WorldWideScience

Sample records for terrestrial planetary atmospheres

  1. Primordial atmosphere incorporation in planetary embryos and the origin of Neon in terrestrial planets

    Science.gov (United States)

    Jaupart, Etienne; Charnoz, Sebatien; Moreira, Manuel

    2017-09-01

    The presence of Neon in terrestrial planet mantles may be attributed to the implantation of solar wind in planetary precursors or to the dissolution of primordial solar gases captured from the accretionary disk into an early magma ocean. This is suggested by the Neon isotopic ratio similar to those of the Sun observed in the Earth mantle. Here, we evaluate the second hypothesis. We use general considerations of planetary accretion and atmospheric science. Using current models of terrestrial planet formation, we study the evolution of standard planetary embryos with masses in a range of 0.1-0.2 MEarth, where MEarth is the Earth's mass, in an annular region at distances between 0.5 and 1.5 Astronomical Units from the star. We determine the characteristics of atmospheres that can be captured by such embryos for a wide range of parameters and calculate the maximum amount of Neon that can be dissolved in the planet. Our calculations may be directly transposed to any other planet. However, we only know of the amount of Neon in the Earth's solid mantle. Thus we use Earth to discuss our results. We find that the amount of dissolved Neon is too small to account for the present-day Neon contents of the Earth's mantle, if the nebular gas disk completely disappears before the largest planetary embryos grow to be ∼0.2 MEarth. This leaves solar irradiation as the most likely source of Neon in terrestrial planets for the most standard case of planetary formation models.

  2. Photochemistry of Planetary Atmospheres

    Science.gov (United States)

    Yung, Y. L.

    2005-12-01

    The Space Age started half a century ago. Today, with the completion of a fairly detailed study of the planets of the Solar System, we have begun studying exoplanets (or extrasolar planets). The overriding question in is to ask whether an exoplanet is habitable and harbors life, and if so, what the biosignatures ought to be. This forces us to confront the fundamental question of what controls the composition of an atmosphere. The composition of a planetary atmosphere reflects a balance between thermodynamic equilibrium chemistry (as in the interior of giant planets) and photochemistry (as in the atmosphere of Mars). The terrestrial atmosphere has additional influence from life (biochemistry). The bulk of photochemistry in planetary atmospheres is driven by UV radiation. Photosynthesis may be considered an extension of photochemistry by inventing a molecule (chlorophyll) that can harvest visible light. Perhaps the most remarkable feature of photochemistry is catalytic chemistry, the ability of trace amounts of gases to profoundly affect the composition of the atmosphere. Notable examples include HOx (H, OH and HO2) chemistry on Mars and chlorine chemistry on Earth and Venus. Another remarkable feature of photochemistry is organic synthesis in the outer solar system. The best example is the atmosphere of Titan. Photolysis of methane results in the synthesis of more complex hydrocarbons. The hydrocarbon chemistry inevitably leads to the formation of high molecular weight products, giving rise to aerosols when the ambient atmosphere is cool enough for them to condense. These results are supported by the findings of the recent Cassini mission. Lastly, photochemistry leaves a distinctive isotopic signature that can be used to trace back the evolutionary history of the atmosphere. Examples include nitrogen isotopes on Mars and sulfur isotopes on Earth. Returning to the question of biosignatures on an exoplanet, our Solar System experience tells us to look for speciation

  3. The Planetary Terrestrial Analogues Library (PTAL)

    Science.gov (United States)

    Werner, S. C.; Dypvik, H.; Poulet, F.; Rull Perez, F.; Bibring, J.-P.; Bultel, B.; Casanova Roque, C.; Carter, J.; Cousin, A.; Guzman, A.; Hamm, V.; Hellevang, H.; Lantz, C.; Lopez-Reyes, G.; Manrique, J. A.; Maurice, S.; Medina Garcia, J.; Navarro, R.; Negro, J. I.; Neumann, E. R.; Pilorget, C.; Riu, L.; Sætre, C.; Sansano Caramazana, A.; Sanz Arranz, A.; Sobron Grañón, F.; Veneranda, M.; Viennet, J.-C.; PTAL Team

    2018-04-01

    The Planetary Terrestrial Analogues Library project aims to build and exploit a spectral data base for the characterisation of the mineralogical and geological evolution of terrestrial planets and small solar system bodies.

  4. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  5. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  6. A Synergistic Approach to Interpreting Planetary Atmospheres

    Science.gov (United States)

    Batalha, Natasha E.

    We will soon have the technological capability to measure the atmospheric composition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet's atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets. In order to demonstrate the intricacies in modeling terrestrial planets, I use early Mars as a case study. I leverage a combination of one-dimensional climate, photochemical and energy balance models in order to create one self-consistent model that closely matches currently available climate data. One-dimensional models can address several processes: the influence of greenhouse gases on heating, the effect of the planet's geological processes (i.e. volcanoes and the carbonatesilicate cycle) on the atmosphere, the effect of rainfall on atmospheric composition and the stellar irradiance. After demonstrating the number of assumptions required to build a model, I look towards what exactly we can learn from remote observations of temperate Earths and Super Earths. However, unlike in-situ observations from our own solar system, remote sensing techniques need to be developed and understood in order to accurately characterize exo-atmospheres. I describe the models used to create synthetic transit transmission observations, which includes models of

  7. Jets in Planetary Atmospheres

    Science.gov (United States)

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  8. The early evolution of the atmospheres of terrestrial planets

    CERN Document Server

    Raulin, François; Muller, Christian; Nixon, Conor; Astrophysics and Space Science Proceedings : Volume 35

    2013-01-01

    “The Early Evolution of the Atmospheres of Terrestrial Planets” presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth’s transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are ...

  9. Hydrodynamic escape from planetary atmospheres

    Science.gov (United States)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  10. Atmospheres of the terrestrial planets

    International Nuclear Information System (INIS)

    Kivelson, M.G.; Schubert, G.

    1986-01-01

    Properties of the planets are identified - such as size, spin rate, and distance from the sun - that are important in understanding the characteristics of their atmospheres. Venus, earth and Mars have surface-temperature differences only partly explained by the decrease of solar radiation flux with distance from the sun. More significant effects arise from the variations in the degree to which the atmospheres act as absorbers of planetary thermal reradiation. Atmospheric circulation on a global scale also varies markedly among the three planets. 5 references

  11. Infrared observations of planetary atmospheres

    International Nuclear Information System (INIS)

    Orton, G.S.; Baines, K.H.; Bergstralh, J.T.

    1988-01-01

    The goal of this research in to obtain infrared data on planetary atmospheres which provide information on several aspects of structure and composition. Observations include direct mission real-time support as well as baseline monitoring preceding mission encounters. Besides providing a broader information context for spacecraft experiment data analysis, observations will provide the quantitative data base required for designing optimum remote sensing sequences and evaluating competing science priorities. In the past year, thermal images of Jupiter and Saturn were made near their oppositions in order to monitor long-term changes in their atmospheres. Infrared images of the Jovian polar stratospheric hot spots were made with IUE observations of auroral emissions. An exploratory 5-micrometer spectrum of Uranus was reduced and accepted for publication. An analysis of time-variability of temperature and cloud properties of the Jovian atomsphere was made. Development of geometric reduction programs for imaging data was initiated for the sun workstation. Near-infrared imaging observations of Jupiter were reduced and a preliminary analysis of cloud properties made. The first images of the full disk of Jupiter with a near-infrared array camera were acquired. Narrow-band (10/cm) images of Jupiter and Saturn were obtained with acousto-optical filters

  12. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  13. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  14. Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science

    Science.gov (United States)

    Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.

    2004-01-01

    Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.

  15. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  16. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  17. Scaling properties of planetary calderas and terrestrial volcanic eruptions

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    2012-11-01

    Full Text Available Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

  18. ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS

    International Nuclear Information System (INIS)

    Wordsworth, Robin; Pierrehumbert, Raymond

    2014-01-01

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H 2 O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N 2 , Ar) is low. Hence the spectral features of O 2 and O 3 alone cannot be regarded as robust signs of extraterrestrial life

  19. Understanding Microbial Contributions to Planetary Atmosphere

    Science.gov (United States)

    DesMarais, David J.

    2000-01-01

    Should our search of distant, extrasolar planetary atmospheres encounter evidence of life, that evidence will most likely be the gaseous products of microorganisms. Our biosphere was exclusively microbial for over 80 percent of its history and, even today, microbes strongly influence atmospheric composition. Life's greatest environmental impact arises from its capacity for harvesting energy and creating organic matter. Microorganisms catalyze the equilibration of C, S and transition metal species at temperatures where such reactions can be very slow in the absence of life. Sunlight has been harvested through photosynthesis to create enormous energy reservoirs that exist in the form of coexisting reservoirs of reduced, organic C and S stored in Earth's crust, and highly oxidized species (oxygen, sulfate and ferric iron) stored in the crust, oceans and atmosphere. Our civilization taps that storehouse of energy by burning fossil fuels. As astrobiologists, we identify the chemical consequences of distant biospheres as expressed in the atmospheres of their planets. Our approach must recognize that planets, biospheres and atmospheres evolve and change. For example, a tectonically more active early Earth hosted a thermophilic, non-photosynthetic biosphere and a mildly reducing, carbon dioxide-rich and oxygen-poor atmosphere. Microorganisms acquired energy by consuming hydrogen and sulfide and producing a broad array of reduced C and S gases, most notably, methane. Later, diverse types of bacterial photosynthesis developed that enhanced productivity but were incapable of splitting water to produce oxygen. Later, but still prior to 2.6 billion years ago, oxygenic photosynthesis developed. We can expect to encounter distant biospheres that represent various stages of evolution and that coexist with atmospheres ranging from mildly reducing to oxidizing compositions. Accordinaly, we must be prepared to interpret a broad range of atmospheric compositions, all containing

  20. Planetary Atmospheres and Evolution of Complex Life

    Science.gov (United States)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed 10^3 Pa to allow organisms that rely on

  1. Arctic Climate and Atmospheric Planetary Waves

    Science.gov (United States)

    Cavalieri, D. J.; Haekkinen, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave 1 pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach for determining significant forcing patterns of sea ice and high-latitude variability.

  2. Molecular Dications in Planetary Atmospheric Escape

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2016-08-01

    Full Text Available Fundamental properties of multiply charged molecular ions, such as energetics, structure, stability, lifetime and fragmentation dynamics, are relevant to understand and model the behavior of gaseous plasmas as well as ionosphere and astrophysical environments. Experimental determinations of the Kinetic Energy Released (KER for ions originating from dissociations reactions, induced by Coulomb explosion of doubly charged molecular ions (molecular dications produced by double photoionization of CO2, N2O and C2H2 molecules of interest in planetary atmospheres, are reported. The KER measurement as a function of the ultraviolet (UV photon energy in the range of 28–65 eV was extracted from the electron-ion-ion coincidence spectra obtained by using tunable synchrotron radiation coupled with ion imaging techniques at the ELETTRA Synchrotron Light Laboratory Trieste, Italy. These experiments, coupled with a computational analysis based on a Monte Carlo trajectory simulation, allow assessing the probability of escape for simple ionic species in the upper atmosphere of Mars, Venus and Titan. The measured KER in the case of H+, C+, CH+, CH2+, N+, O+, CO+, N2+ and NO+ fragment ions range between 1.0 and 5.5 eV, being large enough to allow these ionic species to participate in the atmospheric escape from such planets into space. In the case of Mars, we suggest a possible explanation for the observed behavior of the O+ and CO22+ ion density profiles.

  3. Past and future of radio occultation studies of planetary atmospheres

    Science.gov (United States)

    Eshleman, Von R.; Hinson, David P.; Tyler, G. Leonard; Lindal, Gunnar F.

    1987-01-01

    Measurements of radio waves that have propagated through planetary atmospheres have provided exploratory results on atmospheric constituents, structure, dynamics, and ionization for Venus, Mars, Titan, Jupiter, Saturn, and Uranus. Highlights of past results are reviewed in order to define and illustrate the potential of occultation and related radio studies in future planetary missions.

  4. Alien skies planetary atmospheres from earth to exoplanets

    CERN Document Server

    Pont, Frédéric J

    2014-01-01

    Planetary atmospheres are complex and evolving entities, as mankind is rapidly coming to realise whilst attempting to understand, forecast and mitigate human-induced climate change. In the Solar System, our neighbours Venus and Mars provide striking examples of two endpoints of planetary evolution, runaway greenhouse and loss of atmosphere to space. The variety of extra-solar planets brings a wider angle to the issue: from scorching "hot jupiters'' to ocean worlds, exo-atmospheres explore many configurations unknown in the Solar System, such as iron clouds, silicate rains, extreme plate tectonics, and steam volcanoes. Exoplanetary atmospheres have recently become accessible to observations. This book puts our own climate in the wider context of the trials and tribulations of planetary atmospheres. Based on cutting-edge research, it uses a grand tour of the atmospheres of other planets to shine a new light on our own atmosphere, and its relation with life.

  5. Crosslink Radio Occultation for the Remote Sensing of Planetary Atmospheres

    Science.gov (United States)

    Mannucci, A. J.; Ao, C. O.; Asmar, S.; Edwards, C. D.; Kahan, D. S.; Paik, M.; Pi, X.; Williamson, W.

    2015-12-01

    Radio occultation utilizing deep space telecommunication signals has been used with great success in the profiling of planetary atmospheres and ionospheres since the 1960s. A shortcoming of this technique, however, is the limited temporal and spatial sampling that it provides. We consider a different approach where radio occultation measurements are taken between two spacecraft orbiting an extra-terrestrial body. Such "crosslink" radio occultations between the Global Positioning System satellites and low-earth orbiting spacecraft have been routinely acquired to provide global observations of the Earth's atmosphere and ionosphere that are used for weather forecast, climate analysis, and space weather applications. The feasibility of applying this concept to other planets has recently been demonstrated for the first time, where crosslink occultation measurements have been acquired between the Mars Odyssey and Mars Reconnaissance Orbiter spacecraft. These measurements leverage the proximity link telecommunication payloads on each orbiter, which are nominally used to provide relay communication and navigation services to Mars landers and rovers. In this presentation, we will describe the Mars crosslink experiments and the corresponding data analysis in detail. In addition, we will discuss how the crosslink occultation concepts can be effectively applied in future space exploration missions.

  6. Infrared quantitative spectroscopy and planetary atmospheres

    Science.gov (United States)

    Flaud, J.-M.

    2009-04-01

    Optical measurements of atmospheric minor constituents are carried out using spectrometers working in the UV-visible, infrared and microwave spectral ranges. In all cases the quality of the analysis and of the interpretation of the atmospheric spectra requires the best possible knowledge of the molecular parameters of the species of interest. To illustrate this point we will concentrate on recent laboratory studies of nitric acid, chlorine nitrate and formaldehyde. Nitric acid is one of the important minor constituent of the terrestrial atmosphere. Using new and accurate experimental results concerning the spectroscopic properties of the H14NO3 and H15NO3 molecules, as well as improved theoretical methods (Perrin et al., 2004), it has been possible to generate an improved set of line parameters for these molecules in the 11.2 μm spectral region. These line parameters were used to detect for the first time the H15NO3 molecule in the atmosphere analyzing atmospheric spectra recorded by the MIPAS experiment. The retrievals of chlorine nitrate profiles are usually performed using absorption cross sections (Birk and Wagner, 2003). Following a high resolution analysis of the ν3 and ν4bands of this species in the 12.8 μm region wepropose, as a possibility, to use line by line calculation simulating its ν4Q-branch for the atmospheric temperature and pressure ranges. For the measurement of atmospheric formaldehyde concentrations, mid-infrared and ultraviolet absorptions are both used by ground, air or satellite instruments. It is then of the utmost importance to have consistent spectral parameters in these various spectral domains. Consequently the aim of the study performed at LISA (Gratien et al., 2007) was to intercalibrate formaldehyde spectra in the infrared and ultraviolet regions acquiring simultaneously UV and IR spectra using a common optical cell. The results of the work will be presented. Also high resolution infrared data derived from Perrin et al., 2003

  7. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  8. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  9. Reflection and transmission of polarized light by planetary atmospheres

    International Nuclear Information System (INIS)

    Rooij, W.A. de.

    1985-01-01

    In this thesis the reflection and transmission of sunlight by planetary atmospheres is studied, taking full account of the polarization of light. The atmospheres are treated as being locally plane-parallel, and are assumed to consist of a number of homogeneous layers, the lowest one being either a ground surface or a semi-infinite homogeneous layer. (Auth.)

  10. Time-dependent simulations of disk-embedded planetary atmospheres

    Science.gov (United States)

    Stökl, A.; Dorfi, E. A.

    2014-03-01

    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  11. Novel Space Exploration Technique for Analysing Planetary Atmospheres

    OpenAIRE

    Dekoulis, George

    2010-01-01

    The chapter presents a new reconfigurable wide-beam radio interferometer system for analysing planetary atmospheres. The system operates at frequencies, where the ionisation of the planetary plasma regions induces strong attenuation. For Earth, the attenuation is undistinguishable from the CMB at frequencies over 50 MHz. The system introduces a set of advanced specifications to this field of science, previously unseen in similar suborbital experiments. The reprogrammable dynamic range of the ...

  12. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    Science.gov (United States)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  13. The greenhouse effect of planetary atmospheres

    International Nuclear Information System (INIS)

    Kondratyev, K.Ya.; Moskalenko, N.I.

    1980-01-01

    The greenhouse effect of the atmosphere is the main factor of possible climate changes of anthropogenic origin. The growing pollution of the atmosphere leads to an increase of the concentration of various gaseous components. Of great importance is also the consideration of the aerosols. All the gaseous components, as well as aerosols, have the absorption bands in the IR spectral range. The traditional attention to the problem of the CO 2 contribution to the greenhouse effect has somewhat overshadowed the significance of the different components. The data characterizing the significance of the different components of the greenhouse effect are considered. The results of studying the absorption spectra of methane, nitrous oxides, sulphuric gas, ammonia, nitric-acid vapours and other components are discussed. The assessments of their contribution to the greenhouse effect are given. The important role of the small-size fraction of the atmospheric aerosols as a factor of the greenhouse effect is discussed. Both the analysis of the causes of the Earth's climate variability and the relevant investigation of the atmospheric greenhouse effect determine the expediency of analysing the conditions of the greenhouse effect formation on other planets. Laboratory studies of the IR absorption spectra of synthetic CO 2 atmospheres were carried out. Some results from these studies are discussed. (author)

  14. Environmental aspects: - Atmospheric, - aquatic, - terrestrial dispersion of radionuclides

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1982-01-01

    After general introductory remarks the paper deals with the dispersion of radionuclides in the atmosphere and in the aquatic environment as well as with the transfer through the terrestrial environment. (RW)

  15. Actions of magnetospheres on planetary atmospheres

    International Nuclear Information System (INIS)

    Hultqvist, Bengt.

    1989-12-01

    Planet Earth is rather special in terms of transfer of magnetospheric energy to the atmosphere (apart from Jupiter, which is extreme in almost all respects). The auroral particle energy input rate to the atmosphere per unit area, and therefore the resulting auroral emission intensity, is second only to that of Jupiter. The contribution of the Joule heating to the heating of the upper atmosphere, measured in terms of the energetic particle precipitation power, is probably larger on Earth than on all the other planets, possibly with the exception of Uranus (and perhaps Neptune, which we know nothing of when this is written). For all those planets which have a corotating plasmasphere extending to the magnetopause, the Joule heating power is small compared with the precipitating particle power. The extremely successful Pioneer and Voyager missions have provided us with most impressive sets of data from the outer planets and Phobos has recently added unique new data from Mars. Still, the conclusion that the observational basis for our understanding of the physics of the magnetosphere-atmosphere interactions at all the planets other than Earth is very limited, is a self-evident one. Even at Earth many aspects of this interaction are frontline areas of research. The grand tour of the Voyagers has demonstrated very clearly how different the magnetospheres and atmospheres of the various planets are and the very high degree of complexity of the plasma systems around the planets. Most questions of physics are still unanswered; those related to source and sink processes of the plasma and energetic particles being one set of examples. The Galileo and Cassini-Huygens missions will certainly contribute in very important ways to the answering of many open questions. (147 refs.)

  16. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  17. DETECTING AND CONSTRAINING N2 ABUNDANCES IN PLANETARY ATMOSPHERES USING COLLISIONAL PAIRS

    International Nuclear Information System (INIS)

    Schwieterman, Edward W.; Meadows, Victoria S.; Misra, Amit; Robinson, Tyler D.; Domagal-Goldman, Shawn

    2015-01-01

    Characterizing the bulk atmosphere of a terrestrial planet is important for determining surface pressure and potential habitability. Molecular nitrogen (N 2 ) constitutes the largest fraction of Earth's atmosphere and is likely to be a major constituent of many terrestrial exoplanet atmospheres. Due to its lack of significant absorption features, N 2 is extremely difficult to remotely detect. However, N 2 produces an N 2 –N 2 collisional pair, (N 2 ) 2 , which is spectrally active. Here we report the detection of (N 2 ) 2 in Earth's disk-integrated spectrum. By comparing spectra from NASA's EPOXI mission to synthetic spectra from the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model, we find that (N 2 ) 2 absorption produces a ∼35% decrease in flux at 4.15 μm. Quantifying N 2 could provide a means of determining bulk atmospheric composition for terrestrial exoplanets and could rule out abiotic O 2 generation, which is possible in rarefied atmospheres. To explore the potential effects of (N 2 ) 2 in exoplanet spectra, we used radiative transfer models to generate synthetic emission and transit transmission spectra of self-consistent N 2 –CO 2 –H 2 O atmospheres, and analytic N 2 –H 2 and N 2 –H 2 –CO 2 atmospheres. We show that (N 2 ) 2 absorption in the wings of the 4.3 μm CO 2 band is strongly dependent on N 2 partial pressures above 0.5 bar and can significantly widen this band in thick N 2 atmospheres. The (N 2 ) 2 transit transmission signal is up to 10 ppm for an Earth-size planet with an N 2 -dominated atmosphere orbiting within the habitable zone of an M5V star and could be substantially larger for planets with significant H 2 mixing ratios

  18. Origin and Evolution of Planetary Atmospheres Implications for Habitability

    CERN Document Server

    Lammer, Helmut

    2013-01-01

    Based on the author’s own work and results obtained by international teams he coordinated, this SpringerBrief offers a concise discussion of the origin and early evolution of atmospheres of terrestrial planets during the active phase of their host stars, as well as of the environmental conditions which are necessary in order for planets like the Earth to obtain N_2-rich atmospheres. Possible thermal and non-thermal atmospheric escape processes are discussed in a comparative way between the planets in the Solar System and exoplanets. Lastly, a hypothesis for how to test and study the discussed atmosphere evolution theories using future UV transit observations of terrestrial exoplanets within the orbits of dwarf stars is presented.

  19. A Department of Atmospheric and Planetary Sciences at Hampton University

    Science.gov (United States)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will

  20. Upper atmospheric planetary-wave and gravity-wave observations

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  1. Dications and thermal ions in planetary atmospheric escape

    Science.gov (United States)

    Lilensten, J.; Simon Wedlund, C.; Barthélémy, M.; Thissen, R.; Ehrenreich, D.; Gronoff, G.; Witasse, O.

    2013-01-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly energetic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. The goal of this study is to assess the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions. We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO2++ for a simplified single constituent atmosphere of a case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering, etc.), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished and even contribute only marginally to this loss. We show that with these two mechanisms, the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible. When simulating the hot Jupiter HD 209458 b, the two processes cannot explain the measured escape flux of C+. This study shows that the dications may constitute a source of the escape of planetary atmospheres which had not been taken into account until now. This source, although marginal, is not negligible. The influence of the photoionization is of course large, but cannot explain alone the loss of Mars

  2. Dinamics of hydrogen in terrestrial atmosphere

    International Nuclear Information System (INIS)

    Roamntan, A.; Mercea, V.; Ristoiu, D.; Ursu, D.

    1981-01-01

    Thishs monographic study presents the dynamics of hydrogen in t e Earth's atmosphere. Atomic hydrogen is produced in the homosphere through a complex system of chemical reaction in wich molecules of 2 , H 2 O, C 4 s ''parent '' molecules are involved. The maximum production of H appears at 8O km resulting a concentration of the order of 10 8 cm -3 . There is a correlation between the total mixing ratio of hydrogen in the homosphere and the global escape flux from the Earth's atmosphere. Two new physical mechanisms which may have a substantial contribution to the total escape flux are presented: ''polar wind'' and charge exchange of H with ''hot'' protons. The possibilities of accretion of hydrogen, as atomic hydrogen or as water from the Earth's atmosphere, are analysed in brief. (authors)

  3. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  4. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    Science.gov (United States)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  5. The Possible Role of Penning Ionization Processes in Planetary Atmospheres

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2015-03-01

    Full Text Available In this paper we suggest Penning ionization as an important route of formation for ionic species in upper planetary atmospheres. Our goal is to provide relevant tools to researchers working on kinetic models of atmospheric interest, in order to include Penning ionizations in their calculations as fast processes promoting reactions that cannot be neglected. Ions are extremely important for the transmission of radio and satellite signals, and they govern the chemistry of planetary ionospheres. Molecular ions have also been detected in comet tails. In this paper recent experimental results concerning production of simple ionic species of atmospheric interest are presented and discussed. Such results concern the formation of free ions in collisional ionization of H2O, H2S, and NH3 induced by highly excited species (Penning ionization as metastable noble gas atoms. The effect of Penning ionization still has not been considered in the modeling of terrestrial and extraterrestrial objects so far, even, though metastable helium is formed by radiative recombination of He+ ions with electrons. Because helium is the second most abundant element of the universe, Penning ionization of atomic or molecular species by He*(23S1 is plausibly an active route of ionization in relatively dense environments exposed to cosmic rays.

  6. Model atmospheres and parameters of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Patriarchi, P.; Cerruti-sola, M.; Perinotto, M.

    1989-01-01

    Non-LTE hydrogen and helium model atmospheres have been obtained for temperatures and gravities relevant to the central stars of planetary nebulae. Low-resolution and high-resolution observations obtained by the IUE satellite have been used along with optical data to determine Zanstra temperatures of the central stars of NGC 1535, NGC 6210, NGC 7009, IC 418, and IC 4593. Comparison of the observed stellar continuum of these stars with theoretical results allowed further information on the stellar temperature to be derived. The final temperatures are used to calculate accurate stellar parameters. 62 refs

  7. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  8. Late Impacts and the Origins of the Atmospheres on the Terrestrial Planets

    Science.gov (United States)

    Mukhopadhyay, S.; Stewart, S. T.; Lock, S. J.; Parai, R.; Tucker, J. M.

    2014-12-01

    Models for the origin of terrestrial atmospheres typically require an intricate sequence of events, including hydrodynamic escape, outgassing of mantle volatiles and late delivery. Here we discuss the origin of the atmospheres on the terrestrial planets in light of new ideas about the formation of the Moon, giant impact induced atmospheric loss and recent noble gas measurements. Our new measurements indicate that noble gases in the Earth's atmosphere cannot be derived from any combination of fractionation of a nebular-derived atmosphere followed by outgassing of deep or shallow mantle volatiles. While Ne in the mantle retains a nebular component, the present-day atmosphere has no memory of nebular gases. Rather, atmospheric noble gases have a close affinity to chondrites. On the other hand, Venus's atmosphere has 20 and 70 times higher abundance of 20Ne and 36Ar, respectively, and a 20Ne/22Ne ratio closer to the solar value than Earth's atmosphere. While the present atmosphere of Mars is significantly fractionated in the lighter noble gases due to long term atmospheric escape, the Kr isotopic ratios in Martian atmosphere are identical to solar. Thus, while Earth's atmosphere has no memory of accretion of nebular gases, atmospheres on both Venus and Mars preserve at least a component of nebular gases. To explain the above observations, we propose that a common set of processes operated on the terrestrial planets, and that their subsequent evolutionary divergence is simply explained by planetary size and the stochastic nature of giant impacts. We present geochemical observations and simulations of giant impacts to show that most of Earth's mantle was degassed and the outgassed volatiles were largely lost during the final sequence of giant impacts onto Earth. Earth's noble gases were therefore dominantly derived from late-accreting planetesimals. In contrast, Venus did not suffer substantial atmospheric loss by a late giant impact and retains a higher abundance of

  9. Time-Dependent Simulations of the Formation and Evolution of Disk-Accreted Atmospheres Around Terrestrial Planets

    Science.gov (United States)

    Stoekl, Alexander; Dorfi, Ernst

    2014-05-01

    In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual

  10. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment.

    Science.gov (United States)

    Newbold, Tim; Hudson, Lawrence N; Arnell, Andrew P; Contu, Sara; De Palma, Adriana; Ferrier, Simon; Hill, Samantha L L; Hoskins, Andrew J; Lysenko, Igor; Phillips, Helen R P; Burton, Victoria J; Chng, Charlotte W T; Emerson, Susan; Gao, Di; Pask-Hale, Gwilym; Hutton, Jon; Jung, Martin; Sanchez-Ortiz, Katia; Simmons, Benno I; Whitmee, Sarah; Zhang, Hanbin; Scharlemann, Jörn P W; Purvis, Andy

    2016-07-15

    Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary ("safe limit"). We estimate that land use and related pressures have already reduced local biodiversity intactness--the average proportion of natural biodiversity remaining in local ecosystems--beyond its recently proposed planetary boundary across 58.1% of the world's land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development. Copyright © 2016, American Association for the Advancement of Science.

  11. LOW Mg/Si PLANETARY HOST STARS AND THEIR Mg-DEPLETED TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Carter-Bond, Jade C.; O' Brien, David P. [Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719 (United States); Delgado Mena, Elisa; Israelian, Garik; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Santos, Nuno C., E-mail: j.bond@unsw.edu.au [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-03-15

    Simulations have shown that a diverse range of extrasolar terrestrial planet bulk compositions are likely to exist based on the observed variations in host star elemental abundances. Based on recent studies, it is expected that a significant proportion of host stars may have Mg/Si ratios below 1. Here we examine this previously neglected group of systems. Planets simulated as forming within these systems are found to be Mg-depleted (compared to Earth), consisting of silicate species such as pyroxene and various feldspars. Planetary carbon abundances also vary in accordance with the host star C/O ratio. The predicted abundances are in keeping with observations of polluted white dwarfs, lending validity to this approach. Further studies are required to determine the full planetary impacts of the bulk compositions predicted here.

  12. DETECTING AND CONSTRAINING N{sub 2} ABUNDANCES IN PLANETARY ATMOSPHERES USING COLLISIONAL PAIRS

    Energy Technology Data Exchange (ETDEWEB)

    Schwieterman, Edward W.; Meadows, Victoria S.; Misra, Amit [Astronomy Department, University of Washington, Seattle, WA 98115 (United States); Robinson, Tyler D.; Domagal-Goldman, Shawn, E-mail: eschwiet@uw.edu [NAI Virtual Planetary Laboratory, Seattle, WA 98115 (United States)

    2015-09-01

    Characterizing the bulk atmosphere of a terrestrial planet is important for determining surface pressure and potential habitability. Molecular nitrogen (N{sub 2}) constitutes the largest fraction of Earth's atmosphere and is likely to be a major constituent of many terrestrial exoplanet atmospheres. Due to its lack of significant absorption features, N{sub 2} is extremely difficult to remotely detect. However, N{sub 2} produces an N{sub 2}–N{sub 2} collisional pair, (N{sub 2}){sub 2}, which is spectrally active. Here we report the detection of (N{sub 2}){sub 2} in Earth's disk-integrated spectrum. By comparing spectra from NASA's EPOXI mission to synthetic spectra from the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model, we find that (N{sub 2}){sub 2} absorption produces a ∼35% decrease in flux at 4.15 μm. Quantifying N{sub 2} could provide a means of determining bulk atmospheric composition for terrestrial exoplanets and could rule out abiotic O{sub 2} generation, which is possible in rarefied atmospheres. To explore the potential effects of (N{sub 2}){sub 2} in exoplanet spectra, we used radiative transfer models to generate synthetic emission and transit transmission spectra of self-consistent N{sub 2}–CO{sub 2}–H{sub 2}O atmospheres, and analytic N{sub 2}–H{sub 2} and N{sub 2}–H{sub 2}–CO{sub 2} atmospheres. We show that (N{sub 2}){sub 2} absorption in the wings of the 4.3 μm CO{sub 2} band is strongly dependent on N{sub 2} partial pressures above 0.5 bar and can significantly widen this band in thick N{sub 2} atmospheres. The (N{sub 2}){sub 2} transit transmission signal is up to 10 ppm for an Earth-size planet with an N{sub 2}-dominated atmosphere orbiting within the habitable zone of an M5V star and could be substantially larger for planets with significant H{sub 2} mixing ratios.

  13. Characterization and evolution of distant planetary atmospheres using stellar occultations

    Science.gov (United States)

    Young, L. A.

    2008-09-01

    for understanding the energy balance in upper atmospheres, interpreting thermal emission, and studying dynamics. These vertical profiles include small-scale fluctuations generally associated with gravity waves. While the 1988 Pluto occultation light curve was remarkably smooth, more recent Pluto occultations show spikes indicative of these small-scale dynamics. When an atmospheric occultation is observed from several sites, or when a single site is near enough to the shadow center to observe solar flux refracted from multiple locations in the occulting atmosphere, it is possible to study the two- or three-dimensional structure of an atmosphere. The simplest example is the oblateness of the atmosphere derived from the shape of an isobar [7], but more complex analyses are also possible. A comparison of the temperatures at different latitudes or local times of day can shed light on the relative importance of radiative equilibrium and dynamics to the energetics of an atmosphere, as has been done for the 2006 June 12 occultation by Pluto [4]. Closely spaced sites can be used to derive the two-dimensional shape and aspect ratio of temperature and density fluctuations [5,8], aiding the identification of the generating sources of these fluctuations. Occultation observations over a long time span are used to study the long-term evolution of an atmosphere. Both Triton and Pluto have shown large changes in their pressures since the late 1980's that is almost certainly related to changes in the temperature of their surface ices. The temperatures in the Uranian upper atmosphere increased before the previous solstice, and reverted to cooler temperatures a decade later, perhaps indicative of adiabatic cooling [9]. Recent improvements in astrometric catalogs, occultation-capable cameras (with low read noise, high readout rates, and little or no dead time), and easy access to accurate timing can greatly improve the quality, spatial sampling, and frequency of occultations by planetary

  14. Optimal Strategies for Probing Terrestrial Exoplanet Atmospheres with JWST

    Science.gov (United States)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael

    2018-01-01

    It is imperative that the exoplanet community determines the feasibility and the resources needed to yield high fidelity atmospheric compositions from terrestrial exoplanets. In particular, LHS 1140b and the TRAPPIST-1 system, already slated for observations by JWST’s Guaranteed Time Observers, will be the first two terrestrial planets observed by JWST. I will discuss optimal observing strategies for observing these two systems, focusing on the NIRSpec Prism (1-5μm) and the combination of NIRISS SOSS (1-2.7μm) and NIRSpec G395H (3-5μm). I will also introduce currently unsupported JWST readmodes that have the potential to greatly increase the precision on our atmospheric spectra. Lastly, I will use information content theory to compute the expected confidence interval on the retrieved abundances of key molecular species and temperature profiles as a function of JWST observing cycles.

