Sample records for terrestrial noble gas

  1. Noble gases in meteorites and terrestrial planets (United States)

    Wacker, J. F.


    Terrestrial planets and chondrites have noble gas platforms that are sufficiently alike, especially Ne/Ar, that they may have acquired their noble gases by similar processes. Meteorites presumably obtained their noble gases during formation in the solar nebula. Adsorption onto C - the major gas carrier in chondrites - is the likely mechanism for trapping noble gases; recent laboratory simulations support this hypothesis. The story is more complex for planets. An attractive possibility is that the planets acquired their noble gases in a late accreting veneer of chondritic material. In chondrites, noble gases correlate with C, N, H, and volatile metals; by Occam's Razor, we would expect a similar coupling in planets. Indeed, the Earth's crust and mantle contain chondritic like trace volatiles and PL group metals, respectively and the Earth's oceans resemble C chondrites in their enrichment of D (8X vs 8-10X of the galactic D/H ratio). Models have been proposed to explain some of the specific noble gas patterns in planets. These include: (1) noble gases may have been directly trapped by preplanetary material instead of arriving in a veneer; (2) for Venus, irradiation of preplanetary material, followed by diffusive loss of Ne, could explain the high concentration of AR-36; (3) the Earth and Venus may have initially had similar abundances of noble gases, but the Earth lost its share during the Moon forming event; (4) noble gases could have been captured by planetestimals, possibly leading to gravitational fractionation, particularly of Xe isotopes and (5) noble gases may have been dissolved in the hot outer portion of the Earth during contact with a primordial atmosphere.

  2. Noble gas fractionation during subsurface gas migration (United States)

    Sathaye, Kiran J.; Larson, Toti E.; Hesse, Marc A.


    Environmental monitoring of shale gas production and geological carbon dioxide (CO2) storage requires identification of subsurface gas sources. Noble gases provide a powerful tool to distinguish different sources if the modifications of the gas composition during transport can be accounted for. Despite the recognition of compositional changes due to gas migration in the subsurface, the interpretation of geochemical data relies largely on zero-dimensional mixing and fractionation models. Here we present two-phase flow column experiments that demonstrate these changes. Water containing a dissolved noble gas is displaced by gas comprised of CO2 and argon. We observe a characteristic pattern of initial co-enrichment of noble gases from both phases in banks at the gas front, followed by a depletion of the dissolved noble gas. The enrichment of the co-injected noble gas is due to the dissolution of the more soluble major gas component, while the enrichment of the dissolved noble gas is due to stripping from the groundwater. These processes amount to chromatographic separations that occur during two-phase flow and can be predicted by the theory of gas injection. This theory provides a mechanistic basis for noble gas fractionation during gas migration and improves our ability to identify subsurface gas sources after post-genetic modification. Finally, we show that compositional changes due to two-phase flow can qualitatively explain the spatial compositional trends observed within the Bravo Dome natural CO2 reservoir and some regional compositional trends observed in drinking water wells overlying the Marcellus and Barnett shale regions. In both cases, only the migration of a gas with constant source composition is required, rather than multi-stage mixing and fractionation models previously proposed.

  3. Noble gas detectors

    National Research Council Canada - National Science Library

    Aprile, Elena


    ... that is reflected in the high-quality discussions of principles and devices that will be found throughout the book. Noble gases in compressed or liquid form are regarded as an attractive detection medium from several standpoints. Detector volume is not limited by the need for crystal growth required in many alternative approaches, and the statistical limit on energy resolution is quite small due to moderate values for average ionization energy and a relatively low Fano factor. These media ...

  4. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi


    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  5. Noble Gas Concept Of Operation

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The intent of this document is to provide the reader with an understanding of a general approach to performing the noble gas component of an On Site Inspection or OSI. The authors of this document recognize that owing to the wide range of scenarios that are possible for carrying out an underground nuclear explosion, the diverse sets of information that might be available to the inspection team initially and the potential range of political and physical constraints imposed during the inspection, a satisfactory prescriptive approach to carrying out the noble gas component of an OSI is unlikely. Rather, the authors intend only to aid the reader in understanding what a reasonable course of actions or responses may be as performed by an inspection team (IT) during a general OSI. If this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from this general scenario, it will have achieved its intent.

  6. Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Torgersen, T.; Kennedy, B.M.; van Soest, M.C.


    The mechanisms responsible for noble gas concentrations, abundance patterns, and strong retentivity in sedimentary lithologies remain poorly explained. Diffusion-controlled fractionation of noble gases is modeled and examined as an explanation for the absolute and relative abundances of noble gases observed in sediments. Since the physical properties of the noble gases are strong functions of atomic mass, the individual diffusion coefficients, adsorption coefficients and atomic radii combine to impede heavy noble gas (Xe) diffusion relative to light noble gas (Ne) diffusion. Filling of lithic grains/half-spaces by diffusive processes thus produces Ne enrichments in the early and middle stages of the filling process with F(Ne) values similar to that observed in volcanic glasses. Emptying lithic grains/half-spaces produces a Xe-enriched residual in the late (but not final) stages of the process producing F(Xe) values similar to that observed in shales. 'Exotic but unexceptional' shales that exhibit both F(Ne) and F(Xe) enrichments can be produced by incomplete emptying followed by incomplete filling. This mechanism is consistent with literature reported noble gas abundance patterns but may still require a separate mechanism for strong retention. A system of labyrinths-with-constrictions and/or C-, Si-nanotubes when combined with simple adsorption can result in stronger diffusive separation and non-steady-state enrichments that persist for longer times. Enhanced adsorption to multiple C atoms inside C-nanotubes as well as dangling functional groups closing the ends of nanotubes can provide potential mechanisms for 'strong retention'. We need new methods of examining noble gases in rocks to determine the role and function of angstrom-scale structures in both the diffusive enrichment process and the 'strong retention' process for noble gas abundances in terrestrial rocks.

  7. Origin of noble gases in the terrestrial planets (United States)

    Pepin, Robert O.


    Current models of the origin of noble gases in the terrestrial planets are reviewed. Primary solar system volatile sources and processes are examined along with the current data base on noble gases and its applications to evolutionary processing. Models of atmospheric evolution by hydrodynamic escape are addressed.

  8. Subsurface Noble Gas Sampling Manual

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that all sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.

  9. On a cryogenic noble gas ion catcher

    NARCIS (Netherlands)

    Dendooven, P; Purushothaman, S; Gloos, K


    In situ purification of the gas used as stopping medium in a noble gas ion catcher by operating the device at low temperatures of 60-150 K was investigated. Alpha-decay recoil ions from a Ra-223 source served as energetic probes. The combined ion survival and transport efficiencies for Rn-219 ions

  10. Tracing Noble Gas Radionuclides in the Environment

    CERN Document Server

    Collon, P; Lu, Z T


    Trace analysis of radionuclides is an essential and versatile tool in modern science and technology. Due to their ideal geophysical and geochemical properties, long-lived noble gas radionuclides, in particular, 39Ar (t1/2 = 269 yr), 81Kr (t1/2 = 2.3x10^5 yr) and 85Kr (t1/2 = 10.8 yr), have long been recognized to have a wide range of important applications in Earth sciences. In recent years, significant progress has been made in the development of practical analytical methods, and has led to applications of these isotopes in the hydrosphere (tracing the flow of groundwater and ocean water). In this article, we introduce the applications of these isotopes and review three leading analytical methods: Low-Level Counting (LLC), Accelerator Mass Spectrometry (AMS) and Atom Trap Trace Analysis (ATTA).

  11. Noble gas adsorption with and without mechanical stress: Not Martian signatures but fractionated air (United States)

    Schwenzer, Susanne P.; Herrmann, Siegfried; Ott, Ulrich


    Sample preparation, involving physical and chemical methods, is an unavoidable step in geochemical analysis. From a noble gas perspective, the two important effects are loss of sample gas and/or incorporation of air, which are significant sources of analytical artifacts. This article reports on the effects of sample exposure to laboratory air without mechanical influence and during sample grinding. The experiments include pure adsorption on terrestrial analog materials (gibbsite and olivine) and grinding of Martian meteorites. A consistent observation is the presence of an elementally fractionated air component in the samples studied. This is a critical form of terrestrial contamination in meteorites as it often mimics the heavy noble gas signatures of known extra-terrestrial end-members that are the basis of important conclusions about the origin and evolution of a meteorite. Although the effects of such contamination can be minimized by avoiding elaborate sample preparation protocols, caution should be exercised in interpreting the elemental ratios (Ar/Xe, Kr/Xe), especially in the low-temperature step extractions. The experiments can also be transferred to the investigation of Martian meteorites with long terrestrial residence times, and to Mars, where the Mars Science Laboratory mission will be able to measure noble gas signatures in the current atmosphere and in rocks and soils collected on the surface in Gale crater.

  12. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.


    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  13. Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations. (United States)

    Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew


    In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.

  14. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.


    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  15. A review of noble gas geochemistry in relation to early Earth history (United States)

    Kurz, M. D.


    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  16. Chemical reactivity of the compressed noble gas atoms and their ...

    Indian Academy of Sciences (India)

    Attempts are made to gain insights into the effect of confinement of noble gas atoms on their various reactivity indices. Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum fluid density functional technique is adopted in order to study ...

  17. Low-field MRI of laser polarized noble gas (United States)

    Tseng, C. H.; Wong, G. P.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.


    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems.

  18. Synthesis of Zeolite Materials for Noble Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rivera, O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wellons, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  19. Noble Gas Clusters and Nanoplasmas in High Harmonic Generation

    CERN Document Server

    Aladi, M; Rácz, P; Földes, I B


    We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certain value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.

  20. Liquid noble gas detectors for low energy particle physics


    Chepel, Vitaly; Araújo, Henrique


    We review the current status of liquid noble gas radiation detectors with energy threshold in the keV range, wich are of interest for direct dark matter searches, measurement of coherent neutrino scattering and other low energy particle physics experiments. Emphasis is given to the operation principles and the most important instrumentation aspects of these detectors, principally of those operated in the double-phase mode. Recent technological advances and relevant developments in photon dete...

  1. Possible solar noble-gas component in Hawaiian basalts (United States)

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.


    THE noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea1-3. We find a systematic enrichment in 20Ne and 21Ne relative to 22Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth.

  2. Noble Gas Analysis for Mars Robotic Missions: Evaluating K-Ar Age Dating for Mars Rock Analogs and Martian Shergottites (United States)

    Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.


    The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.

  3. Cucurbit[6]uril: A Possible Host for Noble Gas Atoms. (United States)

    Pan, Sudip; Mandal, Subhajit; Chattaraj, Pratim K


    Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).

  4. Development of detection techniques for the Swedish noble gas sampler

    Energy Technology Data Exchange (ETDEWEB)

    Ringbom, A


    A short review on the radioactive properties of noble gas isotopes relevant for monitoring of nuclear activities is given, together with a brief discussion of the existing systems for detection of radioactive noble gases. A 4{pi} detection system to be used in the automatic version of the Swedish noble gas sampling device is described. Monte Carlo calculations of the total gamma and beta efficiency for different detector designs have been performed, together with estimates of the resulting minimum detectable concentration (MDC). The estimated MDC values for detection of the {sup 133g}Xe 81 keV and the {sup 135g}Xe 250 keV gamma lines are around 0.3 mBq/m{sup 3} in both cases. This is a factor of three lower than the detection limit required for a sampling station in the Comprehensive Nuclear-Test-Ban Treaty monitoring network. The possibility to modify the system to detect {sup 85}Kr is also discussed 27 refs, 13 figs, 3 tabs

  5. First ECR-Ionized Noble Gas Radioisotopes at ISOLDE

    CERN Document Server

    Wenander, F; Gaubert, G; Jardin, P; Lettry, Jacques


    The production of light noble gas radioisotopes with high ionization potentials has been hampered by modest ionization efficiencies for standard plasma ion-sources. However, the decay losses are minimal as the lingering time of light noble gases within plasma ion-sources is negligible when compared to its diffusion out of the target material. Previous singly charged ECRIS have shown a higher efficiency but also a lingering time of the order of 1 s and a total weight that prevents remote handling by the ISOLDE robot. The compact MINIMONO efficiently addressed the lingering time and weight issues. In addition, the MINIMONO maintained the high off-line ionization efficiency for light noble gases. This paper describes a standard ISOLDE target unit equipped with a MINIMONO ion-source and the first tests. The ion-source has been tested off-line and equipped with a CaO target for on-line tests. Valuable information was gained about high current (100-500 muA) transport through the ISOLDE mass separators designed for ...

  6. Tracer Applications of Noble Gas Radionuclides in the Geosciences

    CERN Document Server

    Lu, Z -T; Smethie, W M; Sturchio, N C; Fischer, T P; Kennedy, B M; Purtschert, R; Severinghaus, J P; Solomon, D K; Tanhua, T; Yokochi, R


    The noble gas radionuclides, including 81Kr (half-life = 229,000 yr), 85Kr (11 yr), and 39Ar (269 yr), possess nearly ideal chemical and physical properties for studies of earth and environmental processes. Recent advances in Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have enabled routine measurements of the radiokrypton isotopes, as well as the demonstration of the ability to measure 39Ar in environmental samples. Here we provide an overview of the ATTA technique, and a survey of recent progress made in several laboratories worldwide. We review the application of noble gas radionuclides in the geosciences and discuss how ATTA can help advance these fields, specifically determination of groundwater residence times using 81Kr, 85Kr, and 39Ar; dating old glacial ice using 81Kr; and an 39Ar survey of the main water masses of the oceans, to study circulation pathways and estimate mean residence times. Other scientific questions involving deeper circulation of fluids in the Earth's crust ...

  7. Noble Gas Migration Experiment to Support the Detection of Underground Nuclear Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Khris B.; Kirkham, Randy R.; Woods, Vincent T.; Haas, Derek A.; Hayes, James C.; Bowyer, Ted W.; Mendoza, Donaldo P.; Lowrey, Justin D.; Lukins, Craig D.; Suarez, Reynold; Humble, Paul H.; Ellefson, Mark D.; Ripplinger, Mike D.; Zhong, Lirong; Mitroshkov, Alexandre V.; Aalseth, Craig E.; Prinke, Amanda M.; Mace, Emily K.; McIntyre, Justin I.; Stewart, Timothy L.; Mackley, Rob D.; Milbrath, Brian D.; Emer, Dudley; Biegalski, S.


    A Noble Gas Migration Experiment (NGME) funded by the National Center for Nuclear Security and conducted at the Nevada National Security Site (NNSS) in collaboration with Lawrence Livermore national Laboratory and National Security Technology provided critical on-site inspection (OSI) information related to the detection of an underground nuclear explosion (UNE) event using noble gas signatures.

  8. Shock-implanted noble gases. II - Additional experimental studies and recognition in naturally shocked terrestrial materials (United States)

    Bogard, Donald; Horz, Friedrich; Johnson, Pratt


    The process by which ambient gases can be implanted into silicates by shocks was investigated by analyzing the noble-gas content of several experimentally and naturally shocked silicate samples. The retentivity of shock-implanted gas during stepwise heating in the laboratory was defined in terms of two parameters, namely, the activation energy for diffusion and the extraction temperature at which 50 percent of the gas is released, both of which correlate with the shock pressure. The experiments indicate that, with increasing shock pressure, gas implantation occurs through an increasing production of microcracks/defects in the silicate lattice. The degree of annealing of these defects control the degree of diffusive loss of implanted gas.

  9. INGAS: Iranian Noble Gas Analyzing System for radioxenon measurement (United States)

    Doost-Mohammadi, V.; Afarideh, H.; Etaati, G. R.; Safari, M. J.; Rouhi, H.


    In this article, Iranian Noble Gas Analyzing System (INGAS) will be introduced. This system is based on beta-gamma coincidence technique and consists of a well-type NaI(Tl) as gamma or X radiation detector and a cylindrical plastic scintillator to detect beta or conversion electron. Standard NIM modules were utilized to detect coincidence events of detectors. Both the beta and gamma detectors were appropriately calibrated. The efficiency curve of gamma detector for volume geometry was obtained by comparing the results of gamma point sources measurements and simulations of GATE V7.0 Monte Carlo code. The performance of detection system was checked by injection of 222Rn and 131mXe gaseous source in the detection cell. The minimum detectable activity of the system for 133Xe is 1.240±0.024 mBq for 24 h measurement time.

  10. Processes of noble gas elemental and isotopic fractionations in plasma-produced organic solids: Cosmochemical implications (United States)

    Kuga, Maïa; Cernogora, Guy; Marrocchi, Yves; Tissandier, Laurent; Marty, Bernard


    The main carrier of primordial heavy noble gases in chondrites is thought to be an organic phase, known as phase Q, whose precise characterization has resisted decades of investigation. The Q noble gas component shows elemental and isotopic fractionation relative to the Solar, in favor of heavy elements and isotopes. These noble gas characteristics were experimentally simulated using a plasma device called the ;Nebulotron;. In this study, we synthesized thirteen solid organic samples by electron-dissociation of CO, in which a noble gas mixture was added. The analysis of their heavy noble gas (Ar, Kr and Xe) contents and isotopic compositions reveals enrichment in the heavy noble gas isotopes and elements relative to the light ones. The isotope fractionation is mass-dependent and is consistent with a mn-type law, where n ≥ 1. Based on a plasma model, we propose that the ambipolar diffusion of ions in the ionized CO gas medium is at the origin of the noble gas isotopic fractionation. In addition, the elemental fractionation of experimental and chondritic samples can be accounted for by the Saha law of plasma equilibrium, which does not depend on the respective noble gas masses but rather on their ionization potentials. Our results suggest that the Q noble gases were trapped into growing organic particles starting from solar gases that were fractionated in an ionized medium by ambipolar diffusion and Saha processes. This would imply that both the formation of chondritic organic matter and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk.

  11. Noble gas partitioning behavior in the Sleipner Vest hydrocarbon field (United States)

    Barry, P. H.; Lawson, M.; Warr, O.; Mabry, J.; Byrne, D. J.; Meurer, W. P.; Ballentine, C. J.


    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways, mechanisms and reservoir storage. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. We present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner gases are generated from primary cracking of kerogen and the thermal cracking of oil, sourced from type II marine source, with relatively homogeneous maturities and a range in vitrinite reflectance (1.2-1.7%). Gases are hosted in the lower shoreface sandstones of the Jurassic Hugin formation, which is sealed by the Jurassic Upper Draupne and Heather formations. Gases are composed of N2 (0.6-0.9%), CO2 (5.4-15.3%) and hydrocarbons (69-80%). Helium isotopes (3He/4He) are radiogenic and range from 0.065 to 0.116 RA, showing a small mantle contribution, consistent with Ne isotopes (20Ne/22Ne from 9.70-9.91; 21Ne/22Ne from 0.0290-0.0344) and Ar isotopes (40Ar/36Ar from 315-489). 20Ne/36Ar, 84Kr/36Ar and 132Xe/36Ar values are systematically higher relative to air saturated water ratios. These data are discussed within the framework of several conceptual models: i) Total gas-stripping model, which defines the minimum volume of water to have interacted with the hydrocarbon phase; ii) Equilibrium model, assuming simple equilibration between groundwater and hydrocarbon phase at reservoir P,T and salinity; and iii) Open and closed system gas-stripping models. Using Ne-Ar, we estimate gas-water ratios for the Sleipner system of 0.02-0.09, which compare with geologic gas-water estimates of ~0.24, and suggest more groundwater interaction than a static system estimate. Kr and Xe show evidence for an additional source or process involving oil or sediments.

  12. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems (United States)

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.


    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  13. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems (United States)

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.


    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  14. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, William S [Univ. of California, Berkeley, CA (United States)


    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels.

  15. Experimental studies and model analysis of noble gas fractionation in low-permeability porous media (United States)

    Ding, Xin; Mack Kennedy, B.; Molins, Sergi; Kneafsey, Timothy; Evans, William C.


    Gas flow through the vadose zone from sources at depth involves fractionation effects that can obscure the nature of transport and even the identity of the source. Transport processes are particularly complex in low permeability media but as shown in this study, can be elucidated by measuring the atmospheric noble gases. A series of laboratory column experiments was conducted to evaluate the movement of noble gas from the atmosphere into soil in the presence of a net efflux of CO2, a process that leads to fractionation of the noble gases from their atmospheric abundance ratios. The column packings were designed to simulate natural sedimentary deposition by interlayering low permeability ceramic plates and high permeability beach sand. Gas samples were collected at different depths at CO2 fluxes high enough to cause extreme fractionation of the noble gases (4He/36Ar > 20 times the air ratio). The experimental noble gas fractionation-depth profiles were in good agreement with those predicted by the dusty gas (DG) model, demonstrating the applicability of the DG model across a broad spectrum of environmental conditions. A governing equation based on the dusty gas model was developed to specifically describe noble gas fractionation at each depth that is controlled by the binary diffusion coefficient, Knudsen diffusion coefficient and the ratio of total advection flux to total flux. Finally, the governing equation was used to derive the noble gas fractionation pattern and illustrate how it is influenced by soil CO2 flux, sedimentary sequence, thickness of each sedimentary layer and each layer's physical parameters. Three potential applications of noble gas fractionation are provided: evaluating soil attributes in the path of gas flow from a source at depth to the atmosphere, testing leakage through low permeability barriers used to isolate buried waste, and tracking biological methanogenesis and methane oxidation associated with hydrocarbon degradation.

  16. Determination of natural in vivo noble-gas concentrations in human blood.

    Directory of Open Access Journals (Sweden)

    Yama Tomonaga

    Full Text Available Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry.

  17. Seawater subduction controls the heavy noble gas composition of the mantle. (United States)

    Holland, Greg; Ballentine, Chris J


    The relationship between solar volatiles and those now in the Earth's atmosphere and mantle reservoirs provides insight into the processes controlling the acquisition of volatiles during planetary accretion and their subsequent evolution. Whereas the light noble gases (helium and neon) in the Earth's mantle preserve a solar-like isotopic composition, heavy noble gases (argon, krypton and xenon) have an isotopic composition very similar to that of the modern atmosphere, with radiogenic and (in the case of xenon) solar contributions. Mantle noble gases in a magmatic CO2 natural gas field have been previously corrected for shallow atmosphere/groundwater and crustal additions. Here we analyse new data from this field and show that the elemental composition of non-radiogenic heavy noble gases in the mantle is remarkably similar to that of sea water. We challenge the popular concept of a noble gas 'subduction barrier'--the convecting mantle noble gas isotopic and elemental composition is explained by subduction of sediment and seawater-dominated pore fluids. This accounts for approximately 100% of the non-radiogenic argon and krypton and 80% of the xenon. Approximately 50% of the convecting mantle water concentration can then be explained by this mechanism. Enhanced recycling of subducted material to the mantle plume source region then accounts for the lower ratio of radiogenic to non-radiogenic heavy noble gas isotopes and higher water content of plume-derived basalts.

  18. Review: gas-phase ion chemistry of the noble gases: recent advances and future perspectives. (United States)

    Grandinetti, Felice


    This review article surveys recent experimental and theoretical advances in the gas-phase ion chemistry of the noble gases. Covered issues include the interaction of the noble gases with metal and non-metal cations, the conceivable existence of covalent noble-gas anions, the occurrence of ion-molecule reactions involving singly-charged xenon cations, and the occurrence of bond-forming reactions involving doubly-charged cations. Research themes are also highlighted, that are expected to attract further interest in the future.

  19. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  20. Using Noble Gas Measurements to Derive Air-Sea Process Information and Predict Physical Gas Saturations (United States)

    Hamme, Roberta C.; Emerson, Steven R.; Severinghaus, Jeffrey P.; Long, Matthew C.; Yashayaev, Igor


    Dissolved gas distributions are important because they influence oceanic habitats and Earth's climate, yet competing controls by biology and physics make gas distributions challenging to predict. Bubble-mediated gas exchange, temperature change, and varying atmospheric pressure all push gases away from equilibrium. Here we use new noble gas measurements from the Labrador Sea to demonstrate a technique to quantify physical processes. Our analysis shows that water-mass formation can be represented by a quasi steady state in which bubble fluxes and cooling push gases away from equilibrium balanced by diffusive gas exchange forcing gases toward equilibrium. We quantify the rates of these physical processes from our measurements, allowing direct comparison to gas exchange parameterizations, and predict the physically driven saturation of other gases. This technique produces predictions that reasonably match N2/Ar observations and demonstrates that physical processes should force SF6 to be ˜6% more supersaturated than CFC-11 and CFC-12, impacting ventilation age calculations.

  1. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardner, William Payton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Montana, Missoula, MT (United States)


    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  2. Noble gas and carbon isotopes in Mariana Trough basalt glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, M. [Centre de Recherches Petrographiques et Geochimiques, Centre National de la Recherche Scientifique, Rue Notre-Dame des Pauvres, BP 20, 54501 Vandoeuvre Cedex (France); Jambon, A. [Laboratoire de Magmatologie et Geochimie Inorganique et Experimentale, Universite Pierre et Marie Curie, F-75252 Paris Cedex 05 (France); Gamo, T. [Ocean Research Institute, The University of Tokyo, Nakano-ku Tokyo 164 (Japan); Nishio, Y. [Geological Institute, The University of Tokyo, Bunkyo-ku Tokyo 113 (Japan); Sano, Y. [Department of Earth and Planetary Sciences, Hiroshima University, Kagamiyama Higashi Hiroshima 739 (Japan)


    oble gas elemental and isotopic compositions have been measured as well as the abundance of C and its isotopic ratios in 11 glasses from submarine pillow basalts collected from the Mariana Trough. The {sup 3}He/{sup 4}He ratios of 8.22 and 8.51 R{sub atm} of samples dredged from the central Mariana Trough (similar18N) agree well with that of the Mid-Ocean Ridge Basalt (MORB) glasses (8.4{+-}0.3 R{sub atm}), whereas a mean ratio of 8.06{+-}0.35 R{sub atm} in samples from the northern Mariana Trough (similar20N) is slightly lower than those of MORB. One sample shows apparent excess of {sup 20}Ne and {sup 21}Ne relative to atmospheric Ne, suggesting incorporation of solar-type Ne in the magma source. There is a positive correlation between {sup 3}He/{sup 4}He and {sup 40}Ar/{sup 36}Ar ratios, which may be explained by mixing between MORB-type and atmospheric noble gases. Excess {sup 129}Xe is observed in the sample which also shows {sup 20}Ne and {sup 21}Ne excesses. Observed {delta}{sup 13}C values of similar20N samples vary from -3.76 per thousand to -2.80 per thousand, and appear higher than those of MORB, and the corresponding CO{sub 2}/{sup 3}He ratios are higher than those of MARA samples at similar18N, suggesting C contribution from the subducted slab. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI (United States)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.


    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  4. Consistent measurements comparing the drift features of noble gas mixtures

    CERN Document Server

    Becker, U; Fortunato, E M; Kirchner, J; Rosera, K; Uchida, Y


    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors.

  5. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation (United States)

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.


    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  6. Pulmonary hyperpolarized noble gas MRI: Recent advances and perspectives in clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zaiyi [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston (United States); Department of Radiology, Guangdong General Hospital Guangdong Academy of Medical Sciences (China); Araki, Tetsuro, E-mail: [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston (United States); Okajima, Yuka [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston (United States); Albert, Mitchell [Hyperpolarized Gas MRI Laboratory, Thunder Bay Regional Research Institute, Lakehead University (Canada); Hatabu, Hiroto [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston (United States)


    The invention of hyperpolarized (HP) noble gas MRI using helium-3 ({sup 3}He) or xenon-129 ({sup 129}Xe) has provided a new method to evaluate lung function. Using HP {sup 3}He or {sup 129}Xe for inhalation into the lung air spaces as an MRI contrast agent significantly increases MR signal and makes pulmonary ventilation imaging feasible. This review focuses on important aspects of pulmonary HP noble gas MRI, including the following: (1) functional imaging types, (2) applications for major pulmonary diseases, (3) safety considerations, and (4) future directions. Although it is still challenging to use pulmonary HP noble gas MRI clinically, the technology offers promise for the investigation of the microstructure and function of the lungs.

  7. Perspectives of hyperpolarized noble gas MRI beyond 3He (United States)

    Lilburn, David M.L.; Pavlovskaya, Galina E.; Meersmann, Thomas


    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed. PMID:23290627

  8. Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon (United States)

    Bekaert, David V.; Avice, Guillaume; Marty, Bernard; Henderson, Bryana; Gudipati, Murthy S.


    Despite extensive effort during the last four decades, no clear signature of a lunar indigenous noble gas component has been found. In order to further investigate the possible occurrence of indigenous volatiles in the Moon, we have re-analyzed the noble gas and nitrogen isotopic compositions in three anorthosite samples. Lunar anorthosites 60025, 60215 and 65315 have the lowest exposure duration (∼2 Ma) among Apollo samples and consequently contain only limited cosmogenic (e.g. 124,126Xe) and solar wind (SW) noble gases. Furthermore, anorthosites have negligible contributions of fissiogenic Xe isotopes because of their very low Pu and U contents. As observed in previous studies (Lightner and Marti, 1974; Leich and Niemeyer, 1975), lunar anorthosite Xe presents an isotopic composition very close to that of terrestrial atmospheric Xe, previously attributed to ;anomalous adsorption; of terrestrial Xe after sample return. The presumed atmospheric Xe contamination can only be removed by heating the samples at medium to high temperatures under vacuum, and is therefore different from common adsorption. To test this hypothesis, we monitored the adsorption of Xe onto lunar anorthositic powder using infrared reflectance spectroscopy. A clear shift in the anorthosite IR absorbance peaks is detected when comparing the IR absorbance spectra of the lunar anorthositic powder before and after exposure to a neutral Xe-rich atmosphere. This observation accounts for the chemical bonding (chemisorption) of Xe onto anorthosite, which is stronger than the common physical bonding (physisorption) and could account for the anomalous adsorption of Xe onto lunar samples. Our high precision Xe isotope analyses show slight mass fractionation patterns across 128-136Xe isotopes with systematic deficits in the heavy Xe isotopes (mostly 136Xe and marginally 134Xe) that have not previously been observed. This composition could be the result of mixing between an irreversibly adsorbed terrestrial

  9. Noble Gas Inventory of Micrometeorites Collected at the Transantarctic Mountains (TAM) and Indications for Their Provenance (United States)

    Ott, U.; Baecker, B.; Folco, L.; Cordier, C.


    A variety of processes have been considered possibly contributing the volatiles including noble gases to the atmospheres of the terrestrial planets (e.g., [1-3]). Special consideration has been given to the concept of accretion of volatile-rich materials by the forming planets. This might include infalling planetesimals and dust, and could include material from the outer asteroid belt, as well as cometary material from the outer solar system. Currently, the dominant source of extraterrestrial material accreted by the Earth is represented by micrometeorites (MMs) with sizes mostly in the 100-300 micron range [3, 4]). Their role has been assessed by [3], who conclude that accretion of early micrometeorites played a major role in the formation of the terrestrial atmosphere and oceans. We have therefore set out to investigate in more detail the inventory of noble gases in MMs. Here we summarize some of our results obtained on MMs collected in micrometeorite traps of the Transantarctic Mountains [5].

  10. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging (United States)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)


    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  11. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples. (United States)

    Visser, Ate; Singleton, Michael J; Hillegonds, Darren J; Velsko, Carol A; Moran, Jean E; Esser, Bradley K


    Noble gases dissolved in groundwater can reveal paleotemperatures, recharge conditions, and precise travel times. The collection and analysis of noble gas samples are cumbersome, involving noble gas purification, cryogenic separation and static mass spectrometry. A quicker and more efficient sample analysis method is required for introduced tracer studies and laboratory experiments. A Noble Gas Membrane Inlet Mass Spectrometry (NG-MIMS) system was developed to measure noble gases at natural abundances in gas and water samples. The NG-MIMS system consists of a membrane inlet, a dry-ice water trap, a carbon-dioxide trap, two getters, a gate valve, a turbomolecular pump and a quadrupole mass spectrometer equipped with an electron multiplier. Noble gases isotopes (4)He, (22)Ne, (38)Ar, (84)Kr and (132)Xe are measured every 10 s. The NG-MIMS system can reproduce measurements made on a traditional noble gas mass spectrometer system with precisions of 2%, 8%, 1%, 1% and 3% for He, Ne, Ar, Kr and Xe, respectively. Noble gas concentrations measured in an artificial recharge pond were used to monitor an introduced xenon tracer and to reconstruct temperature variations to within 2 °C. Additional experiments demonstrated the capability to measure noble gases in gas and in water samples, in real time. The NG-MIMS system is capable of providing analyses sufficiently accurate and precise for introduced noble gas tracers at managed aquifer recharge facilities, groundwater fingerprinting based on excess air and noble gas recharge temperature, and field and laboratory studies investigating ebullition and diffusive exchange. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Targets Involved in Cardioprotection by the Non-Anesthetic Noble Gas Helium. (United States)

    Weber, Nina C; Smit, Kirsten F; Hollmann, Markus W; Preckel, Benedikt


    Research data from the past decade indicate that noble gases like xenon and helium exert profound cardioprotection when applied before, during or after organ ischemia. Of all noble gases, especially helium, has gained interest in the past years because it does not have an anesthetic "side effect" like xenon, allowing application of this specific gas in numerous clinical ischemia/reperfusion situations. Because helium has several unique characteristics and no hemodynamic side effects, helium could be administered in severely ill patients. Investigations in animals as well as in humans have proven that this noble gas is not completely inert and can induce several biological effects. Though the underlying molecular mechanisms of helium-induced cardiac protection are still not yet fully understood, recently different signaling pathways have been elucidated.

  13. Isotopic and noble gas geochemistry in geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B.M.; DePaolo, D.J. [Lawrence Berkeley National Lab., CA (United States)


    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb) are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.

  14. Fireworks in noble gas clusters a first experiment with the new "free-electron laser"

    CERN Multimedia


    An international group of scientists has published first experiments carried out using the new soft X-ray free-electron laser (FEL) at the research center DESY in Hamburg, Germany. Using small clusters of noble gas atoms, for the first time, researchers studied the interaction of matter with intense X-ray radiation from an FEL on extremely short time scales (1 page).

  15. The Influence of Noble Gas Bubbles on Mechanical Properties of Steel

    NARCIS (Netherlands)

    Noordhuis, J.; Hosson, J.Th.M. De

    Indentation tests and wear measurements have been performed on a laser treated carbon steel and an austenitic steel to evaluate the effects of noble gas ions on micro-hardness, cracking and wear behavior. The following are the principal conclusions: - In all cases studied implantation leads to an

  16. Noble gas systematics of submarine alkalic lavas near the Hawaiian hotspot

    NARCIS (Netherlands)

    Hanyu, T.; Clague, D.A.; Kaneoka, I.; Dunai, T.J.; Davies, G.R.


    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism and hence understand the details of mantle upwelling beneath Hawaii. Samples were collected by dredging or using submersibles from

  17. Formation of noble-gas hydrides and decay of solvated protons revisited: diffusion-controlled reactions and hydrogen atom losses in solid noble gases. (United States)

    Tanskanen, Hanna; Khriachtchev, Leonid; Lignell, Antti; Räsänen, Markku; Johansson, Susanna; Khyzhniy, Ivan; Savchenko, Elena


    UV photolysis and annealing of C2H2/Xe, C2H2/Xe/Kr, and HBr/Xe matrices lead to complicated photochemical processes and reactions. The dominating products in these experiments are noble-gas hydrides with general formula HNgY (Ng = noble-gas atom, Y = electronegative fragment). We concentrate on distinguishing the local and global mobility and losses of H atoms, barriers of the reactions, and the decay of solvated protons. Different deposition temperatures change the amount of lattice imperfections and thus the amount of traps for H atoms. The averaged distance between reacting species influencing the reaction kinetics is controlled by varying the precursor concentration. A number of solid-state processes connected to the formation of noble-gas hydrides and decay of solvated protons are discussed using a simple kinetic model. The most efficient formation of noble-gas hydrides is connected with global (long-range) mobility of H atoms leading to the H + Xe + Y reaction. The highest concentration of noble-gas hydrides was obtained in matrices of highest optical quality, which probably have the lowest concentration of defects and H-atom losses. In matrices with high amount of geometrical imperfections, the product formation is inefficient and dominated by a local (short-range) process. The decay of solvated protons is rather local than a global process, which is different from the formation of noble-gas molecules. However, the present data do not allow distinguishing local proton and electron mobilities. Our previous results indicate that these are electrons which move to positively-charged centers and neutralize them. It is believed that the image obtained here for solid xenon is applicable to solid krypton whereas the case of argon deserves special attention.

  18. Element distribution and noble gas isotopic abundances in lunar meteorite Allan Hills A81005 (United States)

    Kraehenbuehl, U.; Eugster, O.; Niedermann, S.


    Antarctic meteorite ALLAN HILLS A81005, an anorthositic breccia, is recognized to be of lunar origin. The noble gases in this meteorite were analyzed and found to be solar-wind implanted gases, whose absolute and relative concentrations are quite similar to those in lunar regolith samples. A sample of this meteorite was obtained for the analysis of the noble gas isotopes, including Kr(81), and for the determination of the elemental abundances. In order to better determine the volume derived from the surface correlated gases, grain size fractions were prepared. The results of the instrumental measurements of the gamma radiation are listed. From the amounts of cosmic ray produced noble gases and respective production rates, the lunar surface residence times were calculated. It was concluded that the lunar surface time is about half a billion years.

  19. Fluorinated noble-gas cyanides FKrCN, FXeCN, and FXeNC

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid, E-mail: [Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki (Finland)


    We report on three new noble-gas molecules, FKrCN, FXeCN, and FXeNC, prepared in low-temperature Kr and Xe matrices. These molecules are made by UV photolysis of FCN in the matrices and subsequent thermal annealing. The FCN precursor is produced by deposition of the matrix gas containing (FCN){sub 3} through a microwave discharge. The new noble-gas molecules are assigned with the help of quantum chemical calculations at the MP2(full) and CCSD(T) levels of theory. Similar Ar compounds (FArCN and FArNC) as well as FKrNC are not found in these experiments, which is in agreement with the calculated energetics.

  20. Development of a portable membrane contactor sampler for noble gas analyses of surface and groundwater samples (United States)

    Matsumoto, T.; Han, L. H.; Jaklitsh, M.; Aggarwal, P. K.


    Noble gas isotopes dissolved in groundwater provide valuable information about climatic conditions during air-water exchange, as well as the residence time of groundwater and its renewal rate. The isotope composition of noble gases can also serve as geochemical fingerprints to decipher the origin of groundwater and its flow system. Conventionally, groundwater is sampled using a copper tube, which is subsequently degassed using a vacuum extraction system for isotope analysis by a mass spectrometer. Although this conventional and well-established way of sampling is widely recognised as being reliable and robust, a major drawback to this method is its size and weight. For example, our sampler consists of a copper tube of 10 mm diameter x 1000 mm length and a metal casing with pinch-off clamps with its total weight to be 2 kg each. A box of 24 samplers well exceeds 40 kg. Considering that sampling fields are not necessarily easily accessible by vehicle, taking hundreds of samples in the field is generally a tough task for everyone. There is a different type of sampler, which is comprised of a much smaller copper tube (6 mm in diameter and 100 mm long for our case) with clamps and a semi-permeable membrane filter. It is sunk into water and left there for dissolved gases to diffuse into the sampler until their concentrations in water become equilibrated with those in the tube. This diffusion sampler is small and easy to handle in the field; it has an advantage over conventional copper tubes, as the diffusion sampler collects gases so that there is no gas extraction process needed before isotope analysis. However, this method requires an equilibration time of 24 hours or more, which could result in lower time-efficiency for sampling work. In order to enable time-efficient and less-painstaking sampling of noble gases dissolved in surface and groundwater, we have developed a portable and self-powered sampling device specified to noble gas analysis by mass spectrometer

  1. Noble gas isotope measurements for spent nuclear fuel reprocessing. IAEA Task 90/0A211 interim report

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, G.B.


    The nuclear fission of actinides in reactor fuel produces large quantities of Kr and Xe as fission products. Because of the high levels of fission Kr and Xe, sample collection and analysis of noble gases for spent fuel diagnostic measurements is a simple, straight-forward technique. In modern reprocessing plants with continuous dissolvers, it will not be possible to use traditional methods for isolating input batches of fuel. This study investigates the feasibility of using noble gas isotope abundance measurements (isotope correlation techniques - ICT) to solve safeguards requirements. Noble gas measurements might be able to provide an independent analysis of Pu contained within dissolves fuel, on an individual fuel assembly basis. The isotopic composition of Kr and Xe in spent fuel reflects both the composition (isotope abundance ratios) of the fission products and the effects of neutron capture on those fission products. We have reviewed the available literature for noble gas analyses of spent reactor fuel. While references are made to noble gas isotope correlations over the last 20 years, we have found little if any detailed analysis of large data sets. The literature search did find several useful reports. Of these papers, one is particularly useful for evaluating noble gas isotopic compositions. The ``Benchmark-paper`` (1) contains 54 Kr and 56 Xe isotopic composition analyses for 4 different reactors with a variety of fuel enrichment factors. Burnup ranges from 8000 to 37000 MWd/tU. Besides the noble gas measurements, a variety of other measurements are reported (actinides and fission products).

  2. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field (United States)

    Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J.


    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways and mechanisms, as well as reservoir storage conditions. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. Here, we present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner Vest gases are generated from primary cracking of kerogen and the thermal cracking of oil. Gas was emplaced into the Sleipner Vest from the south and subsequently migrated to the east, filling and spilling into the Sleipner Ost fields. Gases principally consist of hydrocarbons (83-93%), CO2 (5.4-15.3%) and N2 (0.6-0.9%), as well as trace concentrations of noble gases. Helium isotopes (3He/4He) are predominantly radiogenic and range from 0.065 to 0.116 RA; reported relative to air (RA = 1.4 × 10-6; Clarke et al., 1976; Sano et al., 1988), showing predominantly (>98%) crustal contributions, consistent with Ne (20Ne/22Ne from 9.70 to 9.91; 21Ne/22Ne from 0.0290 to 0.0344) and Ar isotopes (40Ar/36Ar from 315 to 489). Air-derived noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe) are introduced into the hydrocarbon system by direct exchange with air-saturated water (ASW). The distribution of air-derived noble gas species are controlled by phase partitioning processes; in that they preferentially partition into the gas (i.e., methane) phase, due to their low solubilities in fluids. Therefore, the extent of exchange between hydrocarbon phases and formation waters - that have previously equilibrated with the atmosphere - can be determined by investigating air-derived noble gas species. We utilize both elemental ratios to address process (i.e., open vs. closed system) and concentrations to quantify the extent of hydrocarbon

  3. The desorption of condensed noble gases and gas mixtures from cryogenic surfaces

    CERN Document Server

    Tratnik, H; Störi, H


    In accelerators, operating at liquid-helium temperature, cold surfaces are exposed to intense synchrotron radiation and bombardment by energetic electrons and ions. Molecular desorption yield and secondary electron yield can strongly influence the performance of the accelerator. In order to predict the gas density during the operation, the knowledge of electron-induced desorption yields of condensed gases and of its variation with the gas coverage is necessary. Desorption yields under electron impact of various noble gases and gas mixtures condensed on a copper surface cooled at 4.2 K have been measured.

  4. Recycling of volatiles at subduction zones: Noble gas evidence from the Tabar-Lihir-Tanga-Feni arc of papua New Guinea (United States)

    Farley, Kenneth; Mcinnes, Brent; Patterson, Desmond


    Convergent margin processes play an important but poorly understood role in the distribution of terrestrial volatile species. For example, subduction processes filter volatiles from the subducting package, thereby restricting their return to the mantle. In addition, once extracted from the downgoing slab, volatiles become an essential component in the petrogenesis of island arc magmas. The noble gases, with their systematic variation in physical properties and diversity of radiogenic isotopes, should carry a uniquely valuable record of these processes. However, thus far studies of noble gases in arc volcanics have achieved only limited success in this regard. Subduction-related lavas and geothermal fluids carry (3)He/(4)He ratios equal to or slightly lower than those found in the depleted upper mantle source of mid-ocean ridge basalts. Apparently slab-derived helium (which should have (3)He/(4)He much less than MORB) is extensively diluted by MORB-like helium from the mantle wedge, making it difficult to use helium as a tracer of convergent margin processes. Interpretation of the heavier noble gases (Ne-Ar-Kr-Xe) in arc lavas has also proven difficult, because the lavas carry low noble gas concentrations and hence are subject to pervasive atmospheric contamination. The low noble gas concentrations may be a consequence of degassing in the high level magma chambers characteristic of arc stratovolcanos. We have recently initiated a project to better constrain the behavior of volatiles in subduction zones through geochemical studies of the tectonically unusual volcanoes of the Tabar-Lihir-Tanga-Feni (TLTF) arc in the Bismarck Archipelago, Papua New Guinea.

  5. Can Rosetta Noble Gas and Isotopic Measurements Contribute to Understanding the Origin and Evolution of Venus' Atmosphere? (United States)

    Mandt, K. E.; Luspay-Kuti, A.; Mousis, O.; Fuselier, S. A.


    New observations of noble gas abundances and stable isotope ratios from comets provide important information on potential sources of volatiles for Venus. They can help refine current atmospheric evolution models and plan for future missions.

  6. The noble gas geochemistry of natural CO 2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA (United States)

    Gilfillan, Stuart M. V.; Ballentine, Chris J.; Holland, Greg; Blagburn, Dave; Lollar, Barbara Sherwood; Stevens, Scott; Schoell, Martin; Cassidy, Martin


    Identification of the source of CO 2 in natural reservoirs and development of physical models to account for the migration and interaction of this CO 2 with the groundwater is essential for developing a quantitative understanding of the long term storage potential of CO 2 in the subsurface. We present the results of 57 noble gas determinations in CO 2 rich fields (>82%) from three natural reservoirs to the east of the Colorado Plateau uplift province, USA (Bravo Dome, NM., Sheep Mountain, CO. and McCallum Dome, CO.), and from two reservoirs from within the uplift area (St. John's Dome, AZ., and McElmo Dome, CO.). We demonstrate that all fields have CO 2/ 3He ratios consistent with a dominantly magmatic source. The most recent volcanics in the province date from 8 to 10 ka and are associated with the Bravo Dome field. The oldest magmatic activity dates from 42 to 70 Ma and is associated with the McElmo Dome field, located in the tectonically stable centre of the Colorado Plateau: CO 2 can be stored within the subsurface on a millennia timescale. The manner and extent of contact of the CO 2 phase with the groundwater system is a critical parameter in using these systems as natural analogues for geological storage of anthropogenic CO 2. We show that coherent fractionation of groundwater 20Ne/ 36Ar with crustal radiogenic noble gases ( 4He, 21Ne, 40Ar) is explained by a two stage re-dissolution model: Stage 1: Magmatic CO 2 injection into the groundwater system strips dissolved air-derived noble gases (ASW) and accumulated crustal/radiogenic noble gas by CO 2/water phase partitioning. The CO 2 containing the groundwater stripped gases provides the first reservoir fluid charge. Subsequent charges of CO 2 provide no more ASW or crustal noble gases, and serve only to dilute the original ASW and crustal noble gas rich CO 2. Reservoir scale preservation of concentration gradients in ASW-derived noble gases thus provide CO 2 filling direction. This is seen in the Bravo Dome

  7. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis (United States)

    Pines, Alexander [Berkeley, CA; Budinger, Thomas [Berkeley, CA; Navon, Gil [Ramat Gan, IL; Song, Yi-Qiao [Berkeley, CA; Appelt, Stephan [Waiblingen, DE; Bifone, Angelo [Rome, IT; Taylor, Rebecca [Berkeley, CA; Goodson, Boyd [Berkeley, CA; Seydoux, Roberto [Berkeley, CA; Room, Toomas [Albany, CA; Pietrass, Tanja [Socorro, NM


    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  8. A noble gas palaeotemperature record from the Ledo-Paniselian aquifer in Belgium (United States)

    Aeschbach-Hertig, W.; Kipfer, R.; Blaser, P.; Walraevens, K.


    The Ledo-Paniselian sands form a confined coastal aquifer, extending from north-western Belgium (Flanders) towards the Netherlands. An extensive record of noble gas temperatures (NGTs) from this aquifer indicates strong glacial cooling. While Holocene samples yield NGTs of 8 to 10 ^oC, in agreement with modern air temperatures, NGTs near the freezing point (ages requires careful consideration of the geochemical and isotopic data. The systematic evolution of water chemistry in this freshening aquifer has been described before and was used to cross-check and correct the dating by taking into account chemical reactions and isotope exchange. The large noble gas data set (44 samples from 39 wells) encourages a systematical study of the factors affecting the composition of dissolved noble gases in groundwater. Some samples show a clear degassing pattern, which was reproduced in a few wells that were sampled both in 1998 and 2001. This finding indicates that degassing is not an artefact of sampling. We discuss possibilities to model the effect of degassing in order to derive reliable NGTs from these samples.

  9. Spin Polarization Spectroscopy of Alkali-Noble Gas Interatomic Potentials (United States)

    Mironov, Andrey E.; Goldshlag, William; Eden, J. Gary


    We report a new laser spectroscopic technique capable of detecting weak state-state interactions in diatomic molecules. Specifically, a weak interaction has been observed between the 6pσ antibonding orbital of the CsXe (B ^2Σ^+_{1/2}) state and a 5dσ MO associated with a 5dΛ (Λ = 0, 1) state. Thermal Cs-rare gas collision pairs are photoexcited by a circularly-polarized optical field having a wavelength within the B ^2Σ^+_{1/2} \\longleftarrow X ^2Σ^+_{1/2} (free\\longleftarrowfree) continuum. Subsequent dissociation of the B ^2Σ^+_{1/2} transient diatomic selectively populates the F= 4, 5 hyperfine levels of the Cs 6p ^2P_{3/2} state, and circularly-polarized (σ^+) amplified spontaneous emission (ASE) is generated on the Cs D_2 line. The dependence of Cs 6p spin polarization on the Cs(6p)-Xe internuclear separation (R), clearly shows an interaction between the CsXe(B ^2Σ^+_{1/2}) state and a 5dΛ (Λ = 0, 1) potential of the diatomic molecule.

