gordon B.; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W.; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher M.; Woodward, F. Ian; Papale, Dario

    2010-01-01

    Terrestrial gross primary production (GPP) is the largest global CO 2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year-1) using eddy covariance flux data and various diagnostic models. Tropical forests

  5. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...... production in bicultures in general, while a positive net effect was found in the P. perfoliatus and P. filiformis biculture. Despite the absence of significant results for other treatments and plant variables, a trend of positive complementarity and negative selection effects were present. Plant diversity...

  6. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis

    Science.gov (United States)

    Cleveland, Cory C.; Townsend, Alan R.; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M.C.; Chuyong, George; Dobrowski, Solomon Z.; Grierson, Pauline; Harms, Kyle E.; Houlton, Benjamin Z.; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C.; Sierra, Carlos A.; Silver, Whendee L.; Tanner, Edmund V.J.; Wieder, William R.

    2011-01-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO2 exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0–10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations – especially in lowland forests – to elucidate the most important nutrient interactions and controls.

  7. Estimating of gross primary production in an Amazon-Cerrado transitional forest using MODIS and Landsat imagery

    Directory of Open Access Journals (Sweden)

    VICTOR H.M. DANELICHEN

    2015-09-01

    Full Text Available The acceleration of the anthropogenic activity has increased the atmospheric carbon concentration, which causes changes in regional climate. The Gross Primary Production (GPP is an important variable in the global carbon cycle studies, since it defines the atmospheric carbon extraction rate from terrestrial ecosystems. The objective of this study was to estimate the GPP of the Amazon-Cerrado Transitional Forest by the Vegetation Photosynthesis Model (VPM using local meteorological data and remote sensing data from MODIS and Landsat 5 TM reflectance from 2005 to 2008. The GPP was estimated using Normalized Difference Vegetation Index (NDVI and Enhanced Vegetation Index (EVI calculated by MODIS and Landsat 5 TM images. The GPP estimates were compared with measurements in a flux tower by eddy covariance. The GPP measured in the tower was consistent with higher values during the wet season and there was a trend to increase from 2005 to 2008. The GPP estimated by VPM showed the same increasing trend observed in measured GPP and had high correlation and Willmott's coefficient and low error metrics in comparison to measured GPP. These results indicated high potential of the Landsat 5 TM images to estimate the GPP of Amazon-Cerrado Transitional Forest by VPM.

  8. Linkages between terrestrial ecosystems and the atmosphere

    Science.gov (United States)

    Bretherton, Francis; Dickinson, Robert E.; Fung, Inez; Moore, Berrien, III; Prather, Michael; Running, Steven W.; Tiessen, Holm

    1992-01-01

    The primary research issue in understanding the role of terrestrial ecosystems in global change is analyzing the coupling between processes with vastly differing rates of change, from photosynthesis to community change. Representing this coupling in models is the central challenge to modeling the terrestrial biosphere as part of the earth system. Terrestrial ecosystems participate in climate and in the biogeochemical cycles on several temporal scales. Some of the carbon fixed by photosynthesis is incorporated into plant tissue and is delayed from returning to the atmosphere until it is oxidized by decomposition or fire. This slower (i.e., days to months) carbon loop through the terrestrial component of the carbon cycle, which is matched by cycles of nutrients required by plants and decomposers, affects the increasing trend in atmospheric CO2 concentration and imposes a seasonal cycle on that trend. Moreover, this cycle includes key controls over biogenic trace gas production. The structure of terrestrial ecosystems, which responds on even longer time scales (annual to century), is the integrated response to the biogeochemical and environmental constraints that develop over the intermediate time scale. The loop is closed back to the climate system since it is the structure of ecosystems, including species composition, that sets the terrestrial boundary condition in the climate system through modification of surface roughness, albedo, and, to a great extent, latent heat exchange. These separate temporal scales contain explicit feedback loops which may modify ecosystem dynamics and linkages between ecosystems and the atmosphere. The long-term change in climate, resulting from increased atmospheric concentrations of greenhouse gases (e.g., CO2, CH4, and nitrous oxide (N2O)) will further modify the global environment and potentially induce further ecosystem change. Modeling these interactions requires coupling successional models to biogeochemical models to

  9. MODIS EVI as a proxy for net primary production across precipitation regimes

    Science.gov (United States)

    Above ground net primary production (ANPP) is a measure of the rate of photosynthesis in an ecosystem, and is indicative of its biomass productivity. Prior studies have reported a relationship between ANPP and annual precipitation which converged across biomes in dry years. This deserves further s...

  10. Tradeoffs in overstory and understory aboveground net primary productivity in southwestern ponderosa pine stands

    Science.gov (United States)

    Kyla E. Sabo; Stephen C. Hart; Carolyn Hull Sieg; John Duff Bailey

    2008-01-01

    Previous studies in ponderosa pine forests have quantified the relationship between overstory stand characteristics and understory production using tree measurements such as basal area. We built on these past studies by evaluating the tradeoff between overstory and understory aboveground net primary productivity (ANPP) in southwestern ponderosa pine forests at the...

  11. Estimation of livestock appropriation of net primary productivity in Texas Drylands

    Science.gov (United States)

    Robert Washington-Allen; Jody Fitzgerald; Stephanie Grounds; Faisar Jihadi; John Kretzschmar; Kathryn Ramirez; John Mitchell

    2009-01-01

    The ecological state of US Drylands is unknown. This research is developing procedures to determine the impact of the ecological footprint of grazing livestock on the productive capacity of US Drylands. A pilot geodatabase was developed for the state of Texas that includes 2002 data for county boundaries, net primary productivity (NPP) derived from the Moderate...

  12. Simplified, rapid, and inexpensive estimation of water primary productivity based on chlorophyll fluorescence parameter Fo.

    Science.gov (United States)

    Chen, Hui; Zhou, Wei; Chen, Weixian; Xie, Wei; Jiang, Liping; Liang, Qinlang; Huang, Mingjun; Wu, Zongwen; Wang, Qiang

    2017-04-01

    Primary productivity in water environment relies on the photosynthetic production of microalgae. Chlorophyll fluorescence is widely used to detect the growth status and photosynthetic efficiency of microalgae. In this study, a method was established to determine the Chl a content, cell density of microalgae, and water primary productivity by measuring chlorophyll fluorescence parameter Fo. A significant linear relationship between chlorophyll fluorescence parameter Fo and Chl a content of microalgae, as well as between Fo and cell density, was observed under pure-culture conditions. Furthermore, water samples collected from natural aquaculture ponds were used to validate the correlation between Fo and water primary productivity, which is closely related to Chl a content in water. Thus, for a given pure culture of microalgae or phytoplankton (mainly microalgae) in aquaculture ponds or other natural ponds for which the relationship between the Fo value and Chl a content or cell density could be established, Chl a content or cell density could be determined by measuring the Fo value, thereby making it possible to calculate the water primary productivity. It is believed that this method can provide a convenient way of efficiently estimating the primary productivity in natural aquaculture ponds and bringing economic value in limnetic ecology assessment, as well as in algal bloom monitoring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Recruitment and condition of juvenile sandeel on the Faroe shelf in relation to primary production

    DEFF Research Database (Denmark)

    Eliasen, Kirstin; Reinert, Jákup; Gaard, Eilif

    The food of early-life sandeel is dominated by zooplankton, which again depends on primary production. On the Faroe Shelf, measurements of accumulated new primary production and chlorophyll a during spring and summer have been carried out since 1990 and 1997, respectively. Large inter...... availability. We compare the time series from the sandeel 0-group surveys with data on phytoplankton production and biomass. The results confirm that survival and condition of the early-life stages of sandeel on the Faroe Shelf is dependent on the magnitude of the primary production. Although the sandeel......-annual variations in the onset of the spring bloom and its intensity have been observed. Since 1974 juvenile sandeels have been sampled annually on the Faroe shelf. These results also show large variations – both in number and in average length. Here, we investigate the variations in recruitment in relation to food...

  14. Ecology and primary productivity of the eulittoral epilithon community: Lake Tahoe, California-Nevada

    International Nuclear Information System (INIS)

    Aloi, J.E.

    1986-01-01

    This dissertation is an investigation into the factors affecting the community dynamics of an epilithic diatom community in Lake Tahoe. Although Lake Tahoe is characterized by extremely low phytoplankton primary productivity, the productivity of the eulittoral (0-2 m) periphyton community is much higher than would be expected in this extremely oligotrophic lake. The eulittoral periphyton community is structured by as stalked diatom, Gomphoneis herculeana, and rosettes of Synedra ulna, with small diatoms living within this matrix. The seasonal cycle of the eulittoral epilithon was monitored through three growing seasons. Biomass was measured once or twice per month at 12-17 sites. Eulittoral primary productivity was also measured monthly at one site, using in situ C 14 methodology. Field measurements were combined with laboratory experiments to determine the physical and chemical parameters responsible for both the seasonal periodicity and the site-to-site differences in epilithon biomass and primary productivity

  15. Changes in water chemistry and primary productivity of a reactor cooling reservoir (Par Pond)

    International Nuclear Information System (INIS)

    Tilly, L.J.

    1975-01-01

    Water chemistry and primary productivity of a reactor cooling reservoir have been studied for 8 years. Initially the primary productivity increased sixfold, and the dissolved solids doubled. The dissolved-solids increase appears to have been caused by additions of makeup water from the Savannah River and by evaporative concentration during the cooling process. As the dissolved-solids concentrations and the conductivity of makeup water leveled off, the primary productivity stabilized. Major cation and anion concentrations generally followed total dissolved solids through the increase and plateau; however, silica concentrations declined steadily during the initial period of increased plankton productivity. Standing crops of net seston and centrifuge seston did not increase during this initial period. The collective data show the effects of thermal input to a cooling reservoir, illustrate the need for limnological studies before reactor siting, and suggest the possibility of using makeup-water additions to power reactor cooling basins as a reservoir management tool

  16. Leaf fossil record suggests limited influence of atmospheric CO2 on terrestrial productivity prior to angiosperm evolution.

    Science.gov (United States)

    Boyce, C Kevin; Zwieniecki, Maciej A

    2012-06-26

    Declining CO(2) over the Cretaceous has been suggested as an evolutionary driver of the high leaf vein densities (7-28 mm mm(-2)) that are unique to the angiosperms throughout all of Earth history. Photosynthetic modeling indicated the link between high vein density and productivity documented in the modern low-CO(2) regime would be lost as CO(2) concentrations increased but also implied that plants with very low vein densities (less than 3 mm mm(-2)) should experience substantial disadvantages with high CO(2). Thus, the hypothesized relationship between CO(2) and plant evolution can be tested through analysis of the concurrent histories of alternative lineages, because an extrinsic driver like atmospheric CO(2) should affect all plants and not just the flowering plants. No such relationship is seen. Regardless of CO(2) concentrations, low vein densities are equally common among nonangiosperms throughout history and common enough to include forest canopies and not just obligate shade species that will always be of limited productivity. Modeling results can be reconciled with the fossil record if maximum assimilation rates of nonflowering plants are capped well below those of flowering plants, capturing biochemical and physiological differences that would be consistent with extant plants but previously unrecognized in the fossil record. Although previous photosynthetic modeling suggested that productivity would double or triple with each Phanerozoic transition from low to high CO(2), productivity changes are likely to have been limited before a substantial increase accompanying the evolution of flowering plants.

  17. Potentials of satellite derived SIF products to constrain GPP simulated by the new ORCHIDEE-FluOR terrestrial model at the global scale

    Science.gov (United States)

    Bacour, C.; Maignan, F.; Porcar-Castell, A.; MacBean, N.; Goulas, Y.; Flexas, J.; Guanter, L.; Joiner, J.; Peylin, P.

    2016-12-01

    A new era for improving our knowledge of the terrestrial carbon cycle at the global scale has begun with recent studies on the relationships between remotely sensed Sun Induce Fluorescence (SIF) and plant photosynthetic activity (GPP), and the availability of such satellite-derived products now "routinely" produced from GOSAT, GOME-2, or OCO-2 observations. Assimilating SIF data into terrestrial ecosystem models (TEMs) represents a novel opportunity to reduce the uncertainty of their prediction with respect to carbon-climate feedbacks, in particular the uncertainties resulting from inaccurate parameter values. A prerequisite is a correct representation in TEMs of the several drivers of plant fluorescence from the leaf to the canopy scale, and in particular the competing processes of photochemistry and non photochemical quenching (NPQ).In this study, we present the first results of a global scale assimilation of GOME-2 SIF products within a new version of the ORCHIDEE land surface model including a physical module of plant fluorescence. At the leaf level, the regulation of fluorescence yield is simulated both by the photosynthesis module of ORCHIDEE to calculate the photochemical yield and by a parametric model to estimate NPQ. The latter has been calibrated on leaf fluorescence measurements performed for boreal coniferous and Mediterranean vegetation species. A parametric representation of the SCOPE radiative transfer model is used to model the plant fluorescence fluxes for PSI and PSII and the scaling up to the canopy level. The ORCHIDEE-FluOR model is firstly evaluated with respect to in situ measurements of plant fluorescence flux and photochemical yield for scots pine and wheat. The potentials of SIF data to constrain the modelled GPP are evaluated by assimilating one year of GOME-2-SIF products within ORCHIDEE-FluOR. We investigate in particular the changes in the spatial patterns of GPP following the optimization of the photosynthesis and phenology parameters

  18. Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication

    International Nuclear Information System (INIS)

    Dunck, Bárbara; Lima-Fernandes, Eva; Cássio, Fernanda; Cunha, Ana; Rodrigues, Liliana; Pascoal, Cláudia

    2015-01-01

    We assessed the eutrophication effects on leaf litter decomposition and primary production, and on periphytic algae, fungi and invertebrates. According to the subsidy-stress model, we expected that when algae and decomposers were nutrient limited, their activity and diversity would increase at moderate levels of nutrient enrichment, but decrease at high levels of nutrients, because eutrophication would lead to the presence of other stressors and overwhelm the subsidy effect. Chestnut leaves (Castanea sativa Mill) were enclosed in mesh bags and immersed in five streams of the Ave River basin (northwest Portugal) to assess leaf decomposition and colonization by invertebrates and fungi. In parallel, polyethylene slides were attached to the mesh bags to allow colonization by algae and to assess primary production. Communities of periphytic algae and decomposers discriminated the streams according to the trophic state. Primary production decomposition and biodiversity were lower in streams at both ends of the trophic gradient. - Highlights: • Algae and decomposers discriminated the streams according to the eutrophication level. • Primary production and litter decomposition are stimulated by moderate eutrophication. • Biodiversity and process rates were reduced in highly eutrophic streams. • Subsidy-stress model explained biodiversity and process rates under eutrophication. - Rates of leaf litter decomposition, primary production and richness of periphytic algae, fungi and invertebrates were lower in streams at both ends of the trophic gradient

  19. Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer

    International Nuclear Information System (INIS)

    Song Xingyu; Huang Liangmin; Zhang Jianlin; Huang, Xiaoping; Zhang Junbin; Yin Jianqiang; Tan Yehui; Liu Sheng

    2004-01-01

    Environmental factors, phytoplankton biomass (Chl a) and primary production of two water areas in Daya Bay (Dapeng'ao Bay and Aotou Bay) were investigated during the transition period from spring to summer. Chl a ranged from 3.20 to 13.62 and 13.43 to 26.49 mg m -3 in Dapeng'ao Bay and Aotou Bay respectively, if data obtained during red tides are excluded. Primary production varied between 239.7 and 1001.4 mgC m -2 d -1 in Dapeng'ao Bay. The regional distribution of Chl a and primary production were mostly consistent from spring to summer in both bays. Seasonal transition characters have been found in Daya Bay from spring to summer, including high values of DO, nitrate and silicate. Size structures of phytoplankton and its primary production do not change very much from spring to summer, with micro-phytoplankton dominating and contributing about 50% of the whole. In Daya Bay, phytoplankton is limited by nitrogen in spring, and by phosphate in summer. Artificial impacts are evident from high temperature effluent from nuclear power stations, aquaculture and sewage. During the investigation, a red tide occurred in Aotou Bay, with a maximum Chl a of 103.23 mg m -3 at surface and primary production of 2721.9 mgC m -2 d -1 in the red tide center. Raised water temperature and nutrient supply from land-sources help to stimulate annual red tides

  20. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  1. Small phytoplankton contribution to the total primary production in the highly productive Ulleung Basin in the East/Japan Sea

    Science.gov (United States)

    Joo, HuiTae; Son, SeungHyun; Park, Jung-Woo; Kang, Jae Joong; Jeong, Jin-Yong; Kwon, Jae-Il; Kang, Chang-Keun; Lee, Sang Heon

    2017-09-01

    The Ulleung Basin in the southwestern East/Japan Sea (hereafter East Sea) is known as a biologically productive ;hot spot; but climate-associated changes in the physicochemical oceanographic conditions and some biological changes have been reported. In this study, our main objective was to determine the contribution of small phytoplankton to the total primary production, which is valuable information for detecting marine ecosystem changes in the Ulleung Basin. The small phytoplankton productivity contributions determined by Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived monthly productivities using a phytoplankton community-based productivity algorithm was significantly consistent with the field-measured productivity contributions of small phytoplankton in this study. The daily primary productivity of small phytoplankton ranged from 42.7 to 418.7 mg C m-2 d-1 with an average of 172.9 mg C m-2 d-1 (S.D. = ±61.4 mg C m-2 d-1, n = 120), and the annual contribution of small phytoplankton ranged from 19.6% to 28.4% with an average of 23.6% (S.D. = ±8.1%) in the Ulleung Basin from 2003 to 2012. Overall, large phytoplankton were a major contributor to the total primary production in the Ulleung Basin (76.4 ± 8.2%) from 2003 to 2012, which indicates that the Ulleung Basin is a highly productive region. A significantly negative relationship (p climate change depending on different-size phytoplankton compositions should be a subject for further investigation in the Ulleung Basin as a biologically highly productive region in the East Sea.

  2. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  3. Assimilation of Remotely-Sensed Leaf Area Index into a Dynamic Vegetation Model for Gross Primary Productivity Estimation

    Directory of Open Access Journals (Sweden)

    Rui Ma

    2017-02-01

    Full Text Available Quantitative estimation of the magnitude and variability of gross primary productivity (GPP is required to study the carbon cycle of the terrestrial ecosystem. Using ecosystem models and remotely-sensed data is a practical method for accurately estimating GPP. This study presents a method for assimilating high-quality leaf area index (LAI products retrieved from satellite data into a process-oriented Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM to acquire accurate GPP. The assimilation methods, including the Ensemble Kalman Filter (EnKF and a proper orthogonal decomposition (POD-based ensemble four-dimensional (4D variational assimilation method (PODEn4DVar, incorporate information provided by observations into the model to achieve a better agreement between the model-estimated and observed GPP. The LPJ-POD scheme performs better with a correlation coefficient of r = 0.923 and RMSD of 32.676 gC/m2/month compared with the LPJ-EnKF scheme (r = 0.887, RMSD = 38.531 gC/m2/month and with no data assimilation (r = 0.840, RMSD = 45.410 gC/m2/month. Applying the PODEn4DVar method into LPJ-DGVM for simulating GPP in China shows that the annual amount of GPP in China varied between 5.92 PgC and 6.67 PgC during 2003–2012 with an annual mean of 6.35 PgC/yr. This study demonstrates that integrating remotely-sensed data with dynamic global vegetation models through data assimilation methods has potential in optimizing the simulation and that the LPJ-POD scheme shows better performance in improving GPP estimates, which can provide a favorable way for accurately estimating dynamics of ecosystems.

  4. A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity

    Science.gov (United States)

    Obrist, Daniel; Pearson, Christopher; Webster, Jackson; Kane, Tyler J.; Lin, Che-Jen; Aiken, George R.; Alpers, Charles N.

    2016-01-01

    A synthesis of published vegetation mercury (Hg) data across 11 contiguous states in the western United States showed that aboveground biomass concentrations followed the order: leaves (26 μg kg− 1) ~ branches (26 μg kg− 1) > bark (16 μg kg− 1) > bole wood (1 μg kg− 1). No spatial trends of Hg in aboveground biomass distribution were detected, which likely is due to very sparse data coverage and different sampling protocols. Vegetation data are largely lacking for important functional vegetation types such as shrubs, herbaceous species, and grasses.Soil concentrations collected from the published literature were high in the western United States, with 12% of observations exceeding 100 μg kg− 1, reflecting a bias toward investigations in Hg-enriched sites. In contrast, soil Hg concentrations from a randomly distributed data set (1911 sampling points; Smith et al., 2013a) averaged 24 μg kg− 1 (A-horizon) and 22 μg kg− 1 (C-horizon), and only 2.6% of data exceeded 100 μg kg− 1. Soil Hg concentrations significantly differed among land covers, following the order: forested upland > planted/cultivated > herbaceous upland/shrubland > barren soils. Concentrations in forests were on average 2.5 times higher than in barren locations. Principal component analyses showed that soil Hg concentrations were not or weakly related to modeled dry and wet Hg deposition and proximity to mining, geothermal areas, and coal-fired power plants. Soil Hg distribution also was not closely related to other trace metals, but strongly associated with organic carbon, precipitation, canopy greenness, and foliar Hg pools of overlying vegetation. These patterns indicate that soil Hg concentrations are related to atmospheric deposition and reflect an overwhelming influence of plant productivity — driven by water availability — with productive landscapes showing high soil Hg accumulation and unproductive barren soils and shrublands

  5. Moon, Mars and Mundus: primary school children discover the nature and science of planet Earth from experimentation and extra-terrestrial perspectives

    NARCIS (Netherlands)

    Kleinhans, M.g.; Verkade, A.j.; Van Wessel, T.; Bastings, M.a.s.; Marra, W.a.; Van Gog, T.; Van Westrenen, W.; Reichwein, M.

    Like earth and planetary scientists, most children are curious about the world, the solar system and the rest of the universe. However, for various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught, examination systems often favour knowledge

  6. Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region

    DEFF Research Database (Denmark)

    Xia, Jianyang; McGuire, A. David; Lawrence, David

    2017-01-01

    and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost...... productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246 ± 6 g C m−2 yr−1), most models produced higher NPP (309 ± 12 g C m−2 yr−1) over...... regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change....

  7. Dominating diatoms: investigating the coupling between biogenic silica dynamics, primary production and nitrate uptake in a highly productive coastal fjord

    Science.gov (United States)

    Giesbrecht, K. E.; Varela, D. E.

    2016-02-01

    Diatoms, microscopic algae with siliceous cell walls, account for up to 40% of the annual marine biological carbon fixation and for a significant portion of the export of carbon from the surface to the deep ocean. Diatoms are the largest consumers of dissolved Si (Si(OH)4) in the oceans and, through the photosynthetic process, couple the marine cycles of silicon, carbon, and nitrogen (Si, C, and N). However, current knowledge of the marine Si cycle and the processes affecting its relationship to other marine biogeochemical cycles is limited. To better understand how diatoms link the marine cycles of Si, C and N, we evaluated surface biogenic silica (bSiO2) dynamics and the contribution of diatoms to primary production and nitrate uptake in Saanich Inlet, a highly productive coastal fjord on the west coast of British Columbia, Canada. We examined the monthly euphotic zone distributions of dissolved nutrient, chlorophyll a, and bSiO2 concentrations, and determined bSiO2 production rates and 13C and nitrate (15NO3) uptake rates over a two-year period. Our results indicate that diatoms tend to account for most of the primary production and nitrate uptake in Saanich Inlet, though there are occasional periods of high productivity, and in some cases high diatom biomass, that are not linked to high bSiO2 production. Our results also show that these periods can result in changes to the Si:C and Si:N ratios of suspended particles, which are otherwise relatively stable and close to the expected ratios for nutrient replete diatoms throughout the year. These high primary production/low bSiO2 production periods appear to be connected to changes in the nutrient supply, which in turn leads to changes in phytoplankton community composition. Such changes to the status of the phytoplankton community, if sustained, could have significant implications for the strength of the biological carbon pump.