  15. Climatic Evolution and Habitability of Terrestrial Planets: Perspectives from Coupled Atmosphere-Mantle Systems

    Science.gov (United States)

    Basu Sarkar, D.; Moore, W. B.

    2016-12-01

    A multitude of factors including the distance from the host star and the stage of planetary evolution affect planetary climate and habitability. The complex interactions between the atmosphere and dynamics of the deep interior of the planets along with stellar fluxes present a formidable challenge. This work employs simplified approaches to address these complex issues in a systematic way. To be specific, we are investigating the coupled evolution of atmosphere and mantle dynamics. The overarching goal here is to simulate the evolutionary history of the terrestrial planets, for example Venus, Earth and Mars. This research also aims at deciphering the history of Venus-like runaway greenhouse and thus explore the possibility of cataclysmic shifts in climate of Earth-like planets. We focus on volatile cycling within the solid planets to understand the role of carbon/water in climatic and tectonic outcomes of such planets. In doing so, we are considering the feedbacks in the coupled mantle-atmosphere system. The primary feedback between the atmosphere and mantle is the surface temperature established by the greenhouse effect, which regulates the temperature gradient that drives the mantle convection and controls the rate at which volatiles are exchanged through weathering. We start our models with different initial assumptions to determine the final climate outcomes within a reasonable parameter space. Currently, there are very few planetary examples, to sample the climate outcomes, however this will soon change as exoplanets are discovered and examined. Therefore, we will be able to work with a significant number of potential candidates to answer questions like this one: For every Earth is there one Venus? ten? a thousand?

  16. Parameterization of planetary wave breaking in the middle atmosphere

    Science.gov (United States)

    Garcia, Rolando R.

    1991-01-01

    A parameterization of planetary wave breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single wave and the zonal-mean state. The parameterization is based on the assumption that wave breaking represents a steady-state equilibrium between the flux of wave activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary wave. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for wave activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity wave breaking, but the formulation in terms of wave activity helps highlight the central role of the wave group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of wave breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary wave transport.

  17. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics opens with coverage of the atmospheres, ionospheres and magnetospheres of the Earth, Venus and Mars and the magnetosphere of Mercury. The book then provides an introduction to meteorology and treating the physics and chemistry of these areas in considerable detail. What follows are the structure, composition, particle environments, satellites, and rings of Jupiter, Saturn, Uranus and Neptune, making abundant use of results from space probes. Solar System Astrophysics follows the history, orbits, structure, origin and demise of comets and the physics of meteors and provides a thorough treatment of meteorites, the asteroids and, in the outer solar system, the Kuiper Belt objects. The methods and results of extrasolar planet searches, the distinctions between stars, brown dwarfs, and planets, and the origins of planetary systems are examined. Historical introductions precede the development and discussion in most chapters. A series of challenges, useful as homework assignments or as foc...

  18. Regionally strong feedbacks between the atmosphere and terrestrial biosphere

    Science.gov (United States)

    Green, Julia K.; Konings, Alexandra G.; Alemohammad, Seyed Hamed; Berry, Joseph; Entekhabi, Dara; Kolassa, Jana; Lee, Jung-Eun; Gentine, Pierre

    2017-06-01

    The terrestrial biosphere and atmosphere interact through a series of feedback loops. Variability in terrestrial vegetation growth and phenology can modulate fluxes of water and energy to the atmosphere, and thus affect the climatic conditions that in turn regulate vegetation dynamics. Here we analyse satellite observations of solar-induced fluorescence, precipitation, and radiation using a multivariate statistical technique. We find that biosphere-atmosphere feedbacks are globally widespread and regionally strong: they explain up to 30% of precipitation and surface radiation variance in regions where feedbacks occur. Substantial biosphere-precipitation feedbacks are often found in regions that are transitional between energy and water limitation, such as semi-arid or monsoonal regions. Substantial biosphere-radiation feedbacks are often present in several moderately wet regions and in the Mediterranean, where precipitation and radiation increase vegetation growth. Enhancement of latent and sensible heat transfer from vegetation accompanies this growth, which increases boundary layer height and convection, affecting cloudiness, and consequently incident surface radiation. Enhanced evapotranspiration can increase moist convection, leading to increased precipitation. Earth system models underestimate these precipitation and radiation feedbacks mainly because they underestimate the biosphere response to radiation and water availability. We conclude that biosphere-atmosphere feedbacks cluster in specific climatic regions that help determine the net CO2 balance of the biosphere.

  19. Water loss from terrestrial planets with CO2-rich atmospheres

    International Nuclear Information System (INIS)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO 2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO 2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO 2 -rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m –2 (global mean) unlikely to lose more than one Earth ocean of H 2 O over their lifetimes unless they lose all their atmospheric N 2 /CO 2 early on. Because of the variability of H 2 O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO 2 /H 2 O-rich atmospheres, and high mean surface temperatures.

  20. New constraints on terrestrial and oceanic sources of atmospheric methanol

    Directory of Open Access Journals (Sweden)

    D. B. Millet

    2008-12-01

    Full Text Available We use a global 3-D chemical transport model (GEOS-Chem to interpret new aircraft, surface, and oceanic observations of methanol in terms of the constraints that they place on the atmospheric methanol budget. Recent measurements of methanol concentrations in the ocean mixed layer (OML imply that in situ biological production must be the main methanol source in the OML, dominating over uptake from the atmosphere. It follows that oceanic emission and uptake must be viewed as independent terms in the atmospheric methanol budget. We deduce that the marine biosphere is a large primary source (85 Tg a−1 of methanol to the atmosphere and is also a large sink (101 Tg a−1, comparable in magnitude to atmospheric oxidation by OH (88 Tg a−1. The resulting atmospheric lifetime of methanol in the model is 4.7 days. Aircraft measurements in the North American boundary layer imply that terrestrial plants are a much weaker source than presently thought, likely reflecting an overestimate of broadleaf tree emissions, and this is also generally consistent with surface measurements. We deduce a terrestrial plant source of 80 Tg a−1, comparable in magnitude to the ocean source. The aircraft measurements show a strong correlation with CO (R2=0.51−0.61 over North America during summer. We reproduce this correlation and slope in the model with the reduced plant source, which also confirms that the anthropogenic source of methanol must be small. Our reduced plant source also provides a better simulation of methanol observations over tropical South America.

  1. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    Science.gov (United States)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  2. Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2009-04-01

    Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.

  3. Intermediate Models of Planetary Circulations in the Atmosphere and Ocean.

    Science.gov (United States)

    McWilliams, James C.; Gent, Peter R.

    1980-08-01

    Large-scale extratropical motions (with dimensions comparable to, or somewhat smaller than, the planetary radius) in the atmosphere and ocean exhibit a more restricted range of phenomena than are admissible in the primitive equations for fluid motions, and there have been many previous proposals for simpler, more phenomenologically limited models of these motions. The oldest and most successful of these is the quasi-geostrophic model. An extensive discussion is made of models intermediate between the quasi-geostrophic and primitive ones, some of which have been previously proposed [e.g., the balance equations (BE), where tendencies in the equation for the divergent component of velocity are neglected, or the geostrophic momentum approximation (GM), where ageostrophic accelerations are neglected relative to geostrophic ones] and some of which are derived here. Virtues of these models are assessed in the dual measure of nearly geostrophic momentum balance (i.e., small Rossby number) and approximate frontal structure (i.e., larger along-axis velocities and length scales than their cross-axis counterparts), since one or both of these circumstances is usually characteristic of planetary motions. Consideration is also given to various coordinate transformations, since they can yield simpler expressions for the governing differential equations of the intermediate models. In particular, a new set of coordinates is proposed, isentropic geostrophic coordinates,(IGC), which has the advantage of making implicit the advections due to ageostrophic horizontal and vertical velocities under various approximations. A generalization of quasi-geostrophy is made. named hypo-geostrophy (HG), which is an asymptotic approximation of one higher order accuracy in Rossby number. The governing equations are simplest in IGC for both HG and GM; we name the latter in these coordinates isentropic semi-geostrophy (ISG), in analogy to Hoskins' (1975) semi-geostrophy (SG). HG, GM and BE are, in our

  4. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  5. Design and Simulation Tools for Planetary Atmospheric Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric entry is one of the most critical phases of flight during planetary exploration missions. During the design of an entry vehicle, experimental and...

  6. Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review

    International Nuclear Information System (INIS)

    Harmens, H.; Foan, L.; Simon, V.; Mills, G.

    2013-01-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes. - Highlights: ► Terrestrial mosses are suitable organisms to monitor deposition of POPs. ► They provide a good indication of spatial patterns and temporal trends. ► Mosses have been used as biomonitors of PAHs, PCBs, PBDEs dioxins and furans. ► Few studies have assessed the relationship between concentrations in air and mosses. - Mosses are suitable biomonitors of persistent organic pollutants (POPs).

  7. Large impact events and atmospheric evolution on the terrestrial planets

    International Nuclear Information System (INIS)

    Grinspoon, D.H.

    1989-01-01

    The first task undertaken is the characterization of the impact rates in the inner solar system during the present time, and during the first billion years of Solar System history when the flux was changing rapidly. Once defined, these fluxes are used to model the long term cumulative effect of multiple impacts on planetary atmospheres. The implications of cometary impacts on evolution of the water and deuterium abundances on Venus are examined. The short lifetime of water on Venus suggests that the water abundance is in quasi-steady-state balance between loss by escape and replenishment by infall. In addition, the observed deuterium-to-hydrogen ratio on Venus is consistent with a steady state and does not necessarily imply a past water excess. Results are presented of a model incorporating a stochastic cometary source and nonthermal escape of hydrogen that produces the observed water abundance and D/H ratio. The stochastic variability of each of these quantities is shown to be large. Water on Venus is likely to be in a near steady state mediated by large comet impacts. The early history of water on the planet has been obscured by a history of random impacts. A study of the effects of impact-generated dust clouds on the primitive Earth leads to the conclusion that such clouds were significant perturbers of the early climate. The Earth was shrouded by an optically-thick dust cloud for ∼150-250 m.y.. During this time the surface temperature was equal to the planetary equilibrium temperature unless significant heating by impacts or surface heat flow existed beneath the dust cloud. The epoch of continuous dust shrouding was followed by a period of stochastically intermittent dust clouds occurring at greater intervals as the early intense bombardment subsided towards the present day flux

  8. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Philpott, L. C. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Abe, F.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, P.O. Box 4800, Christchurch 8020 (New Zealand); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Christie, G. W.; Natusch, T. [Auckland Observatory, PO Box 180, Royal Oak, Auckland 1345 (New Zealand); Dionnet, Z. [Université d' Orsay, bat 470, F-91400 Orsay (France); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, 410 Seongbong-Rho, Hungduk-Gu, Chongju 371-763 (Korea, Republic of); Heyrovský, D. [Institute of Theoretical Physics, Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); McCormick, J. M. [Farm Cove Observatory, 2/24 Rapallo Place, Pakuranga, Auckland 2012 (New Zealand); Moorhouse, D. M. [Kumeu Observatory, Kumeu (New Zealand); Skowron, J., E-mail: mfre070@aucklanduni.ac.nz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warszawa (Poland); and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  9. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    Science.gov (United States)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at

  10. Model coupler for coupling of atmospheric, oceanic, and terrestrial models

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok

    2007-02-01

    A numerical simulation system SPEEDI-MP, which is applicable for various environmental studies, consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical databases for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. It is applicable for any models with three-dimensional structured grid system, which is used by most environmental and hydrodynamic models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  11. Effects of atmospheric deposition of pesticides on terrestrial organisms in the Netherlands

    NARCIS (Netherlands)

    Jong FMW de; Luttik R; SEC

    2004-01-01

    At present there is much focus on the atmospheric dispersal of pesticides. However, there is very little known about the effects of atmospheric deposition, especially in terrestrial ecosystems. In the study described here, a start has been made to clarify the possible effects on terrestrial

  12. The persistent and pernicious myth of the early CO2-N2 atmospheres of terrestrial planets

    Science.gov (United States)

    Shaw, G. H.

    2009-12-01

    The accepted model for early atmospheres of terrestrial planets has settled on a CO2-N2 composition. Unfortunately, while it is largely based on a brilliant geological analysis by Rubey, there is no compelling evidence whatsoever for such a composition as the first “permanent” atmosphere for Earth or any other planet. In fact, geological discoveries of the past 50+ years reveal several problems with a CO2-N2 atmosphere, some of which Rubey recognized in his own analysis. He clearly addressed the problem of timing of degassing, concluding that early massive degassing of CO2 would produce readily observed and profound effects, which are not evident. Modeling and constraints on the timing of planetary accretion and core formation indicate massive early degassing. If early degassing emitted CO2-N2, the effects are concealed. Plate tectonic recycling is not a solution, as conditions would have persisted beyond the time of the earliest rocks, which do not show the effects. Attempts to return degassed CO2 to the mantle are not only ad hoc, but inconsistent with early thermal structure of the Earth. Second, production of prebiotic organic compounds from a CO2-N2 atmosphere has been a nagging problem. At best this has been addressed by invoking hydrogen production from the mantle to provide reducing capacity. While hydrogen may be emitted in volcanic eruptions, it is exceedingly difficult to imagine this process generating enough organics to yield high concentrations in a global ocean. The recent fashion of invoking organic synthesis at deep-sea vents suffers from the same problem: how to achieve sufficient concentrations of organics in a global ocean by abiotic synthesis when hydrothermal activity stirs the solution and carries the prebiotic products off to great dilution? Suggesting life began at deep-sea vents, and continues to carry on chemosynthesis there, begs the question. Unless you get high enough concentrations of prebiotics by abiotic processes, you simply

  13. Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate

    Science.gov (United States)

    Faulk, Sean

    This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.

  14. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN

    International Nuclear Information System (INIS)

    Rozanov, V.V.; Rozanov, A.V.; Kokhanovsky, A.A.; Burrows, J.P.

    2014-01-01

    SCIATRAN is a comprehensive software package for the modeling of radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40μm) including multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The software is capable of modeling spectral and angular distributions of the intensity or the Stokes vector of the transmitted, scattered, reflected, and emitted radiation assuming either a plane-parallel or a spherical atmosphere. Simulations are done either in the scalar or in the vector mode (i.e. accounting for the polarization) for observations by space-, air-, ship- and balloon-borne, ground-based, and underwater instruments in various viewing geometries (nadir, off-nadir, limb, occultation, zenith-sky, off-axis). All significant radiative transfer processes are accounted for. These are, e.g. the Rayleigh scattering, scattering by aerosol and cloud particles, absorption by gaseous components, and bidirectional reflection by an underlying surface including Fresnel reflection from a flat or roughened ocean surface. The software package contains several radiative transfer solvers including finite difference and discrete-ordinate techniques, an extensive database, and a specific module for solving inverse problems. In contrast to many other radiative transfer codes, SCIATRAN incorporates an efficient approach to calculate the so-called Jacobians, i.e. derivatives of the intensity with respect to various atmospheric and surface parameters. In this paper we discuss numerical methods used in SCIATRAN to solve the scalar and vector radiative transfer equation, describe databases of atmospheric, oceanic, and surface parameters incorporated in SCIATRAN, and demonstrate how to solve some selected radiative transfer problems using the SCIATRAN package. During the last decades, a lot of studies have been published demonstrating that SCIATRAN is a valuable

  15. Energy Balance Models of planetary climate as a tool for investigating the habitability of terrestrial planets and its evolution

    Science.gov (United States)

    Ferri, G.; Murante, G.; Provenzale, A.; Silva, L.; Vladilo, G.

    2012-04-01

    The study of the habitability and potential for life formation of terrestrial planets requires a considerable work of modelization owing to the limited amount of experimental constraints typical of this type of research. As an example, the paucity of experimental Archean data severely limits the study of the habitability of the primitive Earth at the epoch of the origin of life. In the case of exoplanets the amount of experimental information available is quite limited and the need for modelization strong. Here we focus on the modelization of the surface planetary temperature, a key thermodynamical quantity used to define the habitability. Energy Balance Models (EBM) of planetary climate provide a simple way to calculate the temperature-latitude profile of terrestrial planets with a small amount of computing resources. Thanks to this fact EBMs offer an excellent tool to exploring a wide range of parameter space and therefore testing the effects of variations of physical/chemical quantities unconstrained by experimental data. In particular, one can easily probe possible scenarios of habitability at different stages of planetary evolution. We have recently implemented one-dimensional EBMs featuring the possibility of probing variations of astronomical and geophysical parameters, such as stellar luminosity, orbital semi-major axis and eccentricity, obliquity of the planetary axis, planet rotational velocity, land/ocean surface fractions and thermal capacities, and latitudinal heat diffusion. After testing our models against results obtained in previous work (Williams & Kasting 1997, Icarus, 129, 254; Spiegel et al. 2008, ApJ, 681, 1609), we introduced a novel parametrization of the diffusion coefficient as a function of the stellar zenith distance. Our models have been validated using the mean temperature-latitude profiles of the present Earth and its seasonal variations; the global albedo has been used as an additional constraint. In this work we present specific

  16. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  17. Biological modulation of planetary atmospheres: The early Earth scenario

    Science.gov (United States)

    Schidlowski, M.

    1985-01-01

    The establishment and subsequent evolution of life on Earth had a profound impact on the chemical regime at the planet's surface and its atmosphere. A thermodynamic gradient was imposed on near-surface environments that served as the driving force for a number on important geochemical transformations. An example is the redox imbalance between the modern atmosphere and the material of the Earth's crust. Current photochemical models predict extremely low partial pressures of oxygen in the Earth's prebiological atmosphere. There is widespread consensus that any large-scale oxygenation of the primitive atmosphere was contingent on the advent of biological (autotrophic) carbon fixation. It is suggested that photoautotrophy existed both as a biochemical process and as a geochemical agent since at least 3.8 Ga ago. Combining the stoichiometry of the photosynthesis reaction with a carbon isotope mass balance and current concepts for the evolution of the stationary sedimentary mass as a funion of time, it is possible to quantify, the accumulation of oxygen and its photosynthetic oxidation equivalents through Earth history.

  18. TU Berlin Rover Family for Terrestrial Testing of Complex Planetary Mission Scenarios

    Science.gov (United States)

    Kryza, L.; Brieß, K.

    2018-04-01

    The TU Berlin has developed a family of planetary rovers for educational use and research activities. The paper will introduce these cost-effective systems, which can be used for analogue mission demonstration on Earth.

  19. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    Science.gov (United States)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  20. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    Science.gov (United States)

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  1. Effects of dissociative recombination on the composition of planetary atmospheres

    International Nuclear Information System (INIS)

    Fox, Jane L

    2005-01-01

    Because dissociative recombination (DR) reactions of molecular ions are often highly exothermic, in the thermospheres of the Earth and planets DR may be a source of translationally and internally excited fragments. DR is important, therefore, for thermospheric neutral heating; if the excited fragments radiate to space, however, DR may be also a source of thermospheric cooling. DR may produce metastable fragments, which may live long enough to participate in reactions that are not available to ground state species. It is rare, however, for DR to be a significant source of minor species in their ground states. An exception appears to be the DR of CO + 2 , which has recently been found to produce C + O 2 about 9% of the time by Seiersen et al.. Because of the significant rearrangement of bonds that must take place, the branching ratio for the latter channel has been assumed to be negligible, and DR of CO + 2 has been assumed to produce mainly CO + O. In order to test the effect of including the branching ratio of CO + 2 DR that produces C + O 2 on the ambient densities of thermal and escaping C in planetary thermospheres,we have we have constructed revised models of the thermospheres/ionospheres of Mars and Venus. Because of space limitations, we discuss here only the high solar activity models. For Mars, we find that DR of CO + 2 is the most important source of thermal C, but that the production rate of escaping C is not increased. There are important differences between the thermospheres of Venus and Mars, and we find that the inclusion of the C + O 2 channel in the Venus models increases the production rate of atomic carbon in the Venus thermosphere by only 10-16%. At high altitudes on Venus, C + is mostly produced by photoionization and electron-impact ionization of C, with some contribution from the charge transfer reaction, O + + C → C + + O. We compare our computed C density altitude profiles to those inferred by Paxton from Pioneer Venus Orbiter Ultraviolet

  2. Dissociative recombination in reactive flows related to planetary atmospheric entries

    Directory of Open Access Journals (Sweden)

    Bultel Arnaud

    2015-01-01

    Full Text Available The Dissociative Recombination (DR processes play a significant role in plasma chemistry. This article illustrates this role from the modeling point of view in the case of reactive flows related to atmospheric entry plasmas. Two situations are investigated, for which the studied plasma is nitrogen. The first configuration corresponds to the relaxation process behind a strong shock wave moving at high Mach number in a shock tube, the second one to the recombination taking place in an expanding plasma flowing in a diverging nozzle. In both cases, the collisional-radiative model CoRaM-N2, involving N2, N, N2+, N+ and electrons, is implemented in an Eulerian 1D code able to compute the aerodynamic fields; calculations are performed in standard conditions. We show that, according to the rate coefficients used for the DR processes, the population density of the charged species especially N2+ is strongly modified only for the post-shock flow.

  3. Planetary Atmosphere and Surfaces Chamber (PASC: A Platform to Address Various Challenges in Astrobiology

    Directory of Open Access Journals (Sweden)

    Eva Mateo-Marti

    2014-08-01

    Full Text Available The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres’ conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces

  4. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Science.gov (United States)

    Oschlies, A.

    2009-08-01

    The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere

  5. Analytical design of sensors for measuring during terminal phase of atmospheric temperature planetary entry

    Science.gov (United States)

    Millard, J. P.; Green, M. J.; Sommer, S. C.

    1972-01-01

    An analytical study was conducted to develop a sensor for measuring the temperature of a planetary atmosphere from an entry vehicle traveling at supersonic speeds and having a detached shock. Such a sensor has been used in the Planetary Atmosphere Experiments Test Probe (PAET) mission and is planned for the Viking-Mars mission. The study specifically considered butt-welded thermocouple sensors stretched between two support posts; however, the factors considered are sufficiently general to apply to other sensors as well. This study included: (1) an investigation of the relation between sensor-measured temperature and free-stream conditions; (2) an evaluation of the effects of extraneous sources of heat; (3) the development of a computer program for evaluating sensor response during entry; and (4) a parametric study of sensor design characteristics.

  6. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  7. A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu

    2017-01-01

    In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of 'terrestrial ecosystem model' was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems. (author)

  8. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    Science.gov (United States)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  9. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    Science.gov (United States)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  10. Enabling novel planetary and terrestrial mechanisms using electroactive materials at the JPL's NDEAA Lab

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Lih, Shyh-Shiuh

    2004-01-01

    Increasingly, electroactive materials are used to produce acutators, sensors, displays and other elements of mechanisms and devices. In recognition of the potential of these materials, research at the JPL's NDEAA Lab have led to many novel space and terrestrial applications. This effort involves mostly the use of piezoelectric and electroactive polymers (EAP).

  11. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.

    Science.gov (United States)

    Harmens, H; Foan, L; Simon, V; Mills, G

    2013-02-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  13. The role of nonlinear self-interaction in the dynamics of planetary-scale atmospheric fluctuations

    International Nuclear Information System (INIS)

    Saffioti, C; Malguzzi, P; Speranza, A

    2016-01-01

    A central role in the general circulation of the atmosphere is played by planetary-scale inertial fluctuations with zonal wavenumber in the range k  = 1–4. Geopotential variance in this range is markedly non-gaussian and a great fraction of it is non-propagating, in contrast with the normal distribution of amplitudes and the basically propagating character of fluctuations in the baroclinic range (3 <  k  < 15). While a wave dispersion relationship can be identified in the baroclinic range, no clear relationship between time and space scales emerges in the ultra-long regime ( k  < 5, period >10 days). We investigate the hypothesis that nonlinear self-interaction of planetary waves influences the mobility (and, therefore, the dispersion) of ultra-long planetary fluctuations. By means of a perturbation expansion of the barotropic vorticity equation we derive a minimal analytic description of the impact of self-nonlinearity on mobility and we show that this is responsible for a correction term to phase speed, with the prevalent effect of slowing down the propagation of waves. The intensity of nonlinear self-interaction is shown to increase with the complexity of the flow, depending on both its zonal and meridional modulations. Reanalysis data of geopotential height and zonal wind are analysed in order to test the effect of self-nonlinearity on observed planetary flows. (paper)

  14. NASA's Planetary Data System: Support for the Delivery of Derived Data Sets at the Atmospheres Node

    Science.gov (United States)

    Chanover, Nancy J.; Beebe, Reta; Neakrase, Lynn; Huber, Lyle; Rees, Shannon; Hornung, Danae

    2015-11-01

    NASA’s Planetary Data System is charged with archiving electronic data products from NASA planetary missions that are sponsored by NASA’s Science Mission Directorate. This archive, currently organized by science disciplines, uses standards for describing and storing data that are designed to enable future scientists who are unfamiliar with the original experiments to analyze the data, and to do this using a variety of computer platforms, with no additional support. These standards address the data structure, description contents, and media design. The new requirement in the NASA ROSES-2015 Research Announcement to include a Data Management Plan will result in an increase in the number of derived data sets that are being delivered to the PDS. These data sets may come from the Planetary Data Archiving, Restoration and Tools (PDART) program, other Data Analysis Programs (DAPs) or be volunteered by individuals who are publishing the results of their analysis. In response to this increase, the PDS Atmospheres Node is developing a set of guidelines and user tools to make the process of archiving these derived data products more efficient. Here we provide a description of Atmospheres Node resources, including a letter of support for the proposal stage, a communication schedule for the planned archive effort, product label samples and templates in extensible markup language (XML), documentation templates, and validation tools necessary for producing a PDS4-compliant derived data bundle(s) efficiently and accurately.

  15. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively, it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  16. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the

  17. MAVEN Observations of Escaping Planetary Ions from the Martian Atmosphere: Mass, Velocity, and Spatial Distributions

    Science.gov (United States)

    Dong, Yaxue; Fang, Xiaohua; Brain, D. A.; McFadden, James P.; Halekas, Jasper; Connerney, Jack

    2015-04-01

    The Mars-solar wind interaction accelerates and transports planetary ions away from the Martian atmosphere through a number of processes, including ‘pick-up’ by electromagnetic fields. The MAVEN spacecraft has made routine observations of escaping planetary ions since its arrival at Mars in September 2014. The SupraThermal And Thermal Ion Composition (STATIC) instrument measures the ion energy, mass, and angular spectra. It has detected energetic planetary ions during most of the spacecraft orbits, which are attributed to the pick-up process. We found significant variations in the escaping ion mass and velocity distributions from the STATIC data, which can be explained by factors such as varying solar wind conditions, contributions of particles from different source locations and different phases during the pick-up process. We also study the spatial distributions of different planetary ion species, which can provide insight into the physics of ion escaping process and enhance our understanding of atmospheric erosion by the solar wind. Our results will be further interpreted within the context of the upstream solar wind conditions measured by the MAVEN Solar Wind Ion Analyzer (SWIA) instrument and the magnetic field environment measured by the Magnetometer (MAG) instrument. Our study shows that the ion spatial distribution in the Mars-Sun-Electric-Field (MSE) coordinate system and the velocity space distribution with respect to the local magnetic field line can be used to distinguish the ions escaping through the polar plume and those through the tail region. The contribution of the polar plume ion escape to the total escape rate will also be discussed.

  18. The Effects of Atmospheric Nitrogen Deposition on Terrestrial and Freshwater Biodiversity

    NARCIS (Netherlands)

    Baron, J.S.; Barber, M.; Adams, M.; Dobben, van H.F.

    2014-01-01

    This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in

  19. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M. C.; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Heltai, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; StröM, J.; Haszpra, L.; Meijer, H. A J; van Der Laan, S.; Neubert, R. E M; Jordan, A.; Rodó, X.; Morguí, J. A.; Vermeulen, A. T.; Popa, Maria Elena; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (∼70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  20. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M.C.; Werf, van der G.R.; Houweling, S.; Jones, C.D.; Hughes, J.; Schaefer, K.; Masarie, K.A.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001–2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (~70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  1. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Helta, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; Strom, J.; Haszpra, L.; Meijer, H. A. J.; van der Laan, S.; Neubert, R. E. M.; Jordan, A.; Rodo, X.; Morgui, J. -A.; Vermeulen, A. T.; Popa, E.; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P. P.; Heltai, D.; Ström, J.

    We present an estimate of net ecosystem exchange (NEE) of CO(2) in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO(2) mole fraction observations (similar to 70 000) to guide relatively simple descriptions of terrestrial and oceanic net

  2. Estimating Terrestrial Wood Biomass from Observed Concentrations of Atmospheric Carbon Dioxide

    NARCIS (Netherlands)

    Schaefer, K. M.; Peters, W.; Carvalhais, N.; van der Werf, G.; Miller, J.

    2008-01-01

    We estimate terrestrial disequilibrium state and wood biomass from observed concentrations of atmospheric CO2 using the CarbonTracker system coupled to the SiBCASA biophysical model. Starting with a priori estimates of carbon flux from the land, ocean, and fossil fuels, CarbonTracker estimates net

  3. The Martian atmospheric water cycle as viewed from a terrestrial perspective

    Science.gov (United States)

    Zurek, Richard W.

    1988-01-01

    It is noted that the conditions of temperature and pressure that characterize the atmosphere of Mars are similar to those found in the Earth's stratosphere. Of particular significance is the fact that liquid water is unstable in both environments. Thus, it is expected that terrestrial studies of the dynamical behavior of stratospheric water should benefit the understanding of water transport on Mars as well.

  4. Planetary atmosphere models: A research and instructional web-based resource

    Science.gov (United States)

    Gray, Samuel Augustine

    The effects of altitude change on the temperature, pressure, density, and speed of sound were investigated. These effects have been documented in Global Reference Atmospheric Models (GRAMs) to be used in calculating the conditions in various parts of the atmosphere for several planets. Besides GRAMs, there are several websites that provide online calculators for the 1976 US Standard Atmosphere. This thesis presents the creation of an online calculator of the atmospheres of Earth, Mars, Venus, Titan, and Neptune. The websites consist of input forms for altitude and temperature adjustment followed by a results table for the calculated data. The first phase involved creating a spreadsheet reference based on the 1976 US Standard Atmosphere and other planetary GRAMs available. Microsoft Excel was used to input the equations and make a graphical representation of the temperature, pressure, density, and speed of sound change as altitude changed using equations obtained from the GRAMs. These spreadsheets were used later as a reference for the JavaScript code in both the design and comparison of the data output of the calculators. The websites were created using HTML, CSS, and JavaScript coding languages. The calculators could accurately display the temperature, pressure, density, and speed of sound of these planets from surface values to various stages within the atmosphere. These websites provide a resource for students involved in projects and classes that require knowledge of these changes in these atmospheres. This project also created a chance for new project topics to arise for future students involved in aeronautics and astronautics.

  5. THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Öberg, Karin I.; Murray-Clay, Ruth; Bergin, Edwin A.

    2011-01-01

    The C/O ratio is predicted to regulate the atmospheric chemistry in hot Jupiters. Recent observations suggest that some exoplanets, e.g., Wasp 12-b, have atmospheric C/O ratios substantially different from the solar value of 0.54. In this Letter, we present a mechanism that can produce such atmospheric deviations from the stellar C/O ratio. In protoplanetary disks, different snowlines of oxygen- and carbon-rich ices, especially water and carbon monoxide, will result in systematic variations in the C/O ratio both in the gas and in the condensed phases. In particular, between the H 2 O and CO snowlines most oxygen is present in icy grains—the building blocks of planetary cores in the core accretion model—while most carbon remains in the gas phase. This region is coincidental with the giant-planet-forming zone for a range of observed protoplanetary disks. Based on standard core accretion models of planet formation, gas giants that sweep up most of their atmospheres from disk gas outside of the water snowline will have a C/O ∼ 1, while atmospheres significantly contaminated by evaporating planetesimals will have a stellar or substellar C/O when formed at the same disk radius. The overall metallicity will also depend on the atmosphere formation mechanism, and exoplanetary atmospheric compositions may therefore provide constraints on where and how a specific planet formed.

  6. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    Science.gov (United States)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be

  7. Strategies for Constraining the Atmospheres of Temperate Terrestrial Planets with JWST

    Science.gov (United States)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael R.; Valenti, Jeff; Stevenson, Kevin

    2018-04-01

    The Transiting Exoplanet Survey Satellite (TESS) is expected to discover dozens of temperate terrestrial planets orbiting M-dwarfs with atmospheres that could be followed up with the James Webb Space Telescope (JWST). Currently, the TRAPPIST-1 system serves as a benchmark for determining the feasibility and resources required to yield atmospheric constraints. We assess these questions and leverage an information content analysis to determine observing strategies for yielding high-precision spectroscopy in transmission and emission. Our goal is to guide observing strategies of temperate terrestrial planets in preparation for the early JWST cycles. First, we explore JWST’s current capabilities and expected spectral precision for targets near the saturation limits of specific modes. In doing so, we highlight the enhanced capabilities of high-efficiency readout patterns that are being considered for implementation in Cycle 2. We propose a partial saturation strategy to increase the achievable precision of JWST's NIRSpec Prism. We show that JWST has the potential to detect the dominant absorbing gas in the atmospheres of temperate terrestrial planets by the 10th transit using transmission spectroscopy techniques in the near-infrared (NIR). We also show that stacking ⪆10 transmission spectroscopy observations is unlikely to yield significant improvements in determining atmospheric composition. For emission spectroscopy, we show that the MIRI Low Resolution Spectroscopy (LRS) is unlikely to provide robust constraints on the atmospheric composition of temperate terrestrial planets. Higher-precision emission spectroscopy at wavelengths longward of those accessible to MIRI LRS, as proposed in the Origins Space Telescope concept, could help improve the constraints on molecular abundances of temperate terrestrial planets orbiting M-dwarfs.

  8. The Stellar Activity of TRAPPIST-1 and Consequences for the Planetary Atmospheres

    Science.gov (United States)

    Roettenbacher, Rachael M.; Kane, Stephen R.

    2017-12-01

    The signatures of planets hosted by M dwarfs are more readily detected with transit photometry and radial velocity methods than those of planets around larger stars. Recently, transit photometry was used to discover seven planets orbiting the late-M dwarf TRAPPIST-1. Three of TRAPPIST-1's planets fall in the Habitable Zone, a region where liquid water could exist on the planetary surface given appropriate planetary conditions. We aim to investigate the habitability of the TRAPPIST-1 planets by studying the star’s activity and its effect on the planets. We analyze previously published space- and ground-based light curves and show the photometrically determined rotation period of TRAPPIST-1 appears to vary over time due to complicated, evolving surface activity. The dramatic changes of the surface of TRAPPIST-1 suggest that rotation periods determined photometrically may not be reliable for this and similarly active stars. While the activity of the star is low, we use the premise of the “cosmic shoreline” to provide evidence that the TRAPPIST-1 environment has potentially led to the erosion of possible planetary atmospheres by extreme ultraviolet stellar emission.