  10. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5 (United States)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.


    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  11. Petrographic shock indicators and noble gas signatures in a H and an L chondrite from Antarctica (United States)

    Ranjith, P. M.; He, Huaiyu; Miao, Bingkui; Su, Fei; Zhang, Chuantong; Xia, Zhipeng; Xie, Lanfang; Zhu, Rixiang


    Petrographic shock indicators and noble gas signatures are studied in two ordinary chondrites, Grove Mountain (GRV) 13083 (H4) and GRV 13095 (L5), from Antarctica to investigate the degree of shock metamorphism and impact related chronologies on H and L chondrite parent bodies. In the study, we have combined both noble gas signatures and petrographic observations to understand impact effects. Based on the impact features in silicates and metal-troilite assemblages, the shock stages of the samples are classified as S6 and S5 for GRV 13095 (L5) and GRV 13083 (H4) respectively. The nominal K-Ar gas retention age of GRV 13095 (L5, S6) using bulk sample is estimated as 459 ± 13 Ma, supporting the recent major catastrophic break up event at 470 Ma on the L-chondrite parent body. The cosmic ray exposure age based on He, Ne and Ar noble gas measurements is estimated as 14.1 ± 2.5 Ma. The radiogenic gas contents in GRV 13095 (avg. 4He = 61.5 × 10-8 ccSTP/g and avg. 40Ar = 173.5 × 10-8 ccSTP/g) are observed as depleted. The depletion in radiogenic gases is consistent with the severe shock metamorphism in GRV 13095 as indicated by olivine-ringwoodite transformation in it. The estimated nominal K-Ar age of 3.67 ± 0.26 Ga for GRV 13083 shows that it falls in the major impact age distribution between 3.5 and 4.0 Ga among H-chondrites. The cosmic ray exposure age of GRV 13083 is 3.9 ± 0.7 Ma, which is younger than the major peak in the exposure age distribution for H-chondrites. The He gas retention ages in both samples are found to be younger/lower than their respective nominal K-Ar ages, which could be due to partial loss of radiogenic He. Trapped gas loss along with radiogenic gas losses in both samples, are the adverse effects of shock metamorphism.

  12. High efficiency noble gas electron impact ion source for isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, A. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, J. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dahl, D. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ward, M. B. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    An electron impact ion source has been designed for generation of noble gas ions in a compact isotope separator. The source utilizes a circular filament that surrounds an ionization chamber, enabling multiple passes of electrons through the ionization chamber. This report presents ion optical design and the results of efficiency and sensitivity measurements performed in an ion source test chamber and in the compact isotope separator. The cylindrical design produced xenon ions at an efficiency of 0.37% with a sensitivity of ~24 µA /Pa at 300 µA of electron current.

  13. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone (United States)

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.


    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  14. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone (United States)

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.


    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ˜110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  15. Migration of noble gas atoms in interaction with vacancies in silicon (United States)

    Pizzagalli, L.; Charaf-Eddin, A.


    First principles calculations in combination with the nudged elastic band method have been performed in order to determine the mobility properties of various noble gas species (He, Ne, Ar, Kr, and Xe) in silicon, a model semiconducting material. We focussed on single impurity, in interstitial configuration or forming a complex with a mono- or a di-vacancy, since the latter are known to be present and to play a key role in the formation of extended defects like bubbles or platelets. We determined several migration mechanisms and associated activation energies and have discussed these results in relation to available experiments. In particular, conflicting measured values of the migration energy of helium are explained by the present calculations. We also predict that helium diffuses solely as an interstitial, while an opposite behaviour is found for heavier species such as Ar, Kr, and Xe, with the prevailing role of complexes in that case. Finally, our calculations indicate that extended defects evolution by Ostwald ripening is possible for helium and maybe neon, but is rather unlikely for heavier noble gas species.

  16. Production of noble gas isotopes by proton-induced reactions on lead and bismuth (United States)

    Leya, I.; Wieler, R.; David, J.-C.; Leray, S.; Donadille, L.; Cugnon, J.; Michel, R.


    We measured integral thin target cross-sections for the proton-induced production of He-, Ne-, Ar-, Kr-, and Xe-isotopes from lead and bismuth from the respective reaction threshold up to 2.6 GeV. The production of noble gas isotopes from lead and bismuth is of special importance for design studies of accelerator driven nuclear reactors and/or energy amplifiers. For all experiments with proton energies above 200 MeV a new mini-stack approach was used instead of the stacked-foil technique in order to minimise influences of secondary particles. The phenomenology of the determined excitation functions enables us to distinguish between the different reaction modes fragmentation, hot and cold symmetric fission, asymmetric fission, and deep spallation. For lead more than 420 cross-sections for 23 nuclear reactions have been measured. While the lead data have already been published, here we present first results for the production of noble gas isotopes from bismuth. The experimental data are compared to results from the theoretical nuclear model code INCL4/ABLA. This comparison clearly indicates that experimental data are still needed because the predictive power of nuclear model codes, though permanently improving, does still not allow to reliably predict the cross-sections needed for most applications and irradiation experiments remain indispensable.

  17. MRI of the lung gas-space at very low-field using hyperpolarized noble gases (United States)

    Venkatesh, Arvind K.; Zhang, Adelaide X.; Mansour, Joey; Kubatina, Lyubov; Oh, Chang Hyun; Blasche, Gregory; Selim Unlu, M.; Balamore, Dilip; Jolesz, Ferenc A.; Goldberg, Bennett B.; hide


    In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).

  18. Hyperpolarized noble gas magnetic resonance imaging of the animal lung: Approaches and applications (United States)

    Santyr, Giles E.; Lam, Wilfred W.; Parra-Robles, Juan M.; Taves, Timothy M.; Ouriadov, Alexei V.


    Hyperpolarized noble gas (HNG) magnetic resonance (MR) imaging is a very promising noninvasive tool for the investigation of animal models of lung disease, particularly to follow longitudinal changes in lung function and anatomy without the accumulated radiation dose associated with x rays. The two most common noble gases for this purpose are H3e (helium 3) and X129e (xenon 129), the latter providing a cost-effective approach for clinical applications. Hyperpolarization is typically achieved using spin-exchange optical pumping techniques resulting in ˜10 000-fold improvement in available magnetization compared to conventional Boltzmann polarizations. This substantial increase in polarization allows high spatial resolution (single-slice images of the lung to be obtained with excellent temporal resolution (lungs with 1 mm slice thickness can be obtained within reasonable breath-hold intervals (ventilation studies in animals. Special MR hardware and software considerations are described in order to use the strong but nonrecoverable magnetization as efficiently as possible and avoid depolarization primarily by molecular oxygen. Several applications of HNG MR imaging are presented, including measurement of gross lung anatomy (e.g., airway diameters), microscopic anatomy (e.g., apparent diffusion coefficient), and a variety of functional parameters including dynamic ventilation, alveolar oxygen partial pressure, and xenon diffusing capacity.

  19. Optimizing detection of noble gas emission at a former UNE site: sample strategy, collection, and analysis (United States)

    Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.


    Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.

  20. Noble gas isotopes in mineral springs and wells within the Cascadia forearc, Washington, Oregon, and California (United States)

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.


    IntroductionThis U.S. Geological Survey report presents laboratory analyses along with field notes for an exploratory study to document the relative abundance of noble gases in mineral springs and water wells within the Cascadia forearc of Washington, Oregon, and California (fig. 1). This report describes 14 samples collected in 2014 and 2015 and complements a previous report that describes 9 samples collected in 2012 and 2013 (McCrory and others, 2014b). Estimates of the depth to the underlying Juan de Fuca oceanic plate beneath sample sites are derived from the McCrory and others (2012) slab model. Some of the springs have been previously sampled for chemical analyses (Mariner and others, 2006), but none of the springs or wells currently has publicly available noble gas data. The helium and neon isotope values and ratios presented below are used to determine the sources and mixing history of these mineral and well waters (for example, McCrory and others, 2016).

  1. MASCOT: a new mass-spectrometer facility dedicated to the analysis of cosmogenic noble gases (3He and 21Ne) from terrestrial samples (Institute of Geological Sciences - University of Bern, Switzerland). (United States)

    Delunel, Romain; Enderli, Patrick; Jenni, Hans-Erich; Leya, Ingo; Schlunegger, Fritz


    In the past years, terrestrial cosmogenic nuclides have been successfully used for dating exposure history of landforms and measuring erosional processes on Earth's surface. In this context, quantifications of landscape change have mainly been accomplished through the use of radioactive cosmogenic nuclides such as 10Be and 26Al, but their application has generally been restricted to Quaternary time scales because of their relatively short half-lives. The results are 10Be and 26Al concentrations that are below the detection limit of available accelerator mass spectrometers if the samples have a Late Miocene or even a Pliocene age. Contrariwise, cosmogenic noble gases such as 3He and 21Ne do not experience any radioactive decay through time, which places these isotopes in an unbeatable position for measuring paleo-denudation rates preserved in detrital material even if the ages of these deposits are up to 10 Ma and even older. These isotopes are thus keys for assessing the interplays between tectonic, climate and surface processes involved in the long-term evolution of mountain belts. Here we report the technical specifications of a noble gas analytical system that we have developed and set up at the Institute of Geological Sciences of the University of Bern, Switzerland, with the motivations to get dates and rates of erosion processes from the measurement of cosmogenic noble gases (3He and 21Ne) concentrations from terrestrial samples. This new facility, hosted at the Institute of Geological Sciences of the University of Bern, combines a MAP215-50 mass spectrometer fitted with a new high-sensitivity channel electron multiplier with an all-metal extraction and purification line. This later system thus comprises: (i) a double vacuum resistance furnace loaded by a 22-samples carrousel, (ii) three in-vacuo crushers (iii) an ultra high vacuum pumping system (mass spectrometer. This communication will be the opportunity to present our new noble gas system's full

  2. Long-range interactions of excited He atoms with ground-state noble-gas atoms

    KAUST Repository

    Zhang, J.-Y.


    The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition operators. The large-n expansions for the sums over the He oscillator strength divided by the corresponding transition energy are presented for these series. Using the expansions, the C6 coefficients for the systems involving He(131,3S) and He(131,3P) are calculated and found to be in good agreement with directly calculated values.

  3. DWBA-G calculations of electron impact ionization of noble gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, A S [Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Naja, A; Casagrande, E M Staicu; Lahmam-Bennani, A [Universite Paris-Sud 11, Laboratoire des Collisions Atomiques et Moleculaires (LCAM), Bat. 351, 91405 Orsay Cedex (France)], E-mail:


    We perform calculations of electron impact ionization of noble gas atoms within the distorted wave Born approximation (DWBA) corrected by the Gamow factor (G) to account for the post-collision interaction. We make an extensive comparison with experimental data on He 1s{sup 2}, Ne 2s{sup 2}, 2p{sup 6} and Ar 3p{sup 6} under kinematics characterized by large energy transfer and close to minimum momentum transfer from the projectile to the target. For all atoms, good agreement between theory and experiment is achieved. In the case of Ar, the disagreement of experimental data with theory reported earlier by Catoire et al (2006 J. Phys. B: At. Mol. Opt. Phys. 39 2827) is reconciled.

  4. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula. (United States)

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T


    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  5. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. (United States)

    Lavaur, Jérémie; Le Nogue, Déborah; Lemaire, Marc; Pype, Jan; Farjot, Géraldine; Hirsch, Etienne C; Michel, Patrick P


    Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  6. Methane Sources and Migration Mechanisms in the Shallow Trinity Aquifer in Parker and Hood Counties, Texas - a Noble Gas Analysis (United States)

    Wen, T.; Castro, C.; Nicot, J. P.; Hall, C. M.; Mickler, P. J.; Darvari, R.


    The presence of elevated methane in groundwaters within the Barnett Shale footprint in Parker and Hood counties, Texas has caused public concern that hydrocarbon production may facilitate migration of natural gas into a critical groundwater resource. This study places constraints on the source of methane in these groundwaters by analyzing water and stray gas data from groundwater wells and gas production wells from both the Barnett Shale and Strawn Group for methane content and noble gases, both of crustal and atmospheric origin. Particular emphasis is given to the atmospheric heavier noble gases 84Kr and 132Xe, which are significantly less affected by the presence of excess air, commonly present in modern Texas groundwaters (e.g., [1]). Dissolved methane concentrations are positively correlated with crustal 4He, 21Ne and 40Ar and suggest that noble gases and methane in these groundwaters originate from a common source, likely the Strawn Group, which the sampled aquifer overlies unconformably. This finding is further supported by the noble gas isotopic signature of stray gas when compared to the gas isotopic signatures of both Barnett Shale and the Strawn Group. In contrast to most samples, four groundwater wells with the highest methane concentrations unequivocally show heavy depletion of the atmospheric noble gases 20Ne, 36Ar, 84Kr and 132Xe with respect to freshwater recharge equilibrated with the atmosphere (ASW). This is consistent with predicted noble gas concentrations in a residual water phase in contact with a gas phase with initial ASW composition at 18°C-25°C, assuming a closed-system and suggest a highly localized gas source. All these four wells, without exception, tap into the Strawn Group and it is likely that shallow gas accumulations, as they are known to exist, were reached. Additionally, lack of correlation between 84Kr/36Ar and 132Xe/36Ar fractionation levels and distance to the nearest production wells does not support the notion that methane

  7. Noble Gases in Lakes and Ground Waters


    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin


    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  8. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. (United States)

    Darrah, Thomas H; Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel R; Poreda, Robert J


    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ(13)C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., (4)He, (20)Ne, (36)Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, (4)He) were significantly higher (P gases (air-saturated water; e.g., N2, (36)Ar) were significantly lower (P Noble gas isotope and hydrocarbon data link four contamination clusters to gas leakage from intermediate-depth strata through failures of annulus cement, three to target production gases that seem to implicate faulty production casings, and one to an underground gas well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.

  9. U.S. Geological Survey Noble Gas Laboratory’s standard operating procedures for the measurement of dissolved gas in water samples (United States)

    Hunt, Andrew G.


    This report addresses the standard operating procedures used by the U.S. Geological Survey’s Noble Gas Laboratory in Denver, Colorado, U.S.A., for the measurement of dissolved gases (methane, nitrogen, oxygen, and carbon dioxide) and noble gas isotopes (helium-3, helium-4, neon-20, neon-21, neon-22, argon-36, argon-38, argon-40, kryton-84, krypton-86, xenon-103, and xenon-132) dissolved in water. A synopsis of the instrumentation used, procedures followed, calibration practices, standards used, and a quality assurance and quality control program is presented. The report outlines the day-to-day operation of the Residual Gas Analyzer Model 200, Mass Analyzer Products Model 215–50, and ultralow vacuum extraction line along with the sample handling procedures, noble gas extraction and purification, instrument measurement procedures, instrumental data acquisition, and calculations for the conversion of raw data from the mass spectrometer into noble gas concentrations per unit mass of water analyzed. Techniques for the preparation of artificial dissolved gas standards are detailed and coupled to a quality assurance and quality control program to present the accuracy of the procedures used in the laboratory.

  10. Noble gas solubility in silicate melts:a review of experimentation and theory, and implications regarding magma degassing processes

    Directory of Open Access Journals (Sweden)

    A. Paonita


    Full Text Available Noble gas solubility in silicate melts and glasses has gained a crucial role in Earth Sciences investigations and in the studies of non-crystalline materials on a micro to a macro-scale. Due to their special geochemical features, noble gases are in fact ideal tracers of magma degassing. Their inert nature also allows them to be used to probe the structure of silicate melts. Owing to the development of modern high pressure and temperature technologies, a large number of experimental investigations have been performed on this subject in recent times. This paper reviews the related literature, and tries to define our present state of knowledge, the problems encountered in the experimental procedures and the theoretical questions which remain unresolved. Throughout the manuscript I will also try to show how the thermodynamic and structural interpretations of the growing experimental dataset are greatly improving our understanding of the dissolution mechanisms, although there are still several points under discussion. Our improved capability of predicting noble gas solubilities in conditions closer to those found in magma has allowed scientists to develop quantitative models of magma degassing, which provide constraints on a number of questions of geological impact. Despite these recent improvements, noble gas solubility in more complex systems involving the main volatiles in magmas, is poorly known and a lot of work must be done. Expertise from other fields would be extremely valuable to upcoming research, thus focus should be placed on the structural aspects and the practical and commercial interests of the study of noble gas solubility.

  11. Mineralogy and noble gas isotopes of micrometeorites collected from Antarctic snow (United States)

    Okazaki, Ryuji; Noguchi, Takaaki; Tsujimoto, Shin-ichi; Tobimatsu, Yu; Nakamura, Tomoki; Ebihara, Mitsuru; Itoh, Shoichi; Nagahara, Hiroko; Tachibana, Shogo; Terada, Kentaro; Yabuta, Hikaru


    We have investigated seven micrometeorites (MMs) from Antarctic snow collected in 2003 and 2010 by means of electron microscopy, X-ray diffraction, micro-Raman spectroscopy, transmission electron microscopy (TEM) observation, and noble-gas isotope analysis. Isotopic ratios of He and Ne indicate that the noble gases in these MMs are mostly of solar wind (SW). Based on the release patterns of SW 4He, which should reflect the degree of heating during atmospheric entry, the seven MMs were classified into three types including two least heated, three moderately heated, and two severely heated MMs. The heating degrees are well correlated to their mineralogical features determined by TEM observation. One of the least heated MMs is composed of phyllosilicates, whereas the other consists of anhydrous minerals within which solar flare tracks were observed. The two severely heated MMs show clear evidence of atmospheric heating such as partial melt of the uppermost surface layer in one and abundant patches of dendritic magnetite and Si-rich glass within an olivine grain in the other. It is noteworthy that a moderately heated MM composed of a single crystal of olivine has a 3He/4He ratio of 8.44 × 10-4, which is higher than the SW value of 4.64 × 10-4, but does not show a cosmogenic 21Ne signature such as 20Ne/21Ne/22Ne = 12.83/0.0284/1. The isotopic compositions of He and Ne in this sample cannot be explained by mixing of a galactic cosmic ray (GCR)-produced component and SW gases. The high 3He/4He ratio without cosmogenic 21Ne signature likely indicates the presence of a 3He-enriched component derived from solar energetic particles.

  12. Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Antonio Tricoli


    Full Text Available The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0–15 SiO2 wt% has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C, thermally stable crystal sizes of ca. 24 and 11 nm were identified for SnO2 nanoparticles and 1.4 wt% SnO2-SiO2 nanocomposites, respectively. The effect of crystal growth during operation (TO = 320 °C on the sensor response to ethanol has been reported, revealing possible long-term destabilization mechanisms. In particular, crystal growth and sintering-neck formation were discussed with respect to their potential to change the sensor response and calibration. Furthermore, the effect of SiO2 cosynthesis on the cross-sensitivity to humidity of these noble metal-free SnO2-based gas sensors was assessed.

  13. Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors (United States)

    Tricoli, Antonio


    The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0–15 SiO2 wt%) has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C, thermally stable crystal sizes of ca. 24 and 11 nm were identified for SnO2 nanoparticles and 1.4 wt% SnO2-SiO2 nanocomposites, respectively. The effect of crystal growth during operation (TO = 320 °C) on the sensor response to ethanol has been reported, revealing possible long-term destabilization mechanisms. In particular, crystal growth and sintering-neck formation were discussed with respect to their potential to change the sensor response and calibration. Furthermore, the effect of SiO2 cosynthesis on the cross-sensitivity to humidity of these noble metal-free SnO2-based gas sensors was assessed. PMID:25585712

  14. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. (United States)

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A


    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  15. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study (United States)

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.


    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar

  16. The degassing history of the Earth: Noble gas studies of Archaean cherts and zero age glassy submarine basalts (United States)

    Hart, R.; Hogan, L.


    Recent noble gas studies suggests the Earth's atmosphere outgassed from the Earth's upper mantle synchronous with sea floor spreading, ocean ridge hydrothermal activity and the formation of continents by partial melting in subduction zones. The evidence for formation of the atmosphere by outgassing of the mantle is the presence of radionuclides H3.-4, Ar-040 and 136 Xe-136 in the atmosphere that were produced from K-40, U and Th in the mantle. How these radionuclides were formed is reviewed.

  17. Radiation-induced transformations of isolated CH3CN molecules in noble gas matrices (United States)

    Kameneva, Svetlana V.; Volosatova, Anastasia D.; Feldman, Vladimir I.


    The transformations of isolated CH3CN molecules in various solid noble-gas matrices (Ne, Ar, Kr, and Xe) under the action of X-ray irradiation at 5 K were investigated by FTIR spectroscopy. The main products are CH3NC, CH2CNH and CH2NCH molecular isomers as well as CH2CN and CH2NC radicals. The matrix has a strong effect on the distribution of reaction channels. In particular, the highest relative yield of keteneimine (CH2CNH) was found in Ne matrix, whereas the formation of CH3NC predominates in xenon. It was explained by differences in the matrix ionization energy (IE) resulting in different distributions of hot ionic reactions. The reactions of neutral excited states are mainly involved in Xe matrix with low IE, while the isomerization of the primary acetonitrile positive ions may be quite effective in Ne and Ar. Annealing of the irradiated samples results in mobilization of trapped hydrogen atoms followed by their reactions with radicals to yield parent molecule and its isomers. The scheme of the radiation-induced processes and its implications for the acetonitrile chemistry in cosmic ices are discussed.

  18. Production yields of noble-gas isotopes from ISOLDE UC$_{x}$/graphite targets

    CERN Document Server

    Bergmann, U C; Catherall, R; Cederkäll, J; Diget, C A; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Gausemel, H; Georg, U; Giles, T; Hagebø, E; Jeppesen, H B; Jonsson, O C; Köster, U; Lettry, Jacques; Nilsson, T; Peräjärvi, K; Ravn, H L; Riisager, K; Weissman, L; Äystö, J


    Yields of He, Ne, Ar, Kr and Xe isotopic chains were measured from UC$_{x}$/graphite and ThC$_{x}$/graphite targets at the PSB-ISOLDE facility at CERN using isobaric selectivity achieved by the combination of a plasma-discharge ion source with a water-cooled transfer line. %The measured half-lives allowed %to calculate the decay losses of neutron-rich isotopes in the %target and ion-source system, and thus to obtain information on the in-target %productions from the measured yields. The delay times measured for a UC$_x$/graphite target allow for an extrapolation to the expected yields of very neutron-rich noble gas isotopes, in particular for the ``NuPECC reference elements'' Ar and Kr, at the next-generation radioactive ion-beam facility EURISOL. \\end{abstract} \\begin{keyword} % keywords here, in the form: keyword \\sep keyword radioactive ion beams \\sep release \\sep ion yields \\sep ISOL (Isotope Separation On-Line) \\sep uranium and thorium carbide targets. % PACS codes here, in the form: \\PACS code \\sep code...

  19. Trapped noble gases in meteorites (United States)

    Swindle, Timothy D.


    The trapped noble gases in meteorites come in two main varieties, usually referred to as solar and planetary. The solar noble gases are implanted solar-wind or solar-flare materials, and thus their relative elemental abundances provide a good estimate of those of the sun. The planetary noble gases have relative elemental abundances similar to those in the terrestrial atmosphere, but there are also important distinctions. At least one other elemental pattern (subsolar) and several isotopic patterns have also been identified.

  20. Production of noble gas isotopes by proton-induced reactions on lead (United States)

    Leya, I.; Wieler, R.; David, J.-C.; Leray, S.; Donadille, L.; Cugnon, J.; Michel, R.


    We measured integral thin target cross sections for the proton-induced production of He-, Ne-, Ar-, Kr- and Xe-isotopes from lead from the respective reaction threshold up to 2.6 GeV. The production of noble gas isotopes from lead is of special importance for design studies of accelerator driven nuclear reactors and/or energy amplifiers. For all experiments with proton energies above 200 MeV a new mini-stack approach was used instead of the stacked-foil technique in order to minimise the influences of secondary particles on the residual nuclide production. About 420 cross sections for 23 nuclear reactions were determined. The phenomenology of the determined excitation functions enables us to distinguish between the different reaction modes fragmentation, hot and cold symmetric fission, asymmetric fission and deep spallation. Cross sections for the production of 21Ne and 38Ar measured below 100 MeV and 200 MeV, respectively, enable us to study nuclide production below the nominal Coulomb-barrier. The experimental data are compared to results from the theoretical nuclear model code INCL4/ABLA. While the model describes the production of 4He reasonably well, it underestimates the cross sections for Ne- and Ar-isotopes produced via deep spallation and/or multifragmentation by up to two orders of magnitude. For the Kr- and Xe-isotopes the agreement between modelled and measured data strongly depends on the reaction mechanisms. While INCL4/ABLA describes the production of n-poor Kr-isotopes via hot-symmetric fission and the production of Xe-isotopes via asymmetric fission reasonably well, i.e. within a factor of 2, the discrepancies between modelled and measured cross sections for the n-rich Kr-isotopes produced via cold symmetric fission are significantly larger. For the Xe-isotopes produced via spallation, i.e. at energies higher than about 600 MeV, the model completely fails to describe the experimental data. Therefore, the comparison of measured and modelled thin

  1. Production of noble gas isotopes by proton-induced reactions on bismuth (United States)

    Leya, I.; David, J.-C.; Leray, S.; Wieler, R.; Michel, R.


    We measured integral thin target cross sections for the proton-induced production of He-, Ne-, Ar-, Kr- and Xe-isotopes from bismuth (Bi) from the respective reaction thresholds up to 2.6 GeV. Here we present 275 cross sections for 23 nuclear reactions. The production of noble gas isotopes from Bi is of special importance for design studies of accelerator driven systems (EA/ADS) and nuclear spallation sources. For experiments with proton energies above 200 MeV the mini-stack approach was used instead of the stacked-foil technique in order to minimise the influences of secondary particles on the residual nuclide production. Comparing the cross sections for Bi to the data published recently for Pb indicates that for 4He the cross sections for Bi below 200 MeV are up to a factor of 2-3 higher than the Pb data, which can be explained by the production of α-decaying Po-isotopes from Bi but not from Pb. Some of the cross sections for the production of 21Ne from Bi are affected by recoil effects from neighboured Al-foils, which compromises a study of a possible lowering of the effective Coulomb-barrier. The differences in the excitation functions between Pb and Bi for Kr- and Xe-isotopes can be explained by energy-dependent higher fission cross sections for Bi compared to Pb. The experimental data are compared to results from the theoretical nuclear model codes INCL4/ABLA and TALYS. The INCL4/ABLA system describes the cross sections for the production of 4He-, Kr- and Xe-isotopes reasonably well, i.e. mostly within a factor of a few. In contrast, the model completely fails describing 21Ne, 22Ne, 36Ar and 38Ar, which are produced via spallation and/or multifragmentation. The TALYS code is only able to accurately predict reaction thresholds. The absolute values are either significantly over- or underestimated. Consequently, the comparison of measured and modelled thin target cross sections clearly indicates that experimental data are still needed because the predictive

  2. Noble gases in crude oils from the Paris Basin, France: Implications for the origin of fluids and constraints on oil-water-gas interactions (United States)

    Pinti, Daniele L.; Marty, Bernard


    In order to investigate the potential of noble gases to trace the dynamics of oil reservoirs, we have analysed the abundance and isotopic composition of all noble gases (He, Ne, Ar, Kr, and Xe) in crude oils from the Paris Basin, France, using a new extraction and purification procedure. The main oil reservoirs are presently located in the Jurassic (Dogger) limestone and in the Triassic (Keuper) sandstone, but hydrocarbons originated from a common source rock formation located in the interbedded Liassic sequence. Despite this common origin, the abundance and isotopic ratios of the noble gases differ between the Dogger and the Keuper. The isotopic compositions of Kr and Xe are indistinguishable from that of air. 3He/ 4He ratios, higher than those predicted from radiogenic production in the sediments or in the crust, are attributed to the occurrence of mantle-derived 3He in the basin. Each sedimentary sequence is characterised by well defined and homogeneous 21Ne/ 22Ne and 40Ar/ 36Ar ratios, which average 0.0306 ± 0.0008 and 312 ± 10 for the Dogger and 0.0367 ± 0.0012 and 664 ± 30 for the Keuper, respectively. The main source of radiogenic noble gases appears to be the continental crust underlying the basin, with possible regional contributions of noble gas isotopes produced in the sediments. The helium and argon isotopic ratios of the Dogger oils are very similar to those observed in geothermal waters flowing in the Dogger aquifer throughout the basin, demonstrating that noble gases in oils derive from associated groundwaters. Oil reservoirs in the Paris Basin therefore accumulate noble gases from wide regions of the continental crust through cross-formational flow of groundwaters and subsequent partitioning into oil. This observation implies that noble gases cannot be directly used to date oils, but can provide time constraints if (1) water/oil interactions are quantified and (2) the residence time as well as the noble gas characteristics of associated

  3. Nitrogen and carbon interactions in controlling terrestrial greenhouse gas fluxes (United States)

    Ineson, Phil; Toet, Sylvia; Christiansen, Jesper


    The increased input of N to terrestrial systems may have profound impacts on net greenhouse gas (GHGs) fluxes and, consequently, our future climate; however, fully capturing and quantifying these interactions under field conditions urgently requires new, more efficient, measurement approaches. We have recently developed and deployed a novel system for the automation of terrestrial GHG flux measurements at the chamber and plot scales, using the approach of 'flying' a single measurement chamber to multiple points in an experimental field arena. As an example of the value of this approach, we shall describe the results from a field experiment investigating the interactions between increasing inorganic nitrogen (N) and carbon (C) additions on net ecosystem exchanges of N2O, CH4 and CO2, enabling the simultaneous application of 25 treatments, replicated five times in a fully replicated block field design. We will describe how the ability to deliver automated GHG flux measurements, highly replicated in space and time, has revealed hitherto unreported findings on N and C interactions in field soil. In our experiments we found insignificant N2O fluxes from bare field soil, even at very high inorganic N addition rates, but the interactive addition of even small amounts of available C resulted in very large and rapid N2O fluxes. The SkyGas experimental system enabled investigation of the underlying interacting response surfaces on the fluxes of the major soil-derived GHGs (CO2, CH4 and N2O) to increasing N and C inputs, and revealed unexpected interactions. In addition to these results we will also discuss some of the technical problems which have been overcome in developing these 'flying' systems and the potential of the systems for automatically screening the impacts of large numbers of treatments on GHG fluxes, and other ecosystem responses, under field conditions. We describe here technological advances that can facilitate the development of more robust GHG mitigation

  4. MECRIS A compact ECRIS for ionization of noble gas radioisotopes at ISOLDE

    CERN Document Server

    Wenander, Fredrik


    The development of electron cyclotron resonance ion source (ECRIS) for singly charged radioactive gases at ISOLDE/CERN was analyzed. The radioisotopes were produced by fission, spallation and fragmentation reactions which were induced by high-energy protons. It was observed that Mono ECRIS (MECRIS) ISOLIDE was intended for light noble gases with low ionization efficiency in ordinary plasma ion sources. The results show that ionization efficiencies for He and Xe injected through calibrated leak were less than 0.1 and 5%-10% which were similar to standard ISOLDE plasma ion source. (Edited abstract) 11 Refs.

  5. A combined noble gas and {sup 40}Ar-{sup 39}Ar study of Salt Lake Crater xenolith SL322 from Oahu, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Trieloff, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Rocholl, A. [Heidelberg Univ. (Germany). Mineralogisch-Petrographisches Inst.; Jessberger, E.K. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)]|[Muenster Univ. (Germany). Inst. fuer Planetologie


    The microdistribution of noble gases in a garnet pyroxenite nodule from Salt Lake Crater (SLC), Oahu, Hawaii, was investigated by a detailed step-heating and -crushing analysis and a {sup 40}Ar-{sup 39}Ar-study. A noble gas component with MORB type argon, helium and neon resides in CO{sub 2}-rich fluid inclusions trapped in <30 km depth. This component was most probably derived from the nephelinitic SLC host magma and confirms the dominance of MORB type noble gases in the late post-erosional magmatic stages of Hawaiian volcanism, as suggested previsouly (Kurz et al., 1983; Valbracht et al., 1996). A second previously detected (Rocholl et al., 1996) low {sup 40}Ar/{sup 36}Ar ({proportional_to}5000) component turned out to be associated with two different reservoirs. The larger reservoir is most probably related to garnet, the other one is associated with low retentive sites containing few K and Cl and could not yet be adequately identified. The low {sup 40}Ar/{sup 36}Ar ({proportional_to}5000) component hosted by garnet can be interpreted as a mixture of MORB and plume type noble gas components with specific {sup 4}He/{sup 40}Ar ratios. The results demonstrate the complexity of the microdistribution of noble gases in ultramafic nodules and allow insight into plume induced metasomatism of the Hawaiian lithosphere. (orig.)

  6. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.


    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  7. Noble gas and halogen evidence for the origin of Scandinavian sandstone-hosted Pb-Zn deposits (United States)

    Kendrick, M. A.; Burgess, R.; Harrison, D.; Bjørlykke, A.


    Fluid origins in the sandstone-hosted Pb-Zn class of ore deposit have been investigated in three deposits from Scandinavia; Laisvall, Vassbo and Osen. The deposits studied are hosted by autochthonous Cambrian sandstones that preserve a near original structural relationship to the underlying Precambrian basement, enabling the role of basement interaction to be assessed. Mineral samples have been collected from across the paragenetic sequence: sphalerite, galena, pyrite, fluorite and barite, of impregnation and related joint-hosted mineralization. Fluid-inclusion halogen (Cl, Br and I) and noble gas isotope ( 40Ar, 36Ar, 84Kr) compositions were determined simultaneously by noble gas mass spectrometry of irradiated sample splits. Complementary He isotope analyses are obtained from nonirradiated splits of the same samples. 3He/ 4He values at Laisvall and Osen are highly radiogenic, 0.02 Ra, and the 4He/ 40Ar* ratio extends to values greater than the crustal production value of 5, characteristic of low-temperature crustal fluids. At Vassbo, a slightly elevated 3He/ 4He ratio of 0.1-0.3 Ra is compatible with a very minor mantle component (1%-4%) suggesting a distal source for the basinal brine-dominated fluid. Br/Cl molar ratios 3.2-8.2 × 10 -3 are greater than the present seawater value of 1.54 × 10 -3 and correspond with I/Cl molar ratios in the range 64-1600 × 10 -6. The upper limits of both the I/Cl and Br/Cl values are amongst the highest measured in crustal fluids. Together, the data indicate acquisition of salinity by the evaporation of seawater beyond the point of halite saturation and subsequent fluid interaction with I-rich organic matter in the subsurface. The data are compatible with the independent transport of sulfate and sulfide and indicate that fluids responsible for joint-hosted mineralization were distinct to those responsible for impregnation mineralization. All three deposits preserve fluids with 40Ar/ 36Ar in the range of 6,000-10,000 and fluid

  8. A stochastic optimization method based technique for finding out reaction paths in noble gas clusters perturbed by alkali metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Biring, Shyamal Kumar [Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009 (India); Chaudhury, Pinaki, E-mail: [Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009 (India)


    Graphical abstract: The structure of a minimum in Ar{sub 19}K{sup +} cluster. Abstract: In this paper we explore the possibility of using stochastic optimizers, namely simulated annealing (SA) in locating critical points (global minima, local minima and first order saddle points) in Argon noble gas clusters perturbed by alkali metal ions namely sodium and potassium. The atomic interaction potential is the Lennard Jones potential. We also try to see if a continuous transformation in geometry during the search process can lead to a realization of a kind of minimum energy path (MEP) for transformation from one minimum geometry to another through a transition state (first order saddle point). We try our recipe for three sizes of clusters, namely (Ar){sub 16}M{sup +}, (Ar){sub 19}M{sup +} and (Ar){sub 24}M{sup +}, where M{sup +} is Na{sup +} and K{sup +}.

  9. Theoretical prediction of noble gas inserted halocarbenes: FNgCX (Ng = Kr, and Xe; X = F, Cl, Br, and I) (United States)

    Chopra, Pragya; Ghosh, Ayan; Roy, Banasri; Ghanty, Tapan K.


    A new series of neutral noble gas inserted compounds involving halocarbenes, mainly, FNgCX (Ng = Kr, and Xe; X = F, Cl, Br, and I) has been predicted through various ab initio quantum chemical techniques such as MP2, DFT, CCSD(T) and MRCI. The structure, stabilities, charge distribution, harmonic vibrational frequencies and topological properties of these compounds have been investigated. It is found that the predicted species are energetically stable with respect to all the plausible 2-body and 3-body dissociation pathways, with the exception of the 2-body channel that leads to the global minimum products (FCX + Ng). Despite this, existence of finite barrier heights indicates that these compounds are kinetically stable with respect to global minimum products. The computational results indicate that it might be possible to prepare and characterize the most stable singlet state of FNgCX molecules under cryogenic conditions through suitable experimental technique(s).

  10. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration. (United States)

    Irudayam, Sheeba Jem; Henchman, Richard H


    An equation for the chemical potential of a dilute aqueous solution of noble gases is derived in terms of energies, force and torque magnitudes, and solute and water coordination numbers, quantities which are all measured from an equilibrium molecular dynamics simulation. Also derived are equations for the Gibbs free energy, enthalpy and entropy of hydration for the Henry's law process, the Ostwald process, and a third proposed process going from an arbitrary concentration in the gas phase to the equivalent mole fraction in aqueous solution which has simpler expressions for the enthalpy and entropy changes. Good agreement with experimental hydration free energies is obtained in the TIP4P and SPC/E water models although the solute's force field appears to affect the enthalpies and entropies obtained. In contrast to other methods, the approach gives a complete breakdown of the entropy for every degree of freedom and makes possible a direct structural interpretation of the well-known entropy loss accompanying the hydrophobic hydration of small non-polar molecules under ambient conditions. The noble-gas solutes experience only a small reduction in their vibrational entropy, with larger solutes experiencing a greater loss. The vibrational and librational entropy components of water actually increase but only marginally, negating any idea of water confinement. The term that contributes the most to the hydrophobic entropy loss is found to be water's orientational term which quantifies the number of orientational minima per water molecule and how many ways the whole hydrogen-bond network can form. These findings help resolve contradictory deductions from experiments that water structure around non-polar solutes is similar to bulk water in some ways but different in others. That the entropy loss lies in water's rotational entropy contrasts with other claims that it largely lies in water's translational entropy, but this apparent discrepancy arises because of different

  11. Ore genesis constraints on the Idaho Cobalt Belt from fluid inclusion gas, noble gas isotope, and ion ratio analyses (United States)

    Hofstra, Albert H.; Landis, Gary P.


    The Idaho cobalt belt is a 60-km-long alignment of deposits composed of cobaltite, Co pyrite, chalcopyrite, and gold with anomalous Nb, Y, Be, and rare-earth elements (REEs) in a quartz-biotite-tourmaline gangue hosted in Mesoproterozoic metasedimentary rocks of the Lemhi Group. It is the largest cobalt resource in the United States with historic production from the Blackbird Mine. All of the deposits were deformed and metamorphosed to upper greenschist-lower amphibolite grade in the Cretaceous. They occur near a 1377 Ma anorogenic bimodal plutonic complex. The enhanced solubility of Fe, Co, Cu, and Au as chloride complexes together with gangue biotite rich in Fe and Cl and gangue quartz containing hypersaline inclusions allows that hot saline fluids were involved. The isotopes of B in gangue tourmaline are suggestive of a marine source, whereas those of Pb in ore suggest a U ± Th-enriched source. The ore and gangue minerals in this belt may have trapped components in fluid inclusions that are distinct from those in post-ore minerals and metamorphic minerals. Such components can potentially be identified and distinguished by their relative abundances in contrasting samples. Therefore, we obtained samples of Co and Cu sulfides, gangue quartz, biotite, and tourmaline and post-ore quartz veins as well as Cretaceous metamorphic garnet and determined the gas, noble gas isotope, and ion ratios of fluid inclusion extracts by mass spectrometry and ion chromatography. The most abundant gases present in extracts from each sample type are biased toward the gas-rich population of inclusions trapped during maximum burial and metamorphism. All have CO2/CH4 and N2/Ar ratios of evolved crustal fluids, and many yield a range of H2-CH4-CO2-H2S equilibration temperatures consistent with the metamorphic grade. Cretaceous garnet and post-ore minerals have high RH and RS values suggestive of reduced sulfidic conditions. Most extracts have anomalous 4He produced by decay of U and Th and

  12. Summary and Preliminary Interpretation of Tritium and Dissolved Noble Gas Data from Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Visser, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Madrid, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    In October 2013, groundwater samples were collected from 10 wells from Site 300 and analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory (LLNL). Groundwater samples were analyzed for groundwater age tracers: tritium, the helium isotope ratio of dissolved helium and the concentrations of dissolved noble gases (Helium, Neon, Argon, Krypton, and Xenon). A subset of the samples was also analyzed for excess nitrogen due to saturated zone denitrification. The age-dating data were used to evaluate the degree to which groundwater at a particular monitoring well was derived from pre-modern and/or modern sources. More specifically, the analyses can be used to determine whether the recharge age of the groundwater beneath the site pre-dates anthropogenic activities at the site.

  13. The Noble Gas Dimers as a Probe of the Energetic Contributions of Dispersion and Short-Range Electron Correlation in Weakly-Bound Systems


    Housden, Michael Philip; Pyper, Nicholas Charles


    Abstract The binding of the noble gas dimers is examined using a theory in which the Hartree-Fock interaction energy is augmented with both a short-range correlation term derived from the theory of a uniform electron-gas plus a dispersion energy damped according to the theory of Jabobi and Csanak. The good agreement between the predicted and experimental binding energies and equilibrium inter-nuclear separations confirms that this approach captures the essential physics of the int...

  14. Planetary noble gases (United States)

    Zahnle, Kevin


    An overview of the history and current status of research on planetary noble gases is presented. The discovery that neon and argon are vastly more abundant on Venus than on earth points to the solar wind rather than condensation as the fundamental process for placing noble gases in the atmospheres of the terrestrial planets; however, solar wind implantation may not be able to fully reproduce the observed gradient, nor does it obviously account for similar planetary Ne/Ar ratios and dissimilar planetary Ar/Kr ratios. More recent studies have emphasized escape rather than accretion. Hydrodynamic escape, which is fractionating, readily accounts for the difference between atmospheric neon and isotopically light mantle neon. Atmospheric cratering, which is nearly nonfractionating, can account for the extreme scarcity of nonradiogenic noble gases (and other volatiles) on Mars.


    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R


    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  16. Noble Gas Leak Detector for Use in the SNS Neutron Electric Dipole Moment Experiment (United States)

    Barrow, Chad; Huffman, Paul; Leung, Kent; Korobkina, Ekaterina; White, Christian; nEDM Collaboration Collaboration


    Common practice for leak-checking high vacuum systems uses helium as the probing gas. However, helium may permeate some materials at room temperature, making leak characterization difficult. The experiment to find a permanent electric dipole moment of the neutron (nEDM), to be conducted at Oak Ridge National Laboratories, will employ a large volume of liquid helium housed by such a helium-permeable composite material. It is desirable to construct a leak detector that can employ alternative test gases. The purpose of this experiment is to create a leak detector that can quantify the argon gas flux in a high vacuum environment and interpret this flux as a leak-rate. This apparatus will be used to check the nEDM volumes for leaks at room temperature before cooling down to cryogenic temperatures. Our leak detector uses a residual gas analyzer and a vacuum pumping station to characterize the gas present in an evacuated volume. The introduction of argon gas into the system is interpreted as a leak-rate into the volume. The device has been calibrated with NIST certified calibrated leaks and the machine's sensitivity has been calculated using background gas analysis. As a result of the device construction and software programming, we are able to leak-check composite and polyamide volumes This work was supported in part by the US Department of Energy under Grant No. DE-FG02-97ER41042.

  17. Radon: Not so Noble

    Indian Academy of Sciences (India)

    electronic configuration. [ 5S25p65d106s26p6]. Deepanjan Majumdar. Radon is a radioactive noble gas that occurs naturally but becomes an environmental hazard when it remains con- centrated in enclosed places .... public water supplies. Rivers carry .... relationship between cancer incidence and radon exposure has.

  18. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: A DFT study (United States)

    Zhao, Chunjiang; Wu, Huarui


    Density functional theory calculations are carried out to investigate the adsorption characteristics of methane (CH4), carbon dioxide (CO2), hydrogen (H2), hydrogen sulfide (H2S), nitrogen (N2), and oxygen (O2) on the surface of pyridine-like nitrogen doped graphene (PNG) as well as noble metal (Rh, Pt, Pd) decorated PNG to elaborate their potentials as gas sensors. The adsorption intensities of biogas on noble metal (Rh, Pt, Pd) decorated PNG are in the order of O2> H2S> N2> CH4> CO2> H2, which are corresponded to the order of their sensitivity on surface. Compared with biogas adsorption on pristine PNG, there exist higher adsorption ability, higher charge transfer and higher orbital hybridization upon adsorption on noble metal (Rh, Pt, Pd) decorated PNG. Consequently, the noble metal (Rh, Pt, Pd) decorated PNG can transform the existence of CH4, CO2, H2, H2S, N2, and O2 molecules into electrical signal and they could potentially be used as ideal sensors for detection of biogas in ambient situation.

  19. Capture of terrestrial-sized moons by gas giant planets. (United States)

    Williams, Darren M


    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  20. Potential Energy Curves and Associated Line Shape of Alkali-Metal and Noble-Gas Interactions (United States)


    computed using the full Pauli-Breit operator [ Fedorov et al., 2003]. 3.1.2 Comparison of MCSCF vs. SOCI curve for Li + He. The MCSCF M + Ng curves provide...Yabuzaki. Emission spectra of Cs-He excimers in cold helium gas. Phys. Rev. A, 66:042505, 2002. G. D. Fedorov , S. Koseki, M. W. Schmidt, and M. S. Gordon

  1. Theoretical prediction of maximum capacity of C₈₀ and Si₈₀ fullerenes for noble gas storage. (United States)

    Mahdavifar, Zabiollah


    In this paper, we try to demonstrate that how many helium, neon and argon atoms can be trapped into fullerene cages until the pressure becomes large enough to break the C80 and Si80 frameworks. The maximum number of helium, neon and argon atoms which can be encapsulated into C80 fullerene, is found with 46, 24 and 10 atoms respectively. Having investigated the mechanism of C80 opening, we found that if the number of helium and argon atoms reaches to 50 and 12 respectively, the C-C bonds of C80 are broken and the gas molecules escaped from the fullerene cage. The final optimization geometries of latter complexes are similar to the shopping cart. Therefore, this appearance is named as molecular cart. Moreover, the maximum capacity of Si80 fullerene for encapsulated noble gas atoms is found 95, 56 and 22 for helium, neon and argon atoms correspondingly. It is worth highlighting that the new phenomenon of trapping argon atoms into Si80 cage is observed, when a Si atom randomly added to the center of Ar19@Si80 structures. In this case, the Si-Si bonds of Si80 are broken and two argon atoms will escape from the cage. After that, the framework rebuilds its structure like the initial one. This phenomenon is introduced as molecular cesarean section. The estimated internal pressure of Ng atoms trapped into the fullerene cages is also investigated. Results show that the maximum calculated internal pressure is related to He46@C80 and He95@Si80 structures with 212.3 and 144.1GPa respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Collective dynamics in noble-gas and other very simple classical fluids

    Directory of Open Access Journals (Sweden)



    Full Text Available Rare gases and their liquids are the simplest systems to study for accurate investigations of the collective dynamics of fluid matter. Much work has been done using different spectroscopic techniques, molecular-dynamics simulations, and theoretical developments, in order to gain insight into the microscopic processes involved, in particular, in the propagation of acoustic excitations in gases and liquids. Here we briefly review the interpretation schemes currently applied to the characterization of such excitations, and recall a few results obtained from the analysis of rare-gas fluids and other very simple systems.

  3. Development of intense high-energy noble gas ion beams from in-terminal ion injector of tandem accelerator using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Nakanoya, T.; Hanashima, S.; Takeuchi, S. [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)


    An ECRIS-based heavy ion injector was constructed in the high-voltage terminal of JAEA-Tokai Tandem Accelerator to develop new beam species of highly charged noble gas ions. This work was associated with a lot of development to operate the ion source on the 20UR Pelletron high voltage terminal in high pressure SF{sub 6} gas environment. Highly charged ions of N, O, Ne, Ar, Kr and Xe have been accelerated satisfactorily. Operating data integrated during many years long beam delivery service are summarized.

  4. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma. (United States)

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald


    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photo-induced strengthening of weak bonding in noble gas dimers

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Rubio, Angel [Nano-Bio Spectroscopy group and ETSF Scientific Development Centre, Centro de Física de Materiales CSIC-UPV/EHU-MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 San Sebastian (Spain); Zhang, Hong, E-mail: [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610065 (China)


    We demonstrate through extensive first-principles time-dependent density functional calculations that attractive van der Waals interaction between closed-shell atoms can be enhanced by light with constant spatial intensity. We illustrate this general phenomenon for a He dimer as a prototypical case of complex van der Waals interactions and show that when excited by light with a frequency close to the 1s → 2p He-atomic transition, an attractive force larger than 7 pN is produced. This force gain is manifested as a larger acceleration of He-He contraction under an optical field. The concerted dynamical motions of the He atoms together with polarity switching of the charge-induced dipole cause the contraction of the dimer. These findings are relevant for the photo-induced control of weakly bonded molecular species, either in gas phase or in solution.