  8. Food waste quantification in primary production - The Nordic countries as a case study.

    Science.gov (United States)

    Hartikainen, Hanna; Mogensen, Lisbeth; Svanes, Erik; Franke, Ulrika

    2018-01-01

    Our understanding of food waste in the food supply chain has increased, but very few studies have been published on food waste in primary production. The overall aims of this study were to quantify the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark, and to create a framework for how to define and quantify food waste in primary production. The quantification of food waste was based on case studies conducted in the present study and estimates published in scientific literature. The chosen scope of the study was to quantify the amount of edible food (excluding inedible parts like peels and bones) produced for human consumption that did not end up as food. As a result, the quantification was different from the existing guidelines. One of the main differences is that food that ends up as animal feed is included in the present study, whereas this is not the case for the recently launched food waste definition of the FUSIONS project. To distinguish the 'food waste' definition of the present study from the existing definitions and to avoid confusion with established usage of the term, a new term 'side flow' (SF) was introduced as a synonym for food waste in primary production. A rough estimate of the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark was made using SF and 'FUSIONS Food Waste' (FFW) definitions. The SFs in primary production in the four Nordic countries were an estimated 800,000 tonnes per year with an additional 100,000 tonnes per year from the rearing phase of animals. The 900,000 tonnes per year of SF corresponds to 3.7% of the total production of 24,000,000 tonnes per year of edible primary products. When using the FFW definition proposed by the FUSIONS project, the FFW amount was estimated at 330,000 tonnes per year, or 1% of the total production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Temporal Consistency Between Gross Primary Production and Solar-Induced Chlorophyll Fluorescence in the Ten Most Populous Megacity Areas over Years

    Science.gov (United States)

    Cui, Yaoping; Xiao, Xiangmin; Zhang, Yao; Dong, Jinwei; Qin, Yuanwei; Doughty, Russell B.; Zhang, Geli; Wang, Jie; Wu, Xiaocui; Qin, Yaochen; hide

    2017-01-01

    The gross primary production (GPP) of vegetation in urban areas plays an important role in the study of urban ecology. It is difficult however, to accurately estimate GPP in urban areas, mostly due to the complexity of impervious land surfaces, buildings, vegetation, and management. Recently, we used the Vegetation Photosynthesis Model (VPM), climate data, and satellite images to estimate the GPP of terrestrial ecosystems including urban areas. Here, we report VPM-based GPP (GPPvpm) estimates for the world's ten most populous megacities during 2000-2014. The seasonal dynamics of GPPvpm during 2007-2014 in the ten megacities track well that of the solar-induced chlorophyll fluorescence (SIF) data from GOME-2 at 0.5deg x 0.5deg resolution. Annual GPPvpm during 2000-2014 also shows substantial variation among the ten megacities, and year-to-year trends show increases, no change, and decreases. Urban expansion and vegetation collectively impact GPP variations in these megacities. The results of this study demonstrate the potential of a satellite-based vegetation photosynthesis model for diagnostic studies of GPP and the terrestrial carbon cycle in urban areas.

  10. Benthic primary production in an upwelling-influenced coral reef, Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Corvin Eidens

    2014-09-01

    Full Text Available In Tayrona National Natural Park (Colombian Caribbean, abiotic factors such as light intensity, water temperature, and nutrient availability are subjected to high temporal variability due to seasonal coastal upwelling. These factors are the major drivers controlling coral reef primary production as one of the key ecosystem services. This offers the opportunity to assess the effects of abiotic factors on reef productivity. We therefore quantified primary net (Pn and gross production (Pg of the dominant local primary producers (scleractinian corals, macroalgae, algal turfs, crustose coralline algae, and microphytobenthos at a water current/wave-exposed and-sheltered site in an exemplary bay of Tayrona National Natural Park. A series of short-term incubations was conducted to quantify O2 fluxes of the different primary producers during non-upwelling and the upwelling event 2011/2012, and generalized linear models were used to analyze group-specific O2 production, their contribution to benthic O2 fluxes, and total daily benthic O2 production. At the organism level, scleractinian corals showed highest Pn and Pg rates during non-upwelling (16 and 19 mmol O2 m−2 specimen area h−1, and corals and algal turfs dominated the primary production during upwelling (12 and 19 mmol O2 m−2 specimen area h−1, respectively. At the ecosystem level, corals contributed most to total Pn and Pg during non-upwelling, while during upwelling, corals contributed most to Pn and Pg only at the exposed site and macroalgae at the sheltered site, respectively. Despite the significant spatial and temporal differences in individual productivity of the investigated groups and their different contribution to reef productivity, differences for daily ecosystem productivity were only present for Pg at exposed with higher O2 fluxes during non-upwelling compared to upwelling. Our findings therefore indicate that total benthic primary productivity of local autotrophic reef

  11. Potential consequences of climate change for primary production and fish production in large marine ecosystems.

    Science.gov (United States)

    Blanchard, Julia L; Jennings, Simon; Holmes, Robert; Harle, James; Merino, Gorka; Allen, J Icarus; Holt, Jason; Dulvy, Nicholas K; Barange, Manuel

    2012-11-05

    Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.

  12. Warming Increases the Proportion of Primary Production Emitted as Methane from Freshwater Mesocosms

    OpenAIRE

    Yvon-Durocher , Gabriel; Montoya , Jose Maria; Woodward , Guy; Jones , Iwan John; Trimmer , Mark

    2010-01-01

    Abstract Methane and carbon dioxide are the dominant gaseous end products of the remineralisation of organic carbon and also the two largest contributors to the anthropogenic greenhouse effect. We investigated whether warming altered the balance of methane efflux relative to primary production and ecosystem respiration in a freshwater mesocosm experiment. Whole ecosystem CH4 efflux was strongly related to temperature with an apparent activation energy of 0.85eV. Furthermore, CH4 ef...

  13. Mathematical modeling of the influence of the ecosystem s structural arrangement on the net primary production

    Science.gov (United States)

    Sirobokova, I.; Pechurkin, N.

    In order to estimate the state and functioning of ecosystems it is essential to study the principal parameters of the production process. Thus, the net primary production (NPP) is taken as the integrated parameter of the functioning of the whole system. A variation in the primary biological production of ecosystems has significant consequences for the maintenance of the biosphere's homeostasis. This value is one of the basic quantitative parameters of the material cycling and the cycling of energy fluxes in natural ecosystems. It is determined by the quantity of organic matter synthesized by autotrophic organisms per unit time on unit area. We investigated variations in the net primary production under the effect of outer disturbance (an increase in the inflow substrate concentration) for ecosystems with various lengths of trophic chains (from three to seven trophic links), various degrees of cycling closure, and various types of regulation (bottom-up, top-down). It has been found that the net primary production more effectively increases in ecosystems with the bottom-up regulation, i.e. in ecosystems with a resource control. Ecosystems controlled by the predator from above (the top-down regulation) feature a less noticeable increase in the net primary production with the increase in the input concentration of the limiting substance. Thus, ecosystems with the bottom-up regulation can more efficiently use the additional energy flow input, while the stationary (residual) concentration of the limiting substance remains the same. Besides, in both the ecosystems with the bottom-up regulation and those with the top-down control the NPP increases with a longer trophic chain and a greater degree of the cycling closure.

  14. Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient

    Science.gov (United States)

    Elizabeth Hagen; Matthew McTammany; Jackson Webster; Ernest Benfield

    2010-01-01

    Relative contributions of allochthonous inputs and autochthonous production vary depending on terrestrial land use and biome. Terrestrially derived organic matter and in-stream primary production were measured in 12 headwater streams along an agricultural land-use gradient. Streams were examined to see how carbon (C) supply shifts from forested streams receiving...

  15. Vegetation-specific model parameters are not required for estimating gross primary production

    Czech Academy of Sciences Publication Activity Database

    Yuan, W.; Cai, W.; Liu, S.; Dong, W.; Chen, J.; Altaf Arain, M.; Blanken, P. D.; Cescatti, A.; Wohlfahrt, G.; Georgiadis, T.; Genesio, L.; Gianelle, D.; Grelle, A.; Kiely, G.; Knohl, A.; Liu, D.; Marek, Michal V.; Merbold, L.; Montagnani, L.; Panferov, O.; Peltoniemi, M.; Rambal, S.; Raschi, A.; Varlagin, A.; Xia, J.

    2014-01-01

    Roč. 292, NOV 24 2014 (2014), s. 1-10 ISSN 0304-3800 Institutional support: RVO:67179843 Keywords : light use efficiency * gross primary production * model parameters Subject RIV: EH - Ecology, Behaviour Impact factor: 2.321, year: 2014

  16. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    Science.gov (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  17. Studies on the primary productivity of a polluted mangrove pond in ...

    African Journals Online (AJOL)

    The primary productivity of a polluted mangrove pond in Lagos was investigated for six months (October 2010-March 2011) using the chlorophyll-a method. Air and water temperatures were high (≥21°C) while transparency was lower than 11.5 cm at the mangrove pond. Total suspended solids were ≥2.0 mg/L while total ...

  18. Visual Literacy in Primary Science: Exploring Anatomy Cross-Section Production Skills

    Science.gov (United States)

    García Fernández, Beatriz; Ruiz-Gallardo, José Reyes

    2017-01-01

    Are children competent producing anatomy cross-sections? To answer this question, we carried out a case study research aimed at testing graphic production skills in anatomy of nutrition. The graphics produced by 118 children in the final year of primary education were analysed. The children had to draw a diagram of a human cross section,…

  19. Primary production, nutrients, and size spectra of suspended particles in the southern North Sea

    NARCIS (Netherlands)

    Gieskes, W.W.C.

    1972-01-01

    The effect of nutrient enrichment from the Rhine on some major characteristics of the phytoplankton ecosystem of Dutch coastal waters was studied with 14C, liquid scintillation and Coulter Counter techniques. The magnitude of primary production in the most eutrophic waters closest to

  20. Deconstructing Immigrant Girls' Identities through the Production of Visual Narratives in a Catalan Urban Primary School

    Science.gov (United States)

    Rifa-Valls, Montserrat

    2009-01-01

    In this article, the research findings of a deconstructive visual ethnography focused on the production of immigrant girls' identities will be analysed. This collaborative research project involved experimentation with a dialogic curriculum aimed at creating diverse identity narratives with immigrant girls at an urban primary school in Barcelona.…

  1. Phytoplankton biomass and primary production in Delagoa Bight Mozambique: Application of remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Kyewalyanga, M.S.; Naik, R.; Hegde, S.; Raman, M.; Barlow, R.; Roberts, M.

    A non-linear model that uses satellite-derived chlorophyll to estimate water-column primary production was developed and tested using data from the Delagoa Bight, where the model results compared well with local estimates. The data were also used...

  2. Cell specific primary production of autotrophic and mixotrophic phytoplankton in acidified lakes of the Bohemian Forest

    Czech Academy of Sciences Publication Activity Database

    Znachor, Petr; Nedoma, Jiří

    2004-01-01

    Roč. 112, - (2004), s. 141-155 ISSN 0342-1120 R&D Projects: GA ČR(CZ) GA206/98/0727; GA ČR(CZ) GA206/97/0072 Keywords : autoradiography * mixotrophy * primary production Subject RIV: EH - Ecology, Behaviour

  3. Impacts of climate change on net primary productivity of grasslands in Inner Mongolia

    NARCIS (Netherlands)

    Li, Q.; Tuo Debao,; Zhang, L.; Wei, X.; Wei, Y.; Yang, N.; Xu, Y.; Anten, N.P.R.; Pan, X.

    2014-01-01

    Net primary productivity (NPP) of grasslands is a key variable for characterising carbon cycles in grassland ecosystems. The prediction of NPP in Inner Mongolia is important for adaptation to future climate change, food security and sustainable use of the grassland resources. The output from two

  4. Improved estimates of net primary productivity from MODIS satellite data at regional and local scales

    Science.gov (United States)

    Yude Pan; Richard Birdsey; John Hom; Kevin McCullough; Kenneth Clark

    2006-01-01

    We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak? hickory forests in the region. However...

  5. Estimating climate change effects on net primary production of rangelands in the United States

    Science.gov (United States)

    Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running

    2014-01-01

    The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...

  6. Effects of climate change and shifts in forest composition on forest net primary production

    Science.gov (United States)

    Jyh-Min Chiang; Louts [Louis] R. Iverson; Anantha Prasad; Kim J. Brown

    2008-01-01

    Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (...

  7. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data

    NARCIS (Netherlands)

    Sjostrom, M.; Zhao, M.; Archibald, S.; Veenendaal, E.M.

    2013-01-01

    MOD17A2 provides operational gross primary production (GPP) data globally at 1 km spatial resolution and 8-day temporal resolution. MOD17A2 estimates GPP according to the light use efficiency (LUE) concept assuming a fixed maximum rate of carbon assimilation per unit photosynthetically active

  8. Planktonic primary production evaluation by means of the 14C method with liquid scintillation counting

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Bologa, S.A.

    1979-05-01

    Preliminary results on the planktonic primary production obtained for the first time with the 14 C method off the Romanian Black Sea coast (1977, 1978) and in the Sinoe, Mamaia and Bicaz lakes (1978) are presented, along with a review of this method with special reference to liquid scintillation counting. 140 Refs. (author)

  9. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng [Purdue University; Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Chen, Jiquan [University of Toledo, Toledo, OH; Baldocchi, D. D. [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Cook, David R. [Argonne National Laboratory (ANL); Oren, Ram [Duke University; Katul, G. G. [Duke University; Gu, Lianhong [ORNL

    2010-03-01

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000 2004, and was validated using observed GPP over the period 2005 2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr 1 for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these

  10. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan

    2010-03-15

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000–2004, and was validated using observed GPP over the period 2005–2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km×1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr-1 for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were

  11. Primary production in a tropical large lake: The role of phytoplankton composition

    International Nuclear Information System (INIS)

    Darchambeau, F.; Sarmento, H.; Descy, J.-P.

    2014-01-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ 14 C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P Bm ) was found, ranging between 1.15 and 7.21 g carbon g −1 chlorophyll a h −1 , and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I k ) ranged between 91 and 752 μE m −2 s −1 and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m −2 (annual mean) and from 143 to 278 g carbon m −2 y −1 , respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m −2 y −1 . • Pelagic production was highly

  12. Primary production in a tropical large lake: The role of phytoplankton composition

    Energy Technology Data Exchange (ETDEWEB)

    Darchambeau, F., E-mail: francois.darchambeau@ulg.ac.be [Chemical Oceanography Unit, University of Liège, Liège (Belgium); Sarmento, H., E-mail: hugo.sarmento@gmail.com [Department of Hydrobiology, Federal University of São Carlos, 13565-905 São Carlos, São Paulo (Brazil); Descy, J.-P., E-mail: jean-pierre.descy@unamur.be [Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur (Belgium)

    2014-03-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ {sup 14}C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P{sub Bm}) was found, ranging between 1.15 and 7.21 g carbon g{sup −1} chlorophyll a h{sup −1}, and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I{sub k}) ranged between 91 and 752 μE m{sup −2} s{sup −1} and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m{sup −2} (annual mean) and from 143 to 278 g carbon m{sup −2} y{sup −1}, respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m

  13. Is copper an inhibiting factor for primary production in the upwelling waters of Cabo Frio?

    Directory of Open Access Journals (Sweden)

    Diniz Antônia G.

    2003-01-01

    Full Text Available The goal of the present work was to test the hypothesis that inorganic species of copper may inhibit primary production in upwelling waters from the Cabo Frio region. Water samples were collected from four different depths up to 50 m at three stations of Cabo Frio and nutrient concentration, pH, dissolved oxygen, alkalinity, seston, chlorophyll a, primary production, NPP, copper speciation, Cu(II and Cu(I and complexing capacity were determined. The results indicate that the rate of photosynthesis in nutrient rich waters with higher copper content and lower complexing capacity is significantly reduced. Cu(I made up 2-15% of the total copper, however, there was no evidence to suggest that the photochemical production of Cu(I affects NPP.

  14. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behaviour of simulant fission product species such as caesium iodide, caesium hydroxide and tellurium, in terms of their vapour deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high-density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO/sub 2/ clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapour phase, and specific data using this technique are reported

  15. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and deposition of fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behavior of simulant fission product species such as cesium iodide, cesium hydroxide and tellurium, in terms of their vapor deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO 2 clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapor phase, and specific data using this technique are reported

  16. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  17. Earthworm functional traits and interspecific interactions affect plant nitrogen acquisition and primary production

    NARCIS (Netherlands)

    Andriuzzi, Walter; Schmidt, Olaf; Brussaard, L.; Faber, J.H.; Bolger, T.

    2016-01-01

    We performed a greenhouse experiment to test how the functional diversity of earthworms, the dominant group of soil macro-invertebrates in many terrestrial ecosystems, affects nitrogen cycling and plant growth. Three species were chosen to represent a range of functional traits: Lumbricus terrestris

  18. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    Science.gov (United States)

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability

  19. Characterizing the primary material sources and dominant erosional processes for post-fire debris-flow initiation in a headwater basin using multi-temporal terrestrial laser scanning data

    Science.gov (United States)

    Staley, Dennis M.; Waslewicz, Thad A.; Kean, Jason W.

    2014-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce hazardous debris flows. Relative to shallow landslides, the primary sources of material and dominant erosional processes that contribute to post-fire debris-flow initiation are poorly constrained. Improving our understanding of how and where material is eroded from a watershed during a post-fire debris-flow requires (1) precise measurements of topographic change to calculate volumetric measurements of erosion and deposition, and (2) the identification of relevant morphometrically defined process domains to spatially constrain these measurements of erosion and deposition. In this study, we combine the morphometric analysis of a steep, small (0.01 km2) headwater drainage basin with measurements of topographic change using high-resolution (2.5 cm) multi-temporal terrestrial laser scanning data made before and after a post-fire debris flow. The results of the morphometric analysis are used to define four process domains: hillslope-divergent, hillslope-convergent, transitional, and channelized incision. We determine that hillslope-divergent and hillslope-convergent process domains represent the primary sources of material over the period of analysis in the study basin. From these results we conclude that raindrop-impact induced erosion, ravel, surface wash, and rilling are the primary erosional processes contributing to post-fire debris-flow initiation in the small, steep headwater basin. Further work is needed to determine (1) how these results vary with increasing drainage basin size, (2) how these data might scale upward for use with coarser resolution measurements of topography, and (3) how these results change with evolving sediment supply conditions and vegetation recovery.

  20. Productive vegetation: relationships between net primary productivity, vegetation types and climate change in the Wet Tropics bioregion

    International Nuclear Information System (INIS)

    Ramirez, Vanessa Valdez; Williams, Stephen E.; VanDerWal, Jeremy

    2007-01-01

    Full text: Full text: There is now ample evidence demonstrating the impacts of climate change on biodiversity and human society (Walther ef a/. 2002). Numerous studies have shown climate change is one of the most significant threats to tropical forests, such as the Wet Tropics Heritage Area, due to their high biodiversity and endemism (Pounds ef al. 1999; Hughes 2000; Parmesan and Yohe 2003). Williams ef al. (2003) suggested that small shifts in net primary productivity (NPP) as a result of climate change could lead to potentially massive follow-on effects for the extremely diverse and vulnerable rainforest flora and fauna. It is therefore crucial to explore the relationships between NPP and local biodiversity, especially to create models for different climate change scenarios. Nevertheless, NPP in the Wet Tropics has yet to be estimated. This is the first study to provide a general NPP estimate for the Wet Tropics bioregion using climate surrogates (Schuur 2003). This technique estimates NPP in an accurate, repeatable, and cost-effective way. NPP values were linked to vegetation types and examined under various climatic and environmental conditions. Results show a significant difference in productivity according to vegetation types and climatic variables, with temperature and rainfall seasonality as the most important determining variables. Additionally, lowland and upland vegetations showed a significant difference in productivity patterns throughout the year. Vegetation types located above 1000 metres in altitude had the lowest values of mean annual productivity due to their high rainfall and low temperatures; vegetation types located below 600 metres showed increased productivity values during the wet season (December-March). Net primary productivity will certainly be impacted by changes in temperature and rainfall, due to climate change. Although an increase in NPP values can be predicted for upland areas, the more widely distributed lowlands will drastically

  1. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.

    Science.gov (United States)

    Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S

    2016-08-20

    One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. An improvement of satellite-based algorithm for gross primary production estimation optimized over Korea

    Science.gov (United States)

    Pi, Kyoung-Jin; Han, Kyung-Soo; Kim, In-Hwan; Kim, Sang-Il; Lee, Min-Ji

    2011-11-01

    Monitoring the global gross primary production (GPP) is relevant to understanding the global carbon cycle and evaluating the effects of interannual climate variation on food and fiber production. GPP, the flux of carbon into ecosystems via photosynthetic assimilation, is an important variable in the global carbon cycle and a key process in land surface-atmosphere interactions. The Moderate-resolution Imaging Spectroradiometer (MODIS) is one of the primary global monitoring sensors. MODIS GPP has some of the problems that have been proven in several studies. Therefore this study was to solve the regional mismatch that occurs when using the MODIS GPP global product over Korea. To solve this problem, we estimated each of the GPP component variables separately to improve the GPP estimates. We compared our GPP estimates with validation GPP data to assess their accuracy. For all sites, the correlation was close with high significance (R2 = 0.8164, RMSE = 0.6126 g.C.m-2.d-1, bias = -0.0271 g.C.m-2.d-1). We also compared our results to those of other models. The component variables tended to be either over- or under-estimated when compared to those in other studies over the Korean peninsula, although the estimated GPP was better. The results of this study will likely improve carbon cycle modeling by capturing finer patterns with an integrated method of remote sensing. Keywords: VEGETATION, Gross Primary Production, MODIS.

  3. Comparing primary production methods to better constrain historical, current and future rates

    Science.gov (United States)

    Timmerman, A. H.; Hamme, R. C.

