WorldWideScience

Sample records for terrestrial planetary atmospheres

  1. Primordial atmosphere incorporation in planetary embryos and the origin of Neon in terrestrial planets

    Science.gov (United States)

    Jaupart, Etienne; Charnoz, Sebatien; Moreira, Manuel

    2017-09-01

    The presence of Neon in terrestrial planet mantles may be attributed to the implantation of solar wind in planetary precursors or to the dissolution of primordial solar gases captured from the accretionary disk into an early magma ocean. This is suggested by the Neon isotopic ratio similar to those of the Sun observed in the Earth mantle. Here, we evaluate the second hypothesis. We use general considerations of planetary accretion and atmospheric science. Using current models of terrestrial planet formation, we study the evolution of standard planetary embryos with masses in a range of 0.1-0.2 MEarth, where MEarth is the Earth's mass, in an annular region at distances between 0.5 and 1.5 Astronomical Units from the star. We determine the characteristics of atmospheres that can be captured by such embryos for a wide range of parameters and calculate the maximum amount of Neon that can be dissolved in the planet. Our calculations may be directly transposed to any other planet. However, we only know of the amount of Neon in the Earth's solid mantle. Thus we use Earth to discuss our results. We find that the amount of dissolved Neon is too small to account for the present-day Neon contents of the Earth's mantle, if the nebular gas disk completely disappears before the largest planetary embryos grow to be ∼0.2 MEarth. This leaves solar irradiation as the most likely source of Neon in terrestrial planets for the most standard case of planetary formation models.

  2. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  3. Lightning detection in planetary atmospheres

    Science.gov (United States)

    Aplin, Karen L.; Fischer, Georg

    2017-02-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  4. Lightning detection in planetary atmospheres

    OpenAIRE

    Aplin, Karen L; Fischer, Georg

    2016-01-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  5. PASCAL - Planetary Atmospheres Spectral Catalog

    Science.gov (United States)

    Rothman, Laurence; Gordon, Iouli

    2010-05-01

    Spectroscopic observation of planetary atmospheres, stellar atmospheres, comets, and the interstellar medium is the most powerful tool for extracting detailed information concerning the properties of these objects. The HITRAN molecular spectroscopic database1 has traditionally served researchers involved with terrestrial atmospheric problems, such as remote-sensing of constituents in the atmosphere, pollution monitoring at the surface, identification of sources seen through the atmosphere, and numerous environmental issues. A new thrust of the HITRAN program is to extend this longstanding database to have capabilities for studying the above-mentioned planetary and astronomical systems. The new extension is called PASCAL (Planetary Atmospheres Spectral Catalog). The methodology and structure are basically identical to the construction of the HITRAN and HITEMP databases. We will acquire and assemble spectroscopic parameters for gases and spectral bands of molecules that are germane to the studies of planetary atmospheres. These parameters include the types of data that have already been considered for transmission and radiance algorithms, such as line position, intensity, broadening coefficients, lower-state energies, and temperature dependence values. Additional parameters beyond what is currently considered for the terrestrial atmosphere will be archived. Examples are collision-broadened halfwidths due to various foreign partners, collision-induced absorption, and temperature dependence factors. New molecules (and their isotopic variants), not currently included in the HITRAN database, will be incorporated. That includes hydrocarbons found on Titan but not archived in HITRAN (such as C3H4, C4H2, C3H8). Other examples include sulfur-bearing molecules such as SO and CS. A further consideration will be spectral bands that arise as opportunities to study exosolar planets. The task involves acquiring the best high-resolution data, both experimental and theoretical

  6. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  7. Chemistry of Planetary Atmospheres: Insights and Prospects

    Science.gov (United States)

    Yung, Yuk

    2015-11-01

    Using observations from the Mariners, Pioneers, Vikings, Voyagers, Pioneer Venus, Galileo, Venus Express, Curiosity, Cassini, New Horizons, and numerous observatories both in orbit of Earth and on the ground, I will give a survey of the major chemical processes that control the composition of planetary atmospheres. For the first time since the beginning of the space age, we understand the chemistry of planetary atmospheres ranging from the primitive atmospheres of the giant planets to the highly evolved atmospheres of terrestrial planets and small bodies. Our understanding can be distilled into three important ideas: (1) The stability of planetary atmospheres against escape of their constituents to space, (2) the role of equilibrium chemistry in determining the partitioning of chemical species, and (3) the role of disequilibrium chemistry, which produces drastic departures from equilibrium chemistry. To these three ideas we must also add a fourth: the role of biochemistry at Earth's surface, which makes its atmospheric chemistry unique in the cosmochemical environment. Only in the Earth's atmosphere do strong reducing and oxidizing species coexist to such a degree. For example, nitrogen species in the Earth's atmosphere span eight oxidation states from ammonia to nitric acid. Much of the Earth's atmospheric chemistry consists of reactions initiated by the degradation of biologically produced molecules. Life uses solar energy to drive chemical reactions that would otherwise not occur; it represents a kind of photochemistry that is special to Earth, at least within the Solar System. It remains to be seen how many worlds like Earth there are beyond the Solar System, especially as we are now exploring the exoplanets using Kepler, TESS, HST, Spitzer, soon to be launched missions such as JWST and WFIRST, and ground-based telescopes. The atmospheres of the Solar System provide a benchmark for studying exoplanets, which in turn serve to test and extend our current

  8. The early evolution of the atmospheres of terrestrial planets

    CERN Document Server

    Raulin, François; Muller, Christian; Nixon, Conor; Astrophysics and Space Science Proceedings : Volume 35

    2013-01-01

    “The Early Evolution of the Atmospheres of Terrestrial Planets” presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth’s transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are ...

  9. Planetary science: Haze cools Pluto's atmosphere

    Science.gov (United States)

    West, Robert A.

    2017-11-01

    Modelling suggests that Pluto's atmospheric temperature is regulated by haze, unlike the other planetary bodies in the Solar System. The finding has implications for our understanding of exoplanetary atmospheres. See Letter p.352

  10. Planetary Protection: Two Relevant Terrestrial Examples

    Science.gov (United States)

    Chyba, C.

    2002-09-01

    Concerns about potential pathogens in returned samples from Mars ("Mars Sample Return: Issues and Recommendations", National Research Council, 1997) or planetary satellites ("Evaluating the Biological Potential in Samples Returned from Planetary Satellites and Small Solar System Bodies", National Research Council, 1998) focus on two potential types of pathogenesis, toxic and infectious. The National Research Council reports cited above state that the chances of extraterrestrial organisms proving either toxic or infectious to humans are extremely low, but cannot be entirely ruled out. Here I discuss recently discovered terrestrial examples relevant to each possibility, in order to make these concerns concrete. The first example concerns the production of hepatotoxins (toxins affecting the liver) and neurotoxins by cyanobacteria in glacial lakes on alpine pastures in Switzerland. In this example, mat-forming benthic cyanobacteria are implicated in a hundred cattle poisonings that have been reported from alpine pasteurs in southeastern Switzerland over the past twenty-five years (e.g. K. Mez et al, Hydrobiologia 368, 1-15 (1998)). It is unlikely that these cyanobacteria evolved the toxins in response to dairy cows; rather the susceptibility of cattle to these toxins seems simply to be an unfortunate coincidence of a toxin working across a large evolutionary distance. The second example concerns the recent demonstration that the decimation of shallow-water Caribbean elkhorn coral is due to infection by a common fecal enterobacterium associated with the human gut (K. L. Patterson et al., PNAS 99, 8725-8730 (2002)). The bacterium, Serratia marcenscens, is also a free-living microbe in water and soil, as well as an opportunistic pathogen in a variety of animal species. The distance between humans and corals emphasizes the possibility that certain organisms may prove pathogenic across a wide evolutionary divide. Of course, in neither of these cases are the evolutionary

  11. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  12. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  13. Spin of Planetary Probes in Atmospheric Flight

    Science.gov (United States)

    Lorenz, R. D.

    Probes that enter planetary atmospheres are often spun during entry or descent for a variety of reasons. Their spin rate histories are influenced by often subtle effects. The spin requirements, control methods and flight experience from planetary and earth entry missions are reviewed. An interaction of the probe aerodynamic wake with a drogue parachute, observed in Gemini wind tunnel tests, is discussed in connection with the anomalous spin behaviour of the Huygens probe.

  14. Franklin Lecture: Lightning in Planetary Atmospheres

    Science.gov (United States)

    Gurnett, D. A.

    2006-12-01

    A broad overview is given of lightning in planetary atmospheres. Searches for lightning using spacecraft-borne instrumentation have now been conducted at almost all of the planets in the solar system, the exceptions being Mercury, which has no appreciable atmosphere, and Pluto which has not yet been visited by a spacecraft. The techniques used include (1) imaging observations to detect optical flashes produced by lightning; (2) high-frequency radio measurements to detect the impulsive broadband radio bursts, called spherics, produced by lightning discharges; and (3) low-frequency plasma wave measurements to detect the whistling tones, called whistlers, produced by lightning. Using these techniques, lightning has been reported at five planets other than Earth. These are: Venus, Jupiter, Saturn, Uranus, and Neptune. Of these, the existence of lightning at Venus is doubtful, and the evidence of lightning at Neptune is at best marginal. Jupiter and Saturn have by far the most intense and well documented lightning activity. During the Voyager 1 flyby of Jupiter, whistlers and intense optical flashes, comparable to those from terrestrial superbolts, were observed by the plasma wave and optical imaging instruments. However, no impulsive high-frequency radio bursts were observed. Two factors may be responsible for the absence of high-frequency radio signals: (1) the very strong magnetic field of Jupiter, which blocks the escape of the extra-ordinary mode; and (2) the relatively high electron collision frequency in the ionosphere, which increases the absorption of radio waves. During the Voyager 1 and 2 flybys of Saturn many very strong high-frequency radio bursts, called Saturn Electrostatic Discharges (SEDs), were detected. Although the origin of these impulsive radio bursts was initially uncertain, strong evidence now exists that SEDs are produced by lightning. Recent optical imaging and radio measurements from the Cassini spacecraft clearly show that SEDs originate from

  15. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    Science.gov (United States)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced

  16. Studies of Tenuous Planetary Atmospheres

    Science.gov (United States)

    Combi, Michael R.

    1998-01-01

    The final report includes an overall project overview as well as scientific background summaries of dust and sodium in comets, and tenuous atmospheres of Jupiter's natural satellites. Progress and continuing work related to dust coma and tenuous atmospheric studies are presented. Also included are published articles written during the course of the report period. These are entitled: (1) On Europa's Magnetospheric Interaction: An MHD Simulation; (2) Dust-Gas Interrelations in Comets: Observations and Theory; and (3) Io's Plasma Environment During the Galileo Flyby: Global Three Dimensional MHD Modeling with Adaptive Mesh Refinement.

  17. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  18. Photochemistry of planetary atmospheres. [Mars atmospheric composition

    Science.gov (United States)

    Stief, L. J.

    1973-01-01

    The atmospheric composition of Mars is presented, and the applicability of laboratory data on CO2 absorption cross sections and quantum yields of dissociation is discussed. A summary and critical evaluation are presented on the various mechanisms proposed for converting the photodissociation products CO and O2 back to CO2.

  19. Planetary Atmospheres and Evolution of Complex Life

    Science.gov (United States)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed 10^3 Pa to allow organisms that rely on

  20. H3+ cooling in planetary atmospheres.

    Science.gov (United States)

    Miller, Steve; Stallard, Tom; Melin, Henrik; Tennyson, Jonathan

    2010-01-01

    We review the role of H3+ in planetary atmospheres, with a particular emphasis on its effect in cooling and stabilising, an effect that has been termed the "H3+ thermostat" (see Miller et al., Philos. Trans. R. Soc. London, Ser. A, 2000, 58, 2485). In the course of our analysis of this effect, we found that cooling functions that make use of the partition function, Q(T) based on the calculated H3+ energy levels of Neale and Tennyson (Astrophys. J., 1995, 454, L169) may underestimate just how much energy this ion is radiating to space. So we present a new fit to the calculated values of Q(T) that is accurate to within 2% for the range 100 K to 10 000 K, a very significant improvement on the fit originally provided by Neale and Tennyson themselves. We also present a fit to Q(T) calculated from only those values Neale and Tennyson computed from first principles, which may be more appropriate for planetary scientists wishing to calculate the amount of atmospheric cooling from the H3+ ion.

  1. ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, Robin; Pierrehumbert, Raymond [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60622 (United States)

    2014-04-20

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H{sub 2}O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N{sub 2}, Ar) is low. Hence the spectral features of O{sub 2} and O{sub 3} alone cannot be regarded as robust signs of extraterrestrial life.

  2. Molecular Dications in Planetary Atmospheric Escape

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2016-08-01

    Full Text Available Fundamental properties of multiply charged molecular ions, such as energetics, structure, stability, lifetime and fragmentation dynamics, are relevant to understand and model the behavior of gaseous plasmas as well as ionosphere and astrophysical environments. Experimental determinations of the Kinetic Energy Released (KER for ions originating from dissociations reactions, induced by Coulomb explosion of doubly charged molecular ions (molecular dications produced by double photoionization of CO2, N2O and C2H2 molecules of interest in planetary atmospheres, are reported. The KER measurement as a function of the ultraviolet (UV photon energy in the range of 28–65 eV was extracted from the electron-ion-ion coincidence spectra obtained by using tunable synchrotron radiation coupled with ion imaging techniques at the ELETTRA Synchrotron Light Laboratory Trieste, Italy. These experiments, coupled with a computational analysis based on a Monte Carlo trajectory simulation, allow assessing the probability of escape for simple ionic species in the upper atmosphere of Mars, Venus and Titan. The measured KER in the case of H+, C+, CH+, CH2+, N+, O+, CO+, N2+ and NO+ fragment ions range between 1.0 and 5.5 eV, being large enough to allow these ionic species to participate in the atmospheric escape from such planets into space. In the case of Mars, we suggest a possible explanation for the observed behavior of the O+ and CO22+ ion density profiles.

  3. Spectroscopy of planetary atmospheres in our Galaxy

    Science.gov (United States)

    Tinetti, Giovanna; Encrenaz, Thérèse; Coustenis, Athena

    2013-10-01

    About 20 years after the discovery of the first extrasolar planet, the number of planets known has grown by three orders of magnitude, and continues to increase at neck breaking pace. For most of these planets we have little information, except for the fact that they exist and possess an address in our Galaxy. For about one third of them, we know how much they weigh, their size and their orbital parameters. For less than 20, we start to have some clues about their atmospheric temperature and composition. How do we make progress from here? We are still far from the completion of a hypothetical Hertzsprung-Russell diagram for planets comparable to what we have for stars, and today we do not even know whether such classification will ever be possible or even meaningful for planetary objects. But one thing is clear: planetary parameters such as mass, radius and temperature alone do not explain the diversity revealed by current observations. The chemical composition of these planets is needed to trace back their formation history and evolution, as happened for the planets in our Solar System. As in situ measurements are and will remain off-limits for exoplanets, to study their chemical composition we will have to rely on remote sensing spectroscopic observations of their gaseous envelopes. In this paper, we critically review the key achievements accomplished in the study of exoplanet atmospheres in the past ten years. We discuss possible hurdles and the way to overcome those. Finally, we review the prospects for the future. The knowledge and the experience gained with the planets in our solar system will guide our journey among those faraway worlds.

  4. Chemical and Astrobiological Effects of Ionizing Irradiation of Planetary Atmospheres

    Science.gov (United States)

    Smith, D. S.; Scalo, J.; Wheeler, J. C.

    2001-12-01

    Monte Carlo simulations of γ -ray and hard X-ray irradiation of planetary atmospheres are presented, with an emphasis on astrobiological implications involving atmospheric chemistry and direct surface mutational and sterilization affects. Possible radiation sources include flares from late-type parent stars, γ -ray bursts, and γ -ray lines from supernovae. We present spectra as a function of depth in the atmosphere and underlying oceans for various incident energy spectra, angles of incidence, and atmospheric column densities. Independent of composition, the fraction of photons reaching the ground and their spectrum are partly controlled by Compton downscattering high in the atmosphere to energies ~50 keV, below which the atmosphere becomes ``black" due to strong photoelectric absorption. The fraction of incident radiation that reaches the ground in the form of ionizing radiation for normal incidence and terrestrial surface gravity is found to depend on column density N as exp(-N/N0) where N0 is 16 gm cm-2. This suggests that Mars has been sterilized by γ -ray bursts many times during the past few eons. In addition, secondary electrons from these processes are capable of exciting UV spectral lines whose yield can be a significant fraction of the incident ionizing radiation. Depending on the presence of various UV atmospheric shielding components, a biologically significant dose of soft UV radiation can reach the ground even for atmospheres that are very optically thick to the incident ionizing radiation. Speculations concerning the formation of intense molecular ion emission lines due to secondary electron impact excitation and their implications for external detection of intense aurora from such planets and for photosynthesis on planets orbiting dMe stars are discussed. This work was supported by NSF grant 9907582.

  5. Does the terrestrial biosphere have planetary tipping points?

    Science.gov (United States)

    Brook, Barry W; Ellis, Erle C; Perring, Michael P; Mackay, Anson W; Blomqvist, Linus

    2013-07-01

    Tipping points--where systems shift radically and potentially irreversibly into a different state--have received considerable attention in ecology. Although there is convincing evidence that human drivers can cause regime shifts at local and regional scales, the increasingly invoked concept of planetary scale tipping points in the terrestrial biosphere remains unconfirmed. By evaluating potential mechanisms and drivers, we conclude that spatial heterogeneity in drivers and responses, and lack of strong continental interconnectivity, probably induce relatively smooth changes at the global scale, without an expectation of marked tipping patterns. This implies that identifying critical points along global continua of drivers might be unfeasible and that characterizing global biotic change with single aggregates is inapt. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characterization of potentially habitable planets: Retrieval of atmospheric and planetary properties from emission spectra

    OpenAIRE

    von Paris, P.; P. Hedelt; Selsis, F.; F. Schreier; Trautmann, T.

    2013-01-01

    An increasing number of potentially habitable terrestrial planets and planet candidates are found by ongoing planet search programs. The search for atmospheric signatures to establish planetary habitability and the presence of life might be possible in the future. We want to quantify the accuracy of retrieved atmospheric parameters which might be obtained from infrared emission spectroscopy. We use synthetic observations of hypothetical habitable planets, constructed with a parametrized atmos...

  7. Alien skies planetary atmospheres from earth to exoplanets

    CERN Document Server

    Pont, Frédéric J

    2014-01-01

    Planetary atmospheres are complex and evolving entities, as mankind is rapidly coming to realise whilst attempting to understand, forecast and mitigate human-induced climate change. In the Solar System, our neighbours Venus and Mars provide striking examples of two endpoints of planetary evolution, runaway greenhouse and loss of atmosphere to space. The variety of extra-solar planets brings a wider angle to the issue: from scorching "hot jupiters'' to ocean worlds, exo-atmospheres explore many configurations unknown in the Solar System, such as iron clouds, silicate rains, extreme plate tectonics, and steam volcanoes. Exoplanetary atmospheres have recently become accessible to observations. This book puts our own climate in the wider context of the trials and tribulations of planetary atmospheres. Based on cutting-edge research, it uses a grand tour of the atmospheres of other planets to shine a new light on our own atmosphere, and its relation with life.

  8. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets.

    Science.gov (United States)

    Des Marais, David J; Harwit, Martin O; Jucks, Kenneth W; Kasting, James F; Lin, Douglas N C; Lunine, Jonathan I; Schneider, Jean; Seager, Sara; Traub, Wesley A; Woolf, Neville J

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  9. Design and Simulation Tools for Planetary Atmospheric Entry Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric entry is one of the most critical phases of flight during planetary exploration missions. During the design of an entry vehicle, experimental and...

  10. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  11. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres

    Science.gov (United States)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.

    2005-01-01

    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  12. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    Science.gov (United States)

    Harrison, R. Giles; Tammet, Hannes

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds (e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  13. Crossing the Boundaries in Planetary Atmospheres - From Earth to Exoplanets

    Science.gov (United States)

    Simon-Miller, Amy A.; Genio, Anthony Del

    2013-01-01

    The past decade has been an especially exciting time to study atmospheres, with a renaissance in fundamental studies of Earths general circulation and hydrological cycle, stimulated by questions about past climates and the urgency of projecting the future impacts of humankinds activities. Long-term spacecraft and Earth-based observation of solar system planets have now reinvigorated the study of comparative planetary climatology. The explosion in discoveries of planets outside our solar system has made atmospheric science integral to understanding the diversity of our solar system and the potential habitability of planets outside it. Thus, the AGU Chapman Conference Crossing the Boundaries in Planetary Atmospheres From Earth to Exoplanets, held in Annapolis, MD from June 24-27, 2013 gathered Earth, solar system, and exoplanet scientists to share experiences, insights, and challenges from their individual disciplines, and discuss areas in which thinking broadly might enhance our fundamental understanding of how atmospheres work.

  14. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  15. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases

    Science.gov (United States)

    Schindler, T. L.; Kasting, J. F.

    2000-01-01

    NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.

  16. Origin and Evolution of Planetary Atmospheres Implications for Habitability

    CERN Document Server

    Lammer, Helmut

    2013-01-01

    Based on the author’s own work and results obtained by international teams he coordinated, this SpringerBrief offers a concise discussion of the origin and early evolution of atmospheres of terrestrial planets during the active phase of their host stars, as well as of the environmental conditions which are necessary in order for planets like the Earth to obtain N_2-rich atmospheres. Possible thermal and non-thermal atmospheric escape processes are discussed in a comparative way between the planets in the Solar System and exoplanets. Lastly, a hypothesis for how to test and study the discussed atmosphere evolution theories using future UV transit observations of terrestrial exoplanets within the orbits of dwarf stars is presented.

  17. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    Science.gov (United States)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  18. An Analytic Radiative-Convective Model for Planetary Atmospheres

    Science.gov (United States)

    Robinson, T. D.; Catling, D. C.

    2012-12-01

    A fundamental aspect of planetary atmospheres is the vertical thermal structure. Simple one-dimensional (vertical) models can provide reasonable estimates of a planet's global-mean temperature profile while providing insights into the physics behind the thermal profile of an atmosphere. The best basic models are those that incorporate the minimum amount of complexity while still remaining general enough to provide intuitive understanding. Here, we present an analytic 1-D radiative-convective model of the thermal structure of planetary atmospheres [1]. We assume that thermal radiative transfer is gray, and we include two shortwave channels for absorbed solar (or stellar) light so that the model can compute realistic stratospheric temperature inversions. A convective profile is placed at the base of the portion of the atmosphere that is in radiative equilibrium, and the model ensures that both the temperature profile and the upwelling flux profile are continuous across the radiation-convection boundary. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce analytic expressions that allow calculations of the atmospheric pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. The utility, validity, and generality of our model are demonstrated by applying it to a disparate range of worlds, including Jupiter, Venus, and Titan. Our model can be used to explain general observed phenomena in the Solar System [2], and we explore the behaviors of variants of our model, showing its ability to provide clear insights. Given the wealth of new problems posed by exoplanets, development of an analytic model with few parameters is likely to be useful for future application to such worlds, for which only limited data will be known. Our model can be used to help interpret

  19. Extra-terrestrial sprites: laboratory investigations in planetary gas mixtures

    NARCIS (Netherlands)

    D. Dubrovin; Y. Yair; C. Price; S. Nijdam (Sander); T.T.J. Clevis; E.M. van Veldhuizen; U. Ebert (Ute)

    2012-01-01

    textabstractWe investigate streamers in gas mixtures representing the atmospheres of Jupiter, Saturn (H2-He) and Venus (CO2-N2). Streamer diameters, velocities, radiance and overall morphology are investigated with fast ICCD camera images. We confirm experimentally the scaling of streamer diameters

  20. The Hunt for Observable Signatures of Terrestrial Planetary Systems (HOSTS)

    Science.gov (United States)

    Defrère, D.; Hinz, P.; Bryden, G.; Danchi, W. C.; Mennesson, B.; Millan-Gabet, R.; Skemer, A.; Stapeldfeld, K.; Weinberger, A.; Wyatt, M.; Absil, O.; Bailey, V.; Beichman, C.; Downey, E.; Grenz, P.; Haniff, C.; Hoffmann, W.; Kennedy, G.; Lebreton, J.; Leisenring, J.; Marion, L.; Mahon, T. M.; Montoya, M.; Rieke, G.; Roberge, A.; Serabyn, E.; Su, K.; Vaitheeswaran, V.; Vaz, A.

    2014-03-01

    The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for biosignatures (Roberge et al. 2012). However, it is also considered as a signpost for the presence of terrestrial planets that might be hidden in the dust disk (Stark and Kuchner 2008). Characterizing exozodiacal dust around nearby sequence stars is therefore a crucial step toward one of the main goals of modern astronomy: finding extraterrestrial life. After briefly reviewing the latest results in this field, we present the exozodiacal dust survey on the Large Binocular Telescope Interferometer (LBTI). The survey is called HOSTS and is specifically designed to determine the prevalence and brightness of exozodiacal dust disks with the sensitivity required to prepare for future New Worlds Missions that will image Earth-like exoplanets. To achieve this objective, the LBTI science team has carefully established a balanced list of 50 nearby main-sequence stars that are likely candidates of these missions and/or can be observed with the best instrument performance (see companion abstract by Roberge et al.). Exozodiacal dust disk candidates detected by the Keck Interferometer Nuller will also be observed. The first results of the survey will be presented. To precisely detect exozodiacal dust, the LBTI combines the two 8-m primary mirrors of the LBT using N-band nulling interferometry. Interferometric combination provides the required angular resolution (70-90 mas) to resolve the habitable zone of nearby main sequence stars while nulling is used to subtract the stellar light and reach the required contrast of a few 10-4. A Kband fringe tracker ensures the stability of the null. The current performance of the instrument and the first nulling measurements will be presented.

  1. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  2. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Catling, David C., E-mail: robinson@astro.washington.edu [Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195-1310 (United States)

    2012-09-20

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  3. The Possible Role of Penning Ionization Processes in Planetary Atmospheres

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2015-03-01

    Full Text Available In this paper we suggest Penning ionization as an important route of formation for ionic species in upper planetary atmospheres. Our goal is to provide relevant tools to researchers working on kinetic models of atmospheric interest, in order to include Penning ionizations in their calculations as fast processes promoting reactions that cannot be neglected. Ions are extremely important for the transmission of radio and satellite signals, and they govern the chemistry of planetary ionospheres. Molecular ions have also been detected in comet tails. In this paper recent experimental results concerning production of simple ionic species of atmospheric interest are presented and discussed. Such results concern the formation of free ions in collisional ionization of H2O, H2S, and NH3 induced by highly excited species (Penning ionization as metastable noble gas atoms. The effect of Penning ionization still has not been considered in the modeling of terrestrial and extraterrestrial objects so far, even, though metastable helium is formed by radiative recombination of He+ ions with electrons. Because helium is the second most abundant element of the universe, Penning ionization of atomic or molecular species by He*(23S1 is plausibly an active route of ionization in relatively dense environments exposed to cosmic rays.

  4. Molecular beam simulation of planetary atmospheric entry - Some recent results.

    Science.gov (United States)

    French, J. B.; Reid, N. M.; Nier, A. O.; Hayden, J. L.

    1972-01-01

    Progress is reported in the development of molecular beam techniques to simulate entry into planetary atmospheres. Molecular beam sources for producing fast beams containing CO2 and atomic oxygen are discussed. Results pertinent to the design and calibration of a mass spectrometer ion source for measurement of the Martian atmosphere during the free molecule portion of the entry trajectory are also presented. The shortcomings and advantages of this simulation technique are discussed, and it is demonstrated that even with certain inadequacies much information useful to the ion source design was obtained. Particularly, it is shown that an open-cavity configuration retains sensitivity to atomic oxygen, provides reasonable signal enhancement from the stagnation effect, is not highly sensitive to pitch and yaw effects, and presents no unforeseen problems in measuring CO2 or atomic oxygen.

  5. Regional terrestrial ecosystem dynamics and their interactions with the atmosphere

    Science.gov (United States)

    Ojima, D.; Schimel, D.; Parton, W.; McKeown, R.

    2003-04-01

    Integration of land use with human dimensions, biological, atmospheric and hydrological processes is necessary for us to estimate net carbon exchange from the terrestrial biota. However, proper handling of scale across a set of divergent processes interconnecting the atmosphere and the biosphere is critical to the success of this analysis. Development of the new IGBP “Land” Project will develop a structure to better integrate research that has advanced during the past decade. Our understanding of the long term changes in the terrestrial biosphere will provide greater insight to the environmental sustainability under different stresses and provide an indication of how different regions may respond to changes in climate, disturbance regimes, and land use. This insight will provide a framework to better develop earth system science over the coming decade and to better incorporate the human-environmental system perspective. Our understanding of the biological controls of carbon fluxes between the atmosphere and the land surface (referring to the soil, vegetation, water system) is critical to our estimation of net terrestrial carbon fluxes and the connection of key natural resources (e.g., water, vegetation, soils, etc) to climate and land use changes. Terrestrial biological processes respond strongly to atmospheric temperature, humidity, CO2 levels, N-deposition, precipitation, and radiative transfers. The development of this integrated science perspective to understand the scope of effects human activities on land are affecting the feedbacks to the earth system and the impacts on the terrestrial human-environment system. The presentation will focus on the development of this framework and highlight recent advances in our observational and analytical components of terrestrial biosphere research.

  6. Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

    Science.gov (United States)

    Oza, A. V.; Leblanc, F.; Berthelier, J. J.; Becker, J.; Coulomb, R.; Gilbert, P.; Hong, N. T.; Lee, S.; Vettier, L.

    2015-12-01

    The characterization of planetary exospheres today, relies on the development of a highly efficient ionization source, due to the scant neutral molecules (n < 108 cm -3) present in diffuse planetary coronae. These tenuous atmospheres provide insight on to physical processes known to occur such as: space weathering, magneto-atmosphere interactions, as well as atmospheric escape mechanisms, all of which are being heavily investigated via current 3D Monte Carlo simulations (Turc et al. 2014, Leblanc et al. 2016 in prep) at LATMOS. Validation of these studies will rely on in-situ observations in the coming decades. Neutral detection strongly depends on electron-impact ionization which via conventional cathode-sources, such as thermal filaments (heated up to 2000 K), may only produce the target ionization essential for energy-measurements with large power consumption. Carbon nanotubes (CNTs) however are ideal low-power, cold cathodes, when subject to moderate electric fields (E ~ 1 MV / m). We present our current device, a small CNT chip, of emission area 15 mm2, emitting electrons that pass through an anode grid and subsequent electrostatic analyzer. The device currently extracts hundreds of µAmperes with applied external voltages ~ -150 Volts, approaching minimum power consumption < 0.1 Watts. The 3D modeling of field effect electrons ionizing a standard influx of neutrals is shown, using the multiphysics suite COMSOL. To better anticipate the species an ideal in-situ spacecraft equipped with such an ionization source would observe, we discuss Europa's exosphere. Europa's environment is largely shaped by the Jovian plasma sputtering the icy regolith with heavy ions and electrons (keV < E < MeV), producing predominately molecular oxygen (Johnson et al. 2002).

  7. Lunar and Planetary Science XXXV: Terrestrial Planets: Building Blocks and Differentiation

    Science.gov (United States)

    2004-01-01

    The session "Terrestrial Planets: Building Blocks and Differentiation: included the following topics:Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS; Meteoritic Constraints on Collision Rates in the Primordial Asteroid Belt and Its Origin; New Constraints on the Origin of the Highly Siderophile Elements in the Earth's Upper Mantle; Further Lu-Hf and Sm-Nd Isotopic Data on Planetary Materials and Consequences for Planetary Differentiation; A Deep Lunar Magma Ocean Based on Neodymium, Strontium and Hafnium Isotope Mass Balance Partial Resetting on Hf-W System by Giant Impacts; On the Problem of Metal-Silicate Equilibration During Planet Formation: Significance for Hf-W Chronometry ; Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon; Siderophile Element Abundances in Fe-S-Ni-O Melts Segregated from Partially Molten Ordinary Chondrite Under Dynamic Conditions; Activity Coefficients of Silicon in Iron-Nickel Alloys: Experimental Determination and Relevance for Planetary Differentiation; Reinvestigation of the Ni and Co Metal-Silicate Partitioning; Metal/Silicate Paritioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition; and Closure of the Fe-S-Si Liquid Miscibility Gap at High Pressure and Its Implications for Planetary Core Formation.

  8. Atmospheric circulation modeling of super Earths and terrestrial extrasolar planets using the SPARC/MITgcm

    Science.gov (United States)

    Kataria, T.; Showman, A. P.; Haberle, R. M.; Marley, M. S.; Fortney, J. J.; Freedman, R. S.

    2013-12-01

    The field of exoplanets continues to be a booming field of research in astronomy and planetary science, with numerous ground-based (e.g., SuperWASP, HARPS-N and S) and space-based surveys (e.g., Kepler) that detect and characterize planets ranging from hot Jupiters, Jovian-sized planets orbiting less than 0.1 AU from their star, to super Earths and terrestrial exoplanets, planets that have masses equal to or less than 10 times that of Earth with a range of orbital distances. Atmospheric circulation modeling plays an important role in the characterization of these planets, helping to constrain observations that probe their atmospheres. These models have proven successful in understanding observations of transiting exoplanets (when the planet passes in front of the star along our line of sight) particularly when the planet is passing through secondary eclipse (when the planet's dayside is visible). In modeling super Earths and terrestrial exoplanets, we must consider not only planets with thick fluid envelopes, but also traditional terrestrial planets with solid surfaces and thinner atmospheres. To that end, we present results from studies investigating the atmospheric circulation of these classes of planets using the SPARC/MITgcm, a state-of-the-art model which couples the MIT General Circulation Model with a plane-parallel, two-stream, non-gray radiative transfer model. We will present results from two studies, the first focusing on the circulation of GJ 1214b, a super-Earth detected by the MEarth ground-based survey, and a second study which explores the circulation of terrestrial exoplanets orbiting M-dwarfs.

  9. Planetary Protection Approaches for a Mars Atmospheric Sample Return

    Science.gov (United States)

    Clark, B.; Leshin, L.; Barengoltz, J.

    The Sample Collection for Investigation of Mars (SCIM) mission proposes to fly through the upper atmosphere of Mars at hypervelocity to collect airborne dust and gas, and return the material to Earth for detailed analysis in a variety of specialized and sophisticated laboratories. SCIM would accomplish the first low-cost return of martian material, and could provide crucial insights into the poorly understood history of water and weathering processes on Mars. Planetary protection forward contamination can be satisfied by straight-forward, established procedures. The more challenging concern for back-contamination of Earth has been directly addressed through a number of detailed engineering analyses to identify which portions of the spacecraft are susceptible to contamination by surviving organisms, combined with in-space heating to sterilize the aerogel collecting medium after acquisition of samples. Systems for "breaking-the-chain" of back contamination have been designed. Review of established heat sterilization procedures on Earth have provided a rationale for specifying a conservative temperature-time cycle for sterilization onboard the spacecraft. In-flight monitoring of onborad systems will provide the Planetary Protection Office with confirmatory information needed to enable approval for final re-targeting of the trajectory to return to Earth.

  10. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics opens with coverage of the atmospheres, ionospheres and magnetospheres of the Earth, Venus and Mars and the magnetosphere of Mercury. The book then provides an introduction to meteorology and treating the physics and chemistry of these areas in considerable detail. What follows are the structure, composition, particle environments, satellites, and rings of Jupiter, Saturn, Uranus and Neptune, making abundant use of results from space probes. Solar System Astrophysics follows the history, orbits, structure, origin and demise of comets and the physics of meteors and provides a thorough treatment of meteorites, the asteroids and, in the outer solar system, the Kuiper Belt objects. The methods and results of extrasolar planet searches, the distinctions between stars, brown dwarfs, and planets, and the origins of planetary systems are examined. Historical introductions precede the development and discussion in most chapters. A series of challenges, useful as homework assignments or as foc...

  11. Analytical theories for spacecraft entry into planetary atmospheres and design of planetary probes

    Science.gov (United States)

    Saikia, Sarag J.

    This dissertation deals with the development of analytical theories for spacecraft entry into planetary atmospheres and the design of entry spacecraft or probes for planetary science and human exploration missions. Poincare's method of small parameters is used to develop an improved approximate analytical solution for Yaroshevskii's classical planetary entry equation for the ballistic entry of a spacecraft into planetary atmospheres. From this solution, other important expressions are developed including deceleration, stagnation-point heat rate, and stagnation-point integrated heat load. The accuracy of the solution is assessed via numerical integration of the exact equations of motion. The solution is also compared to the classical solutions of Yaroshevskii and Allen and Eggers. The new second-order analytical solution is more accurate than Yaroshevskii's fifth-order solution for a range of shallow (-3 deg) to steep (up to -90 deg) entry flight path angles, thereby extending the range of applicability of the solution as compared to the classical Yaroshevskii solution, which is restricted to an entry flight path of approximately -40 deg. Universal planetary entry equations are used to develop a new analytical theory for ballistic entry of spacecraft for moderate to large initial flight path angles. Chapman's altitude variable is used as the independent variable. Poincare's method of small parameters is used to develop an analytical solution for the velocity and the flight path angle. The new solution is used to formulate key expressions for range, time-of-flight, deceleration, and aerodynamic heating parameters (e.g., stagnation-point heat rate, total stagnation-point heat load, and average heat input). The classical approximate solution of Chapman's entry equation appears as the zero-order term in the new solution. The new solution represents an order of magnitude enhancement in the accuracy compared to existing analytical solutions for moderate to large entry

  12. Optimal Strategies for Probing Terrestrial Exoplanet Atmospheres with JWST

    Science.gov (United States)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael

    2018-01-01

    It is imperative that the exoplanet community determines the feasibility and the resources needed to yield high fidelity atmospheric compositions from terrestrial exoplanets. In particular, LHS 1140b and the TRAPPIST-1 system, already slated for observations by JWST’s Guaranteed Time Observers, will be the first two terrestrial planets observed by JWST. I will discuss optimal observing strategies for observing these two systems, focusing on the NIRSpec Prism (1-5μm) and the combination of NIRISS SOSS (1-2.7μm) and NIRSpec G395H (3-5μm). I will also introduce currently unsupported JWST readmodes that have the potential to greatly increase the precision on our atmospheric spectra. Lastly, I will use information content theory to compute the expected confidence interval on the retrieved abundances of key molecular species and temperature profiles as a function of JWST observing cycles.

  13. Terrestrial biogeochemical cycles - Global interactions with the atmosphere and hydrology

    Science.gov (United States)

    Schimel, David S.; Parton, William J.; Kittel, Timothy G. F.

    1991-01-01

    A review is presented of developments in ecosystem theory, remote sensing, and geographic information systems that support new endeavors in spatial modeling. A paradigm has emerged to predict ecosystem behavior based on understanding responses to multiple resources. Ecosystem models couple primary production to decomposition and nutrient availability utilizing this paradigm. It is indicated that coupling of transport and ecosystem processes alters the behavior of earth system components (terrestrial ecosystems, hydrology, and the atmosphere) from that of an uncoupled model.

  14. Applying Atmospheric Measurements to Constrain Parameters of Terrestrial Source Models

    Science.gov (United States)

    Hyer, E. J.; Kasischke, E. S.; Allen, D. J.

    2004-12-01

    Quantitative inversions of atmospheric measurements have been widely applied to constrain atmospheric budgets of a range of trace gases. Experiments of this type have revealed persistent discrepancies between 'bottom-up' and 'top-down' estimates of source magnitudes. The most common atmospheric inversion uses the absolute magnitude as the sole parameter for each source, and returns the optimal value of that parameter. In order for atmospheric measurements to be useful for improving 'bottom-up' models of terrestrial sources, information about other properties of the sources must be extracted. As the density and quality of atmospheric trace gas measurements improve, examination of higher-order properties of trace gas sources should become possible. Our model of boreal forest fire emissions is parameterized to permit flexible examination of the key uncertainties in this source. Using output from this model together with the UM CTM, we examined the sensitivity of CO concentration measurements made by the MOPITT instrument to various uncertainties in the boreal source: geographic distribution of burned area, fire type (crown fires vs. surface fires), and fuel consumption in above-ground and ground-layer fuels. Our results indicate that carefully designed inversion experiments have the potential to help constrain not only the absolute magnitudes of terrestrial sources, but also the key uncertainties associated with 'bottom-up' estimates of those sources.

  15. Regionally strong feedbacks between the atmosphere and terrestrial biosphere

    Science.gov (United States)

    Green, Julia K.; Konings, Alexandra G.; Alemohammad, Seyed Hamed; Berry, Joseph; Entekhabi, Dara; Kolassa, Jana; Lee, Jung-Eun; Gentine, Pierre

    2017-06-01

    The terrestrial biosphere and atmosphere interact through a series of feedback loops. Variability in terrestrial vegetation growth and phenology can modulate fluxes of water and energy to the atmosphere, and thus affect the climatic conditions that in turn regulate vegetation dynamics. Here we analyse satellite observations of solar-induced fluorescence, precipitation, and radiation using a multivariate statistical technique. We find that biosphere-atmosphere feedbacks are globally widespread and regionally strong: they explain up to 30% of precipitation and surface radiation variance in regions where feedbacks occur. Substantial biosphere-precipitation feedbacks are often found in regions that are transitional between energy and water limitation, such as semi-arid or monsoonal regions. Substantial biosphere-radiation feedbacks are often present in several moderately wet regions and in the Mediterranean, where precipitation and radiation increase vegetation growth. Enhancement of latent and sensible heat transfer from vegetation accompanies this growth, which increases boundary layer height and convection, affecting cloudiness, and consequently incident surface radiation. Enhanced evapotranspiration can increase moist convection, leading to increased precipitation. Earth system models underestimate these precipitation and radiation feedbacks mainly because they underestimate the biosphere response to radiation and water availability. We conclude that biosphere-atmosphere feedbacks cluster in specific climatic regions that help determine the net CO2 balance of the biosphere.

  16. Repercussions of thermal atmospheric tides on the rotation of terrestrial planets in the habitable zone

    Science.gov (United States)

    Auclair-Desrotour, P.; Mathis, S.; Laskar, J.

    2017-12-01

    Semidiurnal atmospheric thermal tides are important for terrestrial exoplanets in the habitable zone of their host stars. With solid tides, they torque these planets, thus contributing to determine their rotation states as well as their climate. Given the complex dynamics of thermal tides, analytical models are essential to understand its dependence on the structure and rotation of planetary atmospheres and the tidal frequency. In this context, the state of the art model proposed in the 60’s by Lindzen and Chapman explains well the properties of thermal tides in the asymptotic regime of Earth-like rapid rotators but predicts a non-physical diverging tidal torque in the vicinity of the spin-orbit synchronization. In this work, we present a new model that addresses this issue by taking into account dissipative processes through a Newtonian cooling. First, we recover the tidal torque recently obtained with numerical simulations using General Circulation Models (GCM). Second, we show that the tidal response is very sensitive to the atmospheric structure, particularly to the stability with respect to convection. A strong stable stratification is able to annihilate the atmospheric tidal torque, leading to synchronization, while a convective atmosphere will be submitted to a strong torque, leading to a non-synchronized rotation state.

  17. Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2009-04-01

    Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.

  18. Effects of the seasonal cycle on superrotation in planetary atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Jonathan L. [Department of Earth and Space Sciences, University of California Los Angeles, Los Angeles, CA 90095 (United States); Vallis, Geoffrey K. [College of Engineering, Mathematics and Physical Science, Exeter University, Exeter (United Kingdom); Potter, Samuel F. [Atmospheric and Oceanic Sciences Program, Princeton University, NJ 08544 (United States)

    2014-05-20

    The dynamics of dry atmospheric general circulation model simulations forced by seasonally varying Newtonian relaxation are explored over a wide range of two control parameters and are compared with the large-scale circulation of Earth, Mars, and Titan in their relevant parameter regimes. Of the parameters that govern the behavior of the system, the thermal Rossby number (Ro) has previously been found to be important in governing the spontaneous transition from an Earth-like climatology of winds to a superrotating one with prograde equatorial winds, in the absence of a seasonal cycle. This case is somewhat unrealistic as it applies only if the planet has zero obliquity or if surface thermal inertia is very large. While Venus has nearly vanishing obliquity, Earth, Mars, and Titan (Saturn) all have obliquities of ∼25° and varying degrees of seasonality due to their differing thermal inertias and orbital periods. Motivated by this, we introduce a time-dependent Newtonian cooling to drive a seasonal cycle using idealized model forcing, and we define a second control parameter that mimics non-dimensional thermal inertia of planetary surfaces. We then perform and analyze simulations across the parameter range bracketed by Earth-like and Titan-like regimes, assess the impact on the spontaneous transition to superrotation, and compare Earth, Mars, and Titan to the model simulations in the relevant parameter regime. We find that a large seasonal cycle (small thermal inertia) prevents model atmospheres with large thermal Rossby numbers from developing superrotation by the influences of (1) cross-equatorial momentum advection by the Hadley circulation and (2) hemispherically asymmetric zonal-mean zonal winds that suppress instabilities leading to equatorial momentum convergence. We also demonstrate that baroclinic instabilities must be sufficiently weak to allow superrotation to develop. In the relevant parameter regimes, our seasonal model simulations compare favorably to

  19. Formation of Authigenic Sulfates in Cold Dry Glaciers: Terrestrial and Planetary Implications of Sublimites

    Science.gov (United States)

    Massé, M.; Rondeau, B.; Ginot, P.; Schmitt, B.; Bourgeois, O.; Mitri, G.