  6. Fluid circulation and reservoir conditions of the Los Humeros Geothermal Field (LHGF), Mexico, as revealed by a noble gas survey (United States)

    Pinti, Daniele L.; Castro, M. Clara; Lopez-Hernandez, Aida; Han, Guolei; Shouakar-Stash, Orfan; Hall, Chris M.; Ramírez-Montes, Miguel


    Los Humeros Geothermal Field (LHGF) is one of four geothermal fields currently operating in Mexico, in exploitation since 1990. Located in a caldera complex filled with very low-permeability rhyolitic ignimbrites that are the reservoir cap-rock, recharge of the geothermal field is both limited and localized. Because of this, planning of any future geothermal exploitation must be based on a clear understanding of the fluid circulation. To this end, a first noble gas survey was carried out in which twenty-two production wells were sampled for He, Ne, Ar, Kr, and Xe isotope analysis. Air-corrected 3He/4He ratios (Rc) measured in the fluid, normalized to the helium atmospheric ratio (Ra; 1.384 × 10- 6), are consistently high across the field, with an average value of 7.03 ± 0.40 Ra. This value is close to that of the sub-continental upper mantle, indicating that LHGF mines heat from an active magmatic system. Freshwater recharge does not significantly affect He isotopic ratios, contributing 1-10% of the total fluid amount. The presence of radiogenic 40Ar* in the fluid suggests a fossil fluid component that might have circulated within the metacarbonate basement with radiogenic argon produced from detrital dispersed illite. Solubility-driven elemental fractionation of Ne/Ar, Kr/Ar, and Xe/Ar confirm extreme boiling in the reservoir. However, a combined analysis of these ratios with 40Ar/36Ar reveals mixing with an air component, possibly introduced by re-injected geothermal fluids.

  7. Extra-terrestrial sprites: laboratory investigations in planetary gas mixtures

    NARCIS (Netherlands)

    D. Dubrovin; Y. Yair; C. Price; S. Nijdam (Sander); T.T.J. Clevis; E.M. van Veldhuizen; U. Ebert (Ute)


    textabstractWe investigate streamers in gas mixtures representing the atmospheres of Jupiter, Saturn (H2-He) and Venus (CO2-N2). Streamer diameters, velocities, radiance and overall morphology are investigated with fast ICCD camera images. We confirm experimentally the scaling of streamer diameters

  8. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.


    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants

  9. Absorption spectroscopy of xenon and ethylene-noble gas mixtures at high pressure: Towards Bose-Einstein condensation of vacuum ultraviolet photons

    CERN Document Server

    Wahl, Christian; Schmitt, Julian; Vewinger, Frank; Christopoulos, Stavros; Weitz, Martin


    Bose-Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules. Here we report on the status of an experimental effort aiming at the extension of the concept of Bose-Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the $5p^6 - 5p^56s$ transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 155 and 180 nm wavelength are reported.

  10. Structure and stability of noble gas bound EX3+ compounds (E = C, Ge, Sn, Pb; X = H, F, Cl, Br). (United States)

    Pan, Sudip; Moreno, Diego; Ghosh, Sreyan; Chattaraj, Pratim K; Merino, Gabriel


    It has been analyzed at the MP2/def2-QZVPPD level whether EX3+ (E = C-Pb; X = H, F-Br) can bind noble gas atoms. Geometrical and electronic structures, dissociation energy values, thermochemical parameters, natural bond order, electron density, and energy decomposition analyses highlight the possibility of such noble gas bound EX3+ compounds. Except He and Ne, the other heavier congeners of this family make quite strong bonds with E. In fact, the dissociations of Ar-Rn bound analogues turn out to be endergonic in nature at 298 K, except in the cases of ArGe Cl3+, Ar/KrGeBr3+, and ArSnBr3+. GeH3+ and EF3+ (E = Ge-Pb) can even bind two Ng atoms with reasonably high dissociation energy. As the pz orbital of the E center in EX3+ plays a crucial role in its binding with the noble gas atoms, the effect of the π back-bonding causing X → E electron transfer ought to be properly understood. Due to the larger back-donation, the Ng binding ability of EX3+ gradually decreases along F to Br. EH2+ and the global minimum HE(+…) H2 (E = Sn, Pb) complexes are also able to bind Ar-Rn atoms quite effectively. The NgE bonds in Ar-Rn bound CH3+, GeH3+, and EF3+ (E = Ge-Pb) and Xe/RnE bonds in NgECl3+ and NgEBr3+ (E = Ge, Sn) are mainly of covalent type. © 2015 Wiley Periodicals, Inc.

  11. Origin and age of thermal waters in Cieplice Spa, Sudeten, Poland, inferred from isotope, chemical and noble gas data (United States)

    Ciȩżkowski, W.; Gröning, M.; Leśniak, P. M.; Weise, S. M.; Zuber, A.


    Isotope and hydrochemical data of the thermal water system in Cieplice Ṡlaskie Zdrój (Spa) indicate the existence of two subsystems that greatly differ in volume and which meet at the fault zones of a granitic horst, where they discharge at an altitude of about 340m. One of the subsystems is very small (about 4 × 10 3 m 3) as indicated by the tritium age of the order of 10 years and a low outflow rate. Its recharge area found from the δ18O and δD values, is about 200m above the springs, most probably on the slopes of the foothills of the Karkonosze Mountains south-southwest of the spa. The large subsystem contains water which is free of tritium and whose 14C content is from 1 to 8 pmc with δ13C = -8.0 to -9.2‰. The isotopic composition of this water reflects either the climatic effect (low-altitude recharge during a cooler pre-Holocene climate) or the altitude effect (recharge in the early Holocene period at about 1000m at the heights of the Karkonosze assuming that the 14C concentration is strongly reduced by exchange with calcite in veins). For the former hypothesis, the recharge area of this water is probably either at the foot of the southeastern slopes of the Kaczawa Mountains or/and at the foot of the Rudawy Janowickie Mountains, to the east of Cieplice. The noble gas temperatures are more consistent with the pre-Holocene recharge. Similarly, the 4He excess and {40Ar}/{36Ar} ratio support the hypothesis of a pre-Holecene age. The constant {3He}/{4He} ratio of 26 × 10 -8 for highly different helium contents indicates crustal origin of helium. For the pre-Holocene age of water its volume is calculated at >- 10 9m 3 (stagnant water in micropores and mobile water in fractures) and the hydraulic conductivity of the host granite massif is estimated at about 7 × 10 -8 ms -1. Two outflows from this subsystem have different and variable fractions of a modern water component (bomb age), most probably originating from the bank infiltration of a nearby stream.

  12. New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses (United States)

    Füri, Evelyn; Deloule, Etienne; Gurenko, Andrey; Marty, Bernard


    In order to assess the proportion of solar, cosmogenic, and indigenous water (hydrogen) trapped in individual Ti-rich lunar volcanic glasses (LVGs) from the 74002 core obtained during the Apollo 17 mission, we coupled ion microprobe measurements of water abundances and D/H ratios with CO2 laser extraction-static mass spectrometry analyses of noble gases (He, Ne, Ar). The large (∼300-400 μm in diameter) LVGs studied here contain a small amount of solar wind (SW) volatiles implanted at the grain surfaces, as indicated by the small concentrations of solar helium and neon that represent ⩽5% of the respective total noble gas abundances. The large proportion of volume-correlated cosmogenic gases reflects an exposure duration of ∼28 Ma, on average, of the glasses at the lunar surface. Hydrogen abundances determined in the grain interiors of glassy and partially-crystalline LVGs are equivalent to between 6.5 and 54.3 ppm H2O. Based on the noble gas exposure ages, the correction of the measured hydrogen isotope composition for in situ production of cosmogenic deuterium by spallation reactions varies between -5‰ to -254‰ for the different grains. Corrected δD values range from +38‰ to +809‰ in the LVGs and are anti-correlated with the water content, consistent with extensive hydrogen isotope fractionation during kinetic H2 loss from a lunar melt with an inferred initial isotope signature of the order of -100‰ and a water content of 100-300 ppm. The detection of water in these primitive lunar melts confirms the presence of a non-anhydrous mantle reservoir within the Moon. Furthermore, our results reveal that the hydrogen isotope composition of water in the melt source of the 74002 LVGs is similar to that of carbonaceous chondrites. These observations indicate that the contribution of deuterium-enriched cometary water to the Earth-Moon system is negligible.

  13. Using noble gas tracers to estimate residual CO2 saturation in the field: results from the CO2CRC Otway residual saturation and dissolution test (United States)

    LaForce, T.; Ennis-King, J.; Paterson, L.


    Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.

  14. A comparative study on full diagonalization of Hessian matrix and Gradient-only technique to trace out reaction path in doped noble gas clusters using stochastic optimization

    Energy Technology Data Exchange (ETDEWEB)

    Biring, Shyamal Kumar [Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009 (India); Chaudhury, Pinaki, E-mail: [Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009 (India)


    Highlights: Black-Right-Pointing-Pointer Estimation of critical points in Noble-gas clusters. Black-Right-Pointing-Pointer Evaluation of first order saddle point or transition states. Black-Right-Pointing-Pointer Construction of reaction path for structural change in clusters. Black-Right-Pointing-Pointer Use of Monte-Carlo Simulated Annealing to study structural changes. - Abstract: This paper proposes Simulated Annealing based search to locate critical points in mixed noble gas clusters where Ne and Xe are individually doped in Ar-clusters. Using Lennard-Jones (LJ) atomic interaction we try to explore the search process of transformation through Minimum Energy Path (MEP) from one minimum energy geometry to another via first order saddle point on the potential energy surface of the clusters. Here we compare the results based on diagonalization of the full Hessian all through the search and quasi-gradient only technique to search saddle points and construction of reaction path (RP) for three sizes of doped Ar-clusters, (Ar){sub 19}Ne/Xe,(Ar){sub 24}Ne/Xe and (Ar){sub 29}Ne/Xe.

  15. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite (United States)

    Landis, G.P.; Rye, R.O.


    Chemical and isotope data were obtained for the active gas and noble gas of inclusion fluids in coarse-grained samples of magmatic-hydrothermal and magmatic-steam alunite from well-studied deposits (Marysvale, Utah; Tambo, Chile; Tapajo??s, Brazil; Cactus, California; Pierina, Peru), most of which are discussed in this Volume. Primary fluid inclusions in the alunite typically are less than 0.2 ??m but range up to several micrometers. Analyses of the active-gas composition of these alunite-hosted inclusion fluids released in vacuo by both crushing and heating indicate consistent differences in the compositions of magmatic-hydrothermal and magmatic-steam fluids. The compositions of fluids released by crushing were influenced by contributions from significant populations of secondary inclusions that trapped largely postdepositional hydrothermal fluids. Thermally released fluids gave the best representation of the fluids that formed primary alunite. The data are consistent with current models for the evolution of magmatic-hydrothermal and magmatic-steam fluids. Magmatic-steam fluids are vapor-dominant, average about 49 mol% H2O, and contain N2, H2, CH4, CO, Ar, He, HF, and HCl, with SO2 the dominant sulfur gas (average SO2/ H2S=202). In contrast, magmatic-hydrothermal fluids are liquid-dominant, average about 88 mol% H2O, and N2, H2, CO2, and HF, with H2S about as abundant as SO2 (average SO2/H2 S=0.7). The low SO2/H2S and N2/Ar ratios, and the near-absence of He in magmatic-hydrothermal fluids, are consistent with their derivation from degassed condensed magmatic fluids whose evolution from reduced-to-oxidized aqueous sulfur species was governed first by rock and then by fluid buffers. The high SO2/H2S and N2/Ar with significant concentrations of He in magmatic-steam fluids are consistent with derivation directly from a magma. None of the data supports the entrainment of atmospheric gases or mixing of air-saturated gases in meteoric water in either magmatic

  16. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom


    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  17. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

    KAUST Repository

    Wang, Hao


    In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal-organic framework, namely Co 3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry\\'s constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co 3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe-Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe-Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co 3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions. © 2014 The Royal Society of Chemistry.

  18. Potential energy curves for the interaction of Ag(5s) and Ag(5p) with noble gas atoms. (United States)

    Loreau, J; Sadeghpour, H R; Dalgarno, A


    We investigate the interaction of ground and excited states of a silver atom with noble gases (NG), including helium. Born-Oppenheimer potential energy curves are calculated with quantum chemistry methods and spin-orbit effects in the excited states are included by assuming a spin-orbit splitting independent of the internuclear distance. We compare our results with experimentally available spectroscopic data, as well as with previous calculations. Because of strong spin-orbit interactions, excited Ag-NG potential energy curves cannot be fitted to Morse-like potentials. We find that the labeling of the observed vibrational levels has to be shifted by one unit.

  19. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.


    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants...... maintain relatively high internal oxygen pressures under water, and even may release oxygen via the roots into the sediment, also in dark. Based on these results, we challenge the dogma that oxygen pressures in submerged terrestrial plants immediately drop to levels at which aerobic respiration is impaired....... The present study demonstrates that the internal oxygen pressure in the petioles of Rumex palustris plants under water is indeed well above the critical oxygen pressure for aerobic respiration, provided that the air-saturated water is not completely stagnant. The beneficial effect of shoot acclimation...

  20. Can there be a multi-bond between noble gas and metal? A theoretical study of F2XeMoF2. (United States)

    Gao, Kunqi; Sheng, Li


    A new noble gas compound containing a Xe-Mo double bond, F 2 XeMoF 2 , was theoretically constructed and studied based on DFT and ab initio calculations. The CCSD(T)-calculated Xe-Mo bond length of 2.518 Å was comparable to the standard value of 2.56 Å. The bonding energy (32.3 kcal mol -1 ) was even higher than that of the Xe-Au bond in the well-known XeAuF complex (24.1 kcal mol -1 ). The result of natural bond orbital (NBO) analysis indicates that there is a σ-bond and a π-bond between the Xe and Mo atoms in F 2 XeMoF 2 . The properties of the Xe-Mo double bond were also analyzed with the atoms in molecules (AIM) approach and natural resonance theory (NRT).

  1. Recent Experimental Advances to Determine (noble) Gases in Waters (United States)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.


    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial control of 220Rn occurrence in the environment, e.g., making an argument why 220Rn is not detectable in water, but in soil air. As 220Rn occurrence is of 'very local origin

  2. Challenges of deriving a complete biosphere greenhouse gas balance through integration of terrestrial and aquatic ecosystems (United States)

    Peichl, Matthias


    Past research efforts have mostly focused on separately investigating the exchange of greenhouse gases (GHGs) within the limits of different terrestrial and aquatic ecosystem types. More recently however, it has been recognized that GHG exchanges and budgets are not limited to boundaries of the terrestrial or aquatic biosphere components and instead are often tightly linked amongst the different ecosystem types. Primarily the aquatic production and export of GHGs due to substrate supply or discharge from surrounding terrestrial ecosystems play a major role in regional GHG budgets. Understanding the mechanisms and drivers of this connectivity between different terrestrial and aquatic ecosystem GHG exchanges is therefore necessary to develop landscape-level GHG budgets and to understand their sensitivity to disturbances of the biosphere. Moreover, the exchange of carbon dioxide (CO2) as the most important GHG species has been the primary research objective with regards to obtaining better estimates of the carbon sequestration potential of the biosphere. However, methane (CH4) and nitrous oxide (N2O) emissions may offset CO2 sinks and considerably affect the complete GHG balance in both terrestrial and aquatic systems. Including their contribution and improved knowledge on the dynamics of these two gas species is therefore essential for complete GHG budget estimates. At present, the integration of terrestrial and aquatic GHG exchanges toward landscape GHG budgets poses numerous challenges. These include the need for a better knowledge of i) the contribution of CH4 and N2O to the GHG budgets within contrasting terrestrial (forests, peatlands, grasslands, croplands) and aquatic (lake, streams) ecosystems when integrated over a full year, ii) the effect of ecosystem properties (e.g. age and/or development stage, size of water body) on the GHG balance, iii) the impact of management effects (e.g. nitrogen fertilizer application), iv) differences among climate regions and v

  3. Post-irradiation analysis of an ISOLDE lead-bismuth target: Stable and long-lived noble gas nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Leya, I., E-mail: [University of Bern, Space Science and Planetology, Bern (Switzerland); Grimberg, A. [University of Bern, Space Science and Planetology, Bern (Switzerland); Isotope Geochemistry, ETH Zürich, Zürich (Switzerland); David, J.-C. [CEA/Saclay, Irfu/SPhN, 91191 Gif-sur-Yvette, Cedex (France); Schumann, D.; Neuhausen, J. [Paul Scherrer Institut, Villigen (Switzerland); Zanini, L. [Paul Scherrer Institut, Villigen (Switzerland); European Spallation Source ESS AB, P.O. Box 117, SE-22100 Lund (Sweden); Noah, E. [University of Geneva, Département de Physique Nucléaire et Corpusculaire, Geneve (Switzerland)


    We measured the isotopic concentrations of long-lived and stable He, Ne, Ar, Kr, and Xe isotopes in a sample from a lead-bismuth eutectic target irradiated with 1.0 and 1.4 GeV protons. Our data indicate for most noble gases nearly complete release with retention fractions in the range of percent or less. Higher retention fractions result from the decay of long-lived radioactive progenitors from groups 1, 2, or 7 of the periodic table. From the data we can calculate a retention fraction for {sup 3}H of 2–3%. For alkaline metals we find retention fractions of about 10%, 30%, and 50% for Na, Rb, and Cs, respectively. For the alkaline earth metal Ba we found complete retention. Finally, the measured Kr and Xe concentrations indicate that there was some release of the halogens Br and I during and/or after the irradiation.

  4. The interpretation of ellipsometric measurements of ion bombardment of noble gases on semiconductor surfaces

    NARCIS (Netherlands)

    Holtslag, A.H.M.; Slager, U.C.; van Silfhout, Arend


    Low energy noble gas ion bombardment and thermal desorption studies were carried out on Si(111) and analysed, in situ, using spectroscopic ellipsometry. The amorphous layer thickness and implanted noble gas fraction were calculated.

  5. Hole dynamics in noble metals


    Campillo, I.; Rubio, A.; Pitarke, J. M.; Goldmann, A.; Echenique, P. M.


    We present a detailed analysis of hole dynamics in noble metals (Cu and Au), by means of first-principles many-body calculations. While holes in a free-electron gas are known to live shorter than electrons with the same excitation energy, our results indicate that d-holes in noble metals exhibit longer inelastic lifetimes than excited sp-electrons, in agreement with experiment. The density of states available for d-hole decay is larger than that for the decay of excited electrons; however, th...

  6. Photosensitive dopants for liquid noble gases (United States)

    Anderson, David F.


    In an ionization type detector for high energy radiation wherein the energy of incident radiation is absorbed through the ionization of a liquid noble gas and resulting free charge is collected to form a signal indicative of the energy of the incident radiation, an improvement comprising doping the liquid noble gas with photosensitive molecules to convert scintillation light due to recombination of ions, to additional free charge.

  7. Noble Gases as Mantle Tracers (United States)

    Hilton, D. R.; Porcelli, D.


    The study of the noble gases has been associated with some of the most illustrious names in experimental science, and some of the most profound discoveries. Fundamental advances in nuclear chemistry and physics - including the discovery of isotopes - have resulted from their study, earning Nobel Prizes for a number of early practitioners (Rutherford in 1908; Soddy in 1921; Aston in 1922) as well as for their discoverers (Ramsay and Rayleigh in 1904). Within the Earth Sciences, the noble gases found application soon after discovery - helium was used as a chronometer to estimate formation ages of various minerals (Strutt, 1908). In more recent times, the emphasis of noble gas research has shifted to include their exploitation as inert tracers of geochemical processes. In large part, this shift stems from the realization that primordial volatiles have been stored within the Earth since the time of planetary accretion and are still leaking to the surface today. In this introduction, we give a brief overview of the discovery of the noble gases and their continuing utility in the Earth Sciences, prior to setting into perspective the present contribution, which focuses on noble gases in the Earth's mantle.

  8. Nature, timing, and origin of wet climatic periods in Arabia from geochemical (stable isotopes, noble gas thermometry, geochronology) an geomorphological data (United States)

    Emil, M. K.; Sultan, M.; Alharbi, T.; Albassam, A. M.; Chouinard, K.; Abuabdullah, M. M.


    An integrated approach was conducted to address the source(s), nature and timing of the wet periods in the Arabian Peninsula (AP) and in northern Africa by 1) comparing the isotopic composition of fossil groundwater to that of modern precipitation, (2) extracting recharge temperatures using noble gas concentrations, (3) Cl-36 age dating of fossil groundwater, and (4) investigating the spatial relationships between morphometric indexes (drainage density, etc.) of Cenozoic volcanic fields and paleo rainfall intensity. Groundwater samples (23) were collected from wells tapping alluvial aquifers along the Red Sea coastal plain, and from the Mega Aquifer System (upper Saq, Wajid and lower Minjur, Wasia-Biyadh, Umm Ar Radhuma formations). Findings include: (1) isotopic composition of modern precipitation over recharge areas (IAEA: δ2H: -2.18 ‰, δ18O: -1.66 ‰) is similar to that of coastal plain aquifers (δ2H: -0.9 to 0.7 ‰, δ18O: -1.47 to -0.85 ‰), but is enriched compared to fossil groundwater downgradient from recharge areas; (2) isotopic composition of fossil groundwater are progressively depleted eastwards along groundwater flow direction (δ2H; Saq:-13.2,-38.8‰, Wajid; -27.1,-42.6, -55.2‰, Minjur: -3.4, -28.1, -35.5, -35.4‰); (3) deeper Saq and Wajid aquifers exhibit isotopic compositions (d2H: -13.2 to -64.1 ‰) similar to those of the Sinai Nubian aquifer (δ2H: -18.7 to -72.9 ‰) suggesting a similar moisture source; (4) the younger Minjur, Wasia-Biyadh and Umm Ar Radhuma aquifers show less depleted compositions (δ2H: -3.4 to -35.4 ‰) and higher deuterium excess values (d-excess; 3.58 to 16.6 ‰) compared to deeper aquifers probably indicating mixing with recent meteoric precipitation and a Mediterranean moisture source; (5) Noble Gas Thermometry (NGT) for fossil aquifers provide cooler (2-6 °C) recharge temperatures compared to the Mean Annual Air Temperatures; (6) Chlorine-36 groundwater ages range from 140ka to 1000ka; (7) drainage

  9. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets. (United States)

    Umemoto, Koichiro; Wentzcovitch, Renata M; Allen, Philip B


    CaIrO3-type MgSiO3 is the planet-forming silicate stable at pressures and temperatures beyond those of Earth's core-mantle boundary. First-principles quasiharmonic free-energy computations show that this mineral should dissociate into CsCl-type MgO cotunnite-type SiO2 at pressures and temperatures expected to occur in the cores of the gas giants + and in terrestrial exoplanets. At approximately 10 megabars and approximately 10,000 kelvin, cotunnite-type SiO2 should have thermally activated electron carriers and thus electrical conductivity close to metallic values. Electrons will give a large contribution to thermal conductivity, and electronic damping will suppress radiative heat transport.

  10. van der Waals radii of noble gases. (United States)

    Vogt, Jürgen; Alvarez, Santiago


    Consistent van der Waals radii are deduced for Ne-Xe, based on the noble gas···oxygen intermolecular distances found in gas phase structures. The set of radii proposed is shown to provide van der Waals distances for a wide variety of noble gas···element atom pairs that represent properly the distribution of distances both in the gas phase and in the solid state. Moreover, these radii show a smooth periodic trend down the group which is parallel to that shown by the halogens.

  11. Transport of methane and noble gases during gas push-pull tests in variably saturated porous media. (United States)

    Gómez, Katherine; Gonzalez-Gil, Graciela; Schroth, Martin H; Zeyer, Josef


    The gas push-pull test (GPPT) is a single-well gas-tracer method to quantify in situ rates of CH4 oxidation in soils. To improve the design and interpretation of GPPT field experiments, gas component transport during GPPTs was examined in abiotic porous media over a range of water saturations (0.0 0.42). Gas-component transport during GPPTs was numerically simulated using estimated hydraulic parameters for the porous media and no fitting of data for the GPPTs. Numerical simulations accurately predicted the relative decline of the gaseous components in the breakthrough curves, but slightly overestimated recoveries at low Sw ( or = 0.49). Comparison of numerical simulations considering and not considering air-water partitioning indicated that removal of gaseous components through dissolution in pore water was not significant during GPPTs, even at Sw = 0.61. These data indicate that Ar is a good tracer for CH4 physical transport over the full range of Sw studied, whereas, at Sw > 0.61, any of the tracers could be used. Greater mass recovery at higher Sw raises the possibility to reduce gas flow rates, thereby extending GPPT times in environments such as tundra soils where low activity due to low temperatures may require longer test times to establish a quantifiable difference between reactant and tracer breakthrough curves.

  12. Noble Gas (Argon and Xenon)-Saturated Cold Storage Solutions Reduce Ischemia-Reperfusion Injury in a Rat Model of Renal Transplantation (United States)

    Irani, Y.; Pype, J.L.; Martin, A.R.; Chong, C.F.; Daniel, L.; Gaudart, J.; Ibrahim, Z.; Magalon, G.; Lemaire, M.; Hardwigsen, J.


    Background Following kidney transplantation, ischemia-reperfusion injury contributes to adverse outcomes. The purpose of this study was to determine whether a cold-storage solution saturated with noble gas (xenon or argon) could limit ischemia-reperfusion injury following cold ischemia. Methods Sixty Wistar rats were randomly allocated to 4 experimental groups. Kidneys were harvested and then stored for 6 h before transplantation in cold-storage solution (Celsior®) saturated with either air, nitrogen, xenon or argon. A syngenic orthotopic transplantation was performed. Renal function was determined on days 7 and 14 after transplantation. Transplanted kidneys were removed on day 14 for histological and immunohistochemical analyses. Results Creatinine clearance was significantly higher and urinary albumin significantly lower in the argon and xenon groups than in the other groups at days 7 and 14. These effects were considerably more pronounced for argon than for xenon. In addition, kidneys stored with argon, and to a lesser extent those stored with xenon, displayed preserved renal architecture as well as higher CD-10 and little active caspase-3 expression compared to other groups. Conclusion Argon- or xenon-satured cold-storage solution preserved renal architecture and function following transplantation by reducing ischemia-reperfusion injury. PMID:22470401

  13. Noble Gas (Argon and Xenon-Saturated Cold Storage Solutions Reduce Ischemia-Reperfusion Injury in a Rat Model of Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Y. Irani


    Full Text Available Background: Following kidney transplantation, ischemia-reperfusion injury contributes to adverse outcomes. The purpose of this study was to determine whether a cold-storage solution saturated with noble gas (xenon or argon could limit ischemia-reperfusion injury following cold ischemia. Methods: Sixty Wistar rats were randomly allocated to 4 experimental groups. Kidneys were harvested and then stored for 6 h before transplantation in cold-storage solution (Celsior® saturated with either air, nitrogen, xenon or argon. A syngenic orthotopic transplantation was performed. Renal function was determined on days 7 and 14 after transplantation. Transplanted kidneys were removed on day 14 for histological and immunohistochemical analyses. Results: Creatinine clearance was significantly higher and urinary albumin significantly lower in the argon and xenon groups than in the other groups at days 7 and 14. These effects were considerably more pronounced for argon than for xenon. In addition, kidneys stored with argon, and to a lesser extent those stored with xenon, displayed preserved renal architecture as well as higher CD-10 and little active caspase-3 expression compared to other groups. Conclusion: Argon- or xenon-satured cold-storage solution preserved renal architecture and function following transplantation by reducing ischemia-reperfusion injury.

  14. Photocatalytic H₂ Production Using Pt-TiO₂ in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate. (United States)

    Kmetykó, Ákos; Mogyorósi, Károly; Gerse, Viktória; Kónya, Zoltán; Pusztai, Péter; Dombi, András; Hernádi, Klára


    The primary objective of the experiments was to investigate the differences in the photocatalytic performance when commercially available Aeroxide P25 TiO₂ photocatalyst was deposited with differently sized Pt nanoparticles with identical platinum content (1 wt%). The noble metal deposition onto the TiO₂ surface was achieved by in situ chemical reduction (CRIS) or by mixing chemically reduced Pt nanoparticle containing sols to the aqueous suspensions of the photocatalysts (sol-impregnated samples, CRSIM). Fine and low-scale control of the size of resulting Pt nanoparticles was obtained through variation of the trisodium citrate concentration during the syntheses. The reducing reagent was NaBH₄. Photocatalytic activity of the samples and the reaction mechanism were examined during UV irradiation (λmax = 365 nm) in the presence of oxalic acid (50 mM) as a sacrificial hole scavenger component. The H₂ evolution rates proved to be strongly dependent on the Pt particle size, as well as the irradiation time. A significant change of H₂ formation rate during the oxalic acid transformation was observed which is unusual. It is probably regulated both by the decomposition rate of accumulated oxalic acid and the H⁺/H₂ redox potential on the surface of the catalyst. The later potential is influenced by the concentration of the dissolved H₂ gas in the reaction mixture.

  15. Photocatalytic H2 Production Using Pt-TiO2 in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate

    Directory of Open Access Journals (Sweden)

    Ákos Kmetykó


    Full Text Available The primary objective of the experiments was to investigate the differences in the photocatalytic performance when commercially available Aeroxide P25 TiO2 photocatalyst was deposited with differently sized Pt nanoparticles with identical platinum content (1 wt%. The noble metal deposition onto the TiO2 surface was achieved by in situ chemical reduction (CRIS or by mixing chemically reduced Pt nanoparticle containing sols to the aqueous suspensions of the photocatalysts (sol-impregnated samples, CRSIM. Fine and low-scale control of the size of resulting Pt nanoparticles was obtained through variation of the trisodium citrate concentration during the syntheses. The reducing reagent was NaBH4. Photocatalytic activity of the samples and the reaction mechanism were examined during UV irradiation (λmax = 365 nm in the presence of oxalic acid (50 mM as a sacrificial hole scavenger component. The H2 evolution rates proved to be strongly dependent on the Pt particle size, as well as the irradiation time. A significant change of H2 formation rate during the oxalic acid transformation was observed which is unusual. It is probably regulated both by the decomposition rate of accumulated oxalic acid and the H+/H2 redox potential on the surface of the catalyst. The later potential is influenced by the concentration of the dissolved H2 gas in the reaction mixture.

  16. Ammonia Gas Sensing Properties of Nanocrystalline Zn1-xCuxFe2O4 Doped with Noble Metal

    Directory of Open Access Journals (Sweden)

    S. V. JAGTAP


    Full Text Available The sensors are required basically for monitoring of trace gases in environment. In order to detect, measure and control these gases; one should know the amount and type of gases present in the environment. Among the most toxic and hazardous gases, it is necessary to detect and monitor the ammonia gas because this is enhance in the agricultural sector by the addition of large amounts of NH3 to cultivated farmland in the form of fertilizers. Nanocrystalline spinel type Zn1-xCuxFe2O4 (x=0, 0.2, 0.4 0.6 & 0.8 has been synthesized by sol-gel citrate method. The synthesized powders were characterized by XRD and SEM. The results revealed that the particle size is in the range of 40–45 nm for Cu–Zn ferrite with good crystallinity. The gas sensing properties were studied towards reducing gases like CO, LPG, NH3 and H2S and it is observed that Cu–Zn ferrite shows high response to ammonia gas at relatively lower operating temperature. The Zn0.6Cu0.4Fe2O4 nanomaterial shows better sensitivity towards NH3 gas at an operating temperature 300 0C. Incorporation of Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 300 0C to 250 0C for NH3 sensor.

  17. 77 FR 38790 - Noble Americas Gas & Power Corp., LNG Development Company, LLC, LNG Development Company, LLC (d/b... (United States)


    ... 2012 AGENCY: Office of Fossil Energy, Department of Energy (DOE). ACTION: Notice of orders. SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy gives notice that during May 2012, it... inspection and copying in the Office of Fossil Energy, Office of Natural Gas Regulatory Activities, Docket...

  18. Evidence for the emission of 'alkali-metal-noble-gas' van der Waals molecules from cavitation bubbles. (United States)

    Lepoint-Mullie, F; Voglet, N; Lepoint, T; Avni, R


    Visible emission spectra in the vicinity of resonance lines of alkali metals were recorded from acoustically cavitating aqueous and 1-octanol solutions (acoustic frequency: 20 kHz; solutes: Ar (or Kr), NaCl, RbCl or rubidium 1-octanolate). The maximum intrabubble density deduced from line shift data was approximately 5 +/- 0.7 x 10(26) m-3, i.e. approximately 18 +/- 2 amagats. It is demonstrated that (i) the emission from alkali metals arose from the gas phase of bubbles, (ii) the blue satellite and line distortions were induced, respectively, by B2 sigma+ - X2 sigma+ and A2II - X2 sigma+ transitions of 'alkali-metal/rare-gas' van der Waals molecules and (iii) excitation/de-excitation mechanisms are chemiluminescent in essence.

  19. The role of mantle plumes in the formation of Large Igneous Provinces: A noble gas isotope study from the Etendeka province of Namibia (United States)

    Stroncik, Nicole A.; Krienitz, Marc-Sebastian; Niederman, Samuel; Trumbull, Robert B.; Harris, Chris


    The magmatic history of the Earth is characterised by the episodic appearance of enormous magmatic events, during which large volumes of mainly mafic magmas are generated and emplaced by processes distinct from seafloor spreading or subduction. The so-called Large Igneous Provinces (LIPs) produced during these events are mainly created within less than 10 Ma, with the bulk of magmatism occurring in the first Ma. The favoured explanation for LIP formation is magmatism resulting from plume head decompressional melting. However, the evidence for this theory is mixed and has been challenged lately. Conventional geochemical tracers (Sr, Nd or Pb isotopes or trace elements) generally used to characterise the mantle sources of a magmatic sample are relatively ambiguous in this context, because (1) various mantle reservoirs can contribute to LIP formation and it is unclear which of them are located in the deep mantle, (2) magmas can be contaminated during their ascent through the lithosphere and crust and (3) trace element patterns are also controlled by the degree and depth of melting. In this respect, the principal advantages of noble gases as geochemical tracers for magmatic processes are related to (1) their chemical inertness - they are only modified by nuclear, melting and degassing processes, (2) the large and indicative isotope variations between the various terrestrial reservoirs and (3) their relatively low abundance in the solid Earth. Here we present He, Ne, and O-isotope data from fresh olivines as well as REE and Sr, Nd, and Pb isotope whole rock data derived from dolerite dykes and related rocks from the southern Etendeka province of Namibia. The He-isotope data show a range from radiogenic values of 0.15 ± 0.01 RAto mantle values of 12.03 ± 0.28 RA. The radiogenic He isotope ratios are indicative of crustal contamination during magmatic evolution, which is generally supported by the Ne and O isotope data. The upper range of the He isotope data is higher

  20. Evaluation of argon ages and integrity of fluid-inclusion compositions: Stepwise noble gas heating experiments on 1.87 Ga alunite from Tapajós Province, Brazil (United States)

    Landis, G.P.; Snee, L.W.; Juliani, Caetano


    Quantitative analyses are reported for active (N2, CH4, CO, CO2, H2, O2, HF, HCl, H2S, SO2) and noble (He, Ar, Ne) gases released by crushing and step heating of magmatic-hydrothermal alunite from the Tapajós gold province in Brazil. This is the oldest known alunite (40Ar/39Ar age of 1.87 Ga), and because it has undergone minimal postdepositional thermal or tectonic strain, it is excellent material to test the retention of gas species in fluid inclusions and within the crystal structure over geological time. The gas compositions of a single sample, in combination with Ar age-spectrum data derived from stepwise heating of 10 related samples, have been used to constrain the limits of modification of primary gas compositions in fluid inclusions and the possible extent of the loss of radiogenic Ar. The observed variations in the isotopic compositions of He, Ne, and Ar released by stepwise heating have been used to identify the residence sites and determine the diffusion coefficients of the gases in the mineral. The data suggest that the only modification to primary gas compositions after entrapment in fluid inclusions and formation of the mineral is due to radiogenic and nucleogenic processes which affect the noble gas isotopic compositions.

  1. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases (United States)

    Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.


    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  2. Noble gas geochemistry to monitor CO{sub 2} geological storages; Apports de la geochimie des gaz rares a la surveillance des sites de sequestration geologique de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lafortune, St


    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO{sub 2} emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO{sub 2} could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO{sub 2} in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO{sub 2} storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO{sub 2} accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  3. The Noble Gases in A-Level Chemistry. (United States)

    Marchant, G. W.


    Suggests two methods of developing the study of the noble gases: first, the discovery of the elements and recent discovery of xenon show the human face of chemistry (historical development); second, the properties of noble gas compounds (particularly xenon) can be used to test the framework of conventional chemistry. (Author/JM)

  4. Selective Growth of Noble Gases at Metal/Oxide Interface. (United States)

    Takahashi, Keisuke; Oka, Hiroshi; Ohnuki, Somei


    The locations and roles of noble gases at an oxide/metal interface in oxide dispersed metal are theoretically and experimentally investigated. Oxide dispersed metal consisting of FCC Fe and Y2Hf2O7 (Y2Ti2O7) is synthesized by mechanical alloying under a saturated Ar gas environment. Transmission electron microscopy and density functional theory observes the strain field at the interface of FCC Fe {111} and Y2Hf2O7 {111} whose physical origin emerges from surface reconstruction due to charge transfer. Noble gases are experimentally observed at the oxide (Y2Ti2O7) site and calculations reveal that the noble gases segregate the interface and grow toward the oxide site. In general, the interface is defined as the trapping site for noble gases; however, transmission electron microscopy and density functional theory found evidence which shows that noble gases grow toward the oxide, contrary to the generally held idea that the interface is the final trapping site for noble gases. Furthermore, calculations show that the inclusion of He/Ar hardens the oxide, suggesting that material fractures could begin from the noble gas bubble within the oxides. Thus, experimental and theoretical results demonstrate that noble gases grow from the interface toward the oxide and that oxides behave as a trapping site for noble gases.

  5. Periodic input of primitive magmas in a complex plumbing system revealed by noble gas geochemistry: the case of Mt Etna (Italy) (United States)

    Paonita, Antonio; Caracausi, Antonio; Martelli, Mauro; Rizzo, Andrea


    A long-term series of noble gas compositions (He and Ar isotope abundances plus elemental Ne) coming from geochemical monitoring of five peripheral gas emissions at the base of Mt Etna, integrated by some fumaroles located in the rim of the summit crater, have allowed to put constraints on the magmatic system feeding the volcano. The peripheral gas emissions seem to be released by magmatic degassing occurring at depths of 200-400 MPa, while the crater fumaroles receive contributes coming from magmas residing at shallower levels (up to 130 MPa), which mix to the fluids from the deep levels. These estimations are in good agreement with the depth of the two main magma ponding zones (i.e., 5-12 km and 2-3 km b.s.l.) inferred by petrological and geophysical studies. The long-term monitoring of 3He/4He ratios from both peripheral and crater gases has allowed us to recognize phases of increase of the isotope ratios, occurred at all the sampled emissions some months before the onset of eruptive activities. This behaviour has been systematic for all the main eruptive phases occurred at Mt Etna since 2001 (i.e., 2001, 2002-2003, 2006, 2008-2009, 2011-2012, 2013, and 2014, except for the 2004-2005 eruption), making this parameter a very powerful tool in evaluating the activity level of the volcano and in eruption forecast. A detailed investigation of the 3He/4He time series displays that there is no defined time gap between the isotope ratio increase and the onset of the eruptive activity, this interval ranging from one to several months. After examination of shape and duration of the isotope increases versus main features of the eruptive events (e.g. duration, amount of erupted material, eruption rate), no systematic relationships emerge. It seems only that the rate of 3He/4He increase was anomalously high (by almost 10 times) during the only two eccentric eruptions since 2001 (i.e., 2001 and 2002-2003). The differences among He isotopic composition between the peripheral

  6. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions (United States)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel


    productivity associated with erosion. Areas with high erosion rates and already erosion-induced damages to soil productivity were considered to be closing or closed landscape carbon sinks. The final global assessment indicates that severe soil degradation in Africa, the Americas and Asia carries the risk of closing terrestrial Carbon sinks that currently contribute to an unintended mitigation of greenhouse gas emissions.

  7. Noble gases in pure lipid membranes. (United States)

    Sierra-Valdez, F J; Ruiz-Suárez, J C


    The mechanism of how a noble gas modifies the excitability of nerve cells and how such excitability can be recovered under hyperbaric pressure remains unclear. Here we present a calorimetric study where the melting point depression of pure lipid membranes induced by noble gases and its recovery with a hydrostatic pressure is addressed. A correlation is found between the electric polarizability (α) of these gases and their effect on the melting transition of the membranes. These results concur with other findings to support the idea that general anesthesia only depends on the ability of a certain atom or molecule to increase the general disorder of the membrane.

  8. Angular correlation studies in noble gases (United States)

    Coleman, P. G.


    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  9. Noble gases as cardioprotectants - translatability and mechanism. (United States)

    Smit, Kirsten F; Weber, Nina C; Hollmann, Markus W; Preckel, Benedikt


    Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before, during and/or after ischaemia. A wide range of organs can be protected by these inert substances, in particular cardiac and neuronal tissue. In this review we summarize the data on noble gas-induced cardioprotection, focusing on the underlying protective mechanisms. We will also look at translatability of experimental data to the clinical situation. © 2014 The British Pharmacological Society.

  10. Mean annual temperature in New Zealand during the last glacial maximum derived from dissolved noble gases in groundwater (United States)

    Seltzer, A. M.; Stute, M.; Morgenstern, U.; Stewart, M. K.; Schaefer, J. M.


    This study presents a reconstruction of mean annual surface temperature in New Zealand over the last glacial period using groundwater noble gas paleothermometry. Low resolution 14C-derived mean recharge ages of groundwater from the Deep Moutere, Deep Wairau, and Taranaki aquifers range from roughly 41,500 yr to present, including the last glacial maximum (LGM). Modeled noble gas temperatures of probable glacial-age samples range from roughly 3.7-6.2 °C cooler than present. We present an error-weighted mean cooling of 4.6 ± 0.5°C relative to present during last glacial period. The screened depth intervals of some wells sampled in this study allow for a degree of mixing during extraction between groundwater layers of different recharge age. Mixing with modern groundwater may slightly elevate the noble gas temperatures (NGTs) of glacial-age samples while making them appear substantially younger. Given the uncertainty in dating, we cannot rule out a larger LGM temperature depression of up to ∼6 °C. The ∼4.6 °C cooling estimate agrees with a number of terrestrial paleoclimate reconstructions near the study area as well as the majority of nearby paleoceanographic temperature studies.

  11. Metal-organic frameworks for adsorption and separation of noble gases (United States)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad


    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  12. Donor acceptor complexes of noble gases. (United States)

    Mück, Leonie Anna; Timoshkin, Alexey Y; von Hopffgarten, Moritz; Frenking, Gernot


    Donor-acceptor (DA) complexes of noble gases (Ng) of the general type A noble gas, a lone pair of the donor molecule and a vacant orbital of the acceptor molecule. Detailed bonding analysis of the model compounds F(3)Al-Ng-NH(3) reveals that Ng-ammonia interaction is repulsive due to Pauli repulsion. Bonding interaction between Ng and N is mostly electrostatic. In contrast, strong orbital interactions are responsible for the attractive interactions between Ng and AlF(3). Due to the repulsive interactions with the donor molecule and a sizable reorganization energy of the acceptor molecule, optimization attempts of the A noble gases. These are the first examples of the thermodynamically stable Ar and Kr compounds. Application of the push-pull cryptand ligands featuring multiple (two and three) donor-acceptor induced chemical bonds is expected to yield stable complexes with virtually any electron-rich element in the periodic table.

  13. Carbon Nanotube Sensors for Gas and Vapor Detection in Space and Terrestrial Applications (United States)

    Li, Jing


    Viewgraphs detailing the development of a nanostructure engineered, portable, low cost, low power consumption, room temperature operated chemical sensor for space and terrestrial applications is presented. The topics include: 1) Applications and Requirements; 2) Nanotechnology Advantages; 3) Current Studies on NanoChemical Sensors; and 4) Our Research Status and Results.

  14. Noble gas and halogen constraints on fluid sources in iron oxide-copper-gold mineralization: Mantoverde and La Candelaria, Northern Chile (United States)

    Marschik, Robert; Kendrick, Mark A.


    The noble gas (Ar, Kr, Xe) and halogen (Cl, Br, I) composition of fluid inclusions in hydrothermal quartz and calcite related to the hypogene iron oxide-copper-gold (IOCG) mineralization at Mantoverde and Candelaria, Chile, have been investigated to provide new insights of fluid and salinity sources in Andean IOCG deposits. A combination of mechanical extraction by crushing and thermal decrepitation methods was applied and collectively indicate that fluid inclusions with salinities ranging from 3.4 up to 64 wt% NaCl equivalent have molar Br/Cl and I/Cl ratios of between 0.5 × 10-3 and 3.0 × 10-3 and I/Cl of between 8 × 10-6 and 25 × 10-6 in the majority of samples, with maximum values of 5.2 × 10-3 obtained for Br/Cl and 64 × 10-6 for I/Cl in fluid inclusions within individual samples. The fluid inclusions have age-corrected 40Ar/36Ar ratios ranging from the atmospheric value of 296 up to 490 ± 45, indicating the presence of crustal- or mantle-derived excess 40Ar in the fluid inclusions of most samples. The fluid inclusions have 84Kr/36Ar and 130Xe/36Ar ratios intermediate of air and air-saturated water. However, 40Ar/36Ar is not correlated with either 84Kr/36Ar or 130Xe/36Ar, and the fluid inclusion 36Ar concentrations of 0.2-3.5 × 10-10 mol/g (calculated from measured Cl/36Ar and thermometric salinity measurements) extend below the seawater value of 0.34 × 10-10 mol/g, suggesting that contamination with modern air is a minor artifact. The range of fluid inclusion Br/Cl and I/Cl ratios overlap those previously documented for the mantle and magmatic-hydrothermal ore deposits, and the fluids' unusually low 36Ar concentration is consistent with the involvement of magmatic-hydrothermal fluids. Input of additional non-magmatic fluid components is suggested by the spread in Br/Cl and I/Cl to values characteristic of bittern brine sedimentary formation waters and near atmospheric 40Ar/36Ar. These data are compatible with mixing of magmatic-hydrothermal fluids

  15. Developing Terrestrial Trophic Models for Petroleum and Natural Gas Exploration and Production Sites: The Oklahoma Tallgrass Prairie Preserve Example

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, M; Coty, J; Stewart, J; Carlsen, T; Callaham, M


    This document details procedures to be used when constructing a conceptual terrestrial trophic model for natural gas and oil exploration and production sites. A site conceptual trophic model is intended for use in evaluating ecological impacts of oil and brine releases at E&P sites from a landscape or ecosystem perspective. The terrestrial trophic model protocol was developed using an example site, the Tallgrass Prairie Preserve (TPP) in Oklahoma. The procedure focuses on developing a terrestrial trophic model using information found in the primary literature, and augmented using site-specific research where available. Although the TPP has been the subject of considerable research and public interest since the high-profile reintroduction of bison (Bison bison) in 1993, little formal work has been done to develop a food web for the plant and animal communities found at the preserve. We describe how to divide species into guilds using explicit criteria on the basis of resource use and spatial distribution. For the TPP, sixteen guilds were developed for use in the trophic model, and the relationships among these guilds were analyzed. A brief discussion of the results of this model is provided, along with considerations for its use and areas for further study.

  16. The trapped heavy noble gases in recently found Martian meteorites


    Busemann, H.; Eugster, O.


    The composition of the trapped Ar, Kr, and Xe in the Martian meteorites Los Angeles, Say Al Uhaymir 005/008, and 094 is discussed and found to be consistent with a mixture of Martian mantle and atmosphere noble gases and terrestrial contamination.

  17. Noble gases recycled into the mantle through cold subduction zones (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.


    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  18. Radon: Not so Noble

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 7. Radon: Not so Noble-Radon in the Environment and Associated Health Problems. Deepanjan Majumdar. General Article Volume 5 Issue 7 July 2000 pp 44-55. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. The greenhouse gas balance of Italy. An insight on managed and natural terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Riccardo [Tuscia Univ., Viterbo (Italy). Dept. for Innovation in Biological, Agro-Food and Forest System (DIBAF); Euro-Mediterranean Center on Climate Changes (CMCC), Viterbo (Italy). Impacts on Agriculture, Forest and Natural Ecosystem Division (IAFENT); Miglietta, Franco (ed.) [National Research Council of Italy (CNR) and Edmund Mach Foundation, San Michele all' Adige (Italy). FoxLab Inst. of Biometeorology


    Comprehensively addresses the full greenhouse gases budget of the Italian landscape. Presents the results of the national project CARBOITALY. Provides new data and analyses in the framework of climate policies. The book addresses in a comprehensive way the full greenhouse gases budget of the Italian landscape, focusing on land use and terrestrial ecosystems. In recent years there has been a growing interest in the role of terrestrial ecosystems with regard to the carbon cycle and only recently a regional approach has been considered for its specificity in terms of new methodologies for observations and models and its relevance for national policies on mitigation and adaptation to climate changes. In terms of methods this book describes the role of flux networks and data-driven models, airborne regional measurements of fluxes and specific sectoral approaches related to important components of the human and natural landscapes. There is also a growing need on the part of institutions, agencies and policy stakeholders for new data and analyses enabling them to improve their national inventories of greenhouse gases and their compliance with the UNFCCC process. In this respect the data presented is a basis for a full carbon accounting and available to relevant stakeholders for improvements and/or verification of national inventories. The wealth of research information is the result of a national project, CARBOITALY, which involved 15 Italian institutions and several researchers to provide new data and analyses in the framework of climate policies.