    2016-02-01

    Understanding current primary production and carbon export rates to the deep ocean will provide insight into possible climate change scenarios, because carbon export is an important mechanism sequestering carbon from the surface and may change in the future. By using multiple methods, production rates can be better constrained. Each method has its own advantages, disadvantages, and assumptions. By pairing methods, biases can be taken into account for data interpretation. For example, removing phytoplankton from the environment could change the light levels and temperature of the water. In addition, phytoplankton can be affected by the sides of the incubation container. By including in situ methods, bottle effects are removed and integration times are lengthened. In situ methods have their own set of disadvantages; uncertainty is introduced with the gas exchange rate and if surface water mixes with deeper water. However, comparing methods is complicated since each measures a different fraction of production (e.g net community, net primary, gross production). We present simultaneous in situ (O2/Ar, triple oxygen isotope), in vitro (13C, 15NO3, 15NH4, and 18O incubations) and satellite measurements of primary production from the subarctic northeast Pacific Ocean, Labrador Sea, Baffin Bay, and Canadian Arctic Archipelago. By comparing net community production (NCP; O2/Ar) to gross production (18O incubation or triple oxygen isotope), we estimate ecosystem efficiency. Some methods have multiple ways the rates could be calculated, but by comparing methods it could be possible to select the best options. Our goal is to identify conditions where the methods have consistent differences so measurements can be converted between methods and so ecosystem efficiency can be determined. By finding a way of converting to a more relevant export term (NCP), a wealth of 14C and 13C data exists that could be used to determine historic, current and future export rates.

  4. Primary production in the tropical continental shelf seas bordering northern Australia

    Science.gov (United States)

    Furnas, Miles J.; Carpenter, Edward J.

    2016-10-01

    Pelagic primary production (14C uptake) was measured 81 times between 1990 and 2013 at sites spanning the broad, shallow Northern Australian Shelf (NAS; 120-145°E) which borders the Australian continent. The mean of all areal production measurements was 1048±109 mg C m-2 d-1 (mean±95% CI). Estimates of areal primary production were correlated with integral upper-euphotic zone chlorophyll stocks (above the 50% and 20% light penetration depths) accessible to ocean color remote sensing and total water column chlorophyll standing crop, but not surface (0-2 m) chlorophyll concentrations. While the NAS is subject to a well characterized monsoonal climate regime (austral summer-NW monsoon -wet: austral winter- SE monsoon -dry), most seasonal differences in means of regional-scale chlorophyll standing crop (11-33 mg Chl m-2 for 12 of 15 season-region combinations) and areal primary production (700-1850 mg C m- day-1 for 12 of 15 season-region combinations) fell within a 3-fold range. Apart from the shallow waters of the Torres Strait and northern Great Barrier Reef, picoplankton (80%. While the range of our post-1990 areal production estimates overlaps the range of production estimates made in NAS waters during 1960-62, the mean of post-1990 estimates is over 2-fold greater. We regard the difference to be due to improvements in production measurement techniques, particularly regarding the reduction of potential metal toxicity and incubations in more realistic light regimes.

  5. Primary production enhancement in a shallow seamount (Gorringe — Northeast Atlantic)

    Science.gov (United States)

    Oliveira, Ana Paula; Coutinho, Teresa Pereira; Cabeçadas, Graça; Brogueira, Maria José; Coca, Josep; Ramos, Manuela; Calado, Gonçalo; Duarte, Pedro

    2016-12-01

    Gorringe bank is a shallow seamount having its summit within the euphotic layer. The purpose of this study was to test the hypothesis that the interaction of ocean currents with shallow water seamounts, as the Gorringe, has a significant effect on local upwelling and primary production. Three hydrographic surveys were carried out: one in autumn (October 2011) and two in summer (June and July 2012). Physical (salinity, temperature), chemical (nutrients, dissolved oxygen, pH, total alkalinity and suspended particulate matter) and biological (chlorophyll, pelagic primary production and phytoplankton composition and abundance) variables were measured and/or determined in the area of Gorringe Bank, in particular over and around the Ormonde and Gettysburg peaks. Multivariate analyses (PCA and MDS) were applied to environmental and phytoplankton data. Statistical analysis of historical satellite and model data was also carried out in order to analyze local hydrographic conditions and to compare sea surface temperature and chlorophyll concentrations over the peaks and off the peaks in different seasons. Pelagic primary production, measured by Dissolved Oxygen methodology, reached values up to 24.10 mg C m- 3 h- 1 in the vicinity of the peaks. Phytoplankton abundance ranged from 2.2 × 103 to 14 × 103 cells L- 1, being the community composed mainly of chain-forming Diatoms like Chaetoceros sp., Dactyliosolen spp., Hemiaulus hauckii and Pseudonitzschia spp., in summer months, in zones of high hydrodynamics of the peaks. By contrast, at locations away of the seamount summits and in autumn, Coccolithophores species reached the same or higher percentage in total abundance than Diatoms, being Discosphaera tubifer and Calcidiscus leptoporus cf. the most abundant species. The combined results indicate the presence of a seasonal effect of Gorringe summits on local upwelling and enhancement of primary production reflected in higher abundance of phytoplankton in the vicinity of the

  6. Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers.

    Science.gov (United States)

    Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A

    2016-01-01

    Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time

  7. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 1km SIN Grid V055

    Data.gov (United States)

    National Aeronautics and Space Administration — The Terra/MODIS Gross Primary Productivity (GPP) product (MOD17A2) is a cumulative composite of GPP values based on the radiation-use efficiency concept that is...

  8. MODIS/Aqua Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MYD17A2H version 6 Gross Primary Productivity (GPP) product is a cumulative 8-day composite of values with 500 meter pixel size based on the radiation-use...

  9. MODIS/Aqua Gross Primary Productivity 8-Day L4 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODerate-resolution Imaging Spectroradiometer (MODIS) Gross Primary Productivity (GPP) product (MYD17A2) is a cumulative composite of GPP values based on the...

  10. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MOD17A2H version 6 Gross Primary Productivity (GPP) product is a cumulative 8-day composite of values with 500 meter pixel size based on the radiation-use...

  11. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Terra/MODIS Gross Primary Productivity (GPP) product (MOD17A2) is a cumulative composite of GPP values based on the radiation-use efficiency concept that is...

  12. Characterization of major histocompatibility complex (MHC DRB exon 2 and DRA exon 3 fragments in a primary terrestrial rabies vector (Procyon lotor.

    Directory of Open Access Journals (Sweden)

    Sarrah Castillo

    Full Text Available The major histocompatibility complex (MHC presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor. Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250 bp and DRB exon 2 (228 bp. MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4-15.8% divergence and translated into 1 to 21 (1.3-27.6% divergence amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005, indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host.

  13. Effects of adding aqueous extract of Tribulus terrestris to diet on productive performance, egg quality characteristics, and blood biochemical parameters of laying hens reared under low ambient temperature (6.8 ± 3 °C).

    Science.gov (United States)

    Akbari, Mohsen; Torki, Mehran

    2016-06-01

    A study was conducted using 144 laying hens to evaluate the effects of adding aqueous extract of Tribulus terrestris to diets on productive performance, egg quality traits, and some blood parameters of laying hens reared under cold stress condition (6.8 ± 3 °C). The birds were randomly assigned to each of four dietary treatments (C, T1, T2, and T3) with six replicate cages of six birds. Diet inclusion of aqueous extract of T. terrestris at the rate of 10, 20, and 30 ml/Lit offered to groups T1, T2, and T3, respectively, while group C served as the control diet with no addition. Feed intake (FI), feed conversion ratio (FCR), egg weight (EW), egg production (EP), and egg mass (EM) were evaluated during the 42-day trial period. The EP and EM increased, whereas FCR decreased (P terrestris has beneficial effects on productive performance of laying hens reared under cold stress condition.

  14. Trace-element budgets in the Ohio/Sunbury shales of Kentucky: Constraints on ocean circulation and primary productivity in the Devonian-Mississippian Appalachian Basin

    Science.gov (United States)

    Perkins, R.B.; Piper, D.Z.; Mason, C.E.

    2008-01-01

    The hydrography of the Appalachian Basin in late Devonian-early Mississippian time is modeled based on the geochemistry of black shales and constrained by others' paleogeographic reconstructions. The model supports a robust exchange of basin bottom water with the open ocean, with residence times of less than forty years during deposition of the Cleveland Shale Member of the Ohio Shale. This is counter to previous interpretations of these carbon-rich units having accumulated under a stratified and stagnant water column, i.e., with a strongly restricted bottom bottom-water circulation. A robust circulation of bottom waters is further consistent with the palaeoclimatology, whereby eastern trade-winds drove upwelling and arid conditions limited terrestrial inputs of siliciclastic sediment, fresh waters, and riverine nutrients. The model suggests that primary productivity was high (~ 2??g C m- 2 d- 1), although no higher than in select locations in the ocean today. The flux of organic carbon settling through the water column and its deposition on the sea floor was similar to fluxes found in modern marine environments. Calculations based on the average accumulation rate of the marine fraction of Ni suggest the flux of organic carbon settling out of the water column was approximately 9% of primary productivity, versus an accumulation rate (burial) of organic carbon of 0.5% of primary productivity. Trace-element ratios of V:Mo and Cr:Mo in the marine sediment fraction indicate that bottom waters shifted from predominantly anoxic (sulfate reducing) during deposition of the Huron Shale Member of the Ohio Shale to predominantly suboxic (nitrate reducing) during deposition of the Cleveland Shale Member and the Sunbury Shale, but with anoxic conditions occurring intermittently throughout this period. ?? 2008 Elsevier B.V.

  15. Primary producers and production in Hornsund and Kongsfjorden – comparison of two fjord systems

    Directory of Open Access Journals (Sweden)

    Smoła Zofia T.

    2017-09-01

    Full Text Available Hornsund and Kongsfjorden are two similar-sized Arctic fjords on the West coast of Spitsbergen. They are influenced by cold coastal Arctic water (Hornsund and warmer Atlantic water (Kongsfjorden. Environmental conditions affect the timing, quantity, spatial distribution (horizontal and vertical of spring and summer blooms of protists as well as the taxonomic composition of those assemblages. Here, we compile published data and unpublished own measurement from the past two decades to compare the environmental factors and primary production in two fjord systems. Kongsfjorden is characterized by a deeper euphotic zone, higher biomass and greater proportion of autotrophic species. Hornsund seems to obtain more nutrients due to the extensive seabird colonies and exhibits higher turbidity compared to Kongsfjorden. The annual primary production in the analysed fjords ranges from 48 g C m−2 y−1 in Kongsfjorden to 216 g C m−2 y−1 in Hornsund, with a dominant component of microplankton (90% followed by macrophytes and microphytobenthos.

  16. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    KAUST Repository

    Gasol, Josep M.

    2016-10-11

    We carried out monthly photosynthesis-irradiance (P-E) experiments with the 14C-method for 12 years (2003–2014) to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a coastal sampling station in the NW Mediterranean Sea. Our goal was to obtain seasonal trends and to establish the basis for detecting future changes of primary production in this oligotrophic area. The maximal photosynthetic rate PBmax ranged 30-fold (0.5-15 mg C mg Chl a–1 h–1), averaged 3.7 mg C mg Chl a–1 h–1 (±0.25 SE) and was highest in August and lowest in April and December. We only observed photoinhibition twice. The initial or light-limited slope of the P-E relationship, αB, was low, averaging 0.007 mg C mg Chl a–1 h–1 (μmol photons m–2 s–1)–1 (±0.001 SE, range 0.001-0.045) and showed the lowest values in spring (April-June). The light saturation parameter or saturation irradiance, EK, averaged 711 μmol photons m–2 s–1 (±58.4 SE) and tended to be higher in spring and lower in winter. Phytoplankton assemblages were typically dominated by picoeukaryotes in early winter, diatoms in late autumn and late winter, dinoflagellates in spring and cyanobacteria in summer. Total particulate primary production averaged 1.45 mg C m–3 h–1 (±0.13 SE) with highest values in winter (up to 8.50 mg C m–3 h–1) and lowest values in summer (summer average, 0.30 mg C m–3 h–1), while chlorophyll-specific primary production averaged 2.49 mg C mg Chl a–1 h–1 (±0.19, SE) and peaked in summer (up to 12.0 mg C mg Chl a–1 h–1 in August). 14C-determined phytoplankton growth rates varied between ca. 0.3 d–1 in winter and 0.5 d–1 in summer and were within 60-80% of the maximal rates of growth, based on PBmax. Chlorophyll a was a good predictor of primary production only in the winter and autumn. Seasonality appeared to explain most of the variability in the studied variables, while

  17. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2016-09-01

    Full Text Available We carried out monthly photosynthesis-irradiance (P-E experiments with the 14C-method for 12 years (2003–2014 to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a coastal sampling station in the NW Mediterranean Sea. Our goal was to obtain seasonal trends and to establish the basis for detecting future changes of primary production in this oligotrophic area. The maximal photosynthetic rate PBmax ranged 30-fold (0.5-15 mg C mg Chl a–1 h–1, averaged 3.7 mg C mg Chl a–1 h–1 (±0.25 SE and was highest in August and lowest in April and December. We only observed photoinhibition twice. The initial or light-limited slope of the P-E relationship, αB, was low, averaging 0.007 mg C mg Chl a–1 h–1 (μmol photons m–2 s–1–1 (±0.001 SE, range 0.001-0.045 and showed the lowest values in spring (April-June. The light saturation parameter or saturation irradiance, EK, averaged 711 μmol photons m–2 s–1 (± 58.4 SE and tended to be higher in spring and lower in winter. Phytoplankton assemblages were typically dominated by picoeukaryotes in early winter, diatoms in late autumn and late winter, dinoflagellates in spring and cyanobacteria in summer. Total particulate primary production averaged 1.45 mg C m-3 h–1 (±0.13 SE with highest values in winter (up to 8.50 mg C m-3 h–1 and lowest values in summer (summer average, 0.30 mg C m-3 h–1, while chlorophyll-specific primary production averaged 2.49 mg C mg Chl a–1 h–1 (±0.19, SE and peaked in summer (up to 12.0 mg C mg Chl a–1 h–1 in August. 14C-determined phytoplankton growth rates varied between ca. 0.3 d–1 in winter and 0.5 d–1 in summer and were within 60-80% of the maximal rates of growth, based on PBmax. Chlorophyll a was a good predictor of primary production only in the winter and autumn. Seasonality appeared to explain most of the variability in the studied variables, while

  18. Classification and calculation of primary failure modes in bread production line

    International Nuclear Information System (INIS)

    Tsarouhas, Panagiotis H.

    2009-01-01

    In this study, we describe the classification methodology over a 2-year period of the primary failure modes in categories based on failure data of bread production line. We estimate the probabilities of these categories applying the chi-square goodness of fit test, and we calculate their joint probabilities of mass function at workstation and line level. Then, we present numerical examples in order to predict the causes and frequencies of breakdowns for workstations and for the entire bread production line that will occur in the future. The methodology is meant to guide bread and bakery product manufacturers, improving the operation of the production lines. It can also be a useful tool to maintenance engineers, who wish to analyze and improve the reliability and efficiency of the manufacturing systems

  19. Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages.

    Directory of Open Access Journals (Sweden)

    Leigh W Tait

    Full Text Available Rising global temperatures caused by human-mediated change has already triggered significant responses in organismal physiology, distribution and ecosystem functioning. Although the effects of rising temperature on the physiology of individual organisms are well understood, the effect on community-wide processes has remained elusive. The fixation of carbon via primary productivity is an essential ecosystem function and any shifts in the balance of primary productivity and respiration could alter the carbon balance of ecosystems. Here we show through a series of tests that respiration of naturally structured algal assemblages in southern New Zealand greatly increases with rising temperature, with implications for net primary productivity (NPP. The NPP of in situ macroalgal assemblages was minimally affected by natural temperature variation, possibly through photo-acclimation or temperature acclimation responses, but respiration rates and compensating irradiance were negatively affected. However, laboratory experiments testing the impacts of rising temperature on several photosynthetic parameters showed a decline in NPP, increasing respiration rates and increasing compensating irradiance. The respiration Q10 of laboratory assemblages (the difference in metabolic rates over 10°C averaged 2.9 compared to a Q10 of 2 often seen in other autotrophs. However, gross primary productivity (GPP Q10 averaged 2, indicating that respiration was more severely affected by rising temperature. Furthermore, combined high irradiance and high temperature caused photoinhibition in the laboratory, and resulted in 50% lower NPP at high irradiance. Our study shows that communities may be more severely affected by rising global temperatures than would be expected by responses of individual species. In particular, enhanced respiration rates and rising compensation points have the potential to greatly affect the carbon balance of macroalgal assemblages through declines in

  20. Low temperature differential thermal analysis (DTA) of some matrices stabilizing primary γ-radiolysis products

    International Nuclear Information System (INIS)

    Kroh, J.; Piekarska, J.; Szajdzinska-Pietek, E.; Swiatkowski, W.

    1980-01-01

    DTA studies were carried out for a number of systems currently used in this laboratory as matrices stabilizing primary γ-radiolysis products. Temperatures of the first and second-order phase transitions were determined and compared with the available literature data. Some hydrocarbon and alcohol matrices were examined by DTA after γ-irradiation. The additional heat effects observed were ascribed to the reactions of trapped intermediates. DTA results were compared with those of RTL and ESR. (author)

  1. Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer

    OpenAIRE

    Syeda Maryam Hussain

    2016-01-01

    Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the lite...

  2. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B.; Fansler, Sarah J.; Fredrickson, James K.; Moran, James J.

    2017-10-01

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: 1) How does species diversity relate to the rates of primary and heterotrophic productivity? 2) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline Lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope incorporation that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose and acetate, respectively. Bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, energy constraints imposed by changing irradiance over a diel cycle.

  3. Diagnosis of compliance of health care product processing in Primary Health Care

    Directory of Open Access Journals (Sweden)

    Camila Eugenia Roseira

    Full Text Available ABSTRACT Objective: identify the compliance of health care product processing in Primary Health Care and assess possible differences in the compliance among the services characterized as Primary Health Care Service and Family Health Service. Method: quantitative, observational, descriptive and inferential study with the application of structure, process and outcome indicators of the health care product processing at ten services in an interior city of the State of São Paulo - Brazil. Results: for all indicators, the compliance indices were inferior to the ideal levels. No statistically significant difference was found in the indicators between the two types of services investigated. The health care product cleaning indicators obtained the lowest compliance index, while the indicator technical-operational resources for the preparation, conditioning, disinfection/sterilization, storage and distribution of health care products obtained the best index. Conclusion: the diagnosis of compliance of health care product processing at the services assessed indicates that the quality of the process is jeopardized, as no results close to ideal levels were obtained at any service. In addition, no statistically significant difference in these indicators was found between the two types of services studied.

  4. Phytoplankton biomass and primary productivity of the south-eastern Mediterranean

    Science.gov (United States)

    Dowidar, Naim M.

    The quantitative distribution of chlorophyll a standing crop and primary productivity of the south-eastern Mediterranean waters off the Egyptian coast were studied during four seasons in 1982. The average concentrations of cholorophyll a varied between 73.2 mg.m -2 in winter and 7.1 mg.m -2 in summer, the annual mean being 33.3 mg.m -2. The average rate of carbon fixation varied between 4.82 mg.C.m -2.h -1 in spring and 35.68 mg.C.m -2.h -1 in autumn. The average value of 14C primary productivity integrated for the euphotic zone in the study area amounted to 0.15 g.C.m -2 .h -1. In both the neritic and oceanic waters the nano- and pico-plankton fractions formed the major fraction of both chlorophyll standing crop and primary productivity. Vertical profiles at the offshore stations indicated the presence of a deep chlorophyll maximum at depths 70-150m. The results are discussed and compared with the conditions which prevailed prior to the building of the Aswan High Dam.

  5. Latitudinal gradients in sea ice and primary production determine Arctic seabird colony size in Greenland.

    Science.gov (United States)

    Laidre, Kristin L; Heide-Jørgensen, Mads Peter; Nyeland, Jens; Mosbech, Anders; Boertmann, David

    2008-12-07

    Sea ice loss will indirectly alter energy transfer through the pelagic food web and ultimately impact apex predators. We quantified spring-time trends in sea ice recession around each of 46 thick-billed murre (Uria lomvia) colonies in west Greenland across 20 degrees of latitude and investigated the magnitude and timing of the associated spring-time primary production. A geographical information system was used to extract satellite-based observations of sea ice concentration from the Nimbus-7 scanning multichannel microwave radiometer (SMMR, 1979-1987) and the Defence Meteorological Satellite Programs Special Sensor Microwave/Imager (SSMI, 1987-2004), and satellite-based observations of chlorophyll a from the moderate resolution imaging spectroradiometer (MODIS: EOS-Terra satellite) in weekly intervals in circular buffers around each colony site (150 km in radius). Rapid recession of high Arctic seasonal ice cover created a temporally predictable primary production bloom and associated trophic cascade in water gradually exposed to solar radiation. This pattern was largely absent from lower latitudes where little to no sea ice resulted in a temporally variable primary production bloom driven by nutrient cycling and upwelling uncoupled to ice. The relationship between the rate and variability of sea ice recession and colony size of thick-billed murres shows that periodical confinement of the trophic cascade at high latitudes determines the carrying capacity for Arctic seabirds during the breeding period.

  6. Seasonal rates of benthic primary production in a Greenland fjord measured by aquatic eddy correlation

    DEFF Research Database (Denmark)

    Attard, Karl; Glud, Ronnie N.; McGinnis, Daniel F.

    2014-01-01

    We present the first year-round estimates of benthic primary production at four contrasting shallow (3–22 m depth) benthic habitats in a southwest Greenland fjord. In situ measurements were performed using the noninvasive aquatic eddy-correlation (EC) oxygen (O2) flux method. A series of high....... Substantial benthic gross primary production (GPP) was measured year-round. The highest GPP rates were measured during the spring, up to 5.7 mmol O2 m−2 h−1 (136.8 mmol O2 m−2 d−1), and even at low light levels (measured rates of up to 1.8 mmol O2 m−2...... saturation indices (Ik) were as low as 11 µmol quanta m−2 s−1 in the winter. On an annual timescale, the average areal rate of benthic GPP was 11.5 mol O2 m−2 yr−1, which is ∼ 1.4 times higher than the integrated gross pelagic primary production of the ∼ 30–50 m deep photic zone of the fjord. These results...

  7. Effects of seasonality and environmental gradients on Spartina alterniflora allometry and primary production.

    Science.gov (United States)

    Hill, Troy D; Roberts, Brian J

    2017-11-01

    Predictions of how salt marsh primary production and carbon storage will respond to environmental change can be improved through detailed datasets documenting responses to real-world environmental variation. To address a shortage of detailed studies of natural variation, we examined drivers of Spartina alterniflora stem allometry and productivity in seven marshes across three regions in southern Louisiana. Live-stem allometry varied spatially and seasonally, generally with short stems weighing more (and tall stems weighing less) in the summer and fall, differences that persist even after correcting for flowering. Strong predictive relationships exist between allometry parameters representing emergent stem mass and mass accumulation rates, suggesting that S. alterniflora populations navigate a trade-off between larger mass at emergence and faster rates of biomass accumulation. Aboveground production and belowground production were calculated using five and four approaches, respectively. End-of-season aboveground biomass was a poor proxy for increment-based production measures. Aboveground production (Smalley) ranged from 390 to 3,350 g m -2  year -1 across all marshes and years. Belowground production (max-min) was on average three times higher than aboveground; total production ranged from 1,400 to 8,500 g m -2  year -1 . Above- and belowground production were both positively correlated with dissolved nutrient concentrations and negatively correlated to salinity. Interannual variation in water quality is sufficient to drive above- and belowground productivity. The positive relationship between nutrients and belowground production indicates that inputs of nutrients and freshwater may increase salt marsh carbon storage and ecosystem resilience to sea level rise.