    2015-12-01

    Salts are common on planetary surfaces, and sulfates have been widely observed on Earth, Mars (Gendrin et al., 2005) and on some of Jupiter's and Saturn's icy moons like Europa (Dalton et al., 2007). These minerals can form under a wide range of conditions, and the determination of sulfate formation processes can provide key elements for deciphering past planetary surface conditions. Most terrestrial sulfates form as evaporites in warm environments with high water/rock ratios, but these conditions are rarely encountered on other planets. Here we describe the formation of cryogenic sulfates in an extreme cold and dry environment: the Guanaco glacier located in the Chilean Andes (Fig.1a, Rabatel et al., 2011). Field analyses reveal that it is a cold-based glacier, its surface temperature remains below 0°C throughout the year, and ablation occurs mostly by sublimation. Ablation creates ice cliffs punctuated of pluricentimetric whitish, tapered crystals embedded in the ice (Fig.1b, c). By Raman and chemistry, they proved to be gypsum, covered by micrometric crystals of jarosite, halotrichite and native sulfur. The euhedral morphology of these soft minerals indicates that they are neoformed and have not been transported in the ice. This is supported by the absence of gypsum crystals in ice cores drilled through the glacier. We infer that the crystallization thus occurred at the glacier surface during ice sublimation and does not involve liquid water. To distinguish this original salt formation process from the more common evaporites, we name these minerals "sublimites". Though this formation process is uncommon and generates minor quantities of sulfates on Earth, it may be dominant on other bodies in the Solar System where sublimation is effective. Examples of planetary sublimites may include gypsum on the North Polar Cap of Mars (Massé et al., 2012), and other sulfates on icy moons where sublimation has been observed (Howard et al., 2008).

  20. Sulfuric acid aerosols in the atmospheres of the terrestrial planets

    Science.gov (United States)

    McGouldrick, Kevin; Toon, Owen B.; Grinspoon, David H.

    2011-08-01

    Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO 2 and H 2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO 2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO 2, quickly removing it and preventing it from having a significant greenhouse effect.

  1. Planetary-scale streak structures produced in a high-resolution simulation of Venus atmosphere

    Science.gov (United States)

    Kashimura, H.; Sugimoto, N.; Takagi, M.; Matsuda, Y.; Ohfuchi, W.; Enomoto, T.; Nakajima, K.; Ishiwatari, M.; Sato, T. M.; Hashimoto, G. L.; Satoh, T.; Takahashi, Y. O.; Hayashi, Y.-Y.

    2017-09-01

    Planetary-scale streak structures captured by the IR2 camera onboard AKATSUKI was reproduced in a high-resolution simulation of Venus Atmosphere. We have found that the streak structures are extending from the polar vortices and synchronized in both hemispheres. Our experiments suggest that a low-stability layer is a key for forming the planetary-scale streak structures.

  2. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  3. Validation of Atmospheric Dynamics (VADY) - connections between planetary waves and atmospheric circulation types

    Science.gov (United States)

    Lang, Benjamin; Jacobeit, Jucundus; Beck, Christoph; Philipp, Andreas

    2015-04-01

    The climate research program "Medium-range Climate Predictions" (MiKlip), funded by the Federal Ministry of Education and Research in Germany (BMBF), has the aim to develop a climate model system (MPI-ESM) that can provide reliable decadal predictions of climate, including extreme weather events. A substantial part of the development process is a comprehensive model validation. Within MiKlip, it includes comparisons of model simulations and observations in order to allow statements about the performance of the model and to give particular recommendations for the further development of the model. The research project "Validation of Atmospheric Dynamics" (VADY), conducted by the cooperation partners "Institute of Geography at the University of Augsburg" (IGUA) and the "German Aerospace Centre" (DLR), contributes to model validation within MiKlip with a special focus on atmospheric waves and circulation dynamics. Within the framework of VADY, DLR validates the representation of atmospheric waves on different levels and scales based on suitable activity indices (e.g. the so-called large-scale dynamical activity index (LDAI), which is a measure for the activity of planetary waves). The focus of IGUA is on the model validation with respect to the representation of atmospheric circulation types, dynamical modes and the teleconnectivity of the atmospheric circulation. Currently, the connection between LDAI and atmospheric circulation types on different levels and for different seasons in the North Atlantic-European region is analysed by considering, in particular, the North Atlantic Oscillation. Results will be shown for the connection between LDAI and atmospheric circulation types and subsequently for the representation of the identified connections in the decadal-prediction model system of MPI-ESM.

  4. Target Selection for the LBTI Hunt for Observable Signatures of Terrestrial Planetary Systems

    Science.gov (United States)

    Roberge, A.; Weinberger, A.; Kennedy, G.; Defrère, D.; LBTI Instrument; Science Teams

    2014-03-01

    The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). This warm circumstellar dust, analogous to the interplanetary dust found in the vicinity of the Earth in our own system, is produced in comet breakups and asteroid collisions. Exozodi will be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of habitable zone terrestrial planets (exo-Earths). About 20% of nearby field stars have cold dust coming from planetesimals at large distances from the stars (Eiroa et al. 2013). Much less is known about exozodi; current detection limits for individual stars are at best ~ 500 times our solar system's level (aka. 500 zodi). LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3s). Detections of warm dust will also reveal new information about planetary system architectures and evolution. We describe the target star selection by the LBTI Science Team to satisfy the goals of the HOSTS survey - to inform mission design and target selection for a future exo-Earth mission. We are interested in both 1) actual stars likely to be observed by such a mission and 2) stars whose observation will enable sensible extrapolations for stars that cannot be observed with LBTI. We integrated two approaches to generate the HOSTS target list. The mission-driven approach concentrates on F, G, and K-type stars that are the best targets for future direct observations of exo-Earths, thereby providing model-independent "ground truth" dust observations. However, not every potential target of a future exo-Earth mission can be observed with LBTI. The sensitivity-driven approach selects targets based on maximizing the exozodi sensitivity that can be achieved, without consideration of exo-Earth mission constraints. This naturally chooses more luminous stars (A and early F

  5. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Philpott, L. C. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Abe, F.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, P.O. Box 4800, Christchurch 8020 (New Zealand); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Christie, G. W.; Natusch, T. [Auckland Observatory, PO Box 180, Royal Oak, Auckland 1345 (New Zealand); Dionnet, Z. [Université d' Orsay, bat 470, F-91400 Orsay (France); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, 410 Seongbong-Rho, Hungduk-Gu, Chongju 371-763 (Korea, Republic of); Heyrovský, D. [Institute of Theoretical Physics, Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); McCormick, J. M. [Farm Cove Observatory, 2/24 Rapallo Place, Pakuranga, Auckland 2012 (New Zealand); Moorhouse, D. M. [Kumeu Observatory, Kumeu (New Zealand); Skowron, J., E-mail: mfre070@aucklanduni.ac.nz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warszawa (Poland); and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  6. Thermal Mapping to Achieve 3-D Structure and Dynamics of Planetary Atmospheres Throughout the Solar System

    Science.gov (United States)

    Greathouse, T. K.; Retherford, K. D.; Mandt, K. E.; Wyrick, D. Y.

    2017-02-01

    We have completed our first look at all planets in the solar system. It is now time to move forward with more complete studies of solar system planetary atmospheres to further our understanding of atmospheric dynamics of planets unlike the Earth.

  7. Sensitivity analysis of radiative heating and cooling rates in planetary atmospheres: general linearization and adjoint approaches

    Science.gov (United States)

    Ustinov, E. A.

    2002-01-01

    Radiative heating and cooling provide primary source and ultimate sink of energy driving lower planetary atmospheres. Evaluating the sensitivities of atmospheric dynamics models on these primary atmospheric parameters requires knowing how heating and cooling rates depend on these same parameters. We discuss two approaches that make it possible to directly compute the sensitivities of heating and cooling rates in parallel with evaluation of heating and cooling rates themselves.

  8. On the averaging of ratios of specific heats in a multicomponent planetary atmosphere

    Science.gov (United States)

    Dubisch, R.

    1974-01-01

    The use of adiabatic relations in the calculation of planetary atmospheres requires knowledge of the ratio of specific heats of a mixture of gases under various pressure and temperature conditions. It is shown that errors introduced by simple averaging of the ratio of specific heats in a multicomponent atmosphere can be roughly 0.4%. Therefore, the gamma-averaging error can become important when integrating through the atmosphere to a large depth.

  9. VUV photochemistry simulation of planetary upper atmosphere using synchrotron radiation.

    Science.gov (United States)

    Carrasco, Nathalie; Giuliani, Alexandre; Correia, Jean Jacques; Cernogora, Guy

    2013-07-01

    The coupling of a gas reactor, named APSIS, with a vacuum-ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility, for a photochemistry study of gas mixtures, is reported. The reactor may be irradiated windowless with gas pressures up to hundreds of millibar, and thus allows the effect of energetic photons below 100 nm wavelength to be studied on possibly dense media. This set-up is perfectly suited to atmospheric photochemistry investigations, as illustrated by a preliminary report of a simulation of the upper atmospheric photochemistry of Titan, the largest satellite of Saturn. Titan's atmosphere is mainly composed of molecular nitrogen and methane. Solar VUV irradiation with wavelengths no longer than 100 nm on the top of the atmosphere enables the dissociation and ionization of nitrogen, involving a nitrogen chemistry specific to nitrogen-rich upper atmospheres.

  10. Atmospheric Breathing Electric Thruster for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will investigate the development of an atmosphere-breathing electric propulsion solar-powered vehicle to explore planets such as Mars. The vehicle would...

  11. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  12. Numerical model of a non-steady atmospheric planetary boundary layer, based on similarity theory

    DEFF Research Database (Denmark)

    Zilitinkevich, S.S.; Fedorovich, E.E.; Shabalova, M.V.

    1992-01-01

    A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another correspon...

  13. The Manicouagan impact structure as a terrestrial analogue site for lunar and martian planetary science

    Science.gov (United States)

    Spray, John G.; Thompson, Lucy M.; Biren, Marc B.; O'Connell-Cooper, Catherine

    2010-03-01

    The 90 km diameter, late Triassic Manicouagan impact structure of Québec, Canada, is a well-preserved, undeformed complex crater possessing an anorthositic central uplift and a 55 km diameter melt sheet. As such, it provides a valuable terrestrial analogue for impact structures developed on other planetary bodies, especially the Moon and Mars, which are currently the focus of exploration initiatives. The scientific value of Manicouagan has recently been enhanced due to the production, between 1994 and 2006, of ˜18 km of drill core from 38 holes by the mineral exploration industry. Three of these holes are in excess of 1.5 km deep, with the deepest reaching 1.8 km. Here we combine recent field work, sampling and the drill core data with previous knowledge to provide insight into processes occurring at Manicouagan and, by inference, within extraterrestrial impact structures. Four areas of comparative planetology are discussed: impact melt sheets, central uplifts, impact-generated hydrothermal regimes and footwall breccias. Human training and instrument testing opportunities are also considered. The drill core reveals that the impact melt and clast-bearing impact melts in the centre of the structure reach thicknesses of 1.4 km. The 1.1 km thick impact melt has undergone differentiation to yield a lower monzodiorite, a transitional quartz monzodiorite and an upper quartz monzonite sequence. This calls into question the previous citing of Manicouagan as an exemplar of a relatively large crater possessing an undifferentiated melt sheet, which was used as a rationale for assigning different composition lunar impact melts and clast-bearing impact melts to separate cratering events. The predominantly anorthositic central uplift at Manicouagan is comparable to certain lunar highlands material, with morphometric analogies to the King, Tycho, Pythagoras, Jackson, and Copernicus impact structures, which have similar diameters and uplift structure. Excellent exposure of the

  14. Scattering and Absorption by Nonspherical Particles in Planetary Atmospheres

    Science.gov (United States)

    West, Robert A.

    2005-01-01

    The atmospheres of Mars, the giant planets, and Titan all support populations of nonspherical particles. Analyses of observations of these atmospheres therefore rely on an understanding of the optical properties of nonspherical particles. We can glean information on particle size and composition from the wavelength dependence of the optical depth and from the shape of the forward peak of the scattering phase function. Additional information comes from polarization measurements which have been especially fruitful for Titan's haze. The Mars atmosphere contains mineral dust particles with effective radii near 1.6 micro meters, and water ice particles with radii between about 1 and 4 micro meters. The uppermost tropospheric hazes in Jupiter and Saturn are composed of ice crystals of ammonia, water and possibly traces of ammonium hydrosulfide, Methane ice and hydrogen sulfide ice are present in the atmospheres of Uranus and Neptune. Size estimation for these hazes in the giant planets is difficult, and even the expected spectral signatures are elusive, Titan's haze is both forward scattering and strongly polarized - a combination which points toward a fractal aggregate struc1.ure of 10 - 100 or more organic monomers whose radius is about 0.06 micro meters. Polar stratospheric hazes on Jupiter and Saturn also display this characteristic.

  15. Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting?

    NARCIS (Netherlands)

    Ciais, P.; Canadell, J.; Luyssaert, S.; Chevallier, F.; Shvidenko, A.; Poussi, Z.; Jonas, M.; Peylin, P.; King, A.; Schulze, E.D.; Piao, S.; Rödenbeck, C.; Peters, W.; Bréon, F.M.

    2010-01-01

    We estimate the northern hemisphere (NH) terrestrial carbon sink by comparing four recent atmospheric inversions with land-based C accounting data for six large northern regions. The mean NH terrestrial CO2 sink from the inversion models is 1.7 Pg C year-1 over the period 2000–2004. The uncertainty

  16. Atmospheric Circulations of Hot Jupiters as Planetary Heat Engines

    Science.gov (United States)

    Koll, Daniel D. B.; Komacek, Thaddeus D.

    2018-02-01

    Because of their intense incident stellar irradiation and likely tidally locked spin states, hot Jupiters are expected to have wind speeds that approach or exceed the speed of sound. In this work, we develop a theory to explain the magnitude of these winds. We model hot Jupiters as planetary heat engines and show that hot Jupiters are always less efficient than an ideal Carnot engine. Next, we demonstrate that our predicted wind speeds match those from three-dimensional numerical simulations over a broad range of parameters. Finally, we use our theory to evaluate how well different drag mechanisms can match the wind speeds observed with Doppler spectroscopy for HD 189733b and HD 209458b. We find that magnetic drag is potentially too weak to match the observations for HD 189733b, but is compatible with the observations for HD 209458b. In contrast, shear instabilities and/or shocks are compatible with both observations. Furthermore, the two mechanisms predict different wind speed trends for hotter and colder planets than currently observed. As a result, we propose that a wider range of Doppler observations could reveal multiple drag mechanisms at play across different hot Jupiters.

  17. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    Science.gov (United States)

    Mateo-Marti, Eva

    2014-08-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the

  18. Dissociative recombination in reactive flows related to planetary atmospheric entries

    Directory of Open Access Journals (Sweden)

    Bultel Arnaud

    2015-01-01

    Full Text Available The Dissociative Recombination (DR processes play a significant role in plasma chemistry. This article illustrates this role from the modeling point of view in the case of reactive flows related to atmospheric entry plasmas. Two situations are investigated, for which the studied plasma is nitrogen. The first configuration corresponds to the relaxation process behind a strong shock wave moving at high Mach number in a shock tube, the second one to the recombination taking place in an expanding plasma flowing in a diverging nozzle. In both cases, the collisional-radiative model CoRaM-N2, involving N2, N, N2+, N+ and electrons, is implemented in an Eulerian 1D code able to compute the aerodynamic fields; calculations are performed in standard conditions. We show that, according to the rate coefficients used for the DR processes, the population density of the charged species especially N2+ is strongly modified only for the post-shock flow.

  19. Molecular beam simulation of planetary atmospheric entry: Some recent results

    Science.gov (United States)

    French, J. B.; Reid, N. M.

    1972-01-01

    Molecular beam sources for producing fast beams containing CO2 and atomic oxygen are discussed. Results pertinent to the design and calibration of mass spectrometer ion source for measurement of the Martian atmosphere during the free molecule portion of the entry trajectory are also presented. The shortcomings and advantages of the simulation technique are discussed. It is shown that an open cavity configuration retains sensitivity to atomic oxygen, provides reasonable signal enhancement from the stagnation effect, is not highly sensitive to pitch and yaw effects, and presents no unforeseen problems in measuring CO2 or atomic oxygen. The simulation techniques used provide assistance in designing, developing, and (potentially) in testing and calibrating the required flight instrument.

  20. Planetary Atmosphere and Surfaces Chamber (PASC: A Platform to Address Various Challenges in Astrobiology

    Directory of Open Access Journals (Sweden)

    Eva Mateo-Marti

    2014-08-01

    Full Text Available The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres’ conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces

  1. Remote sensing of the turbulence characteristics of a planetary atmosphere by radio occultation of a space probe.

    Science.gov (United States)

    Woo, R.; Ishimaru, A.

    1973-01-01

    The purpose of this paper is to analyze the effects of small-scale turbulence on radio waves propagating through a planetary atmosphere. The analysis provides a technique for inferring the turbulence characteristics of a planetary atmosphere from the radio signals received from a spacecraft as it is occulted by the planet. The planetary turbulence is assumed to be localized and smoothly varying, with the structure constant varying exponentially with altitude. Rytov's method is used to derive the variance of log-amplitude and phase fluctuations of a wave propagating through the atmosphere.

  2. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  3. Spectra of van der Waals complexes (dimers) with applications to planetary atmospheres

    Science.gov (United States)

    Fox, Kenneth; Kim, Sang J.

    1988-01-01

    Spectral features observed in the atmosphere of Titan by the Voyager IR experiment have been attributed to weakly bound complexes of N2 and H2, dominant and minor constituents, respectively. The abundance of H2-N2 dimers there was computed. Current calculations include quantitative spectral line positions and intensities for N2-Ar and CO2-CO2 relating to Titan and Earth, and to Mars and Venus, respectively. This work suggests applications to spectra of planetary atmospheres obtained in spacecraft missions.

  4. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    Science.gov (United States)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  5. Planetary noble gases

    Science.gov (United States)

    Zahnle, Kevin

    1993-01-01

    An overview of the history and current status of research on planetary noble gases is presented. The discovery that neon and argon are vastly more abundant on Venus than on earth points to the solar wind rather than condensation as the fundamental process for placing noble gases in the atmospheres of the terrestrial planets; however, solar wind implantation may not be able to fully reproduce the observed gradient, nor does it obviously account for similar planetary Ne/Ar ratios and dissimilar planetary Ar/Kr ratios. More recent studies have emphasized escape rather than accretion. Hydrodynamic escape, which is fractionating, readily accounts for the difference between atmospheric neon and isotopically light mantle neon. Atmospheric cratering, which is nearly nonfractionating, can account for the extreme scarcity of nonradiogenic noble gases (and other volatiles) on Mars.

  6. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    Science.gov (United States)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  7. Fourier transform spectrometers for remote sensing of planetary atmospheres and surfaces

    Science.gov (United States)

    Shakun, Alexey; Korablev, Oleg; Moshkin, Boris; Grigoriev, Alexey; Ignatiev, Nikolay; Maslov, Igor; Sazonov, Oleg; Patsaev, Dmitry; Kungurov, Andrey; Santos-Skripko, Alexander; Zharkov, Alexander; Stupin, Igor; Merzlyakov, Dmitry; Makarov, Vladislav; Martinovich, Fedor; Nikolskiy, Yuri; Shashkin, Victor

    2017-12-01

    In planetary research, Fourier transform infrared spectrometers (FTIR) solve a number of important scientific goals related both to the atmosphere and to the surface sounding. For remote orbital measurements, these goals are the thermal sounding of the atmosphere using, in particular, the 15-µm CO2 band, sensitive detections of minor gaseous species and aerosol characterization. FTIR can address similar atmospheric science goals when observing from a planetary surface allowing for better-resolved boundary layer and achieving greater accuracy (longer integration) for minor species detection. For studies of planetary surfaces, characterization of mineralogical composition in a wide IR range including sensitive measurements of hydration of the soil on airless bodies can be done. We outline a family of FTIR instruments dedicated to studies of Mars and the Moon. TIRVIM is a channel of ACS on ExoMars TGO (in orbit around Mars since October 2016). It is a 2-inch interferometer for nadir and solar occultation measurements of Mars' atmosphere. It covers a spectral range of 1.7-17 µm with spectral resolution up to 0.13 cm-1. LUMIS is a similar instrument for Luna-Resource Orbiter (Luna-26) Roscosmos mission dedicated to the search for hydration of the lunar regolith in the 6-µm band. The spectral range of LUMIS is broad (1.7-17 µm), but its sensitivity is optimized for the 4-8 µm region. The spectral resolution is 50 cm-1. We also describe recent developments focused on technical solutions for miniaturized FTIR instruments with a very high spectral resolution (0.05 cm-1 and higher). The prototype targets measurements of minor atmospheric species from the surface of Mars using the Sun tracking. One important task is to provide a high precision of interferometer's mirror movement. Another task is the development of a precise two-coordinate mechanism to seek for and follow the Sun.

  8. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.

    Science.gov (United States)

    Harmens, H; Foan, L; Simon, V; Mills, G

    2013-02-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres

    Science.gov (United States)

    Turrini, D.; Nelson, R. P.; Barbieri, M.

    2015-12-01

    Over the last twenty years, the search for extrasolar planets has revealed the rich diversity of outcomes from the formation and evolution of planetary systems. In order to fully understand how these extrasolar planets came to be, however, the orbital and physical data we possess are not enough, and they need to be complemented with information about the composition of the exoplanets. Ground-based and space-based observations provided the first data on the atmospheric composition of a few extrasolar planets, but a larger and more detailed sample is required before we can fully take advantage of it. The primary goal of a dedicated space mission like the Exoplanet Characterization Observatory (EChO) proposal is to fill this gap and to expand the limited data we possess by performing a systematic survey of extrasolar planets. The full exploitation of the data that space-based and ground-based facilities will provide in the near future, however, requires knowledge about the sources and sinks of the chemical species and molecules that will be observed. Luckily, the study of the past history of the Solar System provides several indications about the effects of processes like migration, late accretion and secular impacts, and on the time they occur in the life of planetary systems. In this work we will review what is already known about the factors influencing the composition of planetary atmospheres, focusing on the case of gaseous giant planets, and what instead still need to be investigated.

  10. Enabling novel planetary and terrestrial mechanisms using electroactive materials at the JPL's NDEAA Lab

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Lih, Shyh-Shiuh

    2004-01-01

    Increasingly, electroactive materials are used to produce acutators, sensors, displays and other elements of mechanisms and devices. In recognition of the potential of these materials, research at the JPL's NDEAA Lab have led to many novel space and terrestrial applications. This effort involves mostly the use of piezoelectric and electroactive polymers (EAP).

  11. Understanding the responses of precipitation, evaporative demand, and terrestrial water availability to planetary temperature in climate models

    Science.gov (United States)

    Scheff, Jacob

    -Monteith equation at a roughly Clausius-Clapeyron rate, ~ 6% K-1, but it increases the denominator more slowly, especially in colder base climates. Thus, evaporative demand increases with local warming at around 1.5-4 % K -1, where the larger values occur in colder regions. A simple analytic scaling for this sensitivity very accurately predicts the PET response field of each model. This PET increase is large enough that in each of the 16 CMIP5 models examined, the ratio P/PET declines with global warming in most land areas in the tropics, the subtropics, and the midlatitudes, implying aridification. However, in our idealized-land GCM, the weakly increasing land P response and strongly increasing PET response that enable this are not general. Depending on the prescribed ocean heat transport, continental configuration, and base planetary temperature, greenhouse warming often causes our modeled land P to strongly decrease, or sometimes to increase so strongly as to entirely suppress the PET increase (even as global-mean P increases weakly in all cases.) The former occurs when the basic-state terrestrial climate is already drier, and the latter occurs when it is quite wet. Future work may investigate what drives this broad range of land P and PET responses to warming, and whether this idealized-model behavior sheds any light on the tension between non-arid past greenhouses and the arid future projections.

  12. Planetary atmosphere models: A research and instructional web-based resource

    Science.gov (United States)

    Gray, Samuel Augustine

    The effects of altitude change on the temperature, pressure, density, and speed of sound were investigated. These effects have been documented in Global Reference Atmospheric Models (GRAMs) to be used in calculating the conditions in various parts of the atmosphere for several planets. Besides GRAMs, there are several websites that provide online calculators for the 1976 US Standard Atmosphere. This thesis presents the creation of an online calculator of the atmospheres of Earth, Mars, Venus, Titan, and Neptune. The websites consist of input forms for altitude and temperature adjustment followed by a results table for the calculated data. The first phase involved creating a spreadsheet reference based on the 1976 US Standard Atmosphere and other planetary GRAMs available. Microsoft Excel was used to input the equations and make a graphical representation of the temperature, pressure, density, and speed of sound change as altitude changed using equations obtained from the GRAMs. These spreadsheets were used later as a reference for the JavaScript code in both the design and comparison of the data output of the calculators. The websites were created using HTML, CSS, and JavaScript coding languages. The calculators could accurately display the temperature, pressure, density, and speed of sound of these planets from surface values to various stages within the atmosphere. These websites provide a resource for students involved in projects and classes that require knowledge of these changes in these atmospheres. This project also created a chance for new project topics to arise for future students involved in aeronautics and astronautics.

  13. THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, Karin I.; Murray-Clay, Ruth [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A., E-mail: koberg@cfa.harvard.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2011-12-10

    The C/O ratio is predicted to regulate the atmospheric chemistry in hot Jupiters. Recent observations suggest that some exoplanets, e.g., Wasp 12-b, have atmospheric C/O ratios substantially different from the solar value of 0.54. In this Letter, we present a mechanism that can produce such atmospheric deviations from the stellar C/O ratio. In protoplanetary disks, different snowlines of oxygen- and carbon-rich ices, especially water and carbon monoxide, will result in systematic variations in the C/O ratio both in the gas and in the condensed phases. In particular, between the H{sub 2}O and CO snowlines most oxygen is present in icy grains-the building blocks of planetary cores in the core accretion model-while most carbon remains in the gas phase. This region is coincidental with the giant-planet-forming zone for a range of observed protoplanetary disks. Based on standard core accretion models of planet formation, gas giants that sweep up most of their atmospheres from disk gas outside of the water snowline will have a C/O {approx} 1, while atmospheres significantly contaminated by evaporating planetesimals will have a stellar or substellar C/O when formed at the same disk radius. The overall metallicity will also depend on the atmosphere formation mechanism, and exoplanetary atmospheric compositions may therefore provide constraints on where and how a specific planet formed.

  14. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively, it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  15. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A

    2017-01-01

    Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively), it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  16. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    Science.gov (United States)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be

  17. Flowing Hot or Cold: User-Friendly Computational Models of Terrestrial and Planetary Lava Channels and Lakes

    Science.gov (United States)

    Sakimoto, S. E. H.

    2016-12-01

    Planetary volcanism has redefined what is considered volcanism. "Magma" now may be considered to be anything from the molten rock familiar at terrestrial volcanoes to cryovolcanic ammonia-water mixes erupted on an outer solar system moon. However, even with unfamiliar compositions and source mechanisms, we find familiar landforms such as volcanic channels, lakes, flows, and domes and thus a multitude of possibilities for modeling. As on Earth, these landforms lend themselves to analysis for estimating storage, eruption and/or flow rates. This has potential pitfalls, as extension of the simplified analytic models we often use for terrestrial features into unfamiliar parameter space might yield misleading results. Our most commonly used tools for estimating flow and cooling have tended to lag significantly behind state-of-the-art; the easiest methods to use are neither realistic or accurate, but the more realistic and accurate computational methods are not simple to use. Since the latter computational tools tend to be both expensive and require a significant learning curve, there is a need for a user-friendly approach that still takes advantage of their accuracy. One method is use of the computational package for generation of a server-based tool that allows less computationally inclined users to get accurate results over their range of input parameters for a given problem geometry. A second method is to use the computational package for the generation of a polynomial empirical solution for each class of flow geometry that can be fairly easily solved by anyone with a spreadsheet. In this study, we demonstrate both approaches for several channel flow and lava lake geometries with terrestrial and extraterrestrial examples and compare their results. Specifically, we model cooling rectangular channel flow with a yield strength material, with applications to Mauna Loa, Kilauea, Venus, and Mars. This approach also shows promise with model applications to lava lakes, magma

  18. Estimating Terrestrial Wood Biomass from Observed Concentrations of Atmospheric Carbon Dioxide

    NARCIS (Netherlands)

    Schaefer, K. M.; Peters, W.; Carvalhais, N.; van der Werf, G.; Miller, J.

    2008-01-01

    We estimate terrestrial disequilibrium state and wood biomass from observed concentrations of atmospheric CO2 using the CarbonTracker system coupled to the SiBCASA biophysical model. Starting with a priori estimates of carbon flux from the land, ocean, and fossil fuels, CarbonTracker estimates net

  19. The LAPS Project: A tutorial, online model to simulate the atmosphere of any terrestrial planet

    Science.gov (United States)

    Turbet, M.; Schott, C.; Forget, F.

    2017-09-01

    The LAPS (Live Atmospheres-of-Planets Simulator) is a live 1-D radiative-convective version of the LMD Global Climate Model, available on http://laps.lmd.jussieu.fr. The LAPS provides an accelerated and interactive simulation of the climate of any terrestrial planet and exoplanet.

  20. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere

    Science.gov (United States)

    Ned Nikolova; Karl F. Zeller

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology....

  1. Small mass spectrometer with extended measurement capabilities at high pressures. [for planetary atmosphere analysis

    Science.gov (United States)

    Von Zahn, U.; Mauersberger, K.

    1978-01-01

    For the in situ investigation of planetary atmospheres a small Mattauch-Herzog mass spectrometer has been developed. Its high-pressure performance has been improved by incorporating differential pumping between the ion source and the analyzing fields, shortening the path-length as well as increasing the extraction field in the ion source. In addition doubly ionized and dissociated ions are used for mass analysis. These measures make possible operation up to 0.01 millibars. Results of laboratory tests related to linearity, dynamic range, and mass resolution are presented, in particular for CO2.

  2. Laboratory studies on N(2D) reactions of relevance to the chemistry of planetary atmospheres

    Science.gov (United States)

    Balucani, N.; Casavecchia, P.

    Molecular nitrogen is a very stable molecule, practically inert from a chemical point of view. For a nitrogen chemistry to occur in the planetary atmospheres which contain N2 , it is necessary to transform it into an active form, such as atoms or ions. As far as the production of atomic nitrogen in the upper atmospheres of planets (like Mars) or moons (like Titan) is concerned, several processes - as N2 dissociation induced by electron impact, EUV photolysis (λ fact, because N(4 S) atoms exhibit very low reactivity with closed-shell molecules and the probability of collision with an open-shell radical is small. Unfortunately laboratory experiments on the gas-phase reactions of N(2 D) have been lacking until recently, because of serious experimental difficulties in studying these reactive systems. Accurate kinetic data on the reactions of N(2 D) with the some molecules of relevance to the chemistry of planetary atmospheres have finally become available in the late 90's, but a better knowledge of the reactive behavior requires a dynamical investigation of N(2 D) reactions. The capability of generating intense continuous beams of N(2 D) achieved in our laboratory some years ago has opened up the possibility of studying the reactive scattering of this species under single collision conditions by means of the "crossed molecular beam" technique with mass spectrometric detection. Some examples of our experimental results will be illustrated, with particular attention to the reactions of N(2 D) with hydrocarbons (CH4 , C2 H2 and C2 H4 ) of relevance to the atmosphere of Titan, but also with other molecules of relevance to the atmospheres of Mars, Triton and Pluto.

  3. On the parametrization of the planetary boundary layer of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D. [Bulgarian Academy of Sciences, Geophysical Inst., Sofia (Bulgaria); Syrakov, D.; Kolarova, M. [Bulgarian Academy of Sciences, National Inst. of Meteorology and Hydrology, Sofia (United Kingdom)

    1997-10-01

    The investigation of the dynamic processes in the planetary boundary layer presents a definite theoretical challenge and plays a growing role for the solution of a number of practical tasks. The improvement of large-scale atmospheric weather forecast depends, to a certain degree, on the proper inclusion of the planetary boundary layer dynamics in the numerical models. The modeling of the transport and the diffusion of air pollutants is connected with estimation of the different processes in the Planetary Boundary Layer (PBL) and needs also a proper PBL parametrization. For the solution of these practical tasks the following PBL models;(i) a baroclinic PBL model with its barotropic version, and (ii) a convective PBL model were developed. Both models are one dimensional and are based on the similarity theory and the resistance lows extended for the whole PBL. Two different PBL parametrizations under stable and under convective conditions are proposed, on the basis of which the turbulent surface heat and momentum fluxes are estimated using generalized similarity theory. By the proposed parametrizations the internal parameters are calculated from the synoptic scale parameters as geostrophyc wind, potential temperature and humidity given at two levels (ground level and at 850 hPa) and from them - the PBL profiles. The models consists of two layers: a surface layer (SL) with a variable height and a second (Ekman layer) over it with a constant with height turbulent exchange coefficient. (au) 14 refs.

  4. Size distribution of particles in planetary rings. [applied to Saturn and terrestrial planets

    Science.gov (United States)

    Greenberg, R.; Davis, D. R.; Hartmann, W. K.; Chapman, C. R.

    1977-01-01

    Harris (1975) has suggested that the maximum size of particles in a planetary ring is controlled by collisional fragmentation rather than tidal stress. While this conclusion is probably true, estimated radius limits must be revised upward from Harris' values of a few kilometers by at least an order of magnitude. Accretion of particles within the Roche limit is also possible. These considerations affect theories concerning the evolution of Saturn's rings, of the moon, and of possible former satellites of Mercury and Venus. In the case of Saturn's rings, comparison of various theoretical scenarios with available observational evidence suggests that the rings formed from the breakup of larger particles rather than from original condensation as small particles. This process implies a distribution of particle sizes in Saturn's rings possibly ranging up to about 100 km but with most of the cross section in centimeter-scale particles.

  5. Modeling pN2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures.

    Science.gov (United States)

    Stüeken, E E; Kipp, M A; Koehler, M C; Schwieterman, E W; Johnson, B; Buick, R

    2016-12-01

    Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N2, but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean-presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO2, and (c) atmospheric oxygenation could have initiated a stepwise pN2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N2 and O2 is a signature of an oxygen-producing biosphere. Key Words: Biosignatures-Early Earth-Planetary atmospheres. Astrobiology 16, 949-963.

  6. Building the Terrestrial Planets: Constraining Planetary Accretion in the inner Solar System

    Science.gov (United States)

    Raymond, Sean N.; O'Brien, D. P.; Morbidelli, A.; Kaib, N. A.

    2008-05-01

    We present results of N-body simulations of planetary accretion with the goal of reproducing the inner Solar System. Planetary embryos and planetesimals evolve and grow under the influence of Jupiter and Saturn, which are assumed to have formed during the short gaseous phase of the Solar Nebula. We compare the results of these simulations to the current Solar System in order to constrain the configuration of Jupiter and Saturn at early times, analyzing cases that are both consistent and contrary to the 'Nice model.' We attempt to reproduce 1) the masses and orbits of Venus, Earth and Mars -- Mars' relatively small mass in particular has not been adequately reproduced in previous simulations; 2) the structure of the asteroid belt -- we show that a remnant embryo larger than the Moon is inconsistent with the main belt structure; and 3) the water content of the Earth, assuming that it was delivered in the form of water-rich primitive asteroidal material. We find that Jupiter and Saturn are the most important factor in the outcome, exciting asteroidal bodies via secular and mean motion resonances. A configuration with the giant planets on circular orbits can form a water-rich Earth and Venus but Mars' mass is too large by a factor of 5-10. A configuration with Jupiter and Saturn in their current locations but with slightly higher eccentricities produces Earth, Venus, Mars and the asteroid belt, but does not allow water delivery to Earth. Further simulations with a range of configurations of Jupiter and Saturn are currently underway in order to better reproduce all of the above characteristics of the inner Solar System. This will allow us to constrain Jupiter and Saturn's orbits at early times and test the validity of scenarios such as the 'Nice model.'

  7. Terrestrial models for development of methods to search for life on Mars and other planetary bodies

    Science.gov (United States)

    Abyzov, S. S.; Duxbury, N. S.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.

    Successful missions to Mars, Europa and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost habitats as terrestrial analogues. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the most ancient and deepest strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radiolabeling and other techniques made it possible for us to obtain a convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future search for microbial life and/or its biosignatures on extraterrestrial objects.

  8. Transfer of polarized light in planetary atmospheres basic concepts and practical methods

    CERN Document Server

    Hovenier, Joop W; Domke, Helmut

    2004-01-01

    The principal elements of the theory of polarized light transfer in planetary atmospheres are expounded in a systematic but concise way. Basic concepts and practical methods are emphasized, both for single and multiple scattering of electromagnetic radiation by molecules and particles in the atmospheres of planets in the Solar System, including the Earth, and beyond. A large part of the book is also useful for studies of light scattering by particles in comets, the interplanetary and interstellar medium, circumstellar disks, reflection nebulae, water bodies like oceans and suspensions of particles in a gas or liquid in the laboratory. Throughout the book symmetry principles, such as the reciprocity principle and the mirror symmetry principle, are employed. In this way the theory is made more transparent and easier to understand than in most papers on the subject. In addition, significant computational reductions, resulting from symmetry principles, are presented. Hundreds of references to relevant literature ...

  9. A systematic retrieval analysis of secondary eclipse spectra. III. Diagnosing chemical disequilibrium in planetary atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R.; Yung, Yuk L., E-mail: mrl@gps.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-12-10

    Chemical disequilibrium has recently become a relevant topic in the study of the atmospheres of transiting extrasolar planets, brown dwarfs, and directly imaged exoplanets. We present a new way of assessing whether or not a Jovian-like atmosphere is in chemical disequilibrium from observations of detectable or inferred gases such as H{sub 2}O, CH{sub 4}, CO, and H{sub 2}. Our hypothesis, based on previous kinetic modeling studies, is that cooler atmospheres will show stronger signs of disequilibrium than hotter atmospheres. We verify this with chemistry-transport models and show that planets with temperatures less than ∼1200 K are likely to show the strongest signs of disequilibrium due to the vertical quenching of CO, and that our new approach is able to capture this process. We also find that in certain instances a planetary composition may appear in equilibrium when it actually is not due to the degeneracy in the shape of the vertical mixing ratio profiles. We determine the state of disequilibrium in eight exoplanets using the results from secondary eclipse temperature and abundance retrievals. We find that all of the planets in our sample are consistent with thermochemical equilibrium to within 3σ. Future observations are needed to further constrain the abundances in order to definitively identify disequilibrium in exoplanet atmospheres.

  10. Understanding the formation and composition of hazes in planetary atmospheres that contain carbon monoxide

    Science.gov (United States)

    Hörst, S. M.; Yoon, Y. H.; Hicks, R. K.; Tolbert, M. A.

    2012-09-01

    Measurements from the Cassini Plasma Spectrometer (CAPS) have revealed the presence of molecules in Titan's ionosphere with masses in excess of hundreds of amu. Negative ions with mass/charge (m/z) up to 10,000 amu/q [1] and positive ions with m/z up to 400 amu/q [2] have been detected. CAPS has also observed O+ flowing into Titan's upper atmosphere [3], which appears to originate from Enceladus and is likely the source of oxygen bearing molecules in Titan's atmosphere [4]. The observed O+ is deposited in the region now known to contain large organic molecules. A recent Titan atmosphere simulation experiment has shown that incorporation of oxygen into Titan aerosol analogues results in the formation of all five nucleotide bases and the two smallest amino acids, glycine and alanine [5]. Similar chemical processes may have occurred in the atmosphere of the early Earth, or in the atmospheres of extrasolar planets; atmospheric aerosols may be an important source of the building blocks of life. Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. The presence of atmospheric aerosols has been invoked to explain the relatively featureless spectrum of HD 189773b, including the lack of predicted atmospheric Na and K spectral lines [9]. The majority of the O+ precipitating into Titan's atmosphere forms CO (O(3P)+CH3 -> CO+H2+H) [4]. CO has also been detected in the atmospheres of a number of exoplanets including HD 189733b, HD 209458b, and WASP-12b [6-8]. It is therefore important to understand the role CO plays in the formation and composition of hazes in planetary atmospheres. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [10]) we have obtained in situ composition measurements of aerosol particles (so-called "tholins") produced in N2/CH4/CO gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) or a

  11. MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics.

    Science.gov (United States)

    Jupp, Tim E; Cox, Peter M

    2010-05-12

    A two-box model for equator-to-pole planetary heat transport is extended to include simple atmospheric dynamics. The surface drag coefficient CD is treated as a free parameter and solutions are calculated analytically in terms of the dimensionless planetary parameters eta (atmospheric thickness), omega (rotation rate) and xi (advective capability). Solutions corresponding to maximum entropy production (MEP) are compared with solutions previously obtained from dynamically unconstrained two-box models. As long as the advective capability xi is sufficiently large, dynamically constrained MEP solutions are identical to dynamically unconstrained MEP solutions. Consequently, the addition of a dynamical constraint does not alter the previously obtained MEP results for Earth, Mars and Titan, and an analogous result is presented here for Venus. The rate of entropy production in an MEP state is shown to be independent of rotation rate if the advective capability xi is sufficiently large (as for the four examples in the solar system), or if the rotation rate omega is sufficiently small. The model indicates, however, that the dynamical constraint does influence the MEP state when xi is small, which might be the case for some extrasolar planets. Finally, results from the model developed here are compared with previous numerical simulations in which the effect of varying surface drag coefficient on entropy production was calculated.

  12. Planetary plasma and atmospheres explored by space missions in Japan: Hisaki, Akatsuki, and beyond

    Science.gov (United States)

    Kasaba, Y.; Imamura, T.; Tsuchiya, F.; Terada, N.; Miyoshi, Y.; Kasai, Y.; Saito, Y.

    2017-06-01

    Planetary plasma and atmospheres have been challenged by space missions of Japanese science community from 1990s, with ISAS and JAXA. The first trial, a Martian orbiter Nozomi, was launched in July 1998. At the departure from Earth in Dec. 1998, she met an engine trouble but we struggled and found a narrow and long path connecting to the Dec 2003 arrival, which is the simultaneous arrival with ESA Mars Express. Unfortunately, we had an additional power trouble in Apr. 2002 associated with a solar flare event, and we gave up the trial at the gate of Mars in Dec. 2003. In parallel to the Kaguya Lunar orbiter in 2007-2009, a next trial to planets, the Akatsuki orbiter to Venus, was prepared. She departed from Earth in May 2010. However, she got an engine trouble at the arrival to Venus in Dec. 2010, and we again endured another long path, but this road was at last ended by a success of the orbit entry in Dec. 2015. We also created the UV/EUV space telescope, Hisaki, using the sensor and optics technologies extracted from Nozomi. It is going well after the launch in 2013 and actively looking planetary thin atmospheres collaborating with other space missions. This paper summarizes the Hisaki and Akatsuki missions which are now on orbit, with the next missions, Arase (ERG), BepiColombo, JUICE, and beyond.

  13. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    Science.gov (United States)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  14. Atmospheric thermal tides and planetary spin. I. The complex interplay between stratification and rotation

    Science.gov (United States)

    Auclair-Desrotour, P.; Mathis, S.; Laskar, J.

    2018-02-01

    Context. Thermal atmospheric tides can torque telluric planets away from spin-orbit synchronous rotation, as observed in the case of Venus. They thus participate in determining the possible climates and general circulations of the atmospheres of these planets. Aims: The thermal tidal torque exerted on an atmosphere depends on its internal structure and rotation and on the tidal frequency. Particularly, it strongly varies with the convective stability of the entropy stratification. This dependence has to be characterized to constrain and predict the rotational properties of observed telluric exoplanets. Moreover, it is necessary to validate the approximations used in global modelings such as the traditional approximation, which is used to obtain separable solutions for tidal waves. Methods: We wrote the equations governing the dynamics of thermal tides in a local vertically stratified section of a rotating planetary atmosphere by taking into account the effects of the complete Coriolis acceleration on tidal waves. This allowed us to analytically derive the tidal torque and the tidally dissipated energy, which we used to discuss the possible regimes of tidal dissipation and to examine the key role played by stratification. Results: In agreement with early studies, we find that the frequency dependence of the thermal atmospheric tidal torque in the vicinity of synchronization can be approximated by a Maxwell model. This behavior corresponds to weakly stably stratified or convective fluid layers, as observed previously. A strong stable stratification allows gravity waves to propagate, and makes the tidal torque negligible. The transition is continuous between these two regimes. The traditional approximation appears to be valid in thin atmospheres and in regimes where the rotation frequency is dominated by the forcing or the buoyancy frequencies. Conclusions: Depending on the stability of their atmospheres with respect to convection, observed exoplanets can be tidally

  15. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    Science.gov (United States)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  16. An atmospheric-terrestrial heavy metal transport model: model theory and process equations

    Energy Technology Data Exchange (ETDEWEB)

    Wagenet, R.J.; Grenney, W.J.; Wooldridge, G.L.; Jurinak, J.J.