  20. Preserving noble gases in a convecting mantle. (United States)

    Gonnermann, Helge M; Mukhopadhyay, Sujoy


    High (3)He/(4)He ratios sampled at many ocean islands are usually attributed to an essentially undegassed lower-mantle reservoir with high (3)He concentrations. A large and mostly undegassed mantle reservoir is also required to balance the Earth's (40)Ar budget, because only half of the (40)Ar produced from the radioactive decay of (40)K is accounted for by the atmosphere and upper mantle. However, geophysical and geochemical observations suggest slab subduction into the lower mantle, implying that most or all of Earth's mantle should have been processed by partial melting beneath mid-ocean ridges and hotspot volcanoes. This should have left noble gases in both the upper and the lower mantle extensively outgassed, contrary to expectations from (3)He/(4)He ratios and the Earth's (40)Ar budget. Here we suggest a simple solution: recycling and mixing of noble-gas-depleted slabs dilutes the concentrations of noble gases in the mantle, thereby decreasing the rate of mantle degassing and leaving significant amounts of noble gases in the processed mantle. As a result, even when the mass flux across the 660-km seismic discontinuity is equivalent to approximately one lower-mantle mass over the Earth's history, high (3)He contents, high (3)He/(4)He ratios and (40)Ar concentrations high enough to satisfy the (40)Ar mass balance of the Earth can be preserved in the lower mantle. The differences in (3)He/(4)He ratios between mid-ocean-ridge basalts and ocean island basalts, as well as high concentrations of (3)He and (40)Ar in the mantle source of ocean island basalts, can be explained within the framework of different processing rates for the upper and the lower mantle. Hence, to preserve primitive noble gas signatures, we find no need for hidden reservoirs or convective isolation of the lower mantle for any length of time.

  1. Biological effects of noble gases. (United States)

    Růzicka, J; Benes, J; Bolek, L; Markvartová, V


    Noble gases are known for their inertness. They do not react chemically with any element at normal temperature and pressure. Through that, some of them are known to be biologically active by their sedative, hypnotic and analgesic properties. Common inhalation anesthetics are characterized by some disadvantages (toxicity, decreased cardiac output, etc). Inhalation of xenon introduces anesthesia and has none of the above disadvantages, hence xenon seems to be the anesthetic gas of the future (with just one disadvantage - its cost). It is known that argon has similar anesthetic properties (under hyperbaric conditions), which is much cheaper and easily accessible. The question is if this could be used in clinical practice, in anesthesia of patients who undergo treatment in the hyperbaric chamber. Xenon was found to be organ-protective. Recent animal experiments indicated that xenon decreases infarction size after ischemic attack on brain or heart. The goal of our study is to check if hyperbaric argon has properties similar to those of xenon.

  2. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Ul Haq, Inam; Sabin, John R.


    Using an asymmetric-Lanczos-chain algorithm for the calculation of the coupled cluster linear response functions at the CCSD and CC2 levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule H2. Convergence with respect...... by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42:28 eV (Helium) and I0 = 19:62 eV (H2), correspond to full conguration interaction results and are therefore the exact, non-relativistic theoretical values...

  3. Saturn's South Polar Vortex: A Possible Gas-Giant Analog to a Terrestrial Hurricane (United States)

    Dyudina, Ulyana A.; Ingersoll, A. P.; Ewald, S. P.; Vasavada, A. R.; West, R. A.; Del Genio, A.; Barbara, J.; Porco, C. C.; Porco, C. C.; Achterberg, R. K.; Flasar, F. M.; Simon-Miller, A. A.; Fletcher, L. N.


    Observations made by the Cassini spacecraft reveal a large, long-lived vortex anchored to the south pole of Saturn that shares many properties with terrestrial hurricanes. Among these are: a central eye with cyclonic vorticity, an outer region where vorticity is near zero, a warm temperature anomaly within the eye, concentric eyewall clouds that extend two pressure scale heights above the clouds within the eye, numerous small clouds whose anticyclonic vorticity suggests a convective origin, and evidence, at high altitudes, of excess cyclonic rotation not balanced by the inward pressure force, implying outward flow. Besides differences of scale, the main distinctions between hurricanes on Earth and the one seen on Saturn are the static, polar location of the latter and the lack of a liquid ocean to support it. This is the first hurricane-like vortex detected on a planet other than Earth.

  4. Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells. (United States)

    Rizvi, Maleeha; Jawad, Noorulhuda; Li, Yuantao; Vizcaychipi, Marcela P; Maze, Mervyn; Ma, Daqing


    The noble gas xenon has been shown to be protective in preconditioning settings against renal ischemic injury. The aims of this study were to determine the protective effects of the other noble gases, helium, neon, argon, krypton and xenon, on human tubular kidney HK2 cells in vitro. Cultured human renal tubular cells (HK2) were exposed to noble gas preconditioning (75% noble gas; 20% O(2); 5% CO(2)) for three hours or mock preconditioning. Twenty-four hours after gas exposure, cell injury was provoked with oxygen-glucose deprived (OGD) culture medium for three hours. Cell viability was assessed 24 h post-OGD by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Other cohorts of cultured cells were incubated in the absence of OGD in 75% noble gas, 20% O(2) and 5% CO(2) and cellular signals phospho-Akt (p-Akt), hypoxia-inducible factor-1alpha (HIF-1alpha) and Bcl-2 were assessed by Western blotting. OGD caused a reduction in cell viability to 0.382 +/- 0.1 from 1.0 +/- 0.15 at control (P 0.05). Helium by comparison significantly enhanced cell injury (0.191 +/- 0.05; P noble gases did not modify protein expression. These results suggest that unlike other noble gases, preconditioning with the anesthetic noble gas xenon may have a role in protection against renal ischemic injury.

  5. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule (United States)

    Sauer, Stephan P. A.; Haq, Inam Ul; Sabin, John R.; Oddershede, Jens; Christiansen, Ove; Coriani, Sonia


    Using an asymmetric Lanczos chain algorithm for the calculation of the coupled cluster linear response functions at the coupled cluster singles and doubles (CCSD) and coupled cluster singles and approximate iterative doubles (CC2) levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule (H2). Convergence with respect to the one-electron basis set was investigated in detail for families of correlation-consistent basis sets including both augmentation and core-valence functions. We find that the electron correlation effects at the CCSD level change the mean excitation energies obtained at the uncorrelated Hartree-Fock level by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42.28 eV (helium) and I0 = 19.62 eV (H2), correspond to full configuration interaction results and are therefore the exact, non-relativistic theoretical values for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry.

  6. The Skogaryd Research Catchment - an infrastructure to integrate terrestrial and aquatic greenhouse gas fluxes (United States)

    Klemedtsson, Leif; Weslien, Per; Bastviken, David; Natchimuthu, Sivakiruthika; Wallin, Marcus


    The Skogaryd Research Catchment (SRC; 58°23'N, 12°09'E, hemiboreal) is part of the Swedish Infrastructure for Ecosystem Science (SITES, SITES is a national coordinated infrastructure for terrestrial and limnological field research, consisting of nine research stations covering the different landscapes and climatic regions in Sweden. The SITES initiative is a long-term effort founded by the Swedish Research Council and the station owners. Researchers regardless of affiliation are welcome use the stations including the infrastructure in their research and perform experiments (after approval) or outsource tasks which are managed by the stations. Data collected in both background monitoring programs and previous and ongoing projects at the stations are also intended to support past, present and future research. Ecological, biogeochemical, and environmental research often focus on a specific ecosystem or have strict habitat boundaries. However, the growing awareness of systems interactions, feedbacks and large scale consequences calls for approaches that integrate across ecosystems and habitats to consider whole catchments, landscapes and regions. Thus there is an urgent need for long-term field sites that support integrative and cross-habitat-boundary research. Our aim at SRC is to develop methodologies to quantify GHG balances at the landscape scale in forested regions that include land-atmosphere, land-water, and water-atmosphere exchange of CO2, CH4 and N2O. Another aim is to promote investigations to elucidate the undelaying regulation of the biogeochemical processes. The SRC harbor several main habitats including mires, forests at different growth stages, lakes, and streams. The fluxes of greenhouse gases (GHG) are measured to a large extent according to ICOS protocol for the Eddy Covariance (EC) methodology for CO2, H2O, and CH4, as well as axillary data for habitats where such protocols exist. For aquatic habitats lacking such protocols

  7. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions (United States)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra


    The forest fire is one of the most catalysing agents which degrade an ecosystems leading to the loss of net and gross primary productivity (NPP & GPP) and carbon sequestration service. Additionally, it can suppress the efficiency of service providing capacity of an ecosystem throughout the time and space. Remote sensing-based forest fire estimation in a diverse ecosystem is very much essential for mitigating the biodiversity and productivity losses due to the forest fire. Satellite-based Land Surface Temperature (LST) has been calculated for the pre-fire and fire years to identify the burn severity hotspot across all eco-regions in the Lower Himalaya region. Several burn severity indices: Normalized Burn Ratio (NBR), Burnt Area Index (BAI), Normalized Multiband Drought Index (NMDI), Soil Adjusted Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Enhance Vegetation Index (EVI) have been used in this study to quantify the spatial and temporal changes (delta) of the selected indices. Two Light Use Efficiency (LUE) models: Carnegie- Ames-Stanford-Approach (CASA) and Vegetation Photosynthesis Model (VPM) have been used to quantify the terrestrial Net Primary Productivity (NPP) in the pre-fire and fire years across all biomes of the region. A novel approach has been preceded in this field to demonstrate the correlation between forest fire density (FFD) and NPP. A strong positive correlation was found between burn severity indices and predicted NPP: BAI and NPP (r = 0.49), NBR and NPP: (r = 0.58), EVI and NPP: (r = 0.72), SAVI and NPP: (r = 0.67), whereas, a negative association has noted between the NMDI and NPP: (r = -0.36) during the both studied years. Results have shown that the NPP is highly correlated with the forest fire density (R2 = 0.75, RMSE = 5.03 gC m-2 month-1). The estimated LST of the individual fire days has witnessed a sharp temperature increase by > 6oC - 9oC in comparison to the non-fire days clearly indicates high fire risk (in

  8. Method and apparatus for measuring purity of noble gases (United States)

    Austin, Robert


    A device for detecting impurities in a noble gas includes a detection chamber and a source of pulsed ultraviolet light. The pulse of the ultraviolet light is transferred into the detection chamber and onto a photocathode, thereby emitting a cloud of free electrons into the noble gas within the detection chamber. The cloud of electrons is attracted to the opposite end of the detection chamber by a high positive voltage potential at that end and focused onto a sensing anode. If there are impurities in the noble gas, some or all of the electrons within the cloud will bond with the impurity molecules and not reach the sensing anode. Therefore, measuring a lower signal at the sensing anode indicates a higher level of impurities while sensing a higher signal indicates fewer impurities. Impurities in the range of one part per billion can be measured by this device.

  9. Simplification of executive procedures for construction and assembly of terrestrial gas pipelines through illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Filho, Mario D.C.; Bresci, Claudio T.; Dantas, Augusto Cesar de C.; Machado, Clara C. Torres S. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Sobreiro, Flavia L. [Telsan Engenharia, Belo Horizonte, MG (Brazil)


    This study aims to show a simple, efficient and fun method that seeks to minimize the weaknesses and help to increase the perception of risk analysis and systematization the operation discipline. This project uses the methodology of images illustrated in the executive procedures, and is based on the activities of construction and assembly, HSE and social communication in gas pipeline ventures, setting and maintaining access to practical information, yet are prepared a work instructions that summarize each process, as a form of material support in training. Among several objectives that have shaped the strategies for this project, the main is to provide the workforce engaged in the activities of field, greater facility in implementing the technical information contained in the procedures, from a wider and better understanding of the guidelines described in the documentation. (author)

  10. Using integrated noble gas and hydrocarbon geochemistry to constrain the source of hydrocarbon gases in shallow aquifers in the northern Appalachian Basin (United States)

    Rising demands for domestic energy sources, mandates for cleaner burning fuels for electricity generation, and the approach of peak global hydrocarbon production are driving the transformation from coal to natural gas from unconventional energy resources.

  11. A Determination of Air-Sea Gas Exchange and Upper Ocean Biological Production From Five Noble Gases and Tritiugenic Helium-3 (United States)


    og a . ..... .Joint Program V - Chemica r ceanography Massachusetts Institute of Technology and Woods Oce Institution August 10, 2007...CO 2 is an important greenhouse gas. As mentioned above, CO 2 enters the ocean through air-sea gas exchange. Marine organ - isms then fix approximately...50 Pg of carbon per year (Field et al., 1998). Some of this organic matter is remineralized in the surface of the ocean and thus has no net effect on

  12. The desorption behaviour of implanted noble gases at low energy on silicon surfaces

    NARCIS (Netherlands)

    Holtslag, A.H.M.; van Silfhout, Arend


    Under UHV conditions, clean crystalline Si(111) surfaces have been bombarded mass-selectively at room temperature with noble gas ions, Ne+, Ar+, Kr+, at normal incidence. By means of stepwise heating up to 1050 K the activation energies and desorbed doses of the noble gases have been straight

  13. [A possible molecular mechanism of the narcotic action of noble gases]. (United States)

    Dovgusha, V V; Fok, M V; Zaritskaia, G A


    A molecular mechanism of the narcotic action of noble gases is suggested, which is based on the fact that noble gas atoms change the orientation of water molecules absorbed on the surface of axon membrane. The resulting change in the transmembrane potential deteriorates the propagation of nerve pulse.

  14. Noble gases and the early history of the Earth: Inappropriate paradigms and assumptions inhibit research and communication (United States)

    Huss, G. R.; Alexander, E. C., Jr.


    The development of models as tracers of nobel gases through the Earth's evolution is discussed. A new set of paradigms embodying present knowledge was developed. Several important areas for future research are: (1) measurement of the elemental and isotopic compositions of the five noble gases in a large number of terrestrial materials, thus better defining the composition and distribution of terrestrial noble gases; (2) determinations of relative diffusive behavior, chemical behavior, and the distribution between solid and melt of noble gases under mantle conditions are urgently needed; (3) disequilibrium behavior in the nebula needs investigation, and the behavior of plasmas and possible cryotrapping on cold nebular solids are considered.

  15. Howardite Noble Gases as Indicators of Asteroid Surface Processing (United States)

    Cartwright, J. A.; Mittlefehldt, D. W.; Herrin, J. S.; Ott, U.


    The HED (Howardite, Eucrite and Diogenite) group meteorites likely or iginate from the Asteroid 4 Vesta - one of two asteroid targets of NA SA's Dawn mission. Whilst Howardites are polymict breccias of eucriti c and diogenitic material that often contain "regolithic" petrologica l features, neither their exact regolithic nature nor their formation processes are well defined. As the Solar Wind (SW) noble gas compon ent is implanted onto surfaces of solar system bodies, noble gas anal yses of Howardites provides a key indicator of regolithic origin. In addition to SW, previous work by suggested that restricted Ni (300-12 00 micro g/g) and Al2O3 (8-9 wt%) contents may indicate an ancient we ll-mixed regolith. Our research combines petrological, compositional and noble gas analyses to help improve understanding of asteroid reg olith formation processes, which will play an intergral part in the i nterpretation of Dawn mission data. Following compositional and petrological analyses, we developed a regolith grading scheme for our sampl e set of 30 Howardites and polymict Eucrites. In order to test the r egolith indicators suggested by, our 8 selected samples exhibited a r ange of Ni, Al2O3 contents and regolithic grades. Noble gas analyses were performed using furnace stepheating on our MAP 215-50 noble gas mass spectrometer. Of our 8 howardites, only 3 showed evidence of SW noble gases (e.g approaching Ne-20/Ne-22 approximately equals 13.75, Ne-21/Ne-22 approximately equals 0.033). As these samples display low regolithic grades and a range of Ni and Al2O3 contents, so far we are unable to find any correlation between these indicators and "regolit hic" origin. These results have a number of implications for both Ho wardite and Vesta formation, and may suggest complex surface stratigr aphies and surface-gardening processes.

  16. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources (United States)

    Juhasz, Albert J.


    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  17. Implications of noble gases in a recently recognized Martian meteorite (ALH84001) for the degassing history of Mars (United States)

    Swindle, T. D.


    For terrestrial planets, atmospheric compositions are not static, but evolve with time, in part due to degassing of the interior. Unfortunately, the evolution is slow enough that it is usually not observable on human timescales, or even on the timescales of rocks that preserve samples of Earth's ancient atmosphere. Preliminary results on a recently recognized Martian meteorite, ALH84001, indicate that it is a very old rock, and has a relatively high noble gas content suggestive of atmospheric incorporation, but with an isotopic composition slightly inconsistent with currently known Martian reservoirs. Hence, this rock may provide a sample of ancient Martian atmosphere, which can be used to test models of volatile evolution (in particular, degassing) on Mars. ALH84001 is a cumulate orthopyroxenite. Although originally classified as a diogenite, its oxygen isotopes, and several chemical and petrographic features, strong suggest that it is, like the SNC meteorites, Martian. A Sm-Nd crystallization age of 4.5 Ga has been reported. The meteorite is rich in noble gases, compared to most SNC's. In many respects the noble gases are typical of SNC meteorites. However, there are some subtle differences. In particular, the Xe isotopes in SNC meteorites can be explained as a mixture of Martian atmospheric Xe (as represented by glass in EETA 79001), the Xe in the dunite Chassigny (usually assumed to be representative of the Martian interior, and with lower (129)Xe/(132)Xe, (134)Xe/(132)Xe and (136)Xe/(132)Xe ratios), and later additions from known processes like fission, spallation and terrestrial contamination. The isotopic composition of ALH84001 is inconsistent (at greater than 2-3 sigma) with any mixture of those components. Even if no accumulation of fission Xe during the age of the rock is assumed, there is too little (136)Xe and (134)Xe for the amount of (129)Xe measured.

  18. Nanocrystalline Metal Oxides for Methane Sensors: Role of Noble Metals

    Directory of Open Access Journals (Sweden)

    S. Basu


    Full Text Available Methane is an important gas for domestic and industrial applications and its source is mainly coalmines. Since methane is extremely inflammable in the coalmine atmosphere, it is essential to develop a reliable and relatively inexpensive chemical gas sensor to detect this inflammable gas below its explosion amount in air. The metal oxides have been proved to be potential materials for the development of commercial gas sensors. The functional properties of the metal oxide-based gas sensors can be improved not only by tailoring the crystal size of metal oxides but also by incorporating the noble metal catalyst on nanocrystalline metal oxide matrix. It was observed that the surface modification of nanocrystalline metal oxide thin films by noble metal sensitizers and the use of a noble metal catalytic contact as electrode reduce the operating temperatures appreciably and improve the sensing properties. This review article concentrates on the nanocrystalline metal oxide methane sensors and the role of noble metals on the sensing properties.

  19. What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere. (United States)

    Ballentine, Chris J; Holland, Greg


    Study of commercially produced volcanic CO2 gas associated with the Colorado Plateau, USA, has revealed substantial new information about the noble gas isotopic composition and elemental abundance pattern of the mantle. Combined with published data from mid-ocean ridge basalts, it is now clear that the convecting mantle has a maximum (20)Ne/(22)Ne isotopic composition, indistinguishable from that attributed to solar wind-implanted (SWI) neon in meteorites. This is distinct from the higher (20)Ne/(22)Ne isotopic value expected for solar nebula gases. The non-radiogenic xenon isotopic composition of the well gases shows that 20 per cent of the mantle Xe is 'solar-like' in origin, but cannot resolve the small isotopic difference between the trapped meteorite 'Q'-component and solar Xe. The mantle primordial (20)Ne/(132)Xe is approximately 1400 and is comparable with the upper end of that observed in meteorites. Previous work using the terrestrial (129)I - (129)Xe mass balance demands that almost 99 per cent of the Xe (and therefore other noble gases) has been lost from the accreting solids and that Pu-I closure age models have shown this to have occurred in the first ca 100Ma of the Earth's history. The highest concentrations of Q-Xe and solar wind-implanted (SWI)-Ne measured in meteorites allow for this loss and these high-abundance samples have a Ne/Xe ratio range compatible with the 'recycled-air-corrected' terrestrial mantle. These observations do not support models in which the terrestrial mantle acquired its volatiles from the primary capture of solar nebula gases and, in turn, strongly suggest that the primary terrestrial atmosphere, before isotopic fractionation, is most probably derived from degassed trapped volatiles in accreting material.By contrast, the non-radiogenic argon, krypton and 80 per cent of the xenon in the convecting mantle have the same isotopic composition and elemental abundance pattern as that found in seawater with a small sedimentary Kr

  20. The origins of volatiles in the terrestrial planets (United States)

    Halliday, Alex N.


    This paper re-evaluates the data for inner Solar System volatiles with particular reference to the Earth. The mass balance afforded by 40Ar/36Ar shows that the mantle as sampled by volcanism contains at most a small proportion (1-3%) of Earth's primordial argon regardless of the exact K/U. This mass balance is derived from MORB, OIB and well gases. Assuming it represents the total mantle therefore, it can be combined with estimated MORB- and OIB-source budgets to derive a ratio of (seismic) lower to upper mantle primordial noble gas concentrations of 6.9 ± 5.6. The upper and lower mantle concentrations can be made to balance if there have been major (˜40%) losses of highly incompatible elements by impact erosion and the K/U of the MORB source is high (19,000) as recently proposed. Both impact erosion and lower K/U serve to reduce the 4.0 Ga apparent K-Ar age of the mantle, which would be more consistent with significant levels of K and noble gas recycling over geological time. Using noble gases, two extreme models are derived for the H, C and N budgets of Earth's mantle: a layered mantle model, and an impact erosion (uniform) mantle with a composition like that of the MORB source. The impact erosion model better replicates the budgets derived from direct measurement of H, C and N in basaltic glasses but how representative these are of the lower mantle is unknown. These models are independent of the ultimate origins of the noble gases, which are evaluated using non-radiogenic ratios. The 20Ne/36Ar, 20Ne/22Ne and 36Ar/38Ar of Earth, Venus and Mars are consistent with derivation from chondritic materials with admixed Solar components. The Solar proportions of Ne in Earth's atmosphere (˜20%) and mantle (˜75%) are used to derive a likely 3He budget of 4.0 × 1038 atoms for the primordial atmosphere. The heavy noble gases are inconsistent with these simple mixtures and present clear evidence of a major component derived from amorphous cometary ices fractionated from

  1. Investigation of plasma behavior during noble gas injection in the end-cell of GAMMA 10/PDX by using the multi-fluid code ‘LINDA’ (United States)

    Islam, M. S.; Nakashima, Y.; Hatayama, A.


    The linear divertor analysis with fluid model (LINDA) code has been developed in order to simulate plasma behavior in the end-cell of linear fusion device GAMMA 10/PDX. This paper presents the basic structure and simulated results of the LINDA code. The atomic processes of hydrogen and impurities have been included in the present model in order to investigate energy loss processes and mechanism of plasma detachment. A comparison among Ar, Kr and Xe shows that Xe is the most effective gas on the reduction of electron and ion temperature. Xe injection leads to strong reduction in the temperature of electron and ion. The energy loss terms for both the electron and the ion are enhanced significantly during Xe injection. It is shown that the major energy loss channels for ion and electron are charge-exchange loss and radiative power loss of the radiator gas, respectively. These outcomes indicate that Xe injection in the plasma edge region is effective for reducing plasma energy and generating detached plasma in linear device GAMMA 10/PDX.

  2. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns. (United States)

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús


    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Noble gases as cardioprotectants – translatability and mechanism (United States)

    Smit, Kirsten F; Weber, Nina C; Hollmann, Markus W; Preckel, Benedikt


    Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before, during and/or after ischaemia. A wide range of organs can be protected by these inert substances, in particular cardiac and neuronal tissue. In this review we summarize the data on noble gas-induced cardioprotection, focusing on the underlying protective mechanisms. We will also look at translatability of experimental data to the clinical situation. PMID:25363501

  4. Noble gases as tracers of the origin and evolution of the Martian atmosphere and the degassing history of the planet (United States)

    Swindle, T. D.


    Noble gas analysis of Martian samples can provide answers to a number of crucial questions. Some of the most obvious benefits will be in Martian chronology, using techniques that have been applied to lunar samples. However, these are by no means the only relevant noble gas studies possible. Since Mars has a substantial atmosphere, noble gases can be used to study the origin and evolution of that atmosphere, including the degassing history of the planet. This type of study can provide constraints on: (1) the total noble gas inventory of the planet, (2) the number of noble gas reservoirs existing, and (3) the exchange of gases between these reservoirs. How to achieve these goals are examined.

  5. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth (United States)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan


    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  6. Stable isotope and noble gas constraints on the source and residence time of spring water from the Table Mountain Group Aquifer, Paarl, South Africa and implications for large scale abstraction (United States)

    Miller, J. A.; Dunford, A. J.; Swana, K. A.; Palcsu, L.; Butler, M.; Clarke, C. E.


    Large scale groundwater abstraction is increasingly being used to support large urban centres especially in areas of low rainfall but presents particular challenges in the management and sustainability of the groundwater system. The Table Mountain Group (TMG) Aquifer is one of the largest and most important aquifer systems in South Africa and is currently being considered as an alternative source of potable water for the City of Cape Town, a metropolis of over four million people. The TMG aquifer is a fractured rock aquifer hosted primarily in super mature sandstones, quartzites and quartz arenites. The groundwater naturally emanates from numerous springs throughout the cape region. One set of springs were examined to assess the source and residence time of the spring water. Oxygen and hydrogen isotopes indicate that the spring water has not been subject to evaporation and in combination with Na/Cl ratios implies that recharge to the spring systems is via coastal precipitation. Although rainfall in the Cape is usually modelled on orographic rainfall, δ18O and δ2H values of some rainfall samples are strongly positive indicating a stratiform component as well. Comparing the spring water δ18O and δ2H values with that of local rainfall, indicates that the springs are likely derived from continuous bulk recharge over the immediate hinterland to the springs and not through large and/or heavy downpours. Noble gas concentrations, combined with tritium and radiocarbon activities indicate that the residence time of the TMG groundwater in this area is decadal in age with a probable maximum upper limit of ∼40 years. This residence time is probably a reflection of the slow flow rate through the fractured rock aquifer and hence indicates that the interconnectedness of the fractures is the most important factor controlling groundwater flow. The short residence time of the groundwater suggest that recharge to the springs and the Table Mountain Group Aquifer as a whole is

  7. Dispersion forces between noble gas atoms

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Luyckx, R.; Coulon, P.


    The coefficients of the R-6, R -8, and R-10 terms in the series representation of the dispersion interaction between helium, neon, and argon at distance R are calculated using an elementary variation method.

  8. Noble gases in the sediments of Lake Van - solute transport and palaeoenvironmental reconstruction (United States)

    Tomonaga, Yama; Brennwald, Matthias S.; Meydan, Ayşegül F.; Kipfer, Rolf


    Sediment samples acquired in 2010 from the long cores of the International Continental Scientific Drilling Program (ICDP) PaleoVan drilling project on Lake Van for noble-gas analysis in the pore water allow determination of the local terrestrial He-gradient as a function of depth within a sediment column of more than 200 m. These measurements yield first insights into the physical transport mechanisms of terrigenic He through the uppermost part of unconsolidated lacustrine sediments overlying the continental crust. In line with our previous work on the spatial distribution of the terrigenic He release into Lake Van, we identify a high He concentration gradient in the uppermost 10 m of the sediment column. The He concentration gradient decreases below this depth down to approx. 160 m following in general the expectations of the modelling of radiogenic He production and transport in a sediment column with homogeneous fluid transport properties. Overall the in-situ radiogenic He production due to the decay of U and Th in the mineral phases of the sediments accounts for about 80% of the He accumulation. At approx. 190 m we observe a very high He concentration immediately below a large lithological unit characterised by strong deformations. We speculate that this local enrichment is the result of the lower effective diffusivities in the pore space that relate to the abrupt depositional history of this deformed unit. This particular lithological unit seems to act as a barrier that limits the transport of solutes in the pore space and hence might "trap" information on the past geochemical conditions in the pore water of Lake Van. The dissolved concentrations of atmospheric noble gases in the pore waters of the ICDP PaleoVan cores are used to geochemically reconstruct salinity on the time scale of 0-55 ka BP. Higher salinities in the pore water at a depth of about 20 m suggest a significantly lower lake level of Lake Van in the past.

  9. Biomedical imaging with hyperpolarized noble gases. (United States)

    Ruppert, Kai


    Hyperpolarized noble gases (HNGs), polarized to approximately 50% or higher, have led to major advances in magnetic resonance (MR) imaging of porous structures and air-filled cavities in human subjects, particularly the lung. By boosting the available signal to a level about 100 000 times higher than that at thermal equilibrium, air spaces that would otherwise appear as signal voids in an MR image can be revealed for structural and functional assessments. This review discusses how HNG MR imaging differs from conventional proton MR imaging, how MR pulse sequence design is affected and how the properties of gas imaging can be exploited to obtain hitherto inaccessible information in humans and animals. Current and possible future imaging techniques, and their application in the assessment of normal lung function as well as certain lung diseases, are described.

  10. Monolayer adsorption of noble gases on graphene (United States)

    Maiga, Sidi M.; Gatica, Silvina M.


    We report our results of simulations of the adsorption of noble gases (Kr, Ar, Xe) on graphene. For Kr, we consider two configurations: supported and free-standing graphene, where atoms are adsorbed only on one or two sides of the graphene. For Ar and Xe, we studied only the case of supported graphene. For the single-side adsorption, we calculated the two-dimensional gas-liquid critical temperature for each adsorbate. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton. For double side adsorption of Kr, we do not see evidence of an ordering transition driven by the interlayer forces.

  11. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche


    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  12. Comparison Of Different Noble Metal Catalysts For The Low Temperature Catalytic Partial Oxidation Of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, S.; Truong, T.-B.; Vogel, F.


    The generation of synthesis gas at low temperatures can contribute to a more economic production of clean transportation fuels (Fischer-Tropsch liquids) from natural gas. In this report, the performance of different noble metal catalysts in a low temperature catalytic partial oxidation process is presented. (author)

  13. Observations of mass fractionation of noble gases in synthetic methane hydrate (United States)

    Hunt, Andrew G.; Pohlman, John; Stern, Laura A.; Ruppel, Carolyn D.; Moscati, Richard J.; Landis, Gary P.; Pinkston, John C.


    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings are presently dissociating and releasing methane and other gases to the oceanatmosphere system. A key challenge in assessing the susceptibility of gas hydrates to warming climate is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sublake and subseafloor sediments, coalbeds, and other sources. Carbon and deuterium stable isotopic data provide only a first-order characterization of methane sources, while gas hydrate can sequester any type of methane. Here, we investigate the possibility of exploiting the pattern of noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under careful laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  14. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance

    NARCIS (Netherlands)

    Mommer, L; Pons, TL; Wolters-Arts, M; Venema, JH; Visser, EJW

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be continued photosynthesis under water, but this possibility has received only

  15. Halogens in chondritic meteorites and terrestrial accretion (United States)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.


    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  16. The Role of Noble Gases in Defining the Mean Residence Times of Fluids within Precambrian Crustal Systems (United States)

    Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.


    Brines rich in N2, H2, CH4 and He hosted within Precambrian crustal rocks are known to sustain microbial life [1]. The geological systems containing these brines have the potential to isolate organisms over planetary timescales and so can provide unique insight into the diversity and evolution of terrestrial life [1-3]. Long considered geological outliers, the prevalence of systems containing these ancient, deep fracture waters is only now being revealed. Recent studies demonstrate the Precambrian crust which accounts for ~70% of total crustal surface area has a global hydrogen production comparable to marine systems [2]. In addition to H2-producing reactions (e.g. radiolysis and serpentinization), a diversity of CH4-producing reactions also occur in these systems through both microbial and water-rock interactions [1, 2]. However, the role these Precambrian systems have in global hydrogen and carbon cycles is poorly understood. For this we need good constraints on the origins, residence times and degree of microbial activity of the fluids within these systems as well as the degree of interaction with external systems. Fortunately, noble gases are ideal for this role [1,3]. Previous noble gas analysis of N2, H2, CH4 and He-rich fluid samples collected at 2.4 km depth from a Cu-Zn mine in Timmins, Ontario, identified isolated fracture fluids with the oldest residence times ever observed (>1.1 Ga) [3]. This study has been significantly expanded now to fluids from an even greater depth (3 km) at Timmins, and from two new mines in the Sudbury Basin. Preliminary data from the deeper Timmins level indicate a new closed system with 136Xe/130Xe ratios 93% above modern air values (20% at 2.4 km) and an early atmosphere 124Xe/130Xe signal approaching the age of the host rock (~2.7 Ga) [4]. In comparison, the Sudbury system indicates exchange with an external source, being highly enriched in helium (30% gas volume) but with a low fissiogenic 136Xe/130Xe excess (10-38% above

  17. GEM operation in pure noble gases and the avalanche confinement

    CERN Document Server

    Buzulutskov, A F; Bressan, A; Mauro, A D; Ropelewski, Leszek; Sauli, Fabio; Biagi, S F


    We study the operation of the Gas Electron Multiplier (GEM) in pure Ar and almost pure Xe. Rather high gas gains obtained in pure Ar, of the order of 1000, are explained by the effect of the avalanche confinement to a GEM micro-hole. Applications to the development of non-ageing sealed photon detector filled with pure noble gases are discussed. In particular, it is shown that the photoelectron collection efficiency deteriorated in pure Ar due to electron backscattering, can be recovered by operation at a higher electric field.

  18. A portable membrane contactor sampler for analysis of noble gases in groundwater. (United States)

    Matsumoto, Takuya; Han, Liang-Feng; Jaklitsch, Manfred; Aggarwal, Pradeep K


    To enable a wider use of dissolved noble gas concentrations and isotope ratios in groundwater studies, we have developed an efficient and portable sampling device using a commercially available membrane contactor. The device separates dissolved gases from a stream of water and collects them in a small copper tube (6 mm in diameter and 100 mm in length with two pinch-off clamps) for noble gas analysis by mass spectrometry. We have examined the performance of the sampler using a tank of homogeneous water prepared in the laboratory and by field testing. We find that our sampling device can extract heavier noble gases (Ar, Kr, and Xe) more efficiently than the lighter ones (He and Ne). An extraction time of about 60 min at a flow rate of 3 L/min is sufficient for all noble gases extracted in the sampler to attain equilibrium with the dissolved phase. The extracted gas sample did not indicate fractionation of helium ((3) He/(4) He) isotopes or other noble gas isotopes. Field performance of the sampling device was tested using a groundwater well in Vienna and results were in excellent agreement with those obtained from the conventional copper tube sampling method. © 2012, National Ground Water Association.

  19. 3c/4e [small sigma, Greek, circumflex]-type long-bonding competes with ω-bonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I): a NBO/NRT perspective. (United States)

    Zhang, Guiqiu; Li, Hong; Weinhold, Frank; Chen, Dezhan


    Noble-gas hydrides HNgY are frequently described as a single ionic form (H-Ng)(+)Y(-). We apply natural bond orbital (NBO) and natural resonance theory (NRT) analyses to a series of noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I) to gain quantitative insight into the resonance bonding of these hypervalent molecules. We find that each of the studied species should be better represented as a resonance hybrid of three leading resonance structures, namely, H-Ng(+ -):Y (I), H:(- +)Ng-Y (II), and H^Y (III), in which the "ω-bonded" structures I and II arise from the complementary donor-acceptor interactions nY → σ*HNg and nH → σ*NgY, while the "long-bond" ([small sigma, Greek, circumflex]-type) structure III arises from the nNg → [small sigma, Greek, circumflex]*HY/[small sigma, Greek, circumflex]HY interaction. The bonding for all of the studied molecules can be well described in terms of the continuously variable resonance weightings of 3c/4e ω-bonding and [small sigma, Greek, circumflex]-type long-bonding motifs. Furthermore, we find that the calculated bond orders satisfy a generalized form of "conservation of bond order" that incorporates both ω-bonding and long-bonding contributions [viz., (bHNg + bNgY) + bHY = bω-bonding + blong-bonding = 1]. Such "conservation" throughout the title series implies a competitive relationship between ω-bonding and [small sigma, Greek, circumflex]-type long-bonding, whose variations are found to depend in a chemically reasonable manner on the electronegativity of Y and the outer valence-shell character of the central Ng atom. The calculated bond orders are also found to exhibit chemically reasonable correlations with bond lengths, vibrational frequencies, and bond dissociation energies, in accord with Badger's rule and related empirical relationships. Overall, the results provide electronic principles and chemical insight that may prove useful in the rational design of noble-gas hydrides of

  20. CANCELLED Molecular dynamics simulations of noble gases in liquidwater: Solvati on structure, self-diffusion, and kinetic isotopeeffect

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.


    Despite their great importance in low-temperaturegeochemistry, self-diffusion coefficients of noble gas isotopes in liquidwater (D) have been measured only for the major isotopes of helium, neon,krypton and xenon. Data on the self-diffusion coefficients of minor noblegas isotopes are essentially non-existent and so typically are estimatedby a kinetic theory model in which D varies as the inverse square root ofthe isotopic mass (m): D proportional to m-0.5. To examine the validityof the kinetic theory model, we performed molecular dynamics (MD)simulations of the diffusion of noble gases in ambient liquid water withan accurate set of noble gas-water interaction potentials. Our simulationresults agree with available experimental data on the solvation structureand self-diffusion coefficients of the major noble gas isotopes in liquidwater and reveal for the first time that the isotopic mass-dependence ofall noble gas self-diffusion coefficients has the power-law form Dproportional to m-beta with 0noble gasisotopes caused by diffusion in ambient liquid water.

  1. Genotoxicity Assessment of Volatile Organic Compounds in Landfill Gas Emission Using Comet Assay in Higher Terrestrial Plant. (United States)

    Na Roi-Et, Veerapas; Chiemchaisri, Wilai; Chiemchaisri, Chart


    Genotoxicity model is developed to assess the individual subacute toxicity of benzene, toluene, ethylbenzene, and xylene (BTEX) at very low levels as in a landfill gas. Golden Pothos (Epipremnum aureum), a higher plant, was tested under variation of benzene 54-5656 ng/L, toluene 10-4362 ng/L, ethylbenzene 28-4997 ng/L, xylene 53-4845 ng/L, for 96 h. DNA fragmentation in plant leaves were investigated via comet assay. The results show that DNA migration ratio increased with the BTEX concentrations, but at different rates. The 50% effective concentration (EC50) of DNA fragmentation from the dose-response relationships indicated toluene has the highest EC50 value and followed by benzene, xylene and ethylbenzene. Alternatively, ethylbenzene has the highest toxicity unit and followed by xylene, benzene and toluene as described by toxicity unit (TU). In conclusion, comet assay of Pothos can be used in differentiating DNA fragmentation against very low levels of BTEX in the atmosphere. Pothos is recommended for genotoxicity assessment of a low BTEX contaminated atmosphere.

  2. Trapping of noble gases in proton-irradiated silicate smokes (United States)

    Nichols, R. H., Jr.; Nuth, J. A., III; Hohenberg, C. M.; Olinger, C. T.; Moore, M. H.


    We have measured Ne, Ar, Kr, and Xe in Si2O3 'smokes' that were condensed on Al substrates, vapor-deposited with various mixtures of CH4, NH3, H2O3 and noble gases at 10 K and subsequently irradiated with 1 MeV protons to simulate conditions during grain mantle formation in interstellar clouds. Neither Ne nor Ar is retained by the samples upon warming to room temperature, but Xe is very efficiently trapped and retained. Kr is somewhat less effectively retained, typically depleted by factors of about 10-20 relative to Xe. Isotopic fractionation favoring the heavy isotopes of Xe and Kr of about 5-10-percent/amu is observed. Correlations between the specific chemistry of the vapor deposition and heavy noble gas retention are most likely the result of competition by the various species for irradiation-produced trapping sites. The concentration of Xe retained by some of these smokes exceeds that observed in phase Q of meteorites and, like phase Q, they do not seem to be carriers of the light noble gases.

  3. Contribution of electron-atom collisions to the plasma conductivity of noble gases (United States)

    Rosmej, S.; Reinholz, H.; Röpke, G.


    We present an approach which allows the consistent treatment of bound states in the context of dc conductivity in dense partially ionized noble gas plasmas. Besides electron-ion and electron-electron collisions, further collision mechanisms owing to neutral constituents are taken into account. Especially at low temperatures of 104to105 K, electron-atom collisions give a substantial contribution to the relevant correlation functions. We suggest an optical potential for the description of the electron-atom scattering which is applicable for all noble gases. The electron-atom momentum-transfer cross section is in agreement with experimental scattering data. In addition, the influence of the medium is analyzed, the optical potential is advanced including screening effects. The position of the Ramsauer minimum is influenced by the plasma. Alternative approaches for the electron-atom potential are discussed. Good agreement of calculated conductivity with experimental data for noble gas plasmas is obtained.

  4. The noble gases: how their electronegativity and hardness determines their chemistry. (United States)

    Furtado, Jonathan; De Proft, Frank; Geerlings, Paul


    The establishment of an internally consistent scale of noble gas electronegativities is a long-standing problem. In the present study, the problem is attacked via the Mulliken definition, which in recent years gained widespread use to its natural appearance in the context of conceptual density functional theory. Basic ingredients of this scale are the electron affinity and the ionization potential. Whereas the latter can be computed routinely, the instability of the anion makes the judicious choice of computational technique for evaluating electron affinities much more tricky. We opted for Puiatti's approach, extrapolating the energy of high ε solvent stabilized anions to the ε = 1 (gas phase) case. The results give negative electron affinity values, monotonically increasing (except for helium which is an outlier in most of the story) to almost zero at eka-radon in agreement with high level calculations. The stability of the B3LYP results is successfully tested both via improving the level of theory (CCSD(T)) and expanding the basis set. Combined with the ionization energies (in good agreement with experiment), an electronegativity scale is obtained displaying (1) a monotonic decrease of χ when going down the periodic table, (2) top values not for the noble gases but for the halogens, as opposed to most (extrapolation) procedures of existing scales, invariably placing the noble gases on top, and (3) noble gases having electronegativities close to the chalcogens. In the accompanying hardness scale (hardly, if ever, discussed in the literature) the noble gases turn out to be by far the farthest the hardest elements, again with a continuous decrease with increasing Z. Combining χ value of the halogens and the noble gases the Ng(δ+)F(δ-) bond polarity emerging from ab initio calculations naturally emerges. In conclusion, the chemistry of the noble gases is for a large part determined by their extreme hardness, equivalent to a high resistance to change in its


    Directory of Open Access Journals (Sweden)

    Marian MANOLESCU


    Full Text Available Disputes about the opportunity to introduce competence-based education are increasingly present in terms of educational policies and strategies. Obviously, in the last decade and a half, several countries have introduced competence based education. Although specific knowledge acquisition should be an essential component of student learning, assessing such knowledge in adult life depends largely on the individual purchase of more general concepts and skills. The article discusses pragmatic knowledge and noble knowledge. This is a collective dilemma, to the extent that the education system lives in the tension between the two logics. The two positions or divergent attitudes can coexist as long ast hey do not become extremist. Educational dilemma is especially now a priority.

  6. Position resolution limits in pure noble gaseous detectors for X-ray energies from 1 to 60 keV

    Directory of Open Access Journals (Sweden)

    C.D.R. Azevedo


    Full Text Available The calculated position resolutions for X-ray photons (1–60 keV in pure noble gases at atmospheric pressure are presented. In this work we show the influence of the atomic shells and the detector dimensions on the intrinsic position resolution of the used noble gas. The calculated results were obtained by using a new software tool, Degrad, and compared to the available experimental data.

  7. Recovery and use of fission product noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.


    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  8. 21 CFR 872.3060 - Noble metal alloy. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that...

  9. Polymer-noble metal nanocomposites: Review

    CSIR Research Space (South Africa)

    Folarin, OM


    Full Text Available Polymer-noble metal nanocomposites have been extensively investigated due to their potential ability to provide materials with novel mechanical, electronic or chemical behaviour for technological applications. Many preparative procedures have been...

  10. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A. (United States)

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.


    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  11. Noble gases in twenty Yamato H-chondrites: Comparison with Allan Hills chondrites and modern falls (United States)

    Loeken, TH.; Scherer, P.; Schultz, L.


    Concentration and isotopic composition of noble gases have been measured in 20 H-chrondrites found on the Yamato Mountains ice fields in Antarctica. The distribution of exposure ages as well as of radiogenic He-4 contents is similar to that of H-chrondrites collected at the Allan Hills site. Furthermore, a comparison of the noble gas record of Antarctic H-chrondrites and finds or falls from non-Antarctic areas gives no support to the suggestion that Antarctic H-chrondrites and modern falls derive from differing interplanetary meteorite populations.

  12. Adsorption behavior of ternary mixtures of noble gases inside single-walled carbon nanotube bundles (United States)

    Foroutan, Masumeh; Nasrabadi, Amir Taghavi


    In order to study the gas-storage and gas-filtering capability of carbon nanotube (CNT) bundles simultaneously, we considered the adsorption behavior of a ternary mixture of noble gases, including Argon (Ar), Krypton (Kr), and Xenon (Xe), i.e., Ar-Kr-Xe mixture, on (10, 10) single-walled carbon nanotube (SWCNT) bundles. Molecular dynamics (MD) simulations at different temperatures of (75, 100, 150, 200, 250, and 300) K were performed, and adsorption energies, self-diffusion coefficients, activation energies, and radial distribution functions (RDFs) were computed to analyze the thermodynamics, transport and structural properties of the adsorption systems. It is observed that the SWCNT bundles have larger contents of heavier noble gases compared to the lighter ones. This interesting behavior of SWCNT bundles makes them proper candidates for gas-storage and gas molecular-sieving processes.

  13. Terrestrial planet formation. (United States)

    Righter, K; O'Brien, D P


    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.


    DEFF Research Database (Denmark)


    The present invention concerns a chemical process for preparing nanoparticles of an alloy comprising both a noble metal, such as platinum, and a non-noble transition or lanthanide metal, such as yttrium, gadolinium or terbium. The process is carried out by reduction with hydrogen and removal...

  15. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. (United States)

    Jawad, Noorulhuda; Rizvi, Maleeha; Gu, Jianteng; Adeyi, Olar; Tao, Guocai; Maze, Mervyn; Ma, Daqing


    Xenon-induced neuroprotection has been well studied both in vivo and in vitro. In this study, the neuroprotective properties of the other noble gases, namely, krypton, argon, neon and helium, were explored in an in vitro model of neuronal injury. Pure neuronal cultures, derived from foetal BALB/c mice cortices, were provoked into injury by oxygen and glucose deprivation (OGD). Cultures were exposed to either nitrogen hypoxia or noble gas hypoxia in balanced salt solution devoid of glucose for 90min. The cultures were allowed to recover in normal culture medium for a further 24h in nitrogen or noble gas. The effect of noble gases on cell reducing ability in the absence of OGD was also investigated. Cell reducing ability was quantified via an MTT assay and expressed as a ratio of the control. The OGD caused a reduction in cell reducing ability to 0.56+/-0.04 of the control in the absence of noble gas (pnoble gas argon may have potential as a neuroprotectant for the future.

  16. Nitrogen and noble gases in a glass sample from LEW88516 (United States)

    Becker, R. H.; Pepin, R. O.


    The Antarctic meteorite LEW88516 has been classified as a member of the SNC group of meteorites, specifically a shergottite. It is reported to be remarkably similar in mineralogy, petrogenesis and chemistry to the previously known ALH77005 shergottite, with both being compositionally distinct from other shergottites. LEW88516 shows pervasive shock features and has been found to contain glass veins attributable to a shock origin. In an effort to determine whether the glass in LEW88516 contains any of the isotopically-heavy trapped nitrogen component observed in EETA 79001 glass, as well as the related high-Ar-40/Ar-36 and high-Xe-129/Xe-132 components, we undertook an analysis of an 11.9 mg glass sample (LEW88516,4) provided to us by H. Y. McSween, Jr. as part of a consortium study of this meteorite. Nitrogen and noble gases were extracted from LEW88516,4 in a series of combustion steps at increasing temperatures followed by a final pyrolysis. Initial steps at 550 C were intended to remove any surface-sited nitrogen-containing contaminants, while the 700 C step was expected to show the onset of release of a trapped argon component, based on our previous data for EETA 79001. It was hoped that the bulk of any trapped gas release would be concentrated in one of two steps at 1100 C and approximately 1400 C, maximizing our analytical sensitivity. Results of the analysis are shown. Except for He and Ne, data obtained for the 550 C steps will be omitted from further consideration on the assumption that they represent terrestrial contamination.

  17. Noble Metal Nanoparticles for Biosensing Applications (United States)

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.


    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  18. A generic biokinetic model for noble gases with application to radon. (United States)

    Leggett, Rich; Marsh, James; Gregoratto, Demetrio; Blanchardon, Eric


    To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for (222)Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects.

  19. Novel MRI Applications of Laser-Polarized Noble Gases (United States)

    Mair, R. W.; Walsworth, R. L.