  8. Terrestrial carbon storage dynamics: Chasing a moving target

    Science.gov (United States)

    Luo, Y.; Shi, Z.; Jiang, L.; Xia, J.; Wang, Y.; Kc, M.; Liang, J.; Lu, X.; Niu, S.; Ahlström, A.; Hararuk, O.; Hastings, A.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K. E.; Wang, Y.

    2015-12-01

    Terrestrial ecosystems have been estimated to absorb roughly 30% of anthropogenic CO2 emissions. Past studies have identified myriad drivers of terrestrial carbon storage changes, such as fire, climate change, and land use changes. Those drivers influence the carbon storage change via diverse mechanisms, which have not been unified into a general theory so as to identify what control the direction and rate of terrestrial carbon storage dynamics. Here we propose a theoretical framework to quantitatively determine the response of terrestrial carbon storage to different exogenous drivers. With a combination of conceptual reasoning, mathematical analysis, and numeric experiments, we demonstrated that the maximal capacity of an ecosystem to store carbon is time-dependent and equals carbon input (i.e., net primary production, NPP) multiplying by residence time. The capacity is a moving target toward which carbon storage approaches (i.e., the direction of carbon storage change) but usually does not attain. The difference between the capacity and the carbon storage at a given time t is the unrealized carbon storage potential. The rate of the storage change is proportional to the magnitude of the unrealized potential. We also demonstrated that a parameter space of NPP, residence time, and carbon storage potential can well characterize carbon storage dynamics quantified at six sites ranging from tropical forests to tundra and simulated by two versions (carbon-only and coupled carbon-nitrogen) of the Australian Community Atmosphere-Biosphere Land Ecosystem (CABLE) Model under three climate change scenarios (CO2 rising only, climate warming only, and RCP8.5). Overall this study reveals the unified mechanism unerlying terrestrial carbon storage dynamics to guide transient traceability analysis of global land models and synthesis of empirical studies.

  9. A multi-sites analysis on the ozone effects on Gross Primary Production of European forests.

    Science.gov (United States)

    Proietti, C; Anav, A; De Marco, A; Sicard, P; Vitale, M

    2016-06-15

    Ozone (O3) is both a greenhouse gas and a secondary air pollutant causing adverse impacts on forests ecosystems at different scales, from cellular to ecosystem level. Specifically, the phytotoxic nature of O3 can impair CO2 assimilation that, in turn affects forest productivity. This study aims to evaluate the effects of tropospheric O3 on Gross Primary Production (GPP) at 37 European forest sites during the time period 2000-2010. Due to the lack of carbon assimilation data at O3 monitoring stations (and vice-versa) this study makes a first attempt to combine high resolution MODIS Gross Primary Production (GPP) estimates and O3 measurement data. Partial Correlations, Anomalies Analysis and the Random Forests Analysis (RFA) were used to quantify the effects of tropospheric O3 concentration and its uptake on GPP and to evaluate the most important factors affecting inter-annual GPP changes. Our results showed, along a North-West/South-East European transect, a negative impact of O3 on GPP ranging from 0.4% to 30%, although a key role of meteorological parameters respect to pollutant variables in affecting GPP was found. In particular, meteorological parameters, namely air temperature (T), soil water content (SWC) and relative humidity (RH) are the most important predictors at 81% of test sites. Moreover, it is interesting to highlight a key role of SWC in the Mediterranean areas (Spanish, Italian and French test sites) confirming that, soil moisture and soil water availability affect vegetation growth and photosynthesis especially in arid or semi-arid ecosystems such as the Mediterranean climate regions. Considering the pivotal role of GPP in the global carbon balance and the O3 ability to reduce primary productivity of the forests, this study can help in assessing the O3 impacts on ecosystem services, including wood production and carbon sequestration. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Modelling and numerical simulation of the corrosion product transport in the pressurised water reactor primary circuit

    International Nuclear Information System (INIS)

    Marchetto, C.

    2002-05-01

    During operation of pressurised water reactor, corrosion of the primary circuit alloys leads to the release of metallic species such as iron, nickel and cobalt in the primary fluid. These corrosion products are implicated in different transport phenomena and are activated in the reactor core where they are submitted to neutron flux. The radioactive corrosion products are afterwards present in the out of flux parts of primary circuit where they generate a radiation field. The first part of this study deals with the modelling of the corrosion: product transport phenomena. In particular, considering the current state of the art, corrosion and release mechanisms are described empirically, which allows to take into account the material surface properties. New mass balance equations describing the corrosion product behaviour are thus obtained. The numerical resolution of these equations is implemented in the second part of this work. In order to obtain large time steps, we choose an implicit time scheme. The associated system is linearized from the Newton method and is solved by a preconditioned GMRES method. Moreover, a time step auto-adaptive management based on Newton iterations is performed. Consequently, an efficient resolution has been implemented, allowing to describe not only the quasi-steady evolutions but also the fast transients. In a last step, numerical simulations are carried out in order to validate the new corrosion product transport modelling and to illustrate the capabilities of this modelling. Notably, the numerical results obtained indicate that the code allows to restore the on-site observations underlining the influence of material surface properties on reactor contamination. (author)

  11. Terrestrial ecosystems: an ecological content for radionuclide research

    International Nuclear Information System (INIS)

    Heal, O.W.; Horrill, A.D.

    1983-01-01

    The distribution and retention of radionuclides within terrestrial ecosystems varies greatly with both the radionuclide and the environmental conditions. Physico-chemical conditions, particularly those of the soil, strongly influence element retention but superimposed and interacting with these conditions are the biological processes which control the dynamics of the labile fraction of most elements. Net ecosystem production expresses the complementary biological processes of primary production and decomposition which control the internal element dynamics and the balance of inputs to and outputs from terrestrial ecosystems. Analysis of ecosystem structure and function has shown that although research often concentrates on relatively stable stages of ecosystem development, element retention is high during the early stages of ecosystem succession through the accumulation of plant biomass and dead organic matter. Element output tends to increase with time reaching a balance with inputs in mature ecosystems. Following disturbance, plant uptake tends to be reduced and decomposition stimulated, resulting in increased output until secondary succession and accumulation is re-established. Research on element dynamics in ecosystems indicates that major factors influencing the mobility of radionuclides in terrestrial systems will be the successional state of the ecosystem and intensity of disturbance. (author)

  12. Detecting Soil Moisture Related Impacts on Gross Primary Productivity using the MODIS-based Photochemical Reflectance Index

    Science.gov (United States)

    He, M.; Kimball, J. S.; Running, S. W.; Ballantyne, A.; Guan, K.; Huemmrich, K. F.

    2016-12-01

    Satellite remote sensing provides continuous observations of vegetation properties that can be used to estimate ecosystem gross primary production (GPP). The Photochemical Reflectance Index (PRI) has been shown to be sensitive to photosynthetic light use efficiency (LUE), GPP and canopy water-stress. The NASA EOS MODIS (Moderate Resolution Imaging Spectroradiometer) sensor provides potential PRI estimation globally at daily time step and 1-km spatial resolution for more than 10 years. Here, we use the MODIS based PRI with eddy covariance CO2 flux measurements and meteorological observations from 20 tower sites representing 5 major plant functional types (PFT) within the continental USA (CONUS) to assess GPP sensitivity to seasonal water supply variability. The sPRI (scaled PRI) derived using MODIS band 13 as a reference band (sPRI13) generally shows higher correspondence with tower GPP observations than other potential MODIS reference bands (MODIS band 1, 4, 10 and 12). The sPRI13 was used to represent soil moisture related water supply constraints to LUE within a terrestrial carbon flux model to estimate GPP (GPPPRI). The GPPPRI calculations show generally strong relationships with tower GPP observations (0.457 ≤ R2 ≤ 0.818), except for lower GPPPRI performance over evergreen needleleaf forest (ENF) sites. A regional model sensitivity analysis using the sPRI13 as a proxy for soil moisture related water supply limits indicated that water restrictions limit GPP over more than 21% of the CONUS domain, particularly in northwest and southwest CONUS subregions, and drier climate areas where atmospheric moisture deficits (VPD) alone are insufficient to represent both atmosphere demand and soil water supply controls affecting productivity. Our results indicate strong potential of the MODIS sPRI13 to represent GPP sensitivity to seasonal soil moisture related water supply variability, with enhanced (1-km resolution) delineation of these processes closer to the scale of

  13. Global evaluation of gross primary productivity in the JULES land surface model v3.4.1

    Directory of Open Access Journals (Sweden)

    D. Slevin

    2017-07-01

    Full Text Available This study evaluates the ability of the JULES land surface model (LSM to simulate gross primary productivity (GPP on regional and global scales for 2001–2010. Model simulations, performed at various spatial resolutions and driven with a variety of meteorological datasets (WFDEI-GPCC, WFDEI-CRU and PRINCETON, were compared to the MODIS GPP product, spatially gridded estimates of upscaled GPP from the FLUXNET network (FLUXNET-MTE and the CARDAMOM terrestrial carbon cycle analysis. Firstly, when JULES was driven with the WFDEI-GPCC dataset (at 0. 5° × 0. 5° spatial resolution, the annual average global GPP simulated by JULES for 2001–2010 was higher than the observation-based estimates (MODIS and FLUXNET-MTE, by 25 and 8 %, respectively, and CARDAMOM estimates by 23 %. JULES was able to simulate the standard deviation of monthly GPP fluxes compared to CARDAMOM and the observation-based estimates on global scales. Secondly, GPP simulated by JULES for various biomes (forests, grasslands and shrubs on global and regional scales were compared. Differences among JULES, MODIS, FLUXNET-MTE and CARDAMOM on global scales were due to differences in simulated GPP in the tropics. Thirdly, it was shown that spatial resolution (0. 5° × 0. 5°, 1° × 1° and 2° × 2° had little impact on simulated GPP on these large scales, with global GPP ranging from 140 to 142 PgC year−1. Finally, the sensitivity of JULES to meteorological driving data, a major source of model uncertainty, was examined. Estimates of annual average global GPP were higher when JULES was driven with the PRINCETON meteorological dataset than when driven with the WFDEI-GPCC dataset by 3 PgC year−1. On regional scales, differences between the two were observed, with the WFDEI-GPCC-driven model simulations estimating higher GPP in the tropics (5° N–5° S and the PRINCETON-driven model simulations estimating higher GPP in the extratropics (30

  14. Spatial and temporal patterns of net primary productivity in the duration of 1981-2000 in Guangdong, China

    Science.gov (United States)

    Liu, Hai-Gui; Tang, Xu-Li; Zhou, Guo-Yi; Liu, Shu-Guang

    2007-01-01

    The knowledge of net primary production (NPP) dynamics at regional scale will help to understand terrestrial carbon cycling, especially with respect to land use and global climate change. Guangdong province has high plant growth potential because of plenty of light, heat, and water resources in this region. Forest coverage increased significantly from less than 30% in the early l980s to approximately 60% in 2000 owing to the launching of the "Greening Guangdong in 10 years", a provincial afforestation and reforestation project started in 1985. Meanwhile, economy growth has been fast in Guangdong province during the past 20 years. Long-term spatial and temporal NPP dynamics in Guangdong province are not well-known. To fill this knowledge gap, the spatial and temporal patterns of annual NPP from 1981 to 2000, derived from the global production efficiency model (GLO-PEM), were analyzed in this study. NPP patterns were compared at three spatial scales (i. e. , province, region, and city) and among three major forest types (i. e. , broadleaf, coniferous, and mixed). The results showed that for the entire province annual NPP varied between (1360 ±431) and (1626 ± 471) g/(m^2•a), with a mean value of (1480 ±407)g/(m^2•a). NPP increased to the maximum value (1534 ±121 g/(m^2•a)) in late 1980s (1986~1990) while decreased in early 1990s (1991~1995), and then recovered slightly in late 1990s (1996~2000). NPP differed distinctly across geographic regions, with the highest in the southwest coastal region, followed by the southeast coastal region, and the lowest in the inner land region. The differences were probably caused by vegetation composition, heat and water resources, and the distribution of the cropland. NPP dynamics of 21 cities were divided into three types. NPP kept stable in 12 cities including Shaoguan, Qingyuan, and Meizhou etc. NPP increased in Chaozhou, Shanwei, Zhanjiang and Jieyang, and decreased significantly (peconomy development in the Pearl River

  15. Retrieval of daily gross primary production over Europe and Africa from an ensemble of SEVIRI/MSG products

    Science.gov (United States)

    Martínez, B.; Sanchez-Ruiz, S.; Gilabert, M. A.; Moreno, A.; Campos-Taberner, M.; García-Haro, F. J.; Trigo, I. F.; Aurela, M.; Brümmer, C.; Carrara, A.; De Ligne, A.; Gianelle, D.; Grünwald, T.; Limousin, J. M.; Lohila, A.; Mammarella, I.; Sottocornola, M.; Steinbrecher, R.; Tagesson, T.

    2018-03-01

    The main goal of this paper is to derive a method for a daily gross primary production (GPP) product over Europe and Africa taking the full advantage of the SEVIRI/MSG satellite products from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) sensors delivered from the Satellite Application Facility for Land Surface Analysis (LSA SAF) system. Special attention is paid to model the daily GPP response from an optimized Montheith's light use efficiency model under dry conditions by controlling water shortage limitations from the actual evapotranspiration and the potential evapotranspiration (PET). The PET was parameterized using the mean daily air temperature at 2 m (Ta) from ERA-Interim data. The GPP product (MSG GPP) was produced for 2012 and assessed by direct site-level comparison with GPP from eddy covariance data (EC GPP). MSG GPP presents relative bias errors lower than 40% for the most forest vegetation types with a high agreement (r > 0.7) when compared with EC GPP. For drylands, MSG GPP reproduces the seasonal variations related to water limitation in a good agreement with site level GPP estimates (RMSE = 2.11 g m-2 day-1; MBE = -0.63 g m-2 day-1), especially for the dry season. A consistency analysis against other GPP satellite products (MOD17A2 and FLUXCOM) reveals a high consistency among products (RMSD 3.0 g m-2 day-1) and over dry biomes with MSG GPP estimates lower than FLUXCOM (MBD up to -3.0 g m-2 day-1). This newly derived product has the potential for analysing spatial patterns and temporal dynamics of GPP at the MSG spatial resolutions on a daily basis allowing to better capture the GPP dynamics and magnitude.

  16. Distortion product otoacoustic emissions: comparison of sequential vs. simultaneous presentation of primary tones.

    Science.gov (United States)

    Kumar, U Ajith; Maruthy, Sandeep; Chandrakant, Vishwakarma

    2009-03-01

    Distortion product otoacoustic emissions are one form of evoked otoacoustic emissions. DPOAEs provide the frequency specific information about the hearing status in mid and high frequency regions. But in most screening protocols TEOAEs are preferred as it requires less time compared to DPOAE. This is because, in DPOAE each stimulus is presented one after the other and responses are analyzed. Grason and Stadler Incorporation 60 (GSI-60) offer simultaneous presentation of four sets of primary tones at a time and checks for the DPOAE. In this mode of presentation, all the pairs are presented at a time and following that response is extracted separately whereas, in sequential mode primaries are presented in orderly fashion one after the other. In this article simultaneous and sequential protocols were used to compare the Distortion product otoacoustic emission amplitude, noise floor and administration time in individuals with normal hearing and mild sensori-neural (SN) hearing loss. In simultaneous protocols four sets of primary tones (i.e. 8 tones) were presented together whereas, in sequential presentation mode one set of primary tones was presented each time. Simultaneous protocol was completed in less than half the time required for the completion of sequential protocol. Two techniques yielded similar results at frequencies above 1000 Hz only in normal hearing group. In SN hearing loss group simultaneous presentation yielded signifi cantly higher noise floors and distortion product amplitudes. This result challenges the use of simultaneous presentation technique in neonatal hearing screening programmes and on other pathologies. This discrepancy between two protocols may be due to some changes in biomechanical process in the cochlear and/or due to higher distortion/noise produced by the system during the simultaneous presentation mode.

  17. Shrubland primary production and soil respiration diverge along European climate gradient

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Koller, Eva; Sowerby, Alwyn

    2017-01-01

    Above- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain ...

  18. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    International Nuclear Information System (INIS)

    Boresjoe Bronge, Laine

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given

  19. Size-fractionated dissolved primary production and carbohydrate composition of the coccolithophore Emiliania huxleyi

    Science.gov (United States)

    Borchard, C.; Engel, A.

    2015-02-01

    Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady-state conditions in phosphorus-controlled chemostats (N:P = 29, growth rate of μ = 0.2 d-1) at present-day and high-CO2 concentrations. 14C incubations were performed to determine primary production (PP), comprised of particulate (PO14C) and dissolved organic carbon (DO14C). Concentration and composition of particulate combined carbohydrates (pCCHO) and high-molecular-weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) were determined by ion chromatography. Information on size distribution of ER products was obtained by investigating distinct size classes (10 kDa was significantly different, with a higher mol% of arabinose. The mol% of acidic sugars increased and that of glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.

  20. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe Bronge, Laine [SwedPower AB, Stockholm (Sweden)

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given.

  1. Measuring feeding traits of a range of litter-consuming terrestrial snails : Leaf litter consumption, faeces production and scaling with body size

    NARCIS (Netherlands)

    Astor, Tina; Lenoir, Lisette; Berg, Matty P.

    Plant litter decomposition is an essential ecosystem function that contributes to energy and nutrient cycling above- and belowground. Terrestrial gastropods can affect this process in various ways: they consume and fragment leaf litter and create suitable habitats for microorganisms through the

  2. Measuring feeding traits of a range of litter-consuming terrestrial snails: leaf litter consumption, faeces production and scaling with body size

    NARCIS (Netherlands)

    Astor, T.; Lenoir, L.; Berg, M.P.

    2015-01-01

    Plant litter decomposition is an essential ecosystem function that contributes to energy and nutrient cycling above- and belowground. Terrestrial gastropods can affect this process in various ways: they consume and fragment leaf litter and create suitable habitats for microorganisms through the

  3. The Puzzle of HCN in Comets: Is it both a Product and a Primary Species?

    Science.gov (United States)

    Mumma, Michael J.; Bonev, Boncho P.; Charnley, Steven B.; Cordiner, Martin A.; DiSanti, Michael A.; Gibb, Erika L.; Magee-Sauer, Karen; Paganini, Lucas; Villanueva, Geronimo L.

    2014-11-01

    Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: 1. HCN is often used as a proxy for water when the dominant species (H2O) is not available for simultaneous measurement, as at radio wavelengths. 2. HCN is one of the few volatile carriers of nitrogen accessible to remote sensing. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. 3. The stereoisomer HNC is now confirmed as a product species. Could reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? 4. The production rate for CN greatly exceeds that of HCN in some comets, demonstrating the presence of another (more important) precursor of CN. Several puzzling lines of evidence raise issues about the origin of HCN: a. The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets - in others the infrared rate exceeds the radio rate substantially. b. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). c. The nucleus-centered rotational temperatures measured for H2O and other species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly smaller. d. In comet ISON, ALMA maps of HCN and the dust continuum show a slight displacement 80 km) in the centroids. We will

  4. Small phytoplankton contribution to the standing stocks and the total primary production in the Amundsen Sea

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    2017-08-01

    Full Text Available Small phytoplankton are anticipated to be more important in a recently warming and freshening ocean condition. However, little information on the contribution of small phytoplankton to overall phytoplankton production is currently available in the Amundsen Sea. To determine the contributions of small phytoplankton to total biomass and primary production, carbon and nitrogen uptake rates of total and small phytoplankton were obtained from 12 productivity stations in the Amundsen Sea. The daily carbon uptake rates of total phytoplankton averaged in this study were 0.42 g C m−2 d−1 (SD  =  ± 0.30 g C m−2 d−1 and 0.84 g C m−2 d−1 (SD  =  ± 0.18 g C m−2 d−1 for non-polynya and polynya regions, respectively, whereas the daily total nitrogen (nitrate and ammonium uptake rates were 0.12 g N m−2 d−1 (SD  =  ± 0.09 g N m−2 d−1 and 0.21 g N m−2 d−1 (SD  =  ± 0.11 g N m−2 d−1, respectively, for non-polynya and polynya regions, all of which were within the ranges reported previously. Small phytoplankton contributed 26.9 and 27.7 % to the total carbon and nitrogen uptake rates of phytoplankton in this study, respectively, which were relatively higher than the chlorophyll a contribution (19.4 % of small phytoplankton. For a comparison of different regions, the contributions for chlorophyll a concentration and primary production of small phytoplankton averaged from all the non-polynya stations were 42.4 and 50.8 %, which were significantly higher than those (7.9 and 14.9 %, respectively in the polynya region. A strong negative correlation (r2 = 0. 790, p<0. 05 was found between the contributions of small phytoplankton and the total daily primary production of phytoplankton in this study. This finding implies that daily primary production decreases as small phytoplankton contribution increases, which is

  5. A multi-sites analysis on the ozone effects on Gross Primary Production of European forests

    Energy Technology Data Exchange (ETDEWEB)

    Proietti, C. [Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome (Italy); Anav, A. [Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome (Italy); University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter (United Kingdom); De Marco, A. [Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome (Italy); Sicard, P. [ACRI-HE, 260 route du Pin Montard BP234, 06904 Sophia Antipolis-cedex (France); Vitale, M., E-mail: marcello.vitale@uniroma1.it [Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome (Italy)

    2016-06-15

    Ozone (O{sub 3}) is both a greenhouse gas and a secondary air pollutant causing adverse impacts on forests ecosystems at different scales, from cellular to ecosystem level. Specifically, the phytotoxic nature of O{sub 3} can impair CO{sub 2} assimilation that, in turn affects forest productivity. This study aims to evaluate the effects of tropospheric O{sub 3} on Gross Primary Production (GPP) at 37 European forest sites during the time period 2000–2010. Due to the lack of carbon assimilation data at O{sub 3} monitoring stations (and vice-versa) this study makes a first attempt to combine high resolution MODIS Gross Primary Production (GPP) estimates and O{sub 3} measurement data. Partial Correlations, Anomalies Analysis and the Random Forests Analysis (RFA) were used to quantify the effects of tropospheric O{sub 3} concentration and its uptake on GPP and to evaluate the most important factors affecting inter-annual GPP changes. Our results showed, along a North-West/South-East European transect, a negative impact of O{sub 3} on GPP ranging from 0.4% to 30%, although a key role of meteorological parameters respect to pollutant variables in affecting GPP was found. In particular, meteorological parameters, namely air temperature (T), soil water content (SWC) and relative humidity (RH) are the most important predictors at 81% of test sites. Moreover, it is interesting to highlight a key role of SWC in the Mediterranean areas (Spanish, Italian and French test sites) confirming that, soil moisture and soil water availability affect vegetation growth and photosynthesis especially in arid or semi-arid ecosystems such as the Mediterranean climate regions. Considering the pivotal role of GPP in the global carbon balance and the O{sub 3} ability to reduce primary productivity of the forests, this study can help in assessing the O{sub 3} impacts on ecosystem services, including wood production and carbon sequestration. - Highlights: • Assessment of the surface O{sub 3

  6. Primary production and algae diversity vs. pollution in xochimilco wet-lands

    International Nuclear Information System (INIS)

    Pedroza-Pichardo, R.; Hernandez-Delgadillo, R.; Boll-Arguello, G.

