WorldWideScience

Sample records for terrestrial ecosystem functioning

  1. Using the CARDAMOM framework to retrieve global terrestrial ecosystem functioning properties

    Science.gov (United States)

    Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew

    2016-04-01

    Terrestrial ecosystems act as a sink for anthropogenic emissions of fossil-fuel and thereby partially offset the ongoing global warming. However, recent model benchmarking and intercomparison studies have highlighted the non-trivial uncertainties that exist in our understanding of key ecosystem properties like plant carbon allocation and residence times. It leads to worrisome differences in terrestrial carbon stocks simulated by Earth system models, and their evolution in a warming future. In this presentation we attempt to provide global insights on these properties by merging an ecosystem model with remotely-sensed global observations of leaf area and biomass through a data-assimilation system: the CARbon Data MOdel fraMework (CARDAMOM). CARDAMOM relies on a Markov Chain Monte Carlo algorithm to retrieve confidence intervals of model parameters that regulate ecosystem properties independently of any prior land-cover information. The MCMC method thereby enables an explicit representation of the uncertainty in land-atmosphere fluxes and the evolution of terrestrial carbon stocks through time. Global experiments are performed for the first decade of the 21st century using a 1°×1° spatial resolution. Relationships emerge globally between key ecosystem properties. For example, our analyses indicate that leaf lifespan and leaf mass per area are highly correlated. Furthermore, there exists a latitudinal gradient in allocation patterns: high latitude ecosystems allocate more carbon to photosynthetic carbon (leaves) while plants invest more carbon in their structural parts (wood and root) in the wet tropics. Overall, the spatial distribution of these ecosystem properties does not correspond to usual land-cover maps and are also partially correlated with disturbance regimes. For example, fire-prone ecosystems present statistically significant higher values of carbon use efficiency than less disturbed ecosystems experiencing similar climatic conditions. These results

  2. Terrestrial ecosystems in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [CSIRO Marine and Atmospheric Research, Canberra, ACT (Australia). Global Carbon Project; Pataki, D.E. [California Univ., Irvine, CA (United States). Dept. of Earth System Science]|[California Univ., Irvine, CA (United States). Dept. of Ecology and Evolutionary Biology; Pitelka, L.F. (eds.) [Maryland Univ., Frostburg, MD (United States). Appalachian Lab.

    2007-07-01

    Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including: * key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity, * ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and * sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate. The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system. (orig.)

  3. Function of Wildfire-Deposited Pyrogenic Carbon in Terrestrial Ecosystems

    Directory of Open Access Journals (Sweden)

    Melissa R. A. Pingree

    2017-08-01

    Full Text Available Fire is an important driver of change in most forest, savannah, and prairie ecosystems and fire-altered organic matter, or pyrogenic carbon (PyC, conveys numerous functions in soils of fire-maintained terrestrial ecosystems. Although an exceptional number of recent review articles and books have addressed agricultural soil application of charcoal or biochar, few reviews have addressed the functional role of naturally formed PyC in fire-maintained ecosystems. Recent advances in molecular spectroscopic techniques have helped strengthen our understanding of PyC as a ubiquitous, complex material that is capable of altering soil chemical, physical, and biological properties and processes. The uniquely recalcitrant nature of PyC in soils is partly a result of its stable C = C double-bonded, graphene-like structure and C-rich, N-poor composition. This attribute allows it to persist in soils for hundreds to thousands of years and represent net ecosystem C sequestration in fire-maintained ecosystems. The rapid formation of PyC during wildfire or anthropogenic fire events short-circuits the normally tortuous pathway of recalcitrant soil C formation. Existing literature also suggests that PyC provides an essential role in the cycling of certain nutrients, greatly extending the timeframe by which fires influence soil processes and facilitating recovery in ecosystems where organic matter inputs are low and post-fire surface soil bacterial and fungal activity is reduced. The high surface area of PyC allows for the adsorption a broad spectrum of organic compounds that directly or indirectly influence microbial processes after fire events. Adsorption capacity and microsite conditions created by PyC yields a “charosphere” effect in soil with heightened microbial activity in the vicinity of PyC. In this mini-review, we explore the function of PyC in natural and semi-natural settings, provide a mechanistic approach to understanding these functions, and examine

  4. Terrestrial ecosystems: an ecological content for radionuclide research

    International Nuclear Information System (INIS)

    Heal, O.W.; Horrill, A.D.

    1983-01-01

    The distribution and retention of radionuclides within terrestrial ecosystems varies greatly with both the radionuclide and the environmental conditions. Physico-chemical conditions, particularly those of the soil, strongly influence element retention but superimposed and interacting with these conditions are the biological processes which control the dynamics of the labile fraction of most elements. Net ecosystem production expresses the complementary biological processes of primary production and decomposition which control the internal element dynamics and the balance of inputs to and outputs from terrestrial ecosystems. Analysis of ecosystem structure and function has shown that although research often concentrates on relatively stable stages of ecosystem development, element retention is high during the early stages of ecosystem succession through the accumulation of plant biomass and dead organic matter. Element output tends to increase with time reaching a balance with inputs in mature ecosystems. Following disturbance, plant uptake tends to be reduced and decomposition stimulated, resulting in increased output until secondary succession and accumulation is re-established. Research on element dynamics in ecosystems indicates that major factors influencing the mobility of radionuclides in terrestrial systems will be the successional state of the ecosystem and intensity of disturbance. (author)

  5. Microplastics as an emerging threat to terrestrial ecosystems.

    Science.gov (United States)

    de Souza Machado, Anderson Abel; Kloas, Werner; Zarfl, Christiane; Hempel, Stefan; Rillig, Matthias C

    2018-04-01

    Microplastics (plastics plastic litter or from direct environmental emission. Their potential impacts in terrestrial ecosystems remain largely unexplored despite numerous reported effects on marine organisms. Most plastics arriving in the oceans were produced, used, and often disposed on land. Hence, it is within terrestrial systems that microplastics might first interact with biota eliciting ecologically relevant impacts. This article introduces the pervasive microplastic contamination as a potential agent of global change in terrestrial systems, highlights the physical and chemical nature of the respective observed effects, and discusses the broad toxicity of nanoplastics derived from plastic breakdown. Making relevant links to the fate of microplastics in aquatic continental systems, we here present new insights into the mechanisms of impacts on terrestrial geochemistry, the biophysical environment, and ecotoxicology. Broad changes in continental environments are possible even in particle-rich habitats such as soils. Furthermore, there is a growing body of evidence indicating that microplastics interact with terrestrial organisms that mediate essential ecosystem services and functions, such as soil dwelling invertebrates, terrestrial fungi, and plant-pollinators. Therefore, research is needed to clarify the terrestrial fate and effects of microplastics. We suggest that due to the widespread presence, environmental persistence, and various interactions with continental biota, microplastic pollution might represent an emerging global change threat to terrestrial ecosystems. © 2017 John Wiley & Sons Ltd.