  9. On the parametrization of the planetary boundary layer of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D. [Bulgarian Academy of Sciences, Geophysical Inst., Sofia (Bulgaria); Syrakov, D.; Kolarova, M. [Bulgarian Academy of Sciences, National Inst. of Meteorology and Hydrology, Sofia (United Kingdom)

    1997-10-01

    The investigation of the dynamic processes in the planetary boundary layer presents a definite theoretical challenge and plays a growing role for the solution of a number of practical tasks. The improvement of large-scale atmospheric weather forecast depends, to a certain degree, on the proper inclusion of the planetary boundary layer dynamics in the numerical models. The modeling of the transport and the diffusion of air pollutants is connected with estimation of the different processes in the Planetary Boundary Layer (PBL) and needs also a proper PBL parametrization. For the solution of these practical tasks the following PBL models;(i) a baroclinic PBL model with its barotropic version, and (ii) a convective PBL model were developed. Both models are one dimensional and are based on the similarity theory and the resistance lows extended for the whole PBL. Two different PBL parametrizations under stable and under convective conditions are proposed, on the basis of which the turbulent surface heat and momentum fluxes are estimated using generalized similarity theory. By the proposed parametrizations the internal parameters are calculated from the synoptic scale parameters as geostrophyc wind, potential temperature and humidity given at two levels (ground level and at 850 hPa) and from them - the PBL profiles. The models consists of two layers: a surface layer (SL) with a variable height and a second (Ekman layer) over it with a constant with height turbulent exchange coefficient. (au) 14 refs.

  10. Modeling pN2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures.

    Science.gov (United States)

    Stüeken, E E; Kipp, M A; Koehler, M C; Schwieterman, E W; Johnson, B; Buick, R

    2016-12-01

    Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N 2 , but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean-presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N 2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN 2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN 2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO 2 , and (c) atmospheric oxygenation could have initiated a stepwise pN 2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN 2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N 2 and O 2 is a signature of an oxygen-producing biosphere. Key Words: Biosignatures-Early Earth-Planetary atmospheres. Astrobiology 16, 949-963.

  11. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H{sub 2}S AND SO{sub 2} PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-05-20

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H{sub 2}S and SO{sub 2}) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H{sub 2}S and SO{sub 2} are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H{sub 2}, N{sub 2}, and CO{sub 2} atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of elemental sulfur and sulfuric acid in the atmosphere, which would condense to form aerosols if saturated. For terrestrial exoplanets in the habitable zone of Sun-like stars or M stars, Earth-like sulfur emission rates result in optically thick haze composed of elemental sulfur in reducing H{sub 2}-dominated atmospheres for a wide range of particle diameters (0.1-1 {mu}m), which is assumed as a free parameter in our simulations. In oxidized atmospheres composed of N{sub 2} and CO{sub 2}, optically thick haze, composed of elemental sulfur aerosols (S{sub 8}) or sulfuric acid aerosols (H{sub 2}SO{sub 4}), will form if the surface sulfur emission is two orders of magnitude more than the volcanic sulfur emission of Earth. Although direct detection of H{sub 2}S and SO{sub 2} by their spectral features is unlikely, their emission might be inferred by observing aerosol-related features in reflected light with future generation

  12. Transfer of polarized light in planetary atmospheres basic concepts and practical methods

    CERN Document Server

    Hovenier, Joop W; Domke, Helmut

    2004-01-01

    The principal elements of the theory of polarized light transfer in planetary atmospheres are expounded in a systematic but concise way. Basic concepts and practical methods are emphasized, both for single and multiple scattering of electromagnetic radiation by molecules and particles in the atmospheres of planets in the Solar System, including the Earth, and beyond. A large part of the book is also useful for studies of light scattering by particles in comets, the interplanetary and interstellar medium, circumstellar disks, reflection nebulae, water bodies like oceans and suspensions of particles in a gas or liquid in the laboratory. Throughout the book symmetry principles, such as the reciprocity principle and the mirror symmetry principle, are employed. In this way the theory is made more transparent and easier to understand than in most papers on the subject. In addition, significant computational reductions, resulting from symmetry principles, are presented. Hundreds of references to relevant literature ...

  13. Understanding the formation and composition of hazes in planetary atmospheres that contain carbon monoxide

    Science.gov (United States)

    Hörst, S. M.; Yoon, Y. H.; Hicks, R. K.; Tolbert, M. A.

    2012-09-01

    Measurements from the Cassini Plasma Spectrometer (CAPS) have revealed the presence of molecules in Titan's ionosphere with masses in excess of hundreds of amu. Negative ions with mass/charge (m/z) up to 10,000 amu/q [1] and positive ions with m/z up to 400 amu/q [2] have been detected. CAPS has also observed O+ flowing into Titan's upper atmosphere [3], which appears to originate from Enceladus and is likely the source of oxygen bearing molecules in Titan's atmosphere [4]. The observed O+ is deposited in the region now known to contain large organic molecules. A recent Titan atmosphere simulation experiment has shown that incorporation of oxygen into Titan aerosol analogues results in the formation of all five nucleotide bases and the two smallest amino acids, glycine and alanine [5]. Similar chemical processes may have occurred in the atmosphere of the early Earth, or in the atmospheres of extrasolar planets; atmospheric aerosols may be an important source of the building blocks of life. Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. The presence of atmospheric aerosols has been invoked to explain the relatively featureless spectrum of HD 189773b, including the lack of predicted atmospheric Na and K spectral lines [9]. The majority of the O+ precipitating into Titan's atmosphere forms CO (O(3P)+CH3 -> CO+H2+H) [4]. CO has also been detected in the atmospheres of a number of exoplanets including HD 189733b, HD 209458b, and WASP-12b [6-8]. It is therefore important to understand the role CO plays in the formation and composition of hazes in planetary atmospheres. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [10]) we have obtained in situ composition measurements of aerosol particles (so-called "tholins") produced in N2/CH4/CO gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) or a

  14. Strong scintillations during atmospheric occultations Theoretical intensity spectra. [radio scattering during spacecraft occultations by planetary atmospheres

    Science.gov (United States)

    Hinson, D. P.

    1986-01-01

    Each of the two Voyager spacecraft launched in 1977 has completed a reconnaissance of the Jovian and Saturnian systems. In connection with occultation experiments, strong scintillations were observed. Further theoretical work is required before these scintillations can be interpreted. The present study is, therefore, concerned with the derivation of a theory for strong scattering during atmospheric occultation experiments, taking into account as fundamental quantity of interest the spatial spectrum (or spectral density) of intensity fluctuations. Attention is given to a theory for intensity spectra, and numerical calculations. The new formula derived for Phi-i accounts for strong scattering of electromagnetic waves during atmospheric occultations.

  15. Theoretical studies of important processes in planetary and comet atmospheres. Semiannual status report

    International Nuclear Information System (INIS)

    Guberman, S. L.

    1990-01-01

    Dissociative recombination (DR) reactions in planetary and comet atmospheres are discussed. A computer program was developed which determines DR cross sections and rates using potential curves and electronic capture widths. It uses Multi-Channel Quantum Defect Theory (MQDT) to include excited Rydberg resonance levels in the DR cross section and rate calculations. Each vibrational level of a molecular ion is the limit for an infinite series of Rydberg states. Above each ion vibrational level are Rydberg vibrational levels having higher ion levels as their series limit. These Rydberg vibrational levels are resonances, i.e., neutral states which are imbedded in the electron-molecular ion continuum. The process in which the Rydberg level causes an abrupt perturbation in the cross section for DR (because of interference between capture into the Rydberg level and capture into the repulsive dissociative state) is referred to as indirect recombination. The process in which the Rydberg levels are excluded and recombination goes from the entrance channel to the repulsive state is called direct recombination. The full DR process, i.e., both direct and indirect recombination, is the process of importance for planetary atmospheres. These ideas are illustrated with the new results for DR from excited ion vibrational levels of O2(+) into the dissociative state which leads to O(1S) + O(1D)

  16. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    Science.gov (United States)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  17. Novel lidar algorithms for atmospheric slantrange visibility, planetary boundary layer height, meteorogical phenomena and atmospheric layering measurements

    Science.gov (United States)

    Pantazis, Alexandros; Papayannis, Alexandros; Georgoussis, Georgios

    2018-04-01

    In this paper we present a development of novel algorithms and techniques implemented within the Laser Remote Sensing Laboratory (LRSL) of the National Technical University of Athens (NTUA), in collaboration with Raymetrics S.A., in order to incorporate them into a 3-Dimensional (3D) lidar. The lidar is transmitting at 355 nm in the eye safe region and the measurements then are transposed to the visual range at 550 nm, according to the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO) rules of daytime visibility. These algorithms are able to provide horizontal, slant and vertical visibility for tower aircraft controllers, meteorologists, but also from pilot's point of view. Other algorithms are also provided for detection of atmospheric layering in any given direction and vertical angle, along with the detection of the Planetary Boundary Layer Height (PBLH).

  18. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    Science.gov (United States)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  19. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    Science.gov (United States)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  20. The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres.

    Science.gov (United States)

    Goldblatt, Colin; Watson, Andrew J

    2012-09-13

    The ultimate climate emergency is a 'runaway greenhouse': a hot and water-vapour-rich atmosphere limits the emission of thermal radiation to space, causing runaway warming. Warming ceases only after the surface reaches approximately 1400 K and emits radiation in the near-infrared, where water is not a good greenhouse gas. This would evaporate the entire ocean and exterminate all planetary life. Venus experienced a runaway greenhouse in the past, and we expect that the Earth will in around 2 billion years as solar luminosity increases. But could we bring on such a catastrophe prematurely, by our current climate-altering activities? Here, we review what is known about the runaway greenhouse to answer this question, describing the various limits on outgoing radiation and how climate will evolve between these. The good news is that almost all lines of evidence lead us to believe that is unlikely to be possible, even in principle, to trigger full a runaway greenhouse by addition of non-condensible greenhouse gases such as carbon dioxide to the atmosphere. However, our understanding of the dynamics, thermodynamics, radiative transfer and cloud physics of hot and steamy atmospheres is weak. We cannot therefore completely rule out the possibility that human actions might cause a transition, if not to full runaway, then at least to a much warmer climate state than the present one. High climate sensitivity might provide a warning. If we, or more likely our remote descendants, are threatened with a runaway greenhouse, then geoengineering to reflect sunlight might be life's only hope. Injecting reflective aerosols into the stratosphere would be too short-lived, and even sunshades in space might require excessive maintenance. In the distant future, modifying Earth's orbit might provide a sustainable solution. The runaway greenhouse also remains relevant in planetary sciences and astrobiology: as extrasolar planets smaller and nearer to their stars are detected, some will be in

  1. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  2. ARTS, the Atmospheric Radiative Transfer Simulator - version 2.2, the planetary toolbox edition

    Science.gov (United States)

    Buehler, Stefan A.; Mendrok, Jana; Eriksson, Patrick; Perrin, Agnès; Larsson, Richard; Lemke, Oliver

    2018-04-01

    This article describes the latest stable release (version 2.2) of the Atmospheric Radiative Transfer Simulator (ARTS), a public domain software for radiative transfer simulations in the thermal spectral range (microwave to infrared). The main feature of this release is a planetary toolbox that allows simulations for the planets Venus, Mars, and Jupiter, in addition to Earth. This required considerable model adaptations, most notably in the area of gaseous absorption calculations. Other new features are also described, notably radio link budgets (including the effect of Faraday rotation that changes the polarization state) and the treatment of Zeeman splitting for oxygen spectral lines. The latter is relevant, for example, for the various operational microwave satellite temperature sensors of the Advanced Microwave Sounding Unit (AMSU) family.

  3. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    Science.gov (United States)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  4. Wavelength dependence of the effects of turbulence on average refraction angles in occultations by planetary atmospheres

    International Nuclear Information System (INIS)

    Haugstad, B.S.; Eshleman, V.R.

    1979-01-01

    Two recent adjacently published papers on the average effects of turbulence in radio and optical occultation studies of planetary atmospheres appear to disagree on the question of wavelength dependence. It is demonstrated here that in deriving a necessary condition for the applicability of their method. Hubbard and Jokipii neglect a factor which is proportional to the square of the ratio of the atmospheric or local Fresnel zone radius and the inner scale of turbulence. They also fail to establish sufficient conditions, thereby omitting as a further factor the square of the ratio of atmospheric scale height and the local Fresnel zone radius. The total descrepancy, which numerically is typically within several orders of magnitude of 10 11 for radio and 10 7 for optical occultations, means that their results correspond to geometrical optics and not to wave optics as claimed. Thus their results are inherently inapplicable in a discussion of the wavelength dependence of any parameter, such as the bias in the average refraction angle treated by Eshleman and Haugstad. We note that for power spectra characterized by the (--p) exponent of the turbulence wavenumber, the average turbulence-induced bias in refraction angles depends on the radiation wavelength as lambda/sup( p/--4)/2, or as lambda/sup en-dash1/6/ for Kolmogorov turbulence. Other features of the Hubbard-Jokipii analysis are also discussed

  5. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    International Nuclear Information System (INIS)

    Miller, John B.; Tans, Pieter P.; Conway, Thomas J.; White, James W.C.; Vaughn, Bruce W.

    2003-01-01

    The 13 C/ 12 C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in 13 C and CO 2 at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO 2 fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 ± 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO 2 flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr

  6. Trends in land surface phenology and atmospheric CO2 seasonality in the Northern Hemisphere terrestrial ecosystems

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2017-12-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystems on the atmospheric CO2 concentration and 13C/12C isotope ratio seasonality. Atmospheric CO2 and 13C/12C seasonality is controlled by vegetation phenology, but is not identical because growth will typically commence some time before and terminate some time after the net carbon exchange changes sign in spring and autumn, respectively. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations to determine how changes in vegetation productivity and phenology affect both the atmospheric CO2 and 13C/12C seasonality. Differences and similarities in recent trends of CO2 and 13C/12C seasonality and vegetation phenology will be discussed. Furthermore, we use the NDVI observations, and atmospheric CO2 and 13C/12C data to show the trends and variability of the timing of peak season plant activity. Preliminary results show that the peak season plant activity of the Northern Hemisphere extra-tropical terrestrial ecosystems is shifting towards spring, largely in response to the warming-induced advance of the start of growing season. Besides, the spring-ward shift of the peak plant activity is contributing the most to the increasing peak season productivity. In other words, earlier start of growing season is highly linked to earlier arrival of peak of season and higher NDVI. Changes in the timing of peak season plant activity are expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.

  7. Development of atmosphere-soil-vegetation model for investigation of radioactive materials transport in terrestrial biosphere

    International Nuclear Information System (INIS)

    Katata, Genki; Nagai, Haruyasu; Zhang, Leiming; Held, Andreas; Serca, Dominique; Klemm, Otto

    2010-01-01

    In order to investigate the transport of radionuclides in the terrestrial biosphere we have developed a one-dimensional numerical model named SOLVEG that predicts the transfer of water, heat, and gaseous and particulate matters in atmosphere-soil-vegetation system. The SOLVEG represents atmosphere, soil, and vegetation as an aggregation of several layers. Basic equations used in the model are solved using the finite difference method. Most of predicted variables are interrelated with the source/sink terms of momentum, water, heat, gases, and particles based on mathematically described biophysical processes in atmosphere, soil and vegetation. The SOLVEG can estimate dry, wet and fog deposition of gaseous and particulate matters at each canopy layer. Performance tests of the SOLVEG with several observational sites were carried out. The SOLVEG predicted the observed temporal changes in water vapor, CO 2 , and ozone fluxes over vegetated surfaces. The SOLVEG also reproduced measured fluxes of fog droplets and of fine aerosols over the forest. (author)

  8. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, R. D.; Pierrehumbert, R. T., E-mail: rwordsworth@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 60637 IL (United States)

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  9. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

    Directory of Open Access Journals (Sweden)

    F. Jiang

    2013-08-01

    Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.

  10. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  11. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    Science.gov (United States)

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, A. David; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  12. Isotopic composition of terrestrial atmospheric xenon and the chain reactions of fission

    International Nuclear Information System (INIS)

    Shukolyukov, Yu.A.; Meshick, A.P.

    1990-01-01

    From the comparison of terrestrial atmospheric Xe with the primordial Xe (solar, AVCC), a strange component with a fine structure at 132 Xe and 131 Xe have been found. It was shown that the isotopic composition of this component can be explained neither by mass fractionation of primordial Xe, nor by an admixture of fission products of known nuclei. An analogous Xe was extracted at a low temperature from substances of the natural nuclear reactor, fine-grain samples from Colorado type deposits, ordinary pitchblendes and samples from the epicenter of a A-bomb explosion. It was proved that the strange Xe is a result of different migration rates of β-radioactive Xe precursors which are fission fragments. It is quite possible that the strange component of atmospheric Xe originated as a result of global neutron-induced fission processes during early stages of geological history of the Earth. (orig.) [de

  13. Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres in thermal spectral region: general adjoint approach

    International Nuclear Information System (INIS)

    Ustinov, Eugene A.

    2005-01-01

    An approach to formulation of inversion algorithms for remote sensing in the thermal spectral region in the case of a scattering planetary atmosphere, based on the adjoint equation of radiative transfer (Ustinov (JQSRT 68 (2001) 195; JQSRT 73 (2002) 29); referred to as Papers 1 and 2, respectively, in the main text), is applied to the general case of retrievals of atmospheric and surface parameters for the scattering atmosphere with nadir viewing geometry. Analytic expressions for corresponding weighting functions for atmospheric parameters and partial derivatives for surface parameters are derived. The case of pure atmospheric absorption with a scattering underlying surface is considered and convergence to results obtained for the non-scattering atmospheres (Ustinov (JQSRT 74 (2002) 683), referred to as Paper 3 in the main text) is demonstrated

  14. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN

    Science.gov (United States)

    Rozanov, V. V.; Dinter, T.; Rozanov, A. V.; Wolanin, A.; Bracher, A.; Burrows, J. P.

    2017-06-01

    SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18-40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean-atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de.

  15. A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, P. B.; Helling, Ch, E-mail: pr33@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)

    2016-05-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion–neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO{sub 2}, H{sub 2}, CO, and O{sub 2}, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  16. A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Rimmer, P. B.; Helling, Ch

    2016-01-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion–neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO 2 , H 2 , CO, and O 2 , but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  17. Atmospheric constraints for the CO2 partial pressure on terrestrial planets near the outer edge of the habitable zone

    OpenAIRE

    von Paris, P.; Grenfell, J. L.; Hedelt, P.; Rauer, H.; Selsis, F.; Stracke, B.

    2013-01-01

    In recent years, several potentially habitable, probably terrestrial exoplanets and exoplanet candidates have been discovered. The amount of CO2 in their atmosphere is of great importance for surface conditions and habitability. In the absence of detailed information on the geochemistry of the planet, this amount could be considered as a free parameter. Up to now, CO2 partial pressures for terrestrial planets have been obtained assuming an available volatile reservoir and outgassing scenarios...

  18. Model-Atmosphere Spectra of Central Stars of Planetary Nebulae - Access via the Virtual Observatory Service TheoSSA

    Science.gov (United States)

    Rauch, T.; Reindl, N.

    2014-04-01

    In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.

  19. Inter-annual variabilities in biogeophysical feedback of terrestrial ecosystem to atmosphere using a land surface model

    Science.gov (United States)

    Seo, C.; Hong, S.; Jeong, H. M.; Jeon, J.

    2017-12-01

    Biogeophysical processes of terrestrial ecosystem such as water vapor and energy flux are the key features to understand ecological feedback to atmospheric processes and thus role of terrestrial ecosystem in climate system. For example, it has been recently known that the ecological feedback through water vapor and energy flux results in regulating regional weathers and climates which is one of the fundamental functions of terrestrial ecosystem. In regional scale, water vapor flux has been known to give negative feedback to atmospheric warming, while energy flux from the surface has been known to positive feedback. In this study, we explored the inter-annual variabilities in these two biogeophysical features to see how the climate regulating functions of terrestrial ecosystem have been changed with climate change. We selected a land surface model involving vegetation dynamics that is forced by atmospheric data from NASA including precipitation, temperature, wind, surface pressure, humidity, and incoming radiations. From the land surface model, we simulated 60-year water vapor and energy fluxes from 1961 to 2010, and calculates feedbacks of terrestrial ecosystem as in radiation amount into atmosphere. Then, we analyzed the inter-annual variabilities in the feedbacks. The results showed that some mid-latitude areas showing very high variabilities in precipitation showed higher positive feedback and/or lower negative feedback. These results suggest deterioration of the biogeophyisical factor of climate regulating function over those regions.

  20. NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets

    International Nuclear Information System (INIS)

    Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.

    2017-01-01

    H 2 O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H 2 O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H 2 O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapor mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H 2 O signatures may be strengthened by a factor of a few, loosening the observational demands for a H 2 O detection.

  1. NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY (United States)

    2017-10-20

    H{sub 2}O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H{sub 2}O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H{sub 2}O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapor mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H{sub 2}O signatures may be strengthened by a factor of a few, loosening the observational demands for a H{sub 2}O detection.

  2. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN

    International Nuclear Information System (INIS)

    Rozanov, V.V.; Dinter, T.; Rozanov, A.V.; Wolanin, A.; Bracher, A.; Burrows, J.P.

    2017-01-01

    SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean–atmosphere radiative transfer solver presented by Rozanov et al. we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: (http://www.iup.physik.uni-bremen.de). - Highlights: • A new version of the software package SCIATRAN is presented. • Inelastic scattering in water and atmosphere is implemented in SCIATRAN. • Raman scattering and fluorescence can be included in radiative transfer calculations. • Comparisons to other radiative transfer models show excellent agreement. • Comparisons to observations show consistent results.

  3. Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO2 variability

    International Nuclear Information System (INIS)

    Saito, M.; Ito, A.; Maksyutov, S.

    2014-01-01

    This study investigates the capacity of a prognostic biosphere model to simulate global variability in atmospheric CO 2 concentrations and vegetation carbon dynamics under current environmental conditions. Global data sets of atmospheric CO 2 concentrations, above-ground biomass (AGB), and net primary productivity (NPP) in terrestrial vegetation were assimilated into the biosphere model using an inverse modeling method combined with an atmospheric transport model. In this process, the optimal physiological parameters of the biosphere model were estimated by minimizing the misfit between observed and modeled values, and parameters were generated to characterize various biome types. Results obtained using the model with the optimized parameters correspond to the observed seasonal variations in CO 2 concentration and their annual amplitudes in both the Northern and Southern Hemispheres. In simulating the mean annual AGB and NPP, the model shows improvements in estimating the mean magnitudes and probability distributions for each biome, as compared with results obtained using prior simulation parameters. However, the model is less efficient in its simulation of AGB for forest type biomes. This misfit suggests that more accurate values of input parameters, specifically, grid mean AGB values and seasonal variabilities in physiological parameters, are required to improve the performance of the simulation model. (authors)

  4. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event

    Science.gov (United States)

    Bianchi, Thomas S.; Garcia-Tigreros, Fenix; Yvon-Lewis, Shari A.; Shields, Michael; Mills, Heath J.; Butman, David; Osburn, Christopher; Raymond, Peter A.; Shank, G. Christopher; DiMarco, Steven F.; Walker, Nan; Kiel Reese, Brandi; Mullins-Perry, Ruth; Quigg, Antonietta; Aiken, George R.; Grossman, Ethan L.

    2013-01-01

    Rising CO2 concentration in the atmosphere, global climate change, and the sustainability of the Earth's biosphere are great societal concerns for the 21st century. Global climate change has, in part, resulted in a higher frequency of flooding events, which allow for greater exchange between soil/plant litter and aquatic carbon pools. Here we demonstrate that the summer 2011 flood in the Mississippi River basin, caused by extreme precipitation events, resulted in a “flushing” of terrestrially derived dissolved organic carbon (TDOC) to the northern Gulf of Mexico. Data from the lower Atchafalaya and Mississippi rivers showed that the DOC flux to the northern Gulf of Mexico during this flood was significantly higher than in previous years. We also show that consumption of radiocarbon-modern TDOC by bacteria in floodwaters in the lower Atchafalaya River and along the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 to the atmosphere in June and August 2011. This work shows that enhanced flooding, which may or may not be caused by climate change, can result in rapid losses of stored carbon in soils to the atmosphere via processes in aquatic ecosystems.

  5. A miniature sensor for electrical field measurements in dusty planetary atmospheres

    International Nuclear Information System (INIS)

    Renno, N O; Rogacki, S; Kok, J F; Kirkham, H

    2008-01-01

    Dusty phenomena such as regular wind-blown dust, dust storms, and dust devils are the most important, currently active, geological processes on Mars. Electric fields larger than 100 kV/m have been measured in terrestrial dusty phenomena. Theoretical calculations predict that, close to the surface, the bulk electric fields in martian dusty phenomena reach the breakdown value of the isolating properties of thin martian air of about a few 10 kV/m. The fact that martian dusty phenomena are electrically active has important implications for dust lifting and atmospheric chemistry. Electric field sensors are usually grounded and distort the electric fields in their vicinity. Grounded sensors also produce large errors when subject to ion currents or impacts from clouds of charged particles. Moreover, they are incapable of providing information about the direction of the electric field, an important quantity. Finally, typical sensors with more than 10 cm of diameter are not capable of measuring electric fields at distances as small as a few cm from the surface. Measurements this close to the surface are necessary for studies of the effects of electric fields on dust lifting. To overcome these shortcomings, we developed the miniature electric-field sensor described in this article.

  6. The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity

    Science.gov (United States)

    Baron, Jill S.; Barber, Mary C.; Adams, Mark; Agboola, Julius I.; Allen, Edith B.; Bealey, William J.; Bobbink, Roland; Bobrovsky, Maxim V.; Bowman, William D.; Branquinho, Cristina; Bustamente, Mercedes M. C.; Clark, Christopher M.; Cocking, Edward C.; Cruz, Cristina; Davidson, Eric A.; Denmead, O. Tom; Dias, Teresa; Dise, Nancy B.; Feest, Alan; Galloway, James N.; Geiser, Linda H.; Gilliam, Frank S.; Harrison, Ian J.; Khanina, Larisa G.; Lu, Xiankai; Manrique, Esteban; Ochoa-Hueso, Raul; Ometto, Jean P. H. B.; Payne, Richard; Scheuschner, Thomas; Sheppard, Lucy J.; Simpson, Gavin L.; Singh, Y. V.; Stevens, Carly J.; Strachan, Ian; Sverdrup, Harald; Tokuchi, Naoko; van Dobben, Hans; Woodin, Sarah

    2014-01-01

    This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.

  7. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  8. PTAL Database and Website: Developing a Novel Information System for the Scientific Exploitation of the Planetary Terrestrial Analogues Library

    Science.gov (United States)

    Veneranda, M.; Negro, J. I.; Medina, J.; Rull, F.; Lantz, C.; Poulet, F.; Cousin, A.; Dypvik, H.; Hellevang, H.; Werner, S. C.

    2018-04-01

    The PTAL website will store multispectral analysis of samples collected from several terrestrial analogue sites and pretend to become a cornerstone tool for the scientific community interested in deepening the knowledge on Mars geological processes.

  9. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  10. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database.

    Science.gov (United States)

    Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel

    2016-01-19

    Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).

  11. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  12. Analytic evaluation of the weighting functions for remote sensing of blackbody planetary atmospheres : the case of limb viewing geometry

    Science.gov (United States)

    Ustinov, Eugene A.

    2006-01-01

    In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.

  13. A TEOM (tm) particulate monitor for comet dust, near Earth space, and planetary atmospheres

    Science.gov (United States)

    1988-01-01

    Scientific missions to comets, near earth space, and planetary atmospheres require particulate and mass accumulation instrumentation for both scientific and navigation purposes. The Rupprecht & Patashnick tapered element oscillating microbalance can accurately measure both mass flux and mass distribution of particulates over a wide range of particle sizes and loadings. Individual particles of milligram size down to a few picograms can be resolved and counted, and the accumulation of smaller particles or molecular deposition can be accurately measured using the sensors perfected and toughened under this contract. No other sensor has the dynamic range or sensitivity attained by these picogram direct mass measurement sensors. The purpose of this contract was to develop and implement reliable and repeatable manufacturing methods; build and test prototype sensors; and outline a quality control program. A dust 'thrower' was to be designed and built, and used to verify performance. Characterization and improvement of the optical motion detection system and drive feedback circuitry was to be undertaken, with emphasis on reliability, low noise, and low power consumption. All the goals of the contract were met or exceeded. An automated glass puller was built and used to make repeatable tapered elements. Materials and assembly methods were standardized, and controllers and calibrated fixtures were developed and used in all phases of preparing, coating and assembling the sensors. Quality control and reliability resulted from the use of calibrated manufacturing equipment with measurable working parameters. Thermal and vibration testing of completed prototypes showed low temperature sensitivity and high vibration tolerance. An electrostatic dust thrower was used in vacuum to throw particles from 2 x 10(exp 6) g to 7 x 10(exp -12) g in size. Using long averaging times, particles as small as 0.7 to 4 x 10(exp 11) g were weighted to resolutions in the 5 to 9 x 10(exp -13) g range

  14. Laboratory Studies of Planetary Hazes: composition of cool exoplanet atmospheric aerosols with very high resolution mass spectrometry

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole

    2017-10-01

    We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.

  15. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review

    International Nuclear Information System (INIS)

    Krupa, S.V.

    2003-01-01

    A review of atmospheric ammonia (NH 3 ) and ammonium (NH 4 + ) deposition and their effects on plants. - At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH 3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH 3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH 3 can result in visible foliar injury on vegetation. NH 3 is deposited rapidly within the first 4-5 km from its source. However, NH 3 is also converted in the atmosphere to fine particle NH 4 + (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH 3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH 3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH 3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO 2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH 3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH 3 with other air pollutants such as all-pervasive O 3 or

  16. Effects of atmospheric ammonia (NH{sub 3}) on terrestrial vegetation: a review

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, S.V

    2003-07-01

    A review of atmospheric ammonia (NH{sub 3}) and ammonium (NH{sub 4}{sup +}) deposition and their effects on plants. - At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH{sub 3} (ammonia) is considered to be the foremost. The major sources for atmospheric NH{sub 3} are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH{sub 3} can result in visible foliar injury on vegetation. NH{sub 3} is deposited rapidly within the first 4-5 km from its source. However, NH{sub 3} is also converted in the atmosphere to fine particle NH{sub 4}{sup +} (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH{sub 3} on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH{sub 3} is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH{sub 3} are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO{sub 2} (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH{sub 3} on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint

  17. UV photoabsorption cross sections of CO, N2, and SO2 for studies of the ISM and planetary atmospheres

    Science.gov (United States)

    Smith, Peter L.; Rufus, J.; Yoshino, K.; Parkinson, W. H.; Stark, Glenn; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    We report high-resolution laboratory measurements of photoabsorption cross sections of CO, N2, and SO2 in the wavelength range 80 to 320 nm. The motivation is to provide the quantitative data that are needed to analyze observations of absorption by, and to model photochemical processes in, the interstellar medium and a number of planetary atmospheres. Because of the high resolution of the spectrometers used, we can minimize distortion of the spectrum that occurs when instrument widths are greater than the widths of spectral features being measured. In many cases, we can determine oscillator strengths of individual rotational lines - a unique feature of our work.

  18. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    Science.gov (United States)

    Tian, H.; Melillo, J. M.; Kicklighter, D. W.; McGuire, A. D.; Helfrich, J.

    1999-04-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900 1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2Pg C) and soil organic carbon decreasing by 1.9% (1.1Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7Pg C

  19. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review.

    Science.gov (United States)

    Krupa, S V

    2003-01-01

    At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4

  20. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  1. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  2. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition

    Science.gov (United States)

    Sabo, Robert D.; Scanga, Sara E.; Lawrence, Gregory B.; Nelson, David M.; Eshleman, Keith N.; Zabala, Gabriel A.; Alinea, Alexandria A.; Schirmer, Charles D.

    2016-01-01

    Recent reports suggest that decreases in atmospheric nitrogen (N) deposition throughout Europe and North America may have resulted in declining nitrate export in surface waters in recent decades, yet it is unknown if and how terrestrial N cycling was affected. During a period of decreased atmospheric N deposition, we assessed changes in forest N cycling by evaluating trends in tree-ring δ15N values (between 1980 and 2010; n = 20 trees per watershed), stream nitrate yields (between 2000 and 2011), and retention of atmospherically-deposited N (between 2000 and 2011) in the North and South Tributaries (North and South, respectively) of Buck Creek in the Adirondack Mountains, USA. We hypothesized that tree-ring δ15N values would decline following decreases in atmospheric N deposition (after approximately 1995), and that trends in stream nitrate export and retention of atmospherically deposited N would mirror changes in tree-ring δ15N values. Three of the six sampled tree species and the majority of individual trees showed declining linear trends in δ15N for the period 1980–2010; only two individual trees showed increasing trends in δ15N values. From 1980 to 2010, trees in the watersheds of both tributaries displayed long-term declines in tree-ring δ15N values at the watershed scale (R = −0.35 and p = 0.001 in the North and R = −0.37 and p <0.001 in the South). The decreasing δ15N trend in the North was associated with declining stream nitrate concentrations (−0.009 mg N L−1 yr−1, p = 0.02), but no change in the retention of atmospherically deposited N was observed. In contrast, nitrate yields in the South did not exhibit a trend, and the watershed became less retentive of atmospherically deposited N (−7.3% yr−1, p < 0.001). Our δ15N results indicate a change in terrestrial N availability in both watersheds prior to decreases in atmospheric N deposition, suggesting that decreased atmospheric N deposition was not the sole driver of

  3. Comprehensive calculation of the energy per ion pair or W values for five major planetary upper atmospheres

    Directory of Open Access Journals (Sweden)

    C. Simon Wedlund

    2011-01-01

    Full Text Available The mean energy W expended in a collision of electrons with atmospheric gases is a useful parameter for fast aeronomy computations. Computing this parameter in transport kinetic models with experimental values can tell us more about the number of processes that have to be taken into account and the uncertainties of the models. We present here computations for several atmospheric gases of planetological interest (CO2, CO, N2, O2, O, CH4, H, He using a family of multi-stream kinetic transport codes. Results for complete atmospheres for Venus, Earth, Mars, Jupiter and Titan are also shown for the first time. A simple method is derived to calculate W of gas mixtures from single-component gases and is conclusively checked against the W values of these planetary atmospheres. Discrepancies between experimental and theoretical values show where improvements can be made in the measurement of excitation and dissociation cross-sections of specific neutral species, such as CO2 and CO.

  4. Newly Discovered Silicate Features in the Spectra of Young Warm Debris Disks: Probing Terrestrial Regions of Planetary Systems

    Science.gov (United States)

    Ballering, N.; Rieke, G.