    2009-01-01

    Xochimilco is an ancient endorheic lake located in the Valley of Mexico. Due to its shallow water and the freshwater springs that lined the canals, they are surround raised agricultural fields called chinampas. Since the Valley of Mexico was originally wetlands, the chinampas were the most productive means of agricultural production. Xochimilco are considered one of the most important urban lungs in Mexico City. However, it is not clear how the huge urbanization around is to know if there is a correlation between primary production (PP), algae diversity, BOD 5 and faecal coliforms. Sample collection was done every month over a year at six different canals named: Embarcadero Celada, Embarcadero Nuevo Nativitas, Canal Las Abejas, Canal Zacapa, Canal Santo Domingo y Canal Nacional. (Author)

  7. Primary production and algae diversity vs. pollution in xochimilco wet-lands

    Energy Technology Data Exchange (ETDEWEB)

    Pedroza-Pichardo, R.; Hernandez-Delgadillo, R.; Boll-Arguello, G.

    2009-07-01

    Xochimilco is an ancient endorheic lake located in the Valley of Mexico. Due to its shallow water and the freshwater springs that lined the canals, they are surround raised agricultural fields called chinampas. Since the Valley of Mexico was originally wetlands, the chinampas were the most productive means of agricultural production. Xochimilco are considered one of the most important urban lungs in Mexico City. However, it is not clear how the huge urbanization around is to know if there is a correlation between primary production (PP), algae diversity, BOD{sub 5} and faecal coliforms. Sample collection was done every month over a year at six different canals named: Embarcadero Celada, Embarcadero Nuevo Nativitas, Canal Las Abejas, Canal Zacapa, Canal Santo Domingo y Canal Nacional. (Author)

  8. Study on the production mechanism of Co-60 in the primary loop of HTR-10

    International Nuclear Information System (INIS)

    Wang Shouang; Xie Feng; Li Hong; Cao Jianzhu; Li Fu; Wei Liqiang

    2015-01-01

    Co-60 is an activated metallic erosion product, which is very important for waste management and decommissioning work of pressurized water reactor (PWR) power plants. Recent measurement on the samples from the primary loop of HTR-10 indicates the existence of Co-60. In current paper, the preliminary experimental results in HTR-10 will be introduced, and the production mechanism of Co-60 in the pebble bed high temperature gas-cooled reactors will be summarized and compared with that in PWRs and Germany High Temperature Nuclear Reactor (AVR). The further experiments with decomposing the post-irradiation graphite spheres of HTR-10 are put forward, which will promote the further study to testify the production sources of Co-60 and be of great significance in the waste minimization and the decommissioning work of HTR-10. (author)

  9. The Feasibility of Onsite Electrolysis as Primary and Clean Production Source of Fuel Hydrogen in Brazil

    International Nuclear Information System (INIS)

    COSTA, Andre R

    2006-01-01

    In accordance with the International Monetary Fund Brazil is currently the world's 12. largest and Latin America's largest economy, with a nominal GPD in the amount of US dollars 732,078 millions. Despite the fact that energy production is still heavily based on hydrocarbons, such as oil, natural gas and coal, the country is often indicated as one of the worldwide leaders in implementing renewable energy sources, primarily due to the spread utilization of bio-ethanol in transportation and the electricity production from hydropower. The purpose of this study is to assess the feasibility of onsite electrolysis as primary and clean source of fuel hydrogen in Brazil, indicating the main advantages of this production method. A perspective of the most significant challenges and actions to be taken regarding the accomplishment of a clean Brazilian hydrogen economy will be presented herein. (author)

  10. The reaction of Criegee intermediate CH2OO with water dimer: primary products and atmospheric impact.

    Science.gov (United States)

    Sheps, Leonid; Rotavera, Brandon; Eskola, Arkke J; Osborn, David L; Taatjes, Craig A; Au, Kendrew; Shallcross, Dudley E; Khan, M Anwar H; Percival, Carl J

    2017-08-23

    The rapid reaction of the smallest Criegee intermediate, CH 2 OO, with water dimers is the dominant removal mechanism for CH 2 OO in the Earth's atmosphere, but its products are not well understood. This reaction was recently suggested as a significant source of the most abundant tropospheric organic acid, formic acid (HCOOH), which is consistently underpredicted by atmospheric models. However, using time-resolved measurements of reaction kinetics by UV absorption and product analysis by photoionization mass spectrometry, we show that the primary products of this reaction are formaldehyde and hydroxymethyl hydroperoxide (HMHP), with direct HCOOH yields of less than 10%. Incorporating our results into a global chemistry-transport model further reduces HCOOH levels by 10-90%, relative to previous modeling assumptions, which indicates that the reaction CH 2 OO + water dimer by itself cannot resolve the discrepancy between the measured and predicted HCOOH levels.

  11. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages.

    Science.gov (United States)

    Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2017-04-25

    Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.

  12. Terrestrial Carbon Cycle Variability [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dennis Baldocchi

    2016-09-01

    Full Text Available A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions. The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y-1 with respect to a large and uncertain background (123 +/- 4 Pg-C y-1

  13. Monitoring Agricultural Production in Primary Export Countries within the framework of the GEOGLAM Initiative

    Science.gov (United States)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.

    2012-12-01

    Up to date, reliable, global, information on crop production prospects is indispensible for informing and regulating grain markets and for instituting effective agricultural policies. The recent price surges in the global grain markets were in large part triggered by extreme weather events in primary grain export countries. These events raise important questions about the accuracy of current production forecasts and their role in market fluctuations, and highlight the deficiencies in the state of global agricultural monitoring. Satellite-based earth observations are increasingly utilized as a tool for monitoring agricultural production as they offer cost-effective, daily, global information on crop growth and extent and their utility for crop production forecasting has long been demonstrated. Within this context, the Group on Earth Observations developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through the use of Earth observations. This talk will explore the potential contribution of EO-based methods for improving the accuracy of early production estimates of main export countries within the framework of GEOGLAM.

  14. Evaluation of MODIS NPP and GPP products across multiple biomes.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Steve W. Running; Maosheng Zhao; Marcos H. Costa; Al A. Kirschbaum; Jay M. Ham; Scott R. Saleska; Douglas E. Ahl

    2006-01-01

    Estimates of daily gross primary production (GPP) and annual net primary production (NPP) at the 1 km spatial resolution are now produced operationally for the global terrestrial surface using imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Ecosystem-level measurements of GPP at eddy covariance flux towers and plot-level measurements of...

  15. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Eliasson Lantz, Anna; Nielsen, Jacob

    2004-01-01

    Yield improvements in antibiotic-producing strains have classically been obtained through random mutagenesis and screening. An attractive alternative to this strategy is the rational design of producer strains via metabolic engineering, an approach that offers the possibility to increase yields...... in the metabolic network. Here we describe and discuss available methods for identification of these steps, both in antibiotic biosynthesis pathways and in the primary metabolism, which serves as the supplier of precursors and cofactors for the secondary metabolism. Finally, the importance of precursor...... and cofactor supply from primary metabolism in the biosynthesis of different types of antibiotics is discussed and recent developments in metabolic engineering towards increased product yields in antibiotic producing strains are reviewed....

  16. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Eliasson Lantz, Anna; Nielsen, Jacob

    2004-01-01

    in the metabolic network. Here we describe and discuss available methods for identification of these steps, both in antibiotic biosynthesis pathways and in the primary metabolism, which serves as the supplier of precursors and cofactors for the secondary metabolism. Finally, the importance of precursor...... and cofactor supply from primary metabolism in the biosynthesis of different types of antibiotics is discussed and recent developments in metabolic engineering towards increased product yields in antibiotic producing strains are reviewed.......Yield improvements in antibiotic-producing strains have classically been obtained through random mutagenesis and screening. An attractive alternative to this strategy is the rational design of producer strains via metabolic engineering, an approach that offers the possibility to increase yields...

  17. Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Genovese Vanessa

    2007-10-01

    Full Text Available Abstract Background A simulation model that relies on satellite observations of vegetation cover from the Landsat 7 sensor and from the Moderate Resolution Imaging Spectroradiometer (MODIS was used to estimate net primary productivity (NPP of forest stands at the Bartlett Experiment Forest (BEF in the White Mountains of New Hampshire. Results Net primary production (NPP predicted from the NASA-CASA model using 30-meter resolution Landsat inputs showed variations related to both vegetation cover type and elevational effects on mean air temperatures. Overall, the highest predicted NPP from the NASA-CASA model was for deciduous forest cover at low to mid-elevation locations over the landscape. Comparison of the model-predicted annual NPP to the plot-estimated values showed a significant correlation of R2 = 0.5. Stepwise addition of 30-meter resolution elevation data values explained no more than 20% of the residual variation in measured NPP patterns at BEF. Both the Landsat 7 and the 250-meter resolution MODIS derived mean annual NPP predictions for the BEF plot locations were within ± 2.5% of the mean of plot estimates for annual NPP. Conclusion Although MODIS imagery cannot capture the spatial details of NPP across the network of closely spaced plot locations as well as Landsat, the MODIS satellite data as inputs to the NASA-CASA model does accurately predict the average annual productivity of a site like the BEF.

  18. Natural forcings on a transformed territory overshoot thresholds of primary productivity in the Guadalquivir estuary

    Science.gov (United States)

    Ruiz, J.; Macías, D.; Navarro, G.

    2017-09-01

    A three year-long quasi continuum sampling dataset on the Guadalquivir estuary water quality was used to assess the role of light availability on its biological production. We found that inorganic nutrients within the estuary are very high (with mean values for inorganic nitrogen and phosphorous of 285 and 2.4 μM respectively) while phytoplankton biomass remains low most of the time (with a mean value of 2.6 mg/m3). A strong relationship between phytoplankton biomass and water turbidity was found indicating that, indeed, light availability is the major constraint of primary production in this system. Most of the time this limitation of primary production is not associated to enhanced turbidity connected to fresh water inputs. Instead, our data indicate that, independently of freshwater inputs, the photosynthesis is restricted by tidal forcings enhancing turbidity in an estuary that has been highly modified. Our results match with classical theories on the functioning of well-mixed, estuarine ecosystems as well as with recent modeling exercises. We also discuss the potential impacts of this particular characteristic of some estuarine systems for their management and regulatory control.

  19. Increased Primary Production from an Exotic Invader Does Not Subsidize Native Rodents.

    Directory of Open Access Journals (Sweden)

    Jacob E Lucero

    Full Text Available Invasive plants have tremendous potential to enrich native food webs by subsidizing net primary productivity. Here, we explored how a potential food subsidy, seeds produced by the aggressive invader cheatgrass (Bromus tectorum, is utilized by an important guild of native consumers--granivorous small mammals--in the Great Basin Desert, USA. In a series of field experiments we examined 1 how cheatgrass invasion affects the density and biomass of seed rain at the ecosystem-level; 2 how seed resources from cheatgrass numerically affect granivorous small mammals; and 3 how the food preferences of native granivores might mediate the trophic integration of cheatgrass seeds. Relative to native productivity, cheatgrass invasion increased the density and biomass of seed rain by over 2000% (P < 0.01 and 3500% (P < 0.01, respectively. However, granivorous small mammals in native communities showed no positive response in abundance, richness, or diversity to experimental additions of cheatgrass seeds over one year. This lack of response correlated with a distinct preference for seeds from native grasses over seeds from cheatgrass. Our experiments demonstrate that increased primary productivity associated with exotic plant invasions may not necessarily subsidize consumers at higher trophic levels. In this context, cheatgrass invasion could disrupt native food webs by providing less-preferred resources that fail to enrich higher trophic levels.

  20. Increased Primary Production from an Exotic Invader Does Not Subsidize Native Rodents.

    Science.gov (United States)

    Lucero, Jacob E; Allen, Phil S; McMillan, Brock R

    2015-01-01

    Invasive plants have tremendous potential to enrich native food webs by subsidizing net primary productivity. Here, we explored how a potential food subsidy, seeds produced by the aggressive invader cheatgrass (Bromus tectorum), is utilized by an important guild of native consumers--granivorous small mammals--in the Great Basin Desert, USA. In a series of field experiments we examined 1) how cheatgrass invasion affects the density and biomass of seed rain at the ecosystem-level; 2) how seed resources from cheatgrass numerically affect granivorous small mammals; and 3) how the food preferences of native granivores might mediate the trophic integration of cheatgrass seeds. Relative to native productivity, cheatgrass invasion increased the density and biomass of seed rain by over 2000% (P preference for seeds from native grasses over seeds from cheatgrass. Our experiments demonstrate that increased primary productivity associated with exotic plant invasions may not necessarily subsidize consumers at higher trophic levels. In this context, cheatgrass invasion could disrupt native food webs by providing less-preferred resources that fail to enrich higher trophic levels.

  1. Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Cui; Xiao, Xiangming; Wagle, Pradeep; Griffis, Timothy; Dong, Jinwei; Wu, Chaoyang; Qin, Yuanwei; Cook, David R.

    2015-11-01

    Satellite-based Production Efficiency Models (PEMs) often require meteorological reanalysis data such as the North America Regional Reanalysis (NARR) by the National Centers for Environmental Prediction (NCEP) as model inputs to simulate Gross Primary Production (GPP) at regional and global scales. This study first evaluated the accuracies of air temperature (TNARR) and downward shortwave radiation (RNARR) of the NARR by comparing with in-situ meteorological measurements at 37 AmeriFlux non-crop eddy flux sites, then used one PEM – the Vegetation Photosynthesis Model (VPM) to simulate 8-day mean GPP (GPPVPM) at seven AmeriFlux crop sites, and investigated the uncertainties in GPPVPM from climate inputs as compared with eddy covariance-based GPP (GPPEC). Results showed that TNARR agreed well with in-situ measurements; RNARR, however, was positively biased. An empirical linear correction was applied to RNARR, and significantly reduced the relative error of RNARR by ~25% for crop site-years. Overall, GPPVPM calculated from the in-situ (GPPVPM(EC)), original (GPPVPM(NARR)) and adjusted NARR (GPPVPM(adjNARR)) climate data tracked the seasonality of GPPEC well, albeit with different degrees of biases. GPPVPM(EC) showed a good match with GPPEC for maize (Zea mays L.), but was slightly underestimated for soybean (Glycine max L.). Replacing the in-situ climate data with the NARR resulted in a significant overestimation of GPPVPM(NARR) (18.4/29.6% for irrigated/rainfed maize and 12.7/12.5% for irrigated/rainfed soybean). GPPVPM(adjNARR) showed a good agreement with GPPVPM(EC) for both crops due to the reduction in the bias of RNARR. The results imply that the bias of RNARR introduced significant uncertainties into the PEM-based GPP estimates, suggesting that more accurate surface radiation datasets are needed to estimate primary production of terrestrial ecosystems at regional and global scales.

  2. Estimating crop net primary production using inventory data and MODIS-derived parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  3. Contribution of dinitrogen fixation to bacterial and primary productivity in the Gulf of Aqaba (Red Sea)

    Science.gov (United States)

    Rahav, E.; Herut, B.; Mulholland, M. R.; Voß, B.; Stazic, D.; Steglich, C.; Hess, W. R.; Berman-Frank, I.

    2013-06-01

    We evaluated the seasonal contribution of heterotrophic and autotrophic diazotrophy to the total dinitrogen (N2) fixation in a representative pelagic station in the northern Gulf of Aqaba in early spring when the water column was mixed and during summer under full thermal stratification. N2 fixation rates were low during the mixed period (˜ 0.1 nmol N L-1 d-1) and were significantly coupled with both primary and bacterial productivity. During the stratified period N2 fixation rates were four-fold higher (˜ 0.4 nmol N L-1 d-1) and were significantly correlated solely with bacterial productivity. Furthermore, while experimental enrichment of seawater by phosphorus (P) enhanced bacterial productivity and N2 fixation rates during both seasons primary productivity was stimulated by P only in the early spring. Metatranscriptomic analyses from the stratified period identified the major diazotrophic contributors as related to heterotrophic prokaryotes from the Euryarchaeota and Desulfobacterales (Deltaproteobacteria) or Chlorobiales (Chlorobia). Moreover, during this season, experimental amendments to seawater applying a combination of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a mixture of amino acids increased both bacterial productivity and N2 fixation rates. Our findings from the northern Gulf of Aqaba indicate a~shift in the diazotrophic community from phototrophic and heterotrophic populations, including small blooms of the cyanobacterium Trichodesmium, in winter/early spring, to predominantly heterotrophic diazotrophs in summer that may be both P and carbon limited as the additions of P and amino acids illustrated.

  4. Neural computation of visual imaging based on Kronecker product in the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Guozheng Yao

    2010-03-01

    Full Text Available Abstract Background What kind of neural computation is actually performed by the primary visual cortex and how is this represented mathematically at the system level? It is an important problem in the visual information processing, but has not been well answered. In this paper, according to our understanding of retinal organization and parallel multi-channel topographical mapping between retina and primary visual cortex V1, we divide an image into orthogonal and orderly array of image primitives (or patches, in which each patch will evoke activities of simple cells in V1. From viewpoint of information processing, this activated process, essentially, involves optimal detection and optimal matching of receptive fields of simple cells with features contained in image patches. For the reconstruction of the visual image in the visual cortex V1 based on the principle of minimum mean squares error, it is natural to use the inner product expression in neural computation, which then is transformed into matrix form. Results The inner product is carried out by using Kronecker product between patches and function architecture (or functional column in localized and oriented neural computing. Compared with Fourier Transform, the mathematical description of Kronecker product is simple and intuitive, so is the algorithm more suitable for neural computation of visual cortex V1. Results of computer simulation based on two-dimensional Gabor pyramid wavelets show that the theoretical analysis and the proposed model are reasonable. Conclusions Our results are: 1. The neural computation of the retinal image in cortex V1 can be expressed to Kronecker product operation and its matrix form, this algorithm is implemented by the inner operation between retinal image primitives and primary visual cortex's column. It has simple, efficient and robust features, which is, therefore, such a neural algorithm, which can be completed by biological vision. 2. It is more suitable

  5. Benthic primary production budget of a Caribbean reef lagoon (Puerto Morelos, Mexico.

    Directory of Open Access Journals (Sweden)

    Malik S Naumann

    Full Text Available High photosynthetic benthic primary production (P represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn and gross (Pg primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico via measurement of O₂ fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%, seagrasses (29% and macroalgae (27%, while seagrasses dominated the lagoon 3D surface area (84%. Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O₂ m(-2 specimen area d(-1, respectively, however seagrasses contributed highest (59% to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51% of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%. These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O₂ m(-2 lagoon area d(-1 and overall Pg:R (1.6 indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems.

  6. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    Science.gov (United States)

    Moore, Peggy E.; Van Wagtendonk, Jan W.; Yee, Julie L.; McClaran, Mitchel P.; Cole, David N.; McDougald, Neil K.; Brooks, Matthew L.

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate. Our objective was to describe patterns and variability in aboveground live vascular plant biomass in relation to climatic factors. We harvested aboveground biomass at peak growth from four 64-m2 plots each in xeric, mesic, and hydric meadows annually from 1994 to 2000. Data from nearby weather stations provided independent variables of spring snow water content, snow-free date, and thawing degree days for a cumulative index of available energy. We assembled these climatic variables into a set of mixed effects analysis of covariance models to evaluate their relationships with annual aboveground net primary productivity (ANPP), and we used an information theoretic approach to compare the quality of fit among candidate models. ANPP in the xeric meadow was negatively related to snow water content and thawing degree days and in the mesic meadow was negatively related to snow water content. Relationships between ANPP and these 2 covariates in the hydric meadow were not significant. Increasing snow water content may limit ANPP in these meadows if anaerobic conditions delay microbial activity and nutrient availability. Increased thawing degree days may limit ANPP in xeric meadows by prematurely depleting soil moisture. Large within-year variation of ANPP in the hydric meadow limited sensitivity to the climatic variables. These relationships suggest that, under projected warmer and drier conditions, ANPP will increase in mesic meadows but remain unchanged in xeric meadows because declines associated with increased temperatures would offset the increases from decreased snow water content.

  7. Effects of β-Carotene and Its Cleavage Products in Primary Pneumocyte Type II Cells

    Directory of Open Access Journals (Sweden)

    Cornelia Haider

    2017-05-01

    Full Text Available β-Carotene has been shown to increase the risk of developing lung cancer in smokers and asbestos workers in two large scale trails, the Beta-Carotene and Retinol Efficacy Trial (CARET and the Alpha-Tocopherol Beta-carotene Cancer Prevention Trial (ATBC. Based on this observation, it was proposed that genotoxic oxidative breakdown products may cause this effect. In support of this assumption, increased levels of sister chromatid exchanges, micronuclei, and chromosomal aberrations were found in primary hepatocyte cultures treated with a mixture of cleavage products (CPs and the major product apo-8′carotenal. However, because these findings cannot directly be transferred to the lung due to the exceptional biotransformation capacity of the liver, potential genotoxic and cytotoxic effects of β-carotene under oxidative stress and its CPs were investigated in primary pneumocyte type II cells. The results indicate that increased concentrations of β-carotene in the presence of the redox cycling quinone dimethoxynaphthoquinone (DMNQ exhibit a cytotoxic potential, as evidenced by an increase of apoptotic cells and loss of cell density at concentrations > 10 µM. On the other hand, the analysis of micronucleated cells gave no clear picture due to the cytotoxicity related reduction of mitotic cells. Last, although CPs induced significant levels of DNA strand breaks even at concentrations ≥ 1 µM and 5 µM, respectively, β-carotene in the presence of DMNQ did not cause DNA damage. Instead, β-carotene appeared to act as an antioxidant. These findings are in contrast with what was demonstrated for primary hepatocytes and may reflect different sensitivities to and different metabolism of β-carotene in the two cell types.

  8. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    OpenAIRE

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R.; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T.

    2016-01-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE?=?gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) an...

  9. Preliminary study of radionuclide corrosion products in primary cooling water at RSG-GAS

    International Nuclear Information System (INIS)

    Lestari, D.E.; Pudjojanto, M.S.; Subiharto; Budi, S.

    1998-01-01

    Analysis of radionuclides emitting gamma rays at the primary cooling water at RSG-GAS has been carried out. The water coolant samples was performed using a low level background gamma spectrometer unit, including of high resolution of gamma detector HP-Ge Tennelec and Multichannel Analyzer (MCA) ADCAM 100 ORTEC. The result indicated Na-24 and Mn-56 radionuclides that may be as corrosion product and should studied deeply in the future. The expected activity concentration radionuclide for Mn-56 is lower than those written in the Safety Analysis Report (SAR), while for Na-24 is in agreement

  10. Worldwide estimates and bibliography of net primary productivity derived from pre-1982 publications

    Energy Technology Data Exchange (ETDEWEB)

    Esser, G. [Justus-Liebig-Univ., Giessen (Germany). Inst. for Plant Ecology; Lieth, H.F.H. [Univ. of Osnabrueck (Germany). Systems Research Group; Scurlock, J.M.O.; Olson, R.J. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    An extensive compilation of more than 700 field estimates of net primary productivity of natural and agricultural ecosystems worldwide was synthesized in Germany in the 1970s and early 1980s. Although the Osnabrueck data set has not been updated since the 1980s, it represents a wealth of information for use in model development and validation. This report documents the development of this data set, its contents, and its recent availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which necessarily include assumptions and conversions that may not be universally applicable to all sites.