  6. Terrestrial ecosystems and biodiversity

    CSIR Research Space (South Africa)

    Davis-Reddy, Claire

    2017-10-01

    Full Text Available Ecoregions Terrestrial Biomes Protected Areas Climate Risk and Vulnerability: A Handbook for Southern Africa | 75 7.2. Non-climatic drivers of ecosystem change 7.2.1. Land-use change, habitat loss and fragmentation Land-use change and landscape... concentrations of endemic plant and animal species, but these mainly occur in areas that are most threatened by human activity. Diverse terrestrial ecosystems in the region include tropical and sub-tropical forests, deserts, savannas, grasslands, mangroves...

  7. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  8. How lichens impact on terrestrial community and ecosystem properties.

    Science.gov (United States)

    Asplund, Johan; Wardle, David A

    2017-08-01

    Lichens occur in most terrestrial ecosystems; they are often present as minor contributors, but in some forests, drylands and tundras they can make up most of the ground layer biomass. As such, lichens dominate approximately 8% of the Earth's land surface. Despite their potential importance in driving ecosystem biogeochemistry, the influence of lichens on community processes and ecosystem functioning have attracted relatively little attention. Here, we review the role of lichens in terrestrial ecosystems and draw attention to the important, but often overlooked role of lichens as determinants of ecological processes. We start by assessing characteristics that vary among lichens and that may be important in determining their ecological role; these include their growth form, the types of photobionts that they contain, their key functional traits, their water-holding capacity, their colour, and the levels of secondary compounds in their thalli. We then assess how these differences among lichens influence their impacts on ecosystem and community processes. As such, we consider the consequences of these differences for determining the impacts of lichens on ecosystem nutrient inputs and fluxes, on the loss of mass and nutrients during lichen thallus decomposition, and on the role of lichenivorous invertebrates in moderating decomposition. We then consider how differences among lichens impact on their interactions with consumer organisms that utilize lichen thalli, and that range in size from microfauna (for which the primary role of lichens is habitat provision) to large mammals (for which lichens are primarily a food source). We then address how differences among lichens impact on plants, through for example increasing nutrient inputs and availability during primary succession, and serving as a filter for plant seedling establishment. Finally we identify areas in need of further work for better understanding the role of lichens in terrestrial ecosystems. These include

  9. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems

    Science.gov (United States)

    Alistair M. S. Smith; Crystal A. Kolden; Wade T. Tinkham; Alan F. Talhelm; John D. Marshall; Andrew T. Hudak; Luigi Boschetti; Michael J. Falkowski; Jonathan A. Greenberg; John W. Anderson; Andrew Kliskey; Lilian Alessa; Robert F. Keefe; James R. Gosz

    2014-01-01

    Climate change is altering the species composition, structure, and function of vegetation in natural terrestrial ecosystems. These changes can also impact the essential ecosystem goods and services derived from these ecosystems. Following disturbances, remote-sensing datasets have been used to monitor the disturbance and describe antecedent conditions as a means of...

  10. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Bocock, K.L.

    1981-01-01

    This report summarizes information on the distribution and movement of radionuclides in semi-natural terrestrial ecosystems in north-west England with particular emphasis on inputs to, and outputs from ecosystems; on plant and soil aspects; and on radionuclides in fallout and in discharges by the nuclear industry. (author)

  11. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Science.gov (United States)

    Bing Song; Shuli Niu; Ruise Luo; Yiqi Luo; Jiquan Chen; Guirui Yu; Janusz Olejnik; Georg Wohlfahrt; Gerard Kiely; Ako Noormets; Leonardo Montagnani; Alessandro Cescatti; Vincenzo Magliulo; Beverly Elizabeth Law; Magnus Lund; Andrej Varlagin; Antonio Raschi; Matthias Peichl; Mats B. Nilsson; Lutz Merbold

    2014-01-01

    Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and...

  12. Direct and terrestrial vegetation-mediated effects of environmental change on aquatic ecosystem processes

    Science.gov (United States)

    Becky A. Ball; John S. Kominoski; Heather E. Adams; Stuart E. Jones; Evan S. Kane; Terrance D. Loecke; Wendy M. Mahaney; Jason P. Martina; Chelse M. Prather; Todd M.P. Robinson; Christopher T. Solomon

    2010-01-01

    Global environmental changes have direct effects on aquatic ecosystems, as well as indirect effects through alterations of adjacent terrestrial ecosystem structure and functioning. For example, shifts in terrestrial vegetation communities resulting from global changes can affect the quantity and quality of water, organic matter, and nutrient inputs to aquatic...

  13. Effects of red-backed salamanders on ecosystem functions.

    Directory of Open Access Journals (Sweden)

    Daniel J Hocking

    Full Text Available Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp. likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2 plots and small-scale enclosures (2 m(2 where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2. In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders. Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  14. Effects of red-backed salamanders on ecosystem functions.

    Science.gov (United States)

    Hocking, Daniel J; Babbitt, Kimberly J

    2014-01-01

    Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp.) likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus) on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2) plots) and small-scale enclosures (2 m(2)) where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2)). In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders). Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  15. Inter-annual variabilities in biogeophysical feedback of terrestrial ecosystem to atmosphere using a land surface model

    Science.gov (United States)

    Seo, C.; Hong, S.; Jeong, H. M.; Jeon, J.