    1979-03-01

    A general modelTOHMwas developed to predict the terrestrial fate of zinc, cadmium, chromium, lead, and mercury emitted during operation of a coal-fired electric generating facility. The model comprises interfacing submodels describing atmospheric dispersion, precipitation, soil chemistry, and soil erosion. TOHM predicted no substantial increase in indigenous levels of zinc, chromium, and lead in the impact area. However, the model predicted that both mercury and cadmium would be emitted and eroded to the environmental sink in concentrations exceeding that naturally present in the system. The process equations used to describe the atmospheric-terrestrial transport of heavy metals are presented. Accounting procedures allowing calculation of amount of sediment eroded, heavy metal distribution, soil chemical reactions, and precipitation are explained. (9 diagrams, 5 graphs, 2 maps, 13 references)

  17. Atmospheric oxygen levels affect mudskipper terrestrial performance: implications for early tetrapods.

    Science.gov (United States)

    Jew, Corey J; Wegner, Nicholas C; Yanagitsuru, Yuzo; Tresguerres, Martin; Graham, Jeffrey B

    2013-08-01

    The Japanese mudskipper (Periophthalmus modestus), an amphibious fish that possesses many respiratory and locomotive specializations for sojourns onto land, was used as a model to study how changing atmospheric oxygen concentrations during the middle and late Paleozoic Era (400-250 million years ago) may have influenced the emergence and subsequent radiation of the first tetrapods. The effects of different atmospheric oxygen concentrations (hyperoxia = 35%, normoxia = 21%, and hypoxia = 7% O2) on terrestrial performance were tested during exercise on a terrestrial treadmill and during recovery from exhaustive exercise. Endurance and elevated post-exercise oxygen consumption (EPOC; the immediate O2 debt repaid post-exercise) correlated with atmospheric oxygen concentration indicating that when additional oxygen is available P. modestus can increase oxygen utilization both during and following exercise. The time required post-exercise for mudskippers to return to a resting metabolic rate did not differ between treatments. However, in normoxia, oxygen consumption increased above hyperoxic values 13-20 h post-exercise suggesting a delayed repayment of the incurred oxygen debt. Finally, following exercise, ventilatory movements associated with buccopharyngeal aerial respiration returned to their rest-like pattern more quickly at higher concentrations of oxygen. Taken together, the results of this study show that P. modestus can exercise longer and recover quicker under higher oxygen concentrations. Similarities between P. modestus and early tetrapods suggest that increasing atmospheric oxygen levels during the middle and late Paleozoic allowed for elevated aerobic capacity and improved terrestrial performance, and likely led to an accelerated diversification and expansion of vertebrate life into the terrestrial biosphere.

  18. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The projected changes in carbon exchange between China terrestrial ecosystem and the atmosphere and vegetation and soil carbon storage during the 21st century were investigated using an atmos-phere-vegetation interaction model (AVIM2). The results show that in the coming 100 a, for SRES B2 scenario and constant atmospheric CO2 concentration, the net primary productivity (NPP) of terrestrial ecosystem in China will be decreased slowly, and vegetation and soil carbon storage as well as net ecosystem productivity (NEP) will also be decreased. The carbon sink for China terrestrial ecosystem in the beginning of the 20th century will become totally a carbon source by the year of 2020, while for B2 scenario and changing atmospheric CO2 concentration, NPP for China will increase continuously from 2.94 GtC·a?1 by the end of the 20th century to 3.99 GtC·a?1 by the end of the 21st century, and vegetation and soil carbon storage will increase to 110.3 GtC. NEP in China will keep rising during the first and middle periods of the 21st century, and reach the peak around 2050s, then will decrease gradually and approach to zero by the end of the 21st century.

  19. Using the transit of Venus to probe the upper planetary atmosphere.

    Science.gov (United States)

    Reale, Fabio; Gambino, Angelo F; Micela, Giuseppina; Maggio, Antonio; Widemann, Thomas; Piccioni, Giuseppe

    2015-06-23

    During a planetary transit, atoms with high atomic number absorb short-wavelength radiation in the upper atmosphere, and the planet should appear larger during a primary transit observed in high-energy bands than in the optical band. Here we measure the radius of Venus with subpixel accuracy during the transit in 2012 observed in the optical, ultraviolet and soft X-rays with Hinode and Solar Dynamics Observatory missions. We find that, while Venus's optical radius is about 80 km larger than the solid body radius (the top of clouds and haze), the radius increases further by >70 km in the extreme ultraviolet and soft X-rays. This measures the altitude of the densest ion layers of Venus's ionosphere (CO2 and CO), useful for planning missions in situ, and a benchmark case for detecting transits of exoplanets in high-energy bands with future missions, such as the ESA Athena.

  20. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John B.; Tans, Pieter P.; Conway, Thomas J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Laboratory; White, James W.C.; Vaughn, Bruce W. [Univ. of Colorado, Boulder, CO (United States). Inst. for Arctic and Alpine Research

    2003-04-01

    The {sup 13}C/{sup 12}C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in {sup 13}C and CO{sub 2} at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO{sub 2} fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 {+-} 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO{sub 2} flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr.

  1. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, R. D.; Pierrehumbert, R. T., E-mail: rwordsworth@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 60637 IL (United States)

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  2. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

    Directory of Open Access Journals (Sweden)

    F. Jiang

    2013-08-01

    Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.

  3. Critical Masses for Various Terrestrial Planet Atmospheric Gases and Water in/on Mars

    Directory of Open Access Journals (Sweden)

    Lin-gun Liu

    2014-01-01

    Full Text Available The lower critical mass boundaries (CM for various atmospheric gas species on terrestrial planets are estimated. The CM is different for different gas molecules. Except for He, the observed atmospheric compositions of the terrestrial planets are consistent with these estimates. The lower CM boundary for gaseous H2O is calculated as 8.06 × 1026 g, which is significantly greater than the Martian mass (6.419 × 1026 g. Thus, Mars is not capable of retaining H2O in its atmosphere. If the speculated ocean on Mars and the claimed H2O ice in the Martian soil are true, both the ocean and ice had to be derived earlier from H2O degassed from the Martian interior after the surface temperature cooled much below 100°C. These watery bodies cannot be sustained for long durations because evaporation and sublimation would turn them into gaseous H2O, which would be lost to outer-space. It is concluded that H2O in/on Mars is inherent and that the primordial planetesimals that formed Mars must have contained appreciable amounts of hydrous minerals, if the oceans and/or H2O ice on Mars are true.

  4. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    Science.gov (United States)

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, A. David; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  5. Helium 584 Å and H Lyman-α Airglow in Giant Planetary Atmospheres: Modeling, Observations, and Implications

    Science.gov (United States)

    Parkinson, Christopher; Esposito, Larry W.

    2016-07-01

    The atmosphere of the outer planets is mainly composed of H2 and neutral atomic helium. The study of He 584 Å and H Lyman-α brightnesses is interesting as the EUV and FUV (Extreme and Far Ultraviolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in their thermospheres. Time variation, asymmetries, and polar enhancement of the airglow are also possible and analysis of the public archived NASA mission data sets (i.e. Voyager and Cassini) can help solve some of the outstanding problems associated with these phenomena. The comparison of observations with results from sophisticated photochemical and radiative transfer models can also help ameliorate unexplained differences in the dynamical processes operating within planetary upper atmospheres. Powerful analysis techniques allow us to extract information on atmospheric mixing, temperatures, and temporal changes due to the solar and seasonal cycles from the variations in distribution and intensity of airglow emissions that result. The presentation will discuss the implications of interpretations from comparison of modeling and observations in giant planetary atmospheres.

  6. A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres

    Science.gov (United States)

    Rimmer, P. B.; Helling, Ch

    2016-05-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO2, H2, CO, and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  7. Variation of Atmospheric Oxygen in the Phanerozoic Recorded By δ13c of Terrestrial Organic Matter

    Science.gov (United States)

    Muehlenbachs, K.; Tappert, R.; McKellar, R. C.; Wolfe, A. P.; Tappert, M.; Schoell, M.

    2014-12-01

    One important factor controlling the δ13C of C3 plants is pO2 and thus δ13C of fossil terrestrial organic matter is a proxy for ancient pO2 once variations of δ13C of the atmosphere and paleo pCO2 are corrected for. We reconstructed pO2 since the emergence of land plants in the Ordovician following the approach of Tappert et al. [1], and using the published δ13C record of fossil resins (amber), coals and dispersed terrestrial organic matter. For most of this time, atmospheric pO2 was considerably lower (pO2 ~ 10-21%) compared to today (pO2 = 21%). Secular variations in pO2 must reflect changing amounts of burial of organic matter and sulfides. We observe a strong correlation between pO2 calculated from land plants, and the strontium and lithium isotopic compositions of marine carbonates. The marine Sr isotope record reflects secular changes of continental weathering and climate driven by tectonic activity. Synchronicity of pO2 with the marine strontium isotope record implies that tectonic processes, including orogeneses and the formation of associated sedimentary basins, not only control the rate of weathering and volume of sedimentation, but also the amount and proportion of the biomass that is buried on geological timescales.

  8. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN

    Science.gov (United States)

    Rozanov, V. V.; Dinter, T.; Rozanov, A. V.; Wolanin, A.; Bracher, A.; Burrows, J. P.

    2017-06-01

    SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18-40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean-atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de.

  9. NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets

    Science.gov (United States)

    Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.

    2017-10-01

    H2O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H2O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H2O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapor mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H2O signatures may be strengthened by a factor of a few, loosening the observational demands for a H2O detection.

  10. Enhanced terrestrial carbon uptake: global drivers and implications for the growth rate of atmospheric CO2.

    Science.gov (United States)

    Keenan, Trevor F.; Prentice, Colin; Canadell, Josep; Williams, Christopher; Han, Wang; Riley, William; Zhu, Qing; Koven, Charlie; Chambers, Jeff

    2017-04-01

    In this presentation we will focus on using decadal changes in the global carbon cycle to better understand how ecosystems respond to changes in CO2 concentration, temperature, and water and nutrient availability. Using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple process-based global vegetation models, we examine the causes and consequences of the long-term changes in the terrestrial carbon sink. We show that over the past century the sink has been greatly enhanced, largely due to the effect of elevated CO2 on photosynthesis dominating over warming induced increases in respiration. We also examine the relative roles of greening, water and nutrients, along with individual events such as El Nino. We show that a slowdown in the rate of warming over land since the start of the 21st century likely led to a large increase in the sink, and that this increase was sufficient to lead to a pause in the growth rate of atmospheric CO2. We also show that the recent El Nino resulted in the highest growth rate of atmospheric CO2 ever recorded. Our results provide evidence of the relative roles of CO2 fertilization and warming induced respiration in the global carbon cycle, along with an examination of the impact of climate extremes.

  11. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event

    Science.gov (United States)

    Bianchi, Thomas S.; Garcia-Tigreros, Fenix; Yvon-Lewis, Shari A.; Shields, Michael; Mills, Heath J.; Butman, David; Osburn, Christopher; Raymond, Peter A.; Shank, G. Christopher; DiMarco, Steven F.; Walker, Nan; Kiel Reese, Brandi; Mullins-Perry, Ruth; Quigg, Antonietta; Aiken, George R.; Grossman, Ethan L.

    2013-01-01

    Rising CO2 concentration in the atmosphere, global climate change, and the sustainability of the Earth's biosphere are great societal concerns for the 21st century. Global climate change has, in part, resulted in a higher frequency of flooding events, which allow for greater exchange between soil/plant litter and aquatic carbon pools. Here we demonstrate that the summer 2011 flood in the Mississippi River basin, caused by extreme precipitation events, resulted in a “flushing” of terrestrially derived dissolved organic carbon (TDOC) to the northern Gulf of Mexico. Data from the lower Atchafalaya and Mississippi rivers showed that the DOC flux to the northern Gulf of Mexico during this flood was significantly higher than in previous years. We also show that consumption of radiocarbon-modern TDOC by bacteria in floodwaters in the lower Atchafalaya River and along the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 to the atmosphere in June and August 2011. This work shows that enhanced flooding, which may or may not be caused by climate change, can result in rapid losses of stored carbon in soils to the atmosphere via processes in aquatic ecosystems.

  12. The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity

    Science.gov (United States)

    Baron, Jill S.; Barber, Mary C.; Adams, Mark; Agboola, Julius I.; Allen, Edith B.; Bealey, William J.; Bobbink, Roland; Bobrovsky, Maxim V.; Bowman, William D.; Branquinho, Cristina; Bustamente, Mercedes M. C.; Clark, Christopher M.; Cocking, Edward C.; Cruz, Cristina; Davidson, Eric A.; Denmead, O. Tom; Dias, Teresa; Dise, Nancy B.; Feest, Alan; Galloway, James N.; Geiser, Linda H.; Gilliam, Frank S.; Harrison, Ian J.; Khanina, Larisa G.; Lu, Xiankai; Manrique, Esteban; Ochoa-Hueso, Raul; Ometto, Jean P. H. B.; Payne, Richard; Scheuschner, Thomas; Sheppard, Lucy J.; Simpson, Gavin L.; Singh, Y. V.; Stevens, Carly J.; Strachan, Ian; Sverdrup, Harald; Tokuchi, Naoko; van Dobben, Hans; Woodin, Sarah

    2014-01-01

    This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.

  13. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  14. New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, M.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V.; Lukenyuk, A.; Shymkiv, A.; Udodov, E.

    2016-06-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earth's surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  15. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  16. Laboratory Studies of Planetary Hazes: composition of cool exoplanet atmospheric aerosols with very high resolution mass spectrometry

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole

    2017-10-01

    We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.

  17. New Planetary Energy Balance, Ocean-Atmosphere Interaction and their Effects on Extreme Events in North Atlantic

    Science.gov (United States)

    Karrouk, Mohammed-Said

    2016-04-01

    Global warming has now reached the energetic phase of H2O's return to the ground after the saturation of the atmosphere in evaporation since the 80s and 90s of the last century, which were characterized by severe droughts, mainly in Africa. This phase is the result of the accumulation of thermal energy exchanges in the Earth-Ocean-Atmosphere system that resulted in the thrust reversal of the energy balance toward the poles. This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus compared to the mainland, or even opposite when the balance is negative on the land, and in the atmosphere, warm thermal advection easily reach the North Pole (planetary crests), as well as cold advection push deep into North Africa and the Gulf of Mexico (planetary valleys). This "New Ground Energy Balance" establishes a "New Meridian Atmospheric Circulation (MAC)" with an undulating character throughout the year, including the winter characterized by intense latitudinal very active energy exchanges between the surplus areas (tropical) and the deficit (polar) on the one hand, and the atmosphere, the ocean and the continent on the other. The excess radiation balance increases the potential evaporation of the atmosphere and provides a new geographical distribution of H2O worldwide: the excess water vapor is easily converted by cold advection (polar vortex) to heavy rains that cause floods or snow storms that paralyze the normal functioning of human activities, which creates many difficulties for users and leaves damage and casualties, but ensures water availability missing since a long time in many parts of the world, in Africa, Europe and America. The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the Atlantic ridge at Greenland

  18. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  19. Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota

    Science.gov (United States)

    Ohmoto, H

    1996-12-01

    The loss of Fe from some pre-2.2 Ga paleosols has been considered by previous investigators as the best evidence for a reduced atmosphere prior to 2.2 Ga. I have examined the behavior of Fe in both pre- and post-2.2 Ga paleosols from depth profiles of Fe3+/Ti, Fe2+/Ti, and sigma Fe/Ti ratios, and Fe3+/Ti vs. Fe2+/Ti plots. This new approach reveals a previously unrecognized history of paleosols. Essentially all paleosols, regardless of age, retain some characteristics of soils formed under an oxic atmosphere, such as increased Fe3+/Ti ratios from their parental rocks. The minimum oxygen pressure (PO2) for the 3.0-2.2 Ga atmosphere is calculated to be about 1.5% of the present atmospheric level, which is the same as that for the post-1.9 Ga atmosphere. The loss of sigma Fe, common in paleosol sections of all ages, was not due to a reducing atmosphere, but to reductive dissolution of ferric hydroxides formed under an oxic atmosphere. This reductive dissolution of ferric hydroxides occurred either (1) after soil formation by hydrothermal fluids or (2) during and/or after soil formation by organic acids generated from the decay of terrestrial organic matter. Terrestrial biomass on the early continents may have been more extensive than previously recognized.

  20. On the polarization angle of skylight reflected by natural surfaces: Properties and application for remote sensing of planetary atmospheres

    Directory of Open Access Journals (Sweden)

    J. Chowdhary

    2011-09-01

    Full Text Available In this study, we focus on the polarization angle of light scattered by terrestrial atmosphere-surface systems. The polarization angle describes the orientation of the plane in which the linearly polarized portion of light propagates. We show for skylight how this angle varies with the solar zenith angle and that, for skylight reflected by natural surfaces, these variations remain the same for wide ranges of atmospheric conditions and surface properties. This provides a tool for extracting scattering properties of the atmosphere from remote sensing observations of the Earth without any knowledge of the underlying surface. We demonstrate this principle for simulated data, and apply it to observations obtained by an airborne polarimeter over open oceans.

  1. Impact cratering – fundamental process in geoscience and planetary ...

    Indian Academy of Sciences (India)

    Any surface image of the Moon, Mars, or Mer- cury, those terrestrial planets that essentially lack a dense atmosphere and allow detailed surface exploration, demonstrates (figure 15) how dom- inant impact cratering has been as a surface- geological process, ever since the formation of earliest planetary crust more than 4.4 ...

  2. The response of terrestrial carbon exchange and atmospheric CO{sub 2} concentrations to El Nino SST forcing

    Energy Technology Data Exchange (ETDEWEB)

    Craig, S. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-05-01

    Version 3 of the National Center for Atmospheric Research Community Climate Model is used to investigate the response of terrestrial carbon exchange and atmospheric CO{sub 2} concentrations to sea surface temperature (SST) anomalies associated with the El Nino phenomenon. Air-sea exchange of CO{sub 2} is not included. During El Nino episodes, atmospheric CO{sub 2} concentrations are observed to rise anomalously even though CO{sub 2} outgassing is reduced in the eastern equatorial Pacific due to the cessation of upwelling. Atmospheric carbon isotope data point to a larger terrestrial carbon release as being responsible. The reasons for such a terrestrial response are examined by comparing a control run with prescribed, seasonally varying, climatological SSTs to an ensemble of integrations employing observed SST fields from the strong El Nino event of 1982-83. The model captures the main features of the El Nino induced meteorological anomalies, including the shifts in tropical rainfall patterns that are of particular importance in driving the carbon cycle changes. Most of the regions that exhibit a clear El Nino signal in the simulation possess well documented links to El Nino in the observational record, Examples include northeastern South America, India, Indonesia, southeastern Africa, Ecuador and northern Peru, and parts of southeastern South America. The combined perturbation of the net carbon flux in these areas involves a release of CO{sub 2} to the atmosphere totalling 7 GtC during the 1982-83 El Nino event. Atmospheric CO{sub 2} rises by about 3 ppmv as a result which is more than sufficient to explain the observed variations. The exaggerated response is indicative of the strong sensitivity of the model carbon routines to climate fluctuations. It is argued that the release of CO{sub 2} from terrestrial systems is fundamentally related to the overall shift of precipitation from land areas to the oceans caused by the El Nino SST forcing. Since the SST forcing

  3. Enhanced terrestrial carbon uptake linked to a recent pause in the growth rate of atmospheric CO2

    Science.gov (United States)

    Keenan, T. F.; Prentice, I. C. C.; Canadell, J.; Williams, C. A.; Wang, H.; Collatz, G. J.

    2016-12-01

    The terrestrial carbon sink is increasing, yet the mechanisms responsible for its long-term enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here, using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple process-based global vegetation models, we examine the causes and consequences of the enhancement of the terrestrial carbon sink. We show that over the past century the enhanced sink is largely due to the effect of elevated CO2 on photosynthesis dominating over warming induced increases in respiration. The slowdown in global warming since the start of the 21st century is shown to have increased the sink, leading to a pause in the growth rate of atmospheric CO2, and providing further evidence of the relative roles of CO2 fertilization and warming induced respiration. The effect of enhanced terrestrial carbon uptake on the atmospheric CO2 growth rate highlights the need to protect both existing carbon stocks and those areas where the sink is growing most rapidly.

  4. Exploring the control of land-atmospheric oscillations over terrestrial vegetation productivity

    Science.gov (United States)

    Depoorter, Mathieu; Green, Julia; Gentine, Pierre; Liu, Yi; van Eck, Christel; Regnier, Pierre; Dorigo, Wouter; Verhoest, Niko; Miralles, Diego

    2015-04-01

    Vegetation dynamics play an important role in the climate system due to their control on the carbon, energy and water cycles. The spatiotemporal variability of vegetation is regulated by internal climate variability as well as natural and anthropogenic forcing mechanisms, including fires, land use, volcano eruptions or greenhouse gas emissions. Ocean-atmospheric oscillations, affect the fluxes of heat and water over continents, leading to anomalies in radiation, precipitation or temperature at widely separated locations (i.e. teleconnections); an effect of ocean-atmospheric oscillations on terrestrial primary productivity can therefore be expected. While different studies have shown the general importance of internal climate variability for global vegetation dynamics, the control by particular teleconnections over the regional growth and decay of vegetation is still poorly understood. At continental to global scales, satellite remote sensing offers a feasible approach to enhance our understanding of the main drivers of vegetation variability. Traditional studies of the multi-decadal variability of global vegetation have been usually based on the normalized difference vegetation index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR), which extends back to the early '80s. There are, however, some limitations to NDVI observations; arguably the most important of these limitations is that from the plant physiology perspective the index does not have a well-defined meaning, appearing poorly correlated to vegetation productivity. On the other hand, recently developed records from other remotely-sensed properties of vegetation, like fluorescence or microwave vegetation optical depth, have proven a significantly better correspondence to above-ground biomass. To enhance our understanding of the controls of ocean-atmosphere oscillations over vegetation, we propose to explore the link between climate oscillation extremes and net primary productivity

  5. Impact of a Regional Drought on Terrestrial Carbon Fluxes and Atmospheric Carbon: Results from a Coupled Carbon Cycle Model

    Science.gov (United States)

    Lee, Eunjee; Koster, Randal D.; Ott, Lesley E.; Weir, Brad; Mahanama, Sarith; Chang, Yehui; Zeng, Fan-Wei

    2017-01-01

    Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO2) stems from uncertainty in terrestrial carbon fluxes, and the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO2 mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Results show a sequence of changes in carbon fluxes and atmospheric CO2, induced by the drought. The relative contributions of meteorological changes to the neighboring carbon dynamics are also presented. The coupled modeling approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.

  6. Heterogeneous Reactions of Polycyclic Aromatic Hydrocarbons on Atmospheric and Terrestrial Surfaces

    Science.gov (United States)

    Simonich, S. L.

    2014-12-01

    formation of 2-nitrofluoranthene or 2-nitropyrene, suggesting that heterogeneous reactions predominated. The importance of this research with respect to atmospheric long-range transport of PM-bound PAHs and heterogeneous reaction of PAHs on terrestrial surfaces will be discussed.

  7. The role of terrestrial plants in limiting atmospheric CO(2) decline over the past 24 million years.

    Science.gov (United States)

    Pagani, Mark; Caldeira, Ken; Berner, Robert; Beerling, David J

    2009-07-02

    Environmental conditions during the past 24 million years are thought to have been favourable for enhanced rates of atmospheric carbon dioxide drawdown by silicate chemical weathering. Proxy records indicate, however, that the Earth's atmospheric carbon dioxide concentrations did not fall below about 200-250 parts per million during this period. The stabilization of atmospheric carbon dioxide concentrations near this minimum value suggests that strong negative feedback mechanisms inhibited further drawdown of atmospheric carbon dioxide by high rates of global silicate rock weathering. Here we investigate one possible negative feedback mechanism, occurring under relatively low carbon dioxide concentrations and in warm climates, that is related to terrestrial plant productivity and its role in the decomposition of silicate minerals. We use simulations of terrestrial and geochemical carbon cycles and available experimental evidence to show that vegetation activity in upland regions of active orogens was severely limited by near-starvation of carbon dioxide in combination with global warmth over this period. These conditions diminished biotic-driven silicate rock weathering and thereby attenuated an important long-term carbon dioxide sink. Although our modelling results are semi-quantitative and do not capture the full range of biogeochemical feedbacks that could influence the climate, our analysis indicates that the dynamic equilibrium between plants, climate and the geosphere probably buffered the minimum atmospheric carbon dioxide concentrations over the past 24 million years.

  8. Land Use Effects on Atmospheric C-13 Imply a Sizable Terrestrial CO2 Sink in Tropical Latitudes

    Science.gov (United States)

    Townsend, Alan R.; Asner, Gregory P.; Tans, Pieter P.; White, James W. C.

    2000-01-01

    Records of atmospheric CO2 and 13-CO2, can be used to distinguish terrestrial vs. oceanic exchanges of CO2 with the atmosphere. However, this approach has proven difficult in the tropics, partly due to extensive land conversion from C-3 to C-4 vegetation. We estimated the effects of such conversion on biosphere-atmosphere C-13 exchange for 1991 through 1999, and then explored how this 'land-use disequilibrium' altered the partitioning of net atmospheric CO2 exchanges between ocean and land using NOAA-CMDL data and a 2D, zonally averaged atmospheric transport model. Our results show sizable CO2 uptake in C-3-dominated tropical regions in seven of the nine years; 1997 and 1998, which included a strong ENSO event, are near neutral. Since these fluxes include any deforestation source, our findings imply either that such sources are smaller than previously estimated, and/or the existence of a large terrestrial CO2 sink in equatorial latitudes.

  9. Comparative planetary nitrogen atmospheres: Density and thermal structures of Pluto and Triton

    Science.gov (United States)

    Strobel, Darrell F.; Zhu, Xun

    2017-07-01

    Both atmospheres of Pluto and Neptune's largest satellite Triton have cold surfaces with surface gravitational accelerations and atmospheric surface pressures of comparable magnitude. To study their atmospheres we have updated Zhu et al. (2014) model for Pluto's atmosphere by adopting Voigt line profiles in the radiation module with the latest spectral database and extended the model to Triton's atmosphere by including additional parameterized heating due to the magnetospheric electron transport and energy deposition. The CH4 mixing ratio profiles play central roles in differentiating the atmospheres of Pluto and Triton. On Pluto the surface CH4 mole fraction is in the range of 0.3-0.8%, sufficiently high to ensure that it is well mixed in the lower atmosphere and not subject to photochemical destruction. Near the exobase CH4 attains comparable density to N2 due to gravitational diffusive separation and escapes at 500 times the N2 rate (= 1 × 1023 N2 s-1). In Triton's atmosphere, the surface CH4 mole fraction is on the order of 0.015%, sufficiently low to ensure that it is photochemically destroyed irreversibly in the lower atmosphere and that N2 remains the major species, even at the exobase. With solar EUV power only, Triton's upper thermosphere is too cold and magnetospheric heating, approximately comparable to the solar EUV power, is needed to bring the N2 tangential column number density in the 500-800 km range up to values derived from the Voyager 2 UVS observations (Broadfoot et al., 1989). Due to their cold exobase temperatures relative to the gravitational potential energy wells that N2 resides in, atmospheric escape from Triton and Pluto is not dominated by N2 Jeans escape but by CH4 from Pluto and H, C, N and H2 from Triton. The atmospheric thermal structure near the exobase is sensitive to the atmospheric escape rate only when it is significantly greater than 2 × 1027 amu s-1, above which enhanced Jeans escape and larger radial velocity adiabatically

  10. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  11. Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between Eemian and Holocene

    Directory of Open Access Journals (Sweden)

    G. Schurgers

    2006-01-01

    Full Text Available A complex earth system model (atmosphere and ocean general circulation models, ocean biogeochemistry and terrestrial biosphere was used to perform transient simulations of two interglacial sections (Eemian, 128–113 ky B.P., and Holocene, 9 ky B.P.–present. The changes in terrestrial carbon storage during these interglacials were studied with respect to changes in the earth's orbit. The effects of different climate factors on changes in carbon storage were studied in offline experiments in which the vegetation model was forced only with temperature, hydrological parameters, radiation, or CO2 concentration from the transient runs. The largest anomalies in terrestrial carbon storage were caused by temperature changes. However, the increase in storage due to forest expansion and increased photosynthesis in the high latitudes was nearly balanced by the decrease due to increased respiration. Large positive effects on carbon storage were caused by an enhanced monsoon circulation in the subtropics between 128 and 121 ky B.P. and between 9 and 6 ky B.P., and by increases in incoming radiation during summer for 45° to 70° N compared to a control simulation with present-day insolation. Compared to this control simulation, the net effect of these changes was a positive carbon storage anomaly in the terrestrial biosphere of about 200 Pg C for 125 ky B.P. and 7 ky B.P., and a negative anomaly around 150 Pg C for 116 ky B.P. Although the net increases for Eemian and Holocene were rather similar, the magnitudes of the processes causing these effects were different. The decrease in terrestrial carbon storage during the experiments was the main driver of an increase in atmospheric CO2 concentration during both the Eemian and the Holocene.

  12. Simultaneous Assimilation of FAPAR and Atmospheric CO2 into a Terrestrial Vegetation Model

    Science.gov (United States)

    Kaminski, T.; Knorr, W.; Scholze, M.; Gobron, N.; Pinty, B.; Giering, R.; Mathieu, P. P.

    2012-04-01

    Tackling the possible severe impacts of climate change on the carbon cycle and land water resources requires further development of simulation models and monitoring capabilities. Carbon cycle impacts can lead to further climate change through releases of CO2, and impacts on water resources are critical for human survival. A rapidly increasing monitoring capability is Earth Observation (EO) by satellites. Usually, EO by its very nature focuses on diagnosing the current state of the planet. However, it is possible to use EO products in data assimilation systems to improve not only the diagnostics of the current state, but also the accuracy of future predictions. This study investigates the simultaneous assimilation of ground-based atmospheric CO2 concentration data and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from measurements made by the MERIS sensor on-board ENVISAT and to what extent these data can be used to improve models of terrestrial ecosystems, carbon cycling and hydrology. Further development of the Carbon Cycle Data Assimilation System (CCDAS, see http://CCDAS.org) for the purpose of simultaneous assimilation of FAPAR and atmospheric carbon dioxide measurements showed that the design of the ecosystem model is critical for successful implementation of highly efficient variational data assimilation schemes. This is important, because each newly added data stream will typically require a separate observational operator. In the case of this study, it was the leaf development (phenology) sub-model that needed to be developed. As a variational data assimilation scheme, CCDAS relies on first and second derivatives of the underlying model for estimating process parameters with uncertainty ranges. In a subsequent step these parameter uncertainties are mapped forward onto uncertainty ranges for predicted carbon and water fluxes. We present assimilation experiments of MERIS FAPAR at the global scale together with in situ observations

  13. Microwave studies of planetary atmospheres. [by Mariner 2 Space Probe for Jupiter and Venus

    Science.gov (United States)

    Jones, D. E.

    1975-01-01

    Data from microwave observations of the atmospheres of Jupiter and Venus are examined. Radar features with corresponding coordinates of longitude and lattitude are given, along with scans of Mariner 2 radiometer beams.

  14. Modeling pN2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures

    Science.gov (United States)

    Stüeken, E. E.; Kipp, M. A.; Koehler, M. C.; Schwieterman, E. W.; Johnson, B.; Buick, R.

    2016-12-01

    Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N2, but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean - presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO2, and (c) atmospheric oxygenation could have initiated a stepwise pN2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N2 and O2 is a signature of an oxygen-producing biosphere.

  15. Martian Superoxide and Peroxide O2 Release (OR) Assay: A New Technology for Terrestrial and Planetary Applications

    Science.gov (United States)

    Georgiou, Christos D.; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Kontantinos; Papapostolou, Ioannis; Quinn, Richard C.; McKay, Christopher P.; Sun, Henry J.

    2015-01-01

    This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2, and their quantification by an O2 electrode based on the stoichiometry of the involved reactions: The intermediate product O2 from the hydrolysis of metal superoxides is converted by cytochrome c to O2, and also by superoxide dismutase (SOD) to 1/2 mol O2 and 1/2 mol H2O2, which is then converted by catalase (CAT) to 1/2 mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to 1/2 mol O2 by CAT. The assay-method was validated in a sealed sample chamber using a liquid-phase Clark-type O2 electrode with known concentrations of O2 and H2O2, and with commercial metal superoxide and peroxide mixed with Mars analogue Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(exp. -3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by gamma-radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, demonstrating the suitability of these enzymes for planetary missions, e.g., in Mars or Europa.

  16. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Seager, Sara, E-mail: hury@caltech.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-03-20

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 μm in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 μm in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  17. Zeppelin NT - Measurement Platform for the Exploration of Atmospheric Chemistry and Dynamics in the Planetary Boundary Layer

    Science.gov (United States)

    Hofzumahaus, Andreas; Holland, Frank; Oebel, Andreas; Rohrer, Franz; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas; Brauchle, Artur; Steinlein, Klaus; Gritzbach, Robert

    2014-05-01

    The planetary boundary layer (PBL) is the chemically most active and complex part of the atmosphere where freshly emitted reactive trace gases, tropospheric radicals, atmospheric oxidation products and aerosols exhibit a large variability and spatial gradients. In order to investigate the chemical degradation of trace gases and the formation of secondary pollutants in the PBL, a commercial Zeppelin NT was modified to be used as an airborne measurement platform for chemical and physical observations with high spatial resolution. The Zeppelin NT was developed by Zeppelin Luftschifftechnik (ZLT) and is operated by Deutsche Zeppelin Reederei (DZR) in Friedrichshafen, Germany. The modification was performed in cooperation between Forschungszentrum Jülich and ZLT. The airship has a length of 75 m, can lift about 1 ton of scientific payload and can be manoeuvered with high precision by propeller engines. The modified Zeppelin can carry measurement instruments mounted on a platform on top of the Zeppelin, or inside the gondola beneath the airship. Three different instrument packages were developed to investigate a. gas-phase oxidation processes involving free radicals (OH, HO2) b. formation of secondary organic aerosols (SOA) c. new particle formation (nucleation) The presentation will describe the modified airship and provide an overview of its technical performance. Examples of its application during the recent PEGASOS flight campaigns in Europe will be given.

  18. Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process

    Science.gov (United States)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard

    2014-01-01

    Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may

  19. The non-homogeneous accumulation model for terrestrial planet formation and the consequences for the atmosphere of Venus

    Science.gov (United States)

    Turekian, K. K.; Clark, S. P., Jr.

    1975-01-01

    The nonhomogeneous-accumulation model for the formation of the terrestrial planets is described, and its consequences for the formation of the Venusian atmosphere are assayed in the context of our knowledge of the composition of the earth and carbonaceous chondrites. The relative abundances of the low-temperature condensibles in the reservoirs at the earth's surface are applied to Venus. Although carbonaceous chondrites show similar properties for the chemically bound elements, they show large deficiencies for the rare gases. The major gases on Venus, by volume, are predicted to be 98.12% CO2, 1.86% N2 and 0.02% Ar-40.

  20. Transmission spectroscopy of HAT-P-32b with the LBT: confirmation of clouds/hazes in the planetary atmosphere

    Science.gov (United States)

    Mallonn, M.; Strassmeier, K. G.

    2016-05-01

    Aims: Spectroscopic observations of a transit event of an extrasolar planet offer the opportunity to study the composition of the planetary atmosphere. This can be done with comparably little telescope time using a low-resolution multi-object spectrograph at a large aperture telescope. We observed a transit of the inflated hot Jupiter HAT-P-32b with the Multi-Object Double Spectrograph at the Large Binocular Telescope to characterize its atmosphere from 3300 to 10 000 Å. Methods: A time series of target and reference star spectra was binned in two broad-band wavelength channels, from which differential transit light curves were constructed. These broad-band light curves were used to confirm previous transit parameter determinations. To derive the planetary transmission spectrum with a resolution of R ~ 60, we created a chromatic set of 62 narrow-band light curves. The spectrum was corrected for the third light of a nearby M star. Additionally, we undertook a photometric monitoring campaign of the host star to correct for the influence of starspots. Results: The transmission spectrum of HAT-P-32b shows no pressure-broadened absorption features from Na and K, which is interpreted by the presence of clouds or hazes in the planetary atmosphere. This result is in agreement with previous studies on the same planet. The presence of TiO in gas phase could be ruled out. We find a 2.8σ indication of increased absorption in the line core of potassium (K I 7699 Å). No narrow absorption features of Na and Hα were detected. Furthermore, tentative indications were found for a slope of increasing opacity toward blue wavelengths from the near-IR to the near-UV with an amplitude of two scale heights. If confirmed by follow-up observations, it can be explained by aerosols either causing Mie scattering or causing Rayleigh scattering with an aerosol - gas scale height ratio below unity. The host star was found to be photometrically stable within the measurement precision. Based on

  1. Simulating influence of QBO phase on planetary waves during a stratospheric warming in a general circulation model of the middle atmosphere

    Science.gov (United States)

    Koval, Andrey; Gavrilov, Nikolai; Pogoreltsev, Alexander; Savenkova, Elena

    2016-04-01

    One of the important factors of dynamical interactions between the lower and upper atmosphere is energy and momentum transfer by atmospheric internal gravity waves. For numerical modeling of the general circulation and thermal regime of the middle and upper atmosphere, it is important to take into account accelerations of the mean flow and heating rates produced by dissipating internal waves. The quasi-biennial oscillations (QBOs) of the zonal mean flow at lower latitudes at stratospheric heights can affect the propagation conditions of planetary waves. We perform numerical simulation of global atmospheric circulation for the initial conditions corresponding to the years with westerly and easterly QBO phases. We focus on the changes in amplitudes of stationary planetary waves (SPWs) and traveling normal atmospheric modes (NAMs) in the atmosphere during SSW events for the different QBO phases. For these experiments, we use the global circulation of the middle and upper atmosphere model (MUAM). There is theory of PW waveguide describing atmospheric regions where the background wind and temperature allow the wave propagation. There were introduced the refractive index for PWs and found that strongest planetary wave propagation is in areas of large positive values of this index. Another important PW characteristic is the Eliassen-Palm flux (EP-flux). These characteristics are considered as useful tools for visualizing the PW propagation conditions. Sudden stratospheric warming (SSW) event has significant influence on the formation of the weather anomalous and climate changes in the troposphere. Also, SSW event may affect the dynamical and energy processes in the upper atmosphere. The major SSW events imply significant temperature rises (up to 30 - 40 K) at altitudes 30 - 50 km accompanying with corresponding decreases, or reversals, of climatological eastward zonal winds in the stratosphere.

  2. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    A.W. King; R.J. Andres; K J. Davis; M. Hafer; D.J. Hayes; D.N. Huntzinger; B. de Jong; W.A. Kurz; A.D. McGuire; R. Vargas; Y. Wei; T.O. West; C.W. Woodall

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net...

  3. Collaborative project. Ocean-atmosphere interaction from meso- to planetary-scale. Mechanics, parameterization, and variability

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Ramalingam [Texas A & M Univ., College Station, TX (United States); Small, Justin [National Center for Atmospheric Research (NCAR), Boulder, CO (United States)

    2015-12-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. High-resolution global coupled integrations using CAM/CESM were carried out at NCAR by the lead PI. At TAMU, we have complemented the work at NCAR by analyzing datasets from the high-resolution (28km) CESM integrations (Small et al., 2014) as well as very high resolution (9km, 3km) runs using a coupled regional climate (CRCM) carried out locally. The main tasks carried out were: 1. Analysis of surface wind in observations and high-resolution CAM/CCSM simulations 2. Development of a feature-tracking algorithm for studying midlatitude air-sea interaction by following oceanic mesoscale eddies and creating composites of the atmospheric response overlying the eddies. 3. Applying the Lagrangian analysis technique in the Gulf Stream region to compare data from observational reanalyses, global CESM coupled simulations, 9km regional coupled simulations and 3km convection-resolving regional coupled simulations. Our main findings are that oceanic mesoscale eddies influence not just the atmospheric boundary layer above them, but also the lower portions of the free troposphere above the boundary layer. Such a vertical response could have implications for a remote influence of Gulf Stream oceanic eddies on North Atlantic weather patterns through modulation of the storm track, similar to what has been noted in the North Pacific. The coarse resolution

  4. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    Science.gov (United States)

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  5. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir

    Science.gov (United States)

    Macario, Kita D.; Alves, Eduardo Q.; Carvalho, Carla; Oliveira, Fabiana M.; Ramsey, Christopher Bronk; Chivall, David; Souza, Rosa; Simone, Luiz Ricardo L.; Cavallari, Daniel C.

    2016-06-01

    In Brazilian archaeological shellmounds, many species of land snails are found abundantly distributed throughout the occupational layers, forming a contextualized set of samples within the sites and offering a potential alternative to the use of charcoal for radiocarbon dating analyses. In order to confirm the effectiveness of this alternative, one needs to prove that the mollusk shells reflect the atmospheric carbon isotopic concentration in the same way charcoal does. In this study, 18 terrestrial mollusk shells with known collection dates from 1948 to 2004 AD, around the nuclear bombs period, were radiocarbon dated. The obtained dates fit the SH1-2 bomb curve within less than 15 years range, showing that certain species from the Thaumastus and Megalobulimus genera are reliable representatives of the atmospheric carbon isotopic ratio and can, therefore, be used to date archaeological sites in South America.

  6. Consistent assimilation of MERIS FAPAR and atmospheric CO2 into a terrestrial vegetation model and interactive mission benefit analysis

    Directory of Open Access Journals (Sweden)

    P.-P. Mathieu

    2012-08-01

    Full Text Available The terrestrial biosphere is currently a strong sink for anthropogenic CO2 emissions. Through the radiative properties of CO2, the strength of this sink has a direct influence on the radiative budget of the global climate system. The accurate assessment of this sink and its evolution under a changing climate is, hence, paramount for any efficient management strategies of the terrestrial carbon sink to avoid dangerous climate change. Unfortunately, simulations of carbon and water fluxes with terrestrial biosphere models exhibit large uncertainties. A considerable fraction of this uncertainty reflects uncertainty in the parameter values of the process formulations within the models. This paper describes the systematic calibration of the process parameters of a terrestrial biosphere model against two observational data streams: remotely sensed FAPAR (fraction of absorbed photosynthetically active radiation provided by the MERIS (ESA's Medium Resolution Imaging Spectrometer sensor and in situ measurements of atmospheric CO2 provided by the GLOBALVIEW flask sampling network. We use the Carbon Cycle Data Assimilation System (CCDAS to systematically calibrate some 70 parameters of the terrestrial BETHY (Biosphere Energy Transfer Hydrology model. The simultaneous assimilation of all observations provides parameter estimates and uncertainty ranges that are consistent with the observational information. In a subsequent step these parameter uncertainties are propagated through the model to uncertainty ranges for predicted carbon fluxes. We demonstrate the consistent assimilation at global scale, where the global MERIS FAPAR product and atmospheric CO2 are used simultaneously. The assimilation improves the match to independent observations. We quantify how MERIS data improve the accuracy of the current and future (net and gross carbon flux estimates (within and beyond the assimilation period. We further demonstrate the use of an interactive mission benefit

  7. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    Science.gov (United States)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  8. Characteristics of mid-latitude planetary waves in the lower atmosphere derived from radiosonde data

    Directory of Open Access Journals (Sweden)

    R. Wang

    2012-10-01

    Full Text Available The activities of mid-latitude planetary waves (PWs in the troposphere and lower stratosphere (TLS are presented by using the radiosonde data from 2000 to 2004 over four American stations (Miramar Nas, 32.9° N, 117.2° W; Santa Teresa, 31.9° N, 106.7° W; Fort Worth, 32.8° N, 97.3° W; and Birmingham, 33.1° N, 86.7° W and one Chinese station (Wuhan, 30.5° N, 114.4° E. Statistically, strong PWs mainly appear around subtropical jet stream in the troposphere and lower stratosphere. In the troposphere, the activities of the mid-latitude PWs are strong around the centre of the subtropical jet stream in winter and become small near the tropopause, which indicates that the subtropical jet stream may strengthen the propagation of PWs or even be one of the PW excitation sources. Among the three disturbance components of temperature, zonal and meridional winds, PWs at Wuhan are stronger in the temperature component, but weaker in the zonal wind component than at the other four American stations. While in the meridional wind component, the strengths of PW spectral amplitudes at the four American stations decrease from west to east, and their amplitudes are all larger than that of Wuhan. However, the PWs are much weaker in the stratosphere and only the lower frequency parts remain. The amplitudes of the PWs in the stratosphere increase with height and are strong in winter with the zonal wind component being the strongest. Using the refractive index, we found that whether the PWs could propagate upward to the stratosphere depends on the thickness of the tropopause reflection layer. In the case study of the 2000/2001 winter, it is observed that the quasi 16-day wave in the troposphere is a quasi standing wave in the vertical direction and propagates upward slowly with vertical wavelength greater than 24 km in the meridional component. It propagates eastward with the zonal numbers between 5 and 8, and the quasi 16-day wave at Wuhan is probably the same

  9. An instrument to measure turbulent eddy fluxes in the atmosphere of Mars

    Science.gov (United States)

    S. Rafkin; D. Banfield; R. Dissly; J. Silver; A. Stanton; E. Wilkinson; W. Massman; J. Ham

    2012-01-01

    Turbulent eddies in the planetary boundary layer of the terrestrial planet atmospheres are the primary mechanism by which energy, momentum, gasses, and aerosols are exchanged between the surface and the atmosphere [1]. The importance of eddies has long been recognized by the Earth atmospheric science community, and turbulent theory for Earth has a long history with a...