    2014-03-01

    Terrestrial planets form by the collisional accretion of planetesimals during the first 100 Myr of a system’s lifetime. For most systems, the terrestrial regions are too near their host star to be directly seen with high-contrast imaging (e.g. with HST, MagAO, or LBTI) and too warm to be imaged with submillimeter interferometers (e.g. ALMA). Mid-infrared excess spectra—originating from the thermal emission of the circumstellar dust leftover from these collisions—remain the best data to constrain the properties of the debris in these regions. The spectra of most debris disks are featureless, taking the shape of (modified) blackbodies. Determining the properties of debris disks with featureless spectra is complicated by a degeneracy between the grain size and location (large grains near the star and small grains farther from the star may be indistinguishable). Debris disk spectra that exhibit solid state emission features allow for a more accurate determination of the dust size and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Such features probe small, warm dust grains in the inner regions of these systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). We report here a successful search for such features. We identified our targets with a preliminary search for signs of emission features in the Spitzer IRS spectra of a number of young early type stars known to harbor warm debris disks. We fit to each target a physically-motivated model spectrum consisting of the sum of the stellar photosphere (modeled as a blackbody) and thermal emission from two dust belts. Each belt was defined by 6 parameters: the inner and outer orbital radii (rin and rout), the index of the radial surface density power law (rexp), the minimum and maximum grain sizes (amin and amax), and the index of the grain size distribution power law (aexp). aexp was fixed to -3.65 and amax was fixed to 1000 μm for all models; all other parameters were allowed to

  5. The Use of Terrestrial Analogs in Preparing for Planetary Surface Exploration: Sampling and Radioisotopic Dating of Impactites and Deployment of In Situ Analytical Technologies

    Science.gov (United States)

    Young, Kelsey

    Impact cratering has played a crucial role in the surface development of the inner planets. Constraining the timing of this bombardment history is important in understanding the origins of life and our planet's evolution. Plate tectonics, active volcanism, and vegetation hinder the preservation and identification of existing impact craters on Earth. Providing age constraints on these elusive structures will provide a deeper understanding of our planet's development. To do this, (U-Th)/He thermochronology and in situ 40 Ar/39Ar laser microprobe geochronology are used to provide ages for the Haughton and Mistastin Lake impact structures, both located in northern Canada. While terrestrial impact structures provide accessible laboratories for deciphering Earth's impact history, the ultimate goal for understanding the history of the reachable inner Solar System is to acquire robust, quantitative age constraints for the large lunar impact basins. The oldest of these is the South Pole-Aitken basin (SPA), located on the lunar farside. While it is known that this basin is stratigraphically the oldest on the Moon, its absolute age has yet to be determined. Several reports released in the last decade have highlighted sampling and dating SPA as a top priority for inner Solar System exploration. This is no easy task as the SPA structure has been modified by four billion subsequent years of impact events. Informed by studies at Mistastin---which has target lithologies analogous to those at SPA---sampling strategies are discussed that are designed to optimize the probability of a high science return with regard to robust geochronology of the SPA basin. Planetary surface missions, like one designed to explore and sample SPA, require the integration of engineering constraints with scientific goals and traverse planning. The inclusion of in situ geochemical technology, such as the handheld X-ray fluorescence spectrometer (hXRF), into these missions will provide human crews with the

  6. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  7. Martian Superoxide and Peroxide O2 Release (OR) Assay: A New Technology for Terrestrial and Planetary Applications

    Science.gov (United States)

    Georgiou, Christos D.; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Kontantinos; Papapostolou, Ioannis; Quinn, Richard C.; McKay, Christopher P.; Sun, Henry J.

    2015-01-01

    This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2, and their quantification by an O2 electrode based on the stoichiometry of the involved reactions: The intermediate product O2 from the hydrolysis of metal superoxides is converted by cytochrome c to O2, and also by superoxide dismutase (SOD) to 1/2 mol O2 and 1/2 mol H2O2, which is then converted by catalase (CAT) to 1/2 mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to 1/2 mol O2 by CAT. The assay-method was validated in a sealed sample chamber using a liquid-phase Clark-type O2 electrode with known concentrations of O2 and H2O2, and with commercial metal superoxide and peroxide mixed with Mars analogue Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(exp. -3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by gamma-radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, demonstrating the suitability of these enzymes for planetary missions, e.g., in Mars or Europa.

  8. Study on characteristics of the aperture-averaging factor of atmospheric scintillation in terrestrial optical wireless communication

    Science.gov (United States)

    Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun

    2018-02-01

    In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.

  9. Theory of extended stellar atmospheres. II. A grid of static spherical models for O stars and planetary nebula nuclei

    International Nuclear Information System (INIS)

    Kunasz, P.B.; Hummer, D.G.; Mihalas, D.

    1975-01-01

    Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models

  10. Theory of planetary atmospheres an introduction to their physics and chemistry

    CERN Document Server

    Chamberlain, Joseph W; Marshall, Samantha

    1978-01-01

    For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography. * Written at a mathematical level that is appealing for undergraduates and beginning graduate students * Provides a useful educational tool through a combination of observations and laboratory demonstrations which can be viewed over the web * Contains instructions on how to reproduce the simple but informative laboratory experiments * Includes...

  11. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    Science.gov (United States)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  12. Equilibrium and disequilibrium chemistry of adiabatic, solar-composition planetary atmospheres

    Science.gov (United States)

    Lewis, J. S.

    1976-01-01

    The impact of atmospheric and cloud-structure models on the nonequilibrium chemical behavior of the atmospheres of the Jovian planets is discussed. Quantitative constraints on photochemical, lightning, and charged-particle production of organic matter and chromophores are emphasized whenever available. These considerations imply that inorganic chromophore production is far more important than that of organic chromophores, and that lightning is probably a negligibly significant process relative to photochemistry on Jupiter. Production of complex molecules by gas-phase disequilibrium processes on Saturn, Uranus, and Neptune is severely limited by condensation of even simple intermediates.

  13. Theory for the effects of turbulence in a planetary atmosphere on radio occultation

    Science.gov (United States)

    Woo, R.; Ishimaru, A.

    1974-01-01

    Rytov's method is used to formulate the correlation functions for log-amplitude and phase fluctuations for both spherical and plane wave propagation in a turbulent medium whose correlation function for refractive index fluctuations is described by the product of a function of the average coordinate and a function of the difference coordinate. The results are applied to the study of radio occultation effects due to the atmosphere of Venus in the case of a flyby space probe. It is assumed that turbulence of isotropic and smoothly varying characteristics occurs in the Venusian atmosphere.

  14. Stellar by Day, Planetary by Night: Atmospheres of Ultra-Hot Jupiters

    Science.gov (United States)

    Hensley, Kerry

    2018-06-01

    Move over, hot Jupiters theres an even stranger kind of giant planet in the universe! Ultra-hot Jupiters are so strongly irradiated that the molecules in their atmospheres split apart. What does this mean for heat transport on these planets?Atmospheres of Exotic PlanetsA diagram showing the orbit of an ultra-hot Jupiter and the longitudes at which dissociation and recombination occur. [Bell Cowan 2018]Similar to hot Jupiters, ultra-hot Jupiters are gas giants with atmospheres dominated by molecular hydrogen. What makes them interesting is that their dayside atmospheres are so hot that the molecules dissociate into individual hydrogen atoms more like the atmospheres of stars than planets.Because of the intense stellar irradiation, there is also an extreme temperature difference between the day and night sides of these planets potentially more than 1,000 K! As the stellar irradiation increases, the dayside atmosphere becomes hotter and hotter and the temperature difference between the day and night sides increases.When hot atomic hydrogen is transported into cooler regions (by winds, for instance), it recombines to form H2 molecules and heats the gas, effectively transporting heat from one location to another. This is similar to how the condensation of water redistributes heat in Earths atmosphere but what effect does this phenomenon have on the atmospheres of ultra-hot Jupiters?Maps of atmospheric temperature of molecular hydrogen dissociation fraction for three wind speeds. Click to enlarge. [Bell Cowan 2018]Modeling Heat RedistributionTaylor Bell and Nicolas Cowan (McGill University) used an energy-balance model to estimate the effects of H2 dissociation and recombination on heat transport in ultra-hot Jupiter atmospheres. In particular, they explored the redistribution of heat and how it affects the resultant phase curve the curve that describes the combination of reflected and thermally emitted light from the planet, observed as a function of its phase angle

  15. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2

    International Nuclear Information System (INIS)

    Cao, Mingkui; Tao, B.; Li, Kerang; Prince, Stephen D.; Small, J.

    2005-01-01

    Atmospheric measurements indicate that the terrestrial carbon sink increased substantially from the 1980s to the 1990s, but which factors and regions were responsible for the increase are not well identified yet. Using process- and remote sensing-based ecosystem models, we show that changes in climate and atmospheric CO 2 in the period 1981-2000 enhanced net ecosystem production (NEP) and caused major geographical changes in the global distribution of NEP. In the 1980s the Americas accounted for almost all of the global NEP, but in the 1990s NEP in Eurasia and Africa became higher than that of the Americas. The year-to-year variation in global NEP was up to 2.5 Pg C (1 Pg = 10 15 g), in which 1.4 Pg C was attributable to the El Nino Southern Oscillation cycle (ENSO). NEP clearly decreased in El Nino and increased in La Nina in South America and Africa, but the response in North America and Eurasia was mixed. The estimated NEP increases accounted for only 30% of the global terrestrial carbon sink but can explain almost all of the increase from the 1980s to the 1990s. Because a large part of the increase in NEP was driven by the long-term trend of climate and atmospheric CO 2 , the increase in the global terrestrial carbon sink from the 1980s to the 1990s was a continuation of the trend since the middle of the twentieth century, rather than merely a consequence of short-time climate variability

  16. Zeppelin NT - Measurement Platform for the Exploration of Atmospheric Chemistry and Dynamics in the Planetary Boundary Layer

    Science.gov (United States)

    Hofzumahaus, Andreas; Holland, Frank; Oebel, Andreas; Rohrer, Franz; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas; Brauchle, Artur; Steinlein, Klaus; Gritzbach, Robert

    2014-05-01

    The planetary boundary layer (PBL) is the chemically most active and complex part of the atmosphere where freshly emitted reactive trace gases, tropospheric radicals, atmospheric oxidation products and aerosols exhibit a large variability and spatial gradients. In order to investigate the chemical degradation of trace gases and the formation of secondary pollutants in the PBL, a commercial Zeppelin NT was modified to be used as an airborne measurement platform for chemical and physical observations with high spatial resolution. The Zeppelin NT was developed by Zeppelin Luftschifftechnik (ZLT) and is operated by Deutsche Zeppelin Reederei (DZR) in Friedrichshafen, Germany. The modification was performed in cooperation between Forschungszentrum Jülich and ZLT. The airship has a length of 75 m, can lift about 1 ton of scientific payload and can be manoeuvered with high precision by propeller engines. The modified Zeppelin can carry measurement instruments mounted on a platform on top of the Zeppelin, or inside the gondola beneath the airship. Three different instrument packages were developed to investigate a. gas-phase oxidation processes involving free radicals (OH, HO2) b. formation of secondary organic aerosols (SOA) c. new particle formation (nucleation) The presentation will describe the modified airship and provide an overview of its technical performance. Examples of its application during the recent PEGASOS flight campaigns in Europe will be given.

  17. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...

  18. Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process

    Science.gov (United States)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard

    2014-01-01

    Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may

  19. Ethane in Planetary and Cometary Atmospheres: Transmittance and Fluorescence Models of the nu7 Band at 3.3 Micrometers

    Science.gov (United States)

    Villanueva, G. L.; Mumma, M. J.; Magee-Sauer, K.

    2011-01-01

    Ethane and other hydrocarbon gases have strong rovibrational transitions in the 3.3 micron spectral region owing to C-H, CH2, and CH3 vibrational modes, making this spectral region prime for searching possible biomarker gases in extraterrestrial atmospheres (e.g., Mars, exoplanets) and organic molecules in comets. However, removing ethane spectral signatures from high-resolution terrestrial transmittance spectra has been imperfect because existing quantum mechanical models have been unable to reproduce the observed spectra with sufficient accuracy. To redress this problem, we constructed a line-by-line model for the n7 band of ethane (C2H6) and applied it to compute telluric transmittances and cometary fluorescence efficiencies. Our model considers accurate spectral parameters, vibration-rotation interactions, and a functional characterization of the torsional hot band. We integrated the new band model into an advanced radiative transfer code for synthesizing the terrestrial atmosphere (LBLRTM), achieving excellent agreement with transmittance data recorded against Mars using three different instruments located in the Northern and Southern hemispheres. The retrieved ethane abundances demonstrate the strong hemispheric asymmetry noted in prior surveys of volatile hydrocarbons. We also retrieved sensitive limits for the abundance of ethane on Mars. The most critical validation of the model was obtained by comparing simulations of C2H6 fluorescent emission with spectra of three hydrocarbon-rich comets: C/2004 Q2 (Machholz), 8P/Tuttle, and C/2007 W1 (Boattini). The new model accurately describes the complex emission morphology of the nu7 band at low rotational temperatures and greatly increases the confidence of the retrieved production rates (and rotational temperatures) with respect to previously available fluorescence models.

  20. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    Science.gov (United States)

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  1. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  2. Terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Pande, D.C.; Agarwal, D.C.

    1982-01-01

    This paper presents a review about terrestrial magnetosphere. During the last few years considerable investigation have been carried out about the properties of Solar Wind and its interaction with planetary magnetic fields. It is therefore of high importance to accumulate all the investigations in a comprehensive form. The paper reviews the property of earth's magnetosphere, magnetosheath, magneto pause, polar cusps, bow shook and plasma sheath. (author)

  3. The circulation pattern and day-night heat transport in the atmosphere of a synchronously rotating aquaplanet: Dependence on planetary rotation rate

    Science.gov (United States)

    Noda, S.; Ishiwatari, M.; Nakajima, K.; Takahashi, Y. O.; Takehiro, S.; Onishi, M.; Hashimoto, G. L.; Kuramoto, K.; Hayashi, Y.-Y.

    2017-01-01

    In order to investigate a possible variety of atmospheric states realized on a synchronously rotating aquaplanet, an experiment studying the impact of planetary rotation rate is performed using an atmospheric general circulation model (GCM) with simplified hydrological and radiative processes. The entire planetary surface is covered with a swamp ocean. The value of planetary rotation rate is varied from zero to the Earth's, while other parameters such as planetary radius, mean molecular weight and total mass of atmospheric dry components, and solar constant are set to the present Earth's values. The integration results show that the atmosphere reaches statistically equilibrium states for all runs; none of the calculated cases exemplifies the runaway greenhouse state. The circulation patterns obtained are classified into four types: Type-I characterized by the dominance of a day-night thermally direct circulation, Type-II characterized by a zonal wave number one resonant Rossby wave over a meridionally broad westerly jet on the equator, Type-III characterized by a long time scale north-south asymmetric variation, and Type-IV characterized by a pair of mid-latitude westerly jets. With the increase of planetary rotation rate, the circulation evolves from Type-I to Type-II and then to Type-III gradually and smoothly, whereas the change from Type-III to Type-IV is abrupt and discontinuous. Over a finite range of planetary rotation rate, both Types-III and -IV emerge as statistically steady states, constituting multiple equilibria. In spite of the substantial changes in circulation, the net energy transport from the day side to the night side remains almost insensitive to planetary rotation rate, although the partition into dry static energy and latent heat energy transports changes. The reason for this notable insensitivity is that the outgoing longwave radiation over the broad area of the day side is constrained by the radiation limit of a moist atmosphere, so that the

  4. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    Science.gov (United States)

    Valentin, J. R.

    1989-01-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  5. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    Science.gov (United States)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  6. An instrument to measure turbulent eddy fluxes in the atmosphere of Mars

    Science.gov (United States)

    S. Rafkin; D. Banfield; R. Dissly; J. Silver; A. Stanton; E. Wilkinson; W. Massman; J. Ham

    2012-01-01

    Turbulent eddies in the planetary boundary layer of the terrestrial planet atmospheres are the primary mechanism by which energy, momentum, gasses, and aerosols are exchanged between the surface and the atmosphere [1]. The importance of eddies has long been recognized by the Earth atmospheric science community, and turbulent theory for Earth has a long history with a...

  7. THE SENSITIVITY OF THE GREENHOUSE EFFECT TO CHANGES IN THE CONCENTRATION OF GASES IN PLANETARY ATMOSPHERES

    Directory of Open Access Journals (Sweden)

    Smadar Bressler

    2013-12-01

    Full Text Available We present a radiative transfer model for Earth-Like-Planets (ELP. The model allows the assessment of the effect of a change in the concentration of an atmospheric component, especially a greenhouse gas (GHG, on the surface temperature of a planet. The model is based on the separation between the contribution of the short wavelength molecular absorption and the long wavelength one. A unique feature of the model is the condition of energy conservation at every point in the atmosphere. The radiative transfer equation is solved in the two stream approximation without assuming the existence of an LTE in any wavelength range. The model allows us to solve the Simpson paradox, whereby the greenhouse effect (GHE has no temperature limit. On the contrary, we show that the temperature saturates, and its value depends primarily on the distance of the planet from the central star. We also show how the relative humidity affects the surface temperature of a planet and explain why the effect is smaller than the one derived when the above assumptions are neglected.

  8. Effects of turbulence on average refraction angles in occultations by planetary atmospheres

    Science.gov (United States)

    Eshleman, V. R.; Haugstad, B. S.

    1978-01-01

    Four separable effects of atmospheric turbulence on average refraction angles in occultation experiments are derived from a simplified analysis, and related to more general formulations by B. S. Haugstad. The major contributors are shown to be due to gradients in height of the strength of the turbulence, and the sense of the resulting changes in refraction angles is explained in terms of Fermat's principle. Because the results of analyses of such gradient effects by W. B. Hubbard and J. R. Jokipii are expressed in other ways, a special effort is made to compare all of the predictions on a common basis. We conclude that there are fundamental differences, and use arguments based on energy conservation and Fermat's principle to help characterize the discrepancies.

  9. Characteristics of mid-latitude planetary waves in the lower atmosphere derived from radiosonde data

    Directory of Open Access Journals (Sweden)

    R. Wang

    2012-10-01

    Full Text Available The activities of mid-latitude planetary waves (PWs in the troposphere and lower stratosphere (TLS are presented by using the radiosonde data from 2000 to 2004 over four American stations (Miramar Nas, 32.9° N, 117.2° W; Santa Teresa, 31.9° N, 106.7° W; Fort Worth, 32.8° N, 97.3° W; and Birmingham, 33.1° N, 86.7° W and one Chinese station (Wuhan, 30.5° N, 114.4° E. Statistically, strong PWs mainly appear around subtropical jet stream in the troposphere and lower stratosphere. In the troposphere, the activities of the mid-latitude PWs are strong around the centre of the subtropical jet stream in winter and become small near the tropopause, which indicates that the subtropical jet stream may strengthen the propagation of PWs or even be one of the PW excitation sources. Among the three disturbance components of temperature, zonal and meridional winds, PWs at Wuhan are stronger in the temperature component, but weaker in the zonal wind component than at the other four American stations. While in the meridional wind component, the strengths of PW spectral amplitudes at the four American stations decrease from west to east, and their amplitudes are all larger than that of Wuhan. However, the PWs are much weaker in the stratosphere and only the lower frequency parts remain. The amplitudes of the PWs in the stratosphere increase with height and are strong in winter with the zonal wind component being the strongest. Using the refractive index, we found that whether the PWs could propagate upward to the stratosphere depends on the thickness of the tropopause reflection layer. In the case study of the 2000/2001 winter, it is observed that the quasi 16-day wave in the troposphere is a quasi standing wave in the vertical direction and propagates upward slowly with vertical wavelength greater than 24 km in the meridional component. It propagates eastward with the zonal numbers between 5 and 8, and the quasi 16-day wave at Wuhan is probably the same

  10. Elaboration of collisional–radiative models for flows related to planetary entries into the Earth and Mars atmospheres

    International Nuclear Information System (INIS)

    Bultel, Arnaud; Annaloro, Julien

    2013-01-01

    The most relevant way to predict the excited state number density in a nonequilibrium plasma is to elaborate a collisional–radiative (CR) model taking into account most of the collisional and radiative elementary processes. Three examples of such an elaboration are given in this paper in the case of various plasma flows related to planetary atmospheric entries. The case of theoretical determination of nitrogen atom ionization or recombination global rate coefficients under electron impact is addressed first. The global rate coefficient can be implemented in multidimensional computational fluid dynamics calculations. The case of relaxation after a shock front crossing a gas of N 2 molecules treated in the framework of the Rankine–Hugoniot assumptions is also studied. The vibrational and electronic specific CR model elaborated in this case allows one to understand how the plasma reaches equilibrium and to estimate the role of the radiative losses. These radiative losses play a significant role at low pressure in the third case studied. This case concerns CO 2 plasma jets inductively generated in high enthalpy wind tunnels used as ground test facilities. We focus our attention on the behaviour of CO and C 2 electronic excited states, the radiative signature of which can be particularly significant in this type of plasma. These three cases illustrate the elaboration of CR models and their coupling with balance equations. (paper)

  11. Planetcam: A Visible And Near Infrared Lucky-imaging Camera To Study Planetary Atmospheres And Solar System Objects

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Rojas, J.; Hueso, R.; Perez-Hoyos, S.; de Bilbao, L.; Murga, G.; Ariño, J.; Mendikoa, I.

    2012-10-01

    PlanetCam is a two-channel fast-acquisition and low-noise camera designed for a multispectral study of the atmospheres of the planets (Venus, Mars, Jupiter, Saturn, Uranus and Neptune) and the satellite Titan at high temporal and spatial resolutions simultaneously invisible (0.4-1 μm) and NIR (1-2.5 μm) channels. This is accomplished by means of a dichroic beam splitter that separates both beams directing them into two different detectors. Each detector has filter wheels corresponding to the characteristic absorption bands of each planetary atmosphere. Images are acquired and processed using the “lucky imaging” technique in which several thousand images of the same object are obtained in a short time interval, coregistered and ordered in terms of image quality to reconstruct a high-resolution ideally diffraction limited image of the object. Those images will be also calibrated in terms of intensity and absolute reflectivity. The camera will be tested at the 50.2 cm telescope of the Aula EspaZio Gela (Bilbao) and then commissioned at the 1.05 m at Pic-duMidi Observatory (Franca) and at the 1.23 m telescope at Calar Alto Observatory in Spain. Among the initially planned research targets are: (1) The vertical structure of the clouds and hazes in the planets and their scales of variability; (2) The meteorology, dynamics and global winds and their scales of variability in the planets. PlanetCam is also expected to perform studies of other Solar System and astrophysical objects. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.

  12. A 2D-model of planetary atmospheres based on a collisional approach : application to Mars and Titan

    Science.gov (United States)

    Boqueho, V.; Blelly, P. L.; Peymirat, C.

    A 2D model of planetary atmospheres has been developed, based on a collisional approach. The multi-moment multi-species transport equations allow to study the atmospheric regions from the ground to the thermosphere and the exosphere in an only one self-consistent model. A 13-moment approximation is used: concentration, velocities, temperature, heat flows and stress tensor are then solved for each species. On Mars, we consider 8 species in the altitude - longitude plane, from surface to 450 km, the altitude above which atomic hydrogen becomes the major species. Main chemical and photodissociation processes are included, and thermal processes are considered above 80 km. On Titan, 3 species are considered in the altitude range 800 - 3000 km, and UV heating and HCN radiative cooling are accounted for. Different solar conditions have been considered, and simulations have been performed in the equatorial region. Results of the model for Mars are compared to Viking and Mariner data and to Bougher et al. [1988] model. Concerning Titan, the results are compared to Müller-Wodarg et al. [2000] model. Temperature profiles on Mars appear to be consistent with experimental data, but horizontal winds are very different from Bougher et al. [1988]. On Titan, results appear to be close to Müller-Wodarg et al. [2000] in the thermosphere; nevertheless, the change in the behavior above the exobase is as important as on Mars. The differences between models are analyzed, and contributions of a multi-moment multi-species approach in 2D are discussed.

  13. Evolution of the terrestrial atmosphere and its relationship to sediments and life

    Energy Technology Data Exchange (ETDEWEB)

    Junge, C

    1981-05-01

    The formation of the atmosphere - together with that of the oceans and sediments - was determined by three important processes: the loss of noble gases and volatiles in the solar nebula, the enrichment of these substances at the Earth's surface by exhalation from the Earth's mantle, and finally the formation of the hydrosphere, enabled by - in contrast to our neighboring planets - a suitable distance from the sun. In this way the development of the atmospheric gases N/sub 2/, H/sub 2/O and CO/sub 2/ was largely fixed. Oxygen, on the other hand, appeared late in the atmosphere. It originated from biological photosynthesis which apparently developed rather early in the Earth's history but lead at first only to oxidation of iron and sulfur. The subsequently occurring accumulation of free oxygen in the atmosphere resulted in interesting interrelations with the development of life.

  14. THOR: A NEW AND FLEXIBLE GLOBAL CIRCULATION MODEL TO EXPLORE PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, João M.; Grimm, Simon L.; Grosheintz, Luc; Heng, Kevin, E-mail: joao.mendonca@csh.unibe.ch, E-mail: kevin.heng@csh.unibe.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-10-01

    We have designed and developed, from scratch, a global circulation model (GCM) named THOR that solves the three-dimensional nonhydrostatic Euler equations. Our general approach lifts the commonly used assumptions of a shallow atmosphere and hydrostatic equilibrium. We solve the “pole problem” (where converging meridians on a sphere lead to increasingly smaller time steps near the poles) by implementing an icosahedral grid. Irregularities in the grid, which lead to grid imprinting, are smoothed using the “spring dynamics” technique. We validate our implementation of spring dynamics by examining calculations of the divergence and gradient of test functions. To prevent the computational time step from being bottlenecked by having to resolve sound waves, we implement a split-explicit method together with a horizontally explicit and vertically implicit integration. We validate our GCM by reproducing the Earth and hot-Jupiter-like benchmark tests. THOR was designed to run on graphics processing units (GPUs), which allows for physics modules (radiative transfer, clouds, chemistry) to be added in the future, and is part of the open-source Exoclimes Simulation Platform (www.exoclime.org).

  15. THOR: A NEW AND FLEXIBLE GLOBAL CIRCULATION MODEL TO EXPLORE PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Mendonça, João M.; Grimm, Simon L.; Grosheintz, Luc; Heng, Kevin

    2016-01-01

    We have designed and developed, from scratch, a global circulation model (GCM) named THOR that solves the three-dimensional nonhydrostatic Euler equations. Our general approach lifts the commonly used assumptions of a shallow atmosphere and hydrostatic equilibrium. We solve the “pole problem” (where converging meridians on a sphere lead to increasingly smaller time steps near the poles) by implementing an icosahedral grid. Irregularities in the grid, which lead to grid imprinting, are smoothed using the “spring dynamics” technique. We validate our implementation of spring dynamics by examining calculations of the divergence and gradient of test functions. To prevent the computational time step from being bottlenecked by having to resolve sound waves, we implement a split-explicit method together with a horizontally explicit and vertically implicit integration. We validate our GCM by reproducing the Earth and hot-Jupiter-like benchmark tests. THOR was designed to run on graphics processing units (GPUs), which allows for physics modules (radiative transfer, clouds, chemistry) to be added in the future, and is part of the open-source Exoclimes Simulation Platform (www.exoclime.org).

  16. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  17. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  18. Spectroscopic Investigations of High-Power Laser Sparks in Gas Mixtures Containing Methane: A Laboratory Model of Energetic Events in Strongly Reduced Planetary Atmospheres

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Civiš, Martin; Rašín, R.; Kamas, Michal; Dryahina, Kseniya; Španěl, Patrik; Juha, Libor; Ferus, Martin

    2009-01-01

    Roč. 39, 3-4 (2009), s. 217-217 ISSN 0169-6149 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GA203/06/1278 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : planetary atmosphere * lasers * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.053, year: 2009

  19. Optical Emission Spectroscopy of High-Power Laser-Induced Dielectric Breakdown in Molecular Gases and Their Mixtures: Investigating Early Stages of Plasma Chemical Action in Planetary Atmospheres

    Czech Academy of Sciences Publication Activity Database

    Cihelka, Jaroslav; Matulková, Irena; Sovová, Kristýna; Kamas, Michal; Kubelík, Petr; Ferus, Martin; Juha, Libor; Civiš, Svatopluk

    2009-01-01

    Roč. 39, 3-4 (2009), s. 227-227 ISSN 0169-6149 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GA203/06/1278; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : planetary atmosphere * lasers * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.053, year: 2009

  20. Towards realistic laboratory simulation of high-energy-density events in planetary atmospheres: Using large laser sparks created by a single pulse of high-power lasers

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Juha, Libor; Jehlička, J.

    2007-01-01

    Roč. 7, č. 3 (2007), s. 503-503 ISSN 1531-1074. [Bioastronomy 2007. 16.07.2007-20.07.2007, San Juach] R&D Projects: GA ČR GA203/06/1278; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : planetary atmospheres * high-power lasers Subject RIV: CF - Physical ; Theoretical Chemistry

  1. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: Model description

    International Nuclear Information System (INIS)

    Nikolov, Ned; Zeller, Karl F.

    2003-01-01

    A new biophysical model (FORFLUX) is presented to link ozone deposition with carbon and water cycles in terrestrial ecosystems. - A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO 2 - transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3 model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO 2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems

  2. The development of GPS TroWav tool for atmosphericterrestrial studies

    International Nuclear Information System (INIS)

    Suparta, W

    2014-01-01

    We have developed an efficient tool to process dual-frequency Global Positioning System (GPS) signals and the surface meteorological data, called the Tropospheric Water Vapor (TroWav) program. TroWav is a stand-alone program to compute atmospheric precipitable water vapor (PWV). The source of the program is developed using Matlab TM and the graphical user interface for the system was developed using a Visual Basic. The algorithms of the program capable to compute satellite elevation angle, Zenith Tropospheric Delay (ZTD), Zenith Hydrostatic Delay (ZHD), Zenith Wet Delay (ZWD) and mapping function. The tool is very practical and useful for sustainable atmospheric management.

  3. Models for the evaluation of ingestion doses from the consumption of terrestrial foods following an atmospheric radioactive release

    International Nuclear Information System (INIS)

    Nair, S.

    1984-04-01

    Various methods are described which have been incorporated in the FOODWEB module of the CEGB's NECTAR environmental code and are currently being used within CEGB to assess ingestion doses from consumption of terrestrial foods following an atmospheric radioactive release. Four foodchain models which have been developed within CEGB are fully described and results of typical calculations presented. Also given are the results of a validation of the dynamic model against measured 90 Sr and 137 Cs levels in milk in the U.K. resulting from weapons fallout. Methods are also described for calculating individual and population doses from ingestion using the results of the model calculations. The population dose calculations utilise a data base describing the spatial distribution of production of a wide range of agricultural products. The development of such a data base for Great Britain is described, based on the 1972 land use and livestock census, and maps are presented for each agricultural product. (U.K.)

  4. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  5. The upper atmosphere and solar-terrestrial relations - An introduction to the aerospace environment

    International Nuclear Information System (INIS)

    Hargreaves, J.K.

    1979-01-01

    A theoretical and observational overview of earth's aerospace environment is presented in this book. Emphasis is placed on the principles and observed phenomena of the neutral upper atmosphere, particularly in relation to solar activity. Topics include the structure of the ionosphere and magnetosphere, waves in the magnetosphere, solar flares and solar protons, and storms and other disturbance phenomena, while applications to communications, navigation and space technology are also discussed

  6. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    Science.gov (United States)

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  7. Observed and Modeled Tritium Concentrations in the Terrestrial Food Chain near a Continuous Atmospheric Source

    International Nuclear Information System (INIS)

    Davis, P.A.; Kim, S.B.; Chouhan, S.L.; Workman, W.J.G.

    2005-01-01

    Tritium concentrations were measured in a large number of environmental and biological samples collected during 2002 at two dairy farms and a hobby farm near Pickering Nuclear Generating Station in Ontario, Canada. The data cover most compartments of the terrestrial food chain in an agricultural setting and include detailed information on the diets of the local farm animals. Ratios of plant OBT concentration to air moisture HTO varied between 0.12 and 0.56, and were generally higher for the forage crops collected at the dairy farms than for the garden vegetables sampled at the hobby farm. Animal OBT to air HTO ratios were more uniform, ranging from 0.18 to 0.45, and were generally higher for the milk and beef samples from the dairy farms than for the chicken products from the hobby farm. The observed OBT concentrations in plants and animals were compared with predictions of IMPACT, the model used by the Canadian nuclear industry to calculate annual average doses due to routine releases. The model performed well on average for the animal endpoints but overestimated concentrations in plants by a factor of 2

  8. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink

    DEFF Research Database (Denmark)

    Smith, K.A.; Dobbie, K.E.; Ball, B.C.

    2000-01-01

    to the oxidation. The effect of temperature was small, attributed to substrate limitation and low atmospheric concentration. Analysis of all available data for CH4 oxidation rates in situ showed similar log-normal distributions to those obtained for our results, with generally little difference between different......This paper reports the range and statistical distribution of oxidation rates of atmospheric CH4 in soils found in Northern Europe in an international study, and compares them with published data for various other ecosystems. It reassesses the size, and the uncertainty in, the global terrestrial CH4...... sink, and examines the effect of land-use change and other factors on the oxidation rate. Only soils with a very high water table were sources of CH4; all others were sinks. Oxidation rates varied from 1 to nearly 200 µg CH4 m-2 h-1; annual rates for sites measured for =1 y were 0.1-9.1 kg CH4 ha-1 y-1...

  9. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo [Tohoku Univ., Sendai (Japan). Center for Atmospheric and Oceanic Studies; Ishizawa, Misa; Maksyutov, Shamil [Inst. for Global Change Research, Yokohama (Japan). Frontier Research System for Global Change; Thornton, Peter E. [National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.

    2003-04-01

    Seasonal and inter-annual variations of atmospheric CO{sub 2} for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO{sub 2} fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO{sub 2} time series simulated by Biome-BGC were compared to the global CO{sub 2} concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO{sub 2} observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO{sub 2}, making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation.

  10. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model

    International Nuclear Information System (INIS)

    Fujita, Daisuke; Saeki, Tazu; Nakazawa, Takakiyo; Ishizawa, Misa; Maksyutov, Shamil; Thornton, Peter E.

    2003-01-01

    Seasonal and inter-annual variations of atmospheric CO 2 for the period from 1961 to 1997 have been simulated using a global tracer transport model driven by a new version of the Biome BioGeochemical Cycle model (Biome-BGC). Biome-BGC was forced by daily temperature and precipitation from the NCEP reanalysis dataset, and the calculated monthly-averaged CO 2 fluxes were used as input to the global transport model. Results from an inter-comparison with the Carnegie-Ames-Stanford Approach model (CASA) and the Simulation model of Carbon CYCLE in Land Ecosystems (Sim-CYCLE) model are also reported. The phase of the seasonal cycle in the Northern Hemisphere was reproduced generally well by Biome-BGC, although the amplitude was smaller compared to the observations and to the other biosphere models. The CO 2 time series simulated by Biome-BGC were compared to the global CO 2 concentration anomalies from the observations at Mauna Loa and the South Pole. The modeled concentration anomalies matched the phase of the inter-annual variations in the atmospheric CO 2 observations; however, the modeled amplitude was lower than the observed value in several cases. The result suggests that a significant part of the inter-annual variability in the global carbon cycle can be accounted for by the terrestrial biosphere models. Simulations performed with another climate-based model, Sim-CYCLE, produced a larger amplitude of inter-annual variability in atmospheric CO 2 , making the amplitude closer to the observed range, but with a more visible phase mismatch in a number of time periods. This may indicate the need to increase the Biome-BGC model sensitivity to seasonal and inter-annual changes in temperature and precipitation

  11. Geology and Habitability of Terrestrial Planets

    CERN Document Server

    Fishbaugh, Kathryn E; Raulin, François; Marais, David J; Korablev, Oleg

    2007-01-01

    Given the fundamental importance of and universal interest in whether extraterrestrial life has developed or could eventually develop in our solar system and beyond, it is vital that an examination of planetary habitability goes beyond simple assumptions such as, "Where there is water, there is life." This book has resulted from a workshop at the International Space Science Institute (ISSI) in Bern, Switzerland (5-9 September 2005) that brought together planetary geologists, geophysicists, atmospheric scientists, and biologists to discuss the multi-faceted problem of how the habitability of a planet co-evolves with the geology of the surface and interior, the atmosphere, and the magnetosphere. Each of the six chapters has been written by authors with a range of expertise so that each chapter is itself multi-disciplinary, comprehensive, and accessible to scientists in all disciplines. These chapters delve into what life needs to exist and ultimately to thrive, the early environments of the young terrestrial pl...