    2017-12-01

    Biogeophysical processes of terrestrial ecosystem such as water vapor and energy flux are the key features to understand ecological feedback to atmospheric processes and thus role of terrestrial ecosystem in climate system. For example, it has been recently known that the ecological feedback through water vapor and energy flux results in regulating regional weathers and climates which is one of the fundamental functions of terrestrial ecosystem. In regional scale, water vapor flux has been known to give negative feedback to atmospheric warming, while energy flux from the surface has been known to positive feedback. In this study, we explored the inter-annual variabilities in these two biogeophysical features to see how the climate regulating functions of terrestrial ecosystem have been changed with climate change. We selected a land surface model involving vegetation dynamics that is forced by atmospheric data from NASA including precipitation, temperature, wind, surface pressure, humidity, and incoming radiations. From the land surface model, we simulated 60-year water vapor and energy fluxes from 1961 to 2010, and calculates feedbacks of terrestrial ecosystem as in radiation amount into atmosphere. Then, we analyzed the inter-annual variabilities in the feedbacks. The results showed that some mid-latitude areas showing very high variabilities in precipitation showed higher positive feedback and/or lower negative feedback. These results suggest deterioration of the biogeophyisical factor of climate regulating function over those regions.

  16. Global variation of carbon use efficiency in terrestrial ecosystems

    Science.gov (United States)

    Tang, Xiaolu; Carvalhais, Nuno; Moura, Catarina; Reichstein, Markus

    2017-04-01

    Carbon use efficiency (CUE), defined as the ratio between net primary production (NPP) and gross primary production (GPP), is an emergent property of vegetation that describes its effectiveness in storing carbon (C) and is of significance for understanding C biosphere-atmosphere exchange dynamics. A constant CUE value of 0.5 has been widely used in terrestrial C-cycle models, such as the Carnegie-Ames-Stanford-Approach model, or the Marine Biological Laboratory/Soil Plant-Atmosphere Canopy Model, for regional or global modeling purposes. However, increasing evidence argues that CUE is not constant, but varies with ecosystem types, site fertility, climate, site management and forest age. Hence, the assumption of a constant CUE of 0.5 can produce great uncertainty in estimating global carbon dynamics between terrestrial ecosystems and the atmosphere. Here, in order to analyze the global variations in CUE and understand how CUE varies with environmental variables, a global database was constructed based on published data for crops, forests, grasslands, wetlands and tundra ecosystems. In addition to CUE data, were also collected: GPP and NPP; site variables (e.g. climate zone, site management and plant function type); climate variables (e.g. temperature and precipitation); additional carbon fluxes (e.g. soil respiration, autotrophic respiration and heterotrophic respiration); and carbon pools (e.g. stem, leaf and root biomass). Different climate metrics were derived to diagnose seasonal temperature (mean annual temperature, MAT, and maximum temperature, Tmax) and water availability proxies (mean annual precipitation, MAP, and Palmer Drought Severity Index), in order to improve the local representation of environmental variables. Additionally were also included vegetation phenology dynamics as observed by different vegetation indices from the MODIS satellite. The mean CUE of all terrestrial ecosystems was 0.45, 10% lower than the previous assumed constant CUE of 0

  17. Ecosystem functioning is enveloped by hydrometeorological variability.

    Science.gov (United States)

    Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris

    2017-09-01

    Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.

  18. Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems

    Science.gov (United States)

    Tockner, K.

    2009-04-01

    Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition

  19. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae).

    Science.gov (United States)

    Huerta Lwanga, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A; Geissen, Violette

    2016-03-01

    Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, digestion of ingested organic matter, microplastic was concentrated in cast, especially at the lowest dose (i.e., 7% in litter) because that dose had the highest proportion of digestible organic matter. Whereas 50 percent of the microplastics had a size of earthworms. These concentration-transport and size-selection mechanisms may have important implications for fate and risk of microplastic in terrestrial ecosystems.

  20. Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L

    2005-06-01

    relative health of the ecosystem. The IBI, though originally for Midwestern streams, has been successfully adapted to other ecoregions and taxa (macroinvertebrates, Lombard and Goldstein, 2004) and has become an important tool for scientists and regulatory agencies alike in determining health of stream ecosystems. The IBI is a specific type of a larger group of methods and procedures referred to as Rapid Bioassessment (RBA). These protocols have the advantage of directly measuring the organisms affected by system perturbations, thus providing an integrated evaluation of system health because the organisms themselves integrate all aspects of their environment and its condition. In addition to the IBI, the RBA concept has also been applied to seep wetlands (Paller et al. 2005) and terrestrial systems (O'Connell et al. 1998, Kremen et al. 1993, Rodriguez et al. 1998, Rosenberg et al. 1986). Terrestrial RBA methods have lagged somewhat behind those for aquatic systems because terrestrial systems are less distinctly defined and seem to have a less universal distribution of an all-inclusive taxon, such as fish in the IBI, upon which to base an RBA. In the last decade, primarily in Australia, extensive development of an RBA using ant communities has shown great promise. Ants have the same advantage for terrestrial RBAs that fish do for aquatic systems in that they are an essential and ubiquitous component of virtually all terrestrial ecosystems. They occupy a broad range of niches, functional groups, and trophic levels and they possess one very important characteristic that makes them ideal for RBA because, similar to the fishes, there is a wide range of tolerance to conditions within the larger taxa. Within ant communities there are certain groups, genera, or species that may be very robust and abundant under even the harshest impacts. There are also taxa that are very sensitive to disturbance and change and their presence or absence is also indicative of the local

  1. The Rise of the Anthroposphere since 50,000 Years: An Ecological Replacement of Megaherbivores by Humans in Terrestrial Ecosystems?