  10. Laboratory measurements and modeling of molecular photoabsorption in the ultraviolet for planetary atmospheres applications: diatomic sulfur and sulfur monoxide

    Science.gov (United States)

    Stark, Glenn

    2016-07-01

    Our research program comprises the measurement and modeling of ultraviolet molecular photoabsorption cross sections with the highest practical resolution. It supports efforts to interpret and model observations of planetary atmospheres. Measurement and modeling efforts on diatomic sulfur (S _{2}) and sulfur monoxide (SO) are in progress. S _{2}: Interpretations of atmospheric (Io, Jupiter, cometary comae) S _{2} absorption features are hindered by a complete lack of laboratory cross section data in the ultraviolet. We are working to quantify the photoabsorption spectrum of S _{2} from 240 to 300 nm based on laboratory measurements and theoretical calculations. We have constructed an experimental apparatus to produce a stable column of S _{2} vapor at a temperature of 800 K. High-resolution measurements of the absorption spectrum of the strong B - X system of S _{2} were completed using the NIST VUV-FTS at Gaithersburg, Maryland. These measurements are currently being incorporated into a coupled-channel model of the absorption spectrum of S _{2} to quantify the contributions from individual band features and to establish the mechanisms responsible for the strong predissociation signature of the B - X system. A successful coupled channels model can then be used to calculate the B - X absorption spectrum at any temperature. SO: There has been a long-standing need for high-resolution cross sections of sulfur monoxide radicals in the ultraviolet and vacuum ultraviolet regions, where the molecule strongly predissociates, for modeling the atmospheres of Io and Venus, and most recently for understanding sulfur isotope effects in the ancient (pre-O _{2}) atmosphere of Earth. We have produced a measurable column of SO in a continuous-flow DC discharge cell, using SO _{2} as a parent molecule. Photoabsorption measurements were recently recorded on the DESIRS beamline of the SOLEIL synchrotron, taking advantage of the high-resolution VUV-FTS on that beamline. A number of

  11. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  12. Planetary wave coupling processes in the middle atmosphere (30 90 km): A study involving MetO and MFR data

    Science.gov (United States)

    Chshyolkova, T.; Manson, A. H.; Meek, C. E.; Avery, S. K.; Thorsen, D.; MacDougall, J. W.; Hocking, W.; Murayama, Y.; Igarashi, K.

    2006-02-01

    The MetO assimilated data and mesospheric winds provided by five medium frequency radars (MFR) from the Canada US Japan Opportunity (CUJO) network have been used to study coupling processes due to planetary waves (PWs) in the middle atmosphere. It is shown that there is strong vertical coupling between the stratosphere and mesosphere especially during winter months. However, not all observed disturbances in mesospheric winds can be explained by the simple propagation of PWs from below. In addition to the vertical coupling there is also weaker horizontal “inter-hemispheric” coupling during equinoxes. The data used are from December 2000 to December 2002. The time interval was chosen to include austral winters and springs of 2 years: the dynamically unusual year 2002, during which a major stratospheric warming involving a split vortex and wind reversals occurred in the Southern Hemisphere, and a more typical year 2001. The character of PW activity during these 2 years is compared. In contrast to the usually weak PW activity dominated by eastward motions, both strong eastward and westward propagating waves existed during austral winter of 2002. Wavelet spectra of MetO winds show strong peaks near 14 days that match similar signals observed in mesospheric winds at Antarctic stations [Dowdy et al., 2004. The large-scale dynamics of the mesosphere lower thermosphere during the SH stratospheric warming of 2002. Geophysical Research Letters 31, L14102. doi:10.1029/2004GL020282] during the stratospheric warming. It is suggested that this oscillation was generated at low atmospheric heights and propagated upward. The longer duration of the stratospheric mesospheric winter vortex (7 months) compared to that of the summer jet in the Northern Hemisphere provide equinoctial months when eastward winds dominate globally. Results suggest that during equinoxes, with favourable conditions, the PWs with ˜10-, 16- and 25-day periods can penetrate to the opposite hemisphere.

  13. Planetcam: A Visible And Near Infrared Lucky-imaging Camera To Study Planetary Atmospheres And Solar System Objects

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Rojas, J.; Hueso, R.; Perez-Hoyos, S.; de Bilbao, L.; Murga, G.; Ariño, J.; Mendikoa, I.

    2012-10-01

    PlanetCam is a two-channel fast-acquisition and low-noise camera designed for a multispectral study of the atmospheres of the planets (Venus, Mars, Jupiter, Saturn, Uranus and Neptune) and the satellite Titan at high temporal and spatial resolutions simultaneously invisible (0.4-1 μm) and NIR (1-2.5 μm) channels. This is accomplished by means of a dichroic beam splitter that separates both beams directing them into two different detectors. Each detector has filter wheels corresponding to the characteristic absorption bands of each planetary atmosphere. Images are acquired and processed using the “lucky imaging” technique in which several thousand images of the same object are obtained in a short time interval, coregistered and ordered in terms of image quality to reconstruct a high-resolution ideally diffraction limited image of the object. Those images will be also calibrated in terms of intensity and absolute reflectivity. The camera will be tested at the 50.2 cm telescope of the Aula EspaZio Gela (Bilbao) and then commissioned at the 1.05 m at Pic-duMidi Observatory (Franca) and at the 1.23 m telescope at Calar Alto Observatory in Spain. Among the initially planned research targets are: (1) The vertical structure of the clouds and hazes in the planets and their scales of variability; (2) The meteorology, dynamics and global winds and their scales of variability in the planets. PlanetCam is also expected to perform studies of other Solar System and astrophysical objects. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.

  14. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  15. Fractionation of terrestrial neon by hydrodynamic hydrogen escape from ancient steam atmospheres

    Science.gov (United States)

    Zahnle, K.

    Atmospheric neon is isotopically heavier than mantle neon. By contrast, nonradiogenic mantle Ar, Kr, and Xe are not known to differ from the atmosphere. These observations are most easily explained by selective neon loss to space; however, neon is much too massive to escape from the modern atmosphere. Steam atmospheres are a likely, if intermittent, feature of the accreting Earth. They occur because, on average, the energy liberated during accretion places Earth above the runaway greenhouse threshold, so that liquid water is not stable at the surface. It is found that steam atmospheres should have lasted some ten to fifty million years. Hydrogen escape would have been vigorous, but abundant heavy constituents would have been retained. There is no lack of plausible candidates; CO2, N2, or CO could all suffice. Neon can escape because it is less massive than any of the likely pollutants. Neon fractionation would have been a natural byproduct. Assuming that the initial Ne-20/Ne-22 ratio was solar, it was found that it would have taken some ten million years to effect the observed neon fractionation in a 30 bar steam atmosphere fouled with 10 bars of CO. Thicker atmospheres would have taken longer; less CO, shorter. This mechanism for fractionating neon has about the right level of efficiency. Because the lighter isotope escapes much more readily, total neon loss is pretty minimal; less than half of the initial neon endowment escapes.

  16. Fullerenes and the Nature of Planetary Gases

    Science.gov (United States)

    Becker, Luann; Poreda, Robert J.; Nuth, Joe

    2003-01-01

    Over the past several decades, two issues have dominated the discussion of planetary noble gas patterns: 1) the general resemblance of the noble gas abundances in carbonaceous chondrites to those measured in the Earth s atmosphere and; 2) atmospheric inventories of argon and neon that fall off significantly with increasing distance from the Sun. The recognition of the latter has led to the conclusion that the planetary component is not found on planets. In particular, the inability to explain the missing xenon reservoir, once thought to be sequestered in crustal rocks has been extremely troublesome. Some models have focused on various fractionations of solar wind rather than condensation as the process for the evolution of noble gases in the terrestrial planets. However, these models cannot explain the observed gradient of the gases, nor do they account for the similar Ne/Ar ratios and the dissimilar planetary Ar/Kr ratios. More recent studies have focused on hydrodynamic escape to explain the fractionation of gases, like neon, in the atmosphere and the mantle. Escape theory also seems to explain, in part, the isotopically heavy argon on Mars, however, it does not explain the discrepancies observed for the abundances of argon and neon on Venus and the Earth. This has led to the assumption that some combination of solar wind implantation, absorption and escape are needed to explain the nature of planetary noble gases.

  17. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish

    DEFF Research Database (Denmark)

    Dahl, Tais W.; Hammarlund, Emma U.; Anbar, Ariel D.

    2010-01-01

    The evolution of Earth’s biota is intimately linked to the oxygenation of the oceans and atmosphere. We use the isotopic composition and concentration of molybdenum (Mo) in sedimentary rocks to explore this relationship. Our results indicate two episodes of global ocean oxygenation. The first coi...... in sediments. It also correlates with a pronounced radiation of large predatory fish, animals with high oxygen demand. We thereby couple the redox history of the atmosphere and oceans to major events in animal evolution....

  18. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  19. Heliophysics: Active Stars, their Astrospheres, and Impacts on Planetary Environments

    Science.gov (United States)

    Schrijver, C. J.; Bagenal, F.; Sojka, J. J.

    2016-04-01

    Preface; 1. Introduction Carolus J. Schrijver, Frances Bagenal and Jan J. Sojka; 2. Solar explosive activity throughout the evolution of the Solar System Rachel Osten; 3. Astrospheres, stellar winds, and the interstellar medium Brian Wood and Jeffrey L. Linsky; 4. Effects of stellar eruptions throughout astrospheres Ofer Cohen; 5. Characteristics of planetary systems Debra Fischer and Ji Wang; 6. Planetary dynamos: updates and new frontiers Sabine Stanley; 7. Climates of terrestrial planets David Brain; 8. Upper atmospheres of the giant planets Luke Moore, Tom Stallard and Marina Garland; 9. Aeronomy of terrestrial upper atmospheres David E. Siskind and Stephen W. Bougher; 10. Moons, asteroids, and comets interacting with their surroundings Margaret G. Kivelson; 11. Dusty plasmas Mihály Horányi; 12. Energetic-particle environments in the Solar System Norbert Krupp; 13. Heliophysics with radio scintillation and occultation Mario M. Bisi; Appendix 1. Authors and editors; List of illustrations; List of tables; References; Index.

  20. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  1. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    Science.gov (United States)

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  2. Verification of Atmospheric Signals Associated with Major Seismicity by Space and Terrestrial Observations

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Taylor, P.; Bryant, N.; Cervone, G.; Kafatos, M.; Habib, S.

    2008-12-01

    Observations from the last twenty years suggest the existence of electromagnetic (EM) phenomena during or preceding some earthquakes [Hayakawa et al, 2004; Pulinets at al, 1999,2004, 2006, Ouzounov et al, 2007 and Liu et al, 2004]. Both our previous studies [Pulinets at al, 2005, 2006, Ouzounov et al, 2006, 2007] and the latest review by the Earthquake Remote Precursor Sensing panel [ERPS; 2003-2005]; have shown that there were precursory atmospheric TIR signals observed on the ground and in space associated with several recent earthquakes. [Tramutoli et al, 2005, 2006, Cervone et al, 2006, Ouzounov et al, 2004,2006]. To study these signals, we applied both multi parameter statistical analysis and data mining methods that require systematic measurements from an Integrated Sensor Web of observations of several physical and environmental parameters. These include long wave earth infra-red radiation, ionospheric electrical and magnetic parameters, temperature and humidity of the boundary layer, seismicity and may be associated with major earthquakes. Our goal is to verify the earthquake atmospheric correlation in two cases: (i) backward analysis - 2000-2008 hindcast monitoring of multi atmospheric parameters over the Kamchatka region, Russia ; and (ii) forward real-time alert analysis over different seismo-tectonic regions for California, Turkey, Taiwan and Japan. Our latest results, from several post-earthquake independent analyses of more then 100 major earthquakes, show that joint satellite and some ground measurements, using an integrated web, could provide a capability for observing pre-earthquake atmospheric signals by combining the information from multiple sensors into a common framework. Using our methodology, we evaluated and compared the observed signals preceding the latest M7.9 Sichuan earthquake (05/12/2008), M8.0 earthquake in Peru (08/15/2007), M7.6 Kashmir earthquake (10/08/2005) and M9.0 Sumatra earthquake (12/26/2004). We found evidence of the

  3. The SMAP Level 4 Carbon PRODUCT for Monitoring Terrestrial Ecosystem-Atmosphere CO2 Exchange

    Science.gov (United States)

    Jones, L. A.; Kimball, J. S.; Madani, N.; Reichle, R. H.; Glassy, J.; Ardizzone, J/

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission Level 4 Carbon (L4_C) product provides model estimates of Net Ecosystem CO2 exchange (NEE) incorporating SMAP soil moisture information as a primary driver. The L4_C product provides NEE, computed as total respiration less gross photosynthesis, at a daily time step and approximate 14-day latency posted to a 9-km global grid summarized by plant functional type. The L4_C product includes component carbon fluxes, surface soil organic carbon stocks, underlying environmental constraints, and detailed uncertainty metrics. The L4_C model is driven by the SMAP Level 4 Soil Moisture (L4_SM) data assimilation product, with additional inputs from the Goddard Earth Observing System, Version 5 (GEOS-5) weather analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. The L4_C data record extends from March 2015 to present with ongoing production. Initial comparisons against global CO2 eddy flux tower measurements, satellite Solar Induced Canopy Florescence (SIF) and other independent observation benchmarks show favorable L4_C performance and accuracy, capturing the dynamic biosphere response to recent weather anomalies and demonstrating the value of SMAP observations for monitoring of global terrestrial water and carbon cycle linkages.

  4. On the timing between terrestrial gamma ray flashes, radio atmospherics, and optical lightning emission

    Science.gov (United States)

    Gjesteland, Thomas; Østgaard, Nikolai; Bitzer, Phillip; Christian, Hugh J.

    2017-07-01

    On 25 October 2012 the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) and the Tropical Rainfall Measuring Mission (TRMM) satellites passed over a thunderstorm on the coast of Sri Lanka. RHESSI observed a terrestrial gamma ray flash (TGF) originating from this thunderstorm. Optical measurements of the causative lightning stroke were made by the lightning imaging sensor (LIS) on board TRMM. The World Wide Lightning Location Network (WWLLN) detected the very low frequency (VLF) radio emissions from the lightning stroke. The geolocation from WWLLN, which we also assume is the TGF source location, was in the convective core of the cloud. By using new information about both RHESSI and LIS timing accuracy, we find that the peak in the TGF light curve occurs 230 μs before the WWLLN time. Analysis of the optical signal from LIS shows that within the uncertainties, we cannot conclude which comes first: the gamma emission or the optical emission. We have also applied the new information about the LIS timing on a previously published event by Østgaard et al. (2012). Also for this event we are not able to conclude which signal comes first. More accurate instruments are needed in order to get the exact timing between the TGF and the optical signal.

  5. Bridging models for the terrestrial cryosphere and the atmosphere - The CryoMET project

    Science.gov (United States)

    Etzelmueller, Bernd; Westermann, Sebastian; Berntsen, Terje; Gisnås, Kjersti; Ove Hagen, Jon; Egill Kristjansson, Jon; Isaksen, Ketil; Schuler, Dagrun V.; Schuler, Thomas V.; Stordal, Frode; Aas, Kjetil S.

    2013-04-01

    Predictions of the future climate are generally based on atmospheric models operating on coarse spatial scales. However, the impact of a changing climate on most elements of the cryosphere becomes manifest on much smaller scales, which complicates sound predictions e.g. on glacier and permafrost development. CryoMET is a collaborative project between atmospheric modeling, glacier and permafrost research groups, seeking to bridge the scale gap between coarsely-resolved Earth System Models and the process and impact scales on the ground for the variables snow depth and snow water equivalent for sites in Norway and Svalbard. Snow is a crucial factor both for the thermal regime of permafrost and the mass balance on glaciers. However, the snow depth and properties can vary considerably on small scales due to wind redistribution, which for instance leads to distinctly different soil temperatures in permafrost areas on distances of tens of meters. CryoMET explores a seamless downscaling procedure to improve the representation in complex terrain: in a first step, we use the regional model PolarWRF to downscale atmospheric variables, including precipitation, air temperature and wind speed, to the so-called interface scale of 1 km to 3 km resolution, where these variables are constant to a good approximation. In a second step, we employ probabilistic downscaling of the average snow water equivalent at the interface scale (as delivered by PolarWRF) using snow redistribution models. With probability density functions of snow depth, the distribution of environmental parameters affected by snow, e.g. of permafrost temperatures, can be inferred for each grid cell at the interface scale. We present here first results demonstrating the capacity of the scheme in delivering the distribution of permafrost-relevant variables.

  6. ATCOM: accelerated image processing for terrestrial long-range imaging through atmospheric effects

    Science.gov (United States)

    Curt, Petersen F.; Paolini, Aaron

    2013-05-01

    Long-range video surveillance performance is often severely diminished due to atmospheric turbulence. The larger apertures typically used for video-rate operation at long-range are particularly susceptible to scintillation and blurring effects that limit the overall diffraction efficiency and resolution. In this paper, we present research progress made toward a digital signal processing technique which aims to mitigate the effects of turbulence in real-time. Our previous work in this area focused on an embedded implementation for portable applications. Our more recent research has focused on functional enhancements to the same algorithm using general-purpose hardware. We present some techniques that were successfully employed to accelerate processing of high-definition color video streams and study performance under nonideal conditions involving moving objects and panning cameras. Finally, we compare the real-time performance of two implementations using a CPU and a GPU.

  7. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: model description.

    Science.gov (United States)

    Nikolov, Ned; Zeller, Karl F

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems.

  8. Geology and Habitability of Terrestrial Planets

    CERN Document Server

    Fishbaugh, Kathryn E; Raulin, François; Marais, David J; Korablev, Oleg

    2007-01-01

    Given the fundamental importance of and universal interest in whether extraterrestrial life has developed or could eventually develop in our solar system and beyond, it is vital that an examination of planetary habitability goes beyond simple assumptions such as, "Where there is water, there is life." This book has resulted from a workshop at the International Space Science Institute (ISSI) in Bern, Switzerland (5-9 September 2005) that brought together planetary geologists, geophysicists, atmospheric scientists, and biologists to discuss the multi-faceted problem of how the habitability of a planet co-evolves with the geology of the surface and interior, the atmosphere, and the magnetosphere. Each of the six chapters has been written by authors with a range of expertise so that each chapter is itself multi-disciplinary, comprehensive, and accessible to scientists in all disciplines. These chapters delve into what life needs to exist and ultimately to thrive, the early environments of the young terrestrial pl...

  9. Intercomparison of atmospheric reanalysis data in the Arctic region: To derive site-specific forcing data for terrestrial models

    Science.gov (United States)

    Mori, J.; Saito, K.; Machiya, H.; Yabuki, H.; Ikawa, H.; Ohta, T.; Iijima, Y.; Kotani, A.; Suzuki, R.; Miyazaki, S.; Sato, A.; Hajima, T.; Sueyoshi, T.

    2015-12-01

    An intercomparison project for the Arctic terrestrial (physical and ecosystem) models, GTMIP, is conducted, targeting at improvements in the existing terrestrial schemes, as an activity of the Terrestrial Ecosystem research group in the Arctic of Japan GRENE Arctic Climate Change Research Project (GRENE-TEA). For site simulations for four GRENE-TEA sites (i.e., Fairbanks/AK, Kevo/Finland, Tiksi and Yakutsk/Siberia), we needed to prepare continuous, site-fit forcing data ready to drive the models. Due to scarcity of site observations in the region, however, it was difficult to make such data directly from the observations. Therefore, we decided to create a backbone dataset (Level 0 or Lv0) first by utilizing the reanalysis data to derive the site-specific data (Level 1 or Lv1). For selection of the best dataset for our purpose, we compared four atmospheric reanalysis datasets, i.e., ERA Interim, JRA-55, NCEP/NCAR Reanalysis 1, and NCEP-DOE Reanalysis 2, in terms of the climatic reproducibility (w.r.t. temperature at 2 m and precipitation) in the region north of 60°N. CRU for temperature and GPCP for precipitation were also used for monthly-mean ground-level climate. As we will show ERA-Interim showed the smallest bias for both the parameters in terms of RMSE. Especially, air temperature in the cold period was reproduced better in ERA-Interim than is in JRA-55 or other reanalysis products. Therefore, we created Lv0 from ERA-Interim. Comparison between the site observations and Lv0 showed good agreement except for wind speed at all sites and air temperature at Tiksi, a coastal site in the eastern Siberia. Air temperature of ERA-Interim showed significantly continental characteristics while the site observation more coastal. The 34-year-long, hourly, site-fit continuous data (Lv1) for each of the GRENE-TEA sites was then created from the Lv0 values at the grid point closest to the site, by merging with the observations.

  10. Periodic bedforms generated by sublimation on terrestrial and martian ice sheets under the influence of the turbulent atmospheric boundary layer

    Science.gov (United States)

    Bordiec, Maï; Carpy, Sabrina; Perret, Laurent; Bourgeois, Olivier; Massé, Marion

    2017-04-01

    The redistribution of surface ice induced the wind flow may lead to the development and migration of periodic bedforms, or "ice ripples", at the surface of ice sheets. In certain cold and dry environments, this redistribution need not involve solid particle transport but may be dominated by sublimation and condensation, inducing mass transfers between the ice surface and the overlying steady boundary layer turbulent flow. These mass transfers diffuse the water vapour sublimated from the ice into the atmosphere and become responsible for the amplification and propagation of ripples in a direction perpendicular to their crests. Such ice ripples, 24 cm in wavelength, have been described in the so-called Blue Ice Areas of Antarctica. In order to understand the mechanisms that generate and develop these periodic bedforms on terrestrial glaciers and to evaluate the plausibility that similar bedforms may develop on Mars, we performed a linear stability analysis applied to a turbulent boundary layer flow perturbed by a wavy ice surface. The model is developed as follow. We first solve the flow dynamics using numerical methods analogous to those used in sand wave models assuming that the airflow is similar in both problems. We then add the transport/diffusion equation of water vapour following the same scheme. We use the Reynolds-averaged description of the equation with a Prandtl-like closure. We insert a damping term in the exponential formula of the Van Driest mixing length, depending on the pressure gradient felt by the flow and related to the thickness of the viscous sublayer at the ice-atmosphere interface. This formulation is an efficient way to properly represent the transitional regime under which the ripples grow. Once the mass flux of water vapour is solved, the phase shift between the ripples crests and the maximum of the flux can be deduced for different environments. The temporal evolution of the ice surface can be expressed from these quantities to infer the

  11. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    Science.gov (United States)

    Friend, Andrew D; Lucht, Wolfgang; Rademacher, Tim T; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Dankers, Rutger; Falloon, Pete D; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F Ian

    2014-03-04

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.

  12. Contribution of lateral terrestrial water flows to the regional hydrological cycle: A joint soil-atmospheric moisture tagging procedure with WRF-Hydro

    Science.gov (United States)

    Arnault, Joel; Wei, Jianhui; Zhang, Zhenyu; Wagner, Sven; Kunstmann, Harald

    2017-04-01

    Water resources management requires an accurate knowledge of the behavior of the regional hydrological cycle components, including precipitation, evapotranspiration, river discharge and soil water storage. Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a tool to evaluate these components. The main drawback of these atmospheric models, however, is that the terrestrial segment of the hydrological cycle is reduced to vertical infiltration, and that lateral terrestrial water flows are neglected. Recent model developments have focused on coupled atmospheric-hydrological modeling systems, such as WRF-hydro, in order to take into account subsurface, overland and river flow. The aim of this study is to investigate the contribution of lateral terrestrial water flows to the regional hydrological cycle, with the help of a joint soil-atmospheric moisture tagging procedure. This procedure is the extended version of an existing atmospheric moisture tagging method developed in WRF and WRF-Hydro (Arnault et al. 2017). It is used to quantify the partitioning of precipitation into water stored in the soil, runoff, evapotranspiration, and potentially subsequent precipitation through regional recycling. An application to a high precipitation event on 23 June 2009 in the upper Danube river basin, Germany and Austria, is presented. Precipitating water during this day is tagged for the period 2009-2011. Its contribution to runoff and evapotranspiration decreases with time, but is still not negligible in the summer 2011. At the end of the study period, less than 5 % of the precipitating water on 23 June 2009 remains in the soil. The additionally resolved lateral terrestrial water flows in WRF-Hydro modify the partitioning between surface and underground runoff, in association with a slight increase of evapotranspiration and recycled precipitation. Reference: Arnault, J., R. Knoche, J. Wei, and H. Kunstmann (2016), Evaporation tagging and atmospheric

  13. A Condensation-coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds

    Science.gov (United States)

    Ohno, Kazumasa; Okuzumi, Satoshi

    2017-02-01

    A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our model by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation-coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.

  14. New Interface for Accessing Archived European Space Agency Planetary Science Data, Such as the New Venus Express Atmospheric Drag Experiment Data Set

    Science.gov (United States)

    Grotheer, E.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Docasal, R.; Arviset, C.; Besse, S.; Heather, D.; Gonzalez, J.; De Marchi, G.; Martinez, S.; Lim, T.; Fraga, D.

    2015-12-01

    All Venus Express (VEX) instruments delivered their data products according to the Planetary Data System version 3 (PDS3) standard, and the atmospheric drag experiment (ADE) data was no exception. The European Space Agency's (ESA) Planetary Science Archive (PSA), which can be accessed at www.rssd.esa.int/PSA, is being upgraded to make PDS4 data available from newer missions such as ExoMars and BepiColombo. Thus, the PSA development team has been working to ensure that the legacy PDS3 data will be accessible via the new interface as well. We will preview some of the new methods of accessing legacy VEX data via the new interface, with a focus being placed on the ADE data set. We will show how the ADE data can be accessed using Geographic Information Systems (GIS) and our plans for making this and other data sets compatible with the Virtual European Solar and Planetary Access (VESPA) project for creating a virtual observatory. From February 2010 through March 2014, ESA's Venus Express mission conducted 11 ADE campaigns. During these observation campaigns, VEX's pericenter was in the range of 165 to 190 km, while the spacecraft was near Venus' North pole, and the entire spacecraft was used to make in situ measurements of the atmospheric density. This was done by rotating the solar panels in a manner that somewhat resembles a windmill. Also, VEX 's attitude and orbit control system was tasked with maintaining the spacecraft in a 3-axis stabilized mode during these pericenter passes. The torques that the reaction wheels had to exert to maintain this attitude were then analyzed to yield density readings.

  15. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    Science.gov (United States)

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  16. Spectrophotometry near the atmospheric cutoff of the strongest Bowen resonance fluorescence lines of O III in two planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Opal, Chet B.

    1989-01-01

    Spectrophotometric results are presented for the stronger, well-resolved Bowen O III resonance fluorescence emission lines in the planetary nebulae 7027 and NGC 7662 down to and including the intrinsically strong line at 3133 A. These data are combined with results from the IUE atlas of spectra and similar results for the longer wavelength lines by Likkel and Aller (1986) to give the first full coverage of the Bowen lines. Good agreement is found with fluorescence theory for the primary cascade lines, except for the Likkel and Aller results. The efficiency of conversion of the exciting He II Ly-alpha into O III lines is determined, and values comparable to other planetary nebulae are found.

  17. The Role of Nitrogen Dynamics in the Responses of Terrestrial Carbon Dynamics to Changes in Atmospheric Carbon Dioxide, Climate, and Land Use

    Science.gov (United States)

    McGuire, A. D.; Melillo, J.; Kicklighter, D.; Joyce, L.

    2007-12-01

    While it has long been appreciated that alterations of the nitrogen cycle can substantially affect the carbon dynamics of terrestrial ecosystems, most large-scale models of terrestrial carbon dynamics have ignored carbon-nitrogen interactions in making projections of how carbon dynamics will respond to changes in atmospheric carbon dioxide, climate, and land use. Numerous experimental studies have documented that the uptake of carbon by terrestrial ecosystems is enhanced by nitrogen fertilization under baseline and elevated atmospheric carbon dioxide concentrations. Ecosystem warming studies often identify that the uptake of carbon is enhanced when mineralization of soil organic nitrogen increases in response to warming, but the response often depends on how warming affects soil moisture. Nitrogen amendments are a standard practice in heavily managed agro-forestry ecosystems because of the enhanced response of plant growth to nitrogen fertilization. We have used the Terrestrial Ecosystem Model (TEM) as a tool to explore the regional and global implications of how carbon-nitrogen interactions may influence the responses of terrestrial carbon dynamics to environmental change and land use. Comparisons of the model with and without nitrogen dynamics indicate that the response of carbon uptake to increases in atmospheric carbon dioxide are clearly constrained by nitrogen dynamics. In contrast, carbon uptake is enhanced in situations in which warming enhances the mineralization of soil organic nitrogen, and this response can lead to increases in vegetation carbon storage that are greater than losses of carbon from increases in decomposition of soil organic matter. Land use can result in substantial depletion of nitrogen from terrestrial ecosystems in the harvest of agricultural products. As substantial sink activity is associated with forest re-growth after agricultural land abandonment, we conducted simulations with TEM in the eastern United State to evaluate to role of

  18. High Resolution UV Emission Cross Section for Analysis of Satellite Observations of Aurora and Dayglow of Planetary Atmosphere

    Science.gov (United States)

    Alvarez, J. M.

    1997-01-01

    A new generation of high resolution UV imaging spacecraft (Polar, Galileo, HST) are studying the airglow and aurora of the Earth and the Jovian planets. To keep pace with these technological improvements we have developed a laboratory program to provide electron collision cross sections of the major molecular planetary gases (H(sub 2), H, O, N(sub 2), CO(sub 2), SO(sub 2), O(sub 2), H(sub 2)O, and CO).

  19. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  20. Planetary Dune Workshop Expands to Include Subaqueous Processes as Possible Venus Analogs

    Science.gov (United States)

    Titus, T. N.; Rubin, D.; Bryant, G.

    2017-11-01

    The 2017 International Planetary Dune Workshop at Dixie State University, the fifth in a series focusing on planetary dunes, brought together 65 terrestrial, marine, and planetary researchers. Highlights pertaining to Venus will be presented.

  1. Simulating dynamics of {delta}{sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of {delta}{sup 13}C and thus the global {delta}{sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to {delta}{sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of {delta}{sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The {delta}{sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on {delta}{sup 13}C of CO{sub 2} dynamics in PBL

  2. Simulating dynamics of (delta){sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of (delta){sup 13}C and thus the global (delta){sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to (delta){sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of (delta){sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The (delta){sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on (delta){sup 13}C of CO{sub 2} dynamics in PBL

  3. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  4. Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007

    Directory of Open Access Journals (Sweden)

    A. Belova

    2008-11-01

    Full Text Available A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976 do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005 that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.

  5. A global-scale simulation of the CO2 exchange between the atmosphere and the terrestrial biosphere with a mechanistic model including stable carbon isotopes, 1953 1999

    Science.gov (United States)

    Ito, Akihiko

    2003-04-01

    This paper presents the results of a simulation with a mechanistic terrestrial ecosystem model, focusing on the atmosphere-biosphere exchange and stable isotope composition of carbon. The simulation was performed from 1953 to 1999 on the basis of observed climate data and atmospheric carbon dioxide (CO2) concentration and stable carbon isotope ratio (δ13C). The model, termed Sim-CYCLE, captures carbon dynamics from photosynthetic assimilation to microbial decomposition, including seasonal and interannual variability. Photosynthetic discrimination effect on δ13C was considered at three levels: (1) leaf-level fractionation, (2) canopy-level CO2 recycling and (3) continent-level C3/C4 pattern. The 47-yr simulation estimated that the average gross CO2 flux was 121 Pg C yr-1, and that the average photosynthetic δ13C discrimination coefficient (Δ) was 18.2%. A sensitivity analysis indicated that the estimated Δ depends heavily on the parameterization of stomatal conductance and C3/C4 composition. In spite of their small biomass, C4 plants contributed considerably to the biospheric productivity and belowground carbon supply. The estimated net CO2 and isotopic exchange of the terrestrial ecosystems corresponded, at least qualitatively, with observed atmospheric CO2 and its δ13C seasonal patterns in the Northern Hemisphere. The gross CO2 fluxes of photosynthesis and respiration indicated a wide range of interannual variability, which was in a sufficient magnitude to induce anomalies in the atmospheric CO2 growth rate. The estimated Δ showed a wide range of latitudinal and longitudinal variations and seasonal oscillation, but little interannual change. However, during the 47-yr period, the estimated δ13C of carbon pools decreased by 0.3%, while the δ13C of atmospheric CO2 decreased by 0.7%. These results carry implications for the application of a top-down approach, i.e. the double-deconvolution method, to inferring the global terrestrial CO2 budget.

  6. Long-range atmospheric transport of terrestrial biomarkers by the Asian winter monsoon: Evidence from fresh snow from Sapporo, northern Japan

    Science.gov (United States)

    Yamamoto, Shinya; Kawamura, Kimitaka; Seki, Osamu

    2011-07-01

    Molecular distributions of terrestrial biomarkers were investigated in fresh snow samples from Sapporo, northern Japan, to better understand the long-range atmospheric transport of terrestrial organic matter by the Asian winter monsoon. Stable carbon (δ 13C) and hydrogen (δD) isotope ratios of C 22-C 28n-alkanoic acids were also measured to decipher their source regions. The snow samples are found to contain higher plant-derived n-alkanes, n-alkanols and n-alkanoic acids as major components. Relative abundances of these three biomarker classes suggest that they are likely derived from higher plants in the Asian continent. The C 27/C 31 ratios of terrestrial n-alkanes in the snow samples range from 1.3 to 5.5, being similar to those of the plants growing in the latitudes >40°N of East Asia. The δ 13C values of the n-alkanoic acids in the snow samples (-33.4 to -27.6‰) are similar to those of typical C 3 gymnosperm from Sapporo (-34.9 to -29.3‰). However, the δD values of the n-alkanoic acids (-208 to -148‰) are found to be significantly depleted with deuterium (by ˜72‰) than those of plant leaves from Sapporo. Such depletion can be most likely interpreted by the long-range atmospheric transport of the n-alkanoic acids from vegetation in the latitudes further north of Sapporo because the δD values of terrestrial higher plants tend to decrease northward in East Asia reflecting the δD of precipitation. Together with the results of backward trajectory analyses, this study suggests that the terrestrial biomarkers in the Sapporo snow samples are likely transported from Siberia, Russian Far East and northeast China to northern Japan by the Asian winter monsoon.

  7. Anomalous Xenon in the Precambrian Nuclear Reactor in Okelobondo (Gabon): A Possible Connection to the Fission Component in the Terrestrial Atmosphere

    Science.gov (United States)

    Meshik, A. P.; Kehm, K.; Hohenberg, C. M.

    1999-01-01

    Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.

  8. Plate tectonics and planetary habitability: current status and future challenges.

    Science.gov (United States)

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  9. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  10. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change

    Science.gov (United States)

    Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.

    2015-01-01

    Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in

  11. Wave activity (planetary, tidal) throughout the middle atmosphere (20-100km) over the CUJO network: Satellite (TOMS) and Medium Frequency (MF) radar observations

    Science.gov (United States)

    Manson, A. H.; Meek, C. E.; Chshyolkova, T.; Avery, S. K.; Thorsen, D.; MacDougall, J. W.; Hocking, W.; Murayama, Y.; Igarashi, K.

    2005-02-01

    Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT) is studied using combinations of ground-based (GB) and satellite instruments (2000-2002). The relatively new MFR (medium frequency radar) at Platteville (40° N, 105° W) has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity) comprises systems at London (43° N, 81° W), Platteville (40° N, 105° W), Saskatoon (52° N, 107° W), Wakkanai (45° N, 142° E) and Yamagawa (31° N, 131° E). It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14°) at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP) TOMS (Total Ozone Mapping Spectrometer) and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability. Climatologies of ozone and winds/tides involving frequency versus time (wavelet) contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km) heights. Both direct planetary wave (PW) propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric and MLT wave motions and their

  12. Wave activity (planetary, tidal throughout the middle atmosphere (20-100km over the CUJO network: Satellite (TOMS and Medium Frequency (MF radar observations

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2005-02-01

    Full Text Available Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT is studied using combinations of ground-based (GB and satellite instruments (2000-2002. The relatively new MFR (medium frequency radar at Platteville (40° N, 105° W has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity comprises systems at London (43° N, 81° W, Platteville (40° N, 105° W, Saskatoon (52° N, 107° W, Wakkanai (45° N, 142° E and Yamagawa (31° N, 131° E. It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14° at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP TOMS (Total Ozone Mapping Spectrometer and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability.

    Climatologies of ozone and winds/tides involving frequency versus time (wavelet contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km heights. Both direct planetary wave (PW propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric

  13. Super-long Anabiosis of Ancient Microorganisms in Ice and Terrestrial Models for Development of Methods to Search for Life on Mars, Europa and other Planetary Bodies

    Science.gov (United States)

    Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; hide

    2007-01-01

    Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.

  14. Super-long anabiosis of ancient microorganisms in ice and terrestrial models for development of methods to search for life on Mars, Europa and other planetary bodies

    Science.gov (United States)

    Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.

    2006-01-01

    Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.

  15. Development of an Electrostatic Precipitator to Remove Martian Atmospheric Dust from ISRU Gas Intakes During Planetary Exploration Missions

    Science.gov (United States)

    Clements, J. Sidney; Thompson, Samuel M.; Cox, Nathan D.; Johansen, Michael R.; Williams, Blakeley S.; Hogue, Michael D.; Lowder, M. Loraine; Calle, Carlos I.

    2011-01-01

    Manned exploration missions to Mars will need dependable in situ resource utilization (ISRU) for the production of oxygen and other commodities. One of these resources is the Martian atmosphere itself, which is composed of carbon dioxide (95.3%), nitrogen (2.7%), argon (1.6%), oxygen (0.13%), carbon monoxide (0.07%), and water vapor (0.03%), as well as other trace gases. However, the Martian atmosphere also contains relatively large amounts of dust, uploaded by frequent dust devils and high Winds. To make this gas usable for oxygen extraction in specialized chambers requires the removal of most of the dust. An electrostatic precipitator (ESP) system is an obvious choice. But with an atmospheric pressure just one-hundredth of Earth's, electrical breakdown at low voltages makes the implementation of the electrostatic precipitator technology very challenging. Ion mobility, drag forces, dust particle charging, and migration velocity are also affected because the low gas pressure results in molecular mean free paths that are approximately one hundred times longer than those at Earth .atmospheric pressure. We report here on our efforts to develop this technology at the Kennedy Space Center, using gases with approximately the same composition as the Martian atmosphere in a vacuum chamber at 9 mbars, the atmospheric pressure on Mars. We also present I-V curves and large particle charging data for various versions of wire-cylinder and rod-cylinder geometry ESPs. Preliminary results suggest that use of an ESP for dust collection on Mars may be feasible, but further testing with Martian dust simulant is required.

  16. Planetary seismology and interiors

    Science.gov (United States)

    Toksoz, M. N.

    1979-01-01

    This report briefly summarizes knowledge gained in the area of planetary seismology in the period 1969-1979. Attention is given to the seismic instruments, the seismic environment (noise, characteristics of seismic wave propagation, etc.), and the seismicity of the moon and Mars as determined by the Apollo missions and Viking Lander experiments, respectively. The models of internal structures of the terrestrial planets are discussed, with the earth used for reference.

  17. Oceanic and terrestrial biospheric CO2 uptake estimated from atmospheric potential oxygen observed at Ny-Ålesund, Svalbard, and Syowa, Antarctica

    Directory of Open Access Journals (Sweden)

    Shigeyuki Ishidoya

    2012-10-01

    Full Text Available Simultaneous measurements of the atmospheric O2/N2 ratio and CO2 concentration were made at Ny-Ålesund, Svalbard, and Syowa, Antarctica for the period 2001–2009. Based on these measurements, the observed atmospheric potential oxygen (APO values were calculated. The APO variations produced by changes in the oceanic heat content were estimated using an atmospheric transport model and heat-driven air–sea O2 (N2 fluxes, and then subtracted from observed interannual variations of APO. The oceanic CO2 uptake derived from the resulting ‘corrected’ secular trend of APO showed interannual variability of less than ±0.6 GtC yr−1, significantly smaller than that derived from the ‘uncorrected’ trend of APO (±0.9 GtC yr−1. The average CO2 uptake during the period 2001–2009 was estimated to be 2.9±0.7 and 0.8±0.9 GtC yr−1 for the ocean and terrestrial biosphere, respectively. By excluding the influence of El Niño around 2002–2003, the terrestrial biospheric CO2 uptake for the period 2004–2009 increased to 1.5±0.9 GtC yr−1, while the oceanic uptake decreased slightly to 2.8±0.8 GtC yr−1.

  18. Incorporating Planetary-Scale Waves Into the VTGCM: Understanding the Waves Impact on the Upper Atmosphere of Venus.

    Science.gov (United States)

    Brecht, A. S.; Bougher, S. W.; Shields, D.; Liu, H.

    2017-01-01

    Venus has proven to have a very dynamic upper atmosphere. The upper atmosphere of Venus has been observed for many decades by multiple means of observation (e.g. ground-based, orbiters, probes, fly-by missions going to other planets). As of late, the European Space Agency Venus Express (VEX) orbiter has been a main observer of the Venusian atmosphere. Specifically, observations of Venus' O2 IR nightglow emission have been presented to show its variability. Nightglow emission is directly connected to Venus' circulation and is utilized as a tracer for the atmospheric global wind system. More recent observations are adding and augmenting temperature and density (e.g. CO, CO2, SO2) datasets. These additional datasets provide a means to begin analyzing the variability and study the potential drivers of the variability. A commonly discussed driver of variability is wave deposition. Evidence of waves has been observed, but these waves have not been completely analyzed to understand how and where they are important. A way to interpret the observations and test potential drivers is by utilizing numerical models.

  19. Collaborative project. Ocean-atmosphere interaction from meso-to planetary-scale. Mechanisms, parameterization, and variability

    Energy Technology Data Exchange (ETDEWEB)

    Small, Richard [National Center for Atmospheric Research, Boulder, CO (United States); Bryan, Frank [National Center for Atmospheric Research, Boulder, CO (United States); Tribbia, Joseph [National Center for Atmospheric Research, Boulder, CO (United States); Park, Sungsu [National Center for Atmospheric Research, Boulder, CO (United States); Dennis, John [National Center for Atmospheric Research, Boulder, CO (United States); Saravanan, R. [National Center for Atmospheric Research, Boulder, CO (United States); Schneider, Niklas [National Center for Atmospheric Research, Boulder, CO (United States); Kwon, Young-Oh [National Center for Atmospheric Research, Boulder, CO (United States)

    2015-06-11

    This project aims to improve long term global climate simulations by resolving ocean mesoscale activity and the corresponding response in the atmosphere. The main computational objectives are; i) to perform and assess Community Earth System Model (CESM) simulations with the new Community Atmospheric Model (CAM) spectral element dynamical core; ii) use static mesh refinement to focus on oceanic fronts; iii) develop a new Earth System Modeling tool to investigate the atmospheric response to fronts by selectively filtering surface flux fields in the CESM coupler. The climate research objectives are 1) to improve the coupling of ocean fronts and the atmospheric boundary layer via investigations of dependency on model resolution and stability functions: 2) to understand and simulate the ensuing tropospheric response that has recently been documented in observations: and 3) to investigate the relationship of ocean frontal variability to low frequency climate variability and the accompanying storm tracks and extremes in high resolution simulations. This is a collaborative multi-institution project consisting of computational scientists, climate scientists and climate model developers. It specifically aims at DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  20. The solubility of carbon monoxide in silicate melts at high pressures and its effect on silicate phase relations. [in terrestrial and other planetary interiors

    Science.gov (United States)

    Eggler, D. H.; Mysen, B. O.; Hoering, T. C.; Holloway, J. R.