  12. Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-darkening Directly from Model Stellar Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hilding R.; Lester, John B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); McNeil, Joseph T.; Ignace, Richard, E-mail: neilson@astro.utoronto.ca [Department of Physics and Astronomy, East Tennessee State University, Box 70652, Johnson City, TN 37614 (United States)

    2017-08-10

    The transit method, employed by Microvariability and Oscillation of Stars ( MOST ), Kepler , and various ground-based surveys has enabled the characterization of extrasolar planets to unprecedented precision. These results are precise enough to begin to measure planet atmosphere composition, planetary oblateness, starspots, and other phenomena at the level of a few hundred parts per million. However, these results depend on our understanding of stellar limb darkening, that is, the intensity distribution across the stellar disk that is sequentially blocked as the planet transits. Typically, stellar limb darkening is assumed to be a simple parameterization with two coefficients that are derived from stellar atmosphere models or fit directly. In this work, we revisit this assumption and compute synthetic planetary-transit light curves directly from model stellar atmosphere center-to-limb intensity variations (CLIVs) using the plane-parallel Atlas and spherically symmetric SAtlas codes. We compare these light curves to those constructed using best-fit limb-darkening parameterizations. We find that adopting parametric stellar limb-darkening laws leads to systematic differences from the more geometrically realistic model stellar atmosphere CLIV of about 50–100 ppm at the transit center and up to 300 ppm at ingress/egress. While these errors are small, they are systematic, and they appear to limit the precision necessary to measure secondary effects. Our results may also have a significant impact on transit spectra.

  13. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  14. The Solar Connections Observatory for Planetary Environments

    Science.gov (United States)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  15. Some studies relating to solar-terrestrial physics and the middle atmosphere

    International Nuclear Information System (INIS)

    Theobald, A.G.

    1977-12-01

    A review is given of observed variations in the Earth's rotation rate, and mechanisms by which the Sun might affect the length of day are discussed. Solar activity and means by which the planets might influence this activity are considered. Observed solar activity - weather correlations, in particular in relation to the sun-based, interplanetary magnetic sector structure and some of the suggested mechanisms for producing these correlations are discussed. The simple photochemical production of ozone in the middle atmosphere and the manner in which cosmic rays, through the production of nitrogen compounds, alter the ozone concentration at high altitudes is described. A computer model is developed which calculates ozone concentrations and energy absorption at any altitude, latitude, longitude and time of year and used to predict ozone and temperature change profiles over a 14-day cycle of ultra-violet changes. The existence of a solar magnetic sector linked variation of the high latitude, high altitude NO concentration is postulated and this is incorporated into the computer model to predict a temperature oscillation over a 14-day cycle which varies with geographic latitude and longitude. This effect is investigated in detail. (UK)

  16. Contribution of lateral terrestrial water flows to the regional hydrological cycle: A joint soil-atmospheric moisture tagging procedure with WRF-Hydro

    Science.gov (United States)

    Arnault, Joel; Wei, Jianhui; Zhang, Zhenyu; Wagner, Sven; Kunstmann, Harald

    2017-04-01

    Water resources management requires an accurate knowledge of the behavior of the regional hydrological cycle components, including precipitation, evapotranspiration, river discharge and soil water storage. Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a tool to evaluate these components. The main drawback of these atmospheric models, however, is that the terrestrial segment of the hydrological cycle is reduced to vertical infiltration, and that lateral terrestrial water flows are neglected. Recent model developments have focused on coupled atmospheric-hydrological modeling systems, such as WRF-hydro, in order to take into account subsurface, overland and river flow. The aim of this study is to investigate the contribution of lateral terrestrial water flows to the regional hydrological cycle, with the help of a joint soil-atmospheric moisture tagging procedure. This procedure is the extended version of an existing atmospheric moisture tagging method developed in WRF and WRF-Hydro (Arnault et al. 2017). It is used to quantify the partitioning of precipitation into water stored in the soil, runoff, evapotranspiration, and potentially subsequent precipitation through regional recycling. An application to a high precipitation event on 23 June 2009 in the upper Danube river basin, Germany and Austria, is presented. Precipitating water during this day is tagged for the period 2009-2011. Its contribution to runoff and evapotranspiration decreases with time, but is still not negligible in the summer 2011. At the end of the study period, less than 5 % of the precipitating water on 23 June 2009 remains in the soil. The additionally resolved lateral terrestrial water flows in WRF-Hydro modify the partitioning between surface and underground runoff, in association with a slight increase of evapotranspiration and recycled precipitation. Reference: Arnault, J., R. Knoche, J. Wei, and H. Kunstmann (2016), Evaporation tagging and atmospheric

  17. A Condensation–coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Kazumasa; Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2017-02-01

    A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our model by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation–coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.

  18. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    Science.gov (United States)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  19. A Condensation–coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds

    International Nuclear Information System (INIS)

    Ohno, Kazumasa; Okuzumi, Satoshi

    2017-01-01

    A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our model by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation–coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.

  20. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    Science.gov (United States)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  1. Clouds in the atmospheres of extrasolar planets. V. The impact of CO2 ice clouds on the outer boundary of the habitable zone

    OpenAIRE

    Kitzmann, Daniel

    2017-01-01

    Clouds have a strong impact on the climate of planetary atmospheres. The potential scattering greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Here, the impact of CO2 ice clouds on the surface temperatures of terrestrial planets with CO2 dominated atmospheres, orbiting different types of...

  2. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    Science.gov (United States)

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  3. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  4. Spectrophotometry near the atmospheric cutoff of the strongest Bowen resonance fluorescence lines of O III in two planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Opal, Chet B.

    1989-01-01

    Spectrophotometric results are presented for the stronger, well-resolved Bowen O III resonance fluorescence emission lines in the planetary nebulae 7027 and NGC 7662 down to and including the intrinsically strong line at 3133 A. These data are combined with results from the IUE atlas of spectra and similar results for the longer wavelength lines by Likkel and Aller (1986) to give the first full coverage of the Bowen lines. Good agreement is found with fluorescence theory for the primary cascade lines, except for the Likkel and Aller results. The efficiency of conversion of the exciting He II Ly-alpha into O III lines is determined, and values comparable to other planetary nebulae are found.

  5. Observing terrestrial water storage and land-atmosphere dynamics from space: Implications for forecasting and climate projections

    Science.gov (United States)

    Seneviratne, S. I.; Humphrey, V.; Nicolai-Shaw, N.; Gudmundsson, L.; Guillod, B.; Hirschi, M.; Michel, D.; Orth, R.; Zscheischler, J.

    2016-12-01

    In recent years, several new satellite products have been derived which allow an unprecendented assessment of terrestrial water storage and land-atmosphere dynamics. This presentation will review some of these new developments, with a focus on drought dynamics, plant-water interactions, and soil moisture-atmosphere feedbacks. Results derived based on the Gravity Recovery and Climate Experiment (GRACE, Humphrey et al. 2016) and the European Space Agency Climate Change Initiative (ESA CCI) Soil Moisture dataset (Nicolai-Shaw et al. 2015, 2016; Hirschi et al. 2014) will be highlighted, as well as assessments using satellite-based estimates of evapotranspiration (Mueller and Seneviratne 2014, Michel et al. 2016), vegetation activity (Zscheischler et al. 2015), and combined soil moisture and precipitation analyses (Guillod et al. 2015). These findings provide new insights on the development of prediction capabilities for droughts, precipitation events, and heat waves, and the reduction of uncertainties in climate model projections. References: Guillod, B.P., B. Orlowsky, D.G. Miralles, A.J. Teuling, and S.I. Seneviratne, 2015. Nature Communications, 6:6443, DOI: 10.1038/ncomms7443 Hirschi, M., B. Mueller, W. Dorigo, and S.I. Seneviratne, 2014. Remote Sensing of Environment, 154, 246-252. Humphrey, V., L. Gudmundsson, and S.I. Seneviratne, 2016. Surv. Geophysics, 37, 357-395, DOI 10.1007/s10712-016-9367-1. Michel, D., et al. 2016. Hydrol. Earth Syst. Sci. 20, 803-822, doi:10.5194/hess-20-803-2016. Mueller, M., and S.I. Seneviratne, 2014. Geophys. Res. Lett., 41, 1-7, doi:10.1002/2013GL058055. Nicolai-Shaw, N., L. Gudmundsson, M. Hirschi, and S.I. Seneviratne, 2016. Geophys. Res. Lett., in review. Nicolai-Shaw, N., M. Hirschi, H. Mittelbach, and S.I. Seneviratne, 2015. Journal of Geophysical Research, 120, doi:10.1002/2015JD023305. Zscheischler, J., R. Orth, and S.I. Seneviratne, 2015. Geophys. Res. Lett., 42, 9816-9824, doi:10.1002/2015GL066563.

  6. High-resolution Atmospheric pCO2 Reconstruction across the Paleogene Using Marine and Terrestrial δ13C records

    Science.gov (United States)

    Cui, Y.; Schubert, B.

    2016-02-01

    The early Paleogene (63 to 47 Ma) is considered to have a greenhouse climate1 with proxies suggesting atmospheric CO2 levels (pCO2) approximately 2× pre-industrial levels. However, the proxy based pCO2 reconstructions are limited and do not allow for assessment of changes in pCO2 at million to sub-million year time scales. It has recently been recognized that changes in C3 land plant carbon isotope fractionation can be used as a proxy for pCO2 with quantifiable uncertainty2. Here, we present a high-resolution pCO2 reconstruction (n = 597) across the early Paleogene using published carbon isotope data from both terrestrial organic matter and marine carbonates. The minimum and maximum pCO2 values reconstructed using this method are broad (i.e., 170 +60/-40 ppmv to 2000 +4480/-1060 ppmv) and reflective of the wide range of environments sampled. However, the large number of measurements allows for a robust estimate of average pCO2 during this time interval ( 400 +260/-120 ppmv), and indicates brief (sub-million-year) excursions to very high pCO2 during hyperthermal events (e.g., the PETM). By binning our high-resolution pCO2 data at 1 million year intervals, we can compare our dataset to the other available pCO2 proxies. Our result is broadly consistent with pCO2 levels reconstructed using other proxies, with the exception of paleosol-based pCO2 estimates spanning 53 to 50 Ma. At this timescale, no proxy suggests pCO2 higher than 2000 ppmv, whereas the global surface ocean temperature is considered to be >10 oC warmer than today. Recent climate modeling suggests that low atmospheric pressure during this time period could help reconcile the apparent disconnect between pCO2 and temperature and contribute to the greenhouse climate3. References1. Huber, M., Caballero, R., 2011. Climate of the Past 7, 603-633. 2. Schubert, B.A., Jahren, A.H., 2015. Geology 43, 435-438. 3. Poulsen, C.J., Tabor, C., White, J.D., 2015. Science 348, 1238-1241.

  7. Space and Planetary Resources

    Science.gov (United States)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  8. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    Science.gov (United States)

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  9. Simulating dynamics of {delta}{sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of {delta}{sup 13}C and thus the global {delta}{sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to {delta}{sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of {delta}{sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The {delta}{sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on {delta}{sup 13}C of CO{sub 2} dynamics in PBL

  10. Simulating dynamics of (delta){sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of (delta){sup 13}C and thus the global (delta){sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to (delta){sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of (delta){sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The (delta){sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on (delta){sup 13}C of CO{sub 2} dynamics in PBL

  11. Planetary Habitability

    Science.gov (United States)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  12. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  13. Plate tectonics and planetary habitability: current status and future challenges.

    Science.gov (United States)

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  14. Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007

    Directory of Open Access Journals (Sweden)

    A. Belova

    2008-11-01

    Full Text Available A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976 do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005 that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.

  15. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change

    Science.gov (United States)

    Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.

    2015-01-01

    Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in

  16. Stable hydrogen isotopic composition of n-alkanes in atmospheric aerosols as a tracer for the source region of terrestrial plant waxes

    Science.gov (United States)

    Yamamoto, S.; Kawamura, K.

    2009-12-01

    Studies on molecular composition and compound-specific carbon isotopic ratio (δ13C) of leaf wax n-alkanes in atmospheric aerosols have revealed a long-range atmospheric transport of terrestrial higher plant materials over the south Atlantic and western Pacific oceans. However, molecular and δ13C compositions of terrestrial plant waxes in the eastern part of the Asian continent are relatively constant reflecting C3-dominated vegetation, which makes it difficult to specify the source regions of plant materials in the atmospheric aerosols over the East Asia and northwest Pacific regions. Recent observation displays a large (>100‰) spatial variation in hydrogen isotopic composition (δD) of rainwater in East Asia. Because δD values of terrestrial higher plants sensitively reflect those of precipitation waters, δD of leaf waxes are expected to provide information on their source region. In this study, we measured the δD of n-alkanes in atmospheric aerosols from Tokyo to better understand the origin of leaf wax n-alkanes in atmospheric aerosols. The δD values of fossil fuel n-alkanes (C21 to C24) in Tokyo aerosols range from -65 to -94‰, which are in a range of those reported in marine crude oils. In contrast, the δD of higher molecular weight (C29 and C31) n-alkanes (δDHMW) show much larger values by ~70‰ than those of fossil fuel n-alkanes. Their values were found to exhibit concomitant variations with carbon preference index (CPI), suggesting that the δDHMW reflect the δD of leaf wax n-alkanes with a variable contribution from fossil fuel n-alkanes. Nevertheless, good positive correlation (r = 0.89, p < 0.01) between the δDHMW and CPI values enable us to remove the contribution of fossil fuels using a mass balance approach by assuming that CPI of fossil fuel is 1 and CPI of plant waxes is 5-15. Calculated n-alkane δD values averaged from -170 to -185‰ for C29 and from -155 to -168‰ for C31. These values are consistent with those reported from

  17. Atmospheric Electricity

    Science.gov (United States)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  18. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  19. Atmospheric carbon dioxide as a driver for deglaciation during the Mi-1 event: new evidence from terrestrial Southern Hemisphere proxies

    Science.gov (United States)

    Fox, B.; Wilson, G. S.; Lee, D.; Haworth, M.; Wartho, J.; Kaulfuss, U.; Bannister, J.; Gorman, A. R.; Jones, D. A.; Lindqvist, J.

    2011-12-01

    Foulden Maar is an annually-resolved maar lake deposit dating from the Oligocene/Miocene boundary. The deposit, from the South Island of New Zealand, is the first high-resolution terrestrial record of the O/M boundary and the rapid deglaciation of Antarctica that occurred during the second half of the Mi-1 event. A ~180 m core from the centre of the lake bed comprises ~60 m of basal graded breccias, sands and muds overlain by ~120 m of diatomite punctuated by volcanogenic horizons. The basal siliciclastic sediments contain clasts of basalt and country rock and are interpreted as diatreme breccias coeval with the formation of the maar. The diatomite succession consists of mm-scale light-dark couplets and diatomaceous turbidites. Radiometric dates were obtained from basaltic clasts found at ~110 m depth (close to the base of the diatomite sucession) in a slump deposit of crater wall material. These give ages of 23.45 ± 0.25 Ma and 23.68 ± 0.36 Ma. A nearby basaltic dyke formed during the same episode of volcanism as the maar crater gives a date of 23.17 ± 0.17 Ma. A magnetic reversal occurs at ~106 m depth in the core, constraining the age of this point to 23.34 Ma (the base of chron C6Cn.3n) or 23.03 Ma (the base of chron C6Cn.2n). Spectral analysis of physical properties measurements of the diatomite section of the core reveals obliquity and precessional frequencies. An age model based on these frequencies shows that individual light-dark couplets of diatomite represent annual varves and that the normally magnetised section from ~106 m depth to the top of the core covers ~100,000 years. This rules out C6Cn.3n, which is only 50,000 years long, placing the base of the diatomite succession at the Oligocene-Miocene boundary and the peak of the Mi-1 event. We have collected stomatal index values from Litsea and Podocarpus leaves found in the succession. The Podocarpus values are calibrated using Podocarpus plants grown at various concentrations of carbon dioxide from

  20. Super-long Anabiosis of Ancient Microorganisms in Ice and Terrestrial Models for Development of Methods to Search for Life on Mars, Europa and other Planetary Bodies

    Science.gov (United States)

    Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; hide

    2007-01-01

    Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.

  1. Wave activity (planetary, tidal throughout the middle atmosphere (20-100km over the CUJO network: Satellite (TOMS and Medium Frequency (MF radar observations

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2005-02-01

    Full Text Available Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT is studied using combinations of ground-based (GB and satellite instruments (2000-2002. The relatively new MFR (medium frequency radar at Platteville (40° N, 105° W has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity comprises systems at London (43° N, 81° W, Platteville (40° N, 105° W, Saskatoon (52° N, 107° W, Wakkanai (45° N, 142° E and Yamagawa (31° N, 131° E. It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14° at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP TOMS (Total Ozone Mapping Spectrometer and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability. Climatologies of ozone and winds/tides involving frequency versus time (wavelet contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km heights. Both direct planetary wave (PW propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric and MLT wave motions and their

  2. Wave activity (planetary, tidal) throughout the middle atmosphere (20-100km) over the CUJO network: Satellite (TOMS) and Medium Frequency (MF) radar observations

    Science.gov (United States)

    Manson, A. H.; Meek, C. E.; Chshyolkova, T.; Avery, S. K.; Thorsen, D.; MacDougall, J. W.; Hocking, W.; Murayama, Y.; Igarashi, K.

    2005-02-01

    Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT) is studied using combinations of ground-based (GB) and satellite instruments (2000-2002). The relatively new MFR (medium frequency radar) at Platteville (40° N, 105° W) has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity) comprises systems at London (43° N, 81° W), Platteville (40° N, 105° W), Saskatoon (52° N, 107° W), Wakkanai (45° N, 142° E) and Yamagawa (31° N, 131° E). It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14°) at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP) TOMS (Total Ozone Mapping Spectrometer) and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability. Climatologies of ozone and winds/tides involving frequency versus time (wavelet) contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km) heights. Both direct planetary wave (PW) propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric and MLT wave motions and their

  3. Wave activity (planetary, tidal throughout the middle atmosphere (20-100km over the CUJO network: Satellite (TOMS and Medium Frequency (MF radar observations

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2005-02-01

    Full Text Available Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT is studied using combinations of ground-based (GB and satellite instruments (2000-2002. The relatively new MFR (medium frequency radar at Platteville (40° N, 105° W has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity comprises systems at London (43° N, 81° W, Platteville (40° N, 105° W, Saskatoon (52° N, 107° W, Wakkanai (45° N, 142° E and Yamagawa (31° N, 131° E. It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14° at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP TOMS (Total Ozone Mapping Spectrometer and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability.

    Climatologies of ozone and winds/tides involving frequency versus time (wavelet contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km heights. Both direct planetary wave (PW propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric

  4. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets

    Science.gov (United States)

    Civiš, Svatopluk; Knížek, Antonín; Ivanek, Ondřej; Kubelík, Petr; Zukalová, Markéta; Kavan, Ladislav; Ferus, Martin

    2017-10-01

    Understanding the chemical evolution of newly formed terrestrial planets involves uncertainties in atmospheric chemical composition and assessing the plausibility of biomolecule synthesis. In this study, an original scenario for the origin of methane on Mars and terrestrial planets is suggested. Carbon dioxide in Martian and other planetary atmospheres can be abiotically converted into a mixture of methane and carbon monoxide by `methanogenesis' on porous mineral photoactive surfaces under soft ultraviolet irradiation. On young planets exposed to heavy bombardment by interplanetary matter, this process can be followed by biomolecule synthesis through the reprocessing of reactive reducing atmospheres by impact-induced shock waves. The proposed mechanism of methanogenesis may help to answer the question concerning the formation of methane and carbon monoxide by photochemical processes, the formation of biomolecules on early Earth and other terrestrial planets, and the source and seasonal variation of methane concentrations on Mars.

  5. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  6. Collaborative project. Ocean-atmosphere interaction from meso-to planetary-scale. Mechanisms, parameterization, and variability

    Energy Technology Data Exchange (ETDEWEB)

    Small, Richard [National Center for Atmospheric Research, Boulder, CO (United States); Bryan, Frank [National Center for Atmospheric Research, Boulder, CO (United States); Tribbia, Joseph [National Center for Atmospheric Research, Boulder, CO (United States); Park, Sungsu [National Center for Atmospheric Research, Boulder, CO (United States); Dennis, John [National Center for Atmospheric Research, Boulder, CO (United States); Saravanan, R. [National Center for Atmospheric Research, Boulder, CO (United States); Schneider, Niklas [National Center for Atmospheric Research, Boulder, CO (United States); Kwon, Young-Oh [National Center for Atmospheric Research, Boulder, CO (United States)

    2015-06-11

    This project aims to improve long term global climate simulations by resolving ocean mesoscale activity and the corresponding response in the atmosphere. The main computational objectives are; i) to perform and assess Community Earth System Model (CESM) simulations with the new Community Atmospheric Model (CAM) spectral element dynamical core; ii) use static mesh refinement to focus on oceanic fronts; iii) develop a new Earth System Modeling tool to investigate the atmospheric response to fronts by selectively filtering surface flux fields in the CESM coupler. The climate research objectives are 1) to improve the coupling of ocean fronts and the atmospheric boundary layer via investigations of dependency on model resolution and stability functions: 2) to understand and simulate the ensuing tropospheric response that has recently been documented in observations: and 3) to investigate the relationship of ocean frontal variability to low frequency climate variability and the accompanying storm tracks and extremes in high resolution simulations. This is a collaborative multi-institution project consisting of computational scientists, climate scientists and climate model developers. It specifically aims at DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  7. Investigations on physics of planetary atmospheres and small bodies of the Solar system, extrasolar planets and disk structures around the stars

    Science.gov (United States)

    Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.

    2015-12-01

    The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards

  8. The study of light phenomena in the planetary atmosphere and the properties of water as a scintillator under the action of cosmic rays

    International Nuclear Information System (INIS)

    Caramete, Laurentiu-Ioan; Stere, Oana; Haiduc, Maria; Rusu, Mircea Victor

    2004-01-01

    Few scientific fields are so attractive and have an interdisciplinary nature like nuclear astrophysics. It covers the study of the synthesis of the elements and the evolution of cosmic sites where such synthesis takes place. The systems like early universe, interstellar medium, giant red stars, supernovae and the birth of new stars are considerable problems and modern science research themes. Huge amount of data is gathered daily, by astronomical observatories, satellites and orbital stations which have more and more complex equipment. For explaining and understanding these data, theories and very complex computerized models are used. Our proposed installation will be used for obtaining a large variety of data, parameters and values of some dimensions which make part of theoretical and simulation models for observed processes in astrophysics and astronomy. We will study the scintillation phenomena from atmosphere with applications in the study of cosmic rays, applications regarding some aspects of flash or sparking observed in the high altitude of terrestrial atmosphere and which are due to small drops of water or ice. On the other side, cosmic radiation causes a continuous bombardment of high atmosphere and such phenomena could be produced if the drops of water, in special conditions, are the place for scintillation. The fundamental interest is that a simple inorganic system, like water, could provide scintillation in pure conditions, in contamination conditions or in solid state. For this purpose we will study the following items: the possible energy levels in the water molecule in different conditions and the way in which the position of levels are changed in solution, the influence of different impurities in water, which form (in contact with water molecules) structures and different molecular groups in water which can have energy levels able to act like scintillation centers. Our purposes are the following: - making new scintillators, cheaper and more

  9. An analytical model for dispersion of material in the atmospheric planetary boundary layer in presence of precipitation

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Etman, S.M.

    1985-05-01

    An analytical model for the dispersion of particulates and finely divided material released into the atmosphere near the ground is presented. The possible precipitation when the particles are dense enough and large enough to have deposition velocity, is taken into consideration. The model is derived analytically in the mixing layer or Ekman boundary layer where the mixing process is a direct consequence of turbulent and convective motions generated in the boundary layer. (author)

  10. Looking for the Coldest Atmospheres: a Search for Planetary Mass Companions around T and Y Brown Dwarfs

    Science.gov (United States)

    Fontanive, Clemence

    2017-08-01

    We propose to obtain WFC3/IR imaging of the very coolest brown dwarfs (T planetary-mass companions to these objects. Companions discovered by this program would likely be analogues of the 250 K brown dwarf WISE 0855 and would provide vital benchmark objects for theoretical models, closing the gap in mass and temperature between brown dwarfs and planets. Finding such an object as a member of a binary system would be even more valuable as it would allow for the measurement of dynamical masses. We recently placed the first constraints to date on the binary frequency for brown dwarfs with spectral types >T8. This program will triple our current sample size, a requirement in order to confirm our current results and compare substellar binary properties for various spectral type and age populations. The WFC3/IR plate will allow us to probe near equal-mass binaries down to separations of 0.2 (2-3 AU for the typical distances of our targets). True cool companions should show strong absorption around 1.4 um as a result of the deep water absorption band observed at that wavelength in substellar spectra. We therefore propose observations in the WFC3 F127M and F139M filters which will allow us to robustly identify bona fide candidates and distinguish them from background stars based on this spectral feature. Most of our targets lack suitable NGS AO guide stars or LGS AO tip-tilt stars to be observed with ground-based telescopes, and the 1.4 um water band is often unobservable from the ground due to telluric water absorption. WFC3 on HST is thus the only instrument suitable for these observations.

  11. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART B : Results and Capacity Building

    Science.gov (United States)

    Amory-Mazaudier, C.; Fleury, R.; Petitdidier, M.; Soula, S.; Masson, F.; Davila, J.; Doherty, P.; Elias, A.; Gadimova, S.; Makela, J.; Nava, B.; Radicella, S.; Richardson, J.; Touzani, A.; Girgea Team

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern solar terrestrial physics, atmospheric physics and space weather. This part B is devoted to the results and capacity building. Our network began in 1991, in solar terrestrial physics, by our participation in the two projects: International Equatorial Electrojet Year IEEY [1992-1993] and International Heliophysical Year IHY [2007-2009]. These two projects were mainly focused on the equatorial ionosphere in Africa. In Atmospheric physics our research focused on gravity waves in the framework of the African Multidisciplinary Monsoon Analysis project n°1 [2005-2009 ], on hydrology in the Congo river basin and on lightning in Central Africa, the most lightning part of the world. In Vietnam the study of a broad climate data base highlighted global warming. In space weather, our results essentially concern the impact of solar events on global navigation satellite system GNSS and on the effects of solar events on the circulation of electric currents in the earth (GIC). This research began in the framework of the international space weather initiative project ISWI [2010-2012]. Finally, all these scientific projects have enabled young scientists from the South to publish original results and to obtain positions in their countries. These projects have also crossed disciplinary boundaries and defined a more diversified education which led to the training of specialists in a specific field with knowledge of related scientific fields.

  12. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  13. Possible climates on terrestrial exoplanets.

    Science.gov (United States)

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect.

  14. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  15. Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.

    2015-11-01

    Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.

  16. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach. II. The Atmospheric constraint

    International Nuclear Information System (INIS)

    Ying Ping Wang; McGregor, John L.

    2003-01-01

    Bayesian synthesis inversion was applied to in-situ hourly CO 2 concentrations measured at Cape Grim, Australia to refine the estimates of monthly mean gross photosynthesis, total ecosystem respiration and net ecosystem production by the CSIRO Biospheric Model (CBM) for eight regions in Australia for the period 1990-1998. It was found that in-situ measurements of hourly CO 2 concentrations at Cape Grim could provide significant information about the carbon fluxes from Tasmania, central-south and south-east Australia only. The process-based model, CBM, overestimates the ecosystem respiration during summer in south-east Australia, but underestimates ecosystem respiration in Tasmania and central-south Australia. It was concluded that the respiration sub model of CBM should be improved to account for the seasonal variation in the plant and soil respiration parameters in south-east Australia. For the whole period of 1990 to 1998, the mean net ecosystem productions of terrestrial ecosystems in Tasmania, central-south Australia and south-east Australia were estimated to be, respectively, 6 ± 10, 7 ± 27 and 64 ± 18 Mt C/yr. The yearly uptake rate (being negative) of the terrestrial ecosystems in south-east Australia was smallest (42 ± 55 Mt C/yr) in 1998 and largest (91 ± 52 Mt C/yr) in 1992

  17. Planetary magnetospheres

    International Nuclear Information System (INIS)

    Hill, T.W.; Michel, F.C.

    1975-01-01

    Recent planetary probes have resulted in the realization of the generality of magnetospheric interactions between the solar wind and the planets. The three categories of planetary magnetospheres are discussed: intrinsic slowly rotating magnetospheres, intrinsic rapidly rotating magnetospheres, and induced magnetospheres. (BJG)

  18. Exobiological implications of dust aggregation in planetary atmospheres: An experiment for the gas-grain simulation facility

    Science.gov (United States)

    Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.

    1991-01-01

    The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.

  19. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data

    Science.gov (United States)

    Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin

    2018-04-01

    The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.

  20. Ionospheric effects on terrestrial communications: Working Group 3 overview

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Bourdillon, A.

    2004-01-01

    Roč. 47, 2/3 (2004), s. 1269-1277 ISSN 1593-5213. [Final Meeting COST271 Action. Effects of the upper atmosphere on terrestrial and Earth-space communications (EACOS). Abingdon, 26.08.2004-27.08.2004] R&D Projects: GA MŠk OC 271.10; GA AV ČR IBS3012007 Institutional research plan: CEZ:AV0Z3042911 Keywords : ionospheric reflection * telecommunications * gravity waves * planetary waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.413, year: 2004 http://www.annalsofgeophysics.eu/index.php/annals/article/view/3299/3345

  1. Detection of nitric acid and nitric oxides in the terrestrial atmosphere in the middle-infrared spectral region

    Directory of Open Access Journals (Sweden)

    M. I. Blecka

    1996-11-01

    Full Text Available A proposal for combined space and ground-based observations of the vertical distributions and the column densities of nitric acid and nitric oxide concentrations in the earth's atmosphere is discussed. We focus on the aspects that are particular to the idea of correlative measurements: geometrical considerations, simulations of the solar absorption spectra in the middle-infrared region corresponding to the different observational geometries, and the associated retrieval methods. These studies are done specifically for the Belgian-French experiment MIRAS (MIR Infrared Atmospheric Spectrometer onboard the Russian Space Station MIR and correlative ground-based FTIR measurements in the Tatra mountains.

  2. Analyzing coastal turbidity under complex terrestrial loads characterized by a 'stress connectivity matrix' with an atmosphere-watershed-coastal ocean coupled model

    Science.gov (United States)

    Yamamoto, Takahiro; Nadaoka, Kazuo

    2018-04-01

    Atmospheric, watershed and coastal ocean models were integrated to provide a holistic analysis approach for coastal ocean simulation. The coupled model was applied to coastal ocean in the Philippines where terrestrial sediment loads provided from several adjacent watersheds play a major role in influencing coastal turbidity and are partly responsible for the coastal ecosystem degradation. The coupled model was validated using weather and hydrologic measurement to examine its potential applicability. The results revealed that the coastal water quality may be governed by the loads not only from the adjacent watershed but also from the distant watershed via coastal currents. This important feature of the multiple linkages can be quantitatively characterized by a "stress connectivity matrix", which indicates the complex underlying structure of environmental stresses in coastal ocean. The multiple stress connectivity concept shows the potential advantage of the integrated modelling approach for coastal ocean assessment, which may also serve for compensating the lack of measured data especially in tropical basins.

  3. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    International Nuclear Information System (INIS)

    Anderies, J M; Carpenter, S R; Steffen, Will; Rockström, Johan

    2013-01-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries. (letter)

  4. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    Science.gov (United States)

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  5. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  6. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    Science.gov (United States)

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  7. Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin

    Science.gov (United States)

    Kerandi, Noah; Arnault, Joel; Laux, Patrick; Wagner, Sven; Kitheka, Johnson; Kunstmann, Harald

    2018-02-01

    For an improved understanding of the hydrometeorological conditions of the Tana River basin of Kenya, East Africa, its joint atmospheric-terrestrial water balances are investigated. This is achieved through the application of the Weather Research and Forecasting (WRF) and the fully coupled WRF-Hydro modeling system over the Mathioya-Sagana subcatchment (3279 km2) and its surroundings in the upper Tana River basin for 4 years (2011-2014). The model setup consists of an outer domain at 25 km (East Africa) and an inner one at 5-km (Mathioya-Sagana subcatchment) horizontal resolution. The WRF-Hydro inner domain is enhanced with hydrological routing at 500-m horizontal resolution. The results from the fully coupled modeling system are compared to those of the WRF-only model. The coupled WRF-Hydro slightly reduces precipitation, evapotranspiration, and the soil water storage but increases runoff. The total precipitation from March to May and October to December for WRF-only (974 mm/year) and coupled WRF-Hydro (940 mm/year) is closer to that derived from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data (989 mm/year) than from the TRMM (795 mm/year) precipitation product. The coupled WRF-Hydro-accumulated discharge (323 mm/year) is close to that observed (333 mm/year). However, the coupled WRF-Hydro underestimates the observed peak flows registering low but acceptable NSE (0.02) and RSR (0.99) at daily time step. The precipitation recycling and efficiency measures between WRF-only and coupled WRF-Hydro are very close and small. This suggests that most of precipitation in the region comes from moisture advection from the outside of the analysis domain, indicating a minor impact of potential land-precipitation feedback mechanisms in this case. The coupled WRF-Hydro nonetheless serves as a tool in quantifying the atmospheric-terrestrial water balance in this region.

  8. The Importance and Current Limitations of Planetary Boundary Layer (PBL) Retrieval from Space for Land-Atmosphere Coupling Studies

    Science.gov (United States)

    Santanello, J. A., Jr.; Schaefer, A.