    Directory of Open Access Journals (Sweden)

    Hervé Bocherens

    2018-01-01

    Full Text Available Megaherbivores fulfilled a number of important ecological functions in terrestrial ecosystems and behaved as ecological engineers since 300 million years until around 12,000 years ago. These essential ecological functions include opening vegetation cover, selective seed dispersal and nutrient recycling and spreading. Thanks to these effects, megaherbivores change the vegetation structure where they live, with cascading effects on smaller herbivores and also on climate. The late Pleistocene extinction strongly impacted the megaherbivores almost all over the world and led to the loss of these important ecological functions in terrestrial ecosystems. These functions were partially restored by agriculturist humans through an ecological replacement that occurred through an ecological shift within the species Homo sapiens. A better understanding of the differences and similarities between the ecological impacts of megaherbivores and those of agricultural humans should help to predict the future of terrestrial ecosystems.

  2. The role of UV-B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV-absorbing componist.

    NARCIS (Netherlands)

    Rozema, J.; Bjorn, L.O.; Bornman, J.F.; Gaberscik, A.; Hader, D.P.; Trost, T.; Germ, M.; Klisch, M.; Groniger, A.; Sinha, R.P.; Lebert, M.; He, Y.Y.; Buffoni-Hall, R.; Bakker, N.; van de Staaij, J.W.M.; Meijkamp, B.B.

    2002-01-01

    We analysed and compared the functioning of UV-B screening pigments in plants from marine, fresh water and terrestrial ecosystems, along the evolutionary line of cyanobacteria, unicellular algae, primitive multicellular algae, charophycean algae, lichens, mosses and higher plants, including

  3. Vulnerability of the global terrestrial ecosystems to climate change.

    Science.gov (United States)

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Mitigation of greenhouse gases emissions impact and their influence on terrestrial ecosystem.

    Science.gov (United States)

    Wójcik Oliveira, K.; Niedbała, G.

    2018-05-01

    Nowadays, one of the most important challenges faced by the humanity in the current century is the increasing temperature on Earth, caused by a growing emission of greenhouse gases into the atmosphere. Terrestrial ecosystems, as an important component of the carbon cycle, play an important role in the sequestration of carbon, which is a chance to improve the balance of greenhouse gases. Increasing CO2 absorption by terrestrial ecosystems is one way to reduce the atmospheric CO2 emissions. Sequestration of CO2 by terrestrial ecosystems is not yet fully utilized method of mitigating CO2 emission to the atmosphere. Terrestrial ecosystems, especially forests, are essential for the regulation of CO2 content in the atmosphere and more attention should be paid to seeking the natural processes of CO2 sequestration.

  5. Implications of Uncertainty in Fossil Fuel Emissions for Terrestrial Ecosystem Modeling

    Science.gov (United States)

    King, A. W.; Ricciuto, D. M.; Mao, J.; Andres, R. J.

    2017-12-01

    Given observations of the increase in atmospheric CO2, estimates of anthropogenic emissions and models of oceanic CO2 uptake, one can estimate net global CO2 exchange between the atmosphere and terrestrial ecosystems as the residual of the balanced global carbon budget. Estimates from the Global Carbon Project 2016 show that terrestrial ecosystems are a growing sink for atmospheric CO2 (averaging 2.12 Gt C y-1 for the period 1959-2015 with a growth rate of 0.03 Gt C y-1 per year) but with considerable year-to-year variability (standard deviation of 1.07 Gt C y-1). Within the uncertainty of the observations, emissions estimates and ocean modeling, this residual calculation is a robust estimate of a global terrestrial sink for CO2. A task of terrestrial ecosystem science is to explain the trend and variability in this estimate. However, "within the uncertainty" is an important caveat. The uncertainty (2σ; 95% confidence interval) in fossil fuel emissions is 8.4% (±0.8 Gt C in 2015). Combined with uncertainty in other carbon budget components, the 2σ uncertainty surrounding the global net terrestrial ecosystem CO2 exchange is ±1.6 Gt C y-1. Ignoring the uncertainty, the estimate of a general terrestrial sink includes 2 years (1987 and 1998) in which terrestrial ecosystems are a small source of CO2 to the atmosphere. However, with 2σ uncertainty, terrestrial ecosystems may have been a source in as many as 18 years. We examine how well global terrestrial biosphere models simulate the trend and interannual variability of the global-budget estimate of the terrestrial sink within the context of this uncertainty (e.g., which models fall outside the 2σ uncertainty and in what years). Models are generally capable of reproducing the trend in net terrestrial exchange, but are less able to capture interannual variability and often fall outside the 2σ uncertainty. The trend in the residual carbon budget estimate is primarily associated with the increase in atmospheric CO2

  6. A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu

    2017-01-01

    In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of 'terrestrial ecosystem model' was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems. (author)

  7. Herbivores Enforce Sharp Boundaries Between Terrestrial and Aquatic Ecosystems

    NARCIS (Netherlands)

    Sarneel, Judith M.; Huig, N.; Veen, G. F.; Rip, W.; Bakker, E. S.

    2014-01-01

    The transitions between ecosystems (ecotones) are often biodiversity hotspots, but we know little about the forces that shape them. Today, often sharp boundaries with low diversity are found between terrestrial and aquatic ecosystems. This has been attributed to environmental factors that hamper

  8. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  9. Terrestrial ecosystem responses to global change: A research strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere.

  10. The impacts of past climate change on terrestrial and aquatic ecosystems

    International Nuclear Information System (INIS)

    Bradshaw, R.H.W.; Anderson, N.J.