    Gas-phase NMR has great potential as a probe for a variety of interesting physical and biomedical problems that are not amenable to study by water or similar liquid. However, NMR of gases was largely neglected due to the low signal obtained from the thermally-polarized gases with very low sample density. The advent of optical pumping techniques for enhancing the polarization of the noble gases 3He and 129Xe has bought new life to this field, especially in medical imaging where 3He lung inhalation imaging is approaching a clinical application. However, there are numerous applications in materials science that also benefit from the use of these gases. We review primarily non-medical applications of laser-polarized noble gases for both NMR imaging and spectroscopy, and highlight progress with examples from our laboratory including high-resolution imaging at mT applied field strength and velocity imaging of convective flow. Porous media microstucture has been probed with both thermal and laser-polarized xenon, as xenon is an ideal probe due to low surface interaction with the grains of the porous media.

  20. Coupling the Canadian Terrestrial Ecosystem Model (CTEM v. 2.0 to Environment and Climate Change Canada's greenhouse gas forecast model (v.107-glb

    Directory of Open Access Journals (Sweden)

    B. Badawy


    Full Text Available The Canadian Land Surface Scheme and the Canadian Terrestrial Ecosystem Model (CLASS-CTEM together form the land surface component in the family of Canadian Earth system models (CanESMs. Here, CLASS-CTEM is coupled to Environment and Climate Change Canada (ECCC's weather and greenhouse gas forecast model (GEM-MACH-GHG to consistently model atmosphere–land exchange of CO2. The coupling between the land and the atmospheric transport model ensures consistency between meteorological forcing of CO2 fluxes and CO2 transport. The procedure used to spin up carbon pools for CLASS-CTEM for multi-decadal simulations needed to be significantly altered to deal with the limited availability of consistent meteorological information from a constantly changing operational environment in the GEM-MACH-GHG model. Despite the limitations in the spin-up procedure, the simulated fluxes obtained by driving the CLASS-CTEM model with meteorological forcing from GEM-MACH-GHG were comparable to those obtained from CLASS-CTEM when it is driven with standard meteorological forcing from the Climate Research Unit (CRU combined with reanalysis fields from the National Centers for Environmental Prediction (NCEP to form CRU-NCEP dataset. This is due to the similarity of the two meteorological datasets in terms of temperature and radiation. However, notable discrepancies in the seasonal variation and spatial patterns of precipitation estimates, especially in the tropics, were reflected in the estimated carbon fluxes, as they significantly affected the magnitude of the vegetation productivity and, to a lesser extent, the seasonal variations in carbon fluxes. Nevertheless, the simulated fluxes based on the meteorological forcing from the GEM-MACH-GHG model are consistent to some extent with other estimates from bottom-up or top-down approaches. Indeed, when simulated fluxes obtained by driving the CLASS-CTEM model with meteorological data from the GEM-MACH-GHG model are used as

  1. Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins (United States)

    Huss, Gary R.; Lewis, Roy S.


    High-purity separates of presolar diamond were prepared from 14 primitive chondrites from 7 compositional groups. Their noble gases were measured using stepped pyrolysis. Three distinct noble gas components are present in diamonds, HL, P3, and P6, each of which is found to consist of five noble gases. P3, released between 200 C and 900 C, has a 'planetary' elemental abundance pattern and roughly 'normal' isotopic ratios. HL, consisting of isotopically anomalous Xe-HL and Kr-H, Ar with high Ar-38/Ar-36, and most of the gas making up Ne-A2 and He-A, is released between 1100 C and 1600 C. HL has 'planetary' elemental ratios, except that it has much more He and Ne than other known 'planetary' components. HL gases are carried in the bulk diamonds, not in some trace phase. P6 has a slightly higher median release temperature than HL and is not cleanly separated from HL by stepped pyrolysis. Our data suggest that P6 has roughly 'normal' isotopic compositions and 'planetary' elemental ratios. Both P3 and P6 seem to be isotopically distinct from P1, the dominant 'planetary' noble-gas component in primitive chondrites. Release characteristics suggest that HL and P6 are sited in different carriers within the diamond fractions, while P3 may be sited near the surfaces of the diamonds. We find no evidence of separability of Xe-H and Xe-L or other isotopic variations in the HL component. However, because approximately 10(exp 10) diamonds are required to measure a Xe composition, a lack of isotopic variability does not constrain diamonds to come from a single source. In fact, the high abundance of diamonds in primitive chondrites and the presence of at least three distinct noble-gas components strongly suggest that diamonds originated in many sources. Relative abundances of noble-gas components in diamonds correlate with degree of thermal processing, indicating that all meteorites sampled essentially the same mixture of diamonds. That mixture was probably inherited from the Sun

  2. Cold and trapped metastable noble gases

    NARCIS (Netherlands)

    Vassen, W.; Cohen-Tannoudji, C.; Leduc, M.; Boiron, D.; Westbrook, C.I.; Truscott, A.; Baldwin, K.; Birkl, G.; Cancio, P.; Trippenbach, M.


    Experimental work on cold, trapped metastable noble gases is reviewed. The aspects which distinguish work with these atoms from the large body of work on cold, trapped atoms in general is emphasized. These aspects include detection techniques and collision processes unique to metastable atoms.

  3. Noble gases as cardioprotectants - translatability and mechanism

    NARCIS (Netherlands)

    Smit, Kirsten F.; Weber, Nina C.; Hollmann, Markus W.; Preckel, Benedikt


    Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before,

  4. Cosmogenic Records in 18 Ordinary Chondrites from the Dar Al Gani Region, Libya. 1; Noble Gases (United States)

    Schultz, L.; Franke, L.; Welten, K. C.; Nishiizumi, K.; Jull, A. J. T.


    In the last decade thousands of meteorites have been recovered from hot deserts in the Sahara and Oman. One of the main meteorite concentration surfaces in the Sahara is the Dar al Gani plateau in Libya, which covers a total area of 8000 km2. More than 1000 meteorites have been reported from this area. The geological setting, meteorite pairings and the meteorite density of the Dar al Gani (DaG) field are described in more detail in [1]. In this work we report concentrations of the noble gas isotopes of He, Ne, Ar as well as 84Kr and 132Xe in 18 DaG meteorites. In a separate paper we will report the cosmogenic radionuclides [2]. We discuss the thermal history and cosmic-ray exposure (CRE) history of these meteorites, and evaluate the effects of the hot desert environment on the noble gas record.

  5. Investigation of Lung Structure-Function Relationships Using Hyperpolarized Noble Gases (United States)

    Thomen, Robert P.

    Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T(*/2) . Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged. The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure , and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics. This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR

  6. The Efficacy of Noble Gases in the Attenuation of Ischemia Reperfusion Injury: A Systematic Review and Meta-Analyses. (United States)

    De Deken, Julie; Rex, Steffen; Monbaliu, Diethard; Pirenne, Jacques; Jochmans, Ina


    Noble gases have been attributed to organ protective effects in ischemia reperfusion injury in a variety of medical conditions, including cerebral and cardiac ischemia, acute kidney injury, and transplantation. The aim of this study was to appraise the available evidence by systematically reviewing the literature and performing meta-analyses. PubMed, EMBASE, and the Cochrane Library. Inclusion criteria specified any articles on noble gases and either ischemia reperfusion injury or transplantation. In vitro studies, publications without full text, review articles, and letters were excluded. Information on noble gas, organ, species, model, length of ischemia, conditioning and noble gas dose, duration of administration of the gas, endpoints, and effects was extracted from 79 eligible articles. Study quality was evaluated using the Jadad scale. Effect sizes were extracted from the articles or retrieved from the authors to allow meta-analyses using the random-effects approach. Argon has been investigated in cerebral, myocardial, and renal ischemia reperfusion injury; helium and xenon have additionally been tested in hepatic ischemia reperfusion injury, whereas neon was only explored in myocardial ischemia reperfusion injury. The majority of studies show a protective effect of these noble gases on ischemia reperfusion injury across a broad range of experimental conditions, organs, and species. Overall study quality was low. Meta-analysis for argon was only possible in cerebral ischemia reperfusion injury and did not show neuroprotective effects. Helium proved neuroprotective in rodents and cardioprotective in rabbits, and there were too few data on renal ischemia reperfusion injury. Xenon had the most consistent effects, being neuroprotective in rodents, cardioprotective in rodents and pigs, and renoprotective in rodents. Helium and xenon show organ protective effects mostly in small animal ischemia reperfusion injury models. Additional information on timing, dosing, and

  7. Noble Metal-Membrane Composites for Electrochemical Applications (United States)

    Millet, Pierre


    Composite materials are a new class of materials that combine two or more separate components into a form suitable for structural applications. While each component retains its identity, the new composite material displays macroscopic properties superior to its parent constituents, particularly in terms of mechanical properties and economic value. Perhaps best known for their use in aerospace applications, advanced composites are also used by the automotive, biomedical, and sporting goods markets. In addition, these strong, stiff, lightweight materials are seeing increased use in the rehabilitation, repair, and retrofit of civil infrastructure, including, for example, as replacement bridge decks and wrapping for concrete columns. New composite materials presenting some interesting features which are not directly related to their mechanical properties are appearing. This is the case of noble metal-based polymeric composites, the preparation and characterization of which are considered in this article with regard to their electrochemical properties. These composites are of great practical interest because of potential applications in water electrolysis and H2-O2 fuel cells. Electrolyzers and fuel cells can be used for terrestrial transportation, oxygen generation in submarines, and energy conversion in spacecraft.

  8. The Induction of Noble Rot (Botrytis cinerea Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega

    Directory of Open Access Journals (Sweden)

    Stefano Negri


    Full Text Available The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L. berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the noble rot development on harvested berries in order to positively change the wine produced from withered Garganega berries. Therefore, we exposed the berries to postharvest withering under normal or artificially humid conditions, the latter to induce noble rot. The presence of noble rot symptoms was associated with the development of B. cinerea in the berries maintained under humid conditions. The composition of infected and non-infected berries was investigated by untargeted metabolomics using liquid chromatography/mass spectrometry. We also explored the effects of the two withering methods on the abundance of volatile organic compounds in wine by yeast-inoculated micro-fermentation followed by targeted gas chromatography/mass spectrometry. These experiments revealed significant metabolic differences between berries withered under normal and humid conditions, indicating that noble rot affects berry metabolism and composition. As well as well-known botrytization markers, we detected two novel lipids that have not been observed before in berries infected with noble rot. Unraveling the specific metabolic profile of berries infected with noble rot may help to determine the compounds responsible for the organoleptic quality traits of botrytized Garganega wines.

  9. Hyperpolarized noble gases as contrast agents. (United States)

    Zhou, Xin


    Hyperpolarized noble gases ((3)He and (129)Xe) can provide NMR signal enhancements of 10,000 to 100,000 times that of thermally polarized gases and have shown great potential for applications in lung magnetic resonance imaging (MRI) by greatly enhancing the sensitivity and contrast. These gases obtain a highly polarized state by employing a spin exchange optical pumping technique. In this chapter, the underlying physics of spin exchange optical pumping for production of hyperpolarized noble gases is explained and the basic components and procedures for building a polarizer are described. The storage and delivery strategies of hyperpolarized gases for in vivo imaging are discussed. Many of the problems that are likely to be encountered in practical experiments and the corresponding detailed approaches to overcome them are also discussed.

  10. Noble Gases in the Chelyabinsk Meteorites (United States)

    Haba, Makiko K.; Sumino, Hirochika; Nagao, Keisuke; Mikouchi, Takashi; Komatsu, Mutsumi; Zolensky, Michael E.


    The Chelyabinsk meteorite fell in Russia on February 15, 2013 and was classified as LL5 chondrite. The diameter before it entered the atmosphere has been estimated to be about 20 m [1]. Up to now, numerous fragments weighing much greater than 100 kg in total have been collected. In this study, all noble gases were measured for 13 fragments to investigate the exposure history of the Chelyabinsk meteorite and the thermal history of its parent asteroid.

  11. A theoretical study of the cohesion of noble gases on graphite. (United States)

    Bichoutskaia, Elena; Pyper, Nicholas C


    The interactions of the noble gases with a graphene sheet are investigated theoretically. The short range repulsive interaction between the noble gas and each carbon atom is described using Hartree-Fock atomic densities and a local density functional theory with the exchange functional corrected for the finite range of the interaction by introducing a Rae-type correction depending on the effective number of electrons. The long range interactions are introduced as the sum of the Axilrod-Teller triple-dipole interaction plus the dipole-dipole and dipole-quadrupole dispersive attractions damped according to the theory of Jacobi and Csanak. The energy arising from the interactions between the permanent quadrupoles on the carbon atoms with the dipole they induce on the noble gas is negligible, being nonzero only on account of the atomistic structure of graphene. The mobile and delocalized nature of the graphene pi electrons causes the effective number of electrons to be around 500 rather than that of 12 appropriate for a system of entirely localized interactions with individual carbon atoms. Inclusion of the Axilrod-Teller term is required to obtain reliable predictions for the binding energies and equilibrium geometries. Absorption of a noble gas atom is predicted to occur at the site above the center of a six membered ring although this is preferred over two other sites by only about 5 meV. The methods presented for generating all the potentials can be applied to derive the interactions between any ion and carbon atom in the wall of a single-walled nanotube. Knowledge of these interactions is required to study the alkali halide nanocrystals encapsulated in single-walled carbon nanotubes of current interest.

  12. Using noble gases to investigate mountain-front recharge (United States)

    Manning, A.H.; Solomon, D.K.


    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  13. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186 (United States)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.


    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  14. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases (United States)

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja


    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  15. Noble gases in the coma of comet 67P/Churyumov-Gerasimenko (United States)

    Rubin, M.


    The European Space Agency's Rosetta mission accompanied comet 67P/Churyumov-Gerasimenko (67P) for over two years along its orbit around the Sun. Comets are among the most pristine objects in our solar system. Investigating their composition was one of the main goals of the Rosetta mission. Abundances and isotopic ratios of the different volatile species provide crucial insights into the physical and chemical conditions during and possibly even before the comet's formation in the early solar system. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) consisted of a pressure sensor and two mass spectrometers and was dedicated to the detection of volatiles in the coma of 67P. Already early in mission, in October 2014, ROSINA detected the noble gas argon at the comet. Then late in the mission in May 2016, after an intense phase of gas and dust activity around the perihelion, Rosetta spent several weeks within 7 to 10 km of 67P. These conditions allowed the detection of additional noble gases - krypton and xenon. In this presentation, we will report on our latest results from the investigation of the relative abundances and the isotopic ratios of these noble gases measured in the coma of 67P.

  16. Implantation of high concentration noble gases in cubic zirconia and silicon carbide: A contrasted radiation tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Velişa, Gihan, E-mail: [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Debelle, Aurélien; Thomé, Lionel; Mylonas, Stamatis [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3-Université Paris-Sud, Bât. 108, F-91405 Orsay (France); Vincent, Laetitia [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3-Université Paris-Sud, Bât. 108, F-91405 Orsay (France); Institut d’Electronique Fondamentale, Université Paris-Sud, UMR 8622, Bât. 220, 91405 Orsay (France); Boulle, Alexandre [Science des Procédés Céramiques et de Traitements de Surface, CNRS UMR 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges (France); Jagielski, Jacek [Institute for Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); National Center for Nuclear Research, PL-05-400 Swierk/Otwock (Poland); Pantelica, Dan [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania)


    The modifications of the microstructure of yttria-stabilized cubic zirconia and silicon carbide single crystals implanted with high concentrations of noble gas ions and subsequently annealed at high temperature were characterized using RBS/C, XRD and TEM. It is found that the annealing behavior is strongly dependent on both the material and the implanted noble gases. Ar-implanted yttria-stabilized zirconia shows no significant microstructural modification upon annealing at 800 °C, e.g. dislocations are still present and the size of the Ar bubbles does not evolve. This is in strong contrast with previous observations on helium-implanted zirconia, where the formation of bubbles and elongated fractures were observed. In the case of SiC, thermal annealing at 1000 °C shows an enhanced damage recovery when He is implanted as compared to Ar implantation and the recrystallization of the matrix is accompanied with the release of noble gas atoms. This difference can be ascribed to different atomic radii, and thus mobility of implanted species.

  17. H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3). (United States)

    Pauzat, F; Ellinger, Y; Pilmé, J; Mousis, O


    Recent studies on the formation of XH(3)(+) noble gas complexes have shown strategic implications for the composition of the atmospheres of the giant planets as well as for the composition of comets. One crucial factor in the astrophysical process is the relative abundances of the noble gases versus H(3)(+). It is the context in which the possibility for clustering with more than one noble gas (X(n)H(3)(+) up to n = 3) has been investigated for noble gases X ranging from neon to krypton. In order to assert our results, a variety of methods have been used including ab initio coupled cluster CCSD and CCSD(T), MP2, and density functional BH&HLYP levels of theory. All complexes with one, two, and three noble gases are found to be stable in the Ne, Ar, and Kr families. These stable structures are planar with the noble gases attached to the apices of the H(3)(+) triangle. The binding energy of the nth atom, defined as the X(n)H(3)(+) --> X(n-1)H(3)(+) + X reaction energy, increases slightly with n varying from 1 to 3 in the neon series, while it decreases in the argon series and shows a minimum for n = 2 in the krypton series. The origin of this phenomenon is to be found in the variations in the respective vibrational energies. A topological analysis of the electron localization function shows the importance of the charge transfer from the noble gases toward H(3)(+) as a driving force in the bonding along the series. It is also consistent with the increase in the atomic polarizabilities from neon to krypton. Rotational constants and harmonic frequencies are reported in order to provide a body of data to be used for the detection in laboratory prior to space observations. This study strongly suggests that the noble gases could be sequestered even in an environment where the H(3)(+) abundance is small.

  18. Trace analysis of aerosol bound particulates and noble gases at the BfS in Germany. (United States)

    Bieringer, J; Schlosser, C; Sartorius, H; Schmid, S


    The Federal Office for Radiation Protection (BfS) performs trace analysis measurements in both the frameworks of the German Integrated Measuring and Information system as well as of the International Monitoring System for verification of the Comprehensive Nuclear-Test-Ban Treaty. Therefore, different kinds of measurements of aerosol bound radionuclides as well as of radioactive noble gases in the atmosphere are performed. BfS as coordinating laboratory for trace analysis is responsible for the quality control. A quality assurance programme was set up with German institutions and expanded to European laboratories. The existing quality assurance programme of the Comprehensive Nuclear-Test-Ban Treaty Organisation for measurements of aerosol bound radionuclides will be extended for noble gas measurements. Applied methods, achieved measurement results and the different kinds of quality assurance are presented and discussed.

  19. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels (United States)

    Gardner, Todd H.


    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  20. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique (United States)

    Sgouridis, Fotis; Stott, Andrew; Ullah, Sami


    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilized agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in-house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps and a copper-based reduction furnace, and allows the analysis of small gas injection volumes (4 µL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Preconcentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N gas-flux method was adapted for application in natural and semi-natural land use types (peatlands, forests, and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. The minimum detectable flux rates were 4 µg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. Total denitrification rates measured by the acetylene inhibition technique in the same land use types correlated (r = 0.58) with the denitrification rates measured under the 15N gas-flux method, but were underestimated by a factor of 4, and this was partially attributed to the incomplete inhibition of N2O reduction to N2, under a relatively high soil moisture content, and/or the catalytic NO decomposition in the presence of acetylene. Even though relatively robust for in situ denitrification measurements, methodological

  1. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun


    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  2. Fullerenes and Noble Gases in the Murchison and Allende Meteorites (United States)

    Becker, Luann; Poreda, Robert J.; Bunch, Ted E.


    In this work we report the detection of fullerenes (C60 to C250) in the Murchison and Allende meteorites. By exploiting the unique ability of these molecules to trap noble gases, we have determined that fullerene is indeed a new carrier phase for noble gases in meteorites.

  3. A model to estimate noble fir bough weight. (United States)

    Keith A. Blatner; Roger D. Fight; Nan Vance; Mark Savage; Roger. Chapman


    The harvesting of noble fir (Abies procera) for the production of Christmas wreaths and related products has been a mainstay of the nontimber forest products industry in the Pacific Northwest (PNW) for decades. Although noble fir is the single most important bough product harvested in the PNW, little or no work has been published concerning the...

  4. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique (United States)

    Sgouridis, F.; Ullah, S.; Stott, A.


    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Pre-concentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N Gas-Flux method was adapted for application in natural and semi-natural land use types (peatlands, forests and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. For our chamber design (volume / surface = 8:1) and a 20 h incubation period, the minimum detectable flux rates were 4 μg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. The N2 flux ranged between 2.4 and 416.6 μg N m-2 h-1, and the grassland soils showed on average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N2O flux was on average 20 to 200 times lower than the N2 flux, while the denitrification product ratio (N2O/N2 + N2O) was low, ranging between 0.03 and 13 %. Total denitrification rates measured by the acetylene inhibition technique under the same field conditions

  5. Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures

    CERN Document Server

    Azevedo, C.D.R.


    A study of the gas pressure effect in the position resolution of an interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic position resolution for pure noble gases (Argon and Xenon) and their mixtures with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for photon energies between 5.4 and 60.0 keV, being possible to establish a linear match between the intrinsic position resolution and the inverse of the gas pressure in that energy range. In order to evaluate the quality of the method here described, a comparison between the available experimental data and the calculated one in this work, is done and discussed. In the majority of the cases, a strong agreement is observed.

  6. Impact of artificial recharge on dissolved noble gases in groundwater in California. (United States)

    Cey, Bradley D; Hudson, G Bryant; Moran, Jean E; Scanlon, Bridget R


    Dissolved noble gas concentrations in groundwater can provide valuable information on recharge temperatures and enable 3H-3He age-dating with the use of physically based interpretive models. This study presents a large (905 samples) data set of dissolved noble gas concentrations from drinking water supply wells throughout California, representing a range of physiographic, climatic, and water management conditions. Three common interpretive models (unfractionated air, UA; partial re-equilibration, PR; and closed system equilibrium, CE) produce systematically different recharge temperatures or ages; however, the ability of the different models to fit measured data within measurement uncertainty indicates that goodness-of-fit is not a robust indicator for model appropriateness. Therefore caution is necessary when interpreting model results. Samples from multiple locations contained significantly higher Ne and excess air concentrations than reported in the literature, with maximum excess air tending toward 0.05 cm3 STP g(-1) (deltaNe approximately 400%). Artificial recharge is the most plausible cause of the high excess air concentrations. The ability of artificial recharge to dissolve greater amounts of atmospheric gases has important implications for oxidation-reduction dependent chemical reactions. Measured gas concentration ratios suggest that diffusive degassing may have occurred. Understanding the physical processes controlling gas dissolution during groundwater recharge is critical for optimal management of artificial recharge and for predicting changes in water quality that can occur following artificial recharge.

  7. Noble Gases in Two Fragments of Different Lithologies from the Almahata Sitta Meteorite (United States)

    Nagao, K.; Haba, M. K.; Zolensky, M.; Jenniskens, P.; Shaddad, M. H.


    The Almahata Sitta meteorite, whose preat-mospheric body was the asteroid 2008 TC3, fell on October 7, 2008 in the Nubian Desert in northern Sudan [e.g., 1, 2]. Numer-ous fragments have been recovered during several expeditions organized from December 2008 [2]. The meteorite was classified as an anomalous polymict ureilite with several different kinds of chondritic fragments [e.g., 3-5]. Noble gas studies performed on several fragments from the meteorite showed cosmic-ray expo-sure ages of about 20 My [e.g., 6-8], although slightly shorter ages were also reported in [9, 10]. Concentrations of trapped heavy noble gases are variable among the fragments of different lithologies [9, 10]. We report noble gas data on two samples from the #1 and #47 fragments [2], which were the same as those re-ported by Ott et al. [9]. Experimental Procedure: Weights of bulk samples #1 and #47 used in this work were 16.1 mg and 17.6 mg, respectively. Noble gases were extracted by stepwise heating at the tempera-tures of 800, 1200 and 1800°C for #1 and 600, 800, 1000, 1200, 1400, 1600 and 1800°C for #47. Concentrations and isotopic ra-tios of noble gases were measured with a modified-VG5400/MS-III at the Geochemical Research Center, University of Tokyo. Results and Discussion: Cosmogenic He and Ne are domi-nant in both #1 and #47, but trapped Ar, Kr and Xe concentra-tions are much higher in #47 than in #1, showing that noble gas compositions in #47 are similar to those of ureilites. 3He/21Ne and 22Ne/21Ne of cosmogenic He and Ne are 4.8 and 1.12 for #1 and 3.6 and 1.06 for #47, respectively, both of which plot on a Bern line [11]. This indicates negligible loss of cosmogenic 3He from #1 in our sample, unlike the low 3He/21Ne of 3.1 for #1 by Ott et al. [9]. Concentrations of cosmogenic 3He and 21Ne (10-8 cc/g) are 30 and 6.3 for #1 and 32 and 9.0 for #47, respectively, which are higher than those in [9] and give cosmic-ray exposure ages of ca. 20 My depending on assumed production

  8. Nitrogen and noble gases in a glass sample from the LEW88516 shergottite (United States)

    Becker, Richard H.; Pepin, Robert O.


    A glass separate from the LEW88516 shergottite was analyzed by step-wise combustion for N and noble gases to determine whether it contained trapped gas similar in composition to the martian atmosphere-like component previously observed in lithology C of EETA79001. Excesses of Ar-40 and Xe-129 were in fact observed in this glass, although the amounts of these excesses less than or = to 20% of those seen in the latter meteorite, and are comparable to the amounts seen in whole-rock analyses of LEW88516. The isotopic composition of N in LEW88516 does not show an enrichment in delta N-15 commensurate with the amount of isotopically-heavy N expected from the noble gases excesses. One must posit some extreme assumptions about the nature of the N components present in LEW88516 in order to allow the presence of the trapped nitrogen component. Alternatively, the N has somehow been decoupled from the noble gases, and was either never present of has been lost.

  9. Hydrogen spillover phenomenon in noble metal modified clay-based hydrocracking catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.A.; Al-Saleh, M.A.; Hamid, H. [Center for Refining and Petrochemicals, Research Institute, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia); Kimura, T.; Suzuki, Y.; Inui, T. [Petroleum Energy Center, Tokyo (Japan)


    Homemade clay-based catalysts and a commercial hydrocracking catalyst were evaluated for hydrocracking activity using vacuum gas oil (VGO) from Saudi Arabian light crude oil. The clay-based catalysts were prepared in our laboratories by cobalt loading and one of them was impregnated with a noble metal belonging to group VIII of the periodic table. The reactions were conducted in both flow and batch reaction system. The amount of saturates were found to increase while aromatics and polars were decreasing with the increase in conversion of feed to lighter products. The cracking activities of both clay-based catalysts were found better than the catalyst C (commercial). In the flow reactor, at 360C reaction temperature, the activity of catalyst A (having noble metal) was 2 times more than that of the catalyst B (without noble metal), while 2.5 times more than that of the commercial catalyst. Similarly, at 380 and 400C temperatures, the activity of catalyst A was 2 times more than that of the catalyst C and substantially higher than that of catalyst B. In the batch reactor, higher cracking and HDS activity were observed for catalyst A and more saturates were found in the reaction product as well. The amount of carbon deposited was found to be lower on the spent clay catalyst A. This study clearly shows that even in hydrocracking of VGO which contains complex hydrocarbons and substantial amounts of sulfur, nitrogen and metals, hydrogen spillover phenomena do occur.

  10. Production Rates of Noble Gases in the Near-Surface Layers of Europa by Energetic Charged Particles and the Potential for Determining Exposure Ages (United States)

    Swindle, T. D.; Reedy, R. C.; Masarik, J.


    The surface of Europa is expected to be extremely active, undergoing tectonic and/or tidal geological activity and sputtering/ deposition, as well as impact cratering. Determination of the actual age of the surface at one or more places would greatly simplify trying to sort out what processes are occurring, and at what rate. If there is K present, as the spectral and compositional modeling discussed predict, it should be possible, in principle, to determine K-Ar crystallization ages. Whether or not there is K present, a consideration of the environment suggests we can determine an energetic particle exposure age if we can make in situ measurements of the abundances of major elements and of noble gas isotopes. This requires instrumentation that is within reach of current technology. In this paper, we calculate production rates for noble-gas isotopes in a simplified Europan surface, to quantify the amount of light noble gases produced by exposure to energetic particles.

  11. Achievements and opportunities from ESF Research Networking Programme: Natural molecular structures as drivers and tracers of terrestrial C fluxes, and COST Action 639: Greenhouse gas budget of soils under changing climate and land use (United States)

    Boeckx, P.; Rasse, D.; Jandl, R.


    One of the activities of the European Science Foundation (ESF, is developing European scale Research Networking Programmes (RNPs). RNPs lay the foundation for nationally funded research groups to address major scientific and research infrastructure issues, in order to advance the frontiers of existing science. MOLTER ( or is such an RNP. MOLTER stands for "Natural molecular structures as drivers and tracers of terrestrial C fluxes" aims at stimulating the use of isotopic and organic chemistry to study carbon stabilization and biogeochemistry in terrestrial ecosystems and soils in particular. The understanding of the formation, stabilization and decomposition of complex organic compounds in the environment is currently being revolutionized by advanced techniques in identification, quantification, and origin tracing of functional groups and individual molecules. MOLTER focuses on five major research themes: - Molecular composition and turnover time of soil organic matter; - Plant molecular structures as drivers of C stabilisation in soils; - Fire transformations of plant and soil molecular structures - Molecular markers in soils; - Dissolved organic molecules in soils: origin, functionality and transport. These research themes are covered via the following activities: - Organisation of international conferences; - Organisation of specific topical workshops; - Organisation of summer schools for PhD students; - Short- and long-term exchange grants for scientists. MOLTER is supported by research funding or performing agencies from Austria, Belgium, France, Germany, the Netherlands, Norway, Romania, Spain, Sweden, Switzerland and the United Kingdom. The ESF is also the implementing agency of COST (European Cooperation in Science and Technology,, one of the longest-running European instruments supporting cooperation among scientists and researchers across Europe. COST Action 639 "Greenhouse gas budget of

  12. Sir William Ramsay and the noble gases. (United States)

    Davies, Alwyn G


    Sir William Ramsay was one of the world's leading scientists at the end of the 19th century, and in a spectacular period of research between 1894 and 1898, he discovered five new elements. These were the noble gases, helium, neon, argon, krypton, and xenon; they added a whole new group to the Periodic Table of the elements, and provided the keystone to our understanding of the electronic structure of atoms, and the way those electrons bind the atoms together into molecules. For this work he was awarded the Nobel Prize in Chemistry in 1904, the first such prize to come to a British subject. He was also a man of great charm, a good linguist, and a composer and performer of music, poetry and song. This review will trace his career, describe his character and give and account of the chemistry which led to the award of the Nobel Prize.

  13. The end of a noble narrative?

    DEFF Research Database (Denmark)

    Manners, Ian James; Murray, Philomena


    The award of the Nobel Peace Prize 2012 to the European Union (EU) came as a surprise. Not only was the Eurozone economic crisis undermining both policy effectiveness and public support for the EU, but it was also seriously challenging the EU’s image in global politics. Although the Nobel Committee...... acknowledged these grave difficulties and the current considerable unrest in Europe, it wished to focus attention on what it regarded as the EU’s most important achievement: helping to ‘transform most of Europe from a continent of war to a continent of peace’. However, some six decades after the creation...... of the forerunner to the current EU we ask if this noble narrative of war and peace, which is at the heart of European integration, at an end. We argue that this principled account is likely to remain just one of several narratives of European integration, but with its reputation somewhat tarnished. Fresh...

  14. Noble metal surface degradation induced by organothiols (United States)

    de Poel, Wester; Gasseling, Anouk; Mulder, Peter; Steeghs, Antoon P. G.; Elemans, Johannes A. A. W.; van Enckevort, Willem J. P.; Rowan, Alan E.; Vlieg, Elias


    Copper, silver and gold layers evaporated on the muscovite mica (001) surface were exposed to a series of molecules containing an organothiol and/or a carboxylic acid chemical functional group to investigate the potential of these compounds to modify the surfaces. The surfaces were investigated using optical microscopy, atomic force microscopy, scanning electron microscopy, energy dispersive analysis of X-rays, and X-ray diffraction. Organothiols containing a carboxylic acid group were found to change the surface morphology drastically over a period of days, while molecules containing only one of these functional groups were usually not able to do so. The mechanism is most likely a reaction between the organothiol and the metal surface, forming a thermodynamically stable new compound. This finding could be of importance in the many applications where organothiols are used to functionalize noble metal surfaces.

  15. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth (United States)

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.


    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in 20Ne and 21Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high 3He 4He ratios. The high 20Ne 22Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume. The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO2 well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere. ?? 1993.

  16. Shock wave fractionated noble gases in the early solar system (United States)

    Ustinova, G. K.


    Many processes in the active star-forming regions are accompanied by strong shock waves, in acceleration by which the nuclear-active particles form the power-law energy spectrum of high rigidity: F(> E0) ˜ Eγ , with the spectral index γ ≤ 1.5-2. It must affect the production rates of spallogenic components of the isotopes, whose excitation functions depend on the shape of the energy spectrum of radiation. Thus, the isotopic signatures formed in the conditions of the strong shock wave propagation must be different from those formed in the calm environment. The early solar system incorporated all the presumed processes of the starforming stage, so that its matter had to conserve such isotopic anomalies. In previous works [1] the shock wave effects in generation of extinct radionu-clides and light elements Li, Be and B were considered. In the report some results for their evidence in the noble gas signatures are presented. Modelling the Kr isotope generation in spallation of Rb, Sr, Y and Zr with the nuclear-active particles, the energy spectrum of which was variable in the range of γ= 1.1-6.0, shows the different pace of growth of abundances of the dif-ferent Kr isotopes with decreasing . It leads to the quite diverse behaviour of the various Kr isotope ratios: the 78,80 Kr/83 Kr ratios increase, and the 82,84,86 Kr/83 Kr ratios decrease for the smaller γ. According to such criteria, for instance, the isotopically heavier SEP-Kr in the lunar ilmenites was pro-duced with the accelerated particles of the more rigid energy spectrum (γ ˜ 2) in comparison with the SW-Kr. Another important feature of the shock wave acceleration of particles is the enrichment of their specrtum with heavier ions in proportion to A/Z. Clearly, the shock wave fractionation of the noble gases, favouring the heavier isotopes, had to be inevitable. Such a fractionation depends on timing episodes of shock wave acceleration: after the n-th act of the ion acceleration their fractionation is

  17. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring. (United States)

    Khrustalev, K; Popov, V Yu; Popov, Yu S


    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Gas Release as a Deformation Signal

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes in gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.

  19. Collisions of noble gases with supercooled sulfuric acid-water solutions. (United States)

    Behr, Peter; Scharfenort, Ulrich; Zellner, Reinhard


    The collisions of hyperthermal noble gases (He, Ne, Ar, Kr, Xe) with supercooled binary sulfuric acid-water mixtures (57-77 wt%) were explored in the temperature range between 210 and 240 K. The experiments were performed by directing a molecular beam of the respective gases onto a continuously renewed liquid surface and monitoring the velocity of the scattered molecules by mass spectrometry. Depending on the initial translational energies and molecular masses, we observe both inelastic scattering from the surface as well as thermalization followed by subsequent desorption. The experiments indicate that the repulsive momentum transfer in the inelastic scattering channel increases with increasing mass of the impinging gas, while it is only weakly affected by the initial velocities. The final energy of the thermally desorbing atoms can always be approximated by a Maxwell-Boltzmann distribution equal to the liquid bulk phase temperature. The influence of the binary composition of the liquid phase is only noticeable in the case of Ne, whilst this dependence diminishes for gases with molecular masses >or=40 amu. The probability of thermalisation relative to inelastic scattering increases with the bulk phase temperature, independent of the molecular masses of the colliding gas. In contrast, the fractional energy transfer during collision does not increase with temperature, except for Neon. These results can be interpreted in the model framework of hard-sphere collisions of noble gases with the surface, during which water and sulfuric acid molecules interact independently with the impinging gas.

  20. Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure. (United States)

    Miao, Mao-Sheng; Wang, Xiao-Li; Brgoch, Jakoah; Spera, Frank; Jackson, Matthew G; Kresse, Georg; Lin, Hai-Qing


    While often considered to be chemically inert, the reactivity of noble gas elements at elevated pressures is an important aspect of fundamental chemistry. The discovery of Xe oxidation transformed the doctrinal boundary of chemistry by showing that a complete electron shell is not inert to reaction. However, the reductive propensity, i.e., gaining electrons and forming anions, has not been proposed or examined for noble gas elements. In this work, we demonstrate, using first-principles electronic structure calculations coupled to an efficient structure prediction method, that Xe, Kr, and Ar can form thermodynamically stable compounds with Mg at high pressure (≥125, ≥250, and ≥250 GPa, respectively). The resulting compounds are metallic and the noble gas atoms are negatively charged, suggesting that chemical species with a completely filled shell can gain electrons, filling their outermost shell(s). Moreover, this work indicates that Mg2NG (NG = Xe, Kr, Ar) are high-pressure electrides with some of the electrons localized at interstitial sites enclosed by the surrounding atoms. Previous predictions showed that such electrides only form in Mg and its compounds at very high pressures (>500 GPa). These calculations also demonstrate strong chemical interactions between the Xe 5d orbitals and the quantized interstitial quasiatom (ISQ) orbitals, including the strong chemical bonding and electron transfer, revealing the chemical nature of the ISQ.

  1. Phase Q - A carrier for subsolar noble gases


    Busemann, H.; Baur, H.; R. Wieler


    We discuss noble gases in the E-chondrite St. Mark's indicating that the subsolar component does not exclusively reside in enstatite. Element and isotope abundances including He are presented. Fractionation probably took place prior to incorporation.\\ud

  2. Noble metal abundances in an early Archean impact deposit (United States)

    Kyte, Frank T.; Zhou, Lei; Lowe, Donald R.


    Detailed analyses are reported on the concentrations of the noble metals Pd, Os, Ir, Pt, and Au in an early Archean spherule bed (S4) of probably impact origin from the lower Fig Tree Group, Barberton Greenstone Belt, South Africa. Compared to other sedimentary deposits of known or suspected impact origin, some noble metals are present in exceptionally high concentrations. Noble metal abundances are fractionated relative to abundances in chondrites with ratios of Os/Ir, Pt/Ir, Pd/Ir, and Au/Ir at only 80, 80, 41, and 2 percent of these values on CI chondrites. Although an extraterrestrial source is favored for the noble metal enrichment, the most plausible cause of the fractionation is by regional hydrothermal/metasomatic alteration.

  3. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA


    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  4. The diverse biological properties of the chemically inert noble gases. (United States)

    Winkler, David A; Thornton, Aaron; Farjot, Géraldine; Katz, Ira


    The noble gases represent an intriguing scientific paradox. They are extremely inert chemically but display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge of their mechanisms of action, some of the noble gases have been used successfully in the clinic. Studies with xenon have suggested that the noble gases as a class may exhibit valuable biological properties such as anaesthesia; amelioration of ischemic damage; tissue protection prior to transplantation; analgesic properties; and a potentially wide range of other clinically useful effects. Xenon has been shown to be safe in humans, and has useful pharmacokinetic properties such as rapid onset, fast wash out etc. The main limitations in wider use are that: many of the fundamental biochemical studies are still lacking; the lighter noble gases are likely to manifest their properties only under hyperbaric conditions, impractical in surgery; and administration of xenon using convectional gaseous anaesthesia equipment is inefficient, making its use very expensive. There is nonetheless a significant body of published literature on the biochemical, pharmacological, and clinical properties of noble gases but no comprehensive reviews exist that summarize their properties and the existing knowledge of their models of action at the molecular (atomic) level. This review provides such an up-to-date summary of the extensive, useful biological properties of noble gases as drugs and prospects for wider application of these atoms. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  5. Optical response of noble metal alloy nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Amit, E-mail:; Verma, S.S.


    The optical response, stability, and cost-effectiveness of individual noble metals can be improved by combining them to form alloy nanostructures. The present work reveals the influence of shape, size, and metal type on the optical response of alloy nanoparticles using discrete dipole approximation (DDA) simulations. It is found that sharp corner nanostructures show enhanced plasmonic properties in comparison to rounded counterpart. For all the three shapes, viz., nanocubes, rectangular, and nanobar particles, the increase in length resulted in redshifts of the longitudinal plasmon resonance alongwith enhancement in the scattering yield as well as relative efficiency parameters except for nanocubes of edge length 120 nm. The effect of size on full width at half maxima (FWHM) has also been studied and found to be maximal for nanocubes in comparison to other nanostructures. - Highlights: • The optical response of alloy nanostructures has been studied by discrete dipole approximation. • Sharp corner nanostructures show enhanced plasmonic properties. • Nanobars may be preferred over other nanostructures for absorption-based plasmonic applications. • Nanocubes of edge length greater than 100 nm may be useful for plasmonic solar cells. • Rectangular and nanobar particles may be preferred over nanocubes in plasmon sensing.

  6. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu


    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  7. Evolution of ore deposits on terrestrial planets (United States)

    Burns, R. G.


    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  8. Photo-Ionization of Noble Gases: A Demonstration of Hybrid Coupled Channels Approach

    Directory of Open Access Journals (Sweden)

    Vinay Pramod Majety


    Full Text Available We present here an application of the recently developed hybrid coupled channels approach to study photo-ionization of noble gas atoms: Neon and Argon. We first compute multi-photon ionization rates and cross-sections for these inert gas atoms with our approach and compare them with reliable data available from R-matrix Floquet theory. The good agreement between coupled channels and R-matrix Floquet theory show that our method treats multi-electron systems on par with the well established R-matrix theory. We then apply the time dependent surface flux (tSURFF method with our approach to compute total and angle resolved photo-electron spectra from Argon with linearly and circularly polarized 12 nm wavelength laser fields, a typical wavelength available from Free Electron Lasers (FELs.

  9. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals (United States)

    Bourg, I. C.; Gadikota, G.; Dazas, B.


    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  10. Protonated ions as systemic trapping agents for noble gases: From electronic structure to radiative association (United States)

    Ozgurel, O.; Pauzat, F.; Pilmé, J.; Ellinger, Y.; Bacchus-Montabonel, M.-C.; Mousis, O.


    The deficiencies of argon, krypton, and xenon observed in the atmosphere of Titan as well as anticipated in some comets might be related to a scenario of sequestration by H3+ in the gas phase at the early evolution of the solar nebula. The chemical process implied is a radiative association, evaluated as rather efficient in the case of H3+, especially for krypton and xenon. This mechanism of chemical trapping might not be limited to H3+ only, considering that the protonated ions produced in the destruction of H3+ by its main competitors present in the primitive nebula, i.e., H2O, CO, and N2, might also give stable complexes with the noble gases. However the effective efficiency of such processes is still to be proven. Here, the reactivity of the noble gases Ar, Kr, and Xe, with all protonated ions issued from H2O, CO, and N2, expected to be present in the nebula with reasonably high abundances, has been studied with quantum simulation method dynamics included. All of them give stable complexes and the rate coefficients of their radiative associations range from 10-16 to 10-19 cm3 s-1, which is reasonable for such reactions and has to be compared to the rates of 10-16 to 10-18 cm3 s-1, obtained with H3+. We can consider this process as universal for all protonated ions which, if present in the primitive nebula as astrophysical models predict, should act as sequestration agents for all three noble gases with increasing efficiency from Ar to Xe.

  11. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    NARCIS (Netherlands)

    Manohar, S.N.; Meijer, H.A.J.; Herber, M.A.


    Naturally occurring radioactive noble gas, radon (Rn-222) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution

  12. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.


    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  13. Introduced Terrestrial Species (Future) (United States)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  14. International Conference on LIght Detection in Noble Elements

    CERN Document Server


    The objective of the Light Detection in Noble Elements (LIDINE) 2015 conference is to promote discussion between the members of the particle and nuclear physics communities about light and charge collection in detectors based on liquid or gaseous noble elements, xenon and argon being the most common, but neon and helium also in use, and represented at this conference. The neutrino physics, ultra-cold neutron study, dark matter search, and medical physics communities all utilize noble-based detector technologies, recording UV scintillation and/or ionization. Therefore, this will be an interdisciplinary opportunity for information exchange, and a chance for each of these communities enumerated above, in the U.S. as well as abroad, to expand their technical knowledge bases.

  15. Volatiles (H, C, N, O, noble gases) in comets as tracers of early solar system events (Invited) (United States)

    Marty, B.


    Volatiles (H, C, N, O, noble gases) present the largest variations in their relative abundances and, importantly, in their isotopic ratios, among solar system elements. The original composition of the protosolar nebula has been investigated through the measurements of primitive meteorites and of in-situ (e.g. Galileo probe analysis of the Jupiter's atmosphere) and sample-return (Genesis, recovery and analysis of solar wind) missions. The protosolar gas was poor in deuterium, in 15N and in 17,18O. Variations among solar system reservoir reach several hundreds of percents for the D/H and 15N/14N ratios. These variations are possibly : (i) due to interactions between XUV photons of the proto-Sun and the-dust, (ii) result from low temperature ion-molecule reactions, or (iii) constitute an heritage on interstellar volatiles trapped in dust (e.g., organics). Likewise, noble gases are elementally and isotopically (1% per amu for xenon) fractionated with respect to the composition of the solar wind (our best proxy for the protosolar nebula composition). Cometary matter directly measured on coma, or in Stardust material, or in IDPs, seems to present among the largest heterogeneities in their stable isotope compositions but knowledge on their precise compositions of the different phases and species is partial and mosty lacking. Among the several important issues requiring a better knowledge of cometary volatiles are the origin(s) of volatile elements on Earth and Moon, on Mars and on Venus, understanding large scale circulation of matter between hot and frozen zones, and the possibility of interstellar heritage for organics. Critical measurements to be made by the next cometary missions include the value of the D/H ratio in water ice, in NH3 and organics. Nitrogen is particularly interesting as cometary HCN and CN are rich in 15N, but an isotoppe mass balance will require to measure the main host species (N2 ?). Noble gases are excellent tracers of physical processes

  16. [Neuroprotection by noble gases: New developments and insights]. (United States)

    Fahlenkamp, A V; Rossaint, R; Coburn, M


    Noble gases are chemically inert elements, some of which exert biological activity. Experimental neuroprotection in particular has been widely shown for xenon, argon and helium. The underlying mechanisms of action are not yet fully understood. Besides an interference with neuronal ion-gated channels and cellular signaling pathways as well as anti-apoptotic effects, the modulation of neuroinflammation seems to play a crucial role. This review presents the current knowledge on neuroprotection by noble gases with a focus on interactions with the neuronal-glial network and neuroinflammation and the perspectives on clinical applications.

  17. Fullerenes: A New Carrier Phase for Noble Gases in Meteorites (United States)

    Becker, Luann


    The major focus of our research effort has been to measure the noble gases encapsulated within fullerenes, a new carbon carrier phase and compare it to the myriad of components found in the bulk meteorite acid residues. We have concentrated on the carbonaceous chondrites (Allende, Murchison and Tagish Lake) since they have abundant noble gases, typically with a planetary signature that dominates the stepped-release of the meteorite bulk acid residue. They also contain an extractable fullerene component that can be isolated and purified from the same bulk material.

  18. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto

    size is mainly dependent on its loading [3,7]. In this study, the role of the supporting metal oxide on the noble metal particle size was systematically investigated for the flame spray pyrolysis process. The materials were produced at fixed process conditions such as resident time of the particles...... in the flame, energy input, maximum temperature and cooling rate. Having the same surface area of the support and metal loading, the materials exhibited different noble metal particle sizes. A fundamental understanding of the mechanisms of metal particle formation in the flame and the effect of the metal oxide...

  19. Numerical simulations for terrestrial planets formation

    Directory of Open Access Journals (Sweden)

    Ji J.


    Full Text Available We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about 60%–80%. In each simulation, 3–4 terrestrial planets are formed inside “Jupiter” with masses of 0.15–3.6 M⊕. In the 0.5–4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion may also happen a few times between two giant planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108 yr.

  20. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers. (United States)

    Moskovitz, Yevgeny; Yang, Hui


    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules in the pressure range of 1-1000 bar and at a temperature of 310 K. Xenon and argon have been tested as model gases for general anaesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremors in hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of the gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor, while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar order parameter patterns for both DOPC acyl chains, which are opposite of the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the 'critical volume' hypothesis of anaesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1-100 bar could be associated with the possible manifestation of neurological tremors at the atomic scale. The non-immobiliser neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing the monolayer undulation rate, which indicates that enhanced diffusivity rather than atomic size is the key factor.