    1979-01-01

    Autoradiographic analysis and gas chromatography were used to measure the solubility in silicate melts of CO-CO2 vapors (30 to 40% CO by thermodynamic calculation) in equilibrium with graphite at temperatures up to 1700 deg C and pressures to 30 kbar. At near-liquidus temperatures CO-CO2 vapors were found to be slightly more soluble than CO2 alone. As a result of the apparently negative temperature dependence of CO solubility, the solubility of CO-CO2 at superliquidus temperatures is less than that of CO2. Melting points of two silicates were depressed more by CO than by CO2. Phase boundary orientations suggest that CO/CO + CO2 is greater in the liquid than in the vapor. The effect of the presence of CO on periodotite phase relations was investigated, and it was found that melts containing both CO and CO2 are nearly as polymerized as those containing only CO2. These results suggest that crystallization processes in planetary interiors can be expected to be about the same, whether the melts contain CO2 alone or CO2 and CO.

  1. An Investigation on the role of Planetary Boundary Layer Parameterization scheme on the performance of a hydrostatic atmospheric model over a Coastal Region

    Science.gov (United States)

    Anurose, J. T.; Subrahamanyam, Bala D.

    2012-07-01

    As part of the ocean/land-atmosphere interaction, more than half of the total kinetic energy is lost within the lowest part of atmosphere, often referred to as the planetary boundary layer (PBL). A comprehensive understanding of the energetics of this layer and turbulent processes responsible for dissipation of kinetic energy within the PBL require accurate estimation of sensible and latent heat flux and momentum flux. In numerical weather prediction (NWP) models, these quantities are estimated through different surface-layer and PBL parameterization schemes. This research article investigates different factors influencing the accuracy of a surface-layer parameterization scheme used in a hydrostatic high-resolution regional model (HRM) in the estimation of surface-layer turbulent fluxes of heat, moisture and momentum over the coastal regions of the Indian sub-continent. Results obtained from this sensitivity study of a parameterization scheme in HRM revealed the role of surface roughness length (z_{0}) in conjunction with the temperature difference between the underlying ground surface and atmosphere above (ΔT = T_{G} - T_{A}) in the estimated values of fluxes. For grid points over the land surface where z_{0} is treated as a constant throughout the model integration time, ΔT showed relative dominance in the estimation of sensible heat flux. In contrast to this, estimation of sensible and latent heat flux over ocean were found to be equally sensitive on the method adopted for assigning the values of z_{0} and also on the magnitudes of ΔT.

  2. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets

    Science.gov (United States)

    Civiš, Svatopluk; Knížek, Antonín; Ivanek, Ondřej; Kubelík, Petr; Zukalová, Markéta; Kavan, Ladislav; Ferus, Martin

    2017-10-01

    Understanding the chemical evolution of newly formed terrestrial planets involves uncertainties in atmospheric chemical composition and assessing the plausibility of biomolecule synthesis. In this study, an original scenario for the origin of methane on Mars and terrestrial planets is suggested. Carbon dioxide in Martian and other planetary atmospheres can be abiotically converted into a mixture of methane and carbon monoxide by `methanogenesis' on porous mineral photoactive surfaces under soft ultraviolet irradiation. On young planets exposed to heavy bombardment by interplanetary matter, this process can be followed by biomolecule synthesis through the reprocessing of reactive reducing atmospheres by impact-induced shock waves. The proposed mechanism of methanogenesis may help to answer the question concerning the formation of methane and carbon monoxide by photochemical processes, the formation of biomolecules on early Earth and other terrestrial planets, and the source and seasonal variation of methane concentrations on Mars.

  3. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART B : Results and Capacity Building

    Science.gov (United States)

    Amory-Mazaudier, C.; Fleury, R.; Petitdidier, M.; Soula, S.; Masson, F.; Davila, J.; Doherty, P.; Elias, A.; Gadimova, S.; Makela, J.; Nava, B.; Radicella, S.; Richardson, J.; Touzani, A.; Girgea Team

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern solar terrestrial physics, atmospheric physics and space weather. This part B is devoted to the results and capacity building. Our network began in 1991, in solar terrestrial physics, by our participation in the two projects: International Equatorial Electrojet Year IEEY [1992-1993] and International Heliophysical Year IHY [2007-2009]. These two projects were mainly focused on the equatorial ionosphere in Africa. In Atmospheric physics our research focused on gravity waves in the framework of the African Multidisciplinary Monsoon Analysis project n°1 [2005-2009 ], on hydrology in the Congo river basin and on lightning in Central Africa, the most lightning part of the world. In Vietnam the study of a broad climate data base highlighted global warming. In space weather, our results essentially concern the impact of solar events on global navigation satellite system GNSS and on the effects of solar events on the circulation of electric currents in the earth (GIC). This research began in the framework of the international space weather initiative project ISWI [2010-2012]. Finally, all these scientific projects have enabled young scientists from the South to publish original results and to obtain positions in their countries. These projects have also crossed disciplinary boundaries and defined a more diversified education which led to the training of specialists in a specific field with knowledge of related scientific fields.

  4. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  5. Exobase properties of hydrodynamic and kinetic models of thermal escape from planetary atmospheres and notion of slow hydrodynamic escape

    Science.gov (United States)

    Volkov, Alexey N.

    2017-12-01

    Exobase parameters obtained based on one-dimensional spherically symmetric hydrodynamic Parker's and kinetic models of thermal escape are studied parametrically for monatomic and diatomic gases. For source parameters, when Parker's and kinetic models predict similar escape rates and atmospheric structures well below the exobase, the exobase parameters obtained based on the both models are different. Parker's model systematically underestimates the exobase distance and overestimates the exobase Jeans parameter. The assumption that the escape rate is equal to the Jeans escape rate at the exobase is not satisfied in both kinetic and hydrodynamic simulations. The ratio of the escape rate to the Jeans rate at the exobase predicted by the hydrodynamics model can be either a few times higher or orders of magnitude smaller than unity. The kinetic model predicts systematic enhancement of the escape rate compared to the Jeans rate at the exobase. This enhancement can be attributed to the bulk velocity only if the exobase Jeans parameter is smaller than 5. This is the domain of slow hydrodynamic escape. At larger exobase Jeans parameters, the enhancement of the escape rate is attributed to non-equilibrium distribution of molecular velocities. In the kinetic solutions obtained for the Maxwell gas, the escape rate is about 2-2.5 of the Jeans rate when the ratio of the mean free path of gas molecules to the atmospheric scale height is ˜0.2. This finding can be used to set up boundary conditions in the hydrodynamic model in order to bring it into agreement with the kinetic model.

  6. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  7. Atmospheric Circulation of Exoplanets

    Science.gov (United States)

    Showman, A. P.; Cho, J. Y.-K.; Menou, K.

    2010-12-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from solar system studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and simple scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from solar system studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our solar system, our guiding philosophy is that the multidecade study of solar system planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.

  8. Giant impact-induced atmospheric blow-off

    Science.gov (United States)

    Ahrens, Thomas J.

    1993-01-01

    The relationship between the present atmospheres of the Earth, Venus, and Mars and the earliest (primordial) atmospheres which surrounded these planets is discussed. The termination of the co-accretion of an atmosphere results from at least three different mechanisms, and these mechanisms are presented. To calculate the energy, and hence, approximate planetesimal size, such that upon impact the entire planetary atmosphere is blown off, a different approach than previous efforts is employed, and a shock wave that is entirely propagated within a terrestrial planet is considered.

  9. Possible climates on terrestrial exoplanets.

    Science.gov (United States)

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect.

  10. The Laboratory for Terrestrial Physics

    Science.gov (United States)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  11. The Importance and Current Limitations of Planetary Boundary Layer (PBL) Retrieval from Space for Land-Atmosphere Coupling Studies

    Science.gov (United States)

    Santanello, J. A., Jr.; Schaefer, A.

    2016-12-01

    There is an established need for improved PBL remote sounding over land for hydrology, land-atmosphere (L-A), PBL, cloud/convection, pollution/chemistry studies and associated model evaluation and development. Most notably, the connection of surface hydrology (through soil moisture) to clouds and precipitation relies on proper quantification of water's transport through the coupled system, which is modulated strongly by PBL structure, growth, and feedback processes such as entrainment. In-situ (ground-based or radiosonde) measurements will be spatially limited to small field campaigns for the foreseeable future, so satellite data is a must in order to understand these processes globally. The scales of these applications require diurnal resolution (e.g. 3-hourly or finer) at attention or planning (short or long-term) in place for improving lower tropospheric sounding over land, and as a result PBL and L-A interactions have been identified as `gaps' in current programmatic focal areas. It is therefore timely to assess how these technologies can be leveraged, combined, or evolved in order to form a dedicated mission or sub-mission to routinely monitor the PBL on diurnal timescales. In addition, improved PBL monitoring from space needs to be addressed in the next Decadal Survey. In this talk, the importance of PBL information (structure, evolution) for L-A coupling diagnostics and model development will be summarized. The current array of PBL retrieval methods and products from space will then be assessed in terms of meeting the needs of these models, diagnostics, and scales, with a look forward as to how this can and must be improved through future mission and sensor design.

  12. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century.

    Science.gov (United States)

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing

  13. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  14. Planetary geosciences, 1989-1990

    Science.gov (United States)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  15. Signals for invisible matter from solar - terrestrial observations

    Directory of Open Access Journals (Sweden)

    Bertolucci Sergio

    2017-01-01

    Full Text Available Gravitational lensing of invisible streaming matter towards the Sun or the Earth could be the explanation of puzzling solar/terrestrial phenomena. We have analyzed solar flares, EUV emission and also the global ionization content of the Earth atmosphere. Assuming that this invisible matter has some form of interaction with normal matter and that there exist preferred directions in its flow, then one would expect an enhanced activity at certain planetary longitudes, which is also observed. The broad velocity spectrum of the assumed constituents makes it difficult at this stage to identify the origin of the stream(s or the nature of its constituents.

  16. Seasonal contributions to size-resolved n-alkanes (C8-C40) in the Shanghai atmosphere from regional anthropogenic activities and terrestrial plant waxes.

    Science.gov (United States)

    Lyu, Yan; Xu, Tingting; Yang, Xin; Chen, Jianmin; Cheng, Tiantao; Li, Xiang

    2017-02-01

    Size-resolved aerosol samples from the Shanghai atmosphere were analyzed for normal alkanes (n-alkanes, C8-C40) by comprehensive two-dimensional gas chromatography-flame ionization detection and gas chromatography-triple quadruple mass spectroscopy to study their size distribution and contributions from potential regional sources based on a one-year (2012-2013) sampling campaign. The n-alkane concentrations ranged from 62.3 to 398.5ngm-3, with an annual average of 227.6ngm-3. Particle-associated n-alkanes exhibited a bimodal distribution with one peak in the accumulation-mode size range and the other in the coarse-mode size range. As the carbon number increased, the peak in the accumulation mode intensified and the peak in the coarse mode weakened, in accordance with variation of their corresponding volatilities. Source indices (carbon preference index, average chain length, odd-even carbon number preference, unresolved to resolved n-alkanes ratio, and plant wax n-alkanes ratio) indicated that the n-alkane source profile shifted from an anthropogenic-dominated pattern in winter and spring to a terrestrial plant wax-influenced pattern in summer and autumn. Further trajectory cluster analysis and potential source contribution function modeling showed that anthropogenic activities were mainly in the North China Plain and East China and that terrestrial plant waxes originated in Anhui, Zhejiang, and Jiangxi Provinces. The results of our study provide useful information for evaluating the influence of anthropogenic and biogenic activities on the atmospheric transport of important secondary organic aerosol precursors to megacities in East Asia. Copyright © 2016. Published by Elsevier B.V.

  17. A comprehensive survey of atmospheric quasi 3 day planetary-scale waves and their impacts on the day-to-day variations of the equatorial ionosphere

    Science.gov (United States)

    Liu, Guiping; England, Scott L.; Immel, Thomas J.; Frey, Harald U.; Mannucci, Anthony J.; Mitchell, Nicholas J.

    2015-04-01

    This study reports a comprehensive survey of quasi 3 day (2.5-4.5 day period) planetary-scale waves in the low-latitude mesosphere and lower thermosphere using the temperature observations from Thermosphere Ionosphere and Mesosphere Electric Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry throughout 2002-2012. Occurrences and properties of the waves, including the eastward propagating zonal wave numbers of 1-3 (E1-E3) and vertical wavelengths, are determined for each case. The impacts of these waves on the equatorial ionosphere are investigated by searching for the corresponding variations with the same periods and wave numbers in total electron content (TEC) from the concurrent observations of the ground-based GPS network. For a threshold amplitude of 4 K in temperature, a total of 300 waves are identified, of which there are 186 E1, 63 E2, and 51 E3 events. The mean amplitudes and vertical wavelengths of these waves are calculated to be about 7.9 K and 34 km for the E1, 5.7 K and 29 km for the E2, and 5.1 K and 27 km for the E3, having the standard deviations of 1.5 K and 6.5 km, 0.6 K and 5.6 km, and 0.5 K and 6.7 km. Occurrences of the E1 cases are not observed to depend on season, but the large-amplitude (>8 K) cases occur more often during solstices than at equinoxes. Similarly, the E2 and E3 cases are observed to occur most often in January-February and May-August. Among these waves, 199 cases (66%) are found to have the corresponding variations in the equatorial ionosphere with amplitudes ≥4.2% relative to the mean TEC values (corresponding to 90th percentile). Most of these waves have long vertical wavelengths and large amplitudes (˜3 times more than short vertical wavelength and small-amplitude waves). Because no seasonal or solar cycle dependence on the frequency at which these waves have corresponding variations in the ionosphere at this TEC perturbation threshold is observed, we conclude that there is no seasonal and solar

  18. Space Robotics: Robotic Rovers for Planetary Exploration

    Directory of Open Access Journals (Sweden)

    Alex Ellery

    2008-11-01

    Full Text Available In this third of three short papers, I introduce some of the basic concepts of planetary rovers with an emphasis on some specific challenging areas of research that are peculiar to planetary robotics and not usually associated with terrestrial mobile robotics. The style of these short papers is pedagogical and this paper stresses the issue of rover-terrain interaction as an important consideration. Soil-vehicle interaction originates from military vehicle research but may be regarded as part of the dynamical approach to mobile robotics. For hostile planetary surfaces, this is essential in order to design a robotic rover with sufficient tractive capability to traverse planetary surfaces.

  19. Removal of CO2 from the terrestrial atmosphere to curtail global warming: From methodology to laboratory prototype

    Science.gov (United States)

    Orton, Andrea E.

    This research has focused on the initial phase of required investigations in pursuit of a global scale methodology for reduction of CO 2 in terrestrial air for the purpose of curtailment of global warming. This methodology was initially presented by Agee, Orton, and Rogers (2013), and has provided the basis for pursuing this thesis research. The first objective of the research project was to design and build a laboratory prototype system, capable of depleting CO2 from terrestrial air at 1 bar of pressure through LN2 refrigeration. Design considerations included a 26.5L cylindrical Pyrex glass sequestration chamber, a container to hold a reservoir of LN2 and an interface between the two to allow for cooling and instrumentation ports for measurements inside the sequestration chamber. Further, consideration was given to the need for appropriate insulating material to enclose the assembled apparatus to help achieve efficient cooling and the threshold depositional temperature of 135 K. The Amy Facility in the Department of Chemistry provided critical expertise to machine the apparatus to specifications, especially the stainless steel interface plate. Research into available insulating materials resulted in the adaption of TRYMER RTM 2500 Polyisocyanurate, effective down to 90 K. The above described DAC prototype designed for CO2 sequestration accomplished two of the initial research objectives investigated: 1) conduct refrigeration experiments to achieve CO2 terrestrial deposition temperature of 135 K (uniformly) and 2) deplete CO2 from the chamber air at 1 bar of pressure, documented by appropriate measurements. It took approximately 5.5 hours for the chamber to be completely uniform in temperature of 135 K (and below) through the use of LN2 poured into the container sitting on an aluminum interface on top of the sequestration Pyrex chamber. As expected, Rayleigh-Taylor instability (more dense fluid over less dense fluid) was observed through the duration of the

  20. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  1. CRYOMET - Concept and Results for Bridging Models Between the Atmosphere and the Terrestrial Cryosphere (Glacier and Permafrost)

    Science.gov (United States)

    Etzelmuller, B.; Westermann, S.; Berntsen, T.; Dunse, T.; Gisnas, K.; Hagen, J.; Kristjansson, J. E.; Isaksen, K.; Schuler, D. V.; Schuler, T.; Stordal, F.; Aas, K. S.

    2013-12-01

    Predictions of the future climate are generally based on atmospheric models operating on coarse spatial scales. The impact of a changing climate on most elements of the cryosphere, however, becomes manifest on much smaller scales, which complicates sound predictions on glacier and permafrost development. CryoMET is a collaborative project between atmospheric modeling, glacier and permafrost research groups, seeking to bridge the scale gap between coarsely-resolved Earth System Models and the process and impact scales on the ground. This is done especially for snow-related variables, as (1) snow is a crucial factor both for the thermal regime of permafrost and the mass balance on glaciers, and (2) the snow depth and properties can vary considerably on small scales, which a.o. lead to distinctly different soil temperatures in permafrost areas on distances of tens of meters. To address this problem we use WRF to downscale atmospheric variables to an 'interface scale' of 1 km to 3 km resolution, where these variables are constant to a good approximation. In a second step, we employ probabilistic downscaling of the average snow water equivalent at the 'interface scale' (as delivered by WRF) using snow redistribution models. With probability density functions of snow depth, the distribution of environmental parameters affected by snow, e.g. of permafrost temperatures, are inferred for each grid cell at the interface scale. We present here results from Svalbard and southern Norway, demonstrating the capacity of the scheme in delivering the distribution of permafrost-relevant variables.

  2. Planetary Defense

    Science.gov (United States)

    2016-05-01

    extraterrestrial objects. Such an organization might be an efficient way to pool capital from the many governments of the world and perhaps even from the...4 Abstract Planetary defense against asteroids should be a major concern for every government in the world. Millions of asteroids and...private sector. A second path would be the development of technology required for planetary defense for other objectives such as asteroid mining

  3. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).

    Science.gov (United States)

    Pan, Yude; Melillo, Jerry M; McGuire, A David; Kicklighter, David W; Pitelka, Louis F; Hibbard, Kathy; Pierce, Lars L; Running, Steven W; Ojima, Dennis S; Parton, William J; Schimel, David S

    1998-04-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In

  4. Planetary Systems and the Origins of Life

    Science.gov (United States)

    Pudritz, Ralph; Higgs, Paul; Stone, Jonathon

    2013-01-01

    Preface; Part I. Planetary Systems and the Origins of Life: 1. Observations of extrasolar planetary systems Shay Zucker; 2. The atmospheres of extrasolar planets L. Jeremy Richardson and Sara Seager; 3. Terrestrial planet formation Edward Thommes; 4. Protoplanetary disks, amino acids and the genetic code Paul Higgs and Ralph Pudritz; 5. Emergent phenomena in biology: the origin of cellular life David Deamer; Part II. Life on Earth: 6. Extremophiles: defining the envelope for the search for life in the Universe Lynn Rothschild; 7. Hyperthermophilic life on Earth - and on Mars? Karl Stetter; 8. Phylogenomics: how far back in the past can we go? Henner Brinkmann, Denis Baurain and Hervé Philippe; 9. Horizontal gene transfer, gene histories and the root of the tree of life Olga Zhaxybayeva and J. Peter Gogarten; 10. Evolutionary innovation versus ecological incumbency Adolf Seilacher; 11. Gradual origins for the Metazoans Alexandra Pontefract and Jonathan Stone; Part III. Life in the Solar System?: 12. The search for life on Mars Chris McKay; 13. Life in the dark dune spots of Mars: a testable hypothesis Eörs Szathmary, Tibor Ganti, Tamas Pocs, Andras Horvath, Akos Kereszturi, Szaniszlo Berzci and Andras Sik; 14. Titan: a new astrobiological vision from the Cassini-Huygens data François Raulin; 15. Europa, the Ocean Moon: tides, permeable ice, and life Richard Greenberg; Index.

  5. Obliquity and Eccentricity Constraints for Terrestrial Exoplanets

    Science.gov (United States)

    Kane, Stephen R.; Torres, Stephanie M.

    2017-11-01

    Exoplanet discoveries over recent years have shown that terrestrial planets are exceptionally common. Many of these planets are in compact systems that result in complex orbital dynamics. A key step toward determining the surface conditions of these planets is understanding the latitudinally dependent flux incident at the top of the atmosphere as a function of orbital phase. The two main properties of a planet that influence the time-dependent nature of the flux are the obliquity and orbital eccentricity of the planet. We derive the criterion for which the flux variation due to obliquity is equivalent to the flux variation due to orbital eccentricity. This equivalence is computed for both the maximum and average flux scenarios, the latter of which includes the effects of the diurnal cycle. We apply these calculations to four known multi-planet systems (GJ 163, K2-3, Kepler-186, and Proxima Centauri), where we constrain the eccentricity of terrestrial planets using orbital dynamics considerations and model the effect of obliquity on incident flux. We discuss the implications of these simulations on climate models for terrestrial planets and outline detectable signatures of planetary obliquity.

  6. Asphalt Volcanism as a Model to Understand the Geochemical Nature of Pitch Lake, a Planetary Analog for Titan and the Implications towards Methane Flux into Earth's Atmosphere.

    Science.gov (United States)

    Khan, A.

    2016-12-01

    Pitch Lake is located in the southwest peninsula of the island near La Brea in Trinidad and Tobago, covering an area of approximately 46 hectares. It was discovered in the year 1595 and is the largest of three natural asphalt lakes that exist on Earth. Pitch Lake is a large oval shaped reservoir composed of dominantly hydrocarbon compounds, but also includes minor amounts of clay and muddy water. It is a natural liquid asphalt desert, which is nourished by a form of petroleum consisting of mostly asphaltines from the surrounding oil-rich region. The hydrocarbons mix with mud and gases under high pressure during upward seepage, and the lighter portion evaporates or is volatilized, which produces a high-viscosity liquid asphalt residue. The residue on and near the surface is a hydrocarbon matrix, which poses extremely challenging environmental conditions to microorganisms characterized by an average low water activity in the range of 0.49 to 0.75, recalcitrant carbon substrates, and toxic chemical compounds. Nevertheless, an active microbial community of archaea and bacteria, many of them novel strains, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical analyses of minerals, done by our team, which revealed sulfates, sulfides, silicates, and metals, normally associated with deep-water hydrothermal vents leads to our new hypothetical model to describe the origins of Pitch Lake and its importance to atmospheric and earth sciences. Pitch Lake is likely the terrestrial equivalent of an offshore submarine asphalt volcano just as La Brea Tar Pits are in some ways an on-land version of the asphalt volcanoes discovered off shore of Santa Barbara by Valentine et al. in 2010. Asphalt volcanism possibly also creates the habitat for chemosynthetic life that is widespread in this lake, as reported by Schulze-Makuch et al. in 2011 and Meckenstock et al. in 2014.

  7. Spectropolarimeter for planetary exploration (SPEX) : Performance measurements with a prototype

    NARCIS (Netherlands)

    Voors, R.; Moon, S.G.; Hannemann, S.; Rietjens, J.H.H.; Harten, G. van; Snik, F.; Smit, M.; Stam, D.M.; Keller, C.U.; Laan, E.C.; Verlaan, A.L.; Vliegenthart, W.A.; Horst, R. ter; Navarro, R.; Wielinga, K.

    2011-01-01

    SPEX (Spectropolarimeter for Planetary Exploration) was developed in close cooperation between scientific institutes and space technological industries in the Netherlands. It is used for measuring microphysical properties of aerosols and cloud particles in planetary atmospheres. SPEX utilizes a

  8. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  9. Large-scale travelling atmospheric disturbances in the night ionosphere during the solar terrestrial event of 23 May 2002

    Science.gov (United States)

    Lynn, K. J. W.; Gardiner-Garden, R.; Sjarifudin, M.; Terkildsen, M.; Shi, J.; Harris, T. J.

    2008-12-01

    This paper examines the night of 23 May 2002 as observed by a large number of Australian ionosondes (19) as well as others situated in New Guinea, Indonesia and China. The arrival of a solar Coronal Mass Ejection (CME) and subsequent negative Bz turnings in the solar wind resulted in a magnetic storm with two bursts of energy inputs into the auroral zones. The energy depositions produced two successive rise and falls in ionospheric height over a 300 km height range within the period 12.30-21.00 UT. The two events were seen in the night-side hemisphere by all ionosondes at Southeast Asian longitudes in the southern hemisphere, as well as in the northern hemisphere. In this paper, the simultaneity and spatial variability of these events is investigated. The first event, after an initial expansion towards the equator, ended with a retreat in the area of height rise back towards the auroral zone. The second event was of greater complexity and did not show such a steady variation in rise and fall times with latitude. Such events are often described as large-scale travelling atmospheric/ionospheric disturbances (LTADs or LTIDs). In the southern hemisphere, the front of the initial height rise was found to move at a speed up to 1300 m/s as was also measured by Tsugawa et al. [2006. Geomagnetic conjugate observations of large-scale travelling ionospheric disturbances using GPS networks in Japan and Australia. Journal of Geophysical Research 111, A02302] from small changes in GPS TEC. The front was uniform across the widest longitudinal range of observation (52° or 5360 km).The relationship between the subsequent fall in ionospheric height and an associated temporary increase in foF2 was found to be consistent with previous observations. Ionospheric drivers that move ionization up and down magnetic field lines are suggested as the common cause of the relationship between foF2 and height.

  10. Planetary Geomorphology.

    Science.gov (United States)

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  11. Regional atmospheric deposition patterns of Ag, As, Bi, Cd, Hg, Mo, Sb and Tl in a 188,000 km 2 area in the European arctic as displayed by terrestrial moss samples-long-range atmospheric transport vs local impact

    Science.gov (United States)

    Reimann, Clemens; De Caritat, Patrice; Halleraker, Jo H.; Finne, Tor Erik; Boyd, Rognvald; Jæger, Øystein; Volden, Tore; Kashulina, Galina; Bogatyrev, Igor; Chekushin, Viktor; Pavlov, Vladimir; Äyräs, Matti; Räisänen, Marja Liisa; Niskavaara, Heikki

    The regional atmospheric deposition patterns of Ag, As, Bi, Cd, Hg, Mo, Sb and Tl have been mapped in a 188,000 km2 area of the European Arctic (N Finland, N Norway, NW Russia) using the moss technique. The Russian nickel mining and smelting industry (Nikel and Zapoljarnij (Pechenganikel) and Monchegorsk (Severonikel)) in the eastern part of the survey area represents two of the largest point sources for S0 2 and metal emissions on a world wide basis. In contrast, parts of northern Finland and northern Norway represent still some of the most pristine areas in Europe. The terrestrial mosses Hylocomium splendens and Pleurozium schreberi were used as monitors of airborne deposition. Samples in all three countries were collected during the summer of 1995 and analysed in one laboratory using ICP-MS. Maps for most elements clearly show elevated element concentrations near the industrial sites and delineate the extent of contamination. Pollution follows the main wind and topographical directions in the area (N-S). The gradients of deposition are rather steep. Background levels for all the elements are reached within 150-200 km from the industrial plants. The relative importance of long-range atmospheric transport of air pollutants from industrial point sources on the world wide increase of heavy metals observed in the atmosphere is thus debatable for many elements. Increasing population and traffic density, accompanied by increasing local dust levels, may play a much more important role than industrial emissions. The regional distribution patterns as displayed in the maps show some striking differences between the elements. The regional distribution of Hg and TI in the survey area is completely dominated by sources other than industry.

  12. Space Robotics: Robotic Rovers for Planetary Exploration

    OpenAIRE

    Alex Ellery

    2004-01-01

    In this third of three short papers, I introduce some of the basic concepts of planetary rovers with an emphasis on some specific challenging areas of research that are peculiar to planetary robotics and not usually associated with terrestrial mobile robotics. The style of these short papers is pedagogical and this paper stresses the issue of rover-terrain interaction as an important consideration. Soil-vehicle interaction originates from military vehicle research but may be regarded as part ...

  13. Wide-Field Ultraviolet Spectrometer for Planetary Exospheres and Thermospheres

    Science.gov (United States)

    Fillingim, M. O.; Wishnow, E. H.; Miller, T.; Edelstein, J.; Lillis, R. J.; Korpela, E.; England, S.; Shourt, W. V.; Siegmund, O.; McPhate, J.; Courtade, S.; Curtis, D. W.; Deighan, J.; Chaffin, M.; Harmoul, A.; Almatroushi, H. R.

    2016-12-01

    Understanding the composition, structure, and variability of a planet's upper atmosphere - the exosphere and thermosphere - is essential for understanding how the upper atmosphere is coupled to the lower atmosphere, magnetosphere and near-space environment, and the Sun. Ultraviolet spectroscopy can directly observe emissions from constituents in the exosphere and thermosphere. From such observations, the structure, composition, and variability can be determined.We will present the preliminary design for a wide field ultraviolet imaging spectrometer for remote sensing of planetary atmospheres. The imaging spectrometer achieves an extremely large instantaneous 110 degree field of view with no moving scanning mirror. The imaging resolution is very appropriate for extended atmospheric emission studies, with a resolution of better than 0.3 degrees at the center to 0.4 degrees at the edges of the field. The spectral range covers 120 - 170 nm, encompassing emissions from H, O, C, N, CO, and N2, with an average spectral resolution of 1.5 nm. The instrument is composed of a 2-element wide-field telescope, a 3-element Offner spectrometer, and a sealed MCP detector system contained within a compact volume of about 40 x 25 x 20 cm. We will present the optical and mechanical design as well as the predicted optical performance.The wide instantaneous FOV simplifies instrument and spacecraft operations by removing the need for multiple scans (either from a scan mirror or spacecraft slews) to cover the regions of interest. This instrumentation can allow for two-dimensional spectral information to be built up with simple spacecraft operation or just using spacecraft motion. Applications to the terrestrial geocorona and thermosphere will be addressed as well as applications to the upper atmospheres of other planetary objects.

  14. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  15. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    Science.gov (United States)

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide.

  16. Lunar and Planetary Science Conference, 11th, Houston, TX, March 17-21, 1980, Proceedings. Volume 3 - Physical processes

    Science.gov (United States)

    Merrill, R. B.

    1980-01-01

    Geophysical investigations are discussed, taking into account laboratory measurements, planetary measurements, and structural implications and models. Impact processes are also examined. Experimental studies are considered along with aspects of crater morphology and frequency, and models theory. Volcanic-tectonic processes are investigated and topics related to the study of planetary atmospheres are examined. Attention is given to shallow moonquakes, the focal mechanism of deep moonquakes, lunar polar wandering, the search for an intrinsic magnetic field of Venus, the early global melting of the terrestrial planets, the first few hundred years of evolution of a moon of fission origin, the control of crater morphology by gravity and target type, crater peaks in Mercurian craters, lunar cold traps and their influence on argon-40, and solar wind sputtering effects in the atmospheres of Mars and Venus.

  17. Dynamical modeling of a planetary wave mechanism for a Martian polar warming

    Science.gov (United States)

    Barnes, Jeffrey R.; Hollingsworth, Jeffery L.

    1987-01-01

    The mechanisms involved in the global dust storm and polar warming seen in the Martian atmosphere by the Viking IRTM during the winter solstice of 1977 are investigated theoretically by means of numerical simulations. A two-component dynamical model (based on the combined action of a zonally symmetric 'Hadley' circulation at low and middle latitudes and a planetary-wave circulation at middle and high latitudes) is constructed by analogy to the model of Holton and Mass (1976) for terrestrial sudden stratospheric warmings. The Viking data and simulation results are presented in extensive graphs and characterized in detail. It is demonstrated that a planetary-wave mechanism, based primarily on wavenumber 1 and including a high degree of topographical or thermal wave forcing, can reproduce the observed polar warming. The roles of radiative damping, dissipation, and the transport of dust and water are explored.

  18. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    Science.gov (United States)

    Melosh, J.

    2013-12-01

    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is

  19. On the Fast Evaluation Method of Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Planetary Atmospheres in Thermal IR and Microwave

    Science.gov (United States)

    Ustinov, E. A.

    1999-01-01

    Evaluation of weighting functions in the atmospheric remote sensing is usually the most computer-intensive part of the inversion algorithms. We present an analytic approach to computations of temperature and mixing ratio weighting functions that is based on our previous results but the resulting expressions use the intermediate variables that are generated in computations of observable radiances themselves. Upwelling radiances at the given level in the atmosphere and atmospheric transmittances from space to the given level are combined with local values of the total absorption coefficient and its components due to absorption of atmospheric constituents under study. This makes it possible to evaluate the temperature and mixing ratio weighting functions in parallel with evaluation of radiances. This substantially decreases the computer time required for evaluation of weighting functions. Implications for the nadir and limb viewing geometries are discussed.

  20. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    Science.gov (United States)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  1. The terrestrial silica pump.

    Directory of Open Access Journals (Sweden)

    Joanna C Carey

    Full Text Available Silicon (Si cycling controls atmospheric CO(2 concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1, accounting for 43% of the total oceanic net primary production (NPP. However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1 is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2 levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump.

  2. Relationship between variability of the semidiurnal tide in the Northern Hemisphere mesosphere and quasi-stationary planetary waves throughout the global middle atmosphere

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-11-01

    Full Text Available To investigate possible couplings between planetary waves and the semidiurnal tide (SDT, this work examines the statistical correlations between the SDT amplitudes observed in the Northern Hemisphere (NH mesosphere and stationary planetary wave (SPW with wavenumber S=1 (SPW1 amplitudes throughout the global stratosphere and mesosphere. The latter are derived from the Aura-MLS temperature measurements. During NH summer-fall (July–October, the mesospheric SDT amplitudes observed at Svalbard (78° N and Eureka (80° N usually do not show persistent correlations with the SPW1 amplitudes in the opposite hemisphere. Although the SDT amplitudes observed at lower latitudes (~50–70° N, especially at Saskatoon (52° N, are often shown to be highly and positively correlated with the SPW1 amplitudes in high southern latitudes, these correlations cannot be sufficiently explained as evidence for a direct physical link between the Southern Hemisphere (SH winter-early spring SPW and NH summer-early fall mesospheric SDT. This is because the migrating tide's contribution is usually dominant in the mid-high latitude (~50–70° N NH mesosphere during the local late summer-early fall (July–September. The numerical correlation is dominated by similar low-frequency variability or trends between the amplitudes of the NH SDT and SH SPW1 during the respective equinoctial transitions. In contradistinction, during NH winter (November–February, the mesospheric SDT amplitudes at northern mid-high latitudes (~50–80° N are observed to be significantly and positively correlated with the SPW1 amplitudes in the same hemisphere in most cases. Because both the SPW and migrating SDT are large in the NH during the local winter, a non-linear interaction between SPW and migrating SDT probably occurs, thus providing a global non-migrating SDT. This is consistent with observations of SDT in Antarctica that are large in summer than in winter. It is suggested that

  3. Relationship between variability of the semidiurnal tide in the Northern Hemisphere mesosphere and quasi-stationary planetary waves throughout the global middle atmosphere

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-11-01

    Full Text Available To investigate possible couplings between planetary waves and the semidiurnal tide (SDT, this work examines the statistical correlations between the SDT amplitudes observed in the Northern Hemisphere (NH mesosphere and stationary planetary wave (SPW with wavenumber S=1 (SPW1 amplitudes throughout the global stratosphere and mesosphere. The latter are derived from the Aura-MLS temperature measurements. During NH summer-fall (July–October, the mesospheric SDT amplitudes observed at Svalbard (78° N and Eureka (80° N usually do not show persistent correlations with the SPW1 amplitudes in the opposite hemisphere. Although the SDT amplitudes observed at lower latitudes (~50–70° N, especially at Saskatoon (52° N, are often shown to be highly and positively correlated with the SPW1 amplitudes in high southern latitudes, these correlations cannot be sufficiently explained as evidence for a direct physical link between the Southern Hemisphere (SH winter-early spring SPW and NH summer-early fall mesospheric SDT. This is because the migrating tide's contribution is usually dominant in the mid-high latitude (~50–70° N NH mesosphere during the local late summer-early fall (July–September. The numerical correlation is dominated by similar low-frequency variability or trends between the amplitudes of the NH SDT and SH SPW1 during the respective equinoctial transitions. In contradistinction, during NH winter (November–February, the mesospheric SDT amplitudes at northern mid-high latitudes (~50–80° N are observed to be significantly and positively correlated with the SPW1 amplitudes in the same hemisphere in most cases. Because both the SPW and migrating SDT are large in the NH during the local winter, a non-linear interaction between SPW and migrating SDT probably occurs, thus providing a global non-migrating SDT. This is consistent with observations of SDT in Antarctica that are large in summer than in winter. It is suggested that

  4. Planetary fertility during the past 400 ka based on the triple isotope composition of atmospheric oxygen in trapped gases from the Vostok ice core

    Science.gov (United States)

    Blunier, T.; Bender, M. L.; Barnett, B.; von Fisher, J. C.

    2012-04-01

    The productivity of the biosphere leaves its imprint on the isotopic composition of atmospheric oxygen. Ultimately atmospheric oxygen, through photosynthesis, originates from seawater. Fractionations during the passage from seawater to atmospheric O2 and during respiration are mass dependent, affecting δ17O about half as much as δ18O. An "anomalous" (also termed mass independent) fractionation process changes δ17O about 1.7 times as much as δ18O during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biological O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass dependent O2 production by photosynthesis versus the rate of mass independent O2-CO2 exchange in the stratosphere. However, the analysis of the 17O anomaly is complicated because each hydrological and biological process influencing δ17O and δ18O fractionates 17O and 18O in slightly different proportions. In this study we present oxygen data covering the last 400 kyr from the Vostok ice core. We reconstruct oxygen productivities from the triple isotope composition of atmospheric oxygen with a box model. Our steady state model for the oxygen cycle takes into account fractionation during photosynthesis and respiration of the land and ocean biosphere as well as fractionation when oxygen passes through the stratosphere. We consider changes of fractionation factors linked to climate variations taking into account the span of estimates of the main factors affecting our calculations. We find that ocean oxygen productivity was likely elevated relative to modern during glacials. However, this increase probably did not fully compensate for a reduction in land ocean productivity resulting in a slight reduction in total oxygen production during glacials.

  5. A planetary-scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground-based observations

    Science.gov (United States)

    Sánchez-Lavega, A.; Rogers, J. H.; Orton, G. S.; García-Melendo, E.; Legarreta, J.; Colas, F.; Dauvergne, J. L.; Hueso, R.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.; Iñurrigarro, P.; Gomez-Forrellad, J. M.; Momary, T.; Hansen, C. J.; Eichstaedt, G.; Miles, P.; Wesley, A.

    2017-05-01

    We describe a huge planetary-scale disturbance in the highest-speed Jovian jet at latitude 23.5°N that was first observed in October 2016 during the Juno perijove-2 approach. An extraordinary outburst of four plumes was involved in the disturbance development. They were located in the range of planetographic latitudes from 22.2° to 23.0°N and moved faster than the jet peak with eastward velocities in the range 155 to 175 m s-1. In the wake of the plumes, a turbulent pattern of bright and dark spots (wave number 20-25) formed and progressed during October and November on both sides of the jet, moving with speeds in the range 100-125 m s-1 and leading to a new reddish and homogeneous belt when activity ceased in late November. Nonlinear numerical models reproduce the disturbance cloud patterns as a result of the interaction between local sources (the plumes) and the zonal eastward jet.

  6. Planetary Drilling and Resources at the Moon and Mars

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  7. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia

    Science.gov (United States)

    Nicholson, Wayne L.; Schuerger, Andrew C.

    2005-01-01

    Bacterial endospores in the genus Bacillus are considered good models for studying interplanetary transfer of microbes by natural or human processes. Although spore survival during transfer itself has been the subject of considerable study, the fate of spores in extraterrestrial environments has received less attention. In this report we subjected spores of a strain of Bacillus subtilis, containing luciferase resulting from expression of an sspB-luxAB gene fusion, to simulated martian atmospheric pressure (7-18 mbar) and composition (100% CO(2)) for up to 19 days in a Mars simulation chamber. We report here that survival was similar between spores exposed to Earth conditions and spores exposed up to 19 days to simulated martian conditions. However, germination-induced bioluminescence was lower in spores exposed to simulated martian atmosphere, which suggests sublethal impairment of some endogenous spore germination processes.

  8. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  9. Innovations at a European Planetary Simulation Facility

    Science.gov (United States)

    Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.

    2017-09-01

    This unique and recently improved planetary simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet 2020 RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2020 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.

  10. Planetary deep interiors, geodesy, and habitability

    Science.gov (United States)

    Dehant, Veronique

    2014-05-01

    The evolution of planets is driven by the composition, structure, and thermal state of their internal core, mantle, lithosphere, crust, and by interactions with possible ocean and atmosphere. This presentation puts in perspective the fundamental understanding of the relationships and interactions between those different planetary reservoirs and their evolution through time. It emphasizes on the deep interior part of terrestrial planets and moons. The core of a planet, when composed of liquid iron alloy, may provide magnetic field and further interaction with the magnetosphere, ingredients believed to be important for the evolution of an atmosphere and of a planet in general. The deep interior is believed to be of high importance for its habitability. Lander and orbiter, even rover at the surface of planets or moons of the solar system help in determining their interior properties. First of all orbiters feel the gravity of the planet and its variations. In particular, the tidal mass redistribution induces changes in the acceleration of the spacecraft orbiting around a planet. The Love number k2 has been determined for Venus, Mars, and the Earth, as well as for Titan and will be deduced for Mercury and for some of the Galilean satellites from new missions such as JUICE (Jupiter Icy satellite Explorer). The properties of the interior can also be determined from the observation of the rotation of the celestial body. Radar observation from the Earth ground stations of Mercury has allowed Margo et al. (2012, JGR) to determine the moments of inertia of Mercury with an unprecedented accuracy. Rovers such as the MERs (Mars Exploration Rovers) allow as well to obtain the precession and nutation of Mars from which the moments of inertia of the planet and its core can be deduced. Future missions such as the InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) NASA mission will further help in the determination of Mars interior and evolution

  11. Atmosphere Impact Losses

    Science.gov (United States)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth's formation. Volatiles were accreted throughout the Earth's formation, but Earth's early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth's formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the {}3He/{}^{22}Ne, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (m_{cap} ≳ √{2

  12. Gazetteer of planetary nomenclature 1994

    Science.gov (United States)

    Batson, Raymond M.; Russell, Joel F.

    1995-01-01

    Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.

  13. Atmospheric dynamics of Earth-like tidally locked aquaplanets

    Directory of Open Access Journals (Sweden)

    Tapio Schneider

    2010-12-01

    Full Text Available We present simulations of atmospheres of Earth-like aquaplanets that are tidally locked to their star, that is, planets whose orbital period is equal to the rotation period about their spin axis, so that one side always faces the star and the other side is always dark. Such simulations are of interest in the study of tidally locked terrestrial exoplanets and as illustrations of how planetary rotation and the insolation distribution shape climate. As extreme cases illustrating the effects of slow and rapid rotation, we consider planets with rotation periods equal to one current Earth year and one current Earth day. The dynamics responsible for the surface climate (e.g., winds, temperature, precipitation and the general circulation of the atmosphere are discussed in light of existing theories of atmospheric circulations. For example, as expected from the increasing importance of Coriolis accelerations relative to inertial accelerations as the rotation rate increases, the winds are approximately isotropic and divergent at leading order in the slowly rotating atmosphere but are predominantly zonal and rotational in the rapidly rotating atmosphere. Free-atmospheric horizontal temperature variations in the slowly rotating atmosphere are generally weaker than in the rapidly rotating atmosphere. Interestingly, the surface temperature on the night side of the planets does not fall below ~240 K in either the rapidly or slowly rotating atmosphere; that is, heat transport from the day side to the night side of the planets efficiently reduces temperature contrasts in either case. Rotational waves and eddies shape the distribution of winds, temperature, and precipitation in the rapidly rotating atmosphere; in the slowly rotating atmosphere, these distributions are controlled by simpler divergent circulations. Both the slowly and rapidly rotating atmospheres exhibit equatorial superrotation. Systematic variation of the planetary rotation rate shows that the

  14. Halogens in chondritic meteorites and terrestrial accretion

    Science.gov (United States)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  15. Planetary Science Resource Data Model

    Science.gov (United States)

    Cecconi, B.; Berthier, J.; Bourrel, N.; Gangloff, M.; Erard, S.; Le Sidaner, P.; André, N.; Jacquey, C.; Lormant, N.