    2001-01-01

    The last two million years of global history have been dominated by the impacts of rapid climate change. This influence is not immediately obvious to most biologists whose observations rarely extend beyond a period of a few years, but becomes apparent when interpreting long-term data sets whether they be population studies or palaeoecological data. It is appropriate therefore to consider how terrestrial and aquatic ecosystems have responded to climate change during the Quaternary when speculating about response to future climatic developments. In this chapter we discuss and illustrate the complex interactions between climate and anthropogenic influence on terrestrial and aquatic ecosystems during the Holocene. Climate influences ecosystems both directly (e.g. physiological responses or lake thermal stratification) and indirectly (e.g. via fire frequency or catchment hydrology). Lake sediments can be used to study both past climatic change directly and the effects of past climatic variability. In this chapter we present summary examples of the influence of past climate change on terrestrial and aquatic ecosystems as well showing how lake sediment records can provide proxy records of past climate change. The geological record from the last 18 000 years documents large changes in terrestrial and aquatic ecosystems that are primarily driven by climatic change, but are modified by internal ecosystem processes. These changes are comparable in magnitude and rapidity to those predicted for the near future. Species at their distributional limits are particularly sensitive to climate change and contractions of range can be sudden in response to extreme climatic events such as the storm of December 1999 that damaged Picea trees far more than tree species that lay within their natural range limits. Palaeoecological records provide compelling evidence for direct climate forcing of aquatic and terrestrial ecosystems but importantly also permit comparative analyses of impacts

  11. The carbon balance of terrestrial ecosystems of China

    Directory of Open Access Journals (Sweden)

    Pilli R

    2009-05-01

    Full Text Available A comment is made on a recent letter published on Nature, in which different methodologies are applied to estimate the carbon balance of terrestrial ecosystems of China. A global carbon sink of 0.19-0.26 Pg per year is estimated during the 1980s and 1990s, and it is estimated that in 2006 terrestrial ecosystems have absorbed 28-37 per cent of global carbon emissions in China. Most of the carbon absorption is attributed to large-scale plantation made since the 1980s and shrub recovery. These results will certainly be valuable in the frame of the so-called “REDD” (Reducing Emissions from Deforestation forest Degradation in developing countries mechanism (UN convention on climate change UNFCCC.

  12. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    period of 2003-2010. Ecosystem heterotrophic respiration (RH) was negatively affected by the aerosol loading. These results support previous conclusions of the advantage of aerosol light scattering effect on plant productions in other studies but suggest there is strong spatial variation. This study finds indirect aerosol effects on terrestrial ecosystem carbon dynamics through affecting plant phenology, thermal and hydrological environments. All these evidences suggested that the aerosol direct radiative effect on global terrestrial ecosystem carbon dynamics should be considered to better understand the global carbon cycle and climate change. An ozone sub-model is developed in this dissertation and fully coupled with iTem. The coupled model, named iTemO3 considers the processes of ozone stomatal deposition, plant defense to ozone influx, ozone damage and plant repairing mechanism. By using a global atmospheric chemical transport model (GACTM) estimated ground-level ozone concentration data, the model estimated global annual stomatal ozone deposition is 234.0 Tg O3 yr-1 and indicates which regions have high ozone damage risk. Different plant functional types, sunlit and shaded leaves are shown to have different responses to ozone. The model predictions suggest that ozone has caused considerable change on global terrestrial ecosystem carbon storage and carbon exchanges over the study period 2004-2008. The study suggests that uncertainty of the key parameters in iTemO3 could result in large errors in model predictions. Thus more experimental data for better model parameterization is highly needed.

  13. How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ying [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Xu, Zhihong; Reverchon, Frederique [Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation

    2012-03-15

    Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil-air exchange. Soil-air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further

  14. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    Science.gov (United States)

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  15. Linkages Among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    1999-12-01

    Full Text Available Global freshwater assessments have not addressed the linkages among water vapor flows, agricultural food production, and terrestrial ecosystem services. We perform the first bottom-up estimate of continental water vapor flows, subdivided into the major terrestrial biomes, and arrive at a total continental water vapor flow of 70,000 km3/yr (ranging from 56,000 to 84,000 km3/yr. Of this flow, 90% is attributed to forests, including woodlands (40,000 km3/yr, wetlands (1400 km3/yr, grasslands (15,100 km3/yr, and croplands (6800 km3/yr. These terrestrial biomes sustain society with essential welfare-supporting ecosystem services, including food production. By analyzing the freshwater requirements of an increasing demand for food in the year 2025, we discover a critical trade-off between flows of water vapor for food production and for other welfare-supporting ecosystem services. To reduce the risk of unintentional welfare losses, this trade-off must become embedded in intentional ecohydrological landscape management.

  16. Carbon Sequestration in Terrestrial Ecosystems: A Status Report on R and D Progress

    International Nuclear Information System (INIS)

    Jacobs, G.K.

    2001-01-01

    Sequestration of carbon in terrestrial ecosystems is a low-cost option that may be available in the near-term to mitigate increasing atmospheric CO(sub 2) concentrations, while providing additional benefits. Storing carbon in terrestrial ecosystems can be achieved through maintenance of standing aboveground biomass, utilization of aboveground biomass in long-lived products, or protection of carbon (organic and inorganic) compounds present in soils. There are potential co-benefits from efforts to sequester carbon in terrestrial ecosystems. For example, long-lived valuable products (wood) are produced, erosion would be reduced, soil productivity could be improved through increased capacity to retain water and nutrients, and marginal lands could be improved and riparian ecosystems restored. Another unique feature of the terrestrial sequestration option is that it is the only option that is ''reversible'' should it become desirable or permissible. For example, forests that are created are thus investments which could be harvested should CO(sub 2) emissions be reduced in other ways to acceptable levels 50-100 years from now

  17. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    Science.gov (United States)

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  18. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [ed.; EcoAnalytica, Haegersten (Sweden)

    2010-12-15

    The ecosystem is in most cases the link between radionuclides released from a repository and the exposure of humans and other biota to them. This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing and performing cross-disciplinary analyses of data from a large number of reports produced during the site investigations, Figure 1-2. The report describes the terrestrial landscape, divided here into the three main categories: forests, wetlands and agriculture land, by identifying properties that are important for element accumulation and transport

  19. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2010-12-01

    The ecosystem is in most cases the link between radionuclides released from a repository and the exposure of humans and other biota to them. This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing and performing cross-disciplinary analyses of data from a large number of reports produced during the site investigations, Figure 1-2. The report describes the terrestrial landscape, divided here into the three main categories: forests, wetlands and agriculture land, by identifying properties that are important for element accumulation and transport

  20. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    International Nuclear Information System (INIS)

    Rozema, Jelte; Notten, Martje J.M.; Aerts, Rien; Gestel, Cornelis A.M. van; Hobbelen, Peter H.F.; Hamers, Timo H.M.