  11. Evaluation of optical remote sensing parameters to improve modeling of gross primary productivity in a heterogeneous agricultural area

    Science.gov (United States)

    Schickling, A.; Damm, A.; Schween, J.; Rascher, U.; Crewell, S.; Wahner, A.

    2011-12-01

    Terrestrial photosynthesis greatly determines plant mediated exchange processes in the vegetation atmosphere system and substantially influences patterns in atmospheric carbon dioxide (CO2) concentrations and water vapor. Therefore, an accurate quantification of photosynthetic CO2 uptake, commonly referred to as gross primary productivity (GPP), is a key parameter to distinguish those atmospheric patterns on various spatio-temporal scales. Remote sensing (RS) offers the unique possibility to determine GPP at different spatial scales ranging from the local to the global scale. Attempts to estimate GPP from RS data focus on the light use efficiency (LUE) concept of Monteith which relates GPP to the absorbed photosynthetically active radiation and the efficiency of plant canopies to utilize the absorbed radiation for photosynthesis. To reliably predict GPP on different spatio-temporal scales LUE has to be linked to optical RS parameters which detect changes in photosynthetic efficiency due to environmental conditions. In this study we evaluated two optical RS parameters, namely the sun-induced fluorescence (Fs) and the photochemical reflectance index (PRI), for their potential to serve as a proxy for LUE. The parameters were derived from two ASD FieldSpec spectrometers which were operated in parallel. During several days one instrument was installed on the ground above the vegetation canopy of either a winter wheat or a sugar beet field. The second instrument was operated from a small research aircraft continuously crossing the observation sites at low altitude (sugar beet fields during the day. Results of this spatio-temporal investigation revealed a significant variability of GPP between different winter wheat fields compared to the within-field variability. In addition to the significant between-field variability of sugar beet the results also showed an increase of the within-field variability in the afternoon. Moreover, for the first time it could be shown that

  12. Observation and simulation of net primary productivity in Qilian Mountain, western China.

    Science.gov (United States)

    Zhou, Y; Zhu, Q; Chen, J M; Wang, Y Q; Liu, J; Sun, R; Tang, S

    2007-11-01

    We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.

  13. The whale pump: marine mammals enhance primary productivity in a coastal basin.

    Directory of Open Access Journals (Sweden)

    Joe Roman

    Full Text Available It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities.

  14. The whale pump: marine mammals enhance primary productivity in a coastal basin.

    Science.gov (United States)

    Roman, Joe; McCarthy, James J

    2010-10-11

    It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4) metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities.

  15. Frontal dynamics boost primary production in the summer stratified Mediterranean sea

    Science.gov (United States)

    Olita, Antonio; Capet, Arthur; Claret, Mariona; Mahadevan, Amala; Poulain, Pierre Marie; Ribotti, Alberto; Ruiz, Simón; Tintoré, Joaquín; Tovar-Sánchez, Antonio; Pascual, Ananda

    2017-06-01

    Bio-physical glider measurements from a unique process-oriented experiment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution of the deep chlorophyll maximum (DCM) across an intense density front, with a resolution (˜ 400 m) suitable for investigating sub-mesoscale dynamics. This front, at the interface between Atlantic and Mediterranean waters, had a sharp density gradient (Δ ρ ˜ 1 kg/m3 in ˜ 10 km) and showed imprints of (sub-)mesoscale phenomena on tracer distributions. Specifically, the chlorophyll-a concentration within the DCM showed a disrupted pattern along isopycnal surfaces, with patches bearing a relationship to the stratification (buoyancy frequency) at depths between 30 and 60 m. In order to estimate the primary production (PP) rate within the chlorophyll patches observed at the sub-surface, we applied the Morel and Andrè (J Geophys Res 96:685-698 1991) bio-optical model using the photosynthetic active radiation (PAR) from Argo profiles collected simultaneously with glider data. The highest production was located concurrently with domed isopycnals on the fresh side of the front, suggestive that (sub-)mesoscale upwelling is carrying phytoplankton patches from less to more illuminated levels, with a contemporaneous delivering of nutrients. Integrated estimations of PP (1.3 g C m-2d-1) along the glider path are two to four times larger than the estimations obtained from satellite-based algorithms, i.e., derived from the 8-day composite fields extracted over the glider trip path. Despite the differences in spatial and temporal sampling between instruments, the differences in PP estimations are mainly due to the inability of the satellite to measure DCM patches responsible for the high production. The deepest (depth > 60 m) chlorophyll patches are almost unproductive and probably transported passively (subducted) from upper productive layers. Finally, the relationship between primary production and oxygen is also investigated

  16. Metrology requirements for the serial production of ELT primary mirror segments

    Science.gov (United States)

    Rees, Paul C. T.; Gray, Caroline

    2015-08-01

    The manufacture of the next generation of large astronomical telescopes, the extremely large telescopes (ELT), requires the rapid manufacture of greater than 500 1.44m hexagonal segments for the primary mirror of each telescope. Both leading projects, the Thirty Meter Telescope (TMT) and the European Extremely Large Telescope (E-ELT), have set highly demanding technical requirements for each fabricated segment. These technical requirements, when combined with the anticipated construction schedule for each telescope, suggest that more than one optical fabricator will be involved in the delivery of the primary mirror segments in order to meet the project schedule. For one supplier, the technical specification is challenging and requires highly consistent control of metrology in close coordination with the polishing technologies used in order to optimize production rates. For production using multiple suppliers, however the supply chain is structured, consistent control of metrology along the supply chain will be required. This requires a broader pattern of independent verification than is the case of a single supplier. This paper outlines the metrology requirements for a single supplier throughout all stages of the fabrication process. We identify and outline those areas where metrology accuracy and duration have a significant impact on production efficiency. We use the challenging ESO E-ELT technical specification as an example of our treatment, including actual process data. We further develop this model for the case of a supply chain consisting of multiple suppliers. Here, we emphasize the need to control metrology throughout the supply chain in order to optimize net production efficiency.

  17. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll

    Science.gov (United States)

    Antoine, David; André, Jean-Michel; Morel, André

    A fast method has been proposed [Antoine and Morel, this issue] to compute the oceanic primary production from the upper ocean chlorophyll-like pigment concentration, as it can be routinely detected by a spaceborne ocean color sensor. This method is applied here to the monthly global maps of the photosynthetic pigments that were derived from the coastal zone color scanner (CZCS) data archive [Feldman et al., 1989]. The photosynthetically active radiation (PAR) field is computed from the astronomical constant and by using an atmospheric model, thereafter combined with averaged cloud information, derived from the International Satellite Cloud Climatology Project (ISCCP). The aim is to assess the seasonal evolution, as well as the spatial distribution of the photosynthetic carbon fixation within the world ocean and for a ``climatological year,'' to the extent that both the chlorophyll information and the cloud coverage statistics actually are averages obtained over several years. The computed global annual production actually ranges between 36.5 and 45.6 Gt C yr-1 according to the assumption which is made (0.8 or 1) about the ratio of active-to-total pigments (recall that chlorophyll and pheopigments are not radiometrically resolved by CZCS). The relative contributions to the global productivity of the various oceans and zonal belts are examined. By considering the hypotheses needed in such computations, the nature of the data used as inputs, and the results of the sensitivity studies, the global numbers have to be cautiously considered. Improving the reliability of the primary production estimates implies (1) new global data sets allowing a higher temporal resolution and a better coverage, (2) progress in the knowledge of physiological responses of phytoplankton and therefore refinements of the time and space dependent parameterizations of these responses.

  18. A novel free ammonia based pretreatment technology to enhance anaerobic methane production from primary sludge.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Xie, Guo-Jun; Duan, Haoran; Wang, Qilin

    2017-10-01

    This study proposed a novel free ammonia (FA, i.e., NH 3 ) pretreatment technology to enhance anaerobic methane production from primary sludge for the first time. The solubilization of primary sludge was substantially enhanced following 24 h FA pretreatment (250-680 mg NH 3 -N/L), by which the release of soluble chemical oxygen demand (SCOD) (i.e., 0.4 mg SCOD/mg VS added; VS: volatile solids) was approximately 10 times as much as that without pretreatment (i.e., 0.03 mg SCOD/mg VS added). Then, biochemical methane potential (BMP) tests demonstrated that FA pretreatment of 250-680 mg NH 3 -N/L was capable of enhancing anaerobic methane production while the digestion time was more than 7 days. Model based analysis indicated that the improved anaerobic methane production was due to an increased biochemical methane potential (B 0 ) of 8-17% (i.e., from 331 to 357-387 L CH 4 /kg VS added), with the highest B 0 achieved at 420 mg NH 3 -N/L pretreatment. However, FA pretreatment of 250-680 mg NH 3 -N/L decreased hydrolysis rate (k) by 24-38% compared with control (i.e., from 0.29 d -1 to 0.18-0.22 d -1 ), which explained the lower methane production over the first 7 days' digestion period. Economic analysis and environmental evaluation demonstrated that FA pretreatment technology was environmentally friendly and economically favorable. Biotechnol. Bioeng. 2017;114: 2245-2252. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Sea ice phenology and timing of primary production pulses in the Arctic Ocean.

    Science.gov (United States)

    Ji, Rubao; Jin, Meibing; Varpe, Øystein

    2013-03-01

    Arctic organisms are adapted to the strong seasonality of environmental forcing. A small timing mismatch between biological processes and the environment could potentially have significant consequences for the entire food web. Climate warming causes shrinking ice coverage and earlier ice retreat in the Arctic, which is likely to change the timing of primary production. In this study, we test predictions on the interactions among sea ice phenology and production timing of ice algae and pelagic phytoplankton. We do so using the following (1) a synthesis of available satellite observation data; and (2) the application of a coupled ice-ocean ecosystem model. The data and model results suggest that, over a large portion of the Arctic marginal seas, the timing variability in ice retreat at a specific location has a strong impact on the timing variability in pelagic phytoplankton peaks, but weak or no impact on the timing of ice-algae peaks in those regions. The model predicts latitudinal and regional differences in the timing of ice algae biomass peak (varying from April to May) and the time lags between ice algae and pelagic phytoplankton peaks (varying from 45 to 90 days). The correlation between the time lag and ice retreat is significant in areas where ice retreat has no significant impact on ice-algae peak timing, suggesting that changes in pelagic phytoplankton peak timing control the variability in time lags. Phenological variability in primary production is likely to have consequences for higher trophic levels, particularly for the zooplankton grazers, whose main food source is composed of the dually pulsed algae production of the Arctic. © 2012 Blackwell Publishing Ltd.

  20. Crustal development in the terrestrial planets

    Science.gov (United States)

    Taylor, S. R.

    1985-01-01

    The development of planetary crusts may be divided into primary, resulting from melting during accretion, and secondary crusts developed by partial melting from planetary mantles. The Mercurian crust is probably primary with no compelling evidence of later basaltic extrusions. Reflectance spectral evidence for the existence Fe2(+) is equivocal. The Viking Lander XRF data on Mars indicate basaltic material at both sites 4,000 km apart. Surface aeolian processes would be expected to provide a homogeneous average of the crust, but no evidence of more siliceous material is present. This conclusion is weakly supported by the Russian gamma ray data. No evidence for granite appears from the Russian Venera XRF data which indicates MORB-type and alkali basalt (4% K2O) surface compositions. The highlands of Ishtar Terra and Aphrodite probably owe their elevation to tectonic processes rather than compositional effects. Venus may thus resemble the early Archean Earth. The terrestrial granitic continental crust is a product of episodic multiple partial melting events, probably a consequence of the presence of surface water.

  1. Terrestrial biosphere changes over the last 120 kyr

    Science.gov (United States)

    Hoogakker, B. A. A.; Smith, R. S.; Singarayer, J. S.; Marchant, R.; Prentice, I. C.; Allen, J. R. M.; Anderson, R. S.; Bhagwat, S. A.; Behling, H.; Borisova, O.; Bush, M.; Correa-Metrio, A.; de Vernal, A.; Finch, J. M.; Fréchette, B.; Lozano-Garcia, S.; Gosling, W. D.; Granoszewski, W.; Grimm, E. C.; Grüger, E.; Hanselman, J.; Harrison, S. P.; Hill, T. R.; Huntley, B.; Jiménez-Moreno, G.; Kershaw, P.; Ledru, M.-P.; Magri, D.; McKenzie, M.; Müller, U.; Nakagawa, T.; Novenko, E.; Penny, D.; Sadori, L.; Scott, L.; Stevenson, J.; Valdes, P. J.; Vandergoes, M.; Velichko, A.; Whitlock, C.; Tzedakis, C.

    2016-01-01

    A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial-interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.

  2. Strategies for monitoring terrestrial animals and habitats

    Science.gov (United States)

    Richard Holthausen; Raymond L. Czaplewski; Don DeLorenzo; Greg Hayward; Winifred B. Kessler; Pat Manley; Kevin S. McKelvey; Douglas S. Powell; Leonard F. Ruggiero; Michael K. Schwartz; Bea Van Horne; Christina D. Vojta

    2005-01-01

    This General Technical Report (GTR) addresses monitoring strategies for terrestrial animals and habitats. It focuses on monitoring associated with National Forest Management Act planning and is intended to apply primarily to monitoring efforts that are broader than individual National Forests. Primary topics covered in the GTR are monitoring requirements; ongoing...

  3. Predictive factors of user acceptance on the primary educational mathematics aids product

    Science.gov (United States)

    Hidayah, I.; Margunani; Dwijanto

    2018-03-01

    Mathematics learning in primary schools requires instructional media. According to Piaget's theory, students are still in the concrete operational stage. For this reason, the development of the primary level mathematics aids is needed to support the development of successful mathematics learning. The stages of this research are the stages of commercialization with preparatory, marketing, and measurement analysis procedures. Promotion as part of marketing is done by doing a demonstration to the teacher. Measurements were performed to explore the predictive factors of user feasibility in adopting the product. Measurements were conducted using the concept of Technology Acceptance Model (TAM). Measurement variables include external variables, perceived usefulness, perceived ease of use, attitude, intention to use, and actual use. The result of this research shows that the contribution of predictive factors of mathematics teachers on the teaching aids product as follows: the external variable and perceived ease of use at 74%, perceived usefulness at 72%, intention to use (behavioral) at 58%, attitude at 52%, and the consequence factor (actual use) at 42%.

  4. Does autocthonous primary production influence oviposition by Aedes japonicus japonicus (Diptera: Culicidae) in container habitats?

    Science.gov (United States)

    Lorenz, Amanda R; Walker, Edward D; Kaufman, Michael G

    2013-01-01

    Aedes (Finlaya) japonicus japonicus (Theobald) (Diptera: Culicidae) is recently invasive in North America and has expanded its range rapidly since 1998. Throughout its native and expanded range, Ae. j. japonicus larvae are commonly observed in many types of natural and artificial water-filled containers that vary in organic matter content and exposure to sunlight. Larvae are most often found in containers with decaying leaf material or algae, and we postulated that the added autocthonous primary production from algae could be both an important food source for larvae and an influential oviposition attractant to adult Ae. j. japonicus. We tested this hypothesis by placing plastic containers with varied levels of shading to manipulate algal density in the field, and then monitored oviposition by natural populations of Ae. j. japonicus. Over 99% of larvae hatching from eggs laid on the walls of our containers were Ae. j. japonicus, indicating that this species is a dominant colonizer of artificial containers in the study areas. Although full shading treatments effectively reduced algal biomass (significant reduction in chlorophyll a levels), at only one of three sites did this appear to affect Ae. j. japonicus oviposition. We conclude that algae in larval habitats are not a major factor in oviposition choices of adult Ae. j. japonicus females except when in situ primary production is high enough to substantially alter overall organic matter content cues.

  5. Spatial extrapolation of light use efficiency model parameters to predict gross primary production

    Directory of Open Access Journals (Sweden)

    Karsten Schulz

    2011-12-01

    Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.

  6. Modelling Kara Sea phytoplankton primary production: Development and skill assessment of regional algorithms

    Science.gov (United States)

    Demidov, Andrey B.; Kopelevich, Oleg V.; Mosharov, Sergey A.; Sheberstov, Sergey V.; Vazyulya, Svetlana V.

    2017-07-01

    Empirical region-specific (RSM), depth-integrated (DIM) and depth-resolved (DRM) primary production models are developed based on data from the Kara Sea during the autumn (September-October 1993, 2007, 2011). The model is validated by using field and satellite (MODIS-Aqua) observations. Our findings suggest that RSM algorithms perform better than non-region-specific algorithms (NRSM) in terms of regression analysis, root-mean-square difference (RMSD) and model efficiency. In general, the RSM and NRSM underestimate or overestimate the in situ water column integrated primary production (IPP) by a factor of 2 and 2.8, respectively. Additionally, our results suggest that the model skill of the RSM increases when the chlorophyll specific carbon fixation rate, efficiency of photosynthesis and photosynthetically available radiation (PAR) are used as input variables. The parameterization of chlorophyll (chl a) vertical profiles is performed in Kara Sea waters with different trophic statuses. Model validation with field data suggests that the DIM and DRM algorithms perform equally (RMSD of 0.29 and 0.31, respectively). No changes in the performance of the DIM and DRM algorithms are observed (RMSD of 0.30 and 0.31, respectively) when satellite-derived chl a, PAR and the diffuse attenuation coefficient (Kd) are applied as input variables.

  7. Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web.

    Science.gov (United States)

    Bartrons, Mireia; Gratton, Claudio; Spiesman, Brian J; Vander Zanden, M Jake

    2015-01-01

    Ecosystems can be linked by the movement of matter and nutrients across habitat boundaries via aquatic insect emergence. Aquatic organisms tend to have higher concentrations of certain toxic contaminants such as methylmercury (MeHg) compared to their terrestrial counterparts. If aquatic organisms come to land, terrestrial organisms that consume them are expected to have elevated MeHg concentrations. But emergent aquatic insects could have other impacts as well, such as altering consumer trophic position or increasing ecosystem productivity as a result of nutrient inputs from insect carcasses. We measure MeHg in terrestrial arthropods at two lakes in northeastern Iceland and use carbon and nitrogen stable isotopes to quantify aquatic reliance and trophic position. Across all terrestrial focal arthropod taxa (Lycosidae, Linyphiidae, Acari, Opiliones), aquatic reliance had significant direct and indirect (via changes in trophic position) effects on terrestrial consumer MeHg. However, contrary to our expectations, terrestrial consumers that consumed aquatic prey had lower MeHg concentrations than consumers that ate mostly terrestrial prey. We hypothesize that this is due to the lower trophic position of consumers feeding directly on midges relative to those that fed mostly on terrestrial prey and that had, on average, higher trophic positions. Thus, direct consumption of aquatic inputs results in a trophic bypass that creates a shorter terrestrial food web and reduced biomagnification of MeHg across the food web. Our finding that MeHg was lower at terrestrial sites with aquatic inputs runs counter to the conventional wisdom that aquatic systems are a source of MeHg contamination to surrounding terrestrial ecosystems.

  8. Introduced Terrestrial Species (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  9. Solar-Terrestrial Interactions

    National Research Council Canada - National Science Library

    Kahler, Stephen W

    2008-01-01

    This report covers a basic research (6.1 level) task on solar-terrestrial interactions carried out in the Space Weather Center of Excellence over an 11-year period for the Air Force Office of Scientific Research...

  10. Effects of ultraviolet radiation on rates and size distribution of primary production by Lake Erie phytoplankton

    International Nuclear Information System (INIS)

    Hiriart, V.P.; Greenberg, B.M.; Guildford, S.J.; Smith, R.E.H.

    2002-01-01

    The impact of natural solar ultraviolet radiation (UVR), particularly UVB (297-320 nm), on phytoplankton primary production in Lake Erie was investigated during the spring and summer of 1997. Radiocarbon incorporation and size-selective filtration was used to trace total production and its distribution among particulate and dissolved pools. On average, 1-h exposures produced half the UVB-dependent inhibition of total production realized in 8-h exposures, indicating rapid kinetics of photoinhibition. Cumulative UVB-dependent photoinhibition averaged 36% in 8-h simulated surface exposures. The efficiency of photoinhibition was greater for N-deficient than N-replete communities, but was not related to phytoplankton light history, P limitation, or the dominant genera. The proportion of recently fixed carbon occurring in the dissolved pool after 8-h exposures was significantly greater in higher-UVB treatments, whereas the share in picoplankton (<2 μm) was significantly lower. Significant UVB-dependent inhibition of total production was limited on average to relatively severe exposures, but the rapid kinetics of inhibition and the apparent effects on the allocation of carbon suggest it may be important to the lake's food web. Differences in optical properties and thermal stratification patterns suggested that the relatively turbid west basin was potentially more susceptible to UVR photoinhibition than the more transparent east or central basins. (author)

  11. Annual Gross Primary Production from Vegetation Indices: A Theoretically Sound Approach

    Directory of Open Access Journals (Sweden)

    María Amparo Gilabert

    2017-02-01

    Full Text Available A linear relationship between the annual gross primary production (GPP and a PAR-weighted vegetation index is theoretically derived from the Monteith equation. A semi-empirical model is then proposed to estimate the annual GPP from commonly available vegetation indices images and a representative PAR, which does not require actual meteorological data. A cross validation procedure is used to calibrate and validate the model predictions against reference data. As the calibration/validation process depends on the reference GPP product, the higher the quality of the reference GPP, the better the performance of the semi-empirical model. The annual GPP has been estimated at 1-km scale from MODIS NDVI and EVI images for eight years. Two reference data sets have been used: an optimized GPP product for the study area previously obtained and the MOD17A3 product. Different statistics show a good agreement between the estimates and the reference GPP data, with correlation coefficient around 0.9 and relative RMSE around 20%. The annual GPP is overestimated in semiarid areas and slightly underestimated in dense forest areas. With the above limitations, the model provides an excellent compromise between simplicity and accuracy for the calculation of long time series of annual GPP.

  12. Combining remote sensing and climatic data to estimate net primary production across Oregon

    International Nuclear Information System (INIS)

    Law, B.E.; Waring, R.H.

    1994-01-01

    A range in productivity and climate exists along an east—west transect in Oregon. Remote sensing and climatic data for several of the Oregon Transect Ecosystem Research Project (OTTER) forested sites and neighboring shrub sites were combined to determined whether percentage intercepted photosynthetically active radiation (%IPAR) can be estimated from remotely sensed observations and to evaluate climatic constraints on the ability of vegetation to utilize intercepted of radiation for production. The Thematic Mappers Simulator (TMS) normalized difference vegetation index (NDVI) provided a good linear estimate of %IPAR (R 2 = 0.97). Vegetation intercepted from 24.8% to 99.9% of incident photosynthetically active radiation (PAR), and aboveground net primary production (ANPP) ranged from 53 to 1310 g·m —2 ·yr —1 . The ANPP was linearly related to annual IPAR across sites (R 2 = 0.70). Constraints on the ability of each species to utilize intercepted light, as defined by differential responses to freezing temperatures, drought, and vapor pressure deficit, were quantified from hourly meteorological station measurements near the sites and field physiological measurements. Vegetation could utilize from 30% of intercepted radiation at the eastside semiarid juniper woodland and shrub sites to 97% at the maritime coastal sites. Energy—size efficiency (ϵu), calculated from aboveground production and IPAR modified by the environmental limits, averaged 0.5 g/MJ for the shrub sites and 0.9 g/MJ for the forested sites. (author)

  13. Calcium ion dependency of ethylene production in segments of primary roots of Zea mays

    Science.gov (United States)

    Hasenstein, K. H.; Evans, M. L.