  1. Field Enhancement using Noble Metal Structures (United States)

    Liu, Benliang

    Resonance may be one of the most fundamental rules of nature. Electromagnetic resonance at nanometer scale could produce a giant field enhancement at optical frequency, providing a way to measure and control the process of atoms and molecules at single molecule scale. For example, the giant field enhancement would provide single molecule sensitivity for Raman scattering, which provides unique tools in measuring the quantity in extremely low concentration. In addition, light-emitting diodes could have high brightness but low input power that would be revolutionary in the optoelectronic industry. Although light enhancement is promising in several key technology areas, there are several challenges remain to be tackled. In particular, since the field enhancement is so strongly geometry dependent that slight modification of the geometry can lead to large variations in the outcome, a thorough understanding in how the geometry of the structure affects the field enhancement and creating proper methods to fabricate these structures reproducibly is of most importance. This thesis is devoted to design, fabrication and characterization of field enhancement generated on the surface of noble metals such as silver or gold with 1D structure. The s-polarized field enhancement arising from one-dimensional metal gratings is designed and optimized by using Rigorous Coupling Wave Analysis (RCWA). After optimization, the strongest enhancement factor is found to be 9.7 for 514nm wavelength light. The theoretical results arc confirmed by angle-dependent reflectivity measurements and the experimental results are found to support the theory. A novel single slit structure employing surface plasmon polaritons (SPPs) for enhancing the electric field is studied. SPPs are first generated on a 50 nm thick metal film using attenuated total reflection coupling, and they are subsequently coupled to the cavity mode induced by the single slit. As a result, the field enhancement is found at least 3

  2. Inculcating Noble Values for Pre-Service Teachers (United States)

    Hasan, Anita Abu; Hamzah, Mohd Isa; Awang, Mohd Mahzan


    This study aims to identify the noble values that are being cultivated and practiced in the process of teaching and learning of Ethnic Relations Course for pre-service teachers. Element values investigated including the identity, loyalty, patriotism, tolerance, cooperation and pride as a Malaysian. This quantitative research employs a survey…

  3. Noble-Metal Nanocrystals with Controlled Facets for Electrocatalysis. (United States)

    Hong, Jong Wook; Kim, Yena; Kwon, Yongmin; Han, Sang Woo


    Noble-metal nanocrystals (NCs) show excellent catalytic performance for many important electrocatalysis reactions. The crystallographic properties of the facets by which the NCs are bound, closely associated with the shape of the NCs, have a profound influence on the electrocatalytic function of the NCs. To develop an efficient strategy for the synthesis of NCs with controlled facets as well as compositions, understanding of the growth mechanism of the NCs and their interaction with the chemical species involved in NC synthesis is quite important. Furthermore, understanding the facet-dependent catalytic properties of noble-metal NCs and the corresponding mechanisms for various electrocatalysis reactions will allow for the rational design of robust electrocatalysts. In this review, we summarize recently developed synthesis strategies for the preparation of mono- and bimetallic noble-metal NCs by classifying them by the type of facets through which they are enclosed and discuss the electrocatalytic applications of noble-metal NCs with controlled facets, especially for reactions associated with fuel-cell applications, such as the oxygen reduction reaction and fuel (methanol, ethanol, and formic acid) oxidation reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Noble Gases in the Hamlet Meteorite (LL4) (United States)

    Amari, S.; Sabe, Y.; Shiraishi, T.; Matsuda, J.


    We analyzed noble gases in a bulk sample and an HF-HCl residue of Hamlet (LL4). The Xe composition of the residue shows that no diamond is contained in the residue. The 20Ne/22Ne ratio of Hamlet Ne-Q has been determined to be 11.0 ± 0.5.

  5. Non-noble metal based catalysts for aqueous phase processing

    NARCIS (Netherlands)

    van Haasterecht, T.|info:eu-repo/dai/nl/328206458


    This thesis concerns the evaluation of the potential of supported non-noble metal catalysts in aqueous phase processes for the production hydrogen and oxygenates. The aim of this thesis is to investigate how different factors, especially the nature of the metal, additives and reaction conditions,

  6. Strategic role of selected noble metal nanoparticles in medicine. (United States)

    Rai, Mahendra; Ingle, Avinash P; Birla, Sonal; Yadav, Alka; Santos, Carolina Alves Dos


    Noble metals and their compounds have been used as therapeutic agents from the ancient time in medicine for the treatment of various infections. Recently, much progress has been made in the field of nanobiotechnology towards the development of different kinds of nanomaterials with a wide range of applications. Among the metal nanoparticles, noble metal nanoparticles have demonstrated potential biomedical applications. Due to the small size, nanoparticles can easily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. Noble metal nanoparticles inspired the researchers due to their remarkable role in detection and treatment of dreadful diseases. In this review, we have attempted to focus on the biomedical applications of noble metal nanoparticles particularly, silver, gold, and platinum in diagnosis and treatment of dreaded diseases such as cancer, human immunodeficiency virus (HIV), tuberculosis (TB), and Parkinson disease. In addition, the role of silver nanoparticles (AgNPs) such as novel antimicrobials, gold nanoparticles (AuNPs) such as efficient drug carrier, uses of platinum nanoparticles (PtNPs) in bone allograft, dentistry, etc. have been critically reviewed. Moreover, the toxicity due to the use of metal nanoparticles and some unsolved challenges in the field have been discussed with their possible solutions.

  7. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science


    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  8. Emission of fast hydrogen atoms at a plasma–solid interface in a low density plasma containing noble gases (United States)

    Marchuk, O.; Brandt, C.; Pospieszczyk, A.; Reinhart, M.; Brezinsek, S.; Unterberg, B.; Dickheuer, S.


    The source of the broad radiation of fast hydrogen atoms in plasmas containing noble gases remains one of the most discussed problems relating to plasma–solid interface. In this paper, we present a detailed study of Balmer lines emission generated by fast hydrogen and deuterium atoms in an energy range between 40 and 300 eV in a linear magnetised plasma. The experiments were performed in gas mixtures containing hydrogen or deuterium and one of the noble gases (He, Ne, Ar, Kr or Xe). In the low-pressure regime (0.01–0.1 Pa) of plasma operation emission is detected by using high spectral and spatial resolution spectrometers at different lines-of-sight for different target materials (C, Fe, Rh, Pd, Ag and W). We observed the spatial evolution for H α , H β and H γ lines with a resolution of 50 μm in front of the targets, proving that emission is induced by reflected atoms only. The strongest radiation of fast atoms was observed in the case of Ar–D or Ar–H discharges. It is a factor of five less in Kr–D plasma and an order of magnitude less in other rare gas mixture plasmas. First, the present work shows that the maximum of emission is achieved for the kinetic energy of 70–120 eV/amu of fast atoms. Second, the emission profile depends on the target material as well as surface characteristics such as the particle reflection, e.g. angular and energy distribution, and the photon reflectivity. Finally, the source of emission of fast atoms is narrowed down to two processes: excitation caused by collisions with noble gas atoms in the ground state, and excitation transfer between the metastable levels of argon and the excited levels of hydrogen or deuterium.

  9. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases (United States)

    Warr, Oliver; Sherwood Lollar, Barbara; Fellowes, Jonathan; Sutcliffe, Chelsea N.; McDermott, Jill M.; Holland, Greg; Mabry, Jennifer C.; Ballentine, Christopher J.


    We show that fluid volumes residing within the Precambrian crystalline basement account for ca 30% of the total groundwater inventory of the Earth (> 30 million km3). The residence times and scientific importance of this groundwater are only now receiving attention with ancient fracture fluids identified in Canada and South Africa showing: (1) microbial life which has existed in isolation for millions of years; (2) significant hydrogen and hydrocarbon production via water-rock reactions; and (3) preserving noble gas components from the early atmosphere. Noble gas (He, Ne, Ar, Kr, Xe) abundance and isotopic compositions provide the primary evidence for fluid mean residence time (MRT). Here we extend the noble gas data from the Kidd Creek Mine in Timmins Ontario Canada, a volcanogenic massive sulfide (VMS) deposit formed at 2.7 Ga, in which fracture fluids with MRTs of 1.1-1.7 Ga were identified at 2.4 km depth (Holland et al., 2013); to fracture fluids at 2.9 km depth. We compare here the Kidd Creek Mine study with noble gas compositions determined in fracture fluids taken from two mines (Mine 1 & Mine 2) at 1.7 and 1.4 km depth below surface in the Sudbury Basin formed by a meteorite impact at 1.849 Ga. The 2.9 km samples at Kidd Creek Mine show the highest radiogenic isotopic ratios observed to date in free fluids (e.g. 21Ne/22Ne = 0.6 and 40Ar/36Ar = 102,000) and have MRTs of 1.0-2.2 Ga. In contrast, resampled 2.4 km fluids indicated a less ancient MRT (0.2-0.6 Ga) compared with the previous study (1.1-1.7 Ga). This is consistent with a change in the age distribution of fluids feeding the fractures as they drain, with a decreasing proportion of the most ancient end-member fluids. 129Xe/136Xe ratios for these fluids confirm that boreholes at 2.4 km versus 2.9 km are sourced from hydrogeologically distinct systems. In contrast, results for the Sudbury mines have MRTs of 0.2-0.6 and 0.2-0.9 Ga for Mines 1 and 2 respectively. While still old compared to almost all

  10. The terrestrial silica pump.

    Directory of Open Access Journals (Sweden)

    Joanna C Carey

    Full Text Available Silicon (Si cycling controls atmospheric CO(2 concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1, accounting for 43% of the total oceanic net primary production (NPP. However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1 is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2 levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump.

  11. Batteries for terrestrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulin, T.M.


    Extensive research has been conducted in the design and manufacture of very long life vented and sealed maintenance free nickel-cadmium aircraft batteries. These batteries have also been used in a number of terrestrial applications with good success. This study presents an overview of the Ni-Cd chemistry and technology as well as detailed analysis of the advantages and disadvantages of the Ni-Cd couple for terrestrial applications. The performance characteristics of both sealed and vented Ni-Cd's are presented. Various charge algorithms are examined and evaluated for effectiveness and ease of implementation. Hardware requirements for charging are also presented and evaluated. The discharge characteristics of vented and sealed Ni-Cd's are presented and compared to other battery chemistries. The performance of Ni-Cd's under extreme environmental conditions is also compared to other battery chemistries. The history of various terrestrial applications is reviewed and some of the lessons learned are presented. Applications discussed include the NASA Middeck Payload Battery, Raytheon Aegis Missile System Battery, THAAD Launcher battery, and the Titan IV battery. The suitability of the Ni-Cd chemistry for other terrestrial applications such as electric vehicles and Uninterruptible Power Supply is discussed.

  12. Collisional deactivation of Ba 5d7p (3)D1 by noble gases. (United States)

    Smedley, John E; Coulter, Sarah K; Felton, Edward J; Zomlefer, Kayla S


    Collisional deactivation of the 5d7p (3)D1 state of Ba by noble gases is studied by time- and wavelength-resolved fluorescence techniques. A pulsed, frequency-doubled dye laser at 273.9 nm excites the 5d7p (3)D1 level from the ground state, and fluorescence at 364.1 and 366.6 nm from the 5d7p (3)D1 --> 6s5d (3)D1 and 5d7p (3)D1 --> 6s5d (3)D2 transitions, respectively, is monitored in real time to obtain the deactivation rate constants. At 835 K these rate constants are as follows: He, (1.69 +/- 0.08) x 10(-9) cm(3) s(-1); Ne, (3.93 +/- 0.14) x 10(-10) cm(3) s(-1); Ar, (4.53 +/- 0.15) x 10(-10) cm(3) s(-1); Kr, (4.64 +/- 0.13) x 10(-10) cm(3) s(-1); Xe, (5.59 +/- 0.22) x 10(-10) cm(3) s(-1). From time-resolved 5d7p (3)D1 emission in the absence of noble gas and from the intercepts of the quenching plots, the lifetime of this state is determined to be 100 +/- 1 ns. Using time- and wavelength-resolved Ba emission with a low background pressure of noble gas, radiative lifetimes of several near-resonant states are determined from the exponential rise of the fluorescence signals. These results are as follows: 5d6d (3)D3, 28 +/- 3 ns; 5d7p (3)P1, 46 +/- 2 ns; 5d6d (3)G3, 21.5 +/- 0.8 ns; 5d7p (3)F3, 48 +/- 1 ns. Integrated fluorescence signals are used to infer the relative rate constants for population transfer from the 5d7p (3)D1 state to eleven near-resonant fine structure states.

  13. Simulating mesoscale transport and diffusion of radioactive noble gases using the Lagrangian particle dispersion model. (United States)

    Kim, Cheol-Hee; Song, Chang-Keun; Lee, Sang-Hyun; Song, Sang-Keun


    In order to simulate the impact of mesoscale wind fields and to assess potential capability of atmospheric Lagrangian particle dispersion model (LPDM) as an emergency response model for the decision supports, two different simulations of LPDM with the mesoscale prognostic model MM5 (Mesoscale Model ver. 5) were driven. The first simulation of radioactive noble gas (85Kr exponent) emitted during JCO accident occurred from 30 September to 3 October 1999 at Tokai, Japan showed that the first arriving short pulse was found in Tsukuba located at 60 km away from the accidental area. However, the released radioactive noble gas was transported back to the origin site about 2 days later due to the mesoscale meteorological wind circulation, enhancing the levels of 85Kr with the secondary peak in Tsukuba. The second simulation of atmospheric dilution factors (the ratio of concentration to the emission rate, chi/Q), during the underground nuclear test (UNT) performed by North Korea showed that high chi/Q moved to the eastward and extended toward southward in accordance with the mesoscale atmospheric circulations generated by mesoscale prognostic model MM5. In comparison with the measurements, the simulated horizontal distribution patterns of 85Kr during the JCO are well accord with that of observation in Tsukuba such as the existence of secondary peak which is associated with the mesoscale circulations. However, the simulated level of 85Kr anomaly was found to be significantly lower than the observations, and some interpretations on these discrepancies were described. Applications of LPDM to two mesoscale emergency response dispersion cases suggest the potential capability of LPDM to be used as a decision support model provided accurate emission rate of accident in case of a large accident.

  14. Wigner Distribution Functions as a Tool for Studying Gas Phase Alkali Metal Plus Noble Gas Collisions (United States)


    regime, they were artifically seperated. Three product Møller states are placed on each of the adiabatic PES which are labeled as Π 1 2 , Π 3 2 , and Σ...previously, the channel packet method relies on intelligently choosing the expansion coefficients of the momentum representation of the reactant level in the asymptotic regime, they were artifically seperated in Fig. 6.1 in order to show which states leads to seperate adiabatic surfaces

  15. Developing Optimal Parameters for Hyperpolarized Noble Gas and Inert Fluorinated Gas MRI of Lung Disorders (United States)


    Lung Transplant; Lung Resection; Lung Cancer; Asthma; Cystic Fibrosis; Chronic Obstructive Pulmonary Disease; Emphysema; Mesothelioma; Asbestosis; Pulmonary Embolism; Interstitial Lung Disease; Pulmonary Fibrosis; Bronchiectasis; Seasonal Allergies; Cold Virus; Lung Infection; Pulmonary Hypertension; Pulmonary Dysplasia; Obstructive Sleep Apnea

  16. A comprehensive study of noble gases and nitrogen in "Hypatia", a diamond-rich pebble from SW Egypt (United States)

    Avice, Guillaume; Meier, Matthias M. M.; Marty, Bernard; Wieler, Rainer; Kramers, Jan D.; Langenhorst, Falko; Cartigny, Pierre; Maden, Colin; Zimmermann, Laurent; Andreoli, Marco A. G.


    This is a follow-up study of a work by Kramers et al. (2013) on a very unusual diamond-rich rock fragment found in the area of south west Egypt in the south-western side of the Libyan Desert Glass strewn field. This pebble, called Hypatia, is composed of almost pure carbon. Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) results reveal that Hypatia is mainly made of defect-rich diamond containing lonsdaleite and multiple deformation bands. These characteristics are compatible with an impact origin on Earth and/or in space. We also analyzed concentrations and isotopic compositions of all five noble gases and nitrogen in several ∼mg sized Hypatia samples. These data confirm the conclusion by Kramers et al. (2013) that Hypatia is extra-terrestrial. The sample is relatively rich in trapped noble gases with an isotopic composition being close to the Q component found in many types of meteorites. 40Ar/36Ar ratios in individual steps are as low as 0.4 ± 0.3. Cosmic-ray produced ;cosmogenic; 21Ne is present in concentrations corresponding to a nominal cosmic-ray exposure (CRE) age of roughly 0.1 Myr if produced in a typical meter-sized meteoroid. Such an atypically low nominal CRE age suggests high shielding in a considerably larger body. In addition to the Xe-Q composition, an excess of radiogenic 129Xe (from the decay of short-lived radioactive 129I) is observed (129Xe /132Xe = 1.18 + / - 0.03). Two isotopically distinct N components are present, an isotopically heavy component (δ15N ∼ + 20 ‰) released at low temperatures and a major isotopically light component (δ15N ∼ - 110 ‰) at higher temperatures. This disequilibrium in N suggests that the diamonds in Hypatia were formed in space rather than upon impact on Earth (δN15atm = 0 ‰). All our data are broadly consistent with concentrations and isotopic compositions of noble gases in at least three different types of carbon-rich meteoritic materials: carbon-rich veins in ureilites

  17. Accounting for Greenhouse Gas Emissions from Reservoirs (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  18. Comparative Climatology of Terrestrial Planets (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  19. Fullerenes: An extraterrestrial carbon carrier phase for noble gases (United States)

    Becker, Luann; Poreda, Robert J.; Bunch, Ted E.


    In this work, we report on the discovery of naturally occurring fullerenes (C60 to C400) in the Allende and Murchison meteorites and some sediment samples from the 65 million-year-old Cretaceous/Tertiary boundary layer (KTB). Unlike the other pure forms of carbon (diamond and graphite), fullerenes are extractable in an organic solvent (e.g., toluene or 1,2,4-trichlorobenzene). The recognition of this unique property led to the detection and isolation of the higher fullerenes in the Kratschmer/Huffmann arc evaporated graphite soot and in the carbon material in the meteorite and impact deposits. By further exploiting the unique ability of the fullerene cage structure to encapsulate and retain noble gases, we have determined that both the Allende and Murchison fullerenes and the KTB fullerenes contain trapped noble gases with ratios that can only be described as extraterrestrial in origin. PMID:10725367

  20. Electrocatalysis of chemically synthesized noble metal nanoparticles on carbon electrodes

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    conductivity, chemical inertness and low cost. Improvement of catalytic efficiency and stability of the NPs is, however, essential for their wider applications in electrochemical energy conversion/storage. The activities of noble metal catalysts depend not only on their size, composition, and shapes but also......Noble metal nanoparticles (NPs), such as platinum (Pt) and palladium (Pd) NPs are promising catalysts for dioxygen reduction and oxidation of molecules such as formic acid and ethanol in fuel cells. Carbon nanomaterials are ideal supporting materials for electrochemical catalysts due to their good...... by electrochemical SPM. This study offers promise for development of new high-efficiency catalyst types with low-cost for fuel cell technology...

  1. Solar-Terrestrial Interactions (United States)


    satellite for polar cap passes during large SEP events to determine the experimental geographic cutoff latitudes for the two energy ranges. 9 These...E. Lamanna, Societa Italiana di Fisica , Bologna, Italy, 1997.) Shea, M.A., and D.F. Smart, Overview of the Effects of Solar Terrestrial Phenomena...Conference, Invited, Rapporteurs, & Highlight Papers, edited by N. Iucci and E. Lamanna, Societa Italiana di Fisica , Bologna, Italy, 1997.) 27

  2. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations. (United States)

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf


    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  3. Noble gases in presolar diamonds II: Component abundances reflect thermal processing (United States)

    Huss, Gary R.; Lewis, Roy S.


    Using the isotopic compositions derived in Huss and Lewis, 1994a, abundances of the P3, HL, and P6 noble-gas components were determined for 15 diamonds separates from primitive chondrites of 8 chondrite classes. Within a meteorite class, the relative abundances of these components correlate with the petrologic subtype of the host meteorite, indicating that metamorphism is primarily responsible for the variations. Relative abundances of P3, HL, and P6 among diamond samples can be understood in terms of thermal processing of a single mixture of diamonds like those now found in CI and CM2 chondrites. With relatively gentle heating, primitive diamonds first lose their low-temperature P3 gases and a 'labile' fraction of the HL component. Mass loss associated with release of these components produces an increase in the HL and P6 content of the remaining diamond relative to unprocessed diamond. Higher temperatures initiate destruction of the main HL carrier, while the HL content of the surviving diamonds remains essentially constant. At the same time, the P6 carrier begins to preferentially lose light noble gases. Meteorites that have experienced metamorphic temperatures greater than or = 650 C have lost essentially all of their presolar diamond through chemical reactions with surrounding minerals. The P3 abundance seems to be a function only of the maximum temperature experienced by the diamonds and thus is independent of the nature of the surrounding environment. If all classes inherited the same mixture of primitive diamonds, then P3 abundances would tie together the metamorphic scales in different meteorite classes. However, if the P3 abundance indicates a higher temperature than do other thermometers applicable to the host meteorite, then the P3 abundance may contain information about heating prior to accretion. Diamonds in the least metamorphosed EH, CV, and CO chondrites seem to carry a record of pre-accretionary thermal processing.

  4. The Preparation and Use of Short Half-Lived Radioactive Noble Gases in Nuclear Medicine. (United States)

    Dahl, J. Robert


    Radioisotopes of noble gases have been widely used for biomedical studies for many years, in particular for lung function studies and for studies of patients with coronary artery disease. ^{rm 79m}Kr (T_{1over2 } = 50s) emits 130 keV gamma rays in 27% of its disintegrations, ^{rm 127m }Xe (T_{1over2} = 69.2s) emits a 172.5 keV gamma ray in 38% of its disintegrations and a 124.8 keV gamma ray in 69% of its disintegrations and ^{19} Ne (T_{1over2} = 17.1s) decays 99.1% by positron emission. The energy of the ^{rm 79m}Kr gamma ray and of the more abundant ^{ rm 127m}Xe 124.8 keV gamma ray is sufficiently close to the 140.5 keV gamma energy of ^ {rm 99m}Tc to provide images of similar quality using present equipment. Neon-19 offers potential for ventilation studies and regional blood flow measurements using positron emission tomography (PET). The increasing number of small medical cyclotrons provides the alternative of utilizing very short half-lived radioactive noble gases such as ^{rm 79m }Kr, ^{rm 127m} Xe, and ^{19}Ne. A procedure has been developed for preparing these radionuclides by bombarding aqueous solutions of alkali metal halides with 14 MeV protons, using a helium sweep gas to remove the products as they are produced. A target design, production rates, methods of quality control, delivery and use of the ^{rm 79m}Kr and ^{rm 127m}Xe are given. A new method for preparing ^ {19}Ne is presented.

  5. Electrochemical Synthesis of Nanostructured Noble Metal Films for Biosensing (United States)

    Bhattarai, Jay K.

    Nanostructures of noble metals (gold and silver) are of interest because of their important intrinsic properties. Noble metals by themselves are physically robust, chemically inert, highly conductive, and possess the capability to form strong bonds with thiols or dithiol molecules present in organic compounds, creating self-assembled monolayers with tunable functional groups at exposed interfaces. However, when the nanostructures are formed, they in addition possess high surface area and unique optical properties which can be tuned by adjusting the shape and the size of the nanostructures. All of these properties make nanostructures of noble metals suitable candidates to be used as a transducer for optical and electrochemical biosensing. Individual nanostructures might be easier to prepare but difficult to handle to use as a transducer. Therefore, we prepared and analyzed nanostructured films/coating of noble metals and used them as a transducer for optical and electrochemical biosensing. We have electrochemically prepared nanoporous gold (NPG) on gold wire varying different dependable parameters (deposition potential, time, and compositional ratio) to obtain an optimal structure in term of stability, morphology, and better surface area. NPG prepared using a deposition potential of --1.0 V for 10 min from 30:70% 50 mM potassium dicyanoaurate(I) and 50 mM potassium dicyanoargentate(I) was used as an optimal surface for protein immobilization, and to perform square wave voltammetry (SWV) based enzyme-linked lectinsorbent assays. On flat gold surfaces, adjacent protein molecules sterically block their active sites due to high-density packing, which can be minimized using NPG as a substrate. NPG can also show significant peak current in SWV experiments, a sensitive electrochemical technique that minimizes non-Faradaic current, which is difficult to obtain using a flat gold surface. These all make NPG a suitable substrate, electrode, and transducer to be used in

  6. Terrestrial Steering Group. 2014. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Aastrup, Peter; Aronsson, Mora; Barry, Tom

    implementation of the Arctic Terrestrial Biodiversity Monitoring Plan for the next two years. Identify expert networks required for successful implementation of the plan. Identify key gaps and opportunities for the TSG related to plan implementation and identify near-term next steps to address gaps.......The Terrestrial Steering Group (TSG), has initiated the implementation phase of the CBMP Terrestrial Plan. The CBMP Terrestrial Steering Group, along with a set of invited experts (see Appendix A for a participants list), met in Iceland from February 25-27th to develop a three year work plan...... to guide implementation of the CBMP-Terrestrial Plan. This report describes the outcome of that workshop. The aim of the workshop was to develop a three year work plan to guide implementation of the CBMP-Terrestrial Plan. The participants were tasked with devising an approach to both (a) determine what...

  7. Ab initio molecular orbital studies of the vibrational spectra of the van der Waals complexes of boron trifluoride with the noble gases. (United States)

    Ford, Thomas A


    The molecular structures, interaction energies, charge transfer properties and vibrational spectra of the van der Waals complexes formed between boron trifluoride and the noble gases neon, argon, krypton and xenon have been computed using second and fourth order Møller-Plesset perturbation theory and the Los Alamos National Laboratory LANL2DZ basis set. The complexes are all symmetric tops, with the noble gas atom acting as a sigma electron donor along the C3 axis of the BF3 molecule. The interaction energies are all vanishingly small, and the amount of charge transferred in each case is of the order of 0.01e. The directions of the wavenumber shifts of the symmetric bending (nu2) and antisymmetric stretching (nu3) modes of the BF3 fragment confirm those determined experimentally, and the shifts are shown to correlate well with the polarizability of the noble gas atom and the inverse sixth power of the intermonomer separation. The nu2 mode is substantially more sensitive to complexation than the nu3 vibration.

  8. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.


    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  9. Noble Metals and Spinel Settling in High Level Waste Glass Melters

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K.; Perez, Joseph M.


    In the continuing effort to support the Defense Waste Processing Facility (DWPF), the noble metals issue is addressed. There is an additional concern about the amount of noble metals expected to be present in the future batches that will be considered for vitrification in the DWPF. Several laboratory, as well as melter-scale, studies have been completed by various organizations (mainly PNNL, SRTC, and WVDP in the USA). This letter report statuses the noble metals issue and focuses at the settling of noble metals in melters.

  10. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.


    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities.......Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  11. A density functional theory study of magneto-electric Jones birefringence of noble gases, furan homologues, and mono-substituted benzenes. (United States)

    Fahleson, Tobias; Norman, Patrick; Coriani, Sonia; Rizzo, Antonio; Rikken, Geert L J A


    We report on the results of a systematic ab initio study of the Jones birefringence of noble gases, of furan homologues, and of monosubstituted benzenes, in the gas phase, with the aim of analyzing the behavior and the trends within a list of systems of varying size and complexity, and of identifying candidates for a combined experimental/theoretical study of the effect. We resort here to analytic linear and nonlinear response functions in the framework of time-dependent density functional theory. A correlation is made between the observable (the Jones constant) and the atomic radius for noble gases, or the permanent electric dipole and a structure/chemical reactivity descriptor as the para Hammett constant for substituted benzenes.

  12. Microstructure of terrestrial catastrophism

    Energy Technology Data Exchange (ETDEWEB)

    Clube, S.V.M. (Oxford Univ. (UK). Dept. of Astrophysics); Napier, W.M. (Royal Observatory, Edinburgh (UK))


    The theory of evolution involving episodic terrestrial catastrophism predicts that the Oort cloud is disturbed by close encounters with massive nebulae. Each disturbance generates bombardment pulses of a few million years duration, the pulse frequencies being determined by the Sun's passage through the spiral arms and central plane of the Galaxy where nebulae concentrate. The structure within a pulse is shown here to be dominated by a series of 'spikes' of approx. 0.01-0.1 Myr duration separated by approx. 0.1-1.0 Myr, each caused by the arrival in circumterrestrial space of the largest comets followed by their disintegration into short-lived Apollo asteroids. Evidence is presented that a bombardment pulse was induced 3-5 Myr ago and that a 'spike' in the form of debris from a Chiron-like progenitor of Encke's comet has dominated the terrestrial environment for the last 0.02 Myr.

  13. Ionization-induced laser-driven QED cascade in noble gases (United States)

    Artemenko, I. I.; Kostyukov, I. Yu.


    A formula for the ionization rate in an extremely intense electromagnetic field is proposed and used for numerical study of QED cascades in noble gases in the field of two counterpropagating laser pulses. It is shown that the number of the electron-positron pairs produced in the cascade increases with the atomic number of the gas, where the gas density is taken to be inversely proportional to the atomic number. While most of the electrons produced in the laser pulse front are expelled by the ponderomotive force from the region occupied by the strong laser field, there is a small portion of electrons staying in the laser field for a long time until the instance when the laser field is strong enough for cascading. This mechanism is relevant for all gases. For high-Z gases there is an additional mechanism associated with the ionization of inner shells at the instance when the laser field is strong enough for cascading. The role of both mechanisms for cascade initiation is revealed.

  14. Ab initio study of the trapping of polonium on noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Maugeri, Emilio Andrea; Neuhausen, Jörg [Laboratory for Radiochemistry, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Waroquier, Michel; Van Speybroeck, Veronique [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Cottenier, Stefaan, E-mail: [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Department of Materials Science and Engineering, Ghent University, Technologiepark 903, 9052 Ghent (Belgium)


    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic {sup 210}Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po{sub 2}, PoBi and PoPb on this gold filter.

  15. Terrestrial Plume Impingement Testbed Project (United States)

    National Aeronautics and Space Administration — Masten Space Systems proposes to create a terrestrial plume impingement testbed for generating novel datasets for extraterrestrial robotic missions. This testbed...

  16. Genealogía de la noble mentira

    Directory of Open Access Journals (Sweden)

    Miguel Catalán


    Full Text Available Cet article analyse la notion de « noble mensonge » que l’on retrouve tout au long de l’histoire chez de nombreux auteurs, de Platon dans la Republique à Leo Strauss, l’actuel inspirateur de la politique menée par les néo-conservateurs aux Etats-Unis. L’article trace une ligne de pensée qui traverse les principales écoles et les auteurs modernes qui ont justifié le mensonge politique.The notion of «noble lie» has a long history. It can be found from Plato’s Republic to Leo Strauss’opus, a contemporary thinker whose thought inspires the philosophical background of the North-American neo-conservatives, who control the present Republican administration. This article goes through and analyses the main modern schools and authors who have justified political lie, i.e. a specific lie by which the political authority deceives its own people.Partiendo de la noción de «noble mentira» que encontramos en República de Platón y desembocando en la figura de Leo Strauss, filósofo inspirador de los actuales políticos neo-conservadores norteamericanos en torno al partido republicano en el poder, este artículo traza una línea de pensamiento que recorre las principales escuelas y autores modernos que han justificado la mentira política, entendida como aquella mentira con que el gobernante engaña a sus gobernados.

  17. Terrestrial Carbon Cycle Variability. (United States)

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor


    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2 , temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1 ) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1 ), and

  18. Status of QUPID, a novel photosensor for noble liquid detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pantic, E., E-mail: [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Aharoni, D.; Arisaka, K.; Beltrame, P.; Brown, E.; Cline, D. [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Fukasawa, A. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City 438-0193, Shizuoka (Japan); Ghag, C.; Lam, C.W.; Lim, T.; Lung, K.; Meng, Y. [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Muramatsu, S. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City 438-0193, Shizuoka (Japan); Scovell, P. [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Suyama, M. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City 438-0193, Shizuoka (Japan); Teymourian, A.; Wang, H. [Department of Physics and Astronomy, University of California, 475 Portola Plaza, Los Angeles, CA 90095 (United States)


    The discovery potential of experiments searching for rare events, such as dark matter interaction, relies heavily upon achieving a very low background environment. The current generation of noble liquid dark matter detectors is limited by the radioactivity in the detector materials, mostly from the photomultiplier tubes. Quartz Photon Intensifying Detector (QUPID) is a novel photosensor based upon hybrid APD technology and with intrinsic radioactivity at least an order of magnitude lower than the presently employed phototubes. The basic concept as well as the status and the prospect of the QUPID are reviewed. The performance of the QUPID as photosensor for the ultraviolet scintillation light of liquid xenon is presented.

  19. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely....... Membrane Electrode Assembly (MEA) is commonly considered as the heart of cell system [2]. Degradation of the noble metal catalysts in MEAs especially Three-Phase-Boundary (TPB) is a key factor directly influencing fuel cell durability. In this work, electrochemical degradation of Pt and Pt/Ru alloy were...

  20. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature......, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. Hence, scaling up of aerobic CH4 emission needs to take...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  1. Space Weather: Terrestrial Perspective

    Directory of Open Access Journals (Sweden)

    Pulkkinen Tuija


    Full Text Available Space weather effects arise from the dynamic conditions in the Earth’s space environment driven by processes on the Sun. While some effects are influenced neither by the properties of nor the processes within the Earth’s magnetosphere, others are critically dependent on the interaction of the impinging solar wind with the terrestrial magnetic field and plasma environment. As the utilization of space has become part of our everyday lives, and as our lives have become increasingly dependent on technological systems vulnerable to space weather influences, understanding and predicting hazards posed by the active solar events has grown in importance. This review introduces key dynamic processes within the magnetosphere and discusses their relationship to space weather hazards.

  2. Detection of gas atoms with carbon nanotubes (United States)

    Arash, B.; Wang, Q.


    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  3. 75 FR 12737 - Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp. (United States)


    ... Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp. AGENCY: Office of Electricity... applications, Noble Energy Marketing and Trade Corp. (NEMT) has applied for authority to transmit electric... Marketing and Trade Corp., 333 Ludlow Street, Suite 1230, Stamford, CT 06902. A final decision will be made...

  4. Response to selection for shell length in the noble scallop, Chlamys ...

    African Journals Online (AJOL)

    The noble scallop, Chlamys nobilis is one of the most economically important fishery and aquaculture species in the southern coast of China. In the present study, we conducted a one generation mass selection for shell length in a cultured noble scallop stock with a selection intensity of 1.732, to examine their response to ...

  5. Electrospun Polymer Nanofibers Decorated with Noble Metal Nanoparticles for Chemical Sensing


    Chen, Chen; Tang, Yongan; Vlahovic, Branislav; Yan, Fei


    The integration of different noble metal nanostructures, which exhibit desirable plasmonic and/or electrocatalytic properties, with electrospun polymer nanofibers, which display unique mechanical and thermodynamic properties, yields novel hybrid nanoscale systems of synergistic properties and functions. This review summarizes recent advances on how to incorporate noble metal nanoparticles into electrospun polymer nanofibers and illustrates how such integration paves the way towards chemical s...

  6. Noble metal-free hydrogen evolution catalysts for water splitting. (United States)

    Zou, Xiaoxin; Zhang, Yu


    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

  7. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shaoli Zhu


    Full Text Available Noble metal, especially gold (Au and silver (Ag nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR. In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA method, and finite-difference time domain (FDTD method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL and focused ion beam (FIB are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs-potential Alzheimer's disease (AD biomarkers, and staphylococcal enterotixn B (SEB in nano-Moore per liter (nM concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  8. Exploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations. (United States)

    Chen, Junlang; Chen, Liang; Wang, Yu; Wang, Xiaogang; Zeng, Songwei


    Noble gases seem to have no significant effect on the anesthetic targets due to their simple, spherical shape. However, xenon has strong narcotic efficacy and can be used clinically, while other noble gases cannot. The mechanism remains unclear. Here, we performed molecular dynamics simulations on phospholipid bilayers with four kinds of noble gases to elucidate the difference of their effects on the membrane. Our results showed that the sequence of effects on membrane exerted by noble gases from weak to strong was Ne, Ar, Kr and Xe, the same order as their relative narcotic potencies as well as their lipid/water partition percentages. Compared with the other three kinds of noble gases, more xenon molecules were distributed between the lipid tails and headgroups, resulting in membrane's lateral expansion and lipid tail disorder. It may contribute to xenon's strong anesthetic potency. The results are well consistent with the membrane mediated mechanism of general anesthesia.

  9. Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA 79001 (United States)

    Wiens, R. C.; Pepin, R. O.


    Basalts from the Servilleta flows, Taos, NM, described by Lofgren (1983) were analyzed by mass spectrometry for shock-implanted noble gases, N2, and CO2 (which were isotopically labeled) after an exposure to 20-60 GPa shock in the presence of 0.0045-3.0 atm of ambient gas. The results were compared with data available on the constituents of the EETA 79001 meteorite. As expected, the samples shocked in this study attained emplacement efficiencies significantly lower than those apparent for lithology C of EETA 79001. Possible explanations for this difference include atmospheric overpressure at the time of EETA 79001 exposure to shock, the trapping of gas already in vugs by the intruding melt material, or the collapse of gas-filled vugs to form gas-laden glass inclusions.

  10. [Extrasolar terrestrial planets and possibility of extraterrestrial life]. (United States)

    Ida, Shigeru


    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  11. Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. (United States)

    Pagel, Paul S; Krolikowski, John G; Shim, Yon Hee; Venkatapuram, Suneetha; Kersten, Judy R; Weihrauch, Dorothee; Warltier, David C; Pratt, Phillip F


    The anesthetic noble gas, xenon, produces cardioprotection. We hypothesized that other noble gases without anesthetic properties [helium (He), neon (Ne), argon (Ar)] also produce cardioprotection, and further hypothesized that this beneficial effect is mediated by activation of prosurvival signaling kinases [including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, and 70-kDa ribosomal protein s6 kinase] and inhibition of mitochondrial permeability transition pore (mPTP) opening in vivo. Rabbits (n = 98) instrumented for hemodynamic measurement and subjected to a 30-min left anterior descending coronary artery (LAD) occlusion and 3 h reperfusion received 0.9% saline (control), three cycles of 70% He-, Ne-, or Ar-30% O2 administered for 5 min interspersed with 5 min of 70% N2-30% O2 before LAD occlusion, or three cycles of brief (5 min) ischemia interspersed with 5 min reperfusion before prolonged LAD occlusion and reperfusion (ischemic preconditioning). Additional groups of rabbits received selective inhibitors of phosphatidylinositol-3-kinase (wortmannin; 0.6 mg/kg), extracellular signal-regulated kinase (PD 098059; 2 mg/kg), or 70-kDa ribosomal protein s6 kinase (rapamycin; 0.25 mg/kg) or mPTP opener atractyloside (5 mg/kg) in the absence or presence of He pretreatment. He, Ne, Ar, and ischemic preconditioning significantly (P noble gases without anesthetic properties produce cardioprotection by activating prosurvival signaling kinases and inhibiting mPTP opening in rabbits.

  12. Terrestrial locomotion in arachnids. (United States)

    Spagna, Joseph C; Peattie, Anne M


    In this review, we assess the current state of knowledge on terrestrial locomotion in Arachnida. Arachnids represent a single diverse (>100,000 species) clade containing well-defined subgroups (at both the order and subordinal levels) that vary morphologically around a basic body plan, yet exhibit highly disparate limb usage, running performance, and tarsal attachment mechanisms. Spiders (Araneae), scorpions (Scorpiones), and harvestmen (Opiliones) have received the most attention in the literature, while some orders have never been subject to rigorous mechanical characterization. Most well-characterized taxa move with gaits analogous to the alternating tripod gaits that characterize fast-moving Insecta - alternating tetrapods or alternating tripods (when one pair of legs is lifted from the ground for some other function). However, between taxa, there is considerable variation in the regularity of phasing between legs. Both large and small spiders appear to show a large amount of variation in the distribution of foot-ground contact, even between consecutive step-cycles of a single run. Mechanisms for attachment to vertical surfaces also vary, and may depend on tufts of adhesive hairs, fluid adhesives, silks, or a combination of these. We conclude that Arachnida, particularly with improvements in microelectronic force sensing technology, can serve as a powerful study system for understanding the kinematics, dynamics, and ecological correlates of sprawled-posture locomotion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  14. Therapeutic Potential of Noble Nanoparticles for Wound Repair

    Directory of Open Access Journals (Sweden)

    Timur Saliyev


    Full Text Available Introduction. Nanoparticles made of noble metals, such as gold and silver, have a great potential to be effectively employed for wound management. The nano-size of such particles provides an opportunity to enlarge the contacting area, which results in more effective anti-bacterial action and faster wound repair. It must be noted that the shape of noble nanoparticles might play a crucial role in the manifestation of their anti-microbial properties. The modern state of technology allows fabrication of the nanoparticles with the desired shape and physical properties. In order to provide efficacy and close contact with the wound, the noble nanoparticles can be incorporated into a special matrix made of a cryogel (based on polymethyl methacrylate. This combination might serve as a foundation for developing completely new types of wound dressing.Materials and methods. We have developed a few methods for synthesizing gold and silver nanoparticles of different shapes and sizes. After fabrication of metallic nanoparticles, they were characterized by using Tunneling Electron Microscopy (TEM and Malvern Zetasizer system in order to determine the average population size and consistency. The silver nanoparticles was synthesized using sodium borohydride reduction of silver nitrate. The synthesis of gold nanoparticles was conducted by using the Turkevich method.Results. We have developed a synthetic cryogel based on polyacrylamide (by cryogelation reaction at several temperatures. At the second step, we developed a method for conjugating fabricated gold and silver nanoparticles to the surface (or pores of cryogel through covalent bonds so they can provide antibacterial action within the wound. By following the developed protocol, we were able to obtain an approximate cryogel layer (1 cm thickness with embedded gold and silver nanoparticles. This conjugate was analyzed and confirmed using Scanning Electron Microscopy (SEM and TEM.Discussion. The obtained

  15. H(3) (+) as a trap for noble gases--2: structure and energetics of XH(3) (+) complexes from X=neon to xenon. (United States)

    Pauzat, F; Ellinger, Y


    The affinity of H(3) (+) to combine with noble gases X has been investigated from neon to xenon using ab initio coupled cluster [CCSD and CCSD(T)] and density functional BH&HLYP levels of theory. For all noble gases, the stable structures belong to a C(2v) symmetry with an apex of the H(3) (+) triangle pointing to the noble gas. The structure of the complexes changes gradually from a practically pure Ne-H(3) (+) arrangement to a situation close to XeH(+)-H(2). A topological analysis of the electron localization function is used to illustrate the changes in the bonding along the series. The lowest dissociation energies of NeH(3) (+) and ArH(3) (+) ( approximately 1 and approximately 7 kcalmol) correspond to the breaking of the complexes according to X+H(3) (+), while the lowest dissociation energies of KrH(3) (+) and XeH(3) (+) ( approximately 8 and approximately 3 kcalmol) correspond to the breaking according to XH(+)+H(2). Rotational constants and harmonic frequencies are reported. Apart from XeH(3) (+) whose dipole moment (mu=2.6 D) may not be large enough, all the other complexes with dipole moments in the range of 6-8 D should be reasonable targets for detection by microwave spectroscopy. The present calculations are intended to stimulate both laboratory experiments and spatial observations since the possible sequestration of noble gases by H(3) (+) may have strong implications on the composition of astrophysical objects.

  16. Relativistic contributions to single and double core electron ionization energies of noble gases. (United States)

    Niskanen, J; Norman, P; Aksela, H; Agren, H


    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of ∼4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  17. Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. (United States)

    Dahoumane, Si Amar; Wujcik, Evan K; Jeffryes, Clayton


    Phototrophic cell or tissue cultures can produce nanostructured noble metals, oxides and chalcogenides at ambient temperatures and pressures in an aqueous environment and without the need for potentially toxic solvents or the generation of dangerous waste products. These "green" synthesized nanobiomaterials can be used to fabricate biosensors and bio-reporting tools, theranostic vehicles, medical imaging agents, as well as tissue engineering scaffolds and biomaterials. While successful at the lab and experimental scales, significant barriers still inhibit the development of higher capacity processes. While scalability issues in traditional algal bioprocess engineering are well known, such as the controlled delivery of photons and gas-exchange, the large-scale algal synthesis of nanomaterials introduces additional parameters to be understood, i.e., nanoparticle (NP) formation kinetics and mechanisms, biological transport of metal cations and the effect of environmental conditions on the final form of the NPs. Only after a clear understanding of the kinetics and mechanisms can the strain selection, photobioreactor type, medium pH and ionic strength, mean light intensity and other relevant parameters be specified for an optimal bioprocess. To this end, this mini-review will examine the current best practices and understanding of these phenomena to establish a path forward for this technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Noble gases in the howardites Bholghati and Kapoeta (United States)

    Swindle, T. D.; Hohenberg, C. M.; Nickols, R. H.; Olinger, C.; Garrison, D. H.; Goswami, J. N.


    Analyses of noble gases in whole rock samples of the howardites Bholghati and Kapoeta and grain-size separates of Kapoeta yield evidence for excesses of the Xe isotopes Xe-129 , Xe-131, Xe-132, Xe-134, and Xe-136 in a low-temperture component, similar to lunar excess fission Xe. Such a component may be able to provide chronometric information if the relative abundances of radioactive progenitors (I-129, Pu-244, and U-238) can be determined, but the isotopic spectra obtained are not sufficiently precise to do so. Eucritic clast BH-5 in Bholghati contains Xe produced in situ by the decay of Pu-244. Calculated fission Xe retention ages are 30-70 Ma after the formation of the solar system, consistent with the apparent presence of Sm-146 decay products. Both the clast and the matrix of Bholghati have K-Ar ages of about 2 Ga, suggesting a common thermal event at least that recently.

  19. Life at the College of Nobles Maidens of Toledo

    Directory of Open Access Journals (Sweden)

    Ángel Santos Vaquero


    Full Text Available The College of Noble Maidens of Toledo was founded by Cardinal Silíceo in 1551, designed to train women as holy and Christian wives and educated housewives. As would be admitted girls who could prove their ancestry free of impure blood. When they married would receive a dowry. Over time the institution was made many visits that were trying to bring order to the relaxation of discipline and desmadres produced both in administrative matters such as economic and internal order. Finally on July 20, 1988 was agreed between the Archbishop of Toledo and National Heritage. For him the Statute of Real Compatronato were modified and agreed to convert the institution into a female dorm.

  20. Obtaining memristor elements based on non-noble materials

    Directory of Open Access Journals (Sweden)

    Troyan Pavel


    Full Text Available This study is aimed at creating memristor elements based on TiO2/TiOx layers with electrodes that do not contain noble and rare-earth metals, by vacuum deposition method. The characteristics of these elements analyzed by voltammetric methods show that the appearance of an N-type region of negative differential resistance on the current–voltage curve can be caused only by metal electrodes whose vacuum work function exceeds that of TiO2. The appearance of the N-type region on the current–voltage curve of a memristor element is possible only after electrically assisted vacuum forming. Mo–TiO2/TiOx–Ni/Cu structures, for which the ILR/IHR ratio reaches two orders of magnitude at a voltage of less than 4 V, have the most stable parameters.

  1. Surface entropy of liquid transition and noble metals (United States)

    Gosh, R. C.; Das, Ramprosad; Sen, Sumon C.; Bhuiyan, G. M.


    Surface entropy of liquid transition and noble metals has been investigated using an expression obtained from the hard-sphere (HS) theory of liquid. The expression is developed from the Mayer's extended surface tension formula [Journal of Non-Crystalline Solids 380 (2013) 42-47]. For interionic interaction in metals, Brettonet-Silbert (BS) pseudopotentials and embedded atom method (EAM) potentials have been used. The liquid structure is described by the variational modified hypernetted chain (VMHNC) theory. The essential ingredient of the expression is the temperature dependent effective HS diameter (or packing fraction), which is calculated from the aforementioned potentials together with the VMHNC theory. The obtained results for the surface entropy using the effective HS diameter are found to be good in agreement with the available experimental as well as other theoretical values.

  2. The application of noble metals in light-water reactors (United States)

    Kim, Young-Jin; Niedrach, Leonard W.; Indig, Maurice E.; Andresen, Peter L.


    Corrosion potential is a primary determinant of the stress-corrosion cracking susceptibility of structural materials in high-temperature water. Efforts to minimize stress-corrosion cracking in light-water reactors include adding hydrogen. In someplants' out-of-core regions, the hydrogen required to achieve the desired corrosion potential is relatively high. In-core, more hydrogen is needed for an equivalent reduction in corrosion potential. Additionally, sIDe effects of high hydrogen-addition rates, including increased 16N turbine shine and 60CO deposition, have also been observed in some cases. An approach involving noble-metal coatings on and alloying additions to engineering materials dramatically improves the efficiency with which the corrosion potential is decreased as a function of hydrogen addition, such that very low potentials are obtained once a stoichiometric concentration of hydrogen (versus oxygen) is achieved.

  3. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support...... and electrode deposition etc. In fuel cell reactions, both electrons and protons are involved. Impregnation of Nafion ionomer in catalyst layer effectively increases the proton-electron contact, enlarge the reaction zone, extend the reaction from the surface to the entire electrode. Therefore, the entire...... catalyst layer conducts both electrons and protons so that catalyst utilization in the layer is improved dramatically. The catalyst layer will in turn generate and sustain a higher current density. One of the generally adapted methods to impregnate Nafion into the catalyst layer is to mix the catalysts...

  4. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.


    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  5. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    Directory of Open Access Journals (Sweden)

    Aminul Islam

    Full Text Available A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3 are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  6. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal. (United States)

    Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin


    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  7. Noble metal ionic sites for catalytic hydrogen combustion: spectroscopic insights. (United States)

    Deshpande, Parag A; Madras, Giridhar


    A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO(2) and TiO(2) in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO(2) was comparable and was higher than Pd and Pt ion substituted ZrO(2). The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO(2) supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO(2) supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.