    2008-01-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded

  1. Resource subsidies between stream and terrestrial ecosystems under global change

    Science.gov (United States)

    Larsen, Stefano; Muehlbauer, Jeffrey D.; Marti Roca, Maria Eugenia

    2016-01-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream–terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream–riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream–terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic

  2. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    Science.gov (United States)

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  3. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  4. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters

    Science.gov (United States)

    Engel, Fabian; Farrell, Kaitlin J.; McCullough, Ian M.; Scordo, Facundo; Denfeld, Blaize A.; Dugan, Hilary A.; de Eyto, Elvira; Hanson, Paul C.; McClure, Ryan P.; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C.; Weyhenmeyer, Gesa A.

    2018-04-01

    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of {0.70}_{-0.31}^{+0.27} to {1.52}_{-0.90}^{+1.09} Pg C yr-1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.

  5. The response of terrestrial ecosystems to global climate change: Towards an integrated approach

    International Nuclear Information System (INIS)

    Rustad, Lindsey E.

    2008-01-01

    Accumulating evidence points to an anthropogenic 'fingerprint' on the global climate change that has occurred in the last century. Climate change has, and will continue to have, profound effects on the structure and function of terrestrial ecosystems. As such, there is a critical need to continue to develop a sound scientific basis for national and international policies regulating carbon sequestration and greenhouse gas emissions. This paper reflects on the nature of current global change experiments, and provides recommendations for a unified multidisciplinary approach to future research in this dynamic field. These recommendations include: (1) better integration between experiments and models, and amongst experimental, monitoring, and space-for-time studies; (2) stable and increased support for long-term studies and multi-factor experiments; (3) explicit inclusion of biodiversity, disturbance, and extreme events in experiments and models; (4) consideration of timing vs intensity of global change factors in experiments and models; (5) evaluation of potential thresholds or ecosystem 'tipping points'; and (6) increased support for model-model and model-experiment comparisons. These recommendations, which reflect discussions within the TERACC international network of global change scientists, will facilitate the unraveling of the complex direct and indirect effects of global climate change on terrestrial ecosystems and their components

  6. Functional complexity and ecosystem stability: an experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Van Voris, P.; O' Neill, R.V.; Shugart, H.H.; Emanuel, W.R.

    1978-01-01

    The complexity-stability hypothesis was experimentally tested using intact terrestrial microcosms. Functional complexity was defined as the number and significance of component interactions (i.e., population interactions, physical-chemical reactions, biological turnover rates) influenced by nonlinearities, feedbacks, and time delays. It was postulated that functional complexity could be nondestructively measured through analysis of a signal generated from the system. Power spectral analysis of hourly CO/sub 2/ efflux, from eleven old-field microcosms, was analyzed for the number of low frequency peaks and used to rank the functional complexity of each system. Ranking of ecosystem stability was based on the capacity of the system to retain essential nutrients and was measured by net loss of Ca after the system was stressed. Rank correlation supported the hypothesis that increasing ecosystem functional complexity leads to increasing ecosystem stability. The results indicated that complex functional dynamics can serve to stabilize the system. The results also demonstrated that microcosms are useful tools for system-level investigations.

  7. Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011

    Science.gov (United States)

    Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G.

    2014-05-01

    In recent years, China's terrestrial ecosystems have experienced frequent droughts. How these droughts have affected carbon sequestration by the terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China from 2000 to 2011. Droughts of differing severity, as indicated by a standard precipitation index (SPI), hit terrestrial ecosystems in China extensively in 2001, 2006, 2009, and 2011. The national total annual NEP exhibited the slight decline of -11.3 Tg C yr-2 during the aforementioned years of extensive droughts. The NEP reduction ranged from 61.1 Tg C yr-1 to 168.8 Tg C yr-1. National and regional total NEP anomalies were correlated with the annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. The reductions in annual NEP in 2001 and 2011 might have been caused by a larger decrease in annual gross primary productivity (GPP) than in annual ecosystem respiration (ER). The reductions experienced in 2009 might be due to a decrease in annual GPP and an increase in annual ER, while reductions in 2006 could stem from a larger increase in ER than in GPP. The effects of droughts on NEP lagged up to 3-6 months, due to different responses of GPP and ER. In eastern China, where is humid and warm, droughts have predominant and short-term lagged influences on NEP. In western regions, cold and arid, the drought effects on NEP were relatively weaker but prone to lasting longer.

  8. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    Science.gov (United States)

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  9. Forest restoration, biodiversity and ecosystem functioning

    Science.gov (United States)

    2011-01-01

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  10. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    Science.gov (United States)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-27

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  11. Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems

    NARCIS (Netherlands)

    Didden, W.; Römbke, J.

    2001-01-01

    This review article surveys the available data on enchytraeid sensitivity toward chemical stress, and the effects of chemical stress on enchytraeid communities in terrestrial ecosystems. The factors affecting bioavailability of stressors to enchytraeids and the nature of direct and indirect effects

  12. The Limits of Acclimation of land plants in a Terrestrial Ecosystems Model

    Science.gov (United States)

    Kothavala, Zavareh

    2014-05-01

    In this study, we examine the role of the terrestrial carbon cycle and the ability of different plant types to acclimate to a changing climate at the centennial scale using a global ecosystems model with updated biogeochemical processes related to moisture, carbon, and nitrogen. Elevated level of atmospheric carbon dioxide (CO2) increases CO2 fertilization, resulting in more CO2 uptake by vegetation, whereas the concomitant warming increases autotrophic and heterotrophic respiration, releasing CO2 to the atmosphere. Additionally, warming will enhance photosynthesis if current temperatures are below the optimal temperature for plant growth, while it will reduce photosynthesis if current temperatures are above the optimal temperature for plant growth. We present a series of ensemble simulations to evaluate the ability of plants to acclimate to changing conditions over the last century and how this affects the terrestrial carbon sink. A set of experiments related to (a) the varying relationship between CO2 fertilization and the half saturation constant, (b) the factors related to gross primary productivity and maintenance respiration, and (c) the variables related to heterotrophic respiration, were conducted with thirteen plant functional types. The experiments were performed using the Terrestrial Ecosystem Model (TEM) with a present-day vegetation distribution without the effects of natural or human disturbance, and a closed Nitrogen cycle, at a half-degree resolution over the globe. The experiment design consisted of eight scenarios that are consistent with past and future ecosystem conditions, presented in other scientific studies. The significance of model trends related to runoff, soil moisture, soil carbon, Net Primary Productivity (NPP), crop yield, and Net Ecosystem Productivity (NEP) for different seasons, as well as surface temperature, precipitation, vapor pressure, and photosynthetically active radiation are analyzed for various ecosystems at the global

  13. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    Science.gov (United States)

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony; Safta, Cosmin; Munger, William

    2017-09-01

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.