    2016-12-01

    There is an established need for improved PBL remote sounding over land for hydrology, land-atmosphere (L-A), PBL, cloud/convection, pollution/chemistry studies and associated model evaluation and development. Most notably, the connection of surface hydrology (through soil moisture) to clouds and precipitation relies on proper quantification of water's transport through the coupled system, which is modulated strongly by PBL structure, growth, and feedback processes such as entrainment. In-situ (ground-based or radiosonde) measurements will be spatially limited to small field campaigns for the foreseeable future, so satellite data is a must in order to understand these processes globally. The scales of these applications require diurnal resolution (e.g. 3-hourly or finer) at land-PBL coupling and water and energy cycles at their native scales. Today's satellite sensors (e.g. advanced IR, GEO, lidar, GPS-RO) do not reach close to these targets in terms of accuracy or resolution, and each of these sensors has some advantages but even more limitations that make them impractical for PBL and L-A studies. Unfortunately, there is very little attention or planning (short or long-term) in place for improving lower tropospheric sounding over land, and as a result PBL and L-A interactions have been identified as `gaps' in current programmatic focal areas. It is therefore timely to assess how these technologies can be leveraged, combined, or evolved in order to form a dedicated mission or sub-mission to routinely monitor the PBL on diurnal timescales. In addition, improved PBL monitoring from space needs to be addressed in the next Decadal Survey. In this talk, the importance of PBL information (structure, evolution) for L-A coupling diagnostics and model development will be summarized. The current array of PBL retrieval methods and products from space will then be assessed in terms of meeting the needs of these models, diagnostics, and scales, with a look forward as to how

  9. Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation

    Science.gov (United States)

    Kleidon, Axel; Renner, Maik

    2016-04-01

    The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity

  10. Removal of CO2 from the terrestrial atmosphere to curtail global warming: From methodology to laboratory prototype

    Science.gov (United States)

    Orton, Andrea E.

    This research has focused on the initial phase of required investigations in pursuit of a global scale methodology for reduction of CO 2 in terrestrial air for the purpose of curtailment of global warming. This methodology was initially presented by Agee, Orton, and Rogers (2013), and has provided the basis for pursuing this thesis research. The first objective of the research project was to design and build a laboratory prototype system, capable of depleting CO2 from terrestrial air at 1 bar of pressure through LN2 refrigeration. Design considerations included a 26.5L cylindrical Pyrex glass sequestration chamber, a container to hold a reservoir of LN2 and an interface between the two to allow for cooling and instrumentation ports for measurements inside the sequestration chamber. Further, consideration was given to the need for appropriate insulating material to enclose the assembled apparatus to help achieve efficient cooling and the threshold depositional temperature of 135 K. The Amy Facility in the Department of Chemistry provided critical expertise to machine the apparatus to specifications, especially the stainless steel interface plate. Research into available insulating materials resulted in the adaption of TRYMER RTM 2500 Polyisocyanurate, effective down to 90 K. The above described DAC prototype designed for CO2 sequestration accomplished two of the initial research objectives investigated: 1) conduct refrigeration experiments to achieve CO2 terrestrial deposition temperature of 135 K (uniformly) and 2) deplete CO2 from the chamber air at 1 bar of pressure, documented by appropriate measurements. It took approximately 5.5 hours for the chamber to be completely uniform in temperature of 135 K (and below) through the use of LN2 poured into the container sitting on an aluminum interface on top of the sequestration Pyrex chamber. As expected, Rayleigh-Taylor instability (more dense fluid over less dense fluid) was observed through the duration of the

  11. Two high resolution terrestrial records of atmospheric Pb deposition from New Brunswick, Canada, and Loch Laxford, Scotland

    International Nuclear Information System (INIS)

    Kylander, Malin E.; Weiss, Domink J.; Kober, Bernd

    2009-01-01

    Environmental archives like peat deposits allow for the reconstruction of both naturally and anthropogenically forced changes in the biogeochemical cycle of Pb as well as the quantification of past and present atmospheric Pb pollution. However, records of atmospheric Pb deposition from pre-industrial times are lacking. In a publication by Weiss et al. [Weiss, D., Shotyk, W., Boyle, E.A., Kramers, J.D., Appleby, P.G., Cheburkin, A.K., Comparative study of the temporal evolution of atmospheric lead deposition in Scotland and eastern Canada using blanket peat bogs. Sci Total Environ 2002;292:7-18]. Pb isotopes data measured by Q-ICP-MS and TIMS, concentration and enrichment data was presented for sites in eastern Canada (PeW1) and northwestern Scotland (LL7c), dating to 1586 A.D and 715 A.D., respectively. Here these same cores are re-analysed for Pb isotopes by MC-ICP-MS thereby acquiring 204 Pb data and improving on the original data in terms of resolution and temporal coverage. Significant differences were found between the Q-ICP-MS/TIMS and MC-ICP-MS measurements, particularly at PeW1. These discrepancies are attributed to the problematic presence of organic matter during sample preparation and analysis complicated by the heterogeneity of the organic compounds that survived sample preparation steps. The precision and accuracy of Pb isotopes in complex matrices like peat is not always well estimated by industrial standards like NIST-SRM 981 Pb. Lead pollution histories at each site were constructed using the MC-ICP-MS data. The entire LL7c record is likely subject to anthropogenic additions. Contributions from local mining were detected in Medieval times. Later, coal use and mining in Scotland, Wales and England became important. After industrialization (ca. 1885 A.D.) contributions from Broken Hill type ores and hence, leaded petrol, dominate atmospheric Pb signatures right up to modern times. At PeW1 anthropogenic impacts are first distinguishable in the late 17

  12. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  13. Planetary Defense

    Science.gov (United States)

    2016-05-01

    4 Abstract Planetary defense against asteroids should be a major concern for every government in the world . Millions of asteroids and...helps make Planetary Defense viable because defending the Earth against asteroids benefits from all the above technologies. So if our planet security...information about their physical characteristics so we can employ the right strategies. It is a crucial difference if asteroids are made up of metal

  14. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).

    Science.gov (United States)

    Pan, Yude; Melillo, Jerry M; McGuire, A David; Kicklighter, David W; Pitelka, Louis F; Hibbard, Kathy; Pierce, Lars L; Running, Steven W; Ojima, Dennis S; Parton, William J; Schimel, David S

    1998-04-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO 2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO 2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO 2 . In this study, we analyze the responses of net primary production (NPP) to doubled CO 2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO 2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO 2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO 2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO 2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO 2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO 2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which

  15. Ideas and perspectives: on the emission of amines from terrestrial vegetation in the context of new atmospheric particle formation

    Directory of Open Access Journals (Sweden)

    J. Sintermann

    2015-06-01

    Full Text Available In this article we summarise recent science which shows how airborne amines, specifically methylamines (MAs, play a key role in new atmospheric particle formation (NPF by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NPF events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants was already described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species-specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions. The decomposition of organic material constitutes another, potentially ubiquitous, source of airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited, and thus it is also an open question how global change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  16. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  17. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  18. Asphalt Volcanism as a Model to Understand the Geochemical Nature of Pitch Lake, a Planetary Analog for Titan and the Implications towards Methane Flux into Earth's Atmosphere.

    Science.gov (United States)

    Khan, A.

    2016-12-01

    Pitch Lake is located in the southwest peninsula of the island near La Brea in Trinidad and Tobago, covering an area of approximately 46 hectares. It was discovered in the year 1595 and is the largest of three natural asphalt lakes that exist on Earth. Pitch Lake is a large oval shaped reservoir composed of dominantly hydrocarbon compounds, but also includes minor amounts of clay and muddy water. It is a natural liquid asphalt desert, which is nourished by a form of petroleum consisting of mostly asphaltines from the surrounding oil-rich region. The hydrocarbons mix with mud and gases under high pressure during upward seepage, and the lighter portion evaporates or is volatilized, which produces a high-viscosity liquid asphalt residue. The residue on and near the surface is a hydrocarbon matrix, which poses extremely challenging environmental conditions to microorganisms characterized by an average low water activity in the range of 0.49 to 0.75, recalcitrant carbon substrates, and toxic chemical compounds. Nevertheless, an active microbial community of archaea and bacteria, many of them novel strains, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical analyses of minerals, done by our team, which revealed sulfates, sulfides, silicates, and metals, normally associated with deep-water hydrothermal vents leads to our new hypothetical model to describe the origins of Pitch Lake and its importance to atmospheric and earth sciences. Pitch Lake is likely the terrestrial equivalent of an offshore submarine asphalt volcano just as La Brea Tar Pits are in some ways an on-land version of the asphalt volcanoes discovered off shore of Santa Barbara by Valentine et al. in 2010. Asphalt volcanism possibly also creates the habitat for chemosynthetic life that is widespread in this lake, as reported by Schulze-Makuch et al. in 2011 and Meckenstock et al. in 2014.

  19. Atmospheres of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1981-01-01

    In this paper the current knowledge of the atmospheres of Jupiter and Saturn are reviewed making use of the extensive telescopic studies, International Ultraviolet Explorer Satellite observations and the measurements made during the recent Pioneer and Voyager flybys which have been supported by detailed theoretical studies. A detailed discussion is given of the composition of these atmospheres and the abundance ratios which provide insight into their original state and their evolution. The Voyager observations indicate a surprisingly close similarity between the weather systems of the Earth and the giant planets. Although both Jupiter and Saturn have internal heat sources, and are therefore star-like in their interiors, they appear to produce terrestrial-style weather systems. A detailed discussion is given of this work, which forms a major study of the Laboratory for Planetary Atmospheres at University College London. (author)

  20. Effects of increasing UV-B radiation and atmospheric CO2 on photosynthesis and growth: implications for terrestrial ecosystems

    International Nuclear Information System (INIS)

    Sullivan, J.H.

    1997-01-01

    Increases in UV-B radiation reaching the earth as a result of stratospheric ozone depletion will most likely accompany increases in atmospheric CO 2 concentrations. Many studies have examined the effects of each factor independently, but few have evaluated the combined effects of both UV-B radiation and elevated CO 2 . In general the results of such studies have shown independent effects on growth or seed yield. Although interspecific variation is large, high levels of UV-B radiation tends to reduce plant growth in sensitive species, while CO 2 enrichment tends to promote growth in most C 3 species. However, most previous studies have not looked at temporal effects or at the relationship between photosynthetic acclimation to CO 2 and possible photosynthetic limitations imposed by UV-B radiation. Elevated CO 2 may provide some protection against UV-B for some species. In contrast, UV-B radiation may limit the ability to exploit elevated CO 2 in other species. Interactions between the effects of CO 2 enrichment and UV-B radiation exposure have also been shown for biomass allocation. Effects on both biomass allocation and photosynthetic acclimation may be important to ecosystem structure in terms of seedling establishment, competition and reproductive output. Few studies have evaluated ecosystem processes such as decomposition or nutrient cycling. Interactive effects may be subtle and species specific but should not be ignored in the assessment of the potential impacts of increases in CO 2 and UV-B radiation on plants. (author)

  1. Critical levels and loads of atmospheric pollutants for terrestrial and aquatic ecosystems. The emergence of a scientific concept. Application potentials and their limits

    International Nuclear Information System (INIS)

    Landmann, G.

    1993-01-01

    The 'critical loads and levels' are defined as the highest atmospheric deposition rate or concentration of a gaseous pollutant, respectively, that will not cause harmful effects on sensitive elements of an ecosystem. The recent emergence of the concept of critical loads and levels is described, from the first explicit mention in 1986 to the production of the first European maps in 1991. The difficulties linked to the definition of the concept and to its english-derived terminology are discussed. The main approaches used for assessing critical loads and levels are briefly described. Important research is developed under the auspices of the Convention of Geneva (Long Range Transboundary Air Pollution Transport, UN-ECE), arising from intensive studies which have been carried out on the effects of air pollution on terrestrial and aquatic ecosystems for the past ten or fifteen years. Current knowledge is summarized, as well as the remaining gaps (and questions) which hinder the calculation of the critical thresholds. Finally, beyond the fundamental relevance of this scientifically sound and easily understood concept, its limits are pointed out. In brief, the 'critical loads and levels' concept is attractive and motivating to many scientists: it implies to apply an integrated and finalized approach, favors the prospecting of poorly known ecosystems and regions, and represents an interesting interface with decision makers

  2. Sensitivity of terrestrial ecosystems to elevated atmospheric CO{sub 2}: Comparisons of model simulation studies to CO{sub 2} effect

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y. [Marine Biological Lab., Woods Hole, MA (United States)

    1995-06-01

    In the context of a project to compare terrestrial ecosystem models, the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), we have analyzed how three biogeochemistry models link plant growth to doubled atmospheric CO{sub 2}. A common set of input data was used to drive three biogeochemistry models, BIOME-BGC, CENTURY and TEM. For the continental United States the simulation results show that with doubled CO{sub 2}, NPP increased by 8.7%, 5.0% and 10.8% for TEM, CENTURY and BIOME-BGC, respectively. At the biome level the range of NPP estimates varied considerably among models. TEM-simulated enhancement of NPP ranged from 2% to 28%; CENTURY, from 2% to 9%; and BIOME-BGC, from 4% to 27%. A transect analysis across several biomes along a latitude at 41.5 N shows that the TEM-simulated CO{sub 2} enhancement of NPP ranged from 0% to 22%; CENTURY, from 1% to 10% and BIOME-BGC, from 1% to 63%. In this study, we have investigated the underlying mechanisms of the three models to reveal how increased CO{sub 2} affects photosynthesis rate, water using efficiency and nutrient cycles. The relative importance of these mechanisms in each of the three biogeochemistry models will be discussed.

  3. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART A: TUTORIAL

    Science.gov (United States)

    Amory-Mazaudier, C.; Menvielle, M.; Curto, J-J.; Le Huy, M.

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern Solar Terrestrial Physics, Atmospheric Physics and Space Weather. In this part A, we introduce knowledge on the Sun-Earth system. We consider the physical process of the dynamo which is present in the Sun, in the core of the Earth and also in the regions between the Sun and the Earth, the solar wind-magnetosphere and the ionosphere. Equations of plasma physics and Maxwell's equations will be recalled. In the Sun-Earth system there are permanent dynamos (Sun, Earth's core, solar wind - magnetosphere, neutral wind - ionosphere) and non-permanent dynamos that are activated during magnetic storms in the magnetosphere and in the ionosphere. All these dynamos have associated electric currents that affect the variations of the Earth's magnetic field which are easily measurable. That is why a part of the tutorial is also devoted to the magnetic indices which are indicators of the electric currents in the Sun-Earth system. In order to understand some results of the part B, we present some characteristics of the Equatorial region and of the electrodynamics coupling the Auroral and Equatorial regions.

  4. Empirical recurrence rates for ground motion signals on planetary surfaces

    Science.gov (United States)

    Lorenz, Ralph D.; Panning, Mark

    2018-03-01

    We determine the recurrence rates of ground motion events as a function of sensed velocity amplitude at several terrestrial locations, and make a first interplanetary comparison with measurements on the Moon, Mars, Venus and Titan. This empirical approach gives an intuitive order-of-magnitude guide to the observed ground motion (including both tectonic and ocean- and atmosphere-forced signals) of these locations as a guide to instrument expectations on future missions, without invoking interior models and specific sources: for example a Venera-14 observation of possible ground motion indicates a microseismic environment mid-way between noisy and quiet terrestrial locations. Quiet terrestrial regions see a peak velocity amplitude in mm/s roughly equal to 0.3*N(-0.7), where N is the number of "events" (half-hour intervals in which a given peak ground motion is exceeded) observed per year. The Apollo data show endogenous seismic signals for a given recurrence rate that are typically about 10,000 times smaller in amplitude than a quiet site on Earth, although local thermally-induced moonquakes are much more common. Viking data masked for low-wind periods appear comparable with a quiet terrestrial site, whereas a Venera observation of microseisms suggests ground motion more similar to a more active terrestrial location. Recurrence rate plots from in-situ measurements provide a context for seismic instrumentation on future planetary missions, e.g. to guide formulation of data compression schemes. While even small geophones can discriminate terrestrial activity rates, observations with guidance accelerometers are typically too insensitive to provide meaningful constraints (i.e. a non-zero number of "events") on actual ground motion observations unless operated for very long periods.

  5. Planetary Geomorphology.

    Science.gov (United States)

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  6. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  7. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  8. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  9. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  10. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    Science.gov (United States)

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide.

  11. Non-planetary Science from Planetary Missions

    Science.gov (United States)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  12. Formation of planetary systems

    International Nuclear Information System (INIS)

    Brahic, A.

    1982-01-01

    It seemed appropriate to devote the 1980 School to the origin of the solar system and more particularly to the formation of planetary systems (dynamic accretion processes, small bodies, planetary rings, etc...) and to the physics and chemistry of planetary interiors, surface and atmospheres (physical and chemical constraints associated with their formation). This Summer School enabled both young researchers and hard-nosed scientists, gathered together in idyllic surroundings, to hold numerous discussions, to lay the foundations for future cooperation, to acquire an excellent basic understanding, and to make many useful contacts. This volume reflects the lectures and presentations that were delivered in this Summer School setting. It is aimed at both advanced students and research workers wishing to specialize in planetology. Every effort has been made to give an overview of the basic knowledge required in order to gain a better understanding of the origin of the solar system. Each article has been revised by one or two referees whom I would like to thank for their assistance. Between the end of the School in August 1980 and the publication of this volume in 1982, the Voyager probes have returned a wealth of useful information. Some preliminary results have been included for completeness

  13. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    Science.gov (United States)

    Melosh, J.

    2013-12-01

    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is

  14. Extrasolar Planetary Imaging Coronagraph

    Science.gov (United States)

    Clampin, M.

    2007-06-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F type stars which cannot be found with RV techniques, and observe the inner spatial structure and colors of debris disks. The robust mission design is simple and flexible ensuring mission success while minimizing cost and risk. The science payload consists of a heritage optical telescope assembly (OTA), and visible nulling coronagraph (VNC) instrument.

  15. Wave activity (planetary, tidal) throughout the middle atmosphere (20-100km) over the CUJO network: Satellite (TOMS) and Medium Frequency (MF) radar observations

    OpenAIRE

    A. H. Manson; C. E. Meek; T. Chshyolkova; S. K. Avery; D. Thorsen; J. W. MacDougall; W. Hocking; Y. Murayama; K. Igarashi

    2005-01-01

    Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT) is studied using combinations of ground-based (GB) and satellite instruments (2000-2002). The relatively new MFR (medium frequency radar) at Platteville (40° N, 105° W) has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opp...

  16. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  17. Origin and evolution of the atmospheres of early Venus, Earth and Mars

    Science.gov (United States)

    Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia

    2018-05-01

    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation

  18. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  19. Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets

    Science.gov (United States)

    Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.

    2018-03-01

    We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.

  20. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    Science.gov (United States)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  1. Planetary and gravity wave signatures in the F region ionosphere with impact on radio propagation predictions and variability

    Czech Academy of Sciences Publication Activity Database

    Altadill, D.; Apostolov, E. M.; Boška, Josef; Laštovička, Jan; Šauli, Petra

    2004-01-01

    Roč. 47, 2/3 (2004), s. 1109-1119 ISSN 1593-5213. [Final Meeting COST271 Action. Effects of the upper atmosphere on terrestrial and Earth-space communications (EACOS). Abingdon, 26.08.2004-27.08.2004] R&D Projects: GA MŠk OC 271.10; GA ČR GA205/01/1071; GA ČR GP205/02/P077 Institutional research plan: CEZ:AV0Z3042911 Keywords : ionosphere * planetary waves * gravity waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.413, year: 2004

  2. European SpaceCraft for the study of Atmospheric Particle Escape (ESCAPE): a planetary mission to Earth, proposed in response to the ESA M5-call

    Science.gov (United States)

    Dandouras, I.; Yamauchi, M.; Rème, H.; De Keyser, J.; Marghitu, O.; Fazakerley, A.; Grison, B.; Kistler, L.; Milillo, A.; Nakamura, R.; Paschalidis, N.; Paschalis, A.; Pinçon, J.-L.; Sakanoi, T.; Wieser, M.; Wurz, P.; Yoshikawa, I.; Häggström, I.; Liemohn, M.; Tian, F.

    2017-09-01

    ESCAPE is a mission proposed in response to the ESA-M5 call that will quantitatively estimate the amount of escaping particles of the major atmospheric components (nitrogen and oxygen), as neutral and ionised species, escaping from the Earth as a magnetised planet. The goal is to understand the importance of each escape mechanism, its dependence on solar and geomagnetic activity, and to infer the history of the Earth's atmospheric composition over a long (geological scale) time period. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. The result will be used as a reference to understand the atmospheric/ionospheric evolution of magnetised planets, which is essential for habitability.

  3. Determination of cosmic ray (CR) ionization path and iono/atmospheric cut-off energy from CR intervals III, IV and V in the planetary environments

    International Nuclear Information System (INIS)

    Velinov, P.

    2001-01-01

    In this paper are determined the ionization path and cut-off energies of the cosmic ray (CR) nuclei in relation to the general interaction model 'CR - ionosphere-middle atmosphere'. Here the ionization path and the iono/atmospheric cut-off energies of the galactic CR, solar CR and anomalous CR are separately considered in each energetic range, without taking into account the particle transfer from one range in another. This more general approach will be the object of a further paper

  4. Planetary Drilling and Resources at the Moon and Mars

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  5. Relationship between variability of the semidiurnal tide in the Northern Hemisphere mesosphere and quasi-stationary planetary waves throughout the global middle atmosphere

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-11-01

    Full Text Available To investigate possible couplings between planetary waves and the semidiurnal tide (SDT, this work examines the statistical correlations between the SDT amplitudes observed in the Northern Hemisphere (NH mesosphere and stationary planetary wave (SPW with wavenumber S=1 (SPW1 amplitudes throughout the global stratosphere and mesosphere. The latter are derived from the Aura-MLS temperature measurements. During NH summer-fall (July–October, the mesospheric SDT amplitudes observed at Svalbard (78° N and Eureka (80° N usually do not show persistent correlations with the SPW1 amplitudes in the opposite hemisphere. Although the SDT amplitudes observed at lower latitudes (~50–70° N, especially at Saskatoon (52° N, are often shown to be highly and positively correlated with the SPW1 amplitudes in high southern latitudes, these correlations cannot be sufficiently explained as evidence for a direct physical link between the Southern Hemisphere (SH winter-early spring SPW and NH summer-early fall mesospheric SDT. This is because the migrating tide's contribution is usually dominant in the mid-high latitude (~50–70° N NH mesosphere during the local late summer-early fall (July–September. The numerical correlation is dominated by similar low-frequency variability or trends between the amplitudes of the NH SDT and SH SPW1 during the respective equinoctial transitions. In contradistinction, during NH winter (November–February, the mesospheric SDT amplitudes at northern mid-high latitudes (~50–80° N are observed to be significantly and positively correlated with the SPW1 amplitudes in the same hemisphere in most cases. Because both the SPW and migrating SDT are large in the NH during the local winter, a non-linear interaction between SPW and migrating SDT probably occurs, thus providing a global non-migrating SDT. This is consistent with observations of SDT in Antarctica that are large in summer than in winter. It is suggested that

  6. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  7. Planetary fertility during the past 400 ka based on the triple isotope composition of atmospheric oxygen in trapped gases from the Vostok ice core

    Science.gov (United States)

    Blunier, T.; Bender, M. L.; Barnett, B.; von Fisher, J. C.

    2012-04-01

    The productivity of the biosphere leaves its imprint on the isotopic composition of atmospheric oxygen. Ultimately atmospheric oxygen, through photosynthesis, originates from seawater. Fractionations during the passage from seawater to atmospheric O2 and during respiration are mass dependent, affecting δ17O about half as much as δ18O. An "anomalous" (also termed mass independent) fractionation process changes δ17O about 1.7 times as much as δ18O during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biological O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass dependent O2 production by photosynthesis versus the rate of mass independent O2-CO2 exchange in the stratosphere. However, the analysis of the 17O anomaly is complicated because each hydrological and biological process influencing δ17O and δ18O fractionates 17O and 18O in slightly different proportions. In this study we present oxygen data covering the last 400 kyr from the Vostok ice core. We reconstruct oxygen productivities from the triple isotope composition of atmospheric oxygen with a box model. Our steady state model for the oxygen cycle takes into account fractionation during photosynthesis and respiration of the land and ocean biosphere as well as fractionation when oxygen passes through the stratosphere. We consider changes of fractionation factors linked to climate variations taking into account the span of estimates of the main factors affecting our calculations. We find that ocean oxygen productivity was likely elevated relative to modern during glacials. However, this increase probably did not fully compensate for a reduction in land ocean productivity resulting in a slight reduction in total oxygen production during glacials.

  8. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  9. Planetary magnetism

    International Nuclear Information System (INIS)

    Dolginov, Sh.Sh.

    1977-01-01

    Experimental data on magnetic fields of planets are surveyed. The magnetic fields of the Earth, Jupiter, Mars, Mercury, Venus, and the Moon are considered in detail. A similarity of the physical models of both the planets of the Earth group and the giant planets was revealed. The fields of the planets and of the Earth are compared in the scheme of the precession dynamo and in the kinematic scheme. Proceeding from the assumption that the Poincare forces and their ratio to other forces are model-similar in the cores of all the planets, the values of Hsub(i)/Hsub(E) are calculated, where Hsub(i) and Hsub(E) are the field strengths of the i-th planet and that of the Earth. The experimental data on the dynamic compression of the Mercury confirm the calculations made. It is concluded that the problem of the origin and moving forces of the terrestrial magnetic field may be resolved only within the framework of comparative planetology

  10. Net exchanges of CO2, CH4 and N2O between the terrestrial ecosystems and the atmosphere in boreal and arctic region: Towards a full greenhouse gas budget

    Science.gov (United States)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Kamaljit, K.; Pan, S.

    2014-12-01

    Boreal and arctic terrestrial ecosystem is a unique ecological region due to large portion of wetland and permafrost distribution. Increasing disturbances, like permafrost-thaw, fire event, climate extreme, would greatly change the patterns and variations of greenhouse gas emission and further affect the feedback between terrestrial ecosystem and climate change. Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) accounted for more than 85% of the radioactive forcing (RF) due to long-lived greenhouse gases. However, few studies have considered the full budget of three gases together in this region. In this study, we used a process-based model (Dynamic Land Ecosystem Model), driven by multiple global change factors, to quantify the magnitude, spatial and temporal variation of CO2, CH4 and N2O across the boreal and arctic regions. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of factorial simulations, we further quantify the relative contribution of climate, atmospheric composition, fire to the CO2, CH4 and N2O fluxes. Continued warming climate potentially could shift the inter-annual and intra-annual variation of greenhouse gases fluxes. The understanding of full budget in this region could provide insights for reasonable future projection, which is also crucial for developing effective mitigation strategies.

  11. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia

    Science.gov (United States)

    Nicholson, Wayne L.; Schuerger, Andrew C.

    2005-01-01

    Bacterial endospores in the genus Bacillus are considered good models for studying interplanetary transfer of microbes by natural or human processes. Although spore survival during transfer itself has been the subject of considerable study, the fate of spores in extraterrestrial environments has received less attention. In this report we subjected spores of a strain of Bacillus subtilis, containing luciferase resulting from expression of an sspB-luxAB gene fusion, to simulated martian atmospheric pressure (7-18 mbar) and composition (100% CO(2)) for up to 19 days in a Mars simulation chamber. We report here that survival was similar between spores exposed to Earth conditions and spores exposed up to 19 days to simulated martian conditions. However, germination-induced bioluminescence was lower in spores exposed to simulated martian atmosphere, which suggests sublethal impairment of some endogenous spore germination processes.

  12. First results of the observations of trace gases in the Martian atmosphere by the Planetary Fourier Spectrometer onboard the Mars Express

    Science.gov (United States)

    Titov, D. V.; Ignatiev, N.; Formisano, V.; Grassi, D.; Giuranna, M.; Maturilli, A.; Piccioni, G.; Moroz, V. I.; Lellouch, E.; Encrenaz, T.; Pfs Team

    High spectral resolution observations of Mars by the PFS/Mars Express provide new insight into the atmospheric composition. Spectral features of atmospheric CO2 and its isotopes at 15, 4.3, 2.7, 1.4 μ m, CO at 4.7 and 2.35 μ m, and H2O at 40, 2.56, and 1.38 μ m as well as solar spectral features are clearly identified in the PFS spectra. HDO spectral details at 3.7 μ m were also tentatively detected. The paper will present qualitative and quantitative analysis of the PFS spectra in the regions of spectral bands of trace gases. Abundance of minor constituents will be determined using complete radiative transfer modeling including possible non-LTE effects. We will also present results of search for other minor species with emphasis on the limb observations that provide higher air mass factor.

  13. Halogens in chondritic meteorites and terrestrial accretion

    Science.gov (United States)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  14. Histories of terrestrial planets

    International Nuclear Information System (INIS)

    Benes, K.

    1981-01-01

    The uneven historical development of terrestrial planets - Mercury, Venus, Earth, Moon and Mars - is probably due to the differences in their size, weight and rotational dynamics in association with the internal planet structure, their distance from the Sun, etc. A systematic study of extraterrestrial planets showed that the time span of internal activity was not the same for all bodies. It is assumed that the initial history of all terrestrial planets was marked with catastrophic events connected with the overall dynamic development of the solar system. In view of the fact that the cores of small terrestrial bodies cooled quicker, their geological development almost stagnated after two or three thousand million years. This is what probably happened to the Mercury and the Moon as well as the Mars. Therefore, traces of previous catastrophic events were preserved on the surface of the planets. On the other hand, the Earth is the most metamorphosed terrestrial planet and compared to the other planets appears to be atypical. Its biosphere is significantly developed as well as the other shell components, its hydrosphere and atmosphere, and its crust is considerably differentiated. (J.P.)

  15. Louisiana ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for terrestrial mammals in Louisiana. Vector polygons in this data set represent terrestrial mammal...

  16. Soil and terrestrial biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO 2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  17. Atmosphere Impact Losses

    Science.gov (United States)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth's formation. Volatiles were accreted throughout the Earth's formation, but Earth's early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth's formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the {}3He/{}^{22}Ne, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (m_{cap} ≳ √{2

  18. Atmospheric chemistry and climate

    OpenAIRE

    Satheesh, SK

    2012-01-01

    Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...

  19. Planetary X-ray studies: past, present and future

    Science.gov (United States)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the

  20. Atmospheric dynamics of Earth-like tidally locked aquaplanets

    Directory of Open Access Journals (Sweden)

    Tapio Schneider

    2010-12-01

    Full Text Available We present simulations of atmospheres of Earth-like aquaplanets that are tidally locked to their star, that is, planets whose orbital period is equal to the rotation period about their spin axis, so that one side always faces the star and the other side is always dark. Such simulations are of interest in the study of tidally locked terrestrial exoplanets and as illustrations of how planetary rotation and the insolation distribution shape climate. As extreme cases illustrating the effects of slow and rapid rotation, we consider planets with rotation periods equal to one current Earth year and one current Earth day. The dynamics responsible for the surface climate (e.g., winds, temperature, precipitation and the general circulation of the atmosphere are discussed in light of existing theories of atmospheric circulations. For example, as expected from the increasing importance of Coriolis accelerations relative to inertial accelerations as the rotation rate increases, the winds are approximately isotropic and divergent at leading order in the slowly rotating atmosphere but are predominantly zonal and rotational in the rapidly rotating atmosphere. Free-atmospheric horizontal temperature variations in the slowly rotating atmosphere are generally weaker than in the rapidly rotating atmosphere. Interestingly, the surface temperature on the night side of the planets does not fall below ~240 K in either the rapidly or slowly rotating atmosphere; that is, heat transport from the day side to the night side of the planets efficiently reduces temperature contrasts in either case. Rotational waves and eddies shape the distribution of winds, temperature, and precipitation in the rapidly rotating atmosphere; in the slowly rotating atmosphere, these distributions are controlled by simpler divergent circulations. Both the slowly and rapidly rotating atmospheres exhibit equatorial superrotation. Systematic variation of the planetary rotation rate shows that the

  1. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  2. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    International Nuclear Information System (INIS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-01-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  3. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  4. DYNAMICAL ACCRETION OF PRIMORDIAL ATMOSPHERES AROUND PLANETS WITH MASSES BETWEEN 0.1 AND 5 M {sub ⊕} IN THE HABITABLE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Stökl, Alexander; Dorfi, Ernst A.; Johnstone, Colin P. [Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Lammer, Helmut, E-mail: alexander.stoekl@astro.univie.ac.at [Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042, Graz (Austria)

    2016-07-10

    In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M {sub ⊕} situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme, we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (∼10{sup 5} years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.

  5. Planetary spectroscopy

    International Nuclear Information System (INIS)

    Fink, U.

    1988-01-01

    The main goal of the research is charge coupled device (CCD) spectroscopic and imaging studies of the solar system in support of spacecraft investigations. Studies include the physical behavior of comets, the atmosphere of the gaseous planets, and the solid surfaces of satellites and asteroids. The major observing program consisted of approximately 50 nights of photometry of Comet Halley in order to resolve the controversy over this comet's rotation period. This data is presently being analyzed. Additional observing projects included the spectroscopic occultation of Charon by Pluto, reflection spectroscopy of Mercury, and a spectrum of the satellite Oberon. Mercury data does not corroborate the Fe(++) absorption feature reported by McCord and Clark at 8800 A but instead potentially shows a weaker feature at longer wavelengths. This position is in much closer accord with expectations for Mercury since a band center near 8800 A implies too little Fe(++) on Mercury, especially if band shifts with temperature are considered. The Pluto project proved that the deep methane absorptions visible in their combined specta are due soley to Pluto with Charon showing a flat and featureless spectrum. It appears that if Charon ever contained a substantial methane component, the satellite's low surface gravity could not hold it and the methane evaporated and escaped

  6. Volatile element loss during planetary magma ocean phases

    Science.gov (United States)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2018-01-01

    Moderately volatile elements (MVE) are key tracers of volatile depletion in planetary bodies. Zinc is an especially useful MVE because of its generally elevated abundances in planetary basalts, relative to other MVE, and limited evidence for mass-dependent isotopic fractionation under high-temperature igneous processes. Compared with terrestrial basalts, which have δ66Zn values (per mille deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard) similar to some chondrite meteorites (∼+0.3‰), lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ (2 st. dev.). Furthermore, mare basalts have average Zn concentrations ∼50 times lower than in typical terrestrial basaltic rocks. Late-stage lunar magmatic products, including ferroan anorthosite, Mg- and Alkali-suite rocks have even higher δ66Zn values (+3 to +6‰). Differences in Zn abundance and isotopic compositions between lunar and terrestrial rocks have previously been interpreted to reflect evaporative loss of Zn, either during the Earth-Moon forming Giant Impact, or in a lunar magma ocean (LMO) phase. To explore the mechanisms and processes under which volatile element loss may have occurred during a LMO phase, we developed models of Zn isotopic fractionation that are generally applicable to planetary magma oceans. Our objective was to identify conditions that would yield a δ66Zn signature of ∼+1.4‰ within the lunar mantle. For the sake of simplicity, we neglect possible Zn isotopic fractionation during the Giant Impact, and assumed a starting composition equal to the composition of the present-day terrestrial mantle, assuming both the Earth and Moon had zinc 'consanguinity' following their formation. We developed two models: the first simulates evaporative fractionation of Zn only prior to LMO mixing and crystallization; the second simulates continued evaporative fractionation of Zn that persists until ∼75% LMO crystallization. The first model yields a relatively homogenous bulk solid

  7. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    Science.gov (United States)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  8. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  9. MAVEN Observations of Atmospheric Loss at Mars

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other

  10. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  11. Extending Whole-earth Tectonics To The Terrestrial Planets

    Science.gov (United States)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  12. Mars: Atmosphere

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2001-07-01

    The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...