    1986-01-01

    We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn (Zea mays L., B73 x Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 mM CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 micromole) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of 1-aminocyclopropane-1-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.

  14. Regional Crop Gross Primary Productivity and Yield Estimation Using Fused Landsat-MODIS Data

    Directory of Open Access Journals (Sweden)

    Mingzhu He

    2018-02-01

    Full Text Available Accurate crop yield assessments using satellite remote sensing-based methods are of interest for regional monitoring and the design of policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations is generally too coarse to capture cropland heterogeneity. The fusion of data from different sensors can provide enhanced information and overcome many of the limitations of individual sensors. In thitables study, we estimate annual crop yields for seven important crop types across Montana in the continental USA from 2008–2015, including alfalfa, barley, maize, peas, durum wheat, spring wheat and winter wheat. We used a satellite data-driven light use efficiency (LUE model to estimate gross primary productivity (GPP over croplands at 30-m spatial resolution and eight-day time steps using a fused NDVI dataset constructed by blending Landsat (5 or 7 and Terra MODIS reflectance data. The fused 30-m NDVI record showed good consistency with the original Landsat and MODIS data, but provides better spatiotemporal delineations of cropland vegetation growth. Crop yields were estimated at 30-m resolution as the product of estimated GPP accumulated over the growing season and a crop-specific harvest index (HIGPP. The resulting GPP estimates capture characteristic cropland productivity patterns and seasonal variations, while the estimated annual crop production results correspond favorably with reported county-level crop production data (r = 0.96, relative RMSE = 37.0%, p < 0.05 from the U.S. Department of Agriculture (USDA. The performance of estimated crop yields at a finer (field scale was generally lower, but still meaningful (r = 0.42, relative RMSE = 50.8%, p < 0.05. Our methods and results are suitable for operational applications of crop yield monitoring at regional scales, suggesting the potential of using global satellite observations to

  15. Primary productivity, phytoplankton standing crop and physico-chemical characteristics of the Antarctic and adjacent central Indian Ocean waters

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.

    Primary productivity, phytoplankton pigments and physico-chemical properties were studied in Antarctic waters and adjoining Indian Ocean between 11 degrees and 67 degrees E longitudes from polynya region (60 degrees S) to equator during the austral...

  16. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  17. Light availability in the coastal ocean: impact on the distribution of benthic photosynthesic organisms and their contribution to primary production

    NARCIS (Netherlands)

    Gattuso, J.P.; Gentili, B.; Duarte, C.M.; Kleypas, J.A.; Middelburg, J.J.; Antoine, D.

    2006-01-01

    One of the major features of the coastal zone is that part of its sea floor receives a significant amount of sunlight and can therefore sustain benthic primary production by seagrasses, macroalgae, microphytobenthos and corals. However, the contribution of benthic communities to the primary

  18. The Dependence of the Distortion Product 2f1-f2 on Primary Levels in Non-Impaired Human Ears.

    Science.gov (United States)

    Dahr, Sumit; Long, Glenis R.; Culpepper, N. Brandt

    1998-01-01

    The ILO92 was used to determine the level of Distortion Product Otoacoustic Emissions (DPOAEs) at 2f1-f2 for 16 combinations of primary levels in the range of 40 to 80 dB SPL from 40 unimpaired adult ears. An overall increase of DPOAE amplitude with increase in primary level was observed. (Author/CR)

  19. THE MICROBIOLOGICAL LOAD OF SHEEP MILK FROM PRIMARY PRODUCTION TO ITS PROCESSING

    Directory of Open Access Journals (Sweden)

    Zuzana Farkašová

    2010-05-01

    Full Text Available In the breeding with the average number of 220 sheep (zošľachtená valaška with traditional hand milking in the Eastern Slovakia the microbiological load of milk during the process of primary production, transport, before and after pasteurisation as well as during dairy processing to cheese curd was observed. The results in three seasons were compared to those obtained at finishing of milking in the season before. The microbiological load of milk was observed using the bacteriological methods for determination of the presence of Staphylococcus sp. and other bacteria, and determination of the total number of staphylococci: a  in milliliter of pool milk sample; b  the transport control – smears from transport tank and determination of the total number of staphylococci in the tank milk sample; c bacteriological examination of bulk tank milk in the dairy plant before and after pasteurisation, including examination of cheese curd. After pasteurisation no staphylococci were recorded as in milk as in cheese. Out of 112 strains of Staphylococcus aureus only four strain produced staphylococcal enterotoxins (SE, but in another 7 strains a gene for production of SE, type C was found. The measures introduced during the following season led to the fact that total numbers of coagulase-positive staphylococci in milk within the process of primary production and transport did not exceed the limit permitted by legislation, and after pasteurisation of milk and cheese curd they were not found at all.  doi:10.5219/58

  20. Evaluation of satellite based indices for gross primary production estimates in a sparse savanna in the Sudan

    Directory of Open Access Journals (Sweden)

    M. Sjöström

    2009-01-01

    Full Text Available One of the more frequently applied methods for integrating controls on primary production through satellite data is the Light Use Efficiency (LUE approach. Satellite indices such as the Normalized Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI and the Shortwave Infrared Water Stress Index (SIWSI have previously shown promise as predictors of primary production in several different environments. In this study, we evaluate NDVI, EVI and SIWSI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS satellite sensor against in-situ measurements from central Sudan in order to asses their applicability in LUE-based primary production modeling within a water limited environment. Results show a strong correlation between vegetation indices and gross primary production (GPP, demonstrating the significance of vegetation indices for deriving information on primary production with relatively high accuracy at similar areas. Evaluation of SIWSI however, reveal that the fraction of vegetation apparently is to low for the index to provide accurate information on canopy water content, indicating that the use of SIWSI as a predictor of water stress in satellite data-driven primary production modeling in similar semi-arid ecosystems is limited.

  1. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico.

    Science.gov (United States)

    Franklin, Kimberly; Molina-Freaner, Francisco

    2010-12-01

    In large parts of northern Mexico native plant communities are being converted to non-native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall-driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite-derived index of primary productivity, richness of perennial plant species, and canopy-height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers.

  2. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere

    Directory of Open Access Journals (Sweden)

    Y. P. Wang

    2010-07-01

    Full Text Available Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N and phosphorus (P, in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C, nitrogen (N and phosphorus (P cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise.

    This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.

  3. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  4. Evaluation of MODIS Gross Primary Production across Multiple Biomes in China Using Eddy Covariance Flux Data

    Directory of Open Access Journals (Sweden)

    Hongji Zhu

    2016-05-01

    Full Text Available MOD17A2 provides near real-time estimates of gross primary production (GPP globally. In this study, MOD17A2 GPP was evaluated using eddy covariance (EC flux measurements at eight sites in five various biome types across China. The sensitivity of MOD17A2 to meteorological data and leaf area index/fractional photosynthetically active radiation (LAI/FPAR products were examined by introducing site meteorological measurements and improved Global Land Surface Satellite (GLASS LAI products. We also assessed the potential error contributions from land cover and maximum light use efficiency (εmax. The results showed that MOD17A2 agreed well with flux measurements of annual GPP (R2 = 0.76 when all biome types were considered as a whole. However, MOD17A2 was ineffective for estimating annual GPP at mixed forests, evergreen needleleaf forests and croplands, respectively. Moreover, MOD17A2 underestimated flux derived GPP during the summer (R2 = 0.46. It was found that the meteorological data used in MOD17A2 failed to properly estimate the site measured vapor pressure deficits (VPD (R2 = 0.31. Replacing the existing LAI/FPAR data with GLASS LAI products reduced MOD17A2 GPP uncertainties. Though land cover presented the fewest errors, εmax prescribed in MOD17A2 were much lower than inferred εmax calculated from flux data. Thus, the qualities of meteorological data and LAI/FPAR products need to be improved, and εmax should be adjusted to provide better GPP estimates using MOD17A2 for Chinese ecosystems.

  5. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production

    Science.gov (United States)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2016-01-01

    The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their

  6. The Faroe shelf circulation and its potential impact on the primary production

    Science.gov (United States)

    Rasmussen, Till A. S.; Olsen, Steffen M.; Hansen, Bogi; Hátún, Hjálmar; Larsen, Karin M. H.

    2014-10-01

    The ecosystem on the Faroe shelf has been shown to be tightly controlled by the primary production. It has been suggested that the primary production is governed by the physical processes controlling this water mass. The objective of this study is to identify the physical control mechanisms that control this water mass, link these to the interannual variability of the chlorophyll content on the Faroe shelf and through this discuss the influence on the primary production. In order to achieve this, a 10 year hindcast (2000-2009) with a regional ocean circulation model has been set up for the focus area. Results are compared with measurements on the Faroe shelf. The model reproduces the clockwise residual circulation around the Faroe Islands. The vertical velocity profile is validated using observations at a location west of the Islands. Observations show a logarithmic profile in the entire water column indicating a fully developed boundary layer. The modeled profile matches the observations in the bottom part of the water column, however the thickness of the bottom boundary layer is underestimated, which results in a constant profile in the upper part of the water column. As a consequence, the modeled velocity in the upper part of the water column is up to 20% lower than the observed velocity. The direction of the modeled velocity profile compares well with observations. The model realistically forms the partly isolated unique shelf water mass. Years with anomalously early and persistent modeled spring stratification correspond with years with a high on-shelf chlorophyll concentration. An integration of the exchange across the 120 m isobath shows intense water mass exchange across this depth contour. The major part of this includes tidal shifting of the front between on-shelf and off-shelf waters and is associated with little effective water mass exchange. The result is a shelf water mass that is relatively isolated. The modeled net exchange is constituted by an on

  7. Heterogeneity in Primary Productivity Influences Competitive Interactions between Red Deer and Alpine Chamois.

    Directory of Open Access Journals (Sweden)

    Pia Anderwald

    Full Text Available Habitat heterogeneity can promote coexistence between herbivores of different body size limited to different extents by resource quantity and quality. Red deer (Cervus elaphus are known as superior competitors to smaller species with similar diets. We compared competitive interactions and habitat use between red deer and Alpine chamois (Rupicapra rupicapra in two adjacent valleys in a strictly protected area in the Central Alps. Red deer density was higher in the valley with higher primary productivity. Only here was horn growth in kid and yearling chamois (as a measure for body condition negatively correlated with red deer population size, suggesting interspecific competition, and chamois selected meadows with steeper slopes and lower productivity than available on average. Conversely, red deer selected meadows of high productivity, particularly in the poorer area. As these were located mainly at lower elevations, this led to strong altitudinal segregation between the two species here. Local differences in interspecific competition thus coincided with differences in habitat preference and-segregation between areas. This suggests that spatial habitat and resource heterogeneity at the scale of adjacent valleys can provide competition refuges for competitively inferior mountain ungulates which differ from their superior competitor in their metabolic requirements.

  8. Heterogeneity in Primary Productivity Influences Competitive Interactions between Red Deer and Alpine Chamois.

    Science.gov (United States)

    Anderwald, Pia; Haller, Rudolf M; Filli, Flurin

    2016-01-01

    Habitat heterogeneity can promote coexistence between herbivores of different body size limited to different extents by resource quantity and quality. Red deer (Cervus elaphus) are known as superior competitors to smaller species with similar diets. We compared competitive interactions and habitat use between red deer and Alpine chamois (Rupicapra rupicapra) in two adjacent valleys in a strictly protected area in the Central Alps. Red deer density was higher in the valley with higher primary productivity. Only here was horn growth in kid and yearling chamois (as a measure for body condition) negatively correlated with red deer population size, suggesting interspecific competition, and chamois selected meadows with steeper slopes and lower productivity than available on average. Conversely, red deer selected meadows of high productivity, particularly in the poorer area. As these were located mainly at lower elevations, this led to strong altitudinal segregation between the two species here. Local differences in interspecific competition thus coincided with differences in habitat preference and-segregation between areas. This suggests that spatial habitat and resource heterogeneity at the scale of adjacent valleys can provide competition refuges for competitively inferior mountain ungulates which differ from their superior competitor in their metabolic requirements.

  9. Comparison of multiple models for estimating gross primary production using remote sensing data and fluxnet observations

    Directory of Open Access Journals (Sweden)

    S. Wang

    2015-05-01

    Full Text Available In this study, gross primary production (GPP estimated from a temperature and greenness (TG model, a greenness and radiation (GR model, a vegetation photosynthesis model (VPM, and a MODIS product have been compared with eddy covariance measurements in cropland during 2003–2005. Results showed that the determination coefficients (R2 between fluxnet GPP and estimated GPP were all greater than 0.74, indicating that all these models offered reliable estimates of GPP. We also found that the VPM-based GPP estimates performed a bit better (R2 is 0.82, and RMSE is 16.75 gC m−2 (8 day−1 than other models, mainly due to its comprehensive consideration of the stresses from light, temperature and water. The actual GPP was overestimated in the non-growing season and underestimated in the growing season by MOD_GPP. The validation confirms that the above three models may be used to estimate crop production in the North China Plain, but there are still significant uncertainties.

  10. Isotopic constraints on the global terrestrial N cycle

    Science.gov (United States)

    Houlton, B. Z.; Bai, E.

    2008-12-01

    Nitrogen (N) limitation to terrestrial primary productivity is widespread; the amount of N that enters and leaves terrestrial ecosystems holds considerable leverage over how much CO2 they can store. We use variations in natural N isotope abundance of soil to estimate the dominant pathways by which N is lost from the global terrestrial environment. In this analysis we assume that denitrification is the major isotope fractionating loss term, the mean δ15N of inputs is approximately 0 per mil, and total soil N pools are close to steady state with respect to N inputs and losses. Formulating these assumptions into a simple analytical model, we estimate that 40 % of the N that enters the terrestrial biosphere is lost back to the atmosphere via gaseous pathways; the remaining 60 % escapes via rivers and streams. This partitioning falls within the range of values determined by global simulation modeling and data synthetic approaches, which suggest that anywhere from ~32 % to 59 % of N is lost via denitrification worldwide. Our analysis also points to a strong continental pattern in N loss pathways. In particular, those land masses that fall largely within tropical/sub tropical climate zones--Africa, S. America, Australia--seem to lose N mainly via gaseous compounds (52 % to 62 %), whereas N. America, Asia and Europe export N predominantly via leaching (66 % to 71 %). With the exception of N. America, where isotope abundance suggests lower gaseous N losses than models, simulations of N loss pathways correlate strongly with isotope-based estimates across the continents (r2 = 0.75).

  11. Analysis of corrosion product transport in PWR primary system under non-convective condition

    International Nuclear Information System (INIS)

    Han, Byoung Sub

    1992-02-01

    Product TRANsport), which can predict the corrosion product and radioactivity transport within the primary coolant system, and also can be utilized for the computer simulation with actual plant data of currently operating Korean nuclear power plants to predict the transport of the radionuclides. In this study, the following problems will be updated, improved and compared with the already existing codes: 1) development and analysis of recent mechanistic modelling of corrosion product deposition, 2) application and modification due to the temperature kinetic effect, 3) separation of the effect of Fe, Co, Ni and Mn solubility rather than Fe solubility alone, and 4) consideration of Ni activation and recoil process. By applying the above updated and improved mechanisms, the corrosion product behavior in PWR of currently operating Korean unclear power plants has been simulated. In addition, the evaluation of particulate transport, independent solubility data of major radionuclides and acute nodalization were included and extended. Then, with the developed computer code, we have evaluated and analyzed the activity and corrosion product build-up controlled by many parameters such as pH, composition of metal, and auxiliary system performance

  12. Influence of inorganic salts on the primary pyrolysis products of cellulose.

    Science.gov (United States)

    Patwardhan, Pushkaraj R; Satrio, Justinus A; Brown, Robert C; Shanks, Brent H

    2010-06-01

    Processing bio-oil with the help of currently existing petroleum refinery infrastructure has been considered as a promising alternative to produce sustainable fuels in the future. The feasibility of bio-oil production and upgrading processes depend upon its chemical composition which in turn depends on the biomass composition and the process conditions of the fast pyrolysis reactions. The primary goal of this paper was to investigate the effect of mineral salts including mixtures of salts in the form of switchgrass ash on the chemical speciation resulting from primary pyrolysis reactions of cellulose and to gain an insight of the underlying mechanisms. Various concentrations of inorganic salts (NaCl, KCl, MgCl(2), CaCl(2), Ca(OH)(2), Ca(NO(3))(2), CaCO(3) and CaHPO(4)) and switchgrass ash were impregnated on pure cellulose. These samples were pyrolyzed in a micro-pyrolyzer connected to a GC-MS/FID system. Effects of minerals on the formation of (a) low molecular weight species - formic acid, glycolaldehyde and acetol, (b) furan ring derivatives - 2-furaldehyde and 5-hydroxy methyl furfural and (c) anhydro sugar - levoglucosan are reported exclusively. Further, the effect of reaction temperature ranging from 350 to 600 degrees C on the pyrolysis speciation of pure and ash-doped cellulose is also reported. The pyrolysis speciation revealed the competitive nature of the primary reactions. Mineral salts and higher temperatures accelerated the reactions that led to the formation of low molecular weight species from cellulose as compared to those leading to anhydro sugars. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Development of perfluorocarbon (PFC) primary standards for monitoring of emissions from aluminum production.

    Science.gov (United States)

    Rhoderick, G; Chu, P; Dolin, E; Marks, J; Howard, T; Lytle, M; McKenzie, L; Altman, D

    2001-08-01

    An EPA Voluntary Aluminum Industrial Partnership (VAIP) program has been formed to help US primary producers focus on reducing the emissions of two perfluorocarbons (PFCs), tetrafluoromethane (CF4) and hexafluoroethane (C2F6), during the production of aluminum. To ensure comparability of measurements over space and time, traceability to national sources was desirable. Hence, the EPA approached the NIST to develop a suite of primary standards to cover a mole fraction (concentration) range of 0.1 to 1400 micromol mol(-1) for CF4 and 0.01 to 150 micromol mol(-1) of C2F6. A total of eight gravimetric PFC gas standards were prepared with relative expanded uncertainties of < or = 0.52% (approximately 95% confidence level). These primary standards were ultimately used to assign values to a series of secondary gas standards at three mole-fraction levels with relative expanded uncertainties ranging from +/- 0.7% to 5.3% (approximately 95% confidence level). This series of secondary standards was used within the aluminum industry to calibrate instruments used to make emission measurements. Assignment of values to the secondary standards was performed by use of gas chromatography with flame-ionization detection (GC-FID) and Fourier transform infrared spectrometry (FTIR). Real time pot-line and stack samples from a local aluminum plant were also obtained and sub-samples sent to each participating facility for analysis. The data generated from each facility were sent to NIST for analysis. The maximum difference between the NIST and individual facilities' values for the same sub-sample was +/- 26%.

  14. Agricultural net primary production in relation to that liberated by the extinction of Pleistocene mega-herbivores: an estimate of agricultural carrying capacity?

    Science.gov (United States)

    Doughty, Christopher E.; Field, Christopher B.

    2010-10-01

    Mega-fauna (defined as animals > 44 kg) experienced a global extinction with 97 of 150 genera going extinct by ~ 10 000 years ago. We estimate the net primary production (NPP) that was liberated following the global extinction of these mega-herbivores. We then explore how humans, through agriculture, gradually appropriated this liberated NPP, with specific calculations for 800, 1850, and 2000 AD. By 1850, most of the liberated NPP had been appropriated by people, but NPP was still available in the Western US, South America and Australia. NPP liberated following the extinction of the mega-herbivores was ~ 2.5% (~1.4 (between 1.2 and 1.6) Pg yr - 1 of 56 Pg C yr - 1; Pg: petagrams) of global terrestrial NPP. Liberated NPP peaked during the onset of agriculture and was sufficient for sustaining human agriculture until ~ 320 (250-500) years ago. Humans currently use ~ 6 times more NPP than was utilized by the extinct Pleistocene mega-herbivores.

  15. Agricultural net primary production in relation to that liberated by the extinction of Pleistocene mega-herbivores: an estimate of agricultural carrying capacity?

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, Christopher E; Field, Christopher B, E-mail: chris.doughty@ouce.ox.ac.uk, E-mail: cfield@ciw.edu [Department of Global Ecology, Carnegie Institution, Stanford, CA 94305 (United States)

    2010-10-15

    Mega-fauna (defined as animals > 44 kg) experienced a global extinction with 97 of 150 genera going extinct by {approx} 10 000 years ago. We estimate the net primary production (NPP) that was liberated following the global extinction of these mega-herbivores. We then explore how humans, through agriculture, gradually appropriated this liberated NPP, with specific calculations for 800, 1850, and 2000 AD. By 1850, most of the liberated NPP had been appropriated by people, but NPP was still available in the Western US, South America and Australia. NPP liberated following the extinction of the mega-herbivores was {approx} 2.5% ({approx}1.4 (between 1.2 and 1.6) Pg yr{sup -1} of 56 Pg C yr{sup -1}; Pg: petagrams) of global terrestrial NPP. Liberated NPP peaked during the onset of agriculture and was sufficient for sustaining human agriculture until {approx} 320 (250-500) years ago. Humans currently use {approx} 6 times more NPP than was utilized by the extinct Pleistocene mega-herbivores.

  16. Agricultural net primary production in relation to that liberated by the extinction of Pleistocene mega-herbivores: an estimate of agricultural carrying capacity?

    International Nuclear Information System (INIS)

    Doughty, Christopher E; Field, Christopher B

    2010-01-01

    Mega-fauna (defined as animals > 44 kg) experienced a global extinction with 97 of 150 genera going extinct by ∼ 10 000 years ago. We estimate the net primary production (NPP) that was liberated following the global extinction of these mega-herbivores. We then explore how humans, through agriculture, gradually appropriated this liberated NPP, with specific calculations for 800, 1850, and 2000 AD. By 1850, most of the liberated NPP had been appropriated by people, but NPP was still available in the Western US, South America and Australia. NPP liberated following the extinction of the mega-herbivores was ∼ 2.5% (∼1.4 (between 1.2 and 1.6) Pg yr -1 of 56 Pg C yr -1 ; Pg: petagrams) of global terrestrial NPP. Liberated NPP peaked during the onset of agriculture and was sufficient for sustaining human agriculture until ∼ 320 (250-500) years ago. Humans currently use ∼ 6 times more NPP than was utilized by the extinct Pleistocene mega-herbivores.

  17. The terrestrial biosphere in the SFR region

    Energy Technology Data Exchange (ETDEWEB)

    Jerling, L.; Isaeus, M. [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J. [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T.; Schueldt, R. [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m{sup 2} for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results

  18. The terrestrial biosphere in the SFR region

    International Nuclear Information System (INIS)

    Jerling, L.; Isaeus, M.

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m 2 for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results in a coarse

  19. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    Directory of Open Access Journals (Sweden)

    L. E. O. C. Aragão

    2009-12-01

    Full Text Available The net primary productivity (NPP of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1 How do Amazonian forests allocate productivity among its above- and below-ground components? (2 How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error, at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  20. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K.; Limoges, Audrey

    2017-01-01

    that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable......In order to establish a baseline for proxy-based reconstructions for the Young Sound–Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...... Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...