    2012-09-01

    One the goals of the Europlanet/IDIS project is the prototyping a Planetary Sciences Virtual Observatory (VO). Planetary sciences are covering several science thematics: atmospheres, surfaces, interiors, small bodies, orbital parameters, in situ exploration, plasma (waves, particle and fields), radio astronomy... They also include a large variety of data types: images, spectra, times series, movies, dynamic spectra, profiles, maps... and an even larger variety of physical parameters, including remote data, in-situ data, models, lab experiments, field analogs. The main challenge is thus to be able to homogeneously describe all the planetary science resources (dataset, files, services...). The skeleton of a such a description is the data model. The Planetary Science Resource Data Model (PSRDM) has been built using IVOA (International Virtual Observatory Alliance). We describe the content of Datasets and Granules (i.e., product, file, or the smallest granularity distributed by the service), not the access to the data. This description includes: Resource identification, Targets, Instruments (including hosting facility), Axis (including bounds, resolution, sampling, unit), Physical parameter (including UCD, unit).

  16. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  17. Louisiana ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for terrestrial mammals in Louisiana. Vector polygons in this data set represent terrestrial mammal...

  18. Nature and Composition of Planetary Surficial Deposits and Their Relationship to Planetary Crusts

    Science.gov (United States)

    McLennan, S. M.

    2010-12-01

    Planetary soils constitute micron to meter sized debris blankets covering all or parts of the surfaces of many planetary bodies. Recent results from the Martian surface, by the MER rovers and Phoenix lander, the Huygens probe at Titan and perhaps even the NEAR mission to asteroid 433 Eros suggest a continuum between classic planetary soils, such as those on the Moon, and conventional sediments, such as those on Earth. Controls on this variation are governed by complex interactions related to (1) impact and volcanic history, (2) presence and nature of atmospheres (and thus climate), (3) occurrence, composition and physical state of near-surface volatiles (e.g., water, methane), and (4) presence and nature of crustal tectonics, crustal evolution, and so forth. The Moon represents one extreme where surficial deposits result almost exclusively from impact processes. Absence of water and air restrict further reworking or transport on a significant scale after initial deposition. Disruption and mixing of lunar soils takes place but is related to impact gardening operating on relatively local scales and largely in a vertical sense; alteration is restricted to space weathering. The effect is that lunar soils are compositionally variable and match the composition of the crust in the vicinity of where they form. Thus lunar soils in the highlands are fundamentally different in composition than those on maria. Earth provides the other extreme where the highly dynamic geochemical and geophysical nature of the surface precludes preservation of classic planetary soils, although analogs may exist in ejecta blankets and eolian loess. Instead, a complex suite of sedimentary deposits form in response to chemical and physical weathering, erosion, transport and deposition by a variety of mechanisms involving water, wind, ice and biology. Although there is substantial sedimentary lithological differentiation (e.g., shales, sands, carbonates, evaporites), greatly influenced by the

  19. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    Science.gov (United States)

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  20. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  1. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  2. Experimental and theoretical studies of CO2 spectra for planetary atmosphere modelling: region 600-9650 cm(-1) and pressures up to 60 atm.

    Science.gov (United States)

    Filippov, Nikolai N; Asfin, Ruslan E; Sinyakova, Tatiana N; Grigoriev, Ivan M; Petrova, Tatiana M; Solodov, Alexandr M; Solodov, Alexandr A; Buldyreva, Jeanna V

    2013-09-07

    Extensive experimental studies of room-temperature carbon dioxide absorption coefficients are reported for a wide range of wavenumbers and pressures requested in atmospheric spectra modelling. The quality of measurements is optimised by the use of two complementary setups with long- and short-path optical cells for low and high gas densities, respectively. The recorded spectra provide a representative picture of band-shape evolutions from gaseous to nearly liquid phases of CO2 and enable a theoretical analysis of line-mixing effects. Various kinds of vibrational bands (Σ←Σ, Π←Σ as well as Π←Π transitions) are modelled using a specific, non-Markovian in the general case, approach of Energy-Corrected Sudden type which is based on the symmetric relaxation matrix and, in contrast to the standard ECS model used for infrared absorption calculations, ensures automatically the fundamental relations of detailed balance and double-sided sum rules. Moreover, this method properly accounts for the vibrational angular momenta of the initial and final molecular states and allows including Coriolis resonances via the usual Herman-Wallis factors in the dipole transition moments. With a set of ECS parameters previously obtained for isotropic and anisotropic Raman spectra modelling, completely neglected imaginary part of the relaxation operator and a simple change in the tensorial rank to get the dipole absorption case in the working formulae, the computed spectra reproduce quite correctly the vibrotational band shapes up to 20 amagat without any additional parameter. An empirical correction factor tentatively introduced to account globally for the Coriolis effects on the relaxation matrix leads to better matches with high-density band shapes but its role merits further studies with an accurately modelled imaginary part of the relaxation matrix.

  3. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  4. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  5. Downward surface flux computations in a vertically inhomogeneous grey planetary atmosphere Cálculo do fluxo radiativo superficial em uma atmosfera planetária cinza e verticalmente não-homogênea

    Directory of Open Access Journals (Sweden)

    Marcos Pimenta de Abreu

    2008-03-01

    Full Text Available We describe an efficient computational scheme for downward surface flux computations in a vertically inhomogeneous grey planetary atmosphere for different values of solar zenith angle. We start with the basic equations of a recently developed discrete ordinates spectral nodal method, and we derive suitable bidirectional functions whose diffuse components do not depend on the solar zenith angle. We then make use of these bidirectional functions to construct an efficient scheme for computing the downward surface fluxes in a given model atmosphere for a number of solar zenith angles. We illustrate the merit of the computational scheme described here with downward surface flux computations in a three-layer grey model atmosphere for four values of solar zenith angle, and we conclude this article with general remarks and directions for future work.Este artigo descreve um esquema computacional baseado em desenvolvimentos recentes do método espectro-nodal de ordenadas discretas para o cálculo eficiente do fluxo radiativo superficial em uma atmosfera planetária cinza e verticalmente não-homogênea para valores distintos do ângulo zenital solar. A partir das equações básicas do método espectro-nodal de ordenadas discretas, são obtidas funções bidirecionais discretas cujas componentes difusas não dependem do ângulo zenital solar. Com essas funções bidirecionais discretas, é construído um esquema computacional para calcular eficientemente fluxos radiativos superficiais em uma dada atmosfera-modelo para vários ângulos zenitais solares. O mérito computacional do esquema resultante é ilustrado com resultados numéricos para os fluxos radiativos superficiais em uma atmosfera-modelo cinza com três camadas para quatro valores distintos do ângulo zenital solar. Este artigo é finalizado com observações gerais e indicações de trabalhos futuros.

  6. Activities in planetary geology for the physical and earth sciences

    Science.gov (United States)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  7. Galactic cosmic rays on extrasolar Earth-like planets. II. Atmospheric implications

    Science.gov (United States)

    Grießmeier, J.-M.; Tabataba-Vakili, F.; Stadelmann, A.; Grenfell, J. L.; Atri, D.

    2016-03-01

    Context. Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields. As described in the companion article (Paper I), a weak magnetic field results in a high flux of galactic cosmic rays to the top of the planetary atmosphere. Aims: We investigate effects that may result from a high flux of galactic cosmic rays both throughout the atmosphere and at the planetary surface. Methods: Using an air shower approach, we calculate how the atmospheric chemistry and temperature change under the influence of galactic cosmic rays for Earth-like (N2-O2 dominated) atmospheres. We evaluate the production and destruction rate of atmospheric biosignature molecules. We derive planetary emission and transmission spectra to study the influence of galactic cosmic rays on biosignature detectability. We then calculate the resulting surface UV flux, the surface particle flux, and the associated equivalent biological dose rates. Results: We find that up to 20% of stratospheric ozone is destroyed by cosmic-ray protons. The effect on the planetary spectra, however, is negligible. The reduction of the planetary ozone layer leads to an increase in the weighted surface UV flux by two orders of magnitude under stellar UV flare conditions. The resulting biological effective dose rate is, however, too low to strongly affect surface life. We also examine the surface particle flux: For a planet with a terrestrial atmosphere (with a surface pressure of 1033 hPa), a reduction of the magnetic shielding efficiency can increase the biological radiation dose rate by a factor of two, which is non-critical for biological systems. For a planet with a weaker atmosphere (with a surface pressure of 97.8 hPa), the planetary magnetic field has a much stronger influence on the biological radiation dose, changing it by up to two orders of magnitude. Conclusions: For a planet with an Earth-like atmospheric pressure, weak or absent magnetospheric shielding against galactic cosmic

  8. Terrestrial ecosystems and climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, W.R. (Oak Ridge National Lab., TN (USA)); Schimel, D.S. (Colorado State Univ., Fort Collins, CO (USA). Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  9. Handbook of the Solar-Terrestrial Environment

    CERN Document Server

    Kamide, Y

    2007-01-01

    The Handbook of the Solar-Terrestrial Environment is a unique compendium. Recognized international leaders in their field contribute chapters on basic topics of solar physics, space plasmas and the Earth's magnetosphere, and on applied topics like the aurora, magnetospheric storms, space weather, space climatology and planetary science. This book will be of highest value as a reference for researchers working in the area of planetary and space science. However, it is also written in a style accessible to graduate students majoring in those fields.

  10. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  11. FINAL REPORT: A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the GCC

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, R. F.; Piper, S. C.

    2008-12-23

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic composition. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. The program also included the development of methods for measuring radiocarbon content in the collected CO2 samples and carrying out radiocarbon measurements in collaboration with Tom Guilderson of Lawrence Berkeley National Laboratory (LLNL). The radiocarbon measurements can provide complementary information on carbon exchange rates with the land and oceans and emissions from fossil-fuel burning. Using models of varying complexity, the concentration and isotopic measurements were used to establish estimates of the spatial and temporal variations in the net CO2 exchange with the atmosphere, the storage of carbon in the land and oceans, and variable isotopic discrimination of land plants.

  12. Low-Power Wideband Digital Spectrometer for Planetary Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a wideband digital spectrometer to support space-born measurements of planetary atmospheric composition. The spectrometer...

  13. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones.

    Science.gov (United States)

    Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O

    2007-02-01

    Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances planetary surface. Such compressed magnetospheres may have crucial consequences for atmospheric erosion processes.

  14. SPEX: the Spectropolarimeter for Planetary Exploration

    Science.gov (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  15. Density is not Destiny: Characterizing Terrestrial Exoplanet Geology from Stellar Compositional Abundances

    Science.gov (United States)

    Unterborn, Cayman T.

    2018-01-01

    A planet’s mass-radius relationship alone is not a good indicator for its potential to be "Earth-like." While useful in coarse characterizations for distinguishing whether an exoplanet is water/atmosphere- or rock/iron-dominated, there is considerable degeneracy in using the mass-radius relation to determine the mineralogy and structure of a purely terrestrial planet like the Earth. The chemical link between host-stars and rocky planets and the utility of this connection in breaking the degeneracy in the mass-radius relationship is well documented. Given the breadth of observed stellar compositions, modeling the complex effects of these compositional variations on a terrestrial planet’s mineralogy, structure and temperature profile, and the potential pitfalls therein, falls within the purview of the geosciences.I will demonstrate here, the utility in adopting the composition of a terrestrial planet’s host star for contextualizing individual systems (e.g. TRAPPIST-1), as well as for the more general case of quantifying the geophysical consequences of stellar compositional diversity. This includes the potential for a host-star to produce planets able to undergo mantle convection, surface-to-interior degassing and long-term plate tectonics. As we search for truly “Earth-like” planets, we must move away from the simple density-driven definition of “Earth-like” and towards a more holistic view that includes both geochemistry and geophysics. Combining geophysical models and those of planetary formation with host-star abundance data, then, is of paramount importance. This will aid not only in our understanding of the mass-radius relationship but also provide foundational results necessary interpreting future atmospheric observations through the lens of surface-interior interactions (e.g. volcanism) and planetary evolution as a whole.

  16. Terrestrial quarantine considerations for unmanned sample return missions

    Science.gov (United States)

    Hoffman, A. R.; Stavro, W.; Miller, L. W.; Taylor, D. M.

    1973-01-01

    For the purpose of understanding some of the possible implications of a terrestrial quarantine constraint on a mission and for developing a basic approach which can be used to demonstrate compliance beyond that developed for Apollo, a terrestrial quarantine study was performed. It is shown that some of the basic tools developed and used by the planetary quarantine community have applicability to terrestrial quarantine analysis. By using these tools, it is concluded that: (1) the method of biasing the earth aiming point when returning from the planet is necessary but, by itself, may not satisfy terrestrial quarantine constraints; and (2) spacecraft and container design significantly influence contamination transfer.

  17. Planetary geosciences, 1988

    Science.gov (United States)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  18. From Planetary Intelligence to Planetary Wisdom

    Science.gov (United States)

    Moser, S. C.

    2016-12-01

    "Planetary intelligence" - when understood as an input into the processes of "managing" Earth - hints at an instrumental understanding of scientific information. At minimum it is a call for useful data of political (and even military) value; at best it speaks to an ability to collect, integrate and apply such information. In this sense, 21st century society has more "intelligence" than any generation of humans before, begging the question whether just more or better "planetary intelligence" will do anything at all to move us off the path of planetary destruction (i.e., beyond planetary boundaries) that it has been on for decades if not centuries. Social scientists have argued that there are at least four shortcomings in this way of thinking that - if addressed - could open up 1) what is being researched; 2) what is considered socially robust knowledge; 3) how science interacts with policy-makers and other "planet managers"; and 4) what is being done in practice with the "intelligence" given to those positioned at the levers of change. To the extent "planetary management" continues to be approached from a scientistic paradigm alone, there is little hope that Earth's future will remain in a safe operating space in this or coming centuries.

  19. Tectonic evolution of terrestrial planets

    Science.gov (United States)

    Head, J. W.; Solomon, S. C.

    1981-01-01

    The tectonic style of each terrestrial planet, referring to the thickness and division of its lithosphere, can be inferred from surface features and compared to models of planetary thermal history. Factors governing planetary tectonic evolution are planet diameter, chemistry, and external and internal heat sources, all of which determine how a planet generates and rids itself of heat. The earth is distinguished by its distinct, mobile plates, which are recycled into the mantle and show large-scale lateral movements, whereas the moon, Mars, and Mercury are single spherical shells, showing no evidence of destruction and renewal of the lithospheric plates over the latter 80% of their history. Their smaller volume to surface area results in a more rapid cooling, formation, and thickening of the lithosphere. Vertical tectonics, due to lithospheric loading, is controlled by the local thickness and rheology of the lithosphere. Further studies of Venus, which displays both the craterlike surface features of the one-plate planets, and the rifts and plateaus of earth, may indicate which factors are most important in controlling the tectonic evolution of terrestrial planets.

  20. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  1. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  2. The Dependence of the Ice-Albedo Feedback on Atmospheric Properties

    Science.gov (United States)

    Selsis, F.; Kitzmann, D.; Rauer, H.

    2013-01-01

    Abstract Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO2 partial pressures as well as the H2O, CH4, and O3 content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO2 atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO2 pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H2O and CH4 in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O3 could also lead to a very strong decrease of the ice-albedo feedback at high CO2 pressures. Key Words

  3. Visualization Tools for Planetary Data

    Science.gov (United States)

    DeWolfe, Alexandria; Larsen, Kristopher; Brain, David; Chaffin, Michael; Harter, Bryan; Putnam, Brian

    2017-04-01

    We have developed a set of software tools for displaying and analyzing data from the MAVEN and MMS missions. In order to better visualize the science data and models, we have constructed 3D visualizations of MAVEN orbiting Mars and MMS orbiting Earth using the CesiumJS library. These visualizations allow viewing of not only spacecraft orientation and position over time, but also scientific data from the spacecraft, and atmospheric models as well. We have also developed a Python toolkit which replicates the functionality of the widely-used IDL "tplot" toolkit for analyzing planetary atmospheric data. We use the bokeh and matplotlib libraries to generate interactive line plots and spectrograms, providing additional functionality beyond the capabilities of IDL graphics. These Python tools are generalized to work with missions beyond MAVEN, and our open-source software is available on Github.

  4. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  5. Atmospheric evolution on inhabited and lifeless worlds

    CERN Document Server

    Catling, David C

    2017-01-01

    As the search for Earth-like exoplanets gathers pace, in order to understand them, we need comprehensive theories for how planetary atmospheres form and evolve. Written by two well-known planetary scientists, this text explains the physical and chemical principles of atmospheric evolution and planetary atmospheres, in the context of how atmospheric composition and climate determine a planet's habitability. The authors survey our current understanding of the atmospheric evolution and climate on Earth, on other rocky planets within our Solar System, and on planets far beyond. Incorporating a rigorous mathematical treatment, they cover the concepts and equations governing a range of topics, including atmospheric chemistry, thermodynamics, radiative transfer, and atmospheric dynamics, and provide an integrated view of planetary atmospheres and their evolution. This interdisciplinary text is an invaluable one-stop resource for graduate-level students and researchers working across the fields of atmospheric science...

  6. Reconsideration of the planetary boundary for phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Stephen R [Center for Limnology, University of Wisconsin, Madison, WI 53706 (United States); Bennett, Elena M, E-mail: srcarpen@wisc.edu, E-mail: Elena.Bennett@mcgill.ca [Department of Natural Resource Sciences and McGill School of Environment, McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC, H9X 3V9 (Canada)

    2011-01-15

    Phosphorus (P) is a critical factor for food production, yet surface freshwaters and some coastal waters are highly sensitive to eutrophication by excess P. A planetary boundary, or upper tolerable limit, for P discharge to the oceans is thought to be ten times the pre-industrial rate, or more than three times the current rate. However this boundary does not take account of freshwater eutrophication. We analyzed the global P cycle to estimate planetary boundaries for freshwater eutrophication. Planetary boundaries were computed for the input of P to freshwaters, the input of P to terrestrial soil, and the mass of P in soil. Each boundary was computed for two water quality targets, 24 mg P m{sup -3}, a typical target for lakes and reservoirs, and 160 mg m{sup -3}, the approximate pre-industrial P concentration in the world's rivers. Planetary boundaries were also computed using three published estimates of current P flow to the sea. Current conditions exceed all planetary boundaries for P. Substantial differences between current conditions and planetary boundaries demonstrate the contrast between large amounts of P needed for food production and the high sensitivity of freshwaters to pollution by P runoff. At the same time, some regions of the world are P-deficient, and there are some indications that a global P shortage is possible in coming decades. More efficient recycling and retention of P within agricultural ecosystems could maintain or increase food production while reducing P pollution and improving water quality. Spatial heterogeneity in the global P cycle suggests that recycling of P in regions of excess and transfer of P to regions of deficiency could mitigate eutrophication, increase agricultural yield, and delay or avoid global P shortage.

  7. Spaceborne microwave remote sensing of seasonal freeze-thaw processes in the terrestrial high latitudes: relationships with land-atmosphere CO2 exchange

    Science.gov (United States)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-12-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These realtively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, spearately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North Americ and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, through both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  8. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    Science.gov (United States)

    Marvin Herndon, J.

    2014-05-01

    Progress in science involves replacing less precise understanding with more precise understanding. In science and in science education one should always question popular ideas; ask "What's wrong with this picture?" Finding limitations, conflicts or circumstances that require special ad hoc consideration sometimes is the key to making important discoveries. For example, from thermodynamic considerations, I found that the 'standard model of solar system formation' leads to insufficiently massive planetary cores. That understanding led me to discover a new indivisible planetary science paradigm. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures, accumulating heterogeneously on the basis of volatility with liquid core-formation preceding mantle-formation; the interior states of oxidation resemble that of the Abee enstatite chondrite. Core-composition was established during condensation based upon the relative solubilities of elements, including uranium, in liquid iron in equilibrium with an atmosphere of solar composition at high pressures and high temperatures. Uranium settled to the central region and formed planetary nuclear fission reactors, producing heat and planetary magnetic fields. Earth's complete condensation included a ~300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions, associated with the thermonuclear ignition of the Sun, stripped the gases away from the Earth and the inner planets. The T-Tauri outbursts stripped a portion of Mercury's incompletely condensed protoplanet and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System, forming the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. With its massive gas/ice shell

  9. Climate control of terrestrial carbon exchange across biomes and continents

    Science.gov (United States)

    Chuixiang Yi; Daniel Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; John Frank; William J. Massman

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes...

  10. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  11. Exploration of Venus' Deep Atmosphere and Surface Environment

    Science.gov (United States)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.

    2017-01-01

    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  12. Planetary health: protecting human health on a rapidly changing planet.

    Science.gov (United States)

    Myers, Samuel S

    2018-12-23

    The impact of human activities on our planet's natural systems has been intensifying rapidly in the past several decades, leading to disruption and transformation of most natural systems. These disruptions in the atmosphere, oceans, and across the terrestrial land surface are not only driving species to extinction, they pose serious threats to human health and wellbeing. Characterising and addressing these threats requires a paradigm shift. In a lecture delivered to the Academy of Medical Sciences on Nov 13, 2017, I describe the scale of human impacts on natural systems and the extensive associated health effects across nearly every dimension of human health. I highlight several overarching themes that emerge from planetary health and suggest advances in the way we train, reward, promote, and fund the generation of health scientists who will be tasked with breaking out of their disciplinary silos to address this urgent constellation of health threats. I propose that protecting the health of future generations requires taking better care of Earth's natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Can Terrestrial Microbes Grow on Mars?

    Science.gov (United States)

    Rothschild, Lynn

    2012-01-01

    The theme for AbSciCon 2012 is "Exploring Life: Past and Present, Near and Far." The conference will address our current understanding of life - from processes at the molecular level to those which operate at planetary scales. Studying these aspects of life on Earth provides an essential platform from which to examine the potential for life on other worlds, both within our solar system and beyond. Mars exhibits a variety of extreme environments characterized by high UV and ionizing radiation flux, low pressure anoxic atmosphere, scarce or absent liquid water, extreme low temperatures, etc. The ability of terrestrial microorganisms to survive and adapt to the Mars environment has profound implications for astrobiology, planetary protection, and Mars life detection missions. At the NASA Ames Synthetic Biology Initiative, we believe that synthetic biology has the potential to revolutionize human space exploration. As such, the initiative is dedicated to applying the tools and techniques of synthetic biology to space exploration and astrobiology. Biological solutions will be invaluable for space exploration because they are not resource intensive, and they are versatile and self-renewing. An understanding of how to work with DNA in an unfavorable environment is paramount to utilizing biological tools on space missions. Furthermore, the ability to adjust life to the parameters of Mars is vital both to discovering what life on Mars might look like, and to using biological tools under such conditions. As a first step, we need an energy-efficient, low cost means of transporting, storing, and protecting genomic DNA, DNA parts, and whole microbial strains. Our goal is to develop and demonstrate viable and superior alternatives to standard DNA storage methods, which can be optimized to the conditions of space exploration, using synthetic biology as a tool. This includes protocols and kit designs for easy and repeatable DNA and strain recovery from protective storage

  14. Quantifying Atmospheric Mass Loss using Novel Hydrodynamic Simulations

    Science.gov (United States)

    Rubanenko, Lior; Steinberg, Elad; Schlichting, Hilke; Paige, David A.

    2017-10-01

    After their formation, planets may accrete or lose atmospheric mass following impacts by planetesimals. Quantifying the relation between the impactor energy and the mass it erodes from a planet's atmosphere is crucial to our understanding of the final stages in planetary formation. Particulatly, it could help explain the significant differences between the atmospheres of the three larger terrestrial planets in the solar system.Here we adopt a new hydrodynamic model called RICH, originally developed to solve problems in astrophysics. RICH's implementation include a Voroni tessellation and a moving (semi-Lagrangian) mesh, which allows high resolution, efficient modeling of shockwave propagation in thin atmospheres. Using this model we evaluate the role of smaller planetesimals in eroding Earth's atmosphere compared to larger, Mars-size objects. Additionally, we verify the results obtained by a past 1D analytic model which showed the current differences in Earth's and Venus's atmospheres can potentially be explained by small differences in their initial atmospheric mass and impact history.

  15. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.

    2016-07-01

    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  16. Pico de Orizaba as an analogue to study planetary ecosynthesis on Mars

    Science.gov (United States)

    Navarro-González, R.

    2010-03-01

    Studies of Mars by spacecrafts, landers and rovers have indicated that it was once a wetter, more habitable world than the cold desert planet of today. If water was once stable as a liquid on the surface and flowed in such vast quantities, then the atmosphere must have been denser and the climate warmer in the past. The same processes that led to the origin of life on Earth may have occurred simultaneously on Mars, and living organisms may have colonized the planet. It is unclear how or when Mars lost its thicker atmosphere and as a result lost its habitable environment. The Viking landers of the mid-1970s carried experiments designed to detect the presence of extant life and showed the martian soil to be lifeless on the surface. Future space missions will continue to explore if there was or still is life on Mars, perhaps in the subsurface. However, if there is no life on Mars, there is an opportunity to explore the potential for survival and biological evolution for terrestrial life beyond their place of origin, and do planetary ecosynthesis on Mars, a process of making the planet habitable for terrestrial organisms. The evidence that Mars was once habitable is important for planetary ecosynthesis as it provides a proof in principle that Mars can support a habitable state on timescales that, while short over the age of the solar system, are long in human terms. Artificial greenhouse gases, such as perfluorocarbons, appear to be the best method for warming Mars and increase its atmospheric density so that liquid water becomes stable. The process of introducing terrestrial ecosystems to Mars can be compared with a descent down a high mountain. Each drop in elevation results in a warmer, wetter climate and more diverse biological community. This is shown in Pico de Orizaba which is located at 19.03°N, 97.27°W and rises 5,636 meters above sea level. It is the highest mountain in Mexico, the third highest in the tropics after Mount Kilimanjaro (5,892) in Tanzania and

  17. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  18. Mars : a small terrestrial planet

    OpenAIRE

    Mangold, N.; Baratoux, David; Witasse, O.; Encrenaz, T.; Sotin, C.

    2016-01-01

    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for rem...

  19. Emergence of two types of terrestrial planet on solidification of magma ocean.

    Science.gov (United States)

    Hamano, Keiko; Abe, Yutaka; Genda, Hidenori

    2013-05-30

    Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type II planets during the slow solidification process. Although Earth is categorized as type I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type II planets is consistent with the characteristics of Venus, it may be representative of type II planets. Also, future observations may have a chance to detect not only terrestrial exoplanets covered with water ocean but also those covered with magma ocean around a young star.

  20. Detection of transient events on planetary bodies .

    Science.gov (United States)

    Di Martino, M.; Carbognani, A.

    Transient phenomena on planetary bodies are defined as luminous events of different intensities, which occur in planetary atmospheres and surfaces, their duration spans from about 0.1 s to some hours. They consist of meteors, bolides, lightning, impact flashes on solid surfaces, auroras, etc. So far, the study of these phenomena has been very limited, due to the lack of an ad hoc instrumentation, and their detection has been performed mainly on a serendipitous basis. Recently, ESA has issued an announcement of opportunity for the development of systems devoted to the detection of transient events in the Earth atmosphere and/or on the dark side of other planetary objects. One of such a detector as been designed and a prototype (\\textit{Smart Panoramic Optical Sensor Head}, SPOSH) has been constructed at Galileo Avionica S.p.A (Florence, Italy). For sake of clarity, in what follows, we classify the transient phenomena in ``Earth phenomena'' and ``Planetary phenomena'', even though some of them originate in a similar physical context.

  1. Europa Planetary Protection for Juno Jupiter Orbiter

    Science.gov (United States)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  2. Dynamical Evolution of Planetary Systems

    Science.gov (United States)

    Morbidelli, Alessandro

    The apparent regularity of the motion of the giant planets of our solar system suggested for decades that said planets formed onto orbits similar to the current onesand that nothing dramatic ever happened during their lifetime. The discovery of extrasolar planets showed astonishingly that the orbital structure of our planetary system is not typical. Many giant extrasolar planets have orbits with semimajor axes of ˜ 1 AU,and some have even smaller orbital radii, sometimes with orbital periods of just a few days. Moreover, most extrasolar planets have large eccentricities, up to values that only comets have in our solar system. Why is there such a great diversitybetween our solar system and the extrasolar systems, as well as among the extrasolar systems themselves? This chapter aims to give a partial answer to this fundamental question. Its guideline is a discussion of the evolution of our solarsystem, certainly biased by a view that emerges, in part, from a series of works comprising the "Nice model." According to this view, the giant planets of the solar system migrated radially while they were still embedded in a protoplanetary disk of gas and presumably achieved a multi-resonant orbital configuration, characterized by smaller interorbital spacings and smaller eccentricities and inclinations with respect to the current configuration.The current orbits of the giant planets may have been achieved during a phase of orbital instability, during which the planets acquired temporarily large-eccentricity orbits and all experienced close encounters with at least oneother planet. This instability phase occurred presumably during the putative "Late Heavy Bombardment" of the terrestrial planets, approximately ˜ 3.9 Gy ago (Tera et al. 1974). The interaction with a massive, distant planetesimal disk (the ancestor of the current Kuiper belt) eventually damped the eccentricities of the planets, ending the phase of mutual planetary encounters and parking the planets onto their

  3. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  4. Planetary cartography in the next decade (1984 - 1994)

    Science.gov (United States)

    1984-01-01

    The cartographic products required to support science and planetary exploration during the next 10 years were assessed. Only major map series or first order maps needed to characterize the surface physiography of a planet or satellite were considered. Included in these considerations are maps needed as bases for plotting geologic, geophysical, and atmospheric phenomena and for planning future planetary exploration. These products consist of three types of maps: controlled photomosaics, shaded relief maps, and topographic contour maps.

  5. THE INFLUENCE OF THERMAL EVOLUTION IN THE MAGNETIC PROTECTION OF TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Zuluaga, Jorge I.; Bustamante, Sebastian; Cuartas, Pablo A. [Instituto de Fisica-FCEN, Universidad de Antioquia, Calle 67 No. 53-108, Medellin (Colombia); Hoyos, Jaime H., E-mail: jzuluaga@fisica.udea.edu.co, E-mail: sbustama@pegasus.udea.edu.co, E-mail: p.cuartas@fisica.udea.edu.co, E-mail: jhhoyos@udem.edu.co [Departamento de Ciencias Basicas, Universidad de Medellin, Carrera 87 No. 30-65, Medellin (Colombia)

    2013-06-10

    Magnetic protection of potentially habitable planets plays a central role in determining their actual habitability and/or the chances of detecting atmospheric biosignatures. Here we develop a thermal evolution model of potentially habitable Earth-like planets and super-Earths (SEs). Using up-to-date dynamo-scaling laws, we predict the properties of core dynamo magnetic fields and study the influence of thermal evolution on their properties. The level of magnetic protection of tidally locked and unlocked planets is estimated by combining simplified models of the planetary magnetosphere and a phenomenological description of the stellar wind. Thermal evolution introduces a strong dependence of magnetic protection on planetary mass and rotation rate. Tidally locked terrestrial planets with an Earth-like composition would have early dayside magnetopause distances between 1.5 and 4.0 R{sub p} , larger than previously estimated. Unlocked planets with periods of rotation {approx}1 day are protected by magnetospheres extending between 3 and 8 R{sub p} . Our results are robust in comparison with variations in planetary bulk composition and uncertainties in other critical model parameters. For illustration purposes, the thermal evolution and magnetic protection of the potentially habitable SEs GL 581d, GJ 667Cc, and HD 40307g were also studied. Assuming an Earth-like composition, we found that the dynamos of these planets are already extinct or close to being shut down. While GL 581d is the best protected, the protection of HD 40307g cannot be reliably estimated. GJ 667Cc, even under optimistic conditions, seems to be severely exposed to the stellar wind, and, under the conditions of our model, has probably suffered massive atmospheric losses.

  6. Mpo - the Bepicolombo Mercury Planetary Orbiter.

    Science.gov (United States)

    Benkhoff, J.

    2008-09-01

    so far. BepiColombo will also contribute to the understanding of the history and formation of the inner planets of the Solar System in general, including the Earth. The 'Mercury Planetary Orbiter' (MPO), under ESA's responsibility, will study the surface and the internal composition of the planet at different wavelengths and with different techniques. The Mercury Magnetospheric Orbiter (MMO), under the responsibility of the Japan Aerospace Exploration Agency (ISAS/JAXA), will study the magnetosphere, that is the region of space around the planet that is dominated by its magnetic field. Objectives BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In particular, the mission objectives are: • markedly higher than that of all other terrestrial planets, Moon included • to understand if the core of Mercury is liquid or solid, and if the planet is still tectonically active today • to understand why such a small planet possesses an intrinsic magnetic field, while Venus, Mars and the Moon do not have any, and investigate if Mercury's magnetised environment is characterised by features reminiscent of the aurorae, radiation belts and magnetospheric substorms observed at Earth • to understand why spectroscopic observations not reveal the presence of any iron, while this element is supposedly the major constituent of the planet • to investigate if the permanently shadowed craters of the polar regions contain sulphur or water ice • to observe the yet unseen hemisphere of Mercury • to study the production mechanisms of the exosphere and to understand the interaction between planetary magnetic field and the solar wind in the absence of a ionosphere • to obtain new clues about the composition of the primordial solar nebula and about the formation of the solar system • to test general relativity with improved accuracy, taking advantage of the

  7. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    Science.gov (United States)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    ). While this is an ideal specification, it far exceeds the current PPP requirements for Category-V “restricted Earth return”, which typically center on a probability of escape of a biologically active particle (e.g., 50 nm diameter). Particles of this size (orders of magnitude larger than a helium atom) are not volatile and generally “sticky” toward surfaces; the mobility of viruses and biomolecules requires aerosolization. Thus, meeting the planetary protection challenge does not require hermetic seal. So far, only a handful of robotic missions accomplished deep space sample returns, i.e., Genesis, Stardust and Hayabusa. This year, Hayabusa-2 will be launched and OSIRIS-REx will follow in a few years. All of these missions are classified as “unrestricted Earth return” by the COSPAR PPP recommendation. Nevertheless, scientific requirements of organic contamination control have been implemented to all WBS regarding sampling mechanism and Earth return capsule of Hayabusa-2. While Genesis, Stardust and OSIRIS-REx capsules “breathe” terrestrial air as they re-enter Earth’s atmosphere, temporal “air-tight” design was already achieved by the Hayabusa-1 sample container using a double O-ring seal, and that for the Hayabusa-2 will retain noble gas and other released gas from returned solid samples using metal seal technology. After return, these gases can be collected through a filtered needle interface without opening the entire container lid. This expertise can be extended to meeting planetary protection requirements from “restricted return” targets. There are still some areas requiring new innovations, especially to assure contingency robustness in every phase of a return mission. These must be achieved by meeting both PPP and scientific requirements during initial design and WBS of the integrated sampling system including the Earth return capsule. It is also important to note that international communities in planetary protection, sample return

  8. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  9. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    Science.gov (United States)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-12-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).

  10. Compact Setup of a Tunable Heterodyne Spectrometer for Infrared Observations of Atmospheric Trace-Gases

    Directory of Open Access Journals (Sweden)

    Manuela Sornig

    2013-07-01

    Full Text Available We report on the development and characterization of the new  compact infrared heterodyne receiver, iChips (Infrared Compact Heterodyne Instrument for Planetary Science. It is specially designed for ground-based observations of the terrestrial atmosphere in the mid-infrared wavelength region. Mid-infrared room temperature quantum cascade lasers are implemented into a heterodyne system for the first time. Their tunability allows the instrument to operate in two different modes.  The scanning mode covers a spectral range of few wavenumbers continuously with a resolution of approximately ν/∆ν ≥ 105. This mode allows the determination of the terrestrial atmospheric transmission. The staring mode, applied for observations of single molecular transition features, provides a spectral resolution of ν/∆ν ≥ 107 and a bandwidth of 1.4  GHz.  To demonstrate the instrument's capabilities, initial observations in both modes were performed by measuring the terrestrial transmittance at 7.8 µm (∼ 1,285 cm−1 and by probing terrestrial ozone features at 8.6 µm (∼ 1,160 cm−1, respectively. The receivers characteristics and performance are described.

  11. Quasi-Stationary Planetary Wave in the MLT During Summer

    Science.gov (United States)

    Stray, N. H.; Espy, P. J.; Hibbins, R. E.

    2014-12-01

    A network of 8 northern hemispheric SuperDARN radars (51-66N) has been used to study planetary wave activity in the mesosphere lower thermosphere (MLT). The meridional meteor winds from the longitudinally spaced SuperDARN network are used to derive the planetary wave activity with zonal wave numbers 1 and 2 in the polar summer MLT (~95 km). In addition planetary wave amplitudes throughout the middle atmosphere have been retrieved from the meridional wind data of the Modern-Era Retrospective Analysis for Research and Application (MERRA) of the NASA Global Modelling and Assimilation Office. The fitting technique used to derive the planetary wave amplitudes will be presented, and it will be shown that there are strong quasi-stationary longitudinal differences in the strength of the meridional wind in the MLT during summer which can be described as a quasi-stationary planetary wave number 1. The ground-based network allows this planetary wave to be separated from tidal perturbations that are aliased in satellite observations, and the combination of these two data sets provides evidence that the mesopause planetary wave activity is produced in situ in the MLT rather than propagating upwards from lower altitudes. Finally, the impact of this planetary wave feature on Polar Mesospheric Clouds (PMC) and Polar Mesospheric Summer Echoes (PMSE) will be discussed.

  12. Earth's magnetic field, preservation of the hydrosphere and planetary habitability (Petrus Peregrinus Medal Lecture)

    Science.gov (United States)

    Tarduno, John

    2017-04-01

    The geodynamo appears to have been remarkably continuous since its inception, which probably occurred shortly after the lunar-forming impact. Here, I will discuss the history of the geodynamo in the context of planetary habitability, as well as what might be gleaned from the terrestrial record to understand other solar system bodies and exoplanets. The ''habitable zone'' is classically defined as that distance from a star where liquid water can exist. However, even given birth of a planet in this zone, there is no assurance that a habitable planet will evolve because an atmosphere and the associated planetary hydrosphere can be stripped from a planet by intense stellar winds streaming from rapidly rotating young stars. Magnetic shielding is a key factor that might determine whether a terrestrial-like planet will retain its water. Salient variables include the time of onset and duration of the dynamo. These variables are in turn related to the efficiency of heat removal from the core, governed by the mantle, and/or exsolution processes that might drive core convection. The magnetic field has competing effects with respect to atmospheric retention (and ultimately water survival). For example, an increased magnetic field provides more pressure to abate the solar wind dynamic pressure and increase the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. This ordered field provides the magnetic topology for recapturing this mass in the opposite hemisphere such that the net global atmospheric mass loss might not be greatly affected. I will argue that available data support the net protective role of dynamo magnetic fields for atmospheres that are relevant to habitability (i.e., those that envelope a hydrosphere). Paleomagnetism, utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a

  13. Tectonic evolution of the terrestrial planets.

    Science.gov (United States)

    Head, J W; Solomon, S C

    1981-07-03

    The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.

  14. Numerical simulations for terrestrial planets formation

    Directory of Open Access Journals (Sweden)

    Ji J.

    2011-07-01

    Full Text Available We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about 60%–80%. In each simulation, 3–4 terrestrial planets are formed inside “Jupiter” with masses of 0.15–3.6 M⊕. In the 0.5–4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion may also happen a few times between two giant planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108 yr.

  15. Lunar and Planetary Science XXXVI, Part 19

    Science.gov (United States)

    2005-01-01

    The topics include: 1) The abundances of Iron-60 in Pyroxene Chondrules from Unequilibrated Ordinary Chondrites; 2) LL-Ordinary Chondrite Impact on the Moon: Results from the 3.9 Ga Impact Melt at the Landing Site of Appolo 17; 3) Evaluation of Chemical Methods for Projectile Identification in Terrestrial and Lunar Impactites; 4) Impact Cratering Experiments in Microgravity Environment; 5) New Achondrites with High-Calcium Pyroxene and Its implication for Igneous Differentiation of Asteroids; 6) Climate History of the Polar Regions of Mars Deduced form Geologic Mapping Results; 7) The crater Production Function for Mars: A-2 Cumulative Power-Law Slope for Pristine Craters Greater than 5 km in Diameter Based on Crater Distribution for Northern Plains Materials; 8) High Resolution Al-26 Chronology: Resolved Time Interval Between Rim and Interior of a Highly Fractionated Compact Type a CAI from Efremovka; 9) Assessing Aqueous Alteration on Mars Using Global Distributions of K and Th; 10) FeNi Metal Grains in LaPaz Mare Basalt Meteorites and Appolo 12 Basalts; 11) Unique Properties of Lunar Soil for In Situ Resource Utilization on the Moon; 12) U-Pb Systematics of Phosphates in Nakhlites; 13) Measurements of Sound Speed in Granular Materials Simulated Regolith; 14) The Effects of Oxygen, Sulphur and Silicon on the Dihedral Angles Between Fe-rich Liquid Metal and Olivine, Ringwoodite and Silicate Perovskite: Implications for Planetary Core Formation; 15) Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros; 16) Focused Ion Beam Microscoopy of ALH84001 Carbonate Disks; 17) Simulating Micro-Gravity in the Laboratory; 18) Mars Atmospheric Sample Return Instrument Development; 19) Combined Remote LIBS and Raman Spectroscopy Measurements; 20) Unusual Radar Backscatter Properties Along the Northern Rim of Imbrium Basin; 21) The Mars Express/NASAS Project at JPL; 22) The Geology of the Viking 2 Lander Site Revisited; 23) An Impact Genesis for Loki

  16. Terrestrial Carbon Cycle Variability.

    Science.gov (United States)

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2 , temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1 ) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1 ), and

  17. Planetary protection - some legal questions

    Science.gov (United States)

    Fasan, E.

    2004-01-01

    When we legally investigate the topic of Planetary Protection, we have to realise that there are primarily two very distinct parts of our juridical work: We have to study lexlata, theexistingapplicableLaw, especially Space Law, and also lexferenda, whatshouldbethe law . With this in mind, we have to deliberate the legal meaning of the notions "Planetary", and "Protection". About " Planetary": Our own Earth is our most important planet. At present only here do exist human beings, who are sensu strictu the only legal subjects. We make the law, we have to apply it, and we are to be protected as well as bound by it. But what is further meant by "Planetary"? Is it planets in an astronomical sense only, the nine planets which revolve around our fixed star, namely the sun, or is it also satellites, moving around most of these planets, as our own Moon circles Earth. "The Moon and other Celestial Bodies (C.B.)" are subject to Space Law, especially to International Treaties, Agreements, Resolutions of the UN, etc. I propose that they and not only the planets in an strictly astronomical sense are to be protected. But I do not think that the said notion also comprises asteroids, comets, meteorites, etc. although they too belong to our solar system. Our investigation comes to the result that such bodies have a different (lesser) legal quality. Also we have to ask Protectionfrom what ? From: Natural bodies - Meteorites, NEO Asteroids, Comets which could hit Earth or C.B.Artificial Objects: Space Debris threatening especially Earth and near Earth orbits.Terrestrial Life - no infection of other celestial bodies. Alien life forms which could bring about "harmful contamination" of Earth and the life, above all human life, there, etc. Here, astrobiological questions have to be discussed. Special realms on C.B. which should be protected from electronic "noise" such as craters SAHA or Deadalus on the Moon, also taking into account the "Common Heritage" Principle. Then, we have to

  18. Planetary space weather: scientific aspects and future perspectives

    Directory of Open Access Journals (Sweden)

    Plainaki Christina

    2016-01-01

    Full Text Available In this paper, we review the scientific aspects of planetary space weather at different regions of our Solar System, performing a comparative planetology analysis that includes a direct reference to the circum-terrestrial case. Through an interdisciplinary analysis of existing results based both on observational data and theoretical models, we review the nature of the interactions between the environment of a Solar System body other than the Earth and the impinging plasma/radiation, and we offer some considerations related to the planning of future space observations. We highlight the importance of such comparative studies for data interpretations in the context of future space missions (e.g. ESA JUICE; ESA/JAXA BEPI COLOMBO. Moreover, we discuss how the study of planetary space weather can provide feedback for better understanding the traditional circum-terrestrial space weather. Finally, a strategy for future global investigations related to this thematic is proposed.

  19. Sources of EMF in Near Earth and Planetary Environments

    Science.gov (United States)

    McCanney, J. M.