  13. Handbook of the Solar-Terrestrial Environment

    CERN Document Server

    Kamide, Y

    2007-01-01

    The Handbook of the Solar-Terrestrial Environment is a unique compendium. Recognized international leaders in their field contribute chapters on basic topics of solar physics, space plasmas and the Earth's magnetosphere, and on applied topics like the aurora, magnetospheric storms, space weather, space climatology and planetary science. This book will be of highest value as a reference for researchers working in the area of planetary and space science. However, it is also written in a style accessible to graduate students majoring in those fields.

  14. Downward surface flux computations in a vertically inhomogeneous grey planetary atmosphere Cálculo do fluxo radiativo superficial em uma atmosfera planetária cinza e verticalmente não-homogênea

    Directory of Open Access Journals (Sweden)

    Marcos Pimenta de Abreu

    2008-03-01

    Full Text Available We describe an efficient computational scheme for downward surface flux computations in a vertically inhomogeneous grey planetary atmosphere for different values of solar zenith angle. We start with the basic equations of a recently developed discrete ordinates spectral nodal method, and we derive suitable bidirectional functions whose diffuse components do not depend on the solar zenith angle. We then make use of these bidirectional functions to construct an efficient scheme for computing the downward surface fluxes in a given model atmosphere for a number of solar zenith angles. We illustrate the merit of the computational scheme described here with downward surface flux computations in a three-layer grey model atmosphere for four values of solar zenith angle, and we conclude this article with general remarks and directions for future work.Este artigo descreve um esquema computacional baseado em desenvolvimentos recentes do método espectro-nodal de ordenadas discretas para o cálculo eficiente do fluxo radiativo superficial em uma atmosfera planetária cinza e verticalmente não-homogênea para valores distintos do ângulo zenital solar. A partir das equações básicas do método espectro-nodal de ordenadas discretas, são obtidas funções bidirecionais discretas cujas componentes difusas não dependem do ângulo zenital solar. Com essas funções bidirecionais discretas, é construído um esquema computacional para calcular eficientemente fluxos radiativos superficiais em uma dada atmosfera-modelo para vários ângulos zenitais solares. O mérito computacional do esquema resultante é ilustrado com resultados numéricos para os fluxos radiativos superficiais em uma atmosfera-modelo cinza com três camadas para quatro valores distintos do ângulo zenital solar. Este artigo é finalizado com observações gerais e indicações de trabalhos futuros.

  15. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    Science.gov (United States)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  16. Density is not Destiny: Characterizing Terrestrial Exoplanet Geology from Stellar Compositional Abundances

    Science.gov (United States)

    Unterborn, Cayman T.

    2018-01-01

    A planet’s mass-radius relationship alone is not a good indicator for its potential to be "Earth-like." While useful in coarse characterizations for distinguishing whether an exoplanet is water/atmosphere- or rock/iron-dominated, there is considerable degeneracy in using the mass-radius relation to determine the mineralogy and structure of a purely terrestrial planet like the Earth. The chemical link between host-stars and rocky planets and the utility of this connection in breaking the degeneracy in the mass-radius relationship is well documented. Given the breadth of observed stellar compositions, modeling the complex effects of these compositional variations on a terrestrial planet’s mineralogy, structure and temperature profile, and the potential pitfalls therein, falls within the purview of the geosciences.I will demonstrate here, the utility in adopting the composition of a terrestrial planet’s host star for contextualizing individual systems (e.g. TRAPPIST-1), as well as for the more general case of quantifying the geophysical consequences of stellar compositional diversity. This includes the potential for a host-star to produce planets able to undergo mantle convection, surface-to-interior degassing and long-term plate tectonics. As we search for truly “Earth-like” planets, we must move away from the simple density-driven definition of “Earth-like” and towards a more holistic view that includes both geochemistry and geophysics. Combining geophysical models and those of planetary formation with host-star abundance data, then, is of paramount importance. This will aid not only in our understanding of the mass-radius relationship but also provide foundational results necessary interpreting future atmospheric observations through the lens of surface-interior interactions (e.g. volcanism) and planetary evolution as a whole.

  17. Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: quantification of the European terrestrial CO2 fluxes

    Science.gov (United States)

    Kountouris, Panagiotis; Gerbig, Christoph; Rödenbeck, Christian; Karstens, Ute; Koch, Thomas F.; Heimann, Martin

    2018-03-01

    Optimized biogenic carbon fluxes for Europe were estimated from high-resolution regional-scale inversions, utilizing atmospheric CO2 measurements at 16 stations for the year 2007. Additional sensitivity tests with different data-driven error structures were performed. As the atmospheric network is rather sparse and consequently contains large spatial gaps, we use a priori biospheric fluxes to further constrain the inversions. The biospheric fluxes were simulated by the Vegetation Photosynthesis and Respiration Model (VPRM) at a resolution of 0.1° and optimized against eddy covariance data. Overall we estimate an a priori uncertainty of 0.54 GtC yr-1 related to the poor spatial representation between the biospheric model and the ecosystem sites. The sink estimated from the atmospheric inversions for the area of Europe (as represented in the model domain) ranges between 0.23 and 0.38 GtC yr-1 (0.39 and 0.71 GtC yr-1 up-scaled to geographical Europe). This is within the range of posterior flux uncertainty estimates of previous studies using ground-based observations.

  18. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  19. Thermodynamic Database for the Terrestrial and Planetary Mantle Studies: Where we stand, and some future directions involving experimental studies, numerical protocol for EoS and atomistic calculations (Invited)

    Science.gov (United States)

    Ganguly, J.; Tirone, M.; Sorcar, N.

    2013-12-01

    Reliable thermodynamic databases for rock forming minerals are essential for petrological and geodynamic studies. While the available databases (1-3) represent laudable efforts, none seems to be completely satisfactory. We show inter-comparison of phase diagrams computed from different databases and also their comparisons with experimental phase diagrams in complex systems. The results show good agreement and also significant disagreements in some P-T-X regimes; resolution of these disagreements via new experimental and thermodynamic data is needed to sort out the problems and make further progress. Two of the main challenges in the development of databases (4) seem to be (a) appropriate formulation of an EoS for solids that is suitable for studies of Earth and planetary interiors and (b) relatively simple formulations of thermodynamic mixing properties of mantle minerals that perform well within the compositional space of interest. While work on EoS formulation continues, we present a semi-empirical numerical approach that creates a consistent set of material properties (α, K, Cp, Cv) up to very high P-T conditions by satisfying certain physical constraints. Adequate experimental data are not available to constrain the mixing properties of several minerals that would be valid over the compositional range of interest in the natural environments. We have, thus, pursued an alternative approach on the basis of physical and crystal-chemical data. It is found that combination of elastic mixing energy, incorporating the effect of multi-atom interactions (5, 6), and crystal-field (CF) energy of mixing provide enthalpy of mixing in binary solid solutions that are in good agreement with experimental and calorimetric data. The CF-splitting vs. composition in a solid solution involving transition metal ion may be approximated by a semi-empirical relation using mean metal-oxygen bond-distance when such data are not available from spectroscopic studies. We also discuss the

  20. The effect of carbon monoxide on planetary haze formation

    Energy Technology Data Exchange (ETDEWEB)

    Hörst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  1. Terrestrial Zone Exoplanets and Life

    Science.gov (United States)

    Matthews, Brenda

    2018-01-01

    One of the most exciting results from ALMA has been the detection of significant substructure within protoplanetary disks that can be linked to planet formation processes. For the first time, we are able to observe the process of assembly of material into larger bodies within such disks. It is not possible, however, for ALMA to probe the growth of planets in protoplanetary disks at small radii, i.e., in the terrestrial zone, where we expect rocky terrestrial planets to form. In this regime, the optical depths prohibit observation at the high frequencies observed by ALMA. To probe the effects of planet building processes and detect telltale gaps and signatures of planetary mass bodies at such small separations from the parent star, we require a facility of superior resolution and sensitivity at lower frequencies. The ngVLA is just such a facility. We will present the fundamental science that will be enabled by the ngVLA in protoplanetary disk structure and the formation of planets. In addition, we will discuss the potential for an ngVLA facility to detect the molecules that are the building blocks of life, reaching limits well beyond those reachable with the current generation of telescopes, and also to determine whether such planets will be habitable based on studies of the impact of stars on their nearest planetary neighbours.

  2. Martian Atmospheric and Ionospheric plasma Escape

    Science.gov (United States)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  3. Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone

    Science.gov (United States)

    Haqq-Misra, Jacob; Wolf, Eric. T.; Joshi, Manoj; Zhang, Xi; Kopparapu, Ravi Kumar

    2018-01-01

    We investigate the atmospheric dynamics of terrestrial planets in synchronous rotation within the habitable zone of low-mass stars using the Community Atmosphere Model. The surface temperature contrast between the day and night hemispheres decreases with an increase in incident stellar flux, which is opposite the trend seen in gas giants. We define three dynamical regimes in terms of the equatorial Rossby deformation radius and the Rhines length. The slow rotation regime has a mean zonal circulation that spans from the day to the night sides, which occurs for planets around stars with effective temperatures of 3300–4500 K (rotation period > 20 days), with both the Rossby deformation radius and the Rhines length exceeding the planetary radius. Rapid rotators have a mean zonal circulation that partially spans a hemisphere and with banded cloud formation beneath the substellar point, which occurs for planets orbiting stars with effective temperatures of less than 3000 K (rotation period days), with the Rossby deformation radius less than the planetary radius. In between is the Rhines rotation regime, which retains a thermally direct circulation from the day side to the night side but also features midlatitude turbulence-driven zonal jets. Rhines rotators occur for planets around stars in the range of 3000–3300 K (rotation period ∼5–20 days), where the Rhines length is greater than the planetary radius but the Rossby deformation radius is less than the planetary radius. The dynamical state can be observationally inferred from a comparison of the morphologies of the thermal emission phase curves of synchronously rotating planets.

  4. Planetary sciences and exploration: An Indian perspective

    Indian Academy of Sciences (India)

    Studies of impact craters records in the Indian shield have also been pursued and led to ... and emission of X-rays from planets as well as analytical modelling of martian ionosphere and ... Meteorite; moon; solar activity; solar system; martian atmosphere; planetary .... face layers of any meteorite reaching the earth, one.

  5. SPEX: the Spectropolarimeter for Planetary Exploration

    Science.gov (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  6. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  7. Terrestrial soil pH and MAAT records based on the MBT/CBT in the southern South China Sea: implications for the atmospheric CO2 evolution in Southeast Asia

    Science.gov (United States)

    Dong, L.; Li, L.; Li, Q.; Zhang, C.

    2013-12-01

    Liang Dong1, Li Li1, Qianyu Li1,2, Chuanlun L. Zhang1,3 1State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China 2School of Earth and Environment Sciences, University of Adelaide, SA 5005, Australia 3Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA The methylation index of branched tetraethers (MBT) and/or the cyclization ratio of branched tetraethers (CBT) are derived from the branched glycerol dialkyl Glycerol tetraethers (GDGTs) of bacterial origin and are widely used to reconstruct the terrestrial soil pH and mean annual air temperature (MAAT); however, these proxies are less frequently used in the oceanic settings. Here we provide the first high resolution records of soil pH and MAAT since the last glacial maximum based on the sedimentary core of MD05-2896 in the southern South China Sea. The MAAT record exhibited typical glacial and interglacial cycles and was consistent with the winter insolation variation. The pH values were lower (6.4-7) in the glacial time and higher (7-8.4) in the interglacial time. Changes in soil pH allowed the evaluation of changes in soil CO2 based on the atmosphere-soil CO2 balance. The results imply that the lower winter MAAT variation with a lower winter atmospheric CO2 concentration might have resulted in a higher pH in the interglacial period. Our records provide a new insight into the evolution of atmospheric CO2 between glacial and interglacial cycles in East Asia. Key words: South China Sea, MBT/CBT, b-GDGTs, MAAT, pH

  8. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  9. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  10. Noble gases in Mars atmosphere: new precise analysis with Paloma

    Science.gov (United States)

    Sarda, Ph.; Paloma Team

    2003-04-01

    The Viking mission embarked a mass spectrometer designed by Alfred O. Nier that yielded the first determination of the elemental and isotopic composition of noble gases in Mars atmosphere. For example, the 40Ar/36Ar ratio in martian air is roughly 10 fold that in terrestrial air. This extraordinary accomplishment, however, has furnished only partial results with large analytical uncertainties. For example, we do not know the isotopic composition of helium, and only very poorly that of Ne, Kr and Xe. In planetary science, it is fundamental to have a good knowledge of the atmosphere because this serves as a reference for all further studies of volatiles. In addition, part of our present knowledge of Mars atmosphere is based on the SNC meteorites, and again points to important differences between the atmospheres of Earth and Mars. For example the 129Xe/132Xe ratio of martian atmosphere would be twice that of terrestrial air and the 36Ar/38Ar ratio strongly different from the terrestrial or solar value. There is a need for confirming that the atmospheric components found in SNC meteorites actually represents the atmosphere of Mars, or to determine how different they are. Paloma is an instrument designed to generate elemental and isotopic data for He, Ne, Ar, Kr and Xe (and other gases) using a mass spectrometer with a purification and separation line. Gas purification and separation did not exist on the Vicking instrument. Because Paloma includes purification and separation, we expect strong improvement in precision. Ne, Ar and Xe isotope ratios should be obtained with an accuracy of better than 1%. Determination of the presently unknown ^3He/^4He ratio is also awaited from this experiment. Knowledge of noble gas isotopes in Mars atmosphere will allow some insight into major planetary processes such as degassing (^3He/^4He, 40Ar/36Ar, 129Xe/130Xe, 136Xe/130Xe), gravitational escape to space (^3He/^4He, 20Ne/22Ne), hydrodynamic escape and/or impact erosion of the

  11. Terrestrial ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The main effort of the Terrestrial Ecology Division has been redirected to a comprehensive study of the Espiritu Santo Drainage Basin located in northeastern Puerto Rico. The general objective are to provide baseline ecological data for future environmental assessment studies at the local and regional levels, and to provide through an ecosystem approach data for the development of management alternatives for the wise utilization of energy, water, and land resources. The interrelationships among climate, vegetation, soils, and man, and their combined influence upon the hydrologic cycle will be described and evaluated. Environmental management involves planning and decision making, and both require an adequate data base. At present, little is known about the interworkings of a complete, integrated system such as a drainage basin. A literature survey of the main research areas confirmed that, although many individual ecologically oriented studies have been carried out in a tropical environment, few if any provide the data base required for environmental management. In view of rapidly changing socio-economic conditions and natural resources limitations, management urgently requires data from these systems: physical (climatological), biological, and cultural. This integrated drainage basin study has been designed to provide such data. The scope of this program covers the hydrologic cycle as it is affected by the interactions of the physical, biological, and cultural systems

  12. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  13. Climate control of terrestrial carbon exchange across biomes and continents

    Science.gov (United States)

    Chuixiang Yi; Daniel Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; John Frank; William J. Massman

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes...

  14. Atmospheric evolution on inhabited and lifeless worlds

    CERN Document Server

    Catling, David C

    2017-01-01

    As the search for Earth-like exoplanets gathers pace, in order to understand them, we need comprehensive theories for how planetary atmospheres form and evolve. Written by two well-known planetary scientists, this text explains the physical and chemical principles of atmospheric evolution and planetary atmospheres, in the context of how atmospheric composition and climate determine a planet's habitability. The authors survey our current understanding of the atmospheric evolution and climate on Earth, on other rocky planets within our Solar System, and on planets far beyond. Incorporating a rigorous mathematical treatment, they cover the concepts and equations governing a range of topics, including atmospheric chemistry, thermodynamics, radiative transfer, and atmospheric dynamics, and provide an integrated view of planetary atmospheres and their evolution. This interdisciplinary text is an invaluable one-stop resource for graduate-level students and researchers working across the fields of atmospheric science...

  15. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  16. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    Science.gov (United States)

    Marvin Herndon, J.

    2014-05-01

    Progress in science involves replacing less precise understanding with more precise understanding. In science and in science education one should always question popular ideas; ask "What's wrong with this picture?" Finding limitations, conflicts or circumstances that require special ad hoc consideration sometimes is the key to making important discoveries. For example, from thermodynamic considerations, I found that the 'standard model of solar system formation' leads to insufficiently massive planetary cores. That understanding led me to discover a new indivisible planetary science paradigm. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures, accumulating heterogeneously on the basis of volatility with liquid core-formation preceding mantle-formation; the interior states of oxidation resemble that of the Abee enstatite chondrite. Core-composition was established during condensation based upon the relative solubilities of elements, including uranium, in liquid iron in equilibrium with an atmosphere of solar composition at high pressures and high temperatures. Uranium settled to the central region and formed planetary nuclear fission reactors, producing heat and planetary magnetic fields. Earth's complete condensation included a ~300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions, associated with the thermonuclear ignition of the Sun, stripped the gases away from the Earth and the inner planets. The T-Tauri outbursts stripped a portion of Mercury's incompletely condensed protoplanet and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System, forming the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. With its massive gas/ice shell

  17. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes

    Science.gov (United States)

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-01-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  18. Climate change effects on environment (marine, atmospheric and terrestrial) and human perception in an Italian Region (Marche) and the nearby northern Adriatic Sea.

    Science.gov (United States)

    Appiotti, F.; Krzelj, M.; Marincioni, F.; Russo, A.

    2012-04-01

    An integrated analysis of recent climate change, including atmosphere, sea and land, as well as some of the impacts on society, has been conducted on the Marche Region in central Italy and the northern portion of the Adriatic Sea. The Marche Region is one of the 20 administrative divisions of Italy, located at a latitude approximately 43° North, with a total surface area of 9,366 km2 and 1,565,000 residents. The northern Adriatic Sea is the northernmost area of the Mediterranean Sea, and it has peculiar relevance for several aspects (environment, tourism, fisheries, economy). The collected environmental data included meteorological stations (daily maximum and minimum air temperature, daily precipitation), oceanographic stations (sea temperature, salinity, dissolved oxygen, nutrient salts concentration, chlorophyll) and river flows, over the last 50 years. The collected social data include 800 questionnaires and interviews carried out on selected samples of residents, decision-makers and emergency managers. These questionnaires and interviews aimed at highlighting the perception of climate change risks. The trend analysis of air temperature and precipitation data detailed an overall temperature increase in all seasons and rainfall decreases in Winter, Spring and Summer with Autumn increases, influencing river flow changes. Marine data showed a relevant warming of the water column in the period after 1990 in comparison with the previous period, particularly in the cold season. Surface salinity increased in Spring and Summer and strongly decreased in Autumn and Winter (according with the precipitation and river flow changes). These last mentioned changes, combined with anthropogenic effects, also influenced the marine ecosystems, with changes of nutrient salts, chlorophyll and dissolved oxygen. Changes in nutrient discharge from rivers influenced the average marine chlorophyll concentration reduction and the consequent average reduction of warm season hypoxic

  19. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  20. Planetary health: protecting human health on a rapidly changing planet.

    Science.gov (United States)

    Myers, Samuel S

    2018-12-23

    The impact of human activities on our planet's natural systems has been intensifying rapidly in the past several decades, leading to disruption and transformation of most natural systems. These disruptions in the atmosphere, oceans, and across the terrestrial land surface are not only driving species to extinction, they pose serious threats to human health and wellbeing. Characterising and addressing these threats requires a paradigm shift. In a lecture delivered to the Academy of Medical Sciences on Nov 13, 2017, I describe the scale of human impacts on natural systems and the extensive associated health effects across nearly every dimension of human health. I highlight several overarching themes that emerge from planetary health and suggest advances in the way we train, reward, promote, and fund the generation of health scientists who will be tasked with breaking out of their disciplinary silos to address this urgent constellation of health threats. I propose that protecting the health of future generations requires taking better care of Earth's natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Emergence of two types of terrestrial planet on solidification of magma ocean.

    Science.gov (United States)

    Hamano, Keiko; Abe, Yutaka; Genda, Hidenori

    2013-05-30

    Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type II planets during the slow solidification process. Although Earth is categorized as type I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type II planets is consistent with the characteristics of Venus, it may be representative of type II planets. Also, future observations may have a chance to detect not only terrestrial exoplanets covered with water ocean but also those covered with magma ocean around a young star.

  2. Exploration of Venus' Deep Atmosphere and Surface Environment

    Science.gov (United States)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.

    2017-01-01

    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  3. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.

    2016-07-01

    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  4. Reflections on O2 as a Biosignature in Exoplanetary Atmospheres.

    Science.gov (United States)

    Meadows, Victoria S

    2017-10-01

    Oxygenic photosynthesis is Earth's dominant metabolism, having evolved to harvest the largest expected energy source at the surface of most terrestrial habitable zone planets. Using CO 2 and H 2 O-molecules that are expected to be abundant and widespread on habitable terrestrial planets-oxygenic photosynthesis is plausible as a significant planetary process with a global impact. Photosynthetic O 2 has long been considered particularly robust as a sign of life on a habitable exoplanet, due to the lack of known "false positives"-geological or photochemical processes that could also produce large quantities of stable O 2 . O 2 has other advantages as a biosignature, including its high abundance and uniform distribution throughout the atmospheric column and its distinct, strong absorption in the visible and near-infrared. However, recent modeling work has shown that false positives for abundant oxygen or ozone could be produced by abiotic mechanisms, including photochemistry and atmospheric escape. Environmental factors for abiotic O 2 have been identified and will improve our ability to choose optimal targets and measurements to guard against false positives. Most of these false-positive mechanisms are dependent on properties of the host star and are often strongest for planets orbiting M dwarfs. In particular, selecting planets found within the conservative habitable zone and those orbiting host stars more massive than 0.4 M ⊙ (M3V and earlier) may help avoid planets with abundant abiotic O 2 generated by water loss. Searching for O 4 or CO in the planetary spectrum, or the lack of H 2 O or CH 4 , could help discriminate between abiotic and biological sources of O 2 or O 3 . In advance of the next generation of telescopes, thorough evaluation of potential biosignatures-including likely environmental context and factors that could produce false positives-ultimately works to increase our confidence in life detection. Key Words: Biosignatures-Exoplanets-Oxygen-Photosynthesis-Planetary

  5. Engaging Audiences in Planetary Science Through Visualizations

    Science.gov (United States)

    Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.

    2017-12-01

    One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.

  6. X-ray observations of planetary nebulae

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Tarafdar, S.P.

    1990-01-01

    The Einstein satellite was used to observe 19 planetary nebulae and X-ray emission was detected from four planetary nebulae. The EXOSAT satellite observed 12 planetary nebulae and five new sources were detected. An Einstein HRI observation shows that NGC 246 is a point source, implying that the X-rays are from the central star. Most of the detected planetary nebulae are old and the X-rays are observed during the later stage of planetary nebulae/central star evolution, when the nebula has dispersed sufficiently and/or when the central star gets old and the heavy elements in the atmosphere settle down due to gravitation. However in two cases where the central star is sufficiently luminous X-rays were observed, even though they were young nebulae; the X-radiation ionizes the nebula to a degree, to allow negligible absorption in the nebula. Temperature T x is obtained using X-ray flux and optical magnitude and assuming the spectrum is blackbody. T x agrees with Zanstra temperature obtained from optical Helium lines. (author)

  7. Carbon dioxide efficiency of terrestrial enhanced weathering

    OpenAIRE

    Moosdorf, Nils; Renforth, Philip; Hartmann, Jens

    2014-01-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimi...

  8. Unifying Dynamic Prognostic Phenology, Heterogeneous Soil and Vegetation Fluxes, and Ecosystem Biomass and Carbon Stocks To Predict the Terrestrial Carbon Cycle and Land-Atmosphere Exchanges in the Simple Biosphere Model (SiB4)

    Science.gov (United States)

    Haynes, K. D.; Baker, I. T.; Denning, S.

    2016-12-01

    Future climate projections require process-based models that incorporate the mechanisms and feedbacks controlling the carbon cycle. Over the past three decades, land surface models have been key contributors to Earth system models, evolving from predicting latent (LE) and sensible (SH) heat fluxes to energy and water budgets, momentum transfer, and terrestrial carbon exchange and storage. This study presents the latest version of the Simple Biosphere Model (SiB4), which builds on a compilation of previous versions and adds a new mechanistic-based scheme that fully predicts the terrestrial carbon cycle. The main SiB4 updates can be summarized as follows: (i) Incorporation of carbon pools that use new respiration and transfer methods, (ii) Creation of a new dynamic phenology scheme that uses mechanistic-based seasonal stages, and (iii) Unification of carbon pools, phenology and disturbance to close the carbon cycle. SiB4 removes the dependence on satellite-based vegetation indices, and instead uses a single mathematical framework to prognose self-consistent land-atmosphere exchanges of carbon, water, energy, radiation, and momentum, as well as carbon storage. Since grasslands cover 30% of land and are highly seasonal, we investigated forty grass sites. Diurnal cycles of gross primary productivity (GPP), ecosystem respiration (RE), net ecosystem exchange (NEE), LE and SH have third-quartile root mean squared (RMS) errors less than 2.0 µmol m-2 s-1, 1.9 µmol m-2 s-1, 2.0 µmol m-2 s-1, 42 W m-2, and 78 W m-2, respectively. On the synoptic timeframe, all sites have significant LE correlation coefficients of non-seasonal daily data; and all but one have significant SH correlations. Mean seasonal cycles for leaf area index (LAI), GPP, RE, LE, and SH have third-quartile normalized RMS errors less than 32%, 25%, 28%, 16%, and 48%, respectively. On multi-year timescales, daily correlations of LAI, GPP, RE, and LE are all statistically significant, with third-quartile RMS

  9. Rocky Planetary Debris Around Young WDs

    Science.gov (United States)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  10. THE INFLUENCE OF THERMAL EVOLUTION IN THE MAGNETIC PROTECTION OF TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Zuluaga, Jorge I.; Bustamante, Sebastian; Cuartas, Pablo A. [Instituto de Fisica-FCEN, Universidad de Antioquia, Calle 67 No. 53-108, Medellin (Colombia); Hoyos, Jaime H., E-mail: jzuluaga@fisica.udea.edu.co, E-mail: sbustama@pegasus.udea.edu.co, E-mail: p.cuartas@fisica.udea.edu.co, E-mail: jhhoyos@udem.edu.co [Departamento de Ciencias Basicas, Universidad de Medellin, Carrera 87 No. 30-65, Medellin (Colombia)

    2013-06-10

    Magnetic protection of potentially habitable planets plays a central role in determining their actual habitability and/or the chances of detecting atmospheric biosignatures. Here we develop a thermal evolution model of potentially habitable Earth-like planets and super-Earths (SEs). Using up-to-date dynamo-scaling laws, we predict the properties of core dynamo magnetic fields and study the influence of thermal evolution on their properties. The level of magnetic protection of tidally locked and unlocked planets is estimated by combining simplified models of the planetary magnetosphere and a phenomenological description of the stellar wind. Thermal evolution introduces a strong dependence of magnetic protection on planetary mass and rotation rate. Tidally locked terrestrial planets with an Earth-like composition would have early dayside magnetopause distances between 1.5 and 4.0 R{sub p} , larger than previously estimated. Unlocked planets with periods of rotation {approx}1 day are protected by magnetospheres extending between 3 and 8 R{sub p} . Our results are robust in comparison with variations in planetary bulk composition and uncertainties in other critical model parameters. For illustration purposes, the thermal evolution and magnetic protection of the potentially habitable SEs GL 581d, GJ 667Cc, and HD 40307g were also studied. Assuming an Earth-like composition, we found that the dynamos of these planets are already extinct or close to being shut down. While GL 581d is the best protected, the protection of HD 40307g cannot be reliably estimated. GJ 667Cc, even under optimistic conditions, seems to be severely exposed to the stellar wind, and, under the conditions of our model, has probably suffered massive atmospheric losses.

  11. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  12. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    Science.gov (United States)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-12-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).

  13. A variable K - planetary boundary layer model

    International Nuclear Information System (INIS)

    Misra, P.K.

    1976-07-01

    The steady-state, homogeneous and barotropic equations of motion within the planetary boundary layer are solved with the assumption that the coefficient of eddy viscosity varies as K(Z) = K 0 (1-Z/h)sup(p), where h is the height of the boundary layer and p a parameter which depends on the atmospheric stability. The solutions are compared with the observed velocity profiles based on the Wangara data. They compare favourably. (author)

  14. Annual review of earth and planetary sciences. Volume 8

    International Nuclear Information System (INIS)

    Donath, F.A.; Stehli, F.G.; Wetherill, G.W.

    1980-01-01

    Papers are presented on the geochemistry of evaporitic lacustrine deposits, the deformation of mantle rocks, the dynamics of sudden stratospheric warmings, the equatorial undercurrent, geomorphological processes on planetary surfaces, and rare earth elements in petrogenetic studies of igneous systems. Consideration is also given to evolutionary patterns in early Cenozoic animals, the origin and evolution of planetary atmospheres, the moons of Mars, and refractory inclusions in the Allende meteorite

  15. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    Science.gov (United States)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    ). While this is an ideal specification, it far exceeds the current PPP requirements for Category-V “restricted Earth return”, which typically center on a probability of escape of a biologically active particle (e.g., 50 nm diameter). Particles of this size (orders of magnitude larger than a helium atom) are not volatile and generally “sticky” toward surfaces; the mobility of viruses and biomolecules requires aerosolization. Thus, meeting the planetary protection challenge does not require hermetic seal. So far, only a handful of robotic missions accomplished deep space sample returns, i.e., Genesis, Stardust and Hayabusa. This year, Hayabusa-2 will be launched and OSIRIS-REx will follow in a few years. All of these missions are classified as “unrestricted Earth return” by the COSPAR PPP recommendation. Nevertheless, scientific requirements of organic contamination control have been implemented to all WBS regarding sampling mechanism and Earth return capsule of Hayabusa-2. While Genesis, Stardust and OSIRIS-REx capsules “breathe” terrestrial air as they re-enter Earth’s atmosphere, temporal “air-tight” design was already achieved by the Hayabusa-1 sample container using a double O-ring seal, and that for the Hayabusa-2 will retain noble gas and other released gas from returned solid samples using metal seal technology. After return, these gases can be collected through a filtered needle interface without opening the entire container lid. This expertise can be extended to meeting planetary protection requirements from “restricted return” targets. There are still some areas requiring new innovations, especially to assure contingency robustness in every phase of a return mission. These must be achieved by meeting both PPP and scientific requirements during initial design and WBS of the integrated sampling system including the Earth return capsule. It is also important to note that international communities in planetary protection, sample return

  16. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  17. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  18. Wave phenomena comparison between Mars and Titan upper atmospheres

    Science.gov (United States)

    Elrod, Meredith K.; Bell, J. M.

    2013-10-01

    We will examine the presence of waves in the neutral atmospheres of two terrestrial bodies: Mars and Titan. We will examine the aerobraking datasets from both the Mars Global Surveyor (MGS) and Mars Odyssey (ODY) missions, analyzing the neutral densities to characterize the planetary tides and/or smaller-scale internal gravity waves present in the data. While several studies have examined these features before at Mars (e.g., Forbes et al. [2002] and Fritts and Tolson [2006]), we will be focusing on examining whether or not the wave features observed in the thermosphere could be explained primarily with planetary tides, as posted recently in Klienbohl et al. [2013]. In addition to this, we will also examine the neutral densities obtained by the Cassini Ion-Neutral Mass Spectrometer (INMS) in order to determine if planetary tides can explain the numerous wave-like features that have been interpreted as gravity waves propagating vertically (cf., Mueller-Wodarg et al. [2008], Cui et al. [2013], and Snowden et al. [2013]).

  19. The Solar-Terrestrial Environment

    Science.gov (United States)

    Hargreaves, John Keith

    1995-05-01

    The book begins with three introductory chapters that provide some basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magnetosphere, and structures, dynamics, disturbances, and irregularities. The concluding chapter deals with technological applications. The account is introductory, at a level suitable for readers with a basic background in engineering or physics. The intent is to present basic concepts, and for that reason, the mathematical treatment is not complex. SI units are given throughout, with helpful notes on cgs units where these are likely to be encountered in the research literature. This book is suitable for advanced undergraduate and graduate students who are taking introductory courses on upper atmospheric, ionospheric, or magnetospheric physics. This is a successor to The Upper Atmosphere and Solar-Terrestrial Relations, published in 1979.

  20. Planetary mass function and planetary systems

    Science.gov (United States)

    Dominik, M.

    2011-02-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  1. Dynamical habitability of planetary systems.

    Science.gov (United States)

    Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).

  2. Reconstruction and visualization of planetary nebulae.

    Science.gov (United States)

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  3. The European standard on planetary protection requirements.

    Science.gov (United States)

    Debus, André

    2006-01-01

    Since the beginning of solar system exploration, numerous spacecrafts have been sent towards others worlds, and one of the main goals of such missions is the search for extraterrestrial forms of life. It is known that, under certain conditions, some terrestrial entities are able to survive during cruises in space and that they may contaminate other planets (forward contamination). At another level, possible extraterrestrial life forms are unknown and their ability to contaminate the Earth's biosphere (back contamination) in the frame of sample return missions cannot be excluded. Article IX of the Outer Space Treaty (London/Washington, January 27, 1967) requires the preservation of planets and the Earth from contamination. All nations taking part in this Treaty must prevent forward and back contamination during missions exploring our solar system. Consequently, the United Nations (UN-COPUOS) has delegated COSPAR (Committee of Space Research) to take charge of planetary protection and, at present, all space-faring nations must comply with COSPAR policy and consequently with COSPAR planetary protection recommendations. Starting from these recommendations and the "CNES Planetary Protection Standard" document, a working group has been set up in the framework of the "European Cooperation for Space Standardization" (ECSS) to establish the main specifications for preventing cross-contamination between target bodies within the solar system and the Earth-moon system.

  4. Debris disks as signposts of terrestrial planet formation

    Science.gov (United States)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by

  5. Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape

    Science.gov (United States)

    Curry, Shannon M.; Luhmann, Janet; Ma, Yingjuan; Liemohn, Michael; Dong, Chuanfei; Hara, Takuya

    2015-09-01

    Without the shielding of a substantial intrinsic dipole magnetic field, the atmospheres of Mars and Venus are particularly susceptible to similar atmospheric ion energization and scavenging processes. However, each planet has different attributes and external conditions controlling its high altitude planetary ion spatial and energy distributions. This paper describes analogous test particle simulations in background MHD fields that allow us to compare the properties and fates, precipitation or escape, of the mainly O+ atmospheric pick-up ions at Mars and Venus. The goal is to illustrate how atmospheric and planetary scales affect the upper atmospheres and space environments of our terrestrial planet neighbors. The results show the expected convection electric field-related hemispheric asymmetries in both precipitation and escape, where the degree of asymmetry at each planet is determined by the planetary scale and local interplanetary field strength. At Venus, the kinetic treatment of O+ reveals a strong nightside source of precipitation while Mars' crustal fields complicate the simple asymmetry in ion precipitation and drive a dayside source of precipitation. The pickup O+ escape pattern at both Venus and Mars exhibits low energy tailward escape, but Mars exhibits a prominent, high energy 'polar plume' feature in the hemisphere of the upward convection electric field while the Venus ion wake shows only a modest poleward concentration. The overall escape is larger at Venus than Mars (2.1 ×1025 and 4.3 ×1024 at solar maximum, respectively), but the efficiency (likelihood) of O+ escaping is 2-3 times higher at Mars. The consequences of these comparisons for pickup ion related atmospheric energy deposition, loss rates, and detection on spacecraft including PVO, VEX, MEX and MAVEN are considered. In particular, both O+ precipitation and escape show electric field controlled asymmetries that grow with energy, while the O+ fluxes and energy spectra at selected spatial

  6. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  7. Planetary exploration. Chapter 7

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1980-01-01

    Recent knowledge of the planets, particularly that gained through spacecraft missions, is discussed. Sections are headed: Mercury; Venus (atmospheric composition, surface properties, meteorology, atmospheric structure); Mars (atmospheric properties, meteorology, climate change, Phobos and Deimos); Jupiter (magnetosphere and environment, atmospheric properties, meteorology, ring properties, inner satellites). (U.K.)