  1. Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Smith, Benjamin; Løfgren, Anders

    2009-01-01

    and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average......The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with processbased vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs...... in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model...

  2. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    DEFF Research Database (Denmark)

    Nazaroff, W.; Weschler, Charles J.

    2004-01-01

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated...... by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals...... by ozone and hydroxyl radicals. Few studies have directly addressed the indoor concentrations of TACs that might result from primary emissions or secondary pollutant formation following the use of cleaning agents and air fresheners. In this paper, we combine direct empirical evidence with the basic...

  3. Modelling black spruce primary production and carbon allocation in the Quebec boreal forest

    Science.gov (United States)

    Gennaretti, Fabio; Guiot, Joel; Berninger, Frank; Boucher, Etienne; Gea-Izquierdo, Guillermo

    2017-04-01

    Boreal ecosystems are crucial carbon stores that must be urgently quantified and preserved. Their future evolution is extremely important for the global carbon budget. Here, we will show the progresses achieved with the MAIDEN forest ecophysiological model in simulating carbon fluxes of black spruce (Picea mariana (Mill.) B.S.P.) forests, the most representative ecosystem of the North American boreal biome. Starting from daily minimum-maximum air temperature, precipitation and CO2 atmospheric concentration, MAIDEN models the phenological (5 phenological phases are simulated each year) and meteorological controls on gross primary production (GPP) and carbon allocation to stem. The model is being calibrated on eddy covariance and tree-ring data. We will discuss the model's performance and the modifications introduced in MAIDEN to adapt the model to temperature sensitive forests of the boreal region.

  4. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    Science.gov (United States)

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Can we predict the direction of marine primary production change under global warming?

    Science.gov (United States)

    Taucher, J.; Oschlies, A.

    2011-01-01

    A global Earth System model is employed to investigate the role of direct temperature effects in the response of marine ecosystems to climate change. While model configurations with and without consideration of explicit temperature effects can reproduce observed current biogeochemical tracer distributions and estimated carbon export about equally well, carbon flow through the model ecosystem reveals strong temperature sensitivities. Depending on whether biological processes are assumed temperature sensitive or not, simulated marine net primary production (NPP) increases or decreases under projected climate change driven by a business-as-usual CO2 emission scenario for the 21st century. This suggests that indirect temperature effects such as changes in the supply of nutrients and light are not the only relevant factors to be considered when modeling the response of marine ecosystems to climate change. A better understanding of direct temperature effects on marine ecosystems is required before even the direction of change in NPP can be reliably predicted.

  6. MODIS EVI-based net primary production in the Sahel 2000-2014

    Science.gov (United States)

    Ardö, Jonas; Tagesson, Torbern; Jamali, Sadegh; Khatir, Abdelrahman

    2018-03-01

    Africa is facing resource problems due to increasing demand combined with potential climate-induced changes in supply. Here we aim to quantify resources in terms of net primary production (NPP [g C m-2 yr-1]) of vegetation in the Sahel region for 2000-2014. Using time series of the enhanced vegetation index (EVI) from MODIS, NPP was estimated for the Sahel region with a 500 × 500 m spatial resolution and 8-day temporal resolution. The estimates were based on local eddy covariance flux measurements from six sites in the Sahel region and the carbon use efficiency originating from a dynamic vegetation model. No significant NPP change was found for the Sahel as a region but, for sub-regions, significant changes, both increasing and decreasing, were observed. Substantial uncertainties related to NPP estimates and the small availability of evaluation data makes verification difficult. The simplicity of the methodology used, dependent on earth observation only, is considered an advantage.

  7. Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae.

    Science.gov (United States)

    Lemoine, F; Maupin, I; Lemée, L; Lavoie, J-M; Lemberton, J-L; Pouilloux, Y; Pinard, L

    2013-08-01

    An alternative fuel production was investigated through catalytic hydroliquefaction of three different carbonaceous sources: solid municipal wastes (MW), primary sludges (PS), and microalgae (MA). The reaction was carried out under hydrogen pressure, at different temperatures (330, 380 and 450°C), with a Raney nickel catalyst and two different hydrogen donor solvents: a "fossil solvent" (tetralin) and a "green solvent" (2-methyl-hydro-furan). The feeds analyses (TDA-TGA, ICP-AES, lipids quantification) showed that MW and PS had similar characteristics and physico-chemical properties, but different from those of MA. The hydroliquefaction of these feeds allowed to obtain high oil yields, with a significant energetic value, similar to that of a bio-petroleum. 2-methyl-hydro-furan was more efficient than tetralin for the treatment of the strongly bio-degraded biomasses MW and PS, while better results were obtained with tetralin in the case of MA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A comparison of four methods for integrating 14C-primary productivity measurements per unit area

    International Nuclear Information System (INIS)

    Ichimura, Shun-ei; Takahashi, Masayuki; Seki, Humitake; Parsons, T.R.

    1980-01-01

    Four methods were compared for the integration of 14 C-primary productivity per m 2 ; (1) the in situ method at 0, 2.5, 5, 7.5, 10 and 12.5m (standard depths 1); (2) the in situ method at 0, 5, 10 and 12.5m (standard depths 2); (3) the in situ method at 2.5, 7.5 and 11.5m for each sample pumped over depth intervals 0 to 5m, 5 to 10m, and 10 to 12.5m, respectively (integrated depths); and (4) the simulated in situ method for samples collected from light standard depths. The method which appeared to give the most reliable results was that (3) in which samples were averaged by pumping water over the euphotic depth followed by incubation of integrated samples at the middle of each depth interval. (author)

  9. EVALUATION OF LISTERIA MONOCYTOGENES IN RAW BUFFALO MILK DURING PRIMARY PRODUCTION

    Directory of Open Access Journals (Sweden)

    M.L. Cortesi

    2009-06-01

    Full Text Available Regulation EC 852/2004 lays down rules concerning hygiene requirements and the adoption of adequate measures for identification, prevention and control of contamination risks during milking in primary production. Aim of this research was to detect Listeria monocytogenes and to check the total viable count (TVC at 30° in raw buffalo milk coming from ten dairy farms. On the whole 207 samples of raw buffalo milk were collected and analysed during one year, 189 samples were collected from single animals and 18 samples from tank-bulk milk. In raw bulk-tank milk Listeria monocytogenes was never detected. In two out five positive samples from single animals Listeria monocytogenes was detected by means of quantitative method at levels ≤1 cfu/ml.

  10. Topographical effects of climate dataset and their impacts on the estimation of regional net primary productivity

    Science.gov (United States)

    Sun, L. Qing; Feng, Feng X.

    2014-11-01

    In this study, we first built and compared two different climate datasets for Wuling mountainous area in 2010, one of which considered topographical effects during the ANUSPLIN interpolation was referred as terrain-based climate dataset, while the other one did not was called ordinary climate dataset. Then, we quantified the topographical effects of climatic inputs on NPP estimation by inputting two different climate datasets to the same ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS), to evaluate the importance of considering relief when estimating NPP. Finally, we found the primary contributing variables to the topographical effects through a series of experiments given an overall accuracy of the model output for NPP. The results showed that: (1) The terrain-based climate dataset presented more reliable topographic information and had closer agreements with the station dataset than the ordinary climate dataset at successive time series of 365 days in terms of the daily mean values. (2) On average, ordinary climate dataset underestimated NPP by 12.5% compared with terrain-based climate dataset over the whole study area. (3) The primary climate variables contributing to the topographical effects of climatic inputs for Wuling mountainous area were temperatures, which suggest that it is necessary to correct temperature differences for estimating NPP accurately in such a complex terrain.

  11. Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption

    Science.gov (United States)

    Russell, Bayden D.; Connell, Sean D.; Findlay, Helen S.; Tait, Karen; Widdicombe, Stephen; Mieszkowska, Nova

    2013-01-01

    Climate change may cause ecosystems to become trophically restructured as a result of primary producers and consumers responding differently to increasing CO2 and temperature. This study used an integrative approach using a controlled microcosm experiment to investigate the combined effects of CO2 and temperature on key components of the intertidal system in the UK, biofilms and their consumers (Littorina littorea). In addition, to identify whether pre-exposure to experimental conditions can alter experimental outcomes we explicitly tested for differential effects on L. littorea pre-exposed to experimental conditions for two weeks and five months. In contrast to predictions based on metabolic theory, the combination of elevated temperature and CO2 over a five-week period caused a decrease in the amount of primary productivity consumed by grazers, while the abundance of biofilms increased. However, long-term pre-exposure to experimental conditions (five months) altered this effect, with grazing rates in these animals being greater than in animals exposed only for two weeks. We suggest that the structure of future ecosystems may not be predictable using short-term laboratory experiments alone owing to potentially confounding effects of exposure time and effects of being held in an artificial environment over prolonged time periods. A combination of laboratory (physiology responses) and large, long-term experiments (ecosystem responses) may therefore be necessary to adequately predict the complex and interactive effects of climate change as organisms may acclimate to conditions over the longer term. PMID:23980241

  12. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    Science.gov (United States)

    Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.

    2017-05-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).

  13. Modeling fossil energy demands of primary nonferrous metal production: the case of copper.

    Science.gov (United States)

    Swart, Pilar; Dewulf, Jo

    2013-12-17

    The methodologies for life cycle impact assessment (LCIA) of metal resources are rather diverse. Some LCIA methods are based on ore grade changes, but they typically do not consider the impact of changes in primary metal extraction technology. To characterize the impact of technology changes for copper, we modeled and analyzed energy demand, expressed in fossil energy equivalents (FEE) per kilogram of primary copper, taking into account the applied mining method and processing technology. The model was able to capture variations in reported energy demands of selected mining sites (FEE: 0.07 to 0.84 MJ-eq/kg ore) with deviations of 1 to 30%. Applying the model to a database containing global mine production data resulted in energy demand median values of around 50 MJ/kg Cu irrespective of the processing route, even though median values of ore demands varied between processing routes from ca. 35 (underground, conventional processing) to 200 kg ore/kg Cu (open pit, solvent-extraction, and electrowinning), as high specific ore demands are typically associated with less energy intensive extraction technologies and vice versa. Thus, only considering ore grade in LCIA methods without making any differentiation with regard to employed technology can produce misleading results.

  14. Primary production calculations for sea ice from bio-optical observations in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Susann Müller

    2016-09-01

    Full Text Available Abstract Bio-optics is a powerful approach for estimating photosynthesis rates, but has seldom been applied to sea ice, where measuring photosynthesis is a challenge. We measured absorption coefficients of chromophoric dissolved organic matter (CDOM, algae, and non-algal particles along with solar radiation, albedo and transmittance at four sea-ice stations in the Gulf of Finland, Baltic Sea. This unique compilation of optical and biological data for Baltic Sea ice was used to build a radiative transfer model describing the light field and the light absorption by algae in 1-cm increments. The maximum quantum yields and photoadaptation of photosynthesis were determined from 14C-incorporation in photosynthetic-irradiance experiments using melted ice. The quantum yields were applied to the radiative transfer model estimating the rate of photosynthesis based on incident solar irradiance measured at 1-min intervals. The calculated depth-integrated mean primary production was 5 mg C m–2 d–1 for the surface layer (0–20 cm ice depth at Station 3 (fast ice and 0.5 mg C m–2 d–1 for the bottom layer (20–57 cm ice depth. Additional calculations were performed for typical sea ice in the area in March using all ice types and a typical light spectrum, resulting in depth-integrated mean primary production rates of 34 and 5.6 mg C m–2 d–1 in surface ice and bottom ice, respectively. These calculated rates were compared to rates determined from 14C incorporation experiments with melted ice incubated in situ. The rate of the calculated photosynthesis and the rates measured in situ at Station 3 were lower than those calculated by the bio-optical algorithm for typical conditions in March in the Gulf of Finland by the bio-optical algorithm. Nevertheless, our study shows the applicability of bio-optics for estimating the photosynthesis of sea-ice algae.

  15. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen

    Science.gov (United States)

    Cole, J.J.; Carpenter, S.R.; Kitchell, J.; Pace, M.L.; Solomon, C.T.; Weidel, B.

    2011-01-01

    Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ???20-40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic 13C content of these lakes to augment the small, natural contrast in 13C between terrestrial and algal photosynthesis. Our study gives credence to a growing literature, which we review here, suggesting that significant terrestrial support of pelagic crustaceans (zooplankton) is widespread.

  16. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen

    Science.gov (United States)

    Cole, Jonathan J.; Carpenter, Stephen R.; Kitchell, Jim; Pace, Michael L.; Solomon, Christopher T.; Weidel, Brian

    2011-01-01

    Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ≈20–40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic 13C content of these lakes to augment the small, natural contrast in 13C between terrestrial and algal photosynthesis. Our study gives credence to a growing literature, which we review here, suggesting that significant terrestrial support of pelagic crustaceans (zooplankton) is widespread. PMID:21245299

  17. Decreases in net primary production and net ecosystem production along a repeated-fires induced forest/grassland gradient

    Science.gov (United States)

    Cheng, C. H.; Huang, Y. H.; Chung-Yu, L.; Menyailo, O.

    2016-12-01

    Fire is one of the most important disturbances in ecosystems. Fire rapidly releases stored carbon into atmosphere and also plays critical roles on soil properties, light and moisture regimes, and plant structures and communities. With the interventions of climate change and human activities, fire regimes become more severe and frequent. In many parts of world, forest fire regimes can be further altered by grass invasion because the invasive grasses create a positive feedback cycle through their rapid recovery after fires and their high flammability during dry periods and allow forests to be burned repeatedly in a relatively short time. For such invasive grass-fire cycle, a great change of native vegetation community can occur. In this study, we examined a C4 invasive grass () fire-induced forest/grassland gradient to quantify the changes of net primary production (NPP) and net ecosystem production (NEP) from an unburned forest to repeated fire grassland. Our results demonstrated negative effects of repeated fires on NPP and NEP. Within 4 years of the onset of repeated fires on the unburned forest, NPP declined by 14%, mainly due to the reduction in aboveground NPP but offset by increase of belowground NPP. Subsequent fires cumulatively caused reductions in both aboveground and belowground NPP. A total of 40% reduction in the long-term repeated fire induced grassland was found. Soil respiration rate were not significantly different along the forest/grassland gradient. Thus, a great reduction in NEP were shown in grassland, which shifted from 4.6 Mg C ha-1 yr-1 in unburnt forest to -2.6 Mg C ha-1 yr-1. Such great losses are critical within the context of forest carbon cycling and long-term sustainability. Forest management practices that can effectively reduce the likelihood of repeated fires and consequent likelihood of establishment of the grass fire cycle are essential for protecting the forest.

  18. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  19. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem

    Science.gov (United States)

    Montero, P.; Pérez-Santos, I.; Daneri, G.; Gutiérrez, M. H.; Igor, G.; Seguel, R.; Purdie, D.; Crawford, D. W.

    2017-12-01

    A dense winter bloom of the dinoflagellate Heterocapsa triquetra was observed at a fixed station (44°35.3‧S; 72°43.6‧W) in the Puyuhuapi Fjord in Chilean Patagonia during July 2015. H. triquetra dominated the phytoplankton community in the surface waters between 2 and 15 m (13-58 × 109 cell m-2), with abundances some 3 to 15 times higher than the total abundance of the diatom assemblage, which was dominated by Skeletonema spp. The high abundance of dinoflagellates was reflected in high rates of gross primary production (GPP; 0.6-1.6 g C m-2 d-1) and chlorophyll-a concentration (Chl-a; 70-199.2 mg m-2) that are comparable to levels reported in spring diatom blooms in similar Patagonian fjords. We identify the main forcing factors behind a pulse of organic matter production during the non-productive winter season, and test the hypothesis that low irradiance levels are a key factor limiting phytoplankton blooms and subsequent productivity during winter. Principal Component Analysis (PCA) indicated that GPP rates were significantly correlated (r = -0.8, p < 0.05) with a decrease in salinity/temperature and the presence of the Heterocapsa bloom. The bloom occurred under low surface irradiance levels characteristic of austral winter and was accompanied by strong northern winds, associated with the passage of a low-pressure system, and a water column dominated by double diffusive layering. To our knowledge, this is the first report of a dense dinoflagellate bloom during deep austral winter in a Patagonian fjord, and our data challenge the paradigm of light limitation as a factor controlling phytoplankton blooms in this region in winter.

  20. Developing a Model to Estimate Freshwater Gross Primary Production Using MODIS Surface Temperature Observations

    Science.gov (United States)

    Saberi, S. J.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Solomon, C.; Boucher, J. M.

    2016-12-01

    Lakes contribute to local and regional climate conditions, cycle nutrients, and are viable indicators of climate change due to their sensitivity to disturbances in their water and airsheds. Utilizing spaceborne remote sensing (RS) techniques has considerable potential in studying lake dynamics because it allows for coherent and consistent spatial and temporal observations as well as estimates of lake functions without in situ measurements. However, in order for RS products to be useful, algorithms that relate in situ measurements to RS data must be developed. Estimates of lake metabolic rates are of particular scientific interest since they are indicative of lakes' roles in carbon cycling and ecological function. Currently, there are few existing algorithms relating remote sensing products to in-lake estimates of metabolic rates and more in-depth studies are still required. Here we use satellite surface temperature observations from Moderate Resolution Imaging Spectroradiometer (MODIS) product (MYD11A2) and published in-lake gross primary production (GPP) estimates for eleven globally distributed lakes during a one-year period to produce a univariate quadratic equation model. The general model was validated using other lakes during an equivalent one-year time period (R2=0.76). The statistical analyses reveal significant positive relationships between MODIS temperature data and the previously modeled in-lake GPP. Lake-specific models for Lake Mendota (USA), Rotorua (New Zealand), and Taihu (China) showed stronger relationships than the general combined model, pointing to local influences such as watershed characteristics on in-lake GPP in some cases. These validation data suggest that the developed algorithm has a potential to predict lake GPP on a global scale.

  1. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology.

    Science.gov (United States)

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-02-04

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008-2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m(-2)·year(-1)), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m(-2)·year(-1)·to 2874.2 ± 794.0 g·m(-2)·year(-1). The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  2. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  3. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    Science.gov (United States)

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  4. Effects of canopy photosynthesis saturation on the estimation of gross primary productivity from MODIS data in a tropical forest

    DEFF Research Database (Denmark)

    Propastin, P.; Ibrom, Andreas; Knohl, A.

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary production (GPP) product (GPPMOD17A2) was evaluated against GPP from the eddy covariance flux measurements (GPPm) at a CO2 flux tower test site in a tropical rainforest in Sulawesi, Indonesia. The dynamics of 8-day GPPMOD17A2...

  5. Total primary production and the balance between benthic and pelagic plants in different nutrient regimes in a shallow estuary

    DEFF Research Database (Denmark)

    Markager, Svend Stiig; Krause-Jensen, Dorte; Dalsgaard, Tage

    In this contribution we challenge the hitherto ruling concept that the total gross primary production (GPP) in shallow coastal areas, i.e. the combined production of micro- and macroscopic plants living in the water and at the bottom, does not change systematically with nutrient enrichment. Based...

  6. Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter

    Czech Academy of Sciences Publication Activity Database

    Straškrábová, Viera; Izmest’yeva, L. R.; Maksimova, E. A.; Fietz, S.; Nedoma, Jiří; Borovec, Jakub; Kobanova, G. I.; Shchetinina, E. V.; Pislegina, E. V.

    2005-01-01

    Roč. 46, 1-4 (2005), s. 57-73 ISSN 0921-8181 Grant - others:EU(XE) CONTINENT EVK2-2000-0057 Institutional research plan: CEZ:AV0Z6017912 Keywords : primary production * bacterial production * microbial loop Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.223, year: 2005

  7. Effects of sewage water on bio-optical properties and primary production of coastal systems in West Australia

    DEFF Research Database (Denmark)

    Stæhr, Peter Anton; Waite, A.M.; Markager, Svend Stiig

    2009-01-01

    Relationships between key phytoplankton attributes including Chl a-specific light absorption, pigment composition and concentration, photosynthesis, primary production and community structure were studied in two open shallow nutrient-poor coastal systems receiving similar amounts of sewage water...... pigments, 20-50% higher Chl a-specific absorption coefficients and higher photosynthetic capacity. Although maximum rates of Chl a-normalised photosynthesis were strongly related to nitrate availability, no effects were found on the derived areal primary production or algal biomass suggesting...... that photosynthetic and optical parameters are more sensitive indicators of nutrient enrichment than biomass or productivity....

  8. Coupling gross primary production and transpiration for a consistent estimate of canopy water use efficiency

    Science.gov (United States)

    Yebra, Marta; van Dijk, Albert

    2015-04-01

    active radiation (PAR), calculated as the product of the fraction of absorbed PAR (fPAR) and PAR flux. The proposed algorithm performs well when evaluated against flux tower GPP (R2=0.79, RMSE= 1.93 µmol m2 s-1). Here we use GPP and T estimates previously derived at the same 16 Fluxnet sites to analyse WUE. Satellite-derived WUE explained variation in (long-term average) WUE among plant functional types but evergreen needleleaf had higher WUE than predicted. The benefit of our approach is that it uses mutually consistent estimates of GPP and T to derive canopy-level WUE without any land cover classification artefacts. References Baldocchi, D. (2008). Turner Review No. 15: 'Breathing' of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56, 26 Kelliher, F.M., Leuning, R., Raupach, M.R., & Schulze, E.D. (1995). Maximum conductances for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73, 1-16 Yebra, M., Van Dijk, A., Leuning, R., Huete, A., & Guerschman, J.P. (2013). Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sensing of Environment, 129, 250-261

  9. Terrestrial Gravity Fluctuations

    Directory of Open Access Journals (Sweden)

    Jan Harms

    2015-12-01

    Full Text Available Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^–23 Hz^–1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our

  10. Terrestrial Gravity Fluctuations

    Science.gov (United States)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  11. Measurements and simulation of forest leaf area index and net primary productivity in Northern China.

    Science.gov (United States)

    Wang, P; Sun, R; Hu, J; Zhu, Q; Zhou, Y; Li, L; Chen, J M

    2007-11-01

    Large scale process-based modeling is a useful approach to estimate distributions of global net primary productivity (NPP). In this paper, in order to validate an existing NPP model with observed data at site level, field experiments were conducted at three sites in northern China. One site is located in Qilian Mountain in Gansu Province, and the other two sites are in Changbaishan Natural Reserve and Dunhua County in Jilin Province. Detailed field experiments are discussed and field data are used to validate the simulated NPP. Remotely sensed images including Landsat Enhanced Thematic Mapper plus (ETM+, 30 m spatial resolution in visible and near infrared bands) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 15m spatial resolution in visible and near infrared bands) are used to derive maps of land cover, leaf area index, and biomass. Based on these maps, field measured data, soil texture and daily meteorological data, NPP of these sites are simulated for year 2001 with the boreal ecosystem productivity simulator (BEPS). The NPP in these sites ranges from 80 to 800 gCm(-2)a(-1). The observed NPP agrees well with the modeled NPP. This study suggests that BEPS can be used to estimate NPP in northern China if remotely sensed images of high spatial resolution are available.

  12. The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    Science.gov (United States)

    Zachos, J. C.; Arthus, M. A.; Dean, W. E.

    1988-01-01

    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and o