    2008-05-01

    The realization that extensive electrical activates occur in and above the troposphere, extending to the ionosphere and ultimately coupling to the magnetosphere have raised the theoretical and experimental questions regarding the sources of EMF which create the observed effects. The current work has identified 17 Local Electrical Batteries (LEBs), which provide the electrical EMF that can be linked to the observed effects of Sprites, Elves, etc. and which additionally are shown to directly power the troposphere storm systems and counter-rotating jet streams, rotating in the easterly direction in the northern and southern latitudes and westerly near the equator. The high latitude easterly flowing jet streams contain positively charged ions in the driving layers of the ionosphere, whereas the equatorial westerly flowing jet streams contain electrons. The flow of energy concentrates near the equatorial regions (low latitudes) for a number of theoretical reasons. Energy flows also occur in the vortex regions (corresponding to troposphere low pressure cells) as the easterly flowing ionosphere high latitude belts interact with the equatorial westerly moving streams. These flows couple to both the terrestrial and external ring current magnetic fields. The path of the sources of EMF can be followed from the passing solar wind through "tunnels" that end in electrical currents that pass into the atmosphere via the ionosphere to storm cloud systems in the lower atmosphere. These are the sources of electrical energy that power the severe lower atmospheric storm systems such as westerly moving hurricanes at low latitudes and associated tornadoes. The model for these storm systems is included. The connection is made theoretically with the solar wind that drives the 17 identified LEBs. The ultimate source of driving energy is the result of an excess current of protons in the solar wind, which creates an overall capacitor with inherent non-uniform electric field surrounding the

  20. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  1. On Aryabhata's Planetary Constants

    OpenAIRE

    Kak, Subhash

    2001-01-01

    This paper examines the theory of a Babylonian origin of Aryabhata's planetary constants. It shows that Aryabhata's basic constant is closer to the Indian counterpart than to the Babylonian one. Sketching connections between Aryabhata's framework and earlier Indic astronomical ideas on yugas and cyclic calendar systems, it is argued that Aryabhata's system is an outgrowth of an earlier Indic tradition.

  2. Catalogues of planetary nebulae.

    Science.gov (United States)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  3. Atmospheric Circulation of Exoplanets

    OpenAIRE

    Showman, Adam P.; Cho, James Y-K.; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-wate...

  4. ALMA observations of Titan's atmospheric chemistry and seasonal variation

    Science.gov (United States)

    Cordiner, Martin

    2017-04-01

    Titan is the largest moon of Saturn, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Photochemistry in Titan's upper atmosphere results in the production of a wide range of organic molecules, including hydrocarbons, nitriles and aromatics, some of which could be of pre-biotic relevance. Thus, we obtain insights into the possible molecular inventories of primitive (reducing) planetary atmospheres. Titan's atmosphere also provides a unique laboratory for testing our understanding of fundamental processes involving the chemistry and spectroscopy of complex organic molecules. In this talk, results will be presented from our studies using the Atacama Large Millimeter/submillimeter Array (ALMA) during the period 2012-2015, focussing in particular on the detection and mapping of emission from various nitrile species. By combining data from multiple ALMA observations, our spectra have reached an unprecedented sensitivity level, enabling the first spectroscopic detection and mapping of C2H3CN (vinyl cyanide) on Titan. Liquid-phase simulations of Titan's seas indicate that vinyl cyanide molecules could combine to form vesicle membranes (similar to the cells of terrestrial biology), and the astrobiological implications of this discovery will be discussed. Furthermore, ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere, for gases inaccessible to previous instruments. Combined with complementary data obtained from the Cassini Saturn orbiter, as well as theoretical models and laboratory studies, our observed, seasonally variable, spatially resolved abundance patterns are capable of providing new insights into photochemical production and transport in primitive planetary atmospheres in the Solar System and beyond.

  5. Is extensive terrestrial carbon dioxide removal a 'green' form of geoengineering? A global modelling study

    Science.gov (United States)

    Heck, Vera; Gerten, Dieter; Lucht, Wolfgang; Boysen, Lena R.

    2016-02-01

    Biological carbon sequestration through implementation of biomass plantations is currently being discussed as an option for climate engineering (CE) should mitigation efforts fail to substantially reduce greenhouse gas emissions. As it is a plant-based CE option that extracts CO2 from the atmosphere, it might be considered a 'green' CE method that moves the biosphere closer to its natural, i.e. pre-Neolithic, state. Here, we test this hypothesis by comparing the biogeochemical (water- and carbon-related) changes induced by biomass plantations compared to those induced by historical human land cover and land use change. Results indicate that large-scale biomass plantations would produce a biogeochemical shift in the terrestrial biosphere which is, in absolute terms, even larger than that already produced by historical land use change. However, the nature of change would differ between a world dominated by biomass plantations and the current world inheriting the effects of historical land use, highlighting that large-scale tCDR would represent an additional distinct and massive human intervention into the biosphere. Contrasting the limited possibilities of tCDR to reduce the pressure on the planetary boundary for climate change with the potential negative implications on the status of other planetary boundaries highlights that tCDR via biomass plantations should not be considered a 'green' CE method but a full scale engineering intervention.

  6. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  7. The complex planetary synchronization structure of the solar system

    Science.gov (United States)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  8. Lunar and Planetary Webcam User's Guide

    CERN Document Server

    Mobberley, Martin

    2006-01-01

    Inexpensive webcams are revolutionizing imaging in amateur astronomy by providing an affordable alternative to cooled-chip astronomical CCD cameras, for photographing the brighter astronomical objects. Webcams – costing only a few tens of dollars – are capable of more advanced high resolution work than "normal" digital cameras because their rapid image download speed can freeze fine planetary details, even through the Earth's turbulent atmosphere. Also, their simple construction makes it easy to remove the lens, allowing them to be used at high power at the projected focus of an astronomical telescope. Webcams also connect direct to a PC, so that software can be used to "stack" multiple images, providing a stunning increase in image quality. In the Lunar and Planetary Webcam User’s Guide Martin Mobberley de-mystifies the jargon of webcams and computer processing, and provides detailed hints and tips for imaging the Sun, Moon and planets with a webcam. He looks at each observing target separately, descri...

  9. Habitable Zones for Earth-mass Planets in Multiple Planetary Systems

    OpenAIRE

    Jianghui, Ji; Lin, Liu; Kinoshita, H; Guangyu, Li

    2009-01-01

    We perform numerical simulations to study the Habitable zones (HZs) and dynamical structure for Earth-mass planets in multiple planetary systems. For example, in the HD 69830 system, we extensively explore the planetary configuration of three Neptune-mass companions with one massive terrestrial planet residing in 0.07 AU $\\leq a \\leq$ 1.20 AU, to examine the asteroid structure in this system. We underline that there are stable zones of at least $10^5$ yr for low-mass terrestrial planets locat...

  10. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  11. The Role of Planetary Data System Archive Standards in International Planetary Data Archives

    Science.gov (United States)

    Guinness, Edward; Slavney, Susan; Beebe, Reta; Crichton, Daniel

    A major objective of NASA's Planetary Data System (PDS) is to efficiently archive and make accessible digital data produced by NASA's planetary missions, research programs, and data analysis programs. The PDS is comprised of a federation of groups known as nodes, with each node focused on archiving and managing planetary data from a given science discipline. PDS nodes include Atmospheres, Geosciences, Small Bodies (asteroids, comets, and dust), Rings, Planetary Plasma Interactions, and Imaging. There are also support nodes for engineering, radio science, and ancillary data, such as geometry information. The PDS archives include space-borne, ground-based, and laboratory experiment data from several decades of NASA exploration of comets, asteroids, moons, and planets. PDS archives are peer-reviewed, welldocumented, and accessible online via web sites, catalogs, and other user-interfaces that provide search and retrieval capabilities. Current holdings within the PDS online repositories total approximately 50 TB of data. Over the next few years, the PDS is planning for a rapid expansion in the volume of data being delivered to its archives. The archive standards developed by the PDS are crucial elements for producing planetary data archives that are consistent across missions and planetary science disciplines and that yield archives that are useable by the planetary research community. These standards encompass the full range of archiving needs. They include standards for the format of data products and the metadata needed to detail how observations were made. They also specify how data products and ancillary information such as documentation, calibration, and geometric information are packaged into data sets. The PDS standards are documented in its Planetary Science Data Dictionary and in its Standards Reference Document and Archive Preparation Guide. The PDS standards are being used to design and implement data archives for current and future NASA planetary missions

  12. Trends and variability of planetary wave activity in the stratosphere in a changing climate

    Science.gov (United States)

    Küchelbacher, Lisa; Wüst, Sabine; Bittner, Michael

    2017-04-01

    Planetary waves are global scale waves in the lower and middle atmosphere which lead to a more or less periodic change of weather patterns in the middle latitudes. This already indicates that planetary waves couple atmospheric layers and can lead to extreme weather events. Climate change is supposed cause changes of planetary wave activity. The question is whether the planetary wave activity has already changed during the last 40 years and -if so - if this can be attributed to a possible weakening of the meridional temperature gradient. To check this we calculated a dynamical activity index (DAI) that serves as a measure for the planetary wave activity based on total ozone column measurements and ERA-Interim temperatures. We found that the DAI based on total ozone column measurements is not reliable for quantifying long term changes in planetary wave activity. Despite we found the ERA-DAI trustworthy. The planetary wave activity has already changed, but significantly only in the stratosphere. The change of the planetary wave activity with highest wavenumbers turned out to be strongest. We also found that also multi-decadal periodic oscillations might have an impact on the wave activity. We especially looked into the consequences of a changing planetary activity into the occurrence of stratospheric warmings and we found evidence that the observed change in the temporal occurrence of stratospheric warmings might be coupled to the detected change in planetary wave activity.

  13. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  14. The UK Virtual Observatory - Adding Planetary Data

    Science.gov (United States)

    Allan, Peter

    The UK has built a virtual observatory called AstroGrid. Using this facility, scientists can already get access to a wide range of data on traditional astronomy, the Sun and solar-terrestrial physics (STP). This paper describes the AstroGrid system and what would be involved in adding access to planetary data to those already on offer. In recent years, there have been activities in several countries to create what are known as virtual observatories. The idea is that you should be able to easily get to all of the astronomical data that exist from your desktop computer. You do not need to know that specific data exist and you do not need to know where these data reside. In order to make this possible, it is essential that data archives and software that accesses those archives is built around a set of internationally agreed standards. These standards have been developed by the International Virtual Observatory Alliance (IVOA). A data archive that adheres to these standards can publish data on the internet to registries of resources that client software can search. The AstroGrid software developed in the UK adheres to these standards and provides a comprehensive set of services for data archives to provide dataset access, registries of data holdings, virtual file stores, communities of users, workflow for execution of complex grid applications and an environment into which pre-existing data processing applications can be plugged. There is also client software for searching registries and remote data archives, accessing the remote data, and a basic set of tools for displaying and analysing those data. AstroGrid is unique amongst virtual observatories in that it includes major data sources on the Sun and solar-terrestrial physics as well as more traditional astronomy. The need to support these very different types of data has led to the development of tools that can handle very different coordinate systems and display data in a variety of ways. For example, we have a

  15. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds

    Science.gov (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; hide

    2016-01-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  16. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds

    Science.gov (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; Fassett, C. I.; Fischer, W. W.; Fraeman, A. A.; Golombek, M. P.; Hamilton, V. E.; Hayes, A. G.; Herd, C. D. K.; Horgan, B.; Hu, R.; Jakosky, B. M.; Johnson, J. R.; Kasting, J. F.; Kerber, L.; Kinch, K. M.; Kite, E. S.; Knutson, H. A.; Lunine, J. I.; Mahaffy, P. R.; Mangold, N.; McCubbin, F. M.; Mustard, J. F.; Niles, P. B.; Quantin-Nataf, C.; Rice, M. S.; Stack, K. M.; Stevenson, D. J.; Stewart, S. T.; Toplis, M. J.; Usui, T.; Weiss, B. P.; Werner, S. C.; Wordsworth, R. D.; Wray, J. J.; Yingst, R. A.; Yung, Y. L.; Zahnle, K. J.

    2016-10-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  17. Maryland ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for river otters in Maryland. Vector polygons in this data set represent the terrestrial mammal...

  18. Western Alaska ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for brown bears in Western Alaska. Vector polygons in this data set represent terrestrial mammal...

  19. Virginia ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for the northern river otter in Virginia. Vector polygons in this data set represent terrestrial mammal...

  20. Atmosphere-Ionosphere Coupling via Atmospheric Waves

    Science.gov (United States)

    Koucka Knizova, Petra; Lastovicka, Jan

    2017-04-01

    The Earth atmosphere and ionosphere is complicated and highly variable system which displays oscillations on wide range scales. The most important factor influencing the ionosphere is certainly the solar and geomagnetic activity. However, the processes even in distant regions in the neutral atmosphere cannot be simply neglected. This contribution reviews aspects of ionospheric variability originating in the lower laying atmosphere. It focuses especially on the generation and propagation of the atmospheric waves from their source region up to the heights of the ionosphere. We will show the role of infrasound, gravity waves, tides and planetary waves in the atmosphere-ionosphere coupling. Particularly gravity waves are of high importance for the ionosphere. Recent theoretical and experimental results will briefly be reviewed.

  1. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  2. Galactic planetary science.

    Science.gov (United States)

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  3. Reflections on O2 as a Biosignature in Exoplanetary Atmospheres

    Science.gov (United States)

    Meadows, Victoria S.

    2017-10-01

    Oxygenic photosynthesis is Earth's dominant metabolism, having evolved to harvest the largest expected energy source at the surface of most terrestrial habitable zone planets. Using CO2 and H2O - molecules that are expected to be abundant and widespread on habitable terrestrial planets - oxygenic photosynthesis is plausible as a significant planetary process with a global impact. Photosynthetic O2 has long been considered particularly robust as a sign of life on a habitable exoplanet, due to the lack of known "false positives" - geological or photochemical processes that could also produce large quantities of stable O2. O2 has other advantages as a biosignature, including its high abundance and uniform distribution throughout the atmospheric column and its distinct, strong absorption in the visible and near-infrared. However, recent modeling work has shown that false positives for abundant oxygen or ozone could be produced by abiotic mechanisms, including photochemistry and atmospheric escape. Environmental factors for abiotic O2 have been identified and will improve our ability to choose optimal targets and measurements to guard against false positives. Most of these false-positive mechanisms are dependent on properties of the host star and are often strongest for planets orbiting M dwarfs. In particular, selecting planets found within the conservative habitable zone and those orbiting host stars more massive than 0.4 M⊙ (M3V and earlier) may help avoid planets with abundant abiotic O2 generated by water loss. Searching for O4 or CO in the planetary spectrum, or the lack of H2O or CH4, could help discriminate between abiotic and biological sources of O2 or O3. In advance of the next generation of telescopes, thorough evaluation of potential biosignatures - including likely environmental context and factors that could produce false positives - ultimately works to increase our confidence in life detection.

  4. Planetary geomorphology field studies: Washington and Alaska

    Science.gov (United States)

    Malin, M. C.

    1984-01-01

    Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. Investigations discussed address principally mudflow phenomena and drainage development. At the Valley of 10,000 Smokes (Katmai, AK) and Mount St. Helens, WA, studies of the development of erosional landforms (in particular, drainage) on fresh, new surfaces permitted analysis of the result of competition between geomorphic processes. Of specific interest is the development of stream pattern as a function of the competition between perennial seepage overland flow (from glacial or groundwater sources), ephemeral overland flow (from pluvial or seasonal melt sources), and ephemeral/perennial groundwater sapping, as a function of time since initial resurfacing, material properties, and seasonal/annual environmental conditions.

  5. Planetary geomorphology field studies: Iceland and Antarctica

    Science.gov (United States)

    Malin, M. C.

    1984-01-01

    Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. These studies, conducted in Iceland and in Antarctica, investigated physical and chemical weathering mechanisms and rates, eolitan processes, mudflow phenomena, drainage development, and catastrophic fluvial and volcanic phenomena. Continuing investigations in Iceland fall in three main catagories: (1) catastrophic floods of the Jokulsa a Fjollum, (2) lahars associated with explosive volcanic eruptions of Askja caldera, and (3) rates of eolian abrasion in cold, volcanic deserts. The ice-free valleys of Antarctica, in particular those in South Victoria Land, have much is common with the surface of Mars. In addition to providing independent support for the application of the Iceland findings to consideration of the martian erosional system, the Antarctic observations also provide analogies to other martian phenomena. For example, a family of sand dunes in Victoria Valley are stabilized by the incorporation of snow as beds.

  6. Planetary Environments: Scientific Issues and Perspectives

    OpenAIRE

    Encrenaz Th.

    2014-01-01

    What are the planetary environments where conditions are best suited for habitability? A first constraint is provided by the presence of liquid water. This condition allows us to define two kinds of media: (1) the atmospheres of solid (exo)planets with a temperature typically ranging between 0°C and 100°C, and (2) the interiors of icy bodies (outer satellites or possibly exosatellites) where the pressure and temperature would fit the liquid phase region of the water phase diagram. In the case...

  7. Universal planetary tectonics (supertectonics)

    Science.gov (United States)

    Kochemasov, G. G.

    2009-04-01

    Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to

  8. The problem of scale in planetary geomorphology

    Science.gov (United States)

    Rossbacher, L. A.

    1985-01-01

    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  9. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    Science.gov (United States)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  10. Interstellar and Planetary Analogs in the Laboratory

    Science.gov (United States)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  11. Planetary Web Resource Platform

    Science.gov (United States)

    Xing, Z.

    2016-12-01

    In this presentation, we would like to discuss our recent work ona web-based data platform, that can simplify the use of planetarymission products and unify the operation of key applications.This platform is extensible and flexible. Products and applicationscan be added to or removed from it in a distributed fashion.It is built on top of known and proven information technologiesfor data exposure and discovery. Live examples of the end-to-endweb services and in-browser clients for current planetary missionswill be demonstrated.

  12. Applicability of Electrical and Electroanalytical Techniques to Detect Water and Characterize the Geochemistry of Undisturbed Planetary Soils

    Science.gov (United States)

    Seshadri, S.; Buehler, M. G.; Anderson, R. C.; Kuhlman, G. M.; Keymeulen, D.; Cheung, I. W.; Schaap, M. G.

    2005-01-01

    The search for life is a primary goal of NASA s planetary exploration program. The search is, of necessity, tiered in both the detection approach (looking for evidence of microbial fossils or the presence of water in the geological history of a planetary body and/or looking for evidence of water, energy sources, precursors to life, signatures of life and/or life itself in the present day planetary environment) and in the survey method (scale, range, specificity) employed. Terrestrial investigations suggests that life as we know it requires water. Thus, the search for extant microbial life and habitats requires identifying water-bearing soils. Determining Reduction-Oxidation (REDOX) couples present in water, once it is found, provides information on soil geochemistry and identifies potential chemical energy sources for life. Mars offers a near-term target for conducting this search. The identification of gully formation [1], layered deposits [2] and elemental ratios of bromine and chlorine [3] present indirect evidence that water was abundant locally in the Martian past. Additionally, Viking images of polar ice and frost formation on the surface of Mars demonstrate that water can exist in at least some near-surface regions of present-day Mars. Atmospheric pressure data further suggest that liquid water may be stable for short periods of time in the mid-latitudes of the Martian surface. [4] Measurements of the global distribution of hydrogen in the Martian regolith offer tantalizing indirect evidence that water may at least exist in near-surface soils. [5] Evidently, any water to be found is likely to exist as soil mixtures at levels ranging between approx.0.5% and approx.5 %.

  13. Stochasticity and predictability in terrestrial planet formation

    Science.gov (United States)

    Hoffmann, Volker; Grimm, Simon L.; Moore, Ben; Stadel, Joachim

    2017-02-01

    Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This is a result of the chaotic evolution of trajectories which are highly sensitive to minuscule displacements. We determine that differences between systems evolved from virtually identical initial conditions can be larger than the differences between systems evolved from very different initial conditions. This implies that individual simulations lack predictive power. For example, there is not a reproducible mapping between the initial and final surface density profiles. However, some key global properties can still be extracted if the statistical spread across many simulations is considered. Based on these spreads, we explore the collisional growth and orbital properties of terrestrial planets, which assemble from different initial conditions (we vary the initial planetesimal distribution, planetesimal masses, and giant planet orbits.). Confirming past work, we find that the resulting planetary systems are sculpted by sweeping secular resonances. Configurations with giant planets on eccentric orbits produce fewer and more massive terrestrial planets on tighter orbits than those with giants on circular orbits. This is further enhanced if the initial mass distribution is biased to the inner regions. In all cases, the outer edge of the system is set by the final location of the ν6 resonance and we find that the mass distribution peaks at the ν5 resonance. Using existing observations, we find that extrasolar systems follow similar trends. Although differences between our numerical modelling and exoplanetary systems remain, we suggest that CoRoT-7, HD 20003 and HD 20781 may host undetected giant planets.

  14. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    Science.gov (United States)

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.

  15. Planetary Sciences and Exploration Programme

    Indian Academy of Sciences (India)

    The Indian Space Research Organisation (ISRO) has taken a number of initiatives to plan for a National. Research Programme in the area of planetary science and exploration. This announcement solicits proposals in the field of planetary science. Universities, research and educational institutions may submit proposals ...

  16. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere industrial...... levels); stratospheric ozone (industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...

  17. Formation of planetary embryos from planetesimals

    Science.gov (United States)

    Rafikov, Roman Ravilevich

    This thesis is devoted to studying some aspects of the formation of terrestrial planets. Although it is currently widely accepted that terrestrial planets form by agglomeration of a large number of rocky or icy bodies called planetesimals there is still a number of unresolved issues hindering our understanding of this process. I concentrate my research on the dynamical interaction of planetesimal disk with the planetary embryos—precursors of protoplanets. I investigate the development of nonuniformities in the planetesimal disk using analytical techniques employing the methods of statistical mechanics, which is justified by the huge number of planetesimals under consideration. This treatment self-consistently accounts for the evolution of the planetesimal kinematic properties, which is coupled to spatial redistribution of planetesimals in the disk. Planetesimal-planetesimal and embryo- planetesimal interactions are studied in two different velocity regimes: when the average approach velocities of interacting bodies are dominated by their epicyclic motion (dispersion-dominated regime) and when they are dominated by the differential shear in the disk (shear- dominated regime). The intermediate regime is modeled by interpolation. I show that the embryo always tries to repel planetesimals away and produce a depression in planetesimal surface density around its semimajor axis, while the planetesimal-planetesimal scattering acts as a source of effective viscosity which opposes this tendency and tries to smooth any inhomogeneities in the disk. The mutual gravitational interaction between planetesimals also increases their epicyclic motion throughout the disk. Embryo-planetesimal interaction leads to the same dynamical effect but localized spatially in the narrow zone around the embryo's orbit. The formation of inhomogeneities and excitation of planetesimal epicyclic motion in the disk nearby strongly affects the accretion rate of the embryo. I demonstrate that the

  18. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  19. Mars Planetary Ion Escape: Assessing Transitional Trajectories

    Science.gov (United States)

    Johnson, B. C.

    2016-12-01

    The availability of in situ observations of ions escaping from Mars' atmosphere is vital to descriptions of atmospheric loss, but such point measurements taken by orbiting spacecraft cannot easily differentiate between spatial changes along the spacecraft trajectory and temporal changes, nor can they directly provide information about atmospheric loss rates during Mars' long history. Numerical models are therefore crucial to crystalizing understanding of ion escape processes. One such category are test particle models that release non-interacting ions into background electric and magnetic fields and then calculate ion trajectories and loss rates. To date, such models have focused on the collisionless regime. Another approach is to include collisions between the particles, the Direct Simulation Monte Carlo (DSMC) approach. We present the results of the first fully three dimensional collisional Mars ion DSMC model capable of peering deep into the collionsional atmosphere, beneath the ionospheric peak, i.e., the ion version of the Adaptive Mesh Particle Simulator (AMPS) configured for Mars. Multiple model runs are performed, each with a different cutoff altitude below which collisions are included. Escape rates of O+ are calculated for each run, providing both the asymptotic escape rate as the cutoff altitude extends into the exosphere and also an idea of the altitude range for which collisions must be included for the results to reasonably converge to this value. In other words, how low can a collisionless model go? Furthermore, these results can be used to interpret satellite data of planetary ions, helping to determine if the spacecraft is in the upflow or outflow regime. In other words, how low can observations be used for measuring the loss of planetary ions to deep space? This entire process is repeated a second time, with the first set of runs corresponding to solar minimum input parameters, and the second set of runs corresponding to solar maximum parameters.

  20. Estimating the Binary Fraction of Central Stars of Planetary Nebulae

    Science.gov (United States)

    Douchin, Dimitri

    2015-01-01

    Planetary nebulae are the end-products of intermediate-mass stars evolution, following a phase of expansion of their atmospheres at the end of their lives. Observationally, it has been estimated that 80% of them have non-spherical shapes. Such a high fraction is puzzling and has occupied the planetary nebula community for more than 30 years. One scenario that would allow to justify the observed shapes is that a comparable fraction of the progenitors of central stars of planetary nebula (CSPN) are not single, but possess a companion. The shape of the nebulae would then be the result of an interaction with this companion. The high fraction of non-spherical planetary nebulae would thus imply a high fraction of binary central stars of planetary nebulae, making binarity a preferred channel for planetary nebula formation. After presenting the current state of knowledge regarding planetary nebula formation and shaping and reviewing the diverse efforts to find binaries in planetary nebulae, I present my work to detect a near-infrared excess that would be the signature of the presence of cool companions. The first part of the project consists in the analysis of data and photometry acquired and conducted by myself. The second part details an attempt to make use of archived datasets: the Sloan Digital Sky Survey Data Release 7 optical survey and the extended database assembled by Frew (2008). I also present results from a radial velocity analysis of VLT/UVES spectra for 14 objects aiming to the detection of spectroscopic companions. Finally I give details of the analysis of optical photometry data from our observations associated to the detection of companions around central stars of planetary nebulae using the photometric variability technique. The main result of this thesis is from the near-infrared excess studies which I combine with previously published data. I conclude that if the detected red and NIR flux excess is indicative of a stellar companion then the binary

  1. The dependence of the ice-albedo feedback on atmospheric properties.

    Science.gov (United States)

    von Paris, P; Selsis, F; Kitzmann, D; Rauer, H

    2013-10-01

    Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO₂ partial pressures as well as the H₂O, CH₄, and O₃ content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO₂ atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO₂ pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H₂O and CH₄ in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O₃ could also lead to a very strong decrease of the ice-albedo feedback at high CO₂ pressures.

  2. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  3. Modelling Planetary Magnetodiscs

    Science.gov (United States)

    Achilleos, N. A.; Arridge, C. S.; Guio, P.

    2012-12-01

    There have been two popular approaches in the literature to constructing models of giant planet magnetodiscs. The first assumes an analytical form of the ring current a priori,and computes the corresponding magnetic field structure. The second applies the condition of balance between centrifugal force, magnetic force and plasma pressure in order to acquire a self-consistent field and plasma distribution. In this talk, we shall explore the application of both types of model to observations of planetary fields and plasmas. In particular, we shall see that the force-balance formalism predicts a natural `transition distance' between regions dominated by centrifugal (inertial) currents and pressure-gradient currents. We shall also present this type of model for Jupiter's magnetodisc, and show how the parameters of the model can be used to predict the influence of major reconfigurations of the magnetosphere upon the morphology of the jovian auroral emissions.

  4. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  5. HUBBLE'S PLANETARY NEBULA GALLERY

    Science.gov (United States)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  6. Introduced Terrestrial Species (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  7. Selection of sterilization methods for planetary return missions

    Science.gov (United States)

    Trofimov, V. I.; Victorov, A.; Ivanov, M.

    1996-01-01

    Two tasks must be accomplished to provide planetary protection for Mars return missions: (1) sterilization of the scientific module to be landed on Mars and (2) reliable sterilization of all material returned to Earth, while ensuring the scientific integrity of martian samples. This paper examines similarity and differences between these two tasks, and includes a discussion of technological implementation conditions and the nature of terrestrial and hypothesized martian microflora. The feasibility of a number of chemical and physical (ultraviolet and ionizing radiation and heating) methods of sterilization for use on the ground and onboard are discussed and compared. A combination of different methods will probably be selected as the most appropriate for ensuring planetary protection on the return mission.

  8. Exploit and ignore the consequences: A mother of planetary issues.

    Science.gov (United States)

    Moustafa, Khaled

    2016-07-01

    Many environmental and planetary issues are due to an exploitation strategy based on exploit, consume and ignore the consequences. As many natural and environmental resources are limited in time and space, such exploitation approach causes important damages on earth, in the sea and maybe soon in the space. To sustain conditions under which humans and other living species can coexist in productive and dynamic harmony with their environments, terrestrial and space exploration programs may need to be based on 'scrutinize the consequences, prepare adequate solutions and then, only then, exploit'. Otherwise, the exploitation of planetary resources may put the environmental stability and sustainability at a higher risk than it is currently predicted. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Predictability of the terrestrial carbon cycle.

    Science.gov (United States)

    Luo, Yiqi; Keenan, Trevor F; Smith, Matthew

    2015-05-01

    Terrestrial ecosystems sequester roughly 30% of anthropogenic carbon emission. However this estimate has not been directly deduced from studies of terrestrial ecosystems themselves, but inferred from atmospheric and oceanic data. This raises a question: to what extent is the terrestrial carbon cycle intrinsically predictable? In this paper, we investigated fundamental properties of the terrestrial carbon cycle, examined its intrinsic predictability, and proposed a suite of future research directions to improve empirical understanding and model predictive ability. Specifically, we isolated endogenous internal processes of the terrestrial carbon cycle from exogenous forcing variables. The internal processes share five fundamental properties (i.e., compartmentalization, carbon input through photosynthesis, partitioning among pools, donor pool-dominant transfers, and the first-order decay) among all types of ecosystems on the Earth. The five properties together result in an emergent constraint on predictability of various carbon cycle components in response to five classes of exogenous forcing. Future observational and experimental research should be focused on those less predictive components while modeling research needs to improve model predictive ability for those highly predictive components. We argue that an understanding of predictability should provide guidance on future observational, experimental and modeling research. © 2014 John Wiley & Sons Ltd.

  10. Stratospheric Observatory for Infrared Astornomy and Planetary Science

    Science.gov (United States)

    Reach, William T.; SOFIA Sciece Mission Operations

    2016-10-01

    The Stratospheric Observatory for Infrared Astronomy enables observations at far-infrared wavelengths, including the range 30-300 microns that is nearly completely obscured from the ground. By flying in the stratosphere above 95% of atmospheric water vapor, access is opened to photometric, spectroscopic, and polarimetric observations of Solar System targets spanning small bodies through major planets. Extrasolar planetary systems can be observed through their debris disks or transits, and forming planetary systems through protoplanetary disks, protostellar envelopes, and molecular cloud cores. SOFIA operates out of Southern California most of the year. For the summer of 2016, we deployed to New Zealand with 3 scientific instruments. The HAWC+ far-infrared photopolarimeter was recently flown and is in commissioning, and two projects are in Phase A study to downselect to one new facility instrument. The Cycle 5 observing proposal results are anticipated to be be released by the time of this DPS meeting, and successful planetary proposals will be advertised.

  11. Dust in the planetary system: Dust interactions in space plasmas of the solar system

    Science.gov (United States)

    Mann, Ingrid; Meyer-Vernet, Nicole; Czechowski, Andrzej

    2014-03-01

    Cosmic dust particles are small solid objects observed in the solar planetary system and in many astronomical objects like the surrounding of stars, the interstellar and even the intergalactic medium. In the solar system the dust is best observed and most often found within the region of the orbits of terrestrial planets where the dust interactions and dynamics are observed directly from spacecraft. Dust is observed in space near Earth and also enters the atmosphere of the Earth where it takes part in physical and chemical processes. Hence space offers a laboratory to study dust-plasma interactions and dust dynamics. A recent example is the observation of nanodust of sizes smaller than 10 nm. We outline the theoretical considerations on which our knowledge of dust electric charges in space plasmas are founded. We discuss the dynamics of the dust particles and show how the small charged particles are accelerated by the solar wind that carries a magnetic field. Finally, as examples for the space observation of cosmic dust interactions, we describe the first detection of fast nanodust in the solar wind near Earth orbit and the first bi-static observations of PMSE, the radar echoes that are observed in the Earth ionosphere in the presence of charged dust.

  12. Spatial Query for Planetary Data

    Science.gov (United States)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  13. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  14. On Striving to Simulate All Known Atmospheres Equally Well

    Science.gov (United States)

    Dowling, T. E.

    2004-05-01

    Creating a single general circulation model (GCM) that achieves both accuracy and impartiality for gas-giant and terrestrial atmospheres, and is implemented for all known atmospheres, is the primary development goal for the Explicit Planetary Isentropic-Coordinate (EPIC) atmospheric model. The idea is to make it easy to practice comparative planetology on the now more than one dozen atmospheres observed inside and outside the solar system, and---given that many parameterizations are needed to make GCMs work---to make it hard to fall into the trap of artificial tuning. Towards the goal of accuracy, we are using an isentropic vertical coordinate, which minimizes vertical truncation errors and increases the accuracy of long-range transport of chemical species and of moisture; interestingly, the latter yields better predictions than non-isentropic coordinate models even for non-isentropic storm activity, because the "fuel" is delivered more precisely. However, the isentropic-coordinate approach is not accurate at the bottom of either terrestrial or a gas-giant atmospheres, each for a different reason. For terrestrial atmospheres, isentropes tend to intersect topography at steep angles, causing technical headaches, and for gas giants, convection in their interiors renders entropy nearly constant and therefore not a viable coordinate. Enter the idea of a hybrid-isentropic vertical coordinate, which smoothly transitions into a pressure coordinate towards the bottom of the model. The hybrid idea provides both accuracy and impartiality because topography can be handled with a terrain-following pressure coordinate, traditionally called sigma, and a sigma coordinate works equally well for the deep atmospheres of gas giants, where the model's bottom layer may be chosen conveniently to be a constant-pressure surface. We describe the implementation of this idea in the EPIC model, including our definition of the hybrid coordinate, the calculation of the hybrid vertical velocity

  15. Signals for invisible matter from solar-terrestrial observations

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    We observe a strong correlation between the orbital position of the planets with solar phenomena like flares or the variation of EUV irradiance. Similarly, a correlation is found in the study of the ionization content of the Earth atmosphere. Planetary gravitational lensing of one (or more) streams of slow moving invisible matter is proposed as an explanation of such a behaviour.

  16. Magnetic Helicity and Planetary Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  17. Planetary Vital Signs

    Science.gov (United States)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  18. Dust in planetary nebulae

    Science.gov (United States)

    Sloan, G. C.

    2017-10-01

    Infrared spectra from the Spitzer Space Telescope trace the evolution of carbon-rich dust from the asymptotic giant branch (AGB) to young planetary nebulae (PNe). On the AGB, amorphous carbon dominates the dust, but SiC and MgS also appear. In more evolved systems with warmer central stars, the spectra reveal the unidentified 21 μm feature, features from aliphatic hydrocarbons, and spectra from polycyclic aromatic hydrocarbons (PAHs), often with shifted feature positions indicative of the presence of aliphatics. More evolved systems with hot central stars show more typical PAH spectra, along with fullerenes and/or an emission feature known as the big-11 feature at ~11 μm. This features arises from a combination of SiC and PAHs, and it is usually accompanied by a shoulder at 18 μm, which while unidentified might be from cool silicate grains. The strong emission from MgS and SiC in young PNe probably arises from coatings on carbonaceous grains.

  19. Space weather events at Mars: atmospheric erosion during solar cycle 24

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Dong, Chuanfei; Thiemann, Ed; Gruesbeck, Jacob; Lee, Christina; DiBraccio, Gina A.; Ma, Yingjuan; Brain, David; Halekas, Jasper; Espley, Jared R.; Connerney, John E. P.

    2017-10-01

    The early Sun played a major role in the evolution of terrestrial atmospheres, with extreme EUV and X-ray fluxes, as well as a more intense solar wind and higher occurrences of powerful solar transient events. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been observing the upper atmosphere and magnetic topology of Mars, and has made numerous measurements of solar transient events such as Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs) since November 2014. These events are characterized by dramatic changes in dynamic pressure, magnetic field strength and substantial increases in escaping and precipitating planetary ions. We will present MAVEN observations of ICMEs and SIRs and show three of the strongest solar transient events observed during solar cycle 24. We will also present global MHD and test particle simulations of these events and discuss their influence on the magnetic topology and atmospheric escape rates at Mars. Finally, using observations of the magnitude and frequency of M and X class flares at younger, Sun-like stars, we have extrapolated the frequency of ICMEs at earlier stages of the Sun and will present simulations of the Mars-early solar wind interaction. The extreme conditions in the Sun’s early history may have had a significant influence on the evolution of the Martian atmosphere and may also have implications for exoplanets interacting with the stellar winds of younger, more active stars.

  20. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  1. Lunar and Planetary Science XXXVI, Part 16

    Science.gov (United States)

    2005-01-01

    Contents include the folowing: Experimental Study of Fe-, Co- and Ni-partitioning Between Forsterite and low-Co Fe,Ni-Alloys: Implications for Formation of Olivine Condensates in Equilibrium with Primitive Metal. Channels and Fan-like Features on Titan Surface Imaged by the Cassini RADAR. The Oxygen Isotope Similarity of the Earth and Moon: Source Region or Formation Process? The Mn-53-Cr-53 System in CAIs: An Update. Comparative Planetary Mineralogy: Valence State Partitioning of Cr, Fe, Ti, and V Among Crystallographic Sites in Olivine, Pyroxene, and Spinel from Planetary Basalts. CAI Thermal History Constraints from Spinel: Ti Zoning Profiles and Melilite Boundary Clinopyroxenes. Noble Gas Study of New Enstatite SaU 290 with High Solar Gases. A Marine Origin for the Meridiani Planum Landing Site? A Mechanism for the Formation and Evolution of Tharsis as a Consequence of Mantle Overturn: Large Scale Lateral Heterogeneity in a Stably Stratified Mantle. Endolithic Colonization of Fluid Inclusion Trails in Mineral Grains. Microbial Preservation in Sulfates in the Haughton Impact Structure Suggests Target in Search for Life on Mars. Ascraeus Mons Fan-shaped Deposit, Mars: Geological History and Volcano-Ice Interactions of a Cold-based Glacier. Weathering Pits in the Antarctic Dry Valleys: Insolation-induced Heating and Melting, and Applications to Mars. Mineralogy and Petrography of Lunar Mare Regolith Breccia Meteorite MET 01-210. Geological Mapping of Ganymede. A Quantitative Analysis of Plate Motion on Europa: Implications for the Role of Rigid vs. Nonrigid Behavior of the Lithosphere. Comparison of Terrestrial Morphology, Ejecta, and Sediment Transport of Small Craters: Volcanic and Impact Analogs to Mars. An Integrated Study of OMEGA-Identified Mineral Deposits in Eastern Hebes Chasma, Mars. Global Spectral and Compositional Diversity of Mars: A Test of CRISM Global Mapping with Mars Express OMEGA Data. On Origin of Sedna. Processing ISS Images of Titan s

  2. PLATO : PLAnetary Transits and Oscillations of stars

    Energy Technology Data Exchange (ETDEWEB)

    Catala, Claude [Observatoire de Paris, LESIA, 5 place Jules Janssen, Meudon (France); Appourchaux, Thierry, E-mail: claude.catala@obspm.fr, E-mail: thierry.appourchaux@ias.u-psud.fr [Institut d' Astrophysique Spatiale, Universite Paris-Sud, Orsay (France)

    2011-01-01

    PLATO is a M-class candidate in the ESA Cosmic Vision program. PLATO's objective is to characterize exoplanets and their host stars in the solar neighbourhood. While it builds on the heritage from CoRoT and Kepler, the major breakthrough will come from its strong focus on bright targets (m{sub V} {<=} 11). The PLATO targets will also include a large number of very bright (m{sub V} {<=} 8) and nearby stars. The prime science goals of PLATO are: (i) the detection and characterization of exoplanetary systems of all kinds, including both the planets and their host stars, reaching down to small, terrestrial planets in the habitable zone; (ii) the identification of suitable targets for future, more detailed characterization, including a spectroscopic search for bio-markers in nearby habitable exoplanets. These ambitious goals will be reached by ultra-high precision, long (few years), uninterrupted photometric monitoring in the visible of very large samples of bright stars, which can only be done from space. The resulting high quality light curves will be used on the one hand to detect planetary transits, as well as to measure their characteristics, and on the other hand to provide a seismic analysis of the host stars of the detected planets, from which precise measurements of their radii, masses, and ages will be derived. The PLATO space-based data will be complemented by ground-based follow-up observations, in particular very precise radial velocity monitoring, which will be used to confirm the planetary nature of the detected events and to measure the planet masses. The full set of parameters of exoplanetary systems will thus be measured, including all characteristics of the host stars and the orbits, radii, masses, and ages of the planets, allowing us to derive planet mean densities, and estimate their temperature and radiation environment. Finally, the knowledge of the age of the exoplanetary systems will allow us to put them in an evolutionary perspective.

  3. A population study of hot Jupiter atmospheres

    Science.gov (United States)

    Tsiaras, Angelos; Waldmann, Ingo; Zingales, Tiziano; Rocchetto, Marco; Morello, Giuseppe; Damiano, Mario; Karpouzas, Konstantinos; Tinetti, Giovanna; McKemmish, Laura; Tennyson, Jonathan; Yurchenko, Sergey

    2017-10-01

    In the past two decades, we have learnt that every star hosts more than one planet. While the hunt for new exoplanets is on-going, the current sample of more than 3500 confirmed planets reveals a wide spectrum of planetary characteristics. While small planets appear to be the most common, the big and gaseous planets play a key role in the process of planetary formation. We present here the analysis of 30 gaseous extra-solar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 Jupiter radii. These planets were spectroscopically observed with the Wide Field Camera 3 on-board the Hubble Space Telescope, which is currently one of the most successful instruments for observing exoplanetary atmospheres. The quality of the HST/WFC3 spatially-scanned data combined with our specialised analysis tools, allows us to create the largest and most self-consistent sample of exoplanetary transmission spectra to date and study the collective behaviour of warm and hot gaseous planets rather than isolated case-studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres around 16 planets. For most of the Jupiters in our sample we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity is a secondary factor in the evolution of planetary atmospheres. We detect the presence of water vapour in all the statistically detectable atmospheres and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ confidence in WASP-76 b, and they are most likely present on WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.

  4. Rheological evolution of planetary basalts during cooling and crystallization

    Science.gov (United States)

    Sehlke, Alexander

    Basaltic lavas cover large portions of the surface of the Earth and other planets and moons. Planetary basalts are compositionally different from terrestrial basalts, and show a variety of unique large-scale lava flow morphologies unobserved on Earth. They are usually assumed to be much more fluid than basalts on Earth, such as Hawaiian basalt, but their rheology is largely unknown. I synthesized several synthetic silicate melts representing igneous rock compositions of Mars, Mercury, the Moon, Io and Vesta. I measured their viscosity, as well as several terrestrial lavas including Hawaiian basalt, by concentric cylinder and parallel plate viscometry. Planetary melts cover a wide range of viscosity at their liquidus, overlapping with terrestrial basaltic melts. I derived a new viscosity model that is based on the Adam-Gibbs theory of structural relaxation, predicting these viscosities much more accurately than previously published viscosity models. During crystallization, the rheological behavior changes from Newtonian to pseudoplastic. Combining rheology experiments with field observations, the rheological conditions of the pahoehoe to `a`a morphological transition for Hawaiian basalt were determined in strain rate-viscosity space. This transition occurs at temperatures around 1185+/-15°C. For Mercurian lavas, this transition is predicted to occur at higher temperatures around 1250+/-30°C. We find that the rheology of these lavas is broadly similar to terrestrial ones, suggesting that the large smooth volcanic plains observed on Mercury's northern hemisphere are due to flood basalt volcanism rather than unusually fluid lavas. We also show that KREEP lavas, a type of basalt associated with sinuous rilles on the lunar surface, is more likely to form rilles through levee construction, as the high and rapidly increasing viscosity prohibits sufficient thermo-mechanical erosion.

  5. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  6. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Daniel J. Hayes; David P. Turner; Graham Stinson; A. David Mcguire; Yaxing Wei; Tristram O. West; Linda S. Heath; Bernardus Dejong; Brian G. McConkey; Richard A. Birdsey; Werner A. Kurz; Andrew R. Jacobson; Deborah N. Huntzinger; Yude Pan; W. Mac Post; Robert B. Cook

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000-2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2,...

  7. The Delivery of Water During Terrestrial Planet Formation

    Science.gov (United States)

    O'Brien, David P.; Izidoro, Andre; Jacobson, Seth A.; Raymond, Sean N.; Rubie, David C.

    2018-02-01

    The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.

  8. NASA Planetary Visualization Tool

    Science.gov (United States)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  9. Prevalence of chaos in planetary systems formed through embryo accretion

    Science.gov (United States)

    Clement, Matthew S.; Kaib, Nathan A.