  8. Heavy noble gases in solar wind delivered by Genesis mission. (United States)

    Meshik, Alex; Hohenberg, Charles; Pravdivtseva, Olga; Burnett, Donald


    One of the major goals of the Genesis Mission was to refine our knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun, which represents the initial composition of the solar system. This has now been achieved with permil precision: (36)Ar/(38)Ar = 5.5005 ± 0.0040, (86)Kr/(84)Kr = .3012 ± .0004, (83)Kr/(84)Kr = .2034 ± .0002, (82)Kr/(84)Kr = .2054 ± .0002, (80)Kr/(84)Kr = .0412 ± .0002, (78)Kr/(84)Kr = .00642 ± .00005, (136)Xe/(132)Xe = .3001 ± .0006, (134)Xe/(132)Xe = .3691 ± .0007, (131)Xe/(132)Xe = .8256 ± .0012, (130)Xe/(132)Xe = .1650 ± .0004, (129)Xe/(132)Xe = 1.0405 ± .0010, (128)Xe/(132)Xe = .0842 ± .0003, (126)Xe/(132)Xe = .00416 ± .00009, and (124)Xe/(132)Xe = .00491 ± .00007 (error-weighted averages of all published data). The Kr and Xe ratios measured in the Genesis solar wind collectors generally agree with the less precise values obtained from lunar soils and breccias, which have accumulated solar wind over hundreds of millions of years, suggesting little if any temporal variability of the isotopic composition of solar wind krypton and xenon. The higher precision for the initial composition of the heavy noble gases in the solar system allows (1) to confirm that, exept (136)Xe and (134)Xe, the mathematically derived U-Xe is equivalent to Solar Wind Xe and (2) to provide an opportunity for better understanding the relationship between the starting composition and Xe-Q (and Q-Kr), the dominant current "planetary" component, and its host, the mysterious phase-Q.

  9. Exploring the deep, ancient hydrogeosphere within Precambrian crystalline rocks using noble gases (United States)

    Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.


    Serpentinization is a key long-term water-rock interaction occurring within isolated fractures in Precambrian crystalline rocks and is a significant source of global H2 production. Highly saline fracture fluids, containing in-situ produced dissolved gases (e.g. percent level He, abiogenic CH4 and mM H2), have revealed microbial ecosystems isolated from the surface photosphere for millions of years. Noble gases can provide crucial physical and temporal constraints on these serpentinizing and life-supporting environments via radiogenic-derived fluid residence times, while also providing evidence of isolation. New noble gas data is presented here from four locations on the Canadian Shield. Kidd Creek Mine in Ontario, where fluids with a mean residence time ≥ 1.1 Ga were identified in 2013, was revisited with resampling of the waters from 2.4 km bls (below land surface), and new samples collected from 2.9 km bls. The study was also expanded to include two mines from Sudbury, Ontario at 1.7 (Mine 1) and 1.4 (Mine 2) km bls. The radiogenic excesses within the fluids were greatest for the 2.9 km Kidd Creek samples and provided an average residence time of 1.6 Ga. Consistent with our hypothesis, the resampling of the 2.4 km fluids (80 months after the original study) reveal significantly reduced residence times (1.1 Ga to 390 Ma) due to stress-induced opening of younger, though nonetheless old, fractures. This is supported by recent sulphur isotope, and 2H & 18O data. Additional hydrogeological constraints are provided by the 129Xe & 136Xe data, which suggest distinct fracture networks feed the 2.4 km, and the 2.9 km systems. Fracture fluids in the Sudbury Basin were targeted to investigate the influence of a later 1.8 Ga bolide impact which formed major fractures in the underlying basement. As hypothesised the fluids in the Sudbury Archean basement are younger than those at Kidd Creek, with mean residence times of 313 and 544 Ma for Mine 1 and 2 respectively. Our

  10. Secondary avalanches in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Özkan, E-mail: [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Tapan, İlhan [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Veenhof, Rob [RD51 Collaboration, CERN, Genève (Switzerland)


    Avalanche development in gas-based detectors relies not only on direct ionisation but also on excitation of noble gas atoms. Some quencher molecules can be ionised when they collide with excited atoms, a process on which we reported earlier [1]. Alternatively, excited atoms can decay by photon emission. If these photons are insufficiently absorbed by the quencher, yet capable of ionising, then they may escape from the avalanche region and start secondary avalanches. This process, called photon feedback, leads to an over-exponential increase of the gas gain which limits the working range. In this paper, we derive photon feedback parameters from published gain measurements for several gas mixtures and fit these parameters in a model which describes their dependence on the quencher concentration and the pressure.

  11. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle (United States)

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray


    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive

  12. Transferability and accuracy by combining dispersionless density functional and incremental post-Hartree-Fock theories: Noble gases adsorption on coronene/graphene/graphite surfaces. (United States)

    de Lara-Castells, María Pilar; Bartolomei, Massimiliano; Mitrushchenkov, Alexander O; Stoll, Hermann


    The accuracy and transferability of the electronic structure approach combining dispersionless density functional theory (DFT) [K. Pernal et al., Phys. Rev. Lett. 103, 263201 (2009)] with the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)], are validated for the interaction between the noble-gas Ne, Ar, Kr, and Xe atoms and coronene/graphene/graphite surfaces. This approach uses the method of increments for surface cluster models to extract intermonomer dispersion-like (2- and 3-body) correlation terms at coupled cluster singles and doubles and perturbative triples level, while periodic dispersionless density functionals calculations are performed to estimate the sum of Hartree-Fock and intramonomer correlation contributions. Dispersion energy contributions are also obtained using DFT-based symmetry-adapted perturbation theory [SAPT(DFT)]. An analysis of the structure of the X/surface (X = Ne, Ar, Kr, and Xe) interaction energies shows the excellent transferability properties of the leading intermonomer correlation contributions across the sequence of noble-gas atoms, which are also discussed using the Drude oscillator model. We further compare these results with van der Waals-(vdW)-corrected DFT-based approaches. As a test of accuracy, the energies of the low-lying nuclear bound states supported by the laterally averaged X/graphite potentials (X = (3)He, (4)He, Ne, Ar, Kr, and Xe) are calculated and compared with the best estimations from experimental measurements and an atom-bond potential model using the ab initio-assisted fine-tuning of semiempirical parameters. The bound-state energies determined differ by less than 6-7 meV (6%) from the atom-bond potential model. The crucial importance of including incremental 3-body dispersion-type terms is clearly demonstrated, showing that the SAPT(DFT) approach effectively account for these terms. With the deviations from the best experimental-based estimations smaller than 2.3 meV (1.9%), the accuracy of

  13. Transferability and accuracy by combining dispersionless density functional and incremental post-Hartree-Fock theories: Noble gases adsorption on coronene/graphene/graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, María Pilar de, E-mail:; Bartolomei, Massimiliano [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)


    The accuracy and transferability of the electronic structure approach combining dispersionless density functional theory (DFT) [K. Pernal et al., Phys. Rev. Lett. 103, 263201 (2009)] with the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)], are validated for the interaction between the noble-gas Ne, Ar, Kr, and Xe atoms and coronene/graphene/graphite surfaces. This approach uses the method of increments for surface cluster models to extract intermonomer dispersion-like (2- and 3-body) correlation terms at coupled cluster singles and doubles and perturbative triples level, while periodic dispersionless density functionals calculations are performed to estimate the sum of Hartree-Fock and intramonomer correlation contributions. Dispersion energy contributions are also obtained using DFT-based symmetry-adapted perturbation theory [SAPT(DFT)]. An analysis of the structure of the X/surface (X = Ne, Ar, Kr, and Xe) interaction energies shows the excellent transferability properties of the leading intermonomer correlation contributions across the sequence of noble-gas atoms, which are also discussed using the Drude oscillator model. We further compare these results with van der Waals-(vdW)-corrected DFT-based approaches. As a test of accuracy, the energies of the low-lying nuclear bound states supported by the laterally averaged X/graphite potentials (X = {sup 3}He, {sup 4}He, Ne, Ar, Kr, and Xe) are calculated and compared with the best estimations from experimental measurements and an atom-bond potential model using the ab initio-assisted fine-tuning of semiempirical parameters. The bound-state energies determined differ by less than 6–7 meV (6%) from the atom-bond potential model. The crucial importance of including incremental 3-body dispersion-type terms is clearly demonstrated, showing that the SAPT(DFT) approach effectively account for these terms. With the deviations from the best experimental-based estimations smaller than 2.3 meV (1.9%), the

  14. Petrography, classification, oxygen isotopes, noble gases, and cosmogenic records of Kamargaon (L6) meteorite: The latest fall in India (United States)

    Ray, D.; Mahajan, R. R.; Shukla, A. D.; Goswami, T. K.; Chakraborty, S.


    A single piece of meteorite fell on Kamargaon village in the state of Assam in India on November 13, 2015. Based on mineralogical, chemical, and oxygen isotope data, Kamargaon is classified as an L-chondrite. Homogeneous olivine (Fa: 25 ± 0.7) and low-Ca pyroxene (Fs: 21 ± 0.4) compositions with percent mean deviation of different shock stages, e.g., S3 and S4 (Stöffler et al.; however, local presence of quenched metal-sulfide melt within shock veins/pockets suggest disequilibrium melting and relatively higher shock stage of up to S5 (Bennett and McSween). Based on noble gas isotopes, the cosmic-ray exposure age is estimated as 7.03 ± 1.60 Ma and nitrogen isotope composition (δ15N = 18‰) also correspond well with the L-chondrite group. The He-U, Th, and K-Ar yield younger ages (170 ± 25 Ma 684 ± 93, respectively) and are discordant. A loss of He during the resetting event is implied by the lower He-U and Th age. Elemental ratios of trapped Ar, Kr, and Xe can be explained through the presence of a normal Q noble gas component. Relatively low activity of 26Al (39 dpm/kg) and the absence of 60Co activity suggest a likely low shielding depth and envisage a small preatmospheric size of the meteoroid (<10 cm in radius). The Kr isotopic ratios (82Kr/84Kr) further argue that the meteorite was derived from a shallow depth.

  15. Accounting For Greenhouse Gas Emissions From Flooded Lands (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a method...

  16. Law no 2002-3 from January 3, 2002 relative to the safety of transportation systems, to the technical inquiries after sea event, accident or incident during terrestrial or aerial transport, and to the underground storage of natural gas, hydrocarbons and chemical products; Loi no 2002-3 du 3 janvier 2002 relative a la securite des infrastructures et systemes de transport, aux enquetes techniques apres evenement de mer, accident ou incident de transport terrestre ou aerien et au stockage souterrain de gaz naturel, d'hydrocarbures et produits chimiques

    Energy Technology Data Exchange (ETDEWEB)



    This legislative text comprises 3 parts. The first part concerns the general safety of roadway, railway, airport, harbour and of any other infrastructure involved in the terrestrial, aerial, maritime or fluvial transport of goods or people in the French territory. The second part treats of the security of underground storage facilities for natural gas, hydrocarbons and other chemical products (obligations, rights-of-way). The last part deals with the carrying out of technical inquiries after any accident relative to a terrestrial, aerial or maritime transport. (J.S.)

  17. Solar wind record in the lunar regolith - Nitrogen and noble gases (United States)

    Frick, Urs; Becker, Richard H.; Pepin, Robert O.


    The measured elemental and isotopic abundances of noble gases and nitrogen have been measured in five different samples of lunar regolith material. It was found noble gases liberated by chemical attack on grain surfaces from two of the samples were solar. The Ne-20/Ne-22 ratio in the two grain surface reservoir is 13.5-13.6, compared to the average value of 13.7 + or - 0.3 measured in the Apollo solar wind collection foils (Gochsler and Geiss, 1977). It is suggested that the noble gases in grain interiors have suffered severe mass fractionation. The surface-sited N/Ar in an ilmenite sample exceeds the predicted solar ratio by more than a factor of 10. It is concluded that the solar system abundances of Cameron (1982) describe the elemental composition of the noble gases in the solar wind very well.

  18. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia manga

    NARCIS (Netherlands)

    Krystek, P.W.; Brandsma, S.H.; Leonards, P.E.G.; de Boer, J.


    The identification and quantification of the bioaccumulation of noble metal engineered nanoparticles (ENPs) by aquatic organisms is of great relevance to understand the exposure and potential toxicity mechanisms of nanoscale materials. Four analytical scenarios were investigated in relation to

  19. CsI-THGEM gaseous photomultipliers for RICH and noble-liquid detectors

    CERN Document Server

    Breskin, A; Cortesi, M; Budnik, R; Chechik, R; Duval, S; Thers, D; Coimbra, A E.C; dos Santos, J M.F; Lopes, J A.M; Azevedo, C D.R; Veloso, J F.C A


    The properties of UV-photon imaging detectors consisting of CsI-coated THGEM electron multipliers are summarized. New results related to detection of Cherenkov light (RICH) and scintillation photons in noble liquid are presented.

  20. Geology and ground-water resources of Nobles County, and part of Jackson County, Minnesota (United States)

    Norvitch, Ralph F.


    The area described in this report is in southwestern Minnesota, about 130 miles southwest of Minneapolis and St. Paul. It includes; Nobles County and the western tier of townships in Jackson County, a total of 864 square miles. Worthington, the Nobles County seat, is the largest city in the area, having a population of 9,015 persons (1960 census). Farming is the leading occupation, and food processing is the major industry. Critical water shortages have occurred in several parts of the area.

  1. Environmental pressure reduction with a new method of noble metal recovery (United States)

    Filippova, EV


    Discoveries in the area of hydrometallurgy of noble metals can be of use in metal recovery from low-grade solutions and slurries, including liquid tailings. Efficiency of noble metal recovery and reduction in mining waste is gained owing to utilization of two forms of ion-exchange sorbent, including OH- for recovery of cyanic compounds of gold and cyanides, which allows abating burden on natural systems.

  2. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao


    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan (United States)

    Glein, Christopher R.


    Titan's thick N2-CH4 atmosphere is unlike any in the Solar System, and its origin has been shrouded in mystery for over half a century. Here, I perform a detailed analysis of chemical and isotopic data from the Cassini-Huygens mission to develop the hypothesis that Titan's (non-photochemical) atmospheric gases came from deep within. It is suggested that Titan's CH4, N2, and noble gases originated in a rocky core buried inside the giant satellite, and hydrothermal and cryovolcanic processes were critical to the creation of Titan's atmosphere. Mass balance and chemical equilibrium calculations demonstrate that all aspects of this hypothesis can be considered geochemically plausible with respect to contemporary observational, experimental, and theoretical knowledge. Specifically, I show that a rocky core with a bulk noble gas content similar to that in CI carbonaceous meteorites would contain sufficient 36Ar and 22Ne to explain their reported abundances. I also show that Henry's law constants for noble gases in relevant condensed phases can be correlated with the size of their atoms, which leads to expected mixing ratios for 84Kr (∼0.2 ppbv) and 132Xe (∼0.01 ppbv) that can explain why these species have yet to be detected (Huygens upper limit <10 ppbv). The outgassing of volatiles into Titan's atmosphere may be restricted by the stability of clathrate hydrates in Titan's interior. The noble gas geochemistry also provides significant new insights into the origin of N2 and CH4 on Titan, as I find that Ar and N2, and Kr and CH4 should exhibit similar phase partitioning behavior on Titan. One implication is that over 95% of Titan's N2 may still reside in the interior. Another key result is that the upper limit from the Huygens GC-MS on the Kr/CH4 ratio in Titan's atmosphere is far too low to be consistent with accretion of primordial CH4 clathrate, which motivates me to consider endogenic production of CH4 from CO2 as a result of geochemical reactions between liquid





    Climate change is already having impacts on terrestrial ecosystem services and such impacts are only expected to broaden and worsen as greenhouse gas emissions (GHGs) continue at their historic levels. To set appropriate policies for reducing GHG emissions, economists recommend the use of cost-benefit analysis. To perform such analyses, the predominant approach has been to use integrated assessment models. There is a need for more targeted valuation studies to serve as further evidence about ...

  5. Noble metal alloys for metal-ceramic restorations. (United States)

    Anusavice, K J


    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  6. Terrestrial ecosystems and climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, W.R. (Oak Ridge National Lab., TN (USA)); Schimel, D.S. (Colorado State Univ., Fort Collins, CO (USA). Natural Resources Ecology Lab.)


    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  7. Delayed Higher-Order Optical Nonlinearities in Noble Gases (United States)

    Tarazkar, Maryam; Romanov, Dmitri; Levis, Robert


    The role of higher-order Kerr effect (HOKE) in femtosecond laser filamentation is currently at the center of a controversy, as alleged crossover from positive to negative nonlinear refractive index at higher intensities was proposed to cause filament stabilization. Experimental evidence of HOKE crossover or lack thereof is being hotly debated. Motivated by this debate, we report the frequency-dependent nonlinear refractive index coefficients n2 and n4 for a series of atmospheric-pressure noble gases: helium, neon, argon, krypton, and xenon. The corresponding atomic hyperpolarizability coefficients are obtained via auxiliary static electric field approach developed on the basis of ab initio calculations implemented in Dalton program and performed at the CCSD level of theory with t-Aug-cc-PV5Z basis set. The n4 index is obtained using the relations between the degenerate six-wave mixing coefficient and some other frequency-dependent second hyperpolarizability coefficients, which can be calculated on the basis of n2via the auxiliary field approach. For all the investigated gases, the n4 indices are found to be positive over the wavelength range 300 nm-1500 nm. This result runs counter to the HOKE crossover hypothesis. The calculated n4 indices demonstrate considerable temporal dispersion, which progressively increases from helium to xenon. This feature implies delayed nonlinearity and calls for modifications in current theoretical models of filamentation process. We gratefully acknowledge financial support through AFOSR MURI Grant No. FA9550-10-1-0561.

  8. Viral nanoparticles, noble metal decorated viruses and their nanoconjugates. (United States)

    Capek, Ignác


    Virus-based nanotechnology has generated interest in a number of applications due to the specificity of virus interaction with inorganic and organic nanoparticles. A well-defined structure of virus due to its multifunctional proteinaceous shell (capsid) surrounding genomic material is a promising approach to obtain nanostructured materials. Viruses hold great promise in assembling and interconnecting novel nanosized components, allowing to develop organized nanoparticle assemblies. Due to their size, monodispersity, and variety of chemical groups available for modification, they make a good scaffold for molecular assembly into nanoscale devices. Virus based nanocomposites are useful as an engineering material for the construction of smart nanoobjects because of their ability to associate into desired structures including a number of morphologies. Viruses exhibit the characteristics of an ideal template for the formation of nanoconjugates with noble metal nanoparticles. These bioinspired systems form monodispersed units that are highly amenable through genetic and chemical modifications. As nanoscale assemblies, viruses have sophisticated yet highly ordered structural features, which, in many cases, have been carefully characterized by modern structural biological methods. Plant viruses are increasingly being used for nanobiotechnology purposes because of their relative structural and chemical stability, ease of production, multifunctionality and lack of toxicity and pathogenicity in animals or humans. The multifunctional viruses interact with nanoparticles and other functional additives to the generation of bioconjugates with different properties – possible antiviral and antibacterial activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Noble gases released by vacuum crushing of EETA 79001 glass (United States)

    Wiens, R. C.


    An EETA 79001 glass sample was crushed in a vacuum to observe the gases released. About 15 pct of the total gas concentrations were a mixture of a small amount of SPB-type gas with larger proportions of another air-like component. Less than 5 pct of the SPB gas was released by crushing, while 36-40 pct of the EETV (indigenous) gas was crush-released. The results are consistent with a siting of the EETV component in 10-100 micron vesicles seen in the glass. It is suggested that the SPB component is either in vesicles less than 6 microns in diameter or is primarily sited elsewhere.

  10. Terrestrial Subsurface Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Fredrickson, Jim K.


    The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free of microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our

  11. Tropical climates at the last glacial maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Farrera, I. [USTL, Montpellier (France). Lab. Paleoenvironnements et Palynologie; Harrison, S.P.; Prentice, I.C.; Jolly, D. [Max Planck Institute for Biogeochemistry, PO Box 10 01 64, D-07701 Jena (Germany); Ramstein, G.; von Grafenstein, U.; Pinot, S. [Laboratoire des Sciences du Climat et de l' Environnement, CEA Saclay, Batiment 709, Orme des Merisiers, F-91191 Gif-sur-Yvette cedex (France); Guiot, J. [IMEP CNRS, Case 451, Faculte de St Jerome, F-13397 Marseille cedex 20 (France); Bartlein, P.J. [Department of Geography, University of Oregon, Eugene, OR 97403 (United States); Bonnefille, R. [Palynology Laboratory, French Institute of Pondichery, 11 St. Louis Street., P.B. 33, Pondicherry 605 001 (India); Bush, M. [Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Cramer, W. [Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg, P.O. Box 60 12 03, D-14412 Potsdam (Germany); Holmgren, K. [Department of Physical Geography, Stockholm University, S-106 91 Stockholm (Sweden); Hooghiemstra, H. [Department of Palynology and Paleo/Actuo-ecology, University of Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam (Netherlands); Hope, G. [Research School of Pacific Studies, Australian National University, Canberra 0200, ACT (Australia); Lauritzen, S.E. [Department of Geology, University of Bergen, Allegaten 41, N-5007 Bergen (Norway); Ono, Y. [Laboratory of Geoecology, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060 (Japan); Stute, M. [Lamont-Doherty Earth Observatory, Route 9W, Palisades, NY 10964 (United States); Yu, G. [Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 210093 (China)


    Palaeodata in synthesis form are needed as benchmarks for the palaeoclimate modelling intercomparison project (PMIP). Advances since the last synthesis of terrestrial palaeodata from the last glacial maximum (LGM) call for a new evaluation, especially of data from the tropics. Here pollen, plant-macrofossil, lake-level, noble gas (from groundwater) and {delta}{sup 18}O (from speleothems) data are compiled for 18{+-}2 ka ({sup 14}C), 32 N-33 S. The reliability of the data was evaluated using explicit criteria and some types of data were reanalysed using consistent methods in order to derive a set of mutually consistent palaeoclimate estimates of mean temperature of the coldest month (MTCO), mean annual temperature (MAT), plant available moisture (PAM) and runoff (P-E). Cold-month temperature (MAT) anomalies from plant data range from -1 to -2 K near sea level in Indonesia and the S Pacific, through -6 to -8 K at many high-elevation sites to -8 to -15 K in S China and the SE USA. MAT anomalies from groundwater or speleothems seem more uniform (-4 to -6 K), but the data are as yet sparse; a clear divergence between MAT and cold-month estimates from the same region is seen only in the SE USA, where cold-air advection is expected to have enhanced cooling in winter. Regression of all cold-month anomalies against site elevation yielded an estimated average cooling of -2.5 to -3 K at modern sea level, increasing to {approx}-6 K by 3000 m. However, Neotropical sites showed larger than the average sea-level cooling (-5 to -6 K) and a nonsignificant elevation effect, whereas W and S Pacific sites showed much less sea-level cooling (-1 K) and a stronger elevation effect. (orig.)

  12. Terrestrial ecosystems and their change (United States)

    Anatoly Z. Shvidenko; Eric Gustafson; A. David McGuire; Vjacheslav I. Kharuk; Dmitry G. Schepaschenko; Herman H. Shugart; Nadezhda M. Tchebakova; Natalia N. Vygodskaya; Alexander A. Onuchin; Daniel J. Hayes; Ian McCallum; Shamil Maksyutov; Ludmila V. Mukhortova; Amber J. Soja; Luca Belelli-Marchesini; Julia A. Kurbatova; Alexander V. Oltchev; Elena I. Parfenova; Jacquelyn K. Shuman


    This chapter considers the current state of Siberian terrestrial ecosystems, their spatial distribution, and major biometric characteristics. Ongoing climate change and the dramatic increase of accompanying anthropogenic pressure provide different but mostly negative impacts on Siberian ecosystems. Future climates of the region may lead to substantial drying on large...

  13. Application of noble metals on line in Cofrentes NPP and operation experience; Aplicacion de metales nobles en linea en C.N. Cofrentes y experiencia de operacion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Zapata, J. D.


    Cofrentes NPP implemented in 2010 the Noble Metal Chemistry as a mitigation technique for the Primary System materials protection against IGSCC. the paper describes briefly the technology fundamentals, the implementation of the specific project, the initial application and the operating experience along the last 3 cycles of the plant. (Author)

  14. Extraction of Solar Wind Nitrogen and Noble Gases From the Genesis Gold Foil Collector (United States)

    Schlutter, D. J.; Pepin, R. O.


    The Genesis gold foil is a bulk solar wind collector, integrating fluences from all three of the wind regimes. Pyrolytic extraction of small foil samples at Minnesota yielded He fluences, corrected for backscatter, in good agreement with measurements by on-board spacecraft instruments, and He/Ne elemental ratios close to those implanted in collector foils deployed on the lunar surface during the Apollo missions. Isotopic distributions of He, Ne and Ar are under study. Pyrolysis to temperatures above the gold melting point generates nitrogen blanks large enough to obscure the solar-wind nitrogen component. An alternative technique for nitrogen and noble gas extraction, by room-temperature amalgamation of the gold foil surface, will be discussed. Ne and Ar releases in preliminary tests of this technique on small foil samples were close to 100% of the amounts expected from the high-temperature pyrolysis yields, indicating that amalgamation quantitatively liberates gases from several hundred angstroms deep in the gold, beyond the implantation depth of most of the solar wind. Present work is focused on two problems currently interfering with accurate nitrogen measurements at the required picogram to sub-picogram levels: a higher than expected blank likely due to tiny air bubbles rolled into the gold sheet during fabrication, and the presence of a refractory hydrocarbon film on Genesis collector surfaces (the "brown stain") that, if left in place on the foil, shields the underlying gold from mercury attack. We have found, however, that the film is efficiently removed within tens of seconds by oxygen plasma ashing. Potential nitrogen contaminants introduced during the crash of the sample return canister are inert in amalgamation, and so are not hazards to the measurements.

  15. Noble Estate Self-Government in Russia: Between the State and Civil Society

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Morozov


    Full Text Available This article is devoted to assessing the role of noble self-governance in the history of Russia. According to Boris Mironov, before the Great Reforms of the 1860s, each noble assembly was a part of civil society. This point of view has aroused objections and debate among Russian historians. Morozov analyzed the historiographical aspect of the problem and demonstrated the impact of the socio-political context of their scientific work on Russian historians. In his opinion, from a purely legal point of view, there is reason to conclude that the autonomy of noble assemblies increased in the first half of the 19th century. However, the question of the extent to which these opportunities were realized in practice has been poorly studied. In the literature, there are examples of effective methods of influencing the government at the noble assemblies despite legal restrictions, as well as examples of noble assemblies that did not restrain the arbitrariness of the crown authority, did not protect their members from its abuse, and did not serve as the expression of public opinion. Mironov’s attempt to place in doubt the fact of the widespread presence of absenteeism seems unconvincing to Morozov. However, he agrees with Mironov that after 1861, the nobility really became a part of civil society, because the activity of noble organizations increased substantially in many different directions, including the political. For almost half a century of its history, the noble corporate organization evolved from a traditional institution into a civil one, which retained many features of traditional organization.

  16. New Tracers of Gas Migration in the Continental Crust

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Mark D. [Woods Hole Oceanographic Inst., MA (United States)


    Noble gases are exceptional tracers in continental settings due to the remarkable isotopic variability between the mantle, crust, and atmosphere, and because they are inert. Due to systematic variability in physical properties, such as diffusion, solubility, and production rates, the combination of helium, neon, and argon provides unique but under-utilized indices of gas migration. Existing noble gas data sets are dominated by measurements of gas and fluid phases from gas wells, ground waters and hot springs. There are very few noble gas measurements from the solid continental crust itself, which means that this important reservoir is poorly characterized. The central goal of this project was to enhance understanding of gas distribution and migration in the continental crust using new measurements of noble gases in whole rocks and minerals from existing continental drill cores, with an emphasis on helium, neon, argon. We carried out whole-rock and mineral-separate noble gas measurements on Precambrian basement samples from the Texas Panhandle. The Texas Panhandle gas field is the southern limb of the giant Hugoton-Panhandle oil and gas field; it has high helium contents (up to ~ 2 %) and 3He/4He of 0.21 (± 0.03) Ra. Because the total amount of helium in the Panhandle gas field is relatively well known, crustal isotopic data and mass balance calculations can be used to constrain the ultimate source rocks, and hence the helium migration paths. The new 3He/4He data range from 0.03 to 0.11 Ra (total), all of which are lower than the gas field values. There is internal isotopic heterogeneity in helium, neon, and argon, within all the samples; crushing extractions yield less radiogenic values than melting, demonstrating that fluid inclusions preserve less radiogenic gases. The new data suggest that the Precambrian basement has lost significant amounts of helium, and shows the importance of measuring helium with neon and argon. The 4He/40Ar values are particularly useful

  17. Properties of an imaging gas scintillation proportional counter (United States)

    Ku, W. H.-M.; Hailey, C. J.


    An instrument which combines the improved energy resolution offered by the gas scintillation proportional counter (GSPC) with the submillimeter imaging capabilities of the multiwire proportional counter (MWPC) is described. The imaging gas scintillation proportional counter detects the centroid of the UV light excited by X-ray photons interacting in the noble gas of the GSPC with a UV sensitive gas in the MWPC. The prototype counter yields a measured performance of 9% (FWHM) energy resolution and 0.9 mm (FWHM) spatial resolution at 6 keV. Further design refinements should achieve 18% (FWHM) energy resolution and 0.6 mm (FWHM) spatial resolution at 1 keV.

  18. Noble gas concentrations and cosmic ray exposure ages of eight recently fallen chondrites (United States)

    Bogard, D. D.; Reynolds, M. A.; Simms, L. A.


    Abundances and isotopic compositions of He, Ne, Ar, and Xe have been measured in eight recently fallen chondrites. Ratios of concentrations of cosmic ray-produced He-3, Ne-21, Ne-22, and Ar-38 indicate that all eight samples experienced less than average cosmic ray shielding. He-3 and Ne-21 exposure ages were calculated using shielding corrected chondritic production rates and the measured Ne-22/Ne-21. Exposure ages calculated from Na-22/Ne-22 and Al-26/Ne-21 ratios and constant relative production rates show a bias between the two ages due to variations in Na-22/Al-26. Arguments are presented that this bias is due to irradiation hardness differences, and therefore the use of constant values for both the Na-22/Ne-22 and Al-26/Ne-21 production ratios is not permitted.

  19. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener (United States)

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan


    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  20. New method of 85Kr reduction in a noble gas based low-background detector (United States)

    Akimov, D. Yu.; Bolozdynya, A. I.; Burenkov, A. A.; Hall, C.; Kovalenko, A. G.; Kuzminov, V. V.; Simakov, G. E.


    Krypton-85 is an anthropogenic beta-decaying isotope which produces low energy backgrounds in dark matter and neutrino experiments, especially those based upon liquid xenon. Several technologies have been developed to reduce the Kr concentration in such experiments. We propose to augment those separation technologies by first adding to the xenon an 85Kr-free sample of krypton in an amount much larger than the natural krypton that is already present. After the purification system reduces the total Kr concentration to the same level, the final 85Kr concentration will be reduced even further by the dilution factor. A test cell for measurement of the activity of various Kr samples has been assembled, and the activity of 25-year-old krypton has been measured. The measured activity agrees well with the expected activity accounting for the 85Kr abundance of the earth's atmosphere in 1990 and the half-life of the isotope. Additional tests with a Kr sample produced in the year 1944 (before the atomic era) have been done in order to demonstrate the sensitivity of the test cell.

  1. Noble Gas Plasmas with Metallic Conductivity: A New Light Source from a New State of Matter (United States)


    fiberglass board 2mm conductivity and optical accessibility-- Circuit boards made as a simple fast method of measuring Optical prop and resistivity. ...plasmas can be used for rapid, broadband optical switching and high-harmonic generation. The views, opinions and/or findings contained in this report are... optical switching and high- harmonic generation. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or

  2. A Simple Model for Fine Structure Transitions in Alkali-Metal Noble-Gas Collisions (United States)


    by inspection, using plots similar to Figure 14 which show the probability amplitude (top) and scaled absolute square of the probability amplitude (bottom...interpolation to match the given value of kinetic energy to the turning point. The phase of the probability amplitude in Equation 31 was set to zero at the point

  3. Corrosion Resistance of Nanosized Silicon Carbide-Rich Composite Coatings Produced by Noble Gas Ion Mixing. (United States)

    Racz, A S; Kerner, Z; Nemeth, A; Panjan, P; Peter, L; Sulyok, A; Vertesy, G; Zolnai, Z; Menyhard, M


    Ion beam mixing has been used to produce a silicon carbide (SiC)-rich nanolayer for protective coating. Different C/Si/C/Si/C/Si(substrate) multilayer structures (with individual layer thicknesses falling in the range of 10-20 nm) have been irradiated by Ar+ and Xe+ ions at room temperature in the energy and fluence ranges of 40-120 keV and 1-6 × 1016 ion/cm2, respectively. The effects of ion irradiation, including the in-depth distribution of the SiC produced, was determined by Auger electron spectroscopy depth profiling. The thickness of the SiC-rich region was only some nanometers, and it could be tailored by changing the layer structure and the ion irradiation conditions. The corrosion resistance of the layers was investigated by potentiodynamic electrochemical test in 4 M KOH solution. The measured corrosion resistance of the SiC-rich layers was orders of magnitude better than that of pure silicon, and a correlation was found between the corrosion current density and the effective areal density of the SiC.

  4. Influence of noble-gas ion irradiation on alumina barrier of magnetic tunnel junctions (United States)

    Sacher, M. D.; Sauerwald, J.; Schmalhorst, J.; Reiss, G.


    The transport properties of Co /Al2O3/Co magnetic tunnel junctions with ion-irradiated tunneling barrier are reported. The irradiation by He+ and Ar+ with energies ranging from 15to105eV takes place in situ after oxidation of the 1.4-nm-thick Al layer. For both ion species the area resistance of the junctions increases strongly with ion energy, simultaneously the tunneling magnetoresistance is reduced. But the energy dependence of both properties is different for He+ and Ar+ irradiations. Additionally the bias voltage dependence of the tunneling magnetoresistance is deteriorated with increasing ion energy especially for Ar+ irradiation. These experimental results are discussed with respect to the energy-dependent penetration depth of He+ and Ar+ and their energy loss in the barrier.

  5. Therapeutic gas delivery via microbubbles and liposomes. (United States)

    Fix, Samantha M; Borden, Mark A; Dayton, Paul A


    Gaseous molecules including nitric oxide, hydrogen sulfide, carbon monoxide and oxygen mediate numerous cell signaling pathways and have important physiological roles. Several noble gasses have been shown to elicit biological responses. These bioactive gasses hold great therapeutic potential, however, their controlled delivery remains a significant challenge. Recently, researchers have begun using microbubbles and liposomes to encapsulate such gasses for parenteral delivery. The resultant particles are acoustically active, and ultrasound can be used to stimulate and/or image gas release in a targeted region. This review provides a summary of recent advances in therapeutic gas delivery using microbubbles and liposomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Process for Making a Noble Metal on Tin Oxide Catalyst (United States)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy


    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  7. Origins of the terrestrial flora: A symbiosis with fungi?

    Directory of Open Access Journals (Sweden)

    Selosse Marc-André


    Full Text Available Land phototrophs need to exploit both atmosphere (providing gas and light and substrate (furnishing water and minerals. Yet, their algal ancestors were poorly pre-adapted to such a life at the interface. We review the paleontological evidence that fungal symbioses which can exploit substrate resources, helped adaptation to land constraints. Diverse structures dating back to the Devonian present convincing evidence for lichens, (symbioses between fungi and microscopic algae but fossils remain scarce, so that early lichen abundance and ecological relevance remain questionable. Several enigmatic but abundant fossils from the Siluro-Devonian, such as Spongiophytonor the giant Prototaxites (Nematophytes, likely represent fungus-algal symbioses, which shaped early terrestrial ecosystems. Yet, these taxa are fully extinct, and do not have clear affinities with extant groups. Finally, terrestrialization of Embryophyta (land plants, which currently dominate land ecosystems, is linked to a symbiosis with Glomeromycetes. Today, these fungi form arbuscular mycorrhizae, which help most Embryophyta to exploit soil, and molecular data combined with paleontological evidence support the idea that this type of association is ancestral. The role of symbiotic Mucoromycetes during terrestrialization is not fully understood and mycorrhizal association diversified later in the evolution of Embryophyta. Fungal-algal symbioses thus recurrently contributed to terrestrialization of phototrophs.

  8. Terrestrial hyperspectral image shadow restoration through fusion with terrestrial lidar (United States)

    Hartzell, Preston J.; Glennie, Craig L.; Finnegan, David C.; Hauser, Darren L.


    Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from exclusively airborne observations to include terrestrial modalities. In contrast to airborne collection geometry, hyperspectral imagery captured from terrestrial cameras is prone to extensive solar shadowing on vertical surfaces leading to reductions in pixel classification accuracies or outright removal of shadowed areas from subsequent analysis tasks. We demonstrate the use of lidar spatial information for sub-pixel HSI shadow detection and the restoration of shadowed pixel spectra via empirical methods that utilize sunlit and shadowed pixels of similar material composition. We examine the effectiveness of radiometrically calibrated lidar intensity in identifying these similar materials in sun and shade conditions and further evaluate a restoration technique that leverages ratios derived from the overlapping lidar laser and HSI wavelengths. Simulations of multiple lidar wavelengths, i.e., multispectral lidar, indicate the potential for HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance of shadowed HSI pixels is quantified for imagery of a geologic outcrop through improvements in spectral shape, spectral scale, and HSI band correlation.

  9. An Atomistic Study of the Incorporation and Diffusion of Noble Gases in Silicate Minerals (United States)

    Pinilla, C.; Valencia, K.; Martinez-Mendoza, C.; Allan, N.


    Trace elements are widely used to unravel magmatic processes and constrain the chemical differentiation of the Earth. Central to this enterprise is understanding the controls on trace element fractionation between solid and liquid phases and thus the energetics of incorporating trace elements into crystals. In this contribution we focus on the incorporation of noble gases into crystals, with implications for the degassing processes in the Earth and the atmosphere. We use both ab-initio and classical calculations using interatomic potentials to study the uptake of the noble gases He, Ne and Ar into solid silicates. We calculate atomic defect energies of incorporation both at vacancies and at interstitial positions in solid forsterite. We use these energies to estimate the total uptake of the noble gases bulk into the crystal as a function of temperature. Such concentrations are found to be very low (10-3 and 10-10 ppm) for He up to Ar respectively with the noble gases incorporated predicted to be more favorable at intrinsic vacancies of Si or Mg or at interstitials sites. We also look at the diffusion of these minerals within the lattice and estimate activation energies for such processes. Our results support the hypothesis that noble gases have very low solubilities in bulk solid minerals. Other mechanisms such as adsorption at internal and external interfaces, voids and grain boundaries that can play a mayor role in their storage are also briefly discussed.

  10. Mars : a small terrestrial planet


    Mangold, N.; Baratoux, David; Witasse, O.; Encrenaz, T.; Sotin, C.


    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for rem...

  11. Of vacuum and gas

    CERN Multimedia

    Katarina Anthony


    A new LHCb programme is delving into uncharted waters for the LHC: exploring how protons interact with noble gases inside the machine pipe. While, at first glance, it may sound risky for the overall quality of the vacuum in the machine, the procedure is safe and potentially very rich in rewards. The results could uncover the high-energy helium-proton cross-section (with all the implications thereof), explore new boundaries of the quark-gluon plasma and much more.   As the beam passes through LHCb, interactions with neon gas allow the experiment to measure the full beam profile. In this diagram, beam 1 (blue) and beam 2 (red) are measured by the surrounding VELO detector. It all begins with luminosity. In 2011, LHCb set out to further improve its notoriously precise measurements of the beam profile, using the so-called Beam-Gas Imaging (BGI) method. BGI does exactly what it says on the tin: a small amount of gas is inserted into the vacuum, increasing the rate of collisions around the interaction ...

  12. Noble gases in 'phase Q' - Closed-system etching of an Allende residue (United States)

    Wieler, Rainer; Baur, Heinrich; Signer, Peter; Anders, Edward; Lewis, Roy S.


    Results are presented from an analysis, in nearly pure form, of noble gases from the 'phase-Q' in an HF/HCl residue of the Allende C3V meteorite, using the closed-system stepped etching technique developed by Wieler et al. (1986) and Benkert et al. (1988) to extract noble gases from the residue. The results yield precise values of element and isotope abundances of all five noble gases in phase-Q, which is the major carrier of the planetary gases in carbonaceous chondrites. It was found that Ne-Q and Xe-Q in Allende are very similar to trapped gases in ureilites and in oxidizable carriers in several classes of ordinary chandrites, indicating that Q-gases are present in the formation locations of all these meteorites.

  13. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.


    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulated waste feeds from Hanford, Savannah River, and Germany were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600{degrees}C--1000{degrees}C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO{sub 2}), and palladium (Pd), as well as their alloys, were seen. the majority of particles and agglomerates were generally less than 10 microns; however, large agglomerations (up to 1 mm) were found in the German feed. Detailed particle distribution and characterization was performed for a Hanford waste to provide input to computer modeling of particle settling in the melter.

  14. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico (United States)

    Mazor, E.; Truesdell, A.H.


    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He and 40Ar) and atmospheric noble gases (Ne, Ar and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water that penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic He and 40Ar formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 - 30%) and mixing with shallow cold water occurred (0 - 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 - 3% steam separation and complement other tracers, such as C1 or temperature, which are effective only beyond this range. ?? 1984.

  15. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mazor, E. (Weizmann Inst. of Science, Rehovot, Israel); Truesdell, A.H.


    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He, /sup 40/Ar) and atmospheric noble gases (Ne, Ar, and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic helium and argon-40 formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 to 3%) and mixing with shallow cold water occurred (0 to 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 to 3% steam separation and complement other tracers, such as Cl or temperature, which are effective only beyond this range.

  16. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.


    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  17. Aptamer functionalized noble metal particles for bioanalytical and biomedical applications (United States)

    Yasun, Emir

    Noble metal particles, especially gold (Au) and silver (Ag) have been exploited in a broad range of biological applications due to their unique intrinsic features that depend on their physical appearance or optoelectronic properties, which can be tuned with the change in the size or shape of those particles. Thus, this tunability enables gold nanoparticles (AuNPs) to be used in biomedical diagnostic and therapeutical applications. In photothermal therapy applications, nanomaterials, which can absorb efficiently in NIR region, are utilized since the healthy tissue or cells can't absorb at this spectral region. Among AuNPs, gold nanorods (AuNRs) are one of the best candidates for hyperthermia therapy of cancer cells with their high absorption cross-sections and tunable absorption maxima in NIR region. When this unique optical property is combined with the specificity against cancer cells utilized by aptamer conjugations, AuNRs become to be one of the most important nanoparticles employed in both cancer cell sensing and therapy. However, one drawback of AuNRs is having the surfactant CTAB on their surface, which can cause nonspecificity and cytotoxicity. In this research, the side effects of CTAB are passivated by BSA modification, where the nonspecificity and cytotoxicity are dramatically decreased prior to the NIR treatment. Recognition of changes in the rare cancer protein abundances can lead the early diagnosis of cancer, so capturing these low abundance proteins has a great significance. In this research, firstly, aptamer conjugated AuNRs were used to capture 1ng of a-thrombin effectively from plasma samples as model system. Then both aptamer conjugated AuNRs and silver microspheres (SMSs) are used to capture the biomarker proteins of a colon cancer cell line, DLD-1. Gold and silver surfaces can easily be modified through thiolate chemistry, compared to the tedious modification steps for the magnetic particles, so more aptamer immobilization can be achieved for

  18. Liquid scintillation counting of polycarbonates: a sensitive technique for measurement of activity concentration of some radioactive noble gases. (United States)

    Mitev, K; Zhivkova, V; Pressyanov, D; Georgiev, S; Dimitrova, I; Gerganov, G; Boshkova, T


    This work explores the application of the liquid scintillation counting of polycarbonates for measurement of the activity concentration of radioactive noble gases. Results from experimental studies of the method are presented. Potential applications in the monitoring of radioactive noble gases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. 75 FR 5782 - Noble Energy Marketing and Trade Corporation; Supplemental Notice That Initial Market-Based Rate... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Noble Energy Marketing and Trade Corporation; Supplemental Notice That.... This is a supplemental notice in the above-referenced proceeding of Noble Energy Marketing and Trade...


    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  1. Mean ocean temperature change over the last glacial transition based on heavy noble gases in the atmosphere (United States)

    Bereiter, Bernhard; Severinghaus, Jeff; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji


    On paleo-climatic timescales heavy noble gases (krypton and xenon) are conserved in the atmosphere-ocean system and are passively cycled through this system without interaction with any biogeochemical process. Due to the characteristic temperature dependency of the gas solubility factors in sea water, the atmospheric noble gas content is unambiguously linked to mean global ocean temperature (MOT). Here we use this proxy to reconstruct MOT over the course of the last glacial transition based on measurements of trapped air in the WAIS Divide ice core. We analyzed 78 ice samples with a recently developed method that yields the isotopic ratios of N2, Ar, Kr and the elemental ratios of Kr/N2, Xe/N2 and Xe/Kr in the trapped air with the required precision. Based on the isotopic ratios we correct the elemental ratios for the fractionation processes in the firn column to obtain the true atmospheric values. On the basis of a 4-box model that incorporates effects of sea-level change, different saturation states of the water and different temperature distributions in the global ocean, we infer MOT based on the three elemental ratio pairs and assess its uncertainty. On average, the uncertainty of our MOT record is +/- 0.27°C, which is a significant improvement to earlier studies that reached about +/- 1°C uncertainty. This allows an unprecedented assessment of the glacial-interglacial MOT difference, as well as a direct comparison between MOT and climate change for the first time. We find a LGM-Holocene difference of 2.6°C, which is on the lower end of what earlier studies have suggested (3 +/- 1°C) and provides a new constraint on ocean heat uptake over the last glacial transition. Furthermore, we find a very close relation between MOT and Antarctic temperatures which shows for the first time the effect of Atlantic overturning circulation changes on global ocean heat uptake. Finally, our record shows a MOT warming rate during the Younger Dryas that is almost double to

  2. A colossal impact enriched Mars' mantle with noble metals (United States)

    Brasser, R.; Mojzsis, S. J.


    Once the terrestrial planets had mostly completed their assembly, bombardment continued by planetesimals left over from accretion. Highly siderophile element (HSE) abundances in Mars' mantle imply that its late accretion supplement was 0.8 wt %; Earth and the Moon obtained an additional 0.7 wt % and 0.02 wt %, respectively. The disproportionately high Earth/Moon accretion ratio is explicable by stochastic addition of a few remaining Ceres-sized bodies that preferentially targeted Earth. Here we show that Mars' late accretion budget also requires a colossal impact, a plausible visible remnant of which is the emispheric dichotomy. The addition of sufficient HSEs to the Martian mantle entails an impactor of at least 1200 km in diameter to have struck Mars before 4430 Ma, by which time crust formation was well underway. Thus, the dichotomy could be one of the oldest geophysical features of the Martian crust. Ejected debris could be the source material for its satellites.

  3. Geological structure and prospects of noble metal ore mineralization of the Khayrkhan gabbroid massif (Western Mongolia) (United States)

    Kurumshieva, K. R.; Gertner, I. F.; Tishin, P. A.


    An analysis of the distribution of noble metals in zones of sulfide mineralization makes it possible to justify the isolation of four ore-bearing horizons with a specific geochemical zonation. A rise in the gold content relative to palladium and platinum is observed from the bottom upwards along the section of the stratified series of gabbroids. The study of the mineral phases of sulphides and the noble minerals itself indicates the evolution of hydrothermal solutions, which determines the different activity and mobility of the fluid (mercury, tellurium, sulfur) and ore (copper, nickel, iron, platinum, gold and silver) components.

  4. Current state and problems of noble hardwoods plants: the Regions’ point of view

    Directory of Open Access Journals (Sweden)

    Calvo E


    Full Text Available This paper illustrates the current state of noble hardwoods plants established in Italy since early ’90s, with the aim of describing the extension, distribution and quality of wood production obtained. Based on both results of this investigation and advices issued by administrative Regions, several considerations are discussed aimed to identify new directions for research and extension activities, as well as to support appropriate managing practices, in the light of the absence of an integrated system among the noble hardwoods productions, the agricultural sector and the timber market.

  5. Gas and Gas Pains (United States)

    ... Gas and gas pains Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  6. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B


    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  7. Effect of the medium on intramolecular H-atom tunneling: cis-trans conversion of formic acid in solid matrixes of noble gases. (United States)

    Trakhtenberg, Leonid I; Fokeyev, Anatoly A; Zyubin, Alexander S; Mebel, Alexander M; Lin, S H


    Intramolecular tunneling of a hydrogen atom in formic acid at low temperatures has been studied theoretically on the basis of quantum-chemical modeling of HCOOH@Nb(12) clusters. Three noble matrixes (Ar, Kr, and Xe) are considered. Energetic and geometric parameters as well as vibrational frequencies for the formic acid in cis and trans configurations surrounded by 12 Nb atoms are calculated within the frame of the MP2 approach with extended basis sets. The rate constant of HCOOH cis-trans conversion is analyzed by taking into account matrix reorganization and the change of HCOOH position in the cluster. The matrix reorganization is considered within the Debye model of lattice vibrations, whereas the external motion of HCOOH in the cluster is treated using the Einstein model of solids. It has been shown that the literature experimental data on the cis to trans tunneling reaction in the formic acid can be accounted for within the proposed mechanism, which describes the matrix reorganization and the change of the HCOOH position in the noble gas matrix, with fitting parameters of the suggested theoretical model attaining reasonable values.

  8. Estimation of self-absorption effect on aluminum emission in the presence of different noble gases: comparison between thin and thick plasma emission. (United States)

    Rezaei, F; Karimi, P; Tavassoli, S H


    Aluminum spectra in the noble gases of helium and argon at initial delay times after plasma formation are numerically calculated. Temporal behavior of plasma emissions up to 200 ns after laser irradiation is investigated. Plasma parameters are computed by coupling the thermal model of laser ablation, hydrodynamic of plasma expansion, and Saha-Eggert equations. A spectrum is constructed from the superposition of 13 strong lines of aluminum and several strong lines of ambient gases. Spectral radiations are superimposed on a continuous emission composed of bremsstrahlung and recombination radiation. The self-absorption effect on plasma radiation at 1 atm gas pressure is studied. In this paper, a comparison between thin and thick aluminum radiation is done. Furthermore, the self-absorption coefficient of each strong line at laser energies of 0.5, 0.7, 0.9, and 1.1 GW/cm(2) is estimated. Results show that at specific laser energy, the self-absorption effect in argon is more significant than in helium. For most of the spectral lines in both noble gases, the self-absorption coefficient will diminish with the delay time. As indicated with passing time, the line widths of the self-absorbed lines will rise. More intense continuous emissions are observed at higher wavelengths, and these radiations will be increased with laser energy.