  8. The diversity of planetary system architectures: contrasting theory with observations

    Science.gov (United States)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  9. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  10. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  11. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  12. Application of Terrestrial Environments in Orion Assessments

    Science.gov (United States)

    Barbre, Robert E.

    2016-01-01

    This presentation summarizes the Marshall Space Flight Center Natural Environments Terrestrial and Planetary Environments (TPE) Team support to the NASA Orion space vehicle. The TPE utilizes meteorological data to assess the sensitivities of the vehicle due to the terrestrial environment. The Orion vehicle, part of the Multi-Purpose Crew Vehicle Program, is designed to carry astronauts beyond low-earth orbit and is currently undergoing a series of tests including Exploration Test Flight (EFT) - 1. The presentation describes examples of TPE support for vehicle design and several tests, as well as support for EFT-1 and planning for upcoming Exploration Missions while emphasizing the importance of accounting for the natural environment's impact to the vehicle early in the vehicle's program.

  13. Extrasolar Planetary Imaging Coronagraph (EPIC)

    Science.gov (United States)

    Clampin, Mark

    2009-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Exoplanet Probe mission to image and characterize extrasolar giant planets. EPIC will provide insights into the physical nature and architecture of a variety of planets in other solar systems. Initially, it will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses and characterize the atmospheres around A and F type stars which cannot be found with RV techniques. It will also observe the inner spatial structure of exozodiacal disks. EPIC has a heliocentric Earth trailing drift-away orbit, with a 5 year mission lifetime. The robust mission design is simple and flexible ensuring mission success while minimizing cost and risk. The science payload consists of a heritage optical telescope assembly (OTA), and visible nulling coronagraph (VNC) instrument. The instrument achieves a contrast ratio of 10^9 over a 5 arcsecond field-of-view with an unprecedented inner working angle of 0.13 arcseconds over the spectral range of 440-880 nm. The telescope is a 1.65 meter off-axis Cassegrain with an OTA wavefront error of lambda/9, which when coupled to the VNC greatly reduces the requirements on the large scale optics.

  14. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  15. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major p...

  16. Degassing of reduced carbon from planetary basalts.

    Science.gov (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  17. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  18. The complex planetary synchronization structure of the solar system

    Science.gov (United States)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  19. ALMA observations of Titan's atmospheric chemistry and seasonal variation

    Science.gov (United States)

    Cordiner, Martin

    2017-04-01

    Titan is the largest moon of Saturn, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Photochemistry in Titan's upper atmosphere results in the production of a wide range of organic molecules, including hydrocarbons, nitriles and aromatics, some of which could be of pre-biotic relevance. Thus, we obtain insights into the possible molecular inventories of primitive (reducing) planetary atmospheres. Titan's atmosphere also provides a unique laboratory for testing our understanding of fundamental processes involving the chemistry and spectroscopy of complex organic molecules. In this talk, results will be presented from our studies using the Atacama Large Millimeter/submillimeter Array (ALMA) during the period 2012-2015, focussing in particular on the detection and mapping of emission from various nitrile species. By combining data from multiple ALMA observations, our spectra have reached an unprecedented sensitivity level, enabling the first spectroscopic detection and mapping of C2H3CN (vinyl cyanide) on Titan. Liquid-phase simulations of Titan's seas indicate that vinyl cyanide molecules could combine to form vesicle membranes (similar to the cells of terrestrial biology), and the astrobiological implications of this discovery will be discussed. Furthermore, ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere, for gases inaccessible to previous instruments. Combined with complementary data obtained from the Cassini Saturn orbiter, as well as theoretical models and laboratory studies, our observed, seasonally variable, spatially resolved abundance patterns are capable of providing new insights into photochemical production and transport in primitive planetary atmospheres in the Solar System and beyond.

  20. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds

    Science.gov (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; hide

    2016-01-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  1. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1

    Science.gov (United States)

    de Wit, Julien; Wakeford, Hannah R.; Lewis, Nikole K.; Delrez, Laetitia; Gillon, Michaël; Selsis, Frank; Leconte, Jérémy; Demory, Brice-Olivier; Bolmont, Emeline; Bourrier, Vincent; Burgasser, Adam J.; Grimm, Simon; Jehin, Emmanuël; Lederer, Susan M.; Owen, James E.; Stamenković, Vlada; Triaud, Amaury H. M. J.

    2018-03-01

    Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres3-6. Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones6-8. An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures9. However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere10, 11. Here, we report observations for the four planets within or near the system's habitable zone, the circumstellar region where liquid water could exist on a planetary surface12-14. These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8σ, 6σ and 4σ, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation15, 16, these observations further support their terrestrial and potentially habitable nature.

  2. Climate control of terrestrial carbon exchange across biomes and continents

    DEFF Research Database (Denmark)

    Yi, Chuixiang; Ricciuto, Daniel; Li, Runze

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships betwe...

  3. Climate control of terrestrial carbon exchange across biomes and continents

    NARCIS (Netherlands)

    Yi, C.; Ricciuto, D.; Li, R.; Hendriks, D.M.D.; Moors, E.J.; Valentini, R.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between

  4. Climate control of terrestrial carbon exchange across biomes and continents

    NARCIS (Netherlands)

    Yi, C.; Jacobs, C.M.J.; Moors, E.J.; Elbers, J.A.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between

  5. Earth's Paleomagnetosphere and Planetary Habitability

    Science.gov (United States)

    Tarduno, J. A.; Blackman, E. G.; Oda, H.; Bono, R. K.; Carroll-Nellenback, J.; Cottrell, R. D.; Nimmo, F.

    2017-12-01

    The geodynamo is thought to play an important role in protecting Earth's hydrosphere, vital for life as we know it, from loss due to the erosive potential of the solar wind. Here we consider the mechanisms and history of this shielding. A larger core dynamo magnetic field strength provides more pressure to abate the solar wind dynamic pressure, increasing the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. The important variable is not mass capture but energy transfer, which does not scale linearly with magnetosphere size. Moreover, the ordered field provides the magnetic topology for recapturing atmospheric components in the opposite hemisphere such that the net global loss might not be greatly affected. While a net protection role for magnetospheres is suggested, forcing by the solar wind will change with stellar age. Paleomagnetism utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a reduced magnetopause of 5 Earth radii, implying the potential for some atmospheric loss. Terrestrial zircons from the Jack Hills (Western Australia) and other localities host magnetic inclusions, whose magnetization has now been recorded by a new generation of ultra-sensitive 3-component SQUID magnetometer (U. Rochester) and SQUID microscope (GSJ/AIST). Paleointensity data suggest the presence of a terrestrial dynamo and magnetic shielding for Eoarchean to Hadean times, at ages as old as 4.2 billion years ago. However, the magnetic data suggest that for intervals >100,000 years long, magnetopause standoff distances may have reached 3 to 4 Earth radii or less. The early inception of the geodynamo, which probably occurred shortly after the lunar-forming impact, its continuity, and an early robust hydrosphere, appear to be key ingredients for Earth's long-term habitability.

  6. A Dynamic Analysis of the Role of the Planetary- and Synoptic-Scale in the Summer of 2010 Blocking Episodes over the European Part of Russia

    Directory of Open Access Journals (Sweden)

    Anthony R. Lupo

    2012-01-01

    Full Text Available During the summer of 2010, an unusually persistent blocking episode resulted in anomalously warm dry weather over the European part of Russia. The excessive heat resulted in forest and peat fires, impacted terrestrial ecosystems, greatly increased pollution in urban areas, and increased mortality rates in the region. Using the National Centers for Atmospheric Research (NCAR, National Centers for Environmental Prediction (NCEP reanalysis datasets, the climatological and dynamic character of blocking events for summer 2010 and a precursor May blocking event were examined. We found that these events were stronger and longer lived than typical warm season events. Using dynamic methods, we demonstrate that the July 2010 event was a synoptic-scale dominant blocking event; unusual in the summer season. An analysis of phase diagrams demonstrated that the planetary-scale did not become stable until almost one week after block onset. For all other blocking events studied here and previously, the planetary-scale became stable around onset. Analysis using area integrated regional enstrophy (IRE demonstrated that for the July 2010 event, synoptic-scale IRE increased at block onset. This was similar for the May 2010 event, but different from case studies examined previously that demonstrated the planetary-scale IRE was prominent at block onset.

  7. Heat transfer in the atmosphere

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it

  8. Lunar and Planetary Webcam User's Guide

    CERN Document Server

    Mobberley, Martin

    2006-01-01

    Inexpensive webcams are revolutionizing imaging in amateur astronomy by providing an affordable alternative to cooled-chip astronomical CCD cameras, for photographing the brighter astronomical objects. Webcams – costing only a few tens of dollars – are capable of more advanced high resolution work than "normal" digital cameras because their rapid image download speed can freeze fine planetary details, even through the Earth's turbulent atmosphere. Also, their simple construction makes it easy to remove the lens, allowing them to be used at high power at the projected focus of an astronomical telescope. Webcams also connect direct to a PC, so that software can be used to "stack" multiple images, providing a stunning increase in image quality. In the Lunar and Planetary Webcam User’s Guide Martin Mobberley de-mystifies the jargon of webcams and computer processing, and provides detailed hints and tips for imaging the Sun, Moon and planets with a webcam. He looks at each observing target separately, descri...

  9. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  10. Isca, v1.0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity

    Science.gov (United States)

    Vallis, Geoffrey K.; Colyer, Greg; Geen, Ruth; Gerber, Edwin; Jucker, Martin; Maher, Penelope; Paterson, Alexander; Pietschnig, Marianne; Penn, James; Thomson, Stephen I.

    2018-03-01

    Isca is a framework for the idealized modelling of the global circulation of planetary atmospheres at varying levels of complexity and realism. The framework is an outgrowth of models from the Geophysical Fluid Dynamics Laboratory in Princeton, USA, designed for Earth's atmosphere, but it may readily be extended into other planetary regimes. Various forcing and radiation options are available, from dry, time invariant, Newtonian thermal relaxation to moist dynamics with radiative transfer. Options are available in the dry thermal relaxation scheme to account for the effects of obliquity and eccentricity (and so seasonality), different atmospheric optical depths and a surface mixed layer. An idealized grey radiation scheme, a two-band scheme, and a multiband scheme are also available, all with simple moist effects and astronomically based solar forcing. At the complex end of the spectrum the framework provides a direct connection to comprehensive atmospheric general circulation models. For Earth modelling, options include an aquaplanet and configurable continental outlines and topography. Continents may be defined by changing albedo, heat capacity, and evaporative parameters and/or by using a simple bucket hydrology model. Oceanic Q fluxes may be added to reproduce specified sea surface temperatures, with arbitrary continental distributions. Planetary atmospheres may be configured by changing planetary size and mass, solar forcing, atmospheric mass, radiation, and other parameters. Examples are given of various Earth configurations as well as a giant planet simulation, a slowly rotating terrestrial planet simulation, and tidally locked and other orbitally resonant exoplanet simulations. The underlying model is written in Fortran and may largely be configured with Python scripts. Python scripts are also used to run the model on different architectures, to archive the output, and for diagnostics, graphics, and post-processing. All of these features are publicly

  11. Characterizing Terrestrial Exoplanets

    Science.gov (United States)

    Meadows, V. S.; Lustig-Yaeger, J.; Lincowski, A.; Arney, G. N.; Robinson, T. D.; Schwieterman, E. W.; Deming, L. D.; Tovar, G.

    2017-11-01

    We will provide an overview of the measurements, techniques, and upcoming missions required to characterize terrestrial planet environments and evolution, and search for signs of habitability and life.

  12. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  13. Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere

    Science.gov (United States)

    Mošna, Z.; Koucká Knížová, P.

    2012-12-01

    The present study mainly concerns the wave-like activity in the ionospheric sporadic E layer (Es) and in the lower lying stratosphere. The proposed analysis involves parameters describing the state of plasma in the sporadic E layer. Critical frequencies foEs and layer heights hEs were measured at the Pruhonice station (50°N, 14.5°E) during summer campaigns 2004, 2006 and 2008. Further, we use neutral atmosphere (temperature data at 10 hPa) data from the same time interval. The analysis concentrates on vertically propagating wave-like structures within distant atmospheric regions. By means of continuous wavelet transform (CWT) we have detected significant wave-like oscillation at periods covering tidal and planetary oscillation domains both in the Es layer parameters (some of them were reported earlier, for instance in works of Abdu et al., 2003; Pancheva and Mitchel, 2004; Pancheva et al., 2003; Šauli and Bourdillon, 2008) and in stratospheric temperature variations. Further analyses using cross wavelet transform (XWT) and wavelet coherence analysis (WTC) show that despite high wave-like activity in a wide period range, there are only limited coherent wave-like bursts present in both spectra. Such common coherent wave bursts occur on periods close to eigen-periods of the terrestrial atmosphere. We suppose that vertical coupling between atmospheric regions realized by vertically propagating planetary waves occurs predominantly on periods close to those of Rossby modes. Analysis of the phase shift between data from distant atmospheric regions reveals high variability and very likely supports the non-linear scenario of the vertical coupling provided by planetary waves.

  14. V. Terrestrial vertebrates

    Science.gov (United States)

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  15. A conceptual framework for using Doppler radar acquired atmospheric data for flight simulation

    Science.gov (United States)

    Campbell, W.

    1983-01-01

    A concept is presented which can permit turbulence simulation in the vicinity of microbursts. The method involves a large data base, but should be fast enough for use with flight simulators. The model permits any pilot to simulate any flight maneuver in any aircraft. The model simulates a wind field with three-component mean winds and three-component turbulent gusts, and gust variation over the body of an aircraft so that all aerodynamic loads and moments can be calculated. The time and space variation of mean winds and turbulent intensities associated with a particular atmospheric phenomenon such as a microburst is used in the model. In fact, Doppler radar data such as provided by JAWS is uniquely suited for use with the proposed model. The concept is completely general and is not restricted to microburst studies. Reentry and flight in terrestrial or planetary atmospheres could be realistically simulated if supporting data of sufficient resolution were available.

  16. Ambler - An autonomous rover for planetary exploration

    Science.gov (United States)

    Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom

    1989-01-01

    The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.

  17. Planetary geomorphology field studies: Iceland and Antarctica

    Science.gov (United States)

    Malin, M. C.

    1984-01-01

    Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. These studies, conducted in Iceland and in Antarctica, investigated physical and chemical weathering mechanisms and rates, eolitan processes, mudflow phenomena, drainage development, and catastrophic fluvial and volcanic phenomena. Continuing investigations in Iceland fall in three main catagories: (1) catastrophic floods of the Jokulsa a Fjollum, (2) lahars associated with explosive volcanic eruptions of Askja caldera, and (3) rates of eolian abrasion in cold, volcanic deserts. The ice-free valleys of Antarctica, in particular those in South Victoria Land, have much is common with the surface of Mars. In addition to providing independent support for the application of the Iceland findings to consideration of the martian erosional system, the Antarctic observations also provide analogies to other martian phenomena. For example, a family of sand dunes in Victoria Valley are stabilized by the incorporation of snow as beds.

  18. Planetary geomorphology field studies: Washington and Alaska

    Science.gov (United States)

    Malin, M. C.

    1984-01-01

    Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. Investigations discussed address principally mudflow phenomena and drainage development. At the Valley of 10,000 Smokes (Katmai, AK) and Mount St. Helens, WA, studies of the development of erosional landforms (in particular, drainage) on fresh, new surfaces permitted analysis of the result of competition between geomorphic processes. Of specific interest is the development of stream pattern as a function of the competition between perennial seepage overland flow (from glacial or groundwater sources), ephemeral overland flow (from pluvial or seasonal melt sources), and ephemeral/perennial groundwater sapping, as a function of time since initial resurfacing, material properties, and seasonal/annual environmental conditions.

  19. Evolutionary tracks of the terrestrial planets

    International Nuclear Information System (INIS)

    Matsui, Takafumi; Abe, Yutaka

    1987-01-01

    On the basis of the model proposed by Matsui and Abe, the authors show that two major factors - distance from the Sun and the efficiency of retention of accretional energy - control the early evolution of the terrestrial planets. A diagram of accretional energy versus the optical depth of a proto-atmosphere provides a means to follow the evolutionary track of surface temperature of the terrestrial planets and an explanation for why the third planet in our solar system is an 'aqua'-planet. 15 refs; 3 figs

  20. TERRESTRIAL PLANET FORMATION FROM AN ANNULUS

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu [Southwest Research Institute, 1050 Walnut St. Suite 300, Boulder, CO 80302 (United States)

    2016-09-01

    It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately including effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.

  1. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    Science.gov (United States)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  2. The problem of scale in planetary geomorphology

    Science.gov (United States)

    Rossbacher, L. A.

    1985-01-01

    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  3. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  4. Topics in planetary plasmaspheres

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    Contributions to the understanding of two distinct kinds of planetary plasmaspheres: namely the earth-type characterized by an ionospheric source and a convection limited radial extent, and the Jupiter-type characterized by a satellite source and a radial extent determined by flux tube interchange motions. In both cases the central question is the geometry of the plasma distribution in the magnetosphere as it is determined by the appropriate production and loss mechanisms. The contributions contained herein concern the explication and clarification of these production and loss mechanisms

  5. Planetary submillimeter spectroscopy

    Science.gov (United States)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  6. Clouds and Hazes in Exoplanet Atmospheres

    OpenAIRE

    Marley, Mark S.; Ackerman, Andrew S.; Cuzzi, Jeffrey N.; Kitzmann, Daniel

    2013-01-01

    Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmospheric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider t...

  7. The Star–Planet Connection. I. Using Stellar Composition to Observationally Constrain Planetary Mineralogy for the 10 Closest Stars

    Science.gov (United States)

    Hinkel, Natalie R.; Unterborn, Cayman T.

    2018-01-01

    The compositions of stars and planets are connected, but the definition of “habitability” and the “habitable zone” only take into account the physical relationship between the star and planet. Planets, however, are made truly habitable by both chemical and physical processes that regulate climatic and geochemical cycling between atmosphere, surface, and interior reservoirs. Despite this, an “Earth-like” planet is often defined as a planet made of a mixture of rock and Fe that is roughly 1 Earth-density. To understand the interior of a terrestrial planet, the stellar abundances of planet-building elements (e.g., Mg, Si, and Fe) can be used as a proxy for the planet’s composition. We explore the planetary mineralogy and structure for fictive planets around the 10 stars closest to the Sun using stellar abundances from the Hypatia Catalog. Although our sample contains stars that are both sub- and super-solar in their abundances, we find that the mineralogies are very similar for all 10 planets—since the error or spread in the stellar abundances create significant degeneracy in the models. We show that abundance uncertainties need to be on the order of [Fe/H] < 0.02 dex, [Si/H] < 0.01 dex, [Al/H] < 0.002 dex, while [Mg/H] and [Ca/H] < 0.001 dex in order to distinguish two unique planetary populations in our sample of 10 stars. While these precisions are high, we believe that they are possible given certain abundance techniques, in addition to methodological transparency, that have recently been demonstrated in the literature. However, without these precisions, the uncertainty in planetary structures will be so high that we will be unable to confidently state that a planet is like the Earth, or unlike anything we have ever seen. We made some cuts and ruled out a number of stars, but these 10 are still rather nearby.

  8. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    Science.gov (United States)

    Zhang, X.; Showman, A. P.

    2015-12-01

    Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of sub-Jupiter-sized planets could exhibit a variety of bulk compositions. Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich atmospheres like Neptune, evaporated atmospheres dominated by helium, or of course carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets using an idealized three-dimensional general circulation model (GCM). Composition—in particular, the molecular mass and specific heat—affect the sound speed, gravity wave speeds, atmospheric scale height, and Rossby deformation radius, and therefore in principle can exert significant controls on the atmospheric circulation, including the day-night temperature difference and other observables. We performed numerous simulations exploring a wide range of molecular masses and molar specific heats. The effect of molecular weight dominates. We found that a higher-molecular-weight atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal light curve, and a narrower equatorial super-rotating jet that occurs in a deeper atmosphere. The zonal-mean zonal wind is smaller and more prone to exhibit a latitudinally alternating pattern in a higher-molecular-weight atmosphere. If the vertical temperature profile is close to adiabatic, molar specific heat will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere. We are also working on analytical theories to explain aspects of the simulations relevant for possible observables on tidally locked

  9. Structure of planetary nebulae

    International Nuclear Information System (INIS)

    Goad, L.E.

    1975-01-01

    Image-tube photographs of planetary nebulae taken through narrow-band interference filters are used to map the surface brightness of these nebulae in their most prominent emission lines. These observations are best understood in terms of a two-component model consisting of a tenuous diffuse nebular medium and a network of dense knots and filaments with neutral cores. The observations of the diffuse component indicate that the inner regions of these nebulae are hollow shells. This suggests that steady stellar winds are the dominant factor in determining the structure of the central regions of planetary nebulae. The observations of the filamentary components of NGC 40 and NGC 6720 show that the observed nebular features can result from the illumination of the inner edges of dense fragmentary neutral filaments by the central stars of these nebulae. From the analysis of the observations of the low-excitation lines in NGC 2392, it is concluded that the rate constant for the N + --H charge transfer reaction is less than 10 -12 cm 3 sec -1

  10. Introduced Terrestrial Species (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  11. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    Science.gov (United States)

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.

  12. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life

    Science.gov (United States)

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  13. Terrestrial ecosystems and biodiversity

    CSIR Research Space (South Africa)

    Davis-Reddy, Claire

    2017-10-01

    Full Text Available Ecoregions Terrestrial Biomes Protected Areas Climate Risk and Vulnerability: A Handbook for Southern Africa | 75 7.2. Non-climatic drivers of ecosystem change 7.2.1. Land-use change, habitat loss and fragmentation Land-use change and landscape... concentrations of endemic plant and animal species, but these mainly occur in areas that are most threatened by human activity. Diverse terrestrial ecosystems in the region include tropical and sub-tropical forests, deserts, savannas, grasslands, mangroves...

  14. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  15. The Origin of the Moon Within a Terrestrial Synestia

    Science.gov (United States)

    Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoë; Mace, Mia T.; Jacobsen, Stein B.; Cuk, Matija

    2018-04-01

    The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular-momentum giant impacts can create a post-impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-corotation-limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.

  16. Advancing spaceborne tools for the characterization of planetary ionospheres and circumstellar environments

    Science.gov (United States)

    Douglas, Ewan Streets

    This work explores remote sensing of planetary atmospheres and their circumstellar surroundings. The terrestrial ionosphere is a highly variable space plasma embedded in the thermosphere. Generated by solar radiation and predominantly composed of oxygen ions at high altitudes, the ionosphere is dynamically and chemically coupled to the neutral atmosphere. Variations in ionospheric plasma density impact radio astronomy and communications. Inverting observations of 83.4 nm photons resonantly scattered by singly ionized oxygen holds promise for remotely sensing the ionospheric plasma density. This hypothesis was tested by comparing 83.4 nm limb profiles recorded by the Remote Atmospheric and Ionospheric Detection System aboard the International Space Station to a forward model driven by coincident plasma densities measured independently via ground-based incoherent scatter radar. A comparison study of two separate radar overflights with different limb profile morphologies found agreement between the forward model and measured limb profiles. A new implementation of Chapman parameter retrieval via Markov chain Monte Carlo techniques quantifies the precision of the plasma densities inferred from 83.4 nm emission profiles. This first study demonstrates the utility of 83.4 nm emission for ionospheric remote sensing. Future visible and ultraviolet spectroscopy will characterize the composition of exoplanet atmospheres; therefore, the second study advances technologies for the direct imaging and spectroscopy of exoplanets. Such spectroscopy requires the development of new technologies to separate relatively dim exoplanet light from parent star light. High-contrast observations at short wavelengths require spaceborne telescopes to circumvent atmospheric aberrations. The Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) team designed a suborbital sounding rocket payload to demonstrate visible light high-contrast imaging with a visible nulling coronagraph

  17. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  18. Technology under Planetary Protection Research (PPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary protection involves preventing biological contamination on both outbound and sample return missions to other planetary bodies. Numerous areas of research...

  19. Earth as a radio source: terrestrial kilometric radiation. Progress report

    International Nuclear Information System (INIS)

    Gurnett, D.A.

    1974-02-01

    Radio wave experiments on the IMP-6 and 8 satellites have shown that the earth emits very intense electromagnetic radiation in the frequency range from about 50 kHz to 500 kHz. A peak intensity the total power emitted in this frequency range is about 1 billion watts. The earth is, therefore, a very intense planetary radio source, with a total power output comparable to the decametric radio emission from Jupiter. This radio emission from the earth is referred to as terrestrial kilometric radiation. Terrestrial kilometric radiation appears to originate from low altitudes (less than 3.0 Re) in the auroral region. Possible mechanisms which can explain the generation and propagation of the terrestrial kilometric radiation are discussed. (U.S.)

  20. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    International Nuclear Information System (INIS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.; SchottelKotte, James; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M ⊕ and 5 M ⊕ . Assuming H 2 O-(inner HZ) and CO 2 -(outer HZ) dominated atmospheres, and scaling the background N 2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H 2 O column depth. For larger planets, the H 2 O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs

  1. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  2. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); SchottelKotte, James [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Domagal-Goldman, Shawn [NASA Astrobiology Institute' s Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195 (United States); Eymet, Vincent, E-mail: ruk15@psu.edu [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France)

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  3. Planetary protection issues linked to human missions to Mars

    Science.gov (United States)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  4. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  5. Planetary Produced Axionlike Particles and Gamma-Ray Flashes

    International Nuclear Information System (INIS)

    Liolios, Anastasios

    2008-01-01

    Axion-like particles could be created in nuclear disintegrations and deexitations of natural radionuclides present in the interior of the planets. For the Earth and the other planets with a surrounding magnetosphere, axion production could result to gamma and X-ray emission, originating from axion to photon conversion in the planetary magnetic fields. The estimated planetary axion fluxes as well as the related gamma ray fluxes from Earth and the giant planets of our solar system are given along with the axion coupling to ordinary matter. A possible connection with the enigmatic Terrestrial Gamma-ray Flashes (TGFs) discovered in 1994 by CGRO/BATSE and also detected with the RHESSI satellite, is also discussed.

  6. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  7. Signals for invisible matter from solar-terrestrial observations

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    We observe a strong correlation between the orbital position of the planets with solar phenomena like flares or the variation of EUV irradiance. Similarly, a correlation is found in the study of the ionization content of the Earth atmosphere. Planetary gravitational lensing of one (or more) streams of slow moving invisible matter is proposed as an explanation of such a behaviour.

  8. Model, software and database for line-mixing effects in the ν 3 and ν 4 bands of CH4 and tests using laboratory and planetary measurements-II: H2 (and He) broadening and the atmospheres of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Tran, H.; Flaud, P.-M.; Fouchet, T.; Gabard, T.; Hartmann, J.-M.

    2006-01-01

    The absorption shapes of the ν 2 , ν 3 and ν 4 infrared bands of CH 4 perturbed by H 2 in large ranges of pressure and temperature have been measured in the laboratory. In order to model these spectra, the theoretical approach accounting for line-mixing effects proposed for CH 4 -N 2 and CH 4 -air and successfully tested in the companion paper (I), is used. As before, state-to-state rotational rates are used together with some empirical parameters that are deduced from a fit of a single room temperature spectrum of the ν 3 band at about 50 atm. The comparisons between measured and calculated spectra in the ν 3 and ν 4 regions under a vast variety of conditions (9-300 atm, 80-300 K) then demonstrate the quality and consistency of the proposed model. In the case of the ν 2 band, which is of E symmetry, specific parameters, different from those adapted to the ν 3 and ν 4 transitions of F 2 symmetry, are used for proper modeling of the spectral shape. Furthermore, as shown previously, a broad absorption feature grows underneath the ν 2 band with increasing H 2 density. The latter, for which an empirical model is proposed, is attributed to a collision-induced absorption (CIA) process in methane. From the developed models, a database and associated software are built for the updating of planetary atmospheres radiative transfer codes. The quality of these tools is then further demonstrated using emission measurements of the Jovian and Saturnian atmospheres in the ν 4 region (7-10 μm) recorded by the Short Wave Spectrometer of the Infrared Space Observatory and the Composite Infrared Spectrometer on-board Cassini. Comparisons between measured radiances and predictions confirm the failure of the purely Lorentzian approach and the quality of the proposed line-mixing model. Furthermore, it is shown that the methane CIA contribution has a significant influence on the planetary emission beyond 1400 cm -1

  9. Consequences of simulating terrestrial N dynamics for projecting future terrestrial C storage

    Science.gov (United States)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2009-04-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation patterns, as well as soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. Notably, O-CN simulates realistic responses of net primary productivity, foliage area, and foliage N content to elevated atmospheric [CO2] as evidenced at free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge). We re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric [CO2], N deposition and climatic changes over the 21st century. We find that accounting for terrestrial N cycling about halves the potential to store C in response to increases in atmospheric CO2 concentrations; mainly due to a reduction of the net C uptake in temperate and boreal forests. Nitrogen deposition partially alleviates the effect of N limitation, but is by far not sufficient to compensate for the effect completely. These findings underline the importance of an accurate representation of nutrient limitations in future projections of the terrestrial net CO2 exchanges and therefore land-climate feedback studies.

  10. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  11. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  12. Planetary protection issues related to human missions to Mars

    Science.gov (United States)

    Debus, A.; Arnould, J.

    2008-09-01

    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  13. Climate evolution on the terrestrial planets

    International Nuclear Information System (INIS)

    Kasting, J.F.; Toon, O.B.

    1989-01-01

    The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO 2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy

  14. Ancient Terrestrial Carbon: Lost and Found

    Science.gov (United States)

    Freeman, K. H.

    2017-12-01

    Carbon fluxes in terrestrial environments dominate the global carbon cycle. The fluxes of terrestrial carbon are strongly tied to regional climate due to the influences of temperature, water, and nutrient dynamics on plant productivity. However, climate also influences the destruction of terrestrial organic matter, through weathering, erosion, and biomass loss via fire and oxidative microbial processes. Organic geochemical methods enable us to interrogate past terrestrial carbon dynamics and learn how continental processes might accelerate, or mitigate carbon transfer to the atmosphere, and the associated greenhouse warming. Terrestrial soil systems represent the weathering rind of the continents, and are inherently non-depositional and erosive. The production, transport, and depositional processes affecting organics in continental settings each impart their own biases on the amount and characteristics of preserved carbon. Typically, the best archives for biomarker records are sediments in ancient lakes or subaqueous fans, which represents a preservation bias that tends to favor wetter environments. Paleosols, or ancient soils, formed under depositional conditions that, for one reason or another, truncated soil ablation, erosion, or other loss processes. In modern soils, widely ranging organic carbon abundances are almost always substantially greater than the trace amounts of carbon left behind in ancient soils. Even so, measureable amounts of organic biomarkers persist in paleosols. We have been investigating processes that preserve soil organic carbon on geologic timescales, and how these mechanisms may be sensitive to past climate change. Climate-linked changes in temperature, moisture, pH, and weathering processes can impact carbon preservation via organo-mineral sorption, soil biogeochemistry, and stability based on the physical and chemical properties of organic compounds. These will be discussed and illustrated with examples from our studies of Cenozoic

  15. Bow shock studies at Mercury, Venus, Earth, and Mars with applications to the solar-planetary interaction problem

    International Nuclear Information System (INIS)

    Slavin, J.A.

    1982-01-01

    A series of bow shock studies conducted for the purpose of investigating the interaction between the solar wind and the terrestrial planets is presented. Toward this end appropriate modeling techniques have been developed and applied to the bow wave observations at Venus, Earth, and Mars. For Mercury the measurements are so few in number that no accurate determination of shock shape was deemed possible. Flow solutions generated using the observed bow wave surface as a boundary condition in a single fluid variable obstacle shape gasdynamic model produced excellent fits to the measured width and shape of the earth's magnetosheath. This result and the observed ordering of shock shape and position by upstream sonic Mach number provide strong support for the validity of the gasdynamic approximation. At Mercury the application of earth type models to the individual Mariner 10 boundry crossings has led to the determination of an effective planetary magnetic moment of 6+-2 x 10 22 G-cm 3 . Consistent with the presence of a small terrestrial style magnetosphere, southward interplanetary magnetic fields were found to significantly reduce the solar wind stand-off distance most probably through the effects of dayside magnetic reconnection. For Venus the low altitude solar wind flow field derived from gasdynamic modeling of bow shock location and shape indicates that a fraction of the incident streamlines are absorbed by the neutral atmosphere near the ionopause; approximately 1% and 8%, respectively, in the solar maximum Pioneer Venus and solar minimum Venera measurements. Accordingly, it appears that cometary processes must be included in model calculations of the solar wind flow about Venus. At Mars the moderate height of the gasdynamic solar wind-obstacle interface and the weakness of the Martian ionosphere/atmosphere are found to be incompatible with a Venus type interaction

  16. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  17. Calcium signals in planetary embryos

    Science.gov (United States)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  18. China's roadmap for planetary exploration

    Science.gov (United States)

    Wei, Yong; Yao, Zhonghua; Wan, Weixing

    2018-05-01

    China has approved or planned a string of several space exploration missions to be launched over the next decade. A new generation of planetary scientists in China is playing an important role in determining the scientific goals of future missions.

  19. Crustal development in the terrestrial planets

    Science.gov (United States)

    Taylor, S. R.

    1985-01-01

    The development of planetary crusts may be divided into primary, resulting from melting during accretion, and secondary crusts developed by partial melting from planetary mantles. The Mercurian crust is probably primary with no compelling evidence of later basaltic extrusions. Reflectance spectral evidence for the existence Fe2(+) is equivocal. The Viking Lander XRF data on Mars indicate basaltic material at both sites 4,000 km apart. Surface aeolian processes would be expected to provide a homogeneous average of the crust, but no evidence of more siliceous material is present. This conclusion is weakly supported by the Russian gamma ray data. No evidence for granite appears from the Russian Venera XRF data which indicates MORB-type and alkali basalt (4% K2O) surface compositions. The highlands of Ishtar Terra and Aphrodite probably owe their elevation to tectonic processes rather than compositional effects. Venus may thus resemble the early Archean Earth. The terrestrial granitic continental crust is a product of episodic multiple partial melting events, probably a consequence of the presence of surface water.

  20. Uranus atmospheric dynamics and circulation

    Science.gov (United States)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  1. Planetary Vital Signs

    Science.gov (United States)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  2. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  3. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  4. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  5. Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST

    Science.gov (United States)

    Kreidberg, Laura

    2018-01-01

    A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.

  6. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of t