    2017-05-01

    The formation of the solar system's terrestrial planets has been numerically modeled in various works, and many other studies have been devoted to characterizing our modern planets' chaotic dynamical state. However, it is still not known whether our planets fragile chaotic state is an expected outcome of terrestrial planet accretion. We use a suite of numerical simulations to present a detailed analysis and characterization of the dynamical chaos in 145 different systems produced via terrestrial planet formation in Kaib and Cowan (2015). These systems were created in the presence of a fully formed Jupiter and Saturn, using a variety of different initial conditions. They are not meant to provide a detailed replication of the actual present solar system, but rather serve as a sample of similar systems for comparison and analysis. We find that dynamical chaos is prevalent in roughly half of the systems we form. We show that this chaos disappears in the majority of such systems when Jupiter is removed, implying that the largest source of chaos is perturbations from Jupiter. Chaos is most prevalent in systems that form 4 or 5 terrestrial planets. Additionally, an eccentric Jupiter and Saturn is shown to enhance the prevalence of chaos in systems. Furthermore, systems in our sample with a center of mass highly concentrated between ∼0.8-1.2 AU generally prove to be less chaotic than systems with more exotic mass distributions. Through the process of evolving systems to the current epoch, we show that late instabilities are quite common in our systems. Of greatest interest, many of the sources of chaos observed in our own solar system (such as the secularly driven chaos between Mercury and Jupiter) are shown to be common outcomes of terrestrial planetary formation. Thus, consistent with previous studies such as Laskar (1996), the solar system's marginally stable, chaotic state may naturally arise from the process of terrestrial planet formation.

  10. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    Science.gov (United States)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  11. Planetary Geology Education on the Stage: Dynamics of Planetary Morphology in Theatre Performance

    Science.gov (United States)

    Bérczi, Zs.; Bérczi, Sz.; Terebessy, T.

    2011-03-01

    The Living Picture Company planned and produced a performance, where planetary surface dynamics were realized and planetary morphology processes were animated, both of which are useful in planetary morphology education.

  12. Carnegie Institution Atmospheric-Electricity and Meteorological Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Department of Terrestrial Magnetism at the Carnegie Institute of Science conducted observations of atmospheric electricity and magnetic storms. In addition to...

  13. The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA)

    Science.gov (United States)

    Hueso, R.; Juaristi, J.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Erard, S.; Cecconi, B.; Le Sidaner, Pierre

    2018-01-01

    Since 2003 the Planetary Virtual Observatory and Laboratory (PVOL) has been storing and serving publicly through its web site a large database of amateur observations of the Giant Planets (Hueso et al., 2010a). These images are used for scientific research of the atmospheric dynamics and cloud structure on these planets and constitute a powerful resource to address time variable phenomena in their atmospheres. Advances over the last decade in observation techniques, and a wider recognition by professional astronomers of the quality of amateur observations, have resulted in the need to upgrade this database. We here present major advances in the PVOL database, which has evolved into a full virtual planetary observatory encompassing also observations of Mercury, Venus, Mars, the Moon and the Galilean satellites. Besides the new objects, the images can be tagged and the database allows simple and complex searches over the data. The new web service: PVOL2 is available online in http://pvol2.ehu.eus/.

  14. Meteorological insights from planetary heat flow measurements

    Science.gov (United States)

    Lorenz, Ralph D.

    2015-04-01

    Planetary heat flow measurements are made with a series of high-precision temperature sensors deployed in a column of regolith to determine the geothermal gradient. Such sensors may, however, be susceptible to other influences, especially on worlds with atmospheres. First, pressure fluctuations at the surface may pump air in and out of pore space leading to observable, and otherwise unexpected, temperature fluctuations at depth. Such pumping is important in subsurface radon and methane transport on Earth: evidence of such pumping may inform understanding of methane or water vapor transport on Mars. Second, the subsurface profile contains a muted record of surface temperature history, and such measurements on other worlds may help constrain the extent to which Earth's Little Ice Age was directly solar-forced, versus volcanic-driven and/or amplified by climate feedbacks.

  15. Introducing PLIA: Planetary Laboratory for Image Analysis

    Science.gov (United States)

    Peralta, J.; Hueso, R.; Barrado, N.; Sánchez-Lavega, A.

    2005-08-01

    We present a graphical software tool developed under IDL software to navigate, process and analyze planetary images. The software has a complete Graphical User Interface and is cross-platform. It can also run under the IDL Virtual Machine without the need to own an IDL license. The set of tools included allow image navigation (orientation, centring and automatic limb determination), dynamical and photometric atmospheric measurements (winds and cloud albedos), cylindrical and polar projections, as well as image treatment under several procedures. Being written in IDL, it is modular and easy to modify and grow for adding new capabilities. We show several examples of the software capabilities with Galileo-Venus observations: Image navigation, photometrical corrections, wind profiles obtained by cloud tracking, cylindrical projections and cloud photometric measurements. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  16. Batteries for terrestrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulin, T.M.

    1998-07-01

    Extensive research has been conducted in the design and manufacture of very long life vented and sealed maintenance free nickel-cadmium aircraft batteries. These batteries have also been used in a number of terrestrial applications with good success. This study presents an overview of the Ni-Cd chemistry and technology as well as detailed analysis of the advantages and disadvantages of the Ni-Cd couple for terrestrial applications. The performance characteristics of both sealed and vented Ni-Cd's are presented. Various charge algorithms are examined and evaluated for effectiveness and ease of implementation. Hardware requirements for charging are also presented and evaluated. The discharge characteristics of vented and sealed Ni-Cd's are presented and compared to other battery chemistries. The performance of Ni-Cd's under extreme environmental conditions is also compared to other battery chemistries. The history of various terrestrial applications is reviewed and some of the lessons learned are presented. Applications discussed include the NASA Middeck Payload Battery, Raytheon Aegis Missile System Battery, THAAD Launcher battery, and the Titan IV battery. The suitability of the Ni-Cd chemistry for other terrestrial applications such as electric vehicles and Uninterruptible Power Supply is discussed.

  17. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  18. Planetary meteorology - A new perspective on the earth's weather

    Science.gov (United States)

    Joels, K.

    1976-01-01

    Meteorological observations of other planets which may contribute to an understanding of the meteorological processes on the earth are discussed. The high solar input and extremely low rotation rate of Venus simplify the analysis of the interaction of solar energy with the atmosphere. The dust present in the atmosphere of Mars may provide a useful model for studying the effects of anthropogenic aerosols in the atmosphere of earth. Observations of Mars may also be expected to yield information on the evolution of severe storms and on atmospheric tides. The belts and zones in the Jovian atmosphere bear some similarities to cyclones on earth, although they are produced differently; careful modeling of Jupiter's atmosphere may cast light on terrestrial cyclonic activity.

  19. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  20. The fragility of planetary systems

    Science.gov (United States)

    Portegies Zwart, S. F.; Jílková, Lucie

    2015-07-01

    We specify the range to which perturbations penetrate a planetesimal system. Such perturbations can originate from massive planets or from encounters with other stars. The latter can have an origin in the star cluster in which the planetary system was born, or from random encounters once the planetary system has escaped its parental cluster. The probability of a random encounter, either in a star cluster or in the Galactic field depends on the local stellar density, the velocity dispersion and the time spend in that environment. By adopting order of magnitude estimates, we argue that the majority of planetary systems born in open clusters will have a Parking zone, in which planetesimals are affected by encounters in their parental star cluster but remain unperturbed after the star has left the cluster. Objects found in this range of semimajor axis and eccentricity preserve the memory of the encounter that last affected their orbits, and they can therefore be used to reconstruct this encounter. Planetary systems born in a denser environment, such as in a globular cluster are unlikely to have a Parking zone. We further argue that some planetary systems may have a Frozen zone, in which orbits are not affected either by the more inner massive planets or by external influences. Objects discovered in this zone will have preserved information about their formation in their orbital parameters.

  1. Global change and terrestrial ecosystems: the operational plan

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, W.L.; Walker, B.H.; Ingram, J.S.I.; Koch, G.W. (eds.)

    1992-04-01

    The International Geosphere-Biosphere Programme (IGBP) has established a core project on Global Change and Terrestrial Ecosystems (GCTE). The objectives of GCTE are: to predict the effects of changes in climate, atmospheric composition, and land use on terrestrial ecosystems, including agricultural and production forest systems; and to determine how these effects lead to feedbacks to the atmosphere and the physical climate system. The research plan has four foci: ecosystem physiology, change in ecosystem structure, global change impact on agriculture and forestry; and global change and ecological complexity. The research strategy is outlined. 17 refs., 6 figs.

  2. Planetary vistas the landscapes of other worlds

    CERN Document Server

    Murdin, Paul

    2015-01-01

    The word “landscape” can mean picture as well as natural scenery. Recent advances in space exploration imaging have allowed us to now have landscapes never before possible, and this book collects some of the greatest views and vistas of Mars, Venus’s Titan, Io and more in their full glory, with background information to put into context the foreign landforms of our Solar System. Here, literally, are 'other-worldly' visions of strange new scenes, all captured by the latest technology by landing and roving vehicles or by very low-flying spacecraft.   There is more than scientific interest in these views. They are also aesthetically beautiful and intriguing, and Dr. Murdin in a final chapter compares them to terrestrial landscapes in fine art.   Planetary Vistas is a science book and a travel book across the planets and moons of the Solar System for armchair space explorers who want to be amazed and informed. This book shows what future space explorers will experience, because these are the landscapes th...

  3. Lessons from our Own Solar System: Generation Mechanisms of Radio Emissions from Earth, Saturn and Jupiter and Atmospheric Loss from Magnetized versus non-magnetized planets

    Science.gov (United States)

    Brandt, Pontus

    2017-05-01

    The understanding of the engines and mechanisms behind kilometric and decametric radio emissions from the planets in our own solar system have taken great leaps with missions such as the NASA/Cassini, IMAGE and Galileo missions. The periodic Saturn Kilometric Radiation (SKR), the Auroral Kilometric Radiation (AKR) at Earth and the periodic decametric radio emissions from Jupiter all point to the same generation mechanisms: very large-scale explosive plasma heating events in the magnetotail of each of the planets. The character and periodicity of the associated radio emissions not only tells us about the presence of a magnetic field but also about the plasma content and size of the planetary magnetosphere, and the nature of the interaction with the solar wind.The presence of a planetary magnetic field, as could be established for exoplanets by the positive detection of low-frequency exoplanetary radio emissions, has been thought to shield a planet from atmospheric loss to space. However, recent data from Mars Express, MAVEN, and Venus Express, together with the wealth of terrestrial measurements of atmospheric escape to space has brought a surprising question in to light: Does a planetary magnetic field suppress or enhance atmospheric loss? While at the non-magnetized planets such as Mars and Venus, the solar wind has a more direct access to the ionized upper atmosphere, these planets do set up self shielding currents that do limit escape. Furthermore, it is not clear if Mars have lost the majority of its atmosphere by condensation in to surface and sub-surface frost, or through atmospheric escape. At Earth, the geomagnetic field sets up a relatively large cross section to the solar wind, that allows the induced solar-wind electric field to transfer substantial energy to the upper ionosphere and atmosphere resulting in substantial loss. It is therefore not clear how a planetary magnetic field correlates to the atmospheric loss, or if it does at all.In this

  4. Robotic vehicles for planetary exploration

    Science.gov (United States)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  5. DECIPHERING THERMAL PHASE CURVES OF DRY, TIDALLY LOCKED TERRESTRIAL PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2015-03-20

    Next-generation space telescopes will allow us to characterize terrestrial exoplanets. To do so effectively it will be crucial to make use of all available data. We investigate which atmospheric properties can, and cannot, be inferred from the broadband thermal phase curve of a dry and tidally locked terrestrial planet. First, we use dimensional analysis to show that phase curves are controlled by six nondimensional parameters. Second, we use an idealized general circulation model to explore the relative sensitivity of phase curves to these parameters. We find that the feature of phase curves most sensitive to atmospheric parameters is the peak-to-trough amplitude. Moreover, except for hot and rapidly rotating planets, the phase amplitude is primarily sensitive to only two nondimensional parameters: (1) the ratio of dynamical to radiative timescales and (2) the longwave optical depth at the surface. As an application of this technique, we show how phase curve measurements can be combined with transit or emission spectroscopy to yield a new constraint for the surface pressure and atmospheric mass of terrestrial planets. We estimate that a single broadband phase curve, measured over half an orbit with the James Webb Space Telescope, could meaningfully constrain the atmospheric mass of a nearby super-Earth. Such constraints will be important for studying the atmospheric evolution of terrestrial exoplanets as well as characterizing the surface conditions on potentially habitable planets.

  6. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  7. Solar-Terrestrial Interactions

    Science.gov (United States)

    2008-01-01

    satellite for polar cap passes during large SEP events to determine the experimental geographic cutoff latitudes for the two energy ranges. 9 These...E. Lamanna, Societa Italiana di Fisica , Bologna, Italy, 1997.) Shea, M.A., and D.F. Smart, Overview of the Effects of Solar Terrestrial Phenomena...Conference, Invited, Rapporteurs, & Highlight Papers, edited by N. Iucci and E. Lamanna, Societa Italiana di Fisica , Bologna, Italy, 1997.) 27

  8. Planetary Nomenclature: An Overview and Update

    Science.gov (United States)

    Gaither, T.; Hayward, R. K.; Blue, J.; Gaddis, L.; Schulz, R.; Aksnes, K.; Burba, G.; Consolmagno, G.; Lopes, R. M. C.; Masson, P.; Sheehan, W.; Smith, B. A.; Williams, G.; Wood, C.

    2017-06-01

    This contribution is an update for the planetary science community on the status of planetary nomenclature, its purpose and rules, the process for submitting name requests, and the IAU approval process.

  9. Rigidized Deployable Lifting Brake for Atmospheric Entry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerobraking to reduce velocity for planetary capture and landing has long been assumed for use on Mars missions because Mars has an atmosphere, and the use of...

  10. Neutron star planets: Atmospheric processes and irradiation

    Science.gov (United States)

    Patruno, A.; Kama, M.

    2017-12-01

    Of the roughly 3000 neutron stars known, only a handful have sub-stellar companions. The most famous of these are the low-mass planets around the millisecond pulsar B1257+12. New evidence indicates that observational biases could still hide a wide variety of planetary systems around most neutron stars. We consider the environment and physical processes relevant to neutron star planets, in particular the effect of X-ray irradiation and the relativistic pulsar wind on the planetary atmosphere. We discuss the survival time of planet atmospheres and the planetary surface conditions around different classes of neutron stars, and define a neutron star habitable zone based on the presence of liquid water and retention of an atmosphere. Depending on as-yet poorly constrained aspects of the pulsar wind, both Super-Earths around B1257+12 could lie within its habitable zone.

  11. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  12. Short- and medium-chain chlorinated paraffins in air and soil of subtropical terrestrial environment in the pearl river delta, South China: distribution, composition, atmospheric deposition fluxes, and environmental fate.

    Science.gov (United States)

    Wang, Yan; Li, Jun; Cheng, Zhineng; Li, Qilu; Pan, Xiaohui; Zhang, Ruijie; Liu, Di; Luo, Chunling; Liu, Xiang; Katsoyiannis, Athanasios; Zhang, Gan

    2013-03-19

    Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 μg/sampler (17.69 ng/m(3)) and 4.1 μg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 μg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.

  13. The excitation of a primordial cold asteroid belt as a natural outcome of the planetary instability

    Science.gov (United States)

    Deienno, Rogerio; Izidoro, André; Gomes, Rodney S.; Morbidelli, Alessandro; Nesvorny, David

    2017-10-01

    The initial dynamical state of the main asteroid belt (MB) always puzzled astronomers and it is still a hot subject under debate. For years, the currently well known Grand Tack model was considered to be the only capable of reconciling the formation of the terrestrial planets together with a well dynamically excited MB. This model, despite its success, is still not generally accepted given that it implies an invasion of Jupiter within the terrestrial region, passing through the MB twice. Other models for the terrestrial planet formation, on the other hand, always end up with a fully or partially cold MB formed. It was recently proposed that a chaotic evolution for Jupiter and Saturn before the planetary instability of the Solar System could excite an initially cold MB. However, hydrodynamical simulations predict that the orbits of those planets at the end of the gas disk phase should be characterized by resonant and regular motion. Therefore, the origin of this chaotic evolution is not fully understood. Here, assuming initial resonant and regular motion for Jupiter and Saturn, we propose a different mechanism capable of exciting a primordial cold MB during the planetary instability. For this, we assume that the planetary instability was of the jumping-Jupiter (JJ) type, and that it accounts for all the constraints already placed. Our results, which also possibly can explain the pathway to the chaotic evolution of Jupiter and Saturn, show that when Jupiter gets a temporary large enough level of excitation, both in eccentricity and inclination, it induces strong forced vectors of eccentricity and inclination within the MB region. Then, because in the JJ instability Jupiter is jumping around, such forced vectors keep changing both in magnitude and phase throughout the whole MB region. Thus, depending on the evolution of Jupiter during the JJ instability, the excitation of a primordial cold MB can indeed be achieved as a natural outcome of the planetary instability for

  14. Planetary Environments: Scientific Issues and Perspectives

    Directory of Open Access Journals (Sweden)

    Encrenaz Th.

    2014-02-01

    Full Text Available What are the planetary environments where conditions are best suited for habitability? A first constraint is provided by the presence of liquid water. This condition allows us to define two kinds of media: (1 the atmospheres of solid (exoplanets with a temperature typically ranging between 0°C and 100°C, and (2 the interiors of icy bodies (outer satellites or possibly exosatellites where the pressure and temperature would fit the liquid phase region of the water phase diagram. In the case of Mars, significant progress has been achieved about our understanding of the history of liquid water in the past, thanks to the findings of recent space missions. The study of the outer satellites is also benefiting from the on-going operation of the Cassini mission. In the case of exopl nets, new discoveries are continuously reported, especially with the Kepler mission, in operation since 2009. With the emergence of transit spectroscopy, a new phase of exoplanets’ exploration has started, their characterization, opening the new field of exoplanetology. In the future, new perspectives appear regarding the exploration of Mars, the giant planets and exoplanets, with the ultimate goal of characterizing the atmospheres of temperate exoplanets.

  15. Planetary imaging with amateur astronomical instruments

    Science.gov (United States)

    Papathanasopoulos, k.; Giannaris, G.

    2017-09-01

    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  16. Evolution of ore deposits on terrestrial planets

    Science.gov (United States)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  17. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  18. Mars: a small terrestrial planet

    Science.gov (United States)

    Mangold, N.; Baratoux, D.; Witasse, O.; Encrenaz, T.; Sotin, C.

    2016-11-01

    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for remote-sensing data and have opened a new era in the study of Mars geology. While large sections of Mars science have made progress and new topics have emerged, a major question in Mars exploration—the possibility of past or present life—is still unsolved. Without entering into the debate around the presence of life traces, our review develops various topics of Mars science to help the search of life on Mars, building on the most recent discoveries, going from the exosphere to the interior structure, from the magmatic evolution to the currently active processes, including the fate of volatiles and especially liquid water.

  19. Planetary Science with the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    Science.gov (United States)

    Backman, Dana E.; Reach, William T.

    2015-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is currently conducting the third annual Cycle of guest investigator observing programs. Programs selected for the fourth Cycle (2016) were announced in October. The planetary science community has made a significant showing in all proposal Cycles, comprising approximately 15% of the time awarded in Cycles 1-3. SOFIA offers observers access to the complete infrared spectrum, with much less atmospheric absorption than from even the finest ground-based telescope sites. New capabilities include high-resolution spectroscopy in the mid-infrared with the Echelon-Cross-Echelle Spectrograph (EXES) that allows spectroscopy of molecules from narrow stratospheric lines of planetary atmospheres, plus imaging spectroscopy with the Field Imaging Far-Infrared Line Spectrometer (FIFI-LS) capable, for example, of simultaneous observations in 9 spatial pixels in each of two far-infrared spectral lines. Also, the FLITECAM near-IR and FORCAST mid-IR cameras include grisms that allow moderate-resolution spectral imaging at wavelengths inaccessible from the ground, and HIPO and FPI+ high-speed photometric imagers are capable of high-S/N measurements of stellar occultations and exoplanet transits. Planetary science targets observed to date include comets ISON and PanSTARRS, main belt asteroids, Mars, Jupiter, Neptune, Pluto, Europa, exoplanets, and debris disks. This poster will showcase science highlights, give details regarding the SOFIA observatory and instrument capabilities, and present observing program statistics.

  20. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  1. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  2. The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    DEFF Research Database (Denmark)

    Douglas, Thomas A.; Loseto, Lisa L.; MacDonald, Robie W.

    2012-01-01

    into the Arctic by oceanic, atmospheric and terrestrial pathways. Our focus is on the movement, transformation and bioaccumulation of Hg in aquatic (marine and fresh water) and terrestrial ecosystems. The processes most relevant to biological Hg uptake and the potential risk associated with Hg exposure...

  3. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis

    Directory of Open Access Journals (Sweden)

    Affan Shaukat

    2016-11-01

    Full Text Available In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR. LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation.

  4. Instrumentation development for In Situ 40Ar/39Ar planetary geochronology

    Science.gov (United States)

    Morgan, Leah; Munk, Madicken; Davidheiser-Kroll, Brett; Warner, Nicholas H.; Gupta, Sanjeev; Slaybaugh, Rachel; Harkness, Patrick; Mark, Darren

    2017-01-01

    The chronology of the Solar System, particularly the timing of formation of extra-terrestrial bodies and their features, is an outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g., Rb-Sr, K-Ar), and even applied (K-Ar), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extra-terrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. Herein, we discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analysing samples are described, along with an exploration of limitations such as mass, power and cost. Two potential solutions for the in situ extra-terrestrial deployment of the 40Ar/39Ar method are presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.

  5. Origin of noble gases in the terrestrial planets

    Science.gov (United States)

    Pepin, Robert O.

    1992-01-01

    Current models of the origin of noble gases in the terrestrial planets are reviewed. Primary solar system volatile sources and processes are examined along with the current data base on noble gases and its applications to evolutionary processing. Models of atmospheric evolution by hydrodynamic escape are addressed.

  6. Isotopic tracers for net primary productivity for a terrestrial esocystem ...

    African Journals Online (AJOL)

    Modeled estimates of heterotrophic soil respiration exceeds slightly the estimated NPP values, implying that carbon flux to and from the Volta river watershed is close to being in balance. In other words, the watershed releases annually more carbon dioxide to the atmosphere than it takes. Apart from the terrestrial carbon flux ...

  7. Climate control of terrestrial carbon exchange across biomes and continents

    DEFF Research Database (Denmark)

    Yi, Chuixiang; Ricciuto, Daniel; Li, Runze

    2010-01-01

    climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems...

  8. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems

    CSIR Research Space (South Africa)

    Schimel, DS

    2001-11-08

    Full Text Available Knowledge of carbon exchange between the atmosphere, land and the oceans is important, given that the terrestrial and marine environments are currently absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion. This carbon...

  9. Terrestrial Steering Group. 2014. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Aastrup, Peter; Aronsson, Mora; Barry, Tom

    implementation of the Arctic Terrestrial Biodiversity Monitoring Plan for the next two years. Identify expert networks required for successful implementation of the plan. Identify key gaps and opportunities for the TSG related to plan implementation and identify near-term next steps to address gaps.......The Terrestrial Steering Group (TSG), has initiated the implementation phase of the CBMP Terrestrial Plan. The CBMP Terrestrial Steering Group, along with a set of invited experts (see Appendix A for a participants list), met in Iceland from February 25-27th to develop a three year work plan...... to guide implementation of the CBMP-Terrestrial Plan. This report describes the outcome of that workshop. The aim of the workshop was to develop a three year work plan to guide implementation of the CBMP-Terrestrial Plan. The participants were tasked with devising an approach to both (a) determine what...

  10. The greenhouse effect in a gray planetary atmosphere.

    Science.gov (United States)

    Wildt, R.

    1966-01-01

    Hopf analytical solution for values of ratio of gray absorption coefficients for insolating and escaping radiation /greenhouse parameter/ assumed constant at all depths, presenting temperature distribution graphs

  11. Generalized Geophysical Retrieval and Analysis Tool for Planetary Atmospheres Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CPI proposes to develop an innovative, generalized retrieval algorithm and analysis tool (GRANT) that will facilitate analysis of remote sensing data from both...

  12. 1-deg x 1-deg Terrestrial Mean Free-Air Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1x1 degree Terrestrial Mean Free-Air Gravity Anomaly and Geoid Undulations Data Base was compiled and developed by the Ohio State University. This data base was...

  13. 30-min x 30-min Terrestrial Mean Free-Air Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 30-min x 30-min Terrestrial Mean Free-Air Gravity Anomaly and Geoid Undulations Data Base was compiled and developed by the Ohio State University. This data base...

  14. Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time".

    Science.gov (United States)

    Catling, David C; Glein, Christopher R; Zahnle, Kevin J; McKay, Christopher P

    2005-06-01

    Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of approximately 10(-1)-10(0) m size scale with specialized, differentiated anatomy comparable to advanced metazoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n (> m) proportional to m(-1) for aquatic aerobes, and we show that for anaerobes the predicted scaling is n proportional to m (-1.5), close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of atmospheric O2 (P(O2)) must exceed approximately 10(3) Pa to allow organisms that rely on O2 diffusion to evolve to a size approximately 10(3) m x P(O2) in the range approximately 10(3)-10(4) Pa is needed to exceed the threshold of approximately 10(2) m size for complex life with circulatory physiology. In terrestrial life, O(2) also facilitates hundreds of metabolic pathways, including those that make specialized structural molecules found only in animals. The time scale to reach P(O(2)) approximately 10(4) Pa, or "oxygenation time," was long on the Earth (approximately 3.9 billion years), within almost a factor of 2 of the Sun

  15. Planetary volatile history - Principles and practice

    Science.gov (United States)

    Fanale, F. P.

    1986-01-01

    The history and evolution of planetary volatile inventories are considered. Planetary bulk volatile inventories are greatly affected by the distance from the preplanetary nebula center at which material accreted, with volatile contents increasing with increasing distance from the nebula center. Other significant factors include: planetary energetics and internal thermal history, planetary volatile sinks (including space), and operation of external variables such as solar energy on the transient, steady-state array of surface volatiles. The net result of all these processes is a volatile history that is itself a controlling factor in overall planetary history.

  16. Planetary exploration and science recent results and advances

    CERN Document Server

    Jin, Shuanggen; Ip, Wing-Huen

    2014-01-01

    This contributed monograph is the first work to present the latest results and findings on the new topic and hot field of planetary exploration and sciences, e.g., lunar surface iron content and mare orientale basalts, Earth's gravity field, Martian radar exploration, crater recognition, ionosphere and astrobiology, Comet ionosphere, exoplanetary atmospheres and planet formation in binaries. By providing detailed theory and examples, this book helps readers to quickly familiarize themselves with the field. In addition, it offers a special section on next-generation planetary exploration, which opens a new landscape for future exploration plans and missions. Prof. Shuanggen Jin works at the Shanghai Astronomical Observatory, Chinese Academy of Sciences, China. Dr. Nader Haghighipour works at the University of Hawaii-Manoa, USA. Prof. Wing-Huen Ip works at the National Central University, Taiwan.

  17. The ESA Planetary Science Archive User Group (PSA-UG)

    Science.gov (United States)

    Pio Rossi, Angelo; Cecconi, Baptiste; Fraenz, Markus; Hagermann, Axel; Heather, David; Rosenblatt, Pascal; Svedhem, Hakan; Widemann, Thomas

    2014-05-01

    ESA has established a Planetary Science Archive User Group (PSA-UG), with the task of offering independent advice to ESA's Planetary Science Archive (e.g. Heather et al., 2013). The PSA-UG is an official and independent body that continuously evaluates services and tools provided by the PSA to the community of planetary data scientific users. The group has been tasked with the following top level objectives: a) Advise ESA on future development of the PSA. b) Act as a focus for the interests of the scientific community. c) Act as an advocate for the PSA. d) Monitor the PSA activities. Based on this, the PSA-UG will report through the official ESA channels. Disciplines and subjects represented by PSA-UG members include: Remote Sensing of both Atmosphere and Solid Surfaces, Magnetospheres, Plasmas, Radio Science and Auxilliary data. The composition of the group covers ESA missions populating the PSA both now and in the near future. The first members of the PSA-UG were selected in 2013 and will serve for 3 years, until 2016. The PSA-UG will address the community through workshops, conferences and the internet. Written recommendations will be made to the PSA coordinator, and an annual report on PSA and the PSA-UG activities will be sent to the Solar System Exploration Working Group (SSEWG). Any member of the community and planetary data user can get in touch with individual members of the PSA-UG or with the group as a whole via the contacts provided on the official PSA-UG web-page: http://archives.esac.esa.int/psa/psa-ug. The PSA is accessible via: http://archives.esac.esa.int/psa References: Heather, D., Barthelemy, M., Manaud, N., Martinez, S., Szumlas, M., Vazquez, J. L., Osuna, P. and the PSA Development Team (2013) ESA's Planetary Science Archive: Status, Activities and Plans. EuroPlanet Sci. Congr. #EPSC2013-626

  18. Statistical-likelihood Exo-Planetary Habitability Index (SEPHI)

    Science.gov (United States)

    Rodríguez-Mozos, J. M.; Moya, A.

    2017-11-01

    A new index, the Statistical-likelihood Exo-Planetary Habitability Index (SEPHI), is presented. It has been developed to cover the current and future features required for a classification scheme disentangling whether any exoplanet discovered is potentially habitable compared with life on Earth. SEPHI uses likelihood functions to estimate the habitability potential. It is defined as the geometric mean of four sub-indexes related to four comparison criteria: Is the planet telluric? Does it have an atmosphere dense enough and a gravity compatible with life? Does it have liquid water on its surface? Does it have a magnetic field shielding its surface from harmful radiation and stellar winds? SEPHI can be estimated with only seven physical characteristics: planetary mass, planetary radius, planetary orbital period, stellar mass, stellar radius, stellar effective temperature and planetary system age. We have applied SEPHI to all the planets in the Exoplanet Encyclopaedia using a Monte Carlo method. Kepler-1229b, Kepler-186f and Kepler-442b have the largest SEPHI values assuming certain physical descriptions. Kepler-1229b is the most unexpected planet in this privileged position since no previous study pointed to this planet as a potentially interesting and habitable one. In addition, most of the tidally locked Earth-like planets present a weak magnetic field, incompatible with habitability potential. We must stress that our results are linked to the physics used in this study. Any change in the physics used implies only an updating of the likelihood functions. We have developed a web application allowing the online estimation of SEPHI (http://sephi.azurewebsites.net/).

  19. The Anthropocene: A Planetary Perspective

    Science.gov (United States)

    Anbar, A. D.; Hartnett, H. E.; York, A.; Selin, C.

    2016-12-01

    The Anthropocene is a new planetary epoch defined by the emergence of human activity as one of the most important driving forces on Earth, rivaling and also stressing the other systems that govern the planet's habitability. Public discussions and debates about the challenges of this epoch tend to be polarized. One extreme denies that humans have a planetary-scale impact, while the other wishes that this impact could disappear. The tension between these perspectives is often paralyzing. Effective adaptation and mitigation requires a new perspective that reframes the conversation. We propose a planetary perspective according to which this epoch is the result of a recent major innovation in the 4 ­billion ­year history of life on Earth: the emergence of an energy-intensive planetary civilization. The rate of human energy use is already within an order of magnitude of that of the rest of the biosphere, and rising rapidly, and so this innovation is second only to the evolution of photosynthesis in terms of energy capture and utilization by living systems. Such energy use has and will continue to affect Earth at planetary scale. This reality cannot be denied nor wished away. From this pragmatic perspective, the Anthropocene is not an unnatural event that can be reversed, as though humanity is separate from the Earth systems with which we are co-evolving. Rather, it is an evolutionary transition to be managed. This is the challenge of turning a carelessly altered planet into a carefully designed and managed world, maintaining a "safe operating space" for human civilization (Steffen et al., 2011). To do so, we need an integrated approach to Earth systems science that considers humans as a natural and integral component of Earth's systems. Insights drawn from the humanities and the social sciences must be integrated with the natural sciences in order to thrive in this new epoch. This type of integrated perspective is relatively uncontroversial on personal, local, and even

  20. How does land use link terrestrial and aquatic carbon in western North America?: Implications from an agricultural case study in central Montana

    Science.gov (United States)

    Ewing, S. A.; Sigler, W. A.

    2014-12-01

    The fate of soil organic matter with expanding human land use is of increasing concern for planetary health and ecological sustainability. In North American grasslands, cultivation has commonly resulted in loss of stored soil organic carbon to dissolved phases in groundwater and surface water, as well as to atmospheric CO2 via decomposition. In addition, cultivation has released nutrients stored in organic matter and facilitated water movement through soils to benefit crops, increasing groundwater recharge rates. This has altered groundwater chemistry both by changing biogeochemistry of the terrestrial-aquatic interface and by increasing addition of nutrients, herbicides, and pesticides to these systems. In this presentation, we consider the effects of food production practices on terrestrial-aquatic carbon linkages in former grassland ecosystems of western North America. Our data from an agricultural area in central Montana begin to reveal how elevated nitrate and pesticide levels in groundwater on an isolated landform reflect transformation over the last century of a temperate grassland ecosystem for wheat and cattle production. Rates and pathways of carbon and nitrogen loss are inferred from the concentration and isotopic character of both water and carbon and nitrogen over three years in soils, shallow groundwater, emergent springs and surface waters. In this semi-arid, non-irrigated context, the fate of soil organic matter is linked with redistribution of pedogenic carbonate as well as other soil and rock derived solutes. We consider implications for future trends in dissolved carbon and nitrogen in surface waters in the region.

  1. Vertical motion of ionization induced by the linear interaction of tides with planetary waves

    Directory of Open Access Journals (Sweden)

    M. Voiculescu

    2003-07-01

    Full Text Available Experimental findings have shown that travelling planetary waves modulate the occurrence of mid-latitude sporadic-E-layers. Using a simple quantitative model, we analyse the effects of the linear interaction between tides and planetary waves on ion motion. Besides an expected variation of the dumping height, it is found that the boundaries of the oscillations induced by the descending semidiurnal tide are significantly modified by the presence of the planetary wave. The height variations of the ionisation cause planetary wave modulations of the metallic ion content in the background plasma density. This could explain the long-term variation found in the occurrence of strong Es layers. The fact that the dumping height variations are strongly influenced by the tidal phase velocity and amplitude, together with the variability of the metallic ion content, could contribute to the understanding of the sporadic nature of the E-layers.Key words. Ionosphere (Ionosphere-atmosphere interactions; Mid-latitude ionosphere

  2. Dynamics of Massive Atmospheres

    Science.gov (United States)

    Chemke, Rei; Kaspi, Yohai

    2017-10-01

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  3. Microstructure of terrestrial catastrophism

    Energy Technology Data Exchange (ETDEWEB)

    Clube, S.V.M. (Oxford Univ. (UK). Dept. of Astrophysics); Napier, W.M. (Royal Observatory, Edinburgh (UK))

    1984-12-15

    The theory of evolution involving episodic terrestrial catastrophism predicts that the Oort cloud is disturbed by close encounters with massive nebulae. Each disturbance generates bombardment pulses of a few million years duration, the pulse frequencies being determined by the Sun's passage through the spiral arms and central plane of the Galaxy where nebulae concentrate. The structure within a pulse is shown here to be dominated by a series of 'spikes' of approx. 0.01-0.1 Myr duration separated by approx. 0.1-1.0 Myr, each caused by the arrival in circumterrestrial space of the largest comets followed by their disintegration into short-lived Apollo asteroids. Evidence is presented that a bombardment pulse was induced 3-5 Myr ago and that a 'spike' in the form of debris from a Chiron-like progenitor of Encke's comet has dominated the terrestrial environment for the last 0.02 Myr.

  4. The exo-weather report exploring diverse atmospheric phenomena around the universe

    CERN Document Server

    Stevenson, David S

    2016-01-01

    David Stevenson’s new book links the meteorology of the Earth to that of other planets, stars, and clusters of galaxies, showing the similarities and differences between terrestrial weather and that of weather on other worlds. Because Earth is not unique in having weather, there is much to learn from other planets with atmospheres that show the movement of energy from hotter to colder areas. The weather seen on Earth and other known planetary systems are examined to elaborate the connection between climate and the development of life. The weather on Earth and other Solar System planets is a manifestation of the huge energy budget imparted by our star, the Sun, but weather doesn’t stop at the shores of our Solar System. The author brings together the latest information from satellites and probes, such as Cassini and Hubble, to show its larger place in the astronomical picture. Inferences are drawn about the weather and climate of a large number of other planetary systems that lie far from our own. Addition...

  5. M Stars as Targets for Terrestrial Exoplanet Searches And Biosignature Detection

    Science.gov (United States)

    Scalo, John; Kaltenegger, Lisa; Segura, Ant Gona; Fridlund, Malcolm; Ribas, Ignasi; Kulikov, Yu. N.; Grenfell, John L.; Rauer, Hieke; Odert, Petra; Leitzinger, Martin; Selsis, F.; Khodachenko, Maxim L.; Eiroa, Carlos; Kasting, Jim; Lammer, Helmut

    2007-02-01

    The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M⊕ range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first ~1 Gyr, atmospheric retention is at peril because of intense and

  6. Atmospheric composition change: Ecosystems–Atmosphere interactions

    DEFF Research Database (Denmark)

    Fowler, D.; Pilegaard, Kim; Sutton, M.A.

    2009-01-01

    in the size range 1 nm–10 μm including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean–atmosphere exchange are included. The material presented is biased...... and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using...... aircraft and satellite remote sensing. The application of a flux-based approach in assessment of O3 effects on vegetation at regional scales is an important policy linked development secured through improved quantification of fluxes. The coupling of monitoring, modelling and intensive flux measurement...

  7. Teaching, Learning, and Planetary Exploration

    Science.gov (United States)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  8. Gigayear Instabilities in Planetary Systems

    Science.gov (United States)

    Fabrycky, Daniel

    One of the biggest modern discoveries about the Solar System is that it is chaotic (Laskar 1989, 1994). On million-year timescales, nearby trajectories exponentially diverge; on billion-year timescales, planets can develop large eccentricities and even collide. This is possible because our planets interact with enough energy and with the right (secular) timescales. This has the potential to put the planet Mercury on an unstable orbit in the future, before the Sun exhausts its fuel. Currently, as a standard step in the analysis, exoplanet observing teams check whether the planetary systems they are discovering are stable. This usually involves a few-Megayear numerical integration, and the system usually passes that test. However, the signatures of continuing instability have not been looked for in the exoplanet population, nor has its implications for planetary formation and evolution been fully recognized. We will study several specific evolutionary scenarios in which instability may manifest only on gigayear timescales, i.e. midway through the lives of the host stars. This is relevant to the solicitation in that it characterizes the dynamics of exoplanetary systems. In the first project, we will compare N-body, numerically-calculated secular, and Fourier-expansion secular theories to determine what essential ingredients go into the conclusion that a general planetary system is chaotic. We will apply these tools to specific realizations of Kepler-discovered close-in planetary systems consisting of three or more Neptunes or super-Earths, which is the most populous known exoplanet population. We will thus find the common ailments afflicting middle-age planetary systems. In the second project, we will consider how planets might get stranded in their Kuiper and Oort clouds during early system evolution, only to destabilize the inner system later on. Various investigators have wondered whether the Solar System is accompanied by a massive planetary companion, including a

  9. The Extended Region Around the Planetary Nebula NGC 3242

    Science.gov (United States)

    2009-01-01

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as 'Jupiter's Ghost.' The unfortunate name of 'planetary nebula' for this class of celestial object is a historical legacy credited to William Herschel during the 18th century a time when telescopes where small and objects like these, at least the central region, looked very similar to gas-giant planets such as Saturn and Jupiter. In fact, NGC 3242 has no relation to Jupiter or any other planet. Telescopes and their detectors have dramatically improved over the past few centuries. Our understanding of what planetary nebulae truly are has improved accordingly. When stars with a mass similar to our sun approach the end of their lives by exhausting supplies of hydrogen and helium fuel in their cores, they swell up into cool red-giant stars. In a last gasp before death, they expel the layers of gas in their outer atmosphere. This exposes the core of the dying star, a dense hot ball of carbon and oxygen called a white dwarf. The white dwarf is so hot that it shines very brightly in the ultraviolet. The ultraviolet light from the white dwarf, in turn, ionizes the gaseous material expelled by the star causing it to glow. A planetary nebula is really the death of a low-mass star. Although low-mass stars like our sun live for billions of years, planetary nebulae only last for about ten thousand years. As the central white dwarf quickly cools and the ultraviolet light dwindles, the surrounding gas also cools and fades. In this image of NGC 3242 from the Galaxy Evolution Explorer, the extended region around the planetary nebula is shown in dramatic detail. The small circular white and blue area at the center of the image is the well-known portion of the famous planetary nebula. The precise origin and composition of the extended wispy white features is not known for certain. It is most likely material ejected during the star's red-giant phase before the white

  10. Radiative transfer in a polluted urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  11. Terrestrial Plume Impingement Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Masten Space Systems proposes to create a terrestrial plume impingement testbed for generating novel datasets for extraterrestrial robotic missions. This testbed...

  12. Iron isotope systematics in planetary reservoirs

    Science.gov (United States)

    Sossi, Paolo A.; Nebel, Oliver; Foden, John

    2016-10-01

    Iron is the only polyvalent major element, and controls reduction-oxidation (redox) reactions in a host of geologic processes and reservoirs, from the mineral- to planetary-scale, on Earth and in space. Mass transfer of Fe is often accompanied by changes in bonding environment, meaning the resultant variation in bond-strength in crystals, liquids and gases induces stable isotope fractionation, even at high temperatures. In the absence of iron exchange, electron transfer can also affect iron's valence state and calculated oxygen fugacity (fO2), however its isotope composition remains unchanged. Thus, iron isotopes are a powerful tool to investigate processes that involve mass transfer, redox reactions and changes in bonding environment in planetary systems. Primitive chondritic meteorites show remarkable isotopic homogeneity, δ57 Fe = - 0.01 ± 0.01 ‰ (2SE), over a wide range of Fe/Mg vs Ni/Mg, a proxy for fO2 in the solar nebula. In chondrites, there are iron isotope differences between metal and silicates that become more pronounced at higher metamorphic grades. However, on a planetary scale, Mars and Vesta overlap with chondrites, preserving no trace of core formation or volatile depletion on these bodies. Upon assessment of pristine lherzolites, the Bulk Silicate Earth is heavier than chondrites (δ57 Fe = + 0.05 ± 0.01 ‰; 2SE), and similar to or slightly lighter than the Moon. That the mantles of some differentiated inner solar system bodies extend to heavier compositions (+ 0.2 ‰) than chondrites may principally result from volatile depletion either at a nebular or late accretion stage. Within terrestrial silicate reservoirs, iron isotopes provide insight into petrogenetic and geodynamic processes. Partial melting of the upper mantle produces basalts that are heavier than their sources, scaling with degree of melting and driving the increasingly refractory peridotite to lighter compositions. Mid-Ocean Ridge Basalts (MORBs) are homogeneous to δ57 Fe

  13. Origins of the Lunar and Planetary Laboratory, University of Arizona

    Science.gov (United States)

    Cruikshank, Dale P.; Hartmann, William K.

    2014-11-01

    The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper’s view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper’s theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper’s view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B

  14. Fundamentals of Atmospheric Radiation

    Science.gov (United States)

    Bohren, Craig F.; Clothiaux, Eugene E.

    2006-02-01

    This textbook fills a gap in the literature for teaching material suitable for students of atmospheric science and courses on atmospheric radiation. It covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the book applies to planetary atmosphere. The authors are physicists and teach at the largest meteorology department of the US at Penn State. Craig T. Bohren has taught the atmospheric radiation course there for the past 20 years with no book. Eugene Clothiaux has taken over and added to the course notes. Problems given in the text come from students, colleagues, and correspondents. The design of the figures especially for this book is meant to ease comprehension. Discussions have a graded approach with a thorough treatment of subjects, such as single scattering by particles, at different levels of complexity. The discussion of the multiple scattering theory begins with piles of plates. This simple theory introduces concepts in more advanced theories, i.e. optical thickness, single-scattering albedo, asymmetry parameter. The more complicated theory, the two-stream theory, then takes the reader beyond the pile-of-plates theory. Ideal for advanced undergraduate and graduate students of atmospheric science.

  15. Electrifying atmospheres charging, ionisation and lightning in the solar system and beyond

    CERN Document Server

    Aplin, Karen L

    2013-01-01

    Electrical processes take place in all planetary atmospheres. There is evidence for lightning on Venus, Jupiter, Saturn, Uranus and Neptune, it is possible on Mars and Titan, and cosmic rays ionise every atmosphere, leading to charged droplets and particles. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This book reviews the theory, and, where available, measurements, of planetary atmospheric electricity, taken to include ion production and ion-aerosol interactions. The conditions necessary for a global atmospheric electric circuit similar to Earth’s, and the likelihood of meeting these conditions in other planetary atmospheres, are brief