  9. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making (United States)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg


    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  10. Workshop on Oxygen in the Terrestrial Planets (United States)


    Lunar Metal Grains: Solar, Lunar or Terrestrial Origin? 22) Isotopic Zoning in the Inner Solar System; 23) Redox Conditions on Small Bodies; 24) Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update; 25) Mantle Redox Evolution and the Rise of Atmospheric O2; 26) Variation of Kd for Fe-Mg Exchange Between Olivine and Melt for Compositions Ranging from Alkaline Basalt to Rhyolite; 27) Determining the Partial Pressure of Oxygen (PO,) in Solutions on Mars; 28) The Influence of Oxygen Environment on Kinetic Properties of Silicate Rocks and Minerals; 29) Redox Evolution of Magmatic Systems; 30) The Constancy of Upper Mantlefo, Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric 0 2; 31) Nitrogen Solubility in Basaltic Melt. Effects of Oxygen Fugacity, Melt Composition and Gas Speciation; 32) Oxygen Isotope Anomalies in the Atmospheres of Earth and Mars; 33) The Effect of Oxygen Fugacity on Interdiffusion of Iron and Magnesium in Magnesiowiistite 34) The Calibration of the Pyroxene Eu-Oxybarometer for the Martian Meteorites; 35) The Europium Oxybarometer: Power and Pitfalls; 36) Oxygen Fugacity of the Martian Mantle from PigeoniteMelt Partitioning of Samarium, Europium and Gadolinium; 37) Oxidation-Reduction Processes on the Moon: Experimental Verification of Graphite Oxidation in the Apollo 17 Orange Glasses; 38) Oxygen and Core Formation in the Earth; 39) Geologic Record of the Atmospheric Sulfur Chemistry Before the Oxygenation of the Early Earth s Atmosphere; 40) Comparative Planetary Mineralogy: V/(CrCAl) Systematics in Chromite as an Indicator of Relative Oxygen Fugacity; 41) How Well do Sulfur Isotopes Constrain Oxygen Abundance in the Ancient Atmospheres? 42) Experimental Constraints on the Oxygen Isotope (O-18/ O-16) Fractionation in the Ice vapor and Adsorbant vapor Systems of CO2 at Conditions Relevant to the Surface of Mars; 43) Micro-XANES Measurements on Experimental Spinels andhe

  11. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot1[OPEN (United States)

    Collins, Thomas S.; Vicente, Ariel R.; Doyle, Carolyn L.; Ye, Zirou; Allen, Greg; Heymann, Hildegarde


    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. PMID:26450706

  12. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar


    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  13. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole


    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  14. Development of active, and stable water-gas-shift reaction catalysts for fuel cell applications

    NARCIS (Netherlands)

    Azzam, K.G.H.; Babich, Igor V.; Seshan, Kulathu Iyer; Lefferts, Leon


    Water-gas-shift (WGS) reaction CO + H2O = CO2 + H2, is a key step in the generation of H2 for fuel cells. Noble metal-based catalysts are promising single stage WGS catalysts because they less sensitive than LTS catalysts (Cu based) and more active than the HTS (Ni) catalysts. High activity in CO

  15. Terrestrial ecosystems under warmer and drier climates (United States)

    Pan, Y.


    Future warmer and drier climates will likely affect many of the world's terrestrial ecosystems. These changes will fundamentally reshape terrestrial systems through their components and across organization levels. However, it is unclear to what extent terrestrial ecosystems would be resilient enough to stay put to increased temperature and water stress by only adjusting carbon fluxes and water balances? And to what extent it would reach the thresholds at which terrestrial ecosystems were forced to alter species compositions and ecosystem structures for adapting to newer climates? The energy balance of terrestrial ecosystems link thermal and water conditions to defines terrestrial carbon processes and feedbacks to climate, which will inevitably change under warmer and drier climates. Recent theoretical studies provide a new framework, suggesting that terrestrial ecosystems were capable of balancing costs of carbon gain and water transport to achieve optimums for functioning and distribution. Such a paradigm is critical for understanding the dynamics of future terrestrial ecosystems under climate changes, and facilitate modeling terrestrial ecosystems which needs generalized principles for formulating ecosystem behaviors. This study aims to review some recent studies that explore responses of terrestrial ecosystems to rather novel climate conditions, such as heat-induced droughts, intending to provide better comprehension of complex carbon-water interactions through plants to an ecosystem, and relevant factors that may alleviate or worsen already deteriorated climates such as elevated CO2 and soil conditions.

  16. Groundwater and Terrestrial Water Storage (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.


    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  17. Consumer Control of Terrestrial Ecosystems (United States)

    Frank, D.


    More than half of the earth's terrestrial surface is grazed by large herbivores and their effects on plant and soil carbon and nitrogen processes are large and widespread. Yet the large effects of these animals on terrestrial processes have largely been ignored in global change models. This presentation will explore the many pathways that consumers affect short and long time-scale terrestrial nitrogen and carbon processes. Large herbivores influence the quality of soil organic matter and the size of the active (i.e., labile) pool of soil carbon and nitrogen in several ways. Herbivory leads to greater abundance of species producing low quality material in forest and dry grassland, via feeding preferentially on high quality forage, and high quality material in mesic grassland habitat, via the high quality of material that regrows after a plant is grazed. Defoliation stimulates the rate of root exudation that enhances rhizospheric processes and the availability of nitrogen in the plant rhizosphere. Herbivores also change the species composition of mycorrhizae fungal associates that influence plant growth and affect soil structure and the turnover rate of soil carbon. Recent radiocarbon measurements have revealed that herbivores also markedly affect the turnover dynamics of the large pool of old soil carbon. In Yellowstone Park, ungulates slow the mean turnover of the relatively old (i.e., slow and passive) 0 - 20 cm deep soil organic carbon by 350 years in upland, dry grassland and speed up that rate in slope-bottom, mesic grassland by 300 years. This represents a 650 year swing in the turnover period of old soil carbon across the Yellowstone landscape. By comparison, mean turnover time for the old pool of 0 - 10 cm deep soil organic carbon shifts by about 300 years across the steep climatic gradient that includes tropical, temperate, and northern hardwood forest, and tallgrass, shortgrass and desert grassland. This large body of evidence suggests consumers play a

  18. Transport Properties of operational gas mixtures used at LHC

    CERN Document Server

    Assran, Yasser


    This report summarizes some useful data on the transport characteristics of gas mixtures which are required for detection of charged particles in gas detectors. We try to replace Freon used for RPC detector in the CMS experiment with another gas while maintaining the good properties of the Freon gas mixture unchanged. We try to switch to freonless gas mixture because Freon is not a green gas, it is very expensive and its availability is decreasing. Noble gases like Ar, He, Ne and Xe (with some quenchers like carbon dioxide, methane, ethane and isobutene) are investigated. Transport parameters like drift velocity, diffusion, Townsend coefficient, attachment coefficient and Lorentz angle are computed using Garfield software for different gas mixtures and compared with experimental data.

  19. Characterisation and radiolysis of modified lithium orthosilicate pebbles with noble metal impurities

    DEFF Research Database (Denmark)

    Tamulevičius, Sigitas; Zariņš, A.; Valtenbergs, O.


    Li4SiO4 pebbles during the melt-based process, due to the corrosion of Pt-Rh and Pt-Au alloy crucible components. In this study, the surface microstructure, chemical and phase composition of the modified Li4SiO4 pebbles with different contents of the noble metals was analysed. The influence......Modified lithium orthosilicate (Li4SiO4) pebbles with additions of titanium dioxide (TiO2) are suggested as an alternative tritium breeding ceramic for the European solid breeder test blanket module. The noble metals – platinum (Pt), gold (Au) and rhodium (Rh), can be introduced into the modified...... of the noble metals on the radiolysis was evaluated after irradiation with accelerated electrons (E = 5 MeV), up to 12 MGy absorbed dose at 300–345 K in a dry argon atmosphere. Using electron spin resonance (ESR) spectroscopy, it was determined that the noble metals (up to 300 ppm) do not significantly...

  20. Gravity effects on a gliding arc in four noble gases: from normal to hypergravity

    NARCIS (Netherlands)

    Potočňáková, L.; Šperka, J.; Zikán, P.; van Loon, J.J.W.A.; Beckers, J.; Kudrle, V.


    A gliding arc in four noble gases (He, Ne, Ar, Kr) has been studied under previously unexplored conditions of varying artificial gravity, from normal 1 g gravity up to 18 g hypergravity. Significant differences, mainly the visual thickness of the plasma channel, its maximum elongation and general

  1. The determination of accurate dipole polarizabilities alpha and gamma for the noble gases (United States)

    Rice, Julia E.; Taylor, Peter R.; Lee, Timothy J.; Almlof, Jan


    Accurate static dipole polarizabilities alpha and gamma of the noble gases He through Xe were determined using wave functions of similar quality for each system. Good agreement with experimental data for the static polarizability gamma was obtained for Ne and Xe, but not for Ar and Kr. Calculations suggest that the experimental values for these latter ions are too low.

  2. Physical properties of some noble metal compounds from PAW-DFT ...

    African Journals Online (AJOL)

    The heats of formation, shear modulus, fracture toughness, density and melting points of compounds formed between some noble metals and aluminum, scandium, hafnium and zirconium were evaluated by the ab initio quantum mechanical projector augmented wave (PAW) calculation methods, using the Density ...

  3. Percutaneous coronary intervention versus coronary artery bypass grafting: where are we after NOBLE and EXCEL? (United States)

    Fortier, Jacqueline H; Shaw, Richard E; Glineur, David; Grau, Juan B


    The publication of the NOBLE and EXCEL trials, with seemingly conflicting results, brought into question whether percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) is better for low-risk patients with left main coronary artery stenosis (LMCAS). This review appraises the methods and results of NOBLE and EXCEL, contextualizes them within the literature, and determines how they may affect clinical practice. We appraised the trials and describe differences in methodology and results. NOBLE recruited primarily isolated LMCAS, and found that CABG was superior to PCI. EXCEL's population included patients LMCAS in the context of multivessel CAD, and found PCI and CABG were comparable. Both trials enrolled young patients with few comorbidities, and there was more protocol-mandated consistency in the procedural techniques and medical therapy of patients receiving PCI. The generalizability of these trials is limited by the use of young, healthy patients at highly skilled centres that rarely reflect typical clinical practice. If these studies are to maintain relevance, trialists must address the lack of protocolization of surgical interventions and inconsistent medical therapies. Unfortunately, the limitations of NOBLE and EXCEL mean that we are no closer to answering the question of what is the optimal treatment for patients with LMCAS.

  4. A noble circle. The vogue for collecting Italian paintings in Denmark 1690-1730

    DEFF Research Database (Denmark)

    Svenningsen, Jesper


    This article presents a closer look at an important moment in the history of art collecting in Denmark when Italian art first began to be admired by noble virtuosi. During the last decade of the 17th and first quarter of the 18th century, a number of art collections were formed by young Danish no...

  5. A noble additive cum compatibilizer for dispersion of nanoclay into ethylene octene elastomer

    CSIR Research Space (South Africa)

    Mondal, S


    Full Text Available This paper introduces a poly(ethylene-co-octene)-poly(ethylene-co-vinyl acetate) double network hybrid as a noble additive cum compatibilizer for poly(ethylene-co-octene) (POE). The addition of only 0.5 mass% of the hybrid into POE has raised...

  6. Parametric study of the Noble's action potential model for cardiac Purkinje fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P.K.C. [Department of Electrical Engineering, University of California, Los Angeles, CA 90095-1594 (United States); Kogan, B.Y. [Department of Computer Science, University of California, Los Angeles, CA 90095-1594 (United States)]. E-mail:


    The effect of parameter variation on repolarization processes in the Noble model (Hodjkin-Huxley type) for action potential (AP) generation in Purkinje cells is studied using a combination of computer simulation and nonlinear dynamic system theory including Hopf bifurcation analysis. Both the original Noble model and a simplified Noble model are used in this study. It is shown that these models have similar qualitative dynamic behavior in the presence of parameter variations. In particular, it is demonstrated that both normal and abnormal modes of cell performance can be obtained by varying the potassium and anion conductances. The abnormal mode (cardiac arrest) may play a significant role in disorganizing the electrical activities in the heart muscles. The existence of Hopf bifurcation with respect to variations in the anion conductance and fixed values of potassium conductances is studied in detail. The regions corresponding to spontaneous AP excitation, and various types of cardiac arrest in the ion-conductance parameter space of both full and simplified Noble models with and without external stimuli are mapped out using computer simulation.

  7. physical properties of some noble metal compounds from paw-dft ...

    African Journals Online (AJOL)


    ABSTRACT. The heats of formation, shear modulus, fracture toughness, density and melting points of com- pounds formed between some noble metals and aluminum, scandium, hafnium and zirconium were evaluated by the ab initio quantum mechanical projector augmented wave (PAW) calcula- tion methods, using the ...

  8. Expeditious synthesis of noble metal nanoparticles using Vitamin B12 under microwave irradiation (United States)

    A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized ...

  9. Algunas notas sobre la infancia noble en la Baja Edad Media castellana


    Nora Arroñada, Silvia


    A través de las crónicas nobiliarias y otros textos que retratan a los nobles se indaga sobre la imagen de la infancia dentro de ese grupo social, la relación de los niños con sus padres y abuelos, la crianza, la educación y la muerte.


    Bulk and shape-controlled synthesis of gold (Au) nanostructures with various shapes such as prisms, cubes and hexagons is described that occurs via microwave-assisted spontaneous reduction of noble metal salts using an aqueous solution of α-D-glucose, sucrose and maltose. The exp...

  11. Amphibia, Centrolenidae, Centrolene antioquiense (Noble, 1920: New records and geographical distribution in Colombia

    Directory of Open Access Journals (Sweden)

    Rivera-Correa, M.


    Full Text Available The current work provides three new localities for Centrolene antioquiense (Noble, 1920, a small centrolenidendemic to Colombia and known for just four sites. An updated diagnosis and life pictures of this species are also presented.Centrolene antioquiense apparently inhabits the canopy of montane forest and its natural habitat has been severely reduceddue to deforestation.

  12. The iconography of the emblems in the Album of the Ljubljana Noble Society of St Dismas

    Directory of Open Access Journals (Sweden)

    Tine Germ


    Full Text Available ABSTRACTPurpose: The Album of the Ljubljana Noble Society of St Dismas is the most important illuminated manuscript of the Baroque era in Slovenia. It is of special interest also because it contains many interesting emblems. Until recently it has been known only to a few specialists. It was only in 1998, when the great project of the Facsimile was undertaken, that scholars started to pay due attention to this treasure of Baroque illumination and emblematics. For the first time the illuminations were systematically examined and an attempt was made to interpret their iconography. But unfortunately the iconographic catalogue to the Facsimile offers only basic descriptions. It does not provide sufficient analysis of the emblems and often the interpretation is inadequate.Methodology/approach: The article represents a case-study concentrating on the iconography of animals depicted in the emblems of the Album of the Ljubljana Noble Society of St Dismas.Results: The article points out the misconceptions in the interpretation of individual emblems in the Album of the Ljubljana Noble Society of St Dismas and brings a new, more adequate explanation.Research limitation: For a more thorough presentation of the emblems in the Album a detailed iconographic analysis of the miniatures should be undertaken.Originality/practical implications: The article develops an iconographic/iconological method of contextual analysis of baroque emblems which introduces a new understanding of the emblems in the Album of the Ljubljana Noble Society of St Dismas. It also points out methodological misconceptions in earlier interpretations.

  13. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples

    DEFF Research Database (Denmark)

    Agersnap, Sune; Larsen, William Brenner; Knudsen, Steen Wilhelm


    For several hundred years freshwater crayfish (Crustacea-Decapoda-Astacidea) have played an important ecological, cultural and culinary role in Scandinavia. However, many native populations of noble crayfish Astacus astacus have faced major declines during the last century, largely resulting from...

  14. Laser microprobe for the study of noble gases and nitrogen in single ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    A laser microprobe capable of analysing nitrogen and noble gases in individual grains with masses less than a milligram is described. It can be ... resulted in attenuation of laser energy reaching the sample surface during successive ... high vacuum (UHV) cleanup system to get low system blanks. Here we report in detail ...

  15. Effect of three-body forces on the lattice dynamics of noble metals

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 56; Issue 4. Effect of ... This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice dynamics of noble metals. ... Department of Physics, School of Sciences, Gujarat University, Ahmedabad 380 009, India ...

  16. Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications

    NARCIS (Netherlands)

    Goeken, K.L.; Subramaniam, V.; Gill, R.


    Noble metal nanoparticles possess very large scattering cross-sections, which make them useful as tags in biosensing assays with the potential to detect even single binding events. In this study, we investigated the effects of nanoparticle size on the shift in the light scattering spectrum following

  17. Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications

    NARCIS (Netherlands)

    Göeken, Kristian L; Subramaniam, Vinod; Gill, Ron


    Noble metal nanoparticles possess very large scattering cross-sections, which make them useful as tags in biosensing assays with the potential to detect even single binding events. In this study, we investigated the effects of nanoparticle size on the shift in the light scattering spectrum following

  18. The Case of the Noble Savage: The Myth That Governance Can Replace Leadership (United States)

    Warner, Linda Sue; Grint, Keith


    The presumption of American's noble savage provides the foundation for the creation of one of the world's most recognizable stereotypes--the American Indian. The stereotype, lodged in the minds of most Americans as the Plains Indian warrior, contributed to decades of misunderstanding about leadership in traditional American Indian societies and…

  19. Laser microprobe for the study of noble gases and nitrogen in single ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 1. Laser microprobe for the study of noble gases and nitrogen in single grains: A case study of individual chondrules from the Dhajala meteorite. R R Mahajan S V S Murty. Volume 112 Issue 1 March 2003 pp 113-127 ...

  20. Tectonic evolution of terrestrial planets (United States)

    Head, J. W.; Solomon, S. C.


    The tectonic style of each terrestrial planet, referring to the thickness and division of its lithosphere, can be inferred from surface features and compared to models of planetary thermal history. Factors governing planetary tectonic evolution are planet diameter, chemistry, and external and internal heat sources, all of which determine how a planet generates and rids itself of heat. The earth is distinguished by its distinct, mobile plates, which are recycled into the mantle and show large-scale lateral movements, whereas the moon, Mars, and Mercury are single spherical shells, showing no evidence of destruction and renewal of the lithospheric plates over the latter 80% of their history. Their smaller volume to surface area results in a more rapid cooling, formation, and thickening of the lithosphere. Vertical tectonics, due to lithospheric loading, is controlled by the local thickness and rheology of the lithosphere. Further studies of Venus, which displays both the craterlike surface features of the one-plate planets, and the rifts and plateaus of earth, may indicate which factors are most important in controlling the tectonic evolution of terrestrial planets.

  1. The Laboratory for Terrestrial Physics (United States)


    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  2. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions. (United States)

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N


    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  3. High stability breakdown of noble gases with femtosecond laser pulses. (United States)

    Heins, A M; Guo, Chunlei


    In the past, laser-induced breakdown spectroscopy (LIBS) signals have been reported to have a stability independent of the pulse length in solids. In this Letter, we perform the first stability study of femtosecond LIBS in gases (to our best knowledge) and show a significant improvement in signal stability over those achieved with longer pulses. Our study shows that ultrashort-pulse LIBS has an intrinsically higher stability in gas compared to nanosecond-pulse LIBS because of a deterministic ionization process at work in the femtosecond pulse. Relative standard deviations below 1% are demonstrated and are likely only limited by our laser output fluctuations. This enhanced emission stability may open up possibilities for a range of applications, from monitoring rapid gas dynamics to high-quality broadband light sources.

  4. Christian Values and Noble Ideas of Rank and their Consequences on Symbolic Acts

    Directory of Open Access Journals (Sweden)

    Gerd ALTHOFF


    Full Text Available In the Middle Ages a Christian system of values met the values of a noble warrior society. Although these two systems had completely different conceptions of norms, they adapted from each other certain values and symbolic forms to express these values.The development of this adaptation is depicted by treating the Christian values misericordia, humilitas and clementia. In which way did the noble warrior society take up these values and how did these norms possibly change?Misericordia, for example, became an essential part of noble behaviour, but the fundamental idea of Christian misericordia was changed. Helping the poor was often motivated by the nobles’ will to prove his mercy, not by personal compassion.Although the value of humilitas implied a sharp contrast to the values of honor and rank, one can find forms of expression, which revealed a noble’s or ruler’s humility. With his humble behaviour one proved one’s qualification and legitimacy. Humility was expressed with symbolic forms of expression like walking barefoot and in penitential clothes or making footfalls. Similarly, these forms were used in inner-secular communication to acknowledge the existing order of rank.The ritual of deditio combines the values humilitas and clementia. The author describes this ritual as a pre-arranged stage-play, in which the one’s humility granted the other’s clemency. These ‘stage-plays’ had only little in common with the original Christian virtues, but this way several elements of the Christian virtue system influenced the noble behaviour pattern.En la edad media el sistema de valores cristiano confluye con el de una sociedad noble guerrera. Aunque ambos sistemas tuvieron dos concepciones de normas completamente diferentes, sin embargo, cada uno de ellos adapto ciertos valores y sus expresiones simbólicas del otro.El desarrollo de esta adaptación es descrito a través de los valores cristianos de misericordia, humilitas y clementia

  5. Proton affinities of maingroup-element hydrides and noble gases: trends across the periodic table, structural effects, and DFT validation. (United States)

    Swart, Marcel; Rösler, Ernst; Bickelhaupt, F Matthias


    We have carried out an extensive exploration of the gas-phase basicity of archetypal neutral bases across the periodic system using the generalized gradient approximation (GGA) of the density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton affinities and related thermochemical quantities: BP86/QZ4P//BP86/TZ2P is shown to yield a mean absolute deviation of 2.0 kcal/mol for the proton affinity at 298 K with respect to experiment, and 1.2 kcal/mol with high-level ab initio benchmark data. The main purpose of this work is to provide the proton affinities (and corresponding entropies) at 298 K of the neutral bases constituted by all maingroup-element hydrides of groups 15-17 and the noble gases, that is, group 18, and periods 1-6. We have also studied the effect of step-wise methylation of the protophilic center of the second- and third-period bases. Copyright 2006 Wiley Periodicals, Inc.

  6. Noble Gases in Iddingsite from the Lafayette Meteorite: Evidence for Liquid Water on Mars in the Last Few Hundred Million Years (United States)

    Swindle, T. D.; Treiman, A. H.; Lindstrom, D. J.; Brkland, M. K.; Cohen, B. A.; Grier, J. A.; Li, B.; Olson, E. K.


    We analyzed noble gases from 18 samples of weathering products ("iddingsite") from the Lafayette meteorite. Potassium-argon ages of 12 samples range from near zero to 670 +/- 91 Ma. These ages confirm the martian origin of the iddingsite, but it is not clear whether any or all of the ages represent iddingsite formation as opposed to later alteration or incorporation of martian atmospheric Ar-40. In any case, because iddingsite formation requires liquid water, this data requires the presence of liquid water near the surface of Mars at least as recently as 1300 Ma ago, and probably as recently as 650 Ma ago. Krypton and Xe analysis of a single 34 microg sample indicates the presence of fractionated martian atmosphere within the iddingsite. This also confirms the martian origin of the iddingsite. The mechanism of incorporation could either be through interaction with liquid water during iddingsite formation or a result of shock implantation of adsorbed atmospheric gas.

  7. Realization of administration unit for {sup 3}He with gas recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Manuela; Grossmann, Tino; Heil, Werner; Karpuk, Sergei; Otten, Ernst-Wilhelm; Salhi, Zahir [Institute of Physics, University Mainz (Germany); Becker, Stefan; Friesenecker, Andreas; Weiss, Patrick; Zentel, Juergen [ic-automation GmbH, Mainz (Germany); Gast, Klaus K.; Rivoire, Julien; Scholz, Alexander; Schreiber, Laura M.; Terekhov, Maxim; Wolf, Ursula [Department of Radiology, University Mainz (Germany)


    Since many years hyperpolarized (HP) noble gases are used for MR-imaging of the lung. In the beginning the HP gas was filled in Tedlar-bags and directly inhaled by the patients. An administration unit was built respectively to the Medical Devices Law to administer patients HP noble gas boli ({sup 3}He,{sup 129}Xe) in defined quantities and at a predefined time during inspiration with high reproducibility and reliability without reducing MR-quality. The patient's airflows are monitored and recorded. It is possible to use gas admixtures, measure the polarization on line and collect the exhaled gas for later recycling. The first images with healthy volunteers were taken with this setup in a clinical study. Current results will be presented.

  8. Properties and modification of two-dimensional electronic states on noble metals; Eigenschaften und Modifikation zweidimensionaler Elektronenzustaende auf Edelmetallen

    Energy Technology Data Exchange (ETDEWEB)

    Forster, F.


    In this thesis investigations on two-dimensional electronic structures of (111)-noble metal surfaces and the influence of various adsorbates upon them is presented. It chiefly focuses on the surface-localized Shockley states of Cu, Ag and Au and their band dispersion (binding energy, band mass, and spin-orbit splitting) which turns out to be a sensitive probe for surface modifications induced by adsorption processes. Angular resolved photoelectron spectroscopy enables the observation of even subtle changes in the electronic band structure of these two dimensional systems. Different mechanisms taking place at surfaces and the substrate/adsorbate interfaces influence the Shockley state in a different manner and will be analyzed using suitable adsorbate model systems. The experimental results are matched with appropriate theoretical models like the phase accumulation model and the nearly-free electron model and - if possible - with ab initio calculations based on density functional theory. This allows for the integration of the results into a stringent overall picture. The influence of sub-monolayer adsorption of Na upon the surface state regarding the significant change in surface work function is determined. A systematic study of the physisorption of noble gases shows the effect of the repulsive adsorbate-substrate interaction upon the electrons of the surface state. A step-by-step coverage of the Cu and Au(111) surfaces by monolayers of Ag creates a gradual change in the surface potential and causes the surface state to become increasingly Ag-like. For N=7 ML thick and layer-by-layer growing Ag films on Au(111), new two-dimensional electronic structures can be observed, which are attributed to the quantum well states of the Ag adsorbate. The question whether they are localized within the Ag-layer or substantially within the substrate is resolved by the investigation of their energetic and spatial evolution with increasing Ag-film thicknesses N. For this, beside the

  9. A randomized trial of the effects of the noble gases helium and argon on neuroprotection in a rodent cardiac arrest model. (United States)

    Zuercher, Patrick; Springe, Dirk; Grandgirard, Denis; Leib, Stephen L; Grossholz, Marius; Jakob, Stephan; Takala, Jukka; Haenggi, Matthias


    The noble gas xenon is considered as a neuroprotective agent, but availability of the gas is limited. Studies on neuroprotection with the abundant noble gases helium and argon demonstrated mixed results, and data regarding neuroprotection after cardiac arrest are scant. We tested the hypothesis that administration of 50% helium or 50% argon for 24 h after resuscitation from cardiac arrest improves clinical and histological outcome in our 8 min rat cardiac arrest model. Forty animals had cardiac arrest induced with intravenous potassium/esmolol and were randomized to post-resuscitation ventilation with either helium/oxygen, argon/oxygen or air/oxygen for 24 h. Eight additional animals without cardiac arrest served as reference, these animals were not randomized and not included into the statistical analysis. Primary outcome was assessment of neuronal damage in histology of the region I of hippocampus proper (CA1) from those animals surviving until day 5. Secondary outcome was evaluation of neurobehavior by daily testing of a Neurodeficit Score (NDS), the Tape Removal Test (TRT), a simple vertical pole test (VPT) and the Open Field Test (OFT). Because of the non-parametric distribution of the data, the histological assessments were compared with the Kruskal-Wallis test. Treatment effect in repeated measured assessments was estimated with a linear regression with clustered robust standard errors (SE), where normality is less important. Twenty-nine out of 40 rats survived until day 5 with significant initial deficits in neurobehavioral, but rapid improvement within all groups randomized to cardiac arrest. There were no statistical significant differences between groups neither in the histological nor in neurobehavioral assessment. The replacement of air with either helium or argon in a 50:50 air/oxygen mixture for 24 h did not improve histological or clinical outcome in rats subjected to 8 min of cardiac arrest.

  10. Measuring laser carrier-envelope-phase effects in the noble gases with an atomic hydrogen calibration standard (United States)

    Khurmi, Champak; Wallace, W. C.; Sainadh U, Satya; Ivanov, I. A.; Kheifets, A. S.; Tong, X. M.; Litvinyuk, I. V.; Sang, R. T.; Kielpinski, D.


    We present accurate measurements of carrier-envelope-phase effects on ionization of the noble gases with few-cycle laser pulses. The experimental apparatus is calibrated by using atomic hydrogen data to remove any systematic offsets and thereby obtain accurate CEP data on other generally used noble gases such as Ar, Kr, and Xe. Experimental results for H are well supported by exact time-dependent Schrödinger equation theoretical simulations; however, significant differences are observed in the case of the noble gases.

  11. Terrestrial pathways of radionuclide particulates

    Energy Technology Data Exchange (ETDEWEB)

    Boone, F.W. (Allied-General Nuclear Services, Barnwell, SC (USA)); Ng, Y.C. (California Univ., Livermore (USA). Lawrence Livermore National Lab.); Palms, J.M. (Emory Univ., Atlanta, GA (USA))


    Formulations are developed for computing potential human intake of 13 radionuclides via the terrestrial food chains. The formulations are an extension of the NRC methodology. Specific regional crop and livestock transfer and fractional distribution data from the southern part of the U.S.A. are provided and used in the computation of comparative values with those computed by means of USNRC Regulatory Guide 1.109 formulations. In the development of the model, emphasis was also placed on identifying the various time-delay compartments of the food chains and accounting for all of the activity initially deposited. For all radionuclides considered, except /sup 137/Cs, the new formulations predict lower potential intakes from the total of all food chains combined than do the comparable Regulatory Guide formulations by as much as a factor of 40. For /sup 137/Cs the new formulations predict 10% higher potential intakes.

  12. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.


    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  13. Extreme solar-terrestrial events (United States)

    Dal Lago, A.; Antunes Vieira, L. E.; Echer, E.; Balmaceda, L. A.; Rockenbach, M.; Gonzalez, W. D.


    Extreme solar-terrestrial events are those in which very energetic solar ejections hit the earth?s magnetosphere, causing intense energization of the earth?s ring current. Statistically, their occurrence is approximately once per Gleissberg solar cycle (70-100yrs). The solar transient occurred on July, 23rd (2012) was potentially one of such extreme events. The associated coronal mass ejection (CME), however, was not ejected towards the earth. Instead, it hit the STEREO A spacecraft, located 120 degrees away from the Sun-Earth line. Estimates of the geoeffectiveness of such a CME point to a scenario of extreme Space Weather conditions. In terms of the ring current energization, as measured by the Disturbance Storm-Time index (Dst), had this CME hit the Earth, it would have caused the strongest geomagnetic storm in space era.

  14. Crenarchaeota colonize terrestrial plant roots. (United States)

    Simon, H M; Dodsworth, J A; Goodman, R M


    Microorganisms that colonize plant roots are recruited from, and in turn contribute substantially to, the vast and virtually uncharacterized phylogenetic diversity of soil microbiota. The diverse, but poorly understood, microorganisms that colonize plant roots mediate mineral transformations and nutrient cycles that are central to biosphere functioning. Here, we report the results of epifluorescence microscopy and culture-independent recovery of small subunit (SSU) ribosomal RNA (rRNA) gene sequences showing that members of a previously reported clade of soil Crenarchaeota colonize both young and senescent plant roots at an unexpectedly high frequency, and are particularly abundant on the latter. Our results indicate that non-thermophilic members of the Archaea inhabit an important terrestrial niche on earth and direct attention to the need for studies that will determine their possible roles in mediating root biology.

  15. The world made by Noble prize : chemistry volume II

    Energy Technology Data Exchange (ETDEWEB)



    This book has two parts of items related chemistry. The contents of the first part are Preface, Alfred Bemhard Nobel, Pioneers without Nobel Prize, Garbage Bag, Non-sticky Frying Pan, Nylon Stockings, Plastic Electricity, Synthetic Dyestuff, Gin and Tonic, Soccer Ball, Fertilizer, DDT, Dentifrice, Kimchi, Makgeolli, Ice cream, Anodyne, and firefly. The contents of the second part are PET-MRI, Color photo, Holography, Art diamond, an incandescent lamp and Neon Sign, Imitation works, Alchemy, Nuclear Power plant, Synthetic Oil and Sugar, Propane gas, Water Car, Estate agency Mars, and reference.

  16. The world made by Noble prize : chemistry volume I

    Energy Technology Data Exchange (ETDEWEB)



    This book contains two parts about items by chemistry. The first part introduces Alfred Bernhard Nodel, Pioneers without Nobel Prize, Garbage Bag, Non-sticky Frying Pan, Nylon Stockings, Plastic Electricity, Synthetic Dyestuff, Gin and Tonic, Soccer Ball, Fertilizer, DDT, Dentifrice, Kimchi, Makgeolli, Ice cream, Anodyne and Firefly. The second part lists PET-MRI, Color photo, Holography, Art diamond Incandescent lamp and Neon Sign, Imitation work, Alchemy, Nuclear Power plant, Synthetic Oil and Sugar, Freon gas, Water Car, Estate agency Mars, and winners of Nobel prize in physics.

  17. Hepatoprotective and Antioxidant Activities of Tribulus Terrestris

    NARCIS (Netherlands)

    Harraz, Fathalla M; Ghazy, Nabila M; Hammoda, Hala M; Nafeaa, Abeer A.; Abdallah, Ingy I.


    Tribulus terrestris L. has been used in folk medicine throughout history. The present study examined the acute toxicity of the total ethanolic extract of T. Terrestris followed by investigation of the hepatoprotective activity of the total ethanolic extract and different fractions of the aerial

  18. Method for recycling radioactive noble gases for functional pulmonary imaging

    Energy Technology Data Exchange (ETDEWEB)

    Forouzan-Rad, M.


    A theoretical treatment of the dynamic adsorption and desorption processes in the adsorption column is developed. The results of this analysis are compared with the space-time measurements of /sup 133/Xe activity distribution in a charcoal column, when trace amounts of this gas in exponentially decreasing concentrations are fed into the column. Based on these investigations, a recycling apparatus is designed for use with xenon isotopes, especially /sup 127/Xe, in studies of pulmonary function. The apparatus takes advantage of the high adsorbability of activated coconut charcoal for xenon a low temperature (-78/sup 0/C) in order to trap the radioactive xenon gas that is exhaled during each ventilation-perfusion study. The trapped xenon is then recovered by passing low-pressure steam through the charcoal column. It is found that steam removes xenon from the surface of the charcoal more effectively than does heating and evacuation of the charcoal bed. As a result, an average xenon recovery of 96 percent has been achieved. Improved design parameters are discussed. (auth)

  19. Insignificant solar-terrestrial triggering of earthquakes (United States)

    Love, Jeffrey J.; Thomas, Jeremy N.


    We examine the claim that solar-terrestrial interaction, as measured by sunspots, solar wind velocity, and geomagnetic activity, might play a role in triggering earthquakes. We count the number of earthquakes having magnitudes that exceed chosen thresholds in calendar years, months, and days, and we order these counts by the corresponding rank of annual, monthly, and daily averages of the solar-terrestrial variables. We measure the statistical significance of the difference between the earthquake-number distributions below and above the median of the solar-terrestrial averages by χ2 and Student's t tests. Across a range of earthquake magnitude thresholds, we find no consistent and statistically significant distributional differences. We also introduce time lags between the solar-terrestrial variables and the number of earthquakes, but again no statistically significant distributional difference is found. We cannot reject the null hypothesis of no solar-terrestrial triggering of earthquakes.

  20. Applying Atmospheric Measurements to Constrain Parameters of Terrestrial Source Models (United States)

    Hyer, E. J.; Kasischke, E. S.; Allen, D. J.


    Quantitative inversions of atmospheric measurements have been widely applied to constrain atmospheric budgets of a range of trace gases. Experiments of this type have revealed persistent discrepancies between 'bottom-up' and 'top-down' estimates of source magnitudes. The most common atmospheric inversion uses the absolute magnitude as the sole parameter for each source, and returns the optimal value of that parameter. In order for atmospheric measurements to be useful for improving 'bottom-up' models of terrestrial sources, information about other properties of the sources must be extracted. As the density and quality of atmospheric trace gas measurements improve, examination of higher-order properties of trace gas sources should become possible. Our model of boreal forest fire emissions is parameterized to permit flexible examination of the key uncertainties in this source. Using output from this model together with the UM CTM, we examined the sensitivity of CO concentration measurements made by the MOPITT instrument to various uncertainties in the boreal source: geographic distribution of burned area, fire type (crown fires vs. surface fires), and fuel consumption in above-ground and ground-layer fuels. Our results indicate that carefully designed inversion experiments have the potential to help constrain not only the absolute magnitudes of terrestrial sources, but also the key uncertainties associated with 'bottom-up' estimates of those sources.

  1. Alkaline membrane water electrolysis with non-noble catalysts

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær

    As renewable energy sources reach higher grid penetration, large scale energy storage solutions are becoming increasingly important. Hydrogen produced with renewable energy by water electrolysis is currently the only option to solve this challenge on a global scale, and green hydrogen is essential...... these issues by introducing alkaline polymeric membranes and efficient electrodes based on novel materials. Polymer electrolyte membranes with sufficient OH– -conductivity enable a drastic reduction of the electrode spacing, which lead to improved ohmic properties enabling operation at higher current density....... This, combined with better gas separation properties and a higher operating flexibility, have the prospects of significantly reducing the capex and opex of electrolysis systems, and the cost of green hydrogen. Towards this goal, membranes based on poly(2,2’-(mphenylene)-5,5’-bibenzimidazole) (m...

  2. Shock-implanted noble gases - An experimental study with implications for the origin of Martian gases in shergottite meteorites (United States)

    Bogard, Donald D.; Horz, Friedrich; Johnson, Pratt H.


    The shock-implantation of gases is studied by artificially shocking whole rock and power samples of terrestrial basalt to pressures of 2-40 GPa. Ar, Kr, Xe, and Ne were implanted into the silicate. It is observed that the amount of implanted gas is linearly proportional to its partial pressure over a pressure range of 0.0001 to 0.1 atmosphere. The fractionation effect in the implanted gas and the gas diffusion properties are examined. The amounts of gas that would have been implanted with 100 percent efficiency are calculated from the measured porosities of the power samples and are compared to observed abundances. It is determined that the implantation efficiencies are approximately 0.5 percent at 2 GPa, 7 percent at 5 GPa, and greater than 50 percent at both 20 and 35 GPa. The experimental data correlate with the shock implantation of Martian gases without mass fractionation into the shock-melted phase of meteorite EETA 79001.

  3. Radiative precursors driven by converging blast waves in noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Swadling, G. F.; Suzuki-Vidal, F.; Hall, G. N.; Khoory, E.; Pickworth, L.; Bland, S. N.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Bennett, M.; Niasse, N. P. L. [Blackett Laboratory, Imperial College London SW7 2BW (United Kingdom); Williams, R. J. R. [Atomic Weapons Establishment, Aldermaston RG7 4PR (United Kingdom); Blesener, K.; Atoyan, L.; Cahill, A.; Hoyt, C.; Potter, W. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States); and others


    A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20 km s{sup −1} blast waves through gases of densities of the order 10{sup −5} g cm{sup −3} (see Burdiak et al. [High Energy Density Phys. 9(1), 52–62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicular to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.

  4. NOBLE, Thomas F. X. Images, iconoclasm, and the carolingians. Filadélfia: University of Pennsylvania Press, 2009, 488 p

    DEFF Research Database (Denmark)

    Petersen, Nils Holger


    A review and contextualization (concerning music writing in the ninth century) of Thomas F. Noble's magisterial account of the iconoclastic controversy in the eighth and ninth centuries and its impact in the Carolingian kingdom (and empire) in the same period....

  5. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports (United States)

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir


    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  6. A de novo transcriptome of the noble scallop, Chlamys nobilis, focusing on mining transcripts for carotenoid-based coloration


    Liu, Helu; Zheng, Huaiping; Zhang, Hongkuan; Deng, Longhui; Liu, Wenhua; Wang, Shuqi; Meng, Fang; Wang, Yajun; Guo, Zhicheng; Li, Shengkang; Zhang, Guofan


    Background The noble scallop Chlamys nobilis Reeve displays polymorphism in shell and muscle colors. Previous research showed that the orange scallops with orange shell and muscle had a significantly higher carotenoid content than the brown ones with brown shell and white muscle. There is currently a need to identify candidate genes associated with carotenoid-based coloration. Results In the present study, 454 GS-FLX sequencing of noble scallop transcriptome yielded 1,181,060 clean sequence r...

  7. Hard collisions of few keV diatomic molecular ions with atomic gas targets: Collision induced dissociation and target ionization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nora G; Sayler, A M; McKenna, J; Gaire, B; Zohrabi, M; Berry, Ben; Carnes, K D; Ben-Itzhak, I [J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506 (United States); Wolff, Wania, E-mail: ibi@phys.ksu.ed [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21945-970, RJ (Brazil)


    Target ionization in close encounters between few keV simple diatomic molecular ions and noble gas targets have been studied experimentally. Some of the projectile molecular ions fragment as a result of these violent collisions while others remain bound despite undergoing a 'hard' collision. The measured momenta shed light on the mechanisms responsible for this behavior.

  8. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)


    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  9. Noble gases, nitrogen and cosmic ray exposure age of the Sulagiri chondrite

    Directory of Open Access Journals (Sweden)

    Ramakant R. Mahajan


    Full Text Available The Sulagiri meteorite fell in India on 12 September 2008, LL6 chondrite class is the largest among all the Indian meteorites. Isotopic compositions of noble gases (He, Ne, Ar, Kr and Xe and nitrogen in the Sulagiri meteorite and cosmic ray exposure history are discussed. Low cosmogenic (22Ne/21Nec ratio is consistent with irradiation in a large body. Cosmogenic noble gases indicate that Sulagiri has a 4π cosmic-ray exposure (CRE age of 27.9 ± 3.4 Ma and is a member of the peak of CRE age distribution of LL chondrites. Radiogenic 4He and 40Ar concentrations in Sulagiri yields the radiogenic ages as 2.29 and 4.56 Ga, indicating the loss of He from the meteorite. Xenon and krypton are mixture of Q and spallogenic components.

  10. Nuclear Magnetic Resonance of Laser-Polarized Noble Gases in Molecules, Materials, and Organisms (United States)

    Goodson, Boyd M.


    The sensitivity of conventional nuclear magnetic resonance (NMR) techniques is fundamentally limited by the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This review describes the principles and magnetic resonance applications of laser-polarized noble gases. The enormous sensitivity enhancement afforded by optical pumping can be exploited to permit a variety of novel NMR experiments across numerous disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, NMR sensitivity enhancement via polarization transfer, and low-field NMR and MRI.

  11. Does terrestrial epidemiology apply to marine systems? (United States)

    McCallum, Hamish I.; Kuris, Armand M.; Harvell, C. Drew; Lafferty, Kevin D.; Smith, Garriet W.; Porter, James


    Most of epidemiological theory has been developed for terrestrial systems, but the significance of disease in the ocean is now being recognized. However, the extent to which terrestrial epidemiology can be directly transferred to marine systems is uncertain. Many broad types of disease-causing organism occur both on land and in the sea, and it is clear that some emergent disease problems in marine environments are caused by pathogens moving from terrestrial to marine systems. However, marine systems are qualitatively different from terrestrial environments, and these differences affect the application of modelling and management approaches that have been developed for terrestrial systems. Phyla and body plans are more diverse in marine environments and marine organisms have different life histories and probably different disease transmission modes than many of their terrestrial counterparts. Marine populations are typically more open than terrestrial ones, with the potential for long-distance dispersal of larvae. Potentially, this might enable unusually rapid propagation of epidemics in marine systems, and there are several examples of this. Taken together, these differences will require the development of new approaches to modelling and control of infectious disease in the ocean.

  12. A molecular palaeobiological exploration of arthropod terrestrialization. (United States)

    Lozano-Fernandez, Jesus; Carton, Robert; Tanner, Alastair R; Puttick, Mark N; Blaxter, Mark; Vinther, Jakob; Olesen, Jørgen; Giribet, Gonzalo; Edgecombe, Gregory D; Pisani, Davide


    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.

  13. A molecular palaeobiological exploration of arthropod terrestrialization (United States)

    Carton, Robert; Edgecombe, Gregory D.


    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325830

  14. Mars: a small terrestrial planet (United States)

    Mangold, N.; Baratoux, D.; Witasse, O.; Encrenaz, T.; Sotin, C.


    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for remote-sensing data and have opened a new era in the study of Mars geology. While large sections of Mars science have made progress and new topics have emerged, a major question in Mars exploration—the possibility of past or present life—is still unsolved. Without entering into the debate around the presence of life traces, our review develops various topics of Mars science to help the search of life on Mars, building on the most recent discoveries, going from the exosphere to the interior structure, from the magmatic evolution to the currently active processes, including the fate of volatiles and especially liquid water.

  15. Numerical investigation of enhanced femtosecond supercontinuum via a weak seed in noble gases. (United States)

    Shanor, C; Ensley, T; Hagan, D J; Van Stryland, E W; Wright, E M; Kolesik, M


    Numerical simulations are employed to elucidate the physics underlying the enhanced femtosecond supercontinuum generation previously observed during optical filamentation in noble gases and in the presence of a weak seed pulse. Simulations based on the metastable electronic state approach are shown not only to capture the qualitative features of the experiment, but also reveal the relation of the observed enhancement to recent developments in the area of sub-cycle engineering of filaments.

  16. Microleakage and marginal gap of adhesive cements for noble alloy full cast crowns. (United States)

    Hooshmand, T; Mohajerfar, M; Keshvad, A; Motahhary, P


    Very limited comparative information about the microleakage in noble alloy full cast crowns luted with different types of adhesive resin cements is available. The purpose of this study was to evaluate the microleakage and marginal gap of two self-adhesive resin cements with that of other types of adhesive luting cements for noble alloy full cast crowns. Fifty noncarious human premolars and molars were prepared in a standardized manner for full cast crown restorations. Crowns were made from a noble alloy using a standardized technique and randomly cemented with five cementing agents as follows: 1) GC Fuji Plus resin-modified glass ionomer cement, 2) Panavia F 2.0 resin cement, 3) Multilink Sprint self-adhesive resin cement, 4), Rely X Unicem self-adhesive resin cement with pretreatment, and 5) Rely X Unicem with no pretreatment. The specimens were stored in distilled water at 37°C for two weeks and then subjected to thermocycling. They were then placed in a silver nitrate solution, vertically cut in a mesiodistal direction and evaluated for microleakage and marginal gap using a stereomicroscope. Data were analyzed using a nonparametric Kruskal-Wallis test followed by Dunn multiple range test at a pcrown interfaces. The greatest amount of microleakage was found for Panavia F 2.0 resin cement followed by GC Fuji Plus at both interfaces. No statistically significant difference in the marginal gap values was found between the cementing agents evaluated (p>0.05). The self-adhesive resin cements provided a much better marginal seal for the noble alloy full cast crowns compared with the resin-modified glass ionomer or dual-cured resin-based cements.

  17. The last days of Sala al-Din (Saladin) "noble enemy" of the third Crusade. (United States)

    Mackowiak, Philip A


    Saladin, "noble enemy" of Richard the Lionheart and victor at the battle of Hattin, died suddenly in 1193 A.D. at the age of 56. The clinical information preserved in the historical record is insufficient to render a definitive diagnosis for Saladin's final illness, and yet, it contains enough details to narrow the list of possibilities to just a few and also to critique his treatment in light of the medical concepts of his day.

  18. The Noble Family as depicted in Household Guides of the Old Polish Period


    RYŚ, Jan


    The household guides were one of the most popular and widely read literary genre among the nobles in the 16th and the 17th century. They were willingly read not only due to the practical information on how to run a household, but they also included guidelines on how to proceed in order to achieve completeness. Agronomic literature promoted active way of living and consistent cooperation between the husband and the wife, and encouraged them to multiply their property, at the sam...

  19. Biomimetic Synthesis of Noble Metal Nanoparticles and Their Applications as Electro-catalysts in Fuel Cells


    Li, Yujing


    Today, proton electrolyte membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are attractive power conversion devices that generate fairly low or even no pollution, and considered to be potential to replace conventional fossil fuel based power sources on automobiles. The operation and performance of PEMFC and DMFC depend largely on electro-catalysts positioned between the electrode and the membranes. The most commonly used electro-catalysts for PEMFC and DMFC are Pt-based noble me...

  20. Improvements on cool gas generators and their application in space propulsion systems

    NARCIS (Netherlands)

    Sanders, H.M.; Schuurbiers, C.A.H.; Vandeberg, R.J.


    Cool Gas Generators are an innovative means to store gas which can be used in propulsion and pressurization systems but also for inflatable structures and terrestrial applications. In Cool Gas Generators, the gas is stored chemically, without pressure or leakage and with a long life time without