  14. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    Science.gov (United States)

    We tested the hypothesis that diurnal changes in terrestrial CO2 exchange are driven exclusively by the direct effect of the physical environment on plant physiology. We failed to corroborate this assumption, finding instead large diurnal fluctuations in whole ecosystem carbon assimilation across a ...

  15. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  16. Land use related silica dynamics in terrestrial ecosystems.

    OpenAIRE

    Clymans, Wim

    2012-01-01

    Silicon (Si) provides the base component for well-balanced food-webs in aquatic systems. Here, together with nitrogen and phosphorous Si determines phytoplankton composition, and plays a major role in eutrophication problems and carbon sequestration. Rivers are the primary source of Si for the oceans, and is ultimately derived from mineral weathering. However there is growing evidence illustrating the importance of biological Si cycling in terrestrial ecosystems. Riverine Si fluxes will be af...

  17. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems.

    Science.gov (United States)

    Austin, Amy T; Méndez, M Soledad; Ballaré, Carlos L

    2016-04-19

    A mechanistic understanding of the controls on carbon storage and losses is essential for our capacity to predict and mitigate human impacts on the global carbon cycle. Plant litter decomposition is an important first step for carbon and nutrient turnover, and litter inputs and losses are essential in determining soil organic matter pools and the carbon balance in terrestrial ecosystems. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in arid lands; however, the global significance of this process as a control on carbon cycling in terrestrial ecosystems is not known. Here we show that, across a wide range of plant species, photodegradation enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility to plant litter carbohydrates for microbial enzymes. Photodegradation of plant litter, driven by UV radiation, and especially visible (blue-green) light, reduced the structural and chemical bottleneck imposed by lignin in secondary cell walls. In leaf litter from woody species, specific interactions with UV radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized effect of sunlight exposure on subsequent microbial activity, mediated by increased accessibility to cell wall polysaccharides, suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release, and the carbon balance in a broad range of terrestrial ecosystems.

  18. Terrestrial Ecosystem Responses to Global Change: A Research Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ecosystems Working Group,

    1998-09-23

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere. Models and experiments are equally important for developing process-level understanding into a predictive capability. To support both the development and testing of mechanistic ecosystem models, a two-tiered design of ecosystem experiments should be used. This design should include both (1) large-scale manipulative experiments for comprehensive testing of integrated ecosystem models and (2) multifactor, multilevel experiments for parameterization of process models across the critical range of interacting environmental factors (CO{sub 2}, temperature, water

  19. Terrestrial Ecosystems - Land Surface Forms of the Conterminous United States

    Science.gov (United States)

    Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2009-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated land surface form classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe . A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. Since land surface forms strongly influence the differentiation and distribution of terrestrial ecosystems, they are one of the key input layers in this biophysical stratification. After extensive investigation into various land surface form mapping methodologies, the decision was made to use the methodology developed by the Missouri Resource Assessment Partnership (MoRAP). MoRAP made modifications to Hammond's land surface form classification, which allowed the use of 30-meter source data and a 1-km2 window for analyzing the data cell and its surrounding cells (neighborhood analysis). While Hammond's methodology was based on three topographic variables, slope, local relief, and profile type, MoRAP's methodology uses only slope and local relief. Using the MoRAP method, slope is classified as gently sloping when more than 50 percent of the area in a 1-km2 neighborhood has slope less than 8 percent, otherwise the area is considered moderately sloping. Local relief, which is the difference between the maximum and minimum elevation in a neighborhood, is classified into five groups: 0-15 m, 16-30 m, 31-90 m, 91-150 m, and >150 m. The land surface form classes are derived by combining slope and local relief to create eight landform classes: flat plains (gently sloping and local relief = 90 m), low hills (not gently sloping and local relief = 150 m). However, in the USGS application of the MoRAP methodology, an additional local relief group was used (> 400 m) to capture additional local topographic variation. As a result, low

  20. Towards a Stochastic Predictive Understanding of Ecosystem Functioning and Resilience to Environmental Changes

    Science.gov (United States)

    Pappas, C.

    2017-12-01

    Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not

  1. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis.

    Science.gov (United States)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-11-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Potential Applications of Gosat Based Carbon Budget Products to Refine Terrestrial Ecosystem Model

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2011-12-01

    Estimation of carbon exchange in terrestrial ecosystem associates with difficulties due to complex entanglement of physical and biological processes: thus, the net ecosystem productivity (NEP) estimated from simulation often differs among process-based terrestrial ecosystem models. In addition to complexity of the system, validation can only be conducted in a point scale since reliable observation is only available from ground observations. With a lack of large spatial data, extension of model simulation to a global scale results in significant uncertainty in the future carbon balance and climate change. Greenhouse gases Observing SATellite (GOSAT), launched by the Japanese space agency (JAXA) in January, 2009, is the 1st operational satellite promised to deliver the net land-atmosphere carbon budget to the terrestrial biosphere research community. Using that information, the model reproducibility of carbon budget is expected to improve: hence, gives a better estimation of the future climate change. This initial analysis is to seek and evaluate the potential applications of GOSAT observation toward the sophistication of terrestrial ecosystem model. The present study was conducted in two processes: site-based analysis using eddy covariance observation data to assess the potential use of terrestrial carbon fluxes (GPP, RE, and NEP) to refine the model, and extension of the point scale analysis to spatial using Carbon Tracker product as a prototype of GOSAT product. In the first phase of the experiment, it was verified that an optimization routine adapted to a terrestrial model, Biome-BGC, yielded the improved result with respect to eddy covariance observation data from AsiaFlux Network. Spatial data sets used in the second phase were consists of GPP from empirical algorithm (e.g. support vector machine), NEP from Carbon Tracker, and RE from the combination of these. These spatial carbon flux estimations was used to refine the model applying the exactly same

  3. Linking Biological Responses of Terrestrial N Eutrophication to the Final Ecosystem Goods and Services Classification System

    Science.gov (United States)

    Bell, M. D.; Clark, C.; Blett, T.

    2015-12-01

    The response of a biological indicator to N deposition can indicate that an ecosystem has surpassed a critical load and is at risk of significant change. The importance of this exceedance is often difficult to digest by policy makers and public audiences if the change is not linked to a familiar ecosystem endpoint. A workshop was held to bring together scientists, resource managers, and policy makers with expertise in ecosystem functioning, critical loads, and economics in an effort to identify the ecosystem services impacted by air pollution. This was completed within the framework of the Final Ecosystem Goods and Services (FEGS) Classification System to produce a product that identified distinct interactions between society and the effects of nitrogen pollution. From each change in a biological indicator, we created multiple ecological production functions to identify the cascading effects of the change to a measureable ecosystem service that a user interacts with either by enjoying, consuming, or appreciating the good or service, or using it as an input in the human economy. This FEGS metric was then linked to a beneficiary group that interacts with the service. Chains detailing the links from the biological indicator to the beneficiary group were created for aquatic and terrestrial acidification and eutrophication at the workshop, and here we present a subset of the workshop results by highlighting for 9 different ecosystems affected by terrestrial eutrophication. A total of 213 chains that linked to 37 unique FEGS metrics and impacted 15 beneficiary groups were identified based on nitrogen deposition mediated changes to biological indicators. The chains within each ecosystem were combined in flow charts to show the complex, overlapping relationships among biological indicators, ecosystem services, and beneficiary groups. Strength of relationship values were calculated for each chain based on support for the link in the scientific literature. We produced the

  4. High resolution measurement of light in terrestrial ecosystems using photodegrading dyes.

    Directory of Open Access Journals (Sweden)

    Javier Roales

    Full Text Available Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem.

  5. Conversion of native terrestrial ecosystems in Hawai‘i to novel grazing systems: a review

    Science.gov (United States)

    Leopold, Christina R.; Hess, Steven C.

    2017-01-01

    The remote oceanic islands of Hawai‘i exemplify the transformative effects that non-native herbivorous mammals can bring to isolated terrestrial ecosystems. We reviewed published literature containing systematically collected, analyzed, and peer-reviewed original data specifically addressing direct effects of non-native hoofed mammals (ungulates) on terrestrial ecosystems, and indirect effects and interactions on ecosystem processes in Hawai‘i. The effects of ungulates on native vegetation and ecosystems were addressed in 58 original studies and mostly showed strong short-term regeneration of dominant native trees and understory ferns after ungulate removal, but unassisted recovery was dependent on the extent of previous degradation. Ungulates were associated with herbivory, bark-stripping, disturbance by hoof action, soil erosion, enhanced nutrient cycling from the interaction of herbivory and grasses, and increased pyrogenicity and competition between native plants and pasture grasses. No studies demonstrated that ungulates benefitted native ecosystems except in short-term fire-risk reduction. However, non-native plants became problematic and continued to proliferate after release from herbivory, including at least 11 species of non-native pasture grasses that had become established prior to ungulate removal. Competition from non-native grasses inhibited native species regeneration where degradation was extensive. These processes have created novel grazing systems which, in some cases, have irreversibly altered Hawaii’s terrestrial ecology. Non-native plant control and outplanting of rarer native species will be necessary for recovery where degradation has been extensive. Lack of unassisted recovery in some locations should not be construed as a reason to not attempt restoration of other ecosystems.

  6. Developing Conceptual Models for Assessing Climate Change Impacts to Contaminant Availability in Terrestrial Ecosystems

    Science.gov (United States)

    2015-03-01

    Greenberg 2005), effects of dredged material (PIANC 2006), and ecosystem restoration (Fischenich 2008) among others. The process of developing a conceptual...Impacts to Contaminant Availability in Terrestrial Ecosystems by Burton C. Suedel, Nathan R. Beane, Eric R. Britzke, Cheryl R. Montgomery, and...are generally project or problem specific. Building a CM includes determining the components of the ecosystem , identifying relationships linking these

  7. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    Science.gov (United States)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  8. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions.

    Science.gov (United States)

    Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; Wohlfahrt, Georg; Buchmann, Nina; Zhu, Juan; Chen, Guanhong; Moyano, Fernando; Pumpanen, Jukka; Hirano, Takashi; Takagi, Kentaro; Merbold, Lutz

    2017-06-08

    The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10 , defined as the increase of RE (or GPP) rates with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG ) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR ). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. In addition, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.

  9. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China

    DEFF Research Database (Denmark)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere Abdisa

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling...... and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle....

  10. Water Use Efficiency of China's Terrestrial Ecosystems and Responses to Drought

    Science.gov (United States)

    Liu, Y.; Xiao, J.; Ju, W.; Zhou, Y.; Wang, S.; Wu, X.

    2015-12-01

    Yibo Liu1, 2, Jingfeng Xiao2, Weimin Ju3, Yanlian Zhou4, Shaoqiang Wang5, Xiaocui Wu31 Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China, 2Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA, 3 International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China, 4 School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China, 5 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg-1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme drought reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate

  11. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the

  12. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis

    International Nuclear Information System (INIS)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A.; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. - Highlights: • Meta-analysis was used to address the effects of N addition on C cycle. • N addition caused an large decease in belowground plant C pool. • N-rich and N-limited ecosystems had different responses to N addition. - N addition caused a large decrease in below-ground plant C pool.

  13. The adaptation rate of terrestrial ecosystems as a critical factor in global climate dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fuessler, J S; Gassmann, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A conceptual climate model describing regional two-way atmosphere-vegetation interaction has been extended by a simple qualitative scheme of ecosystem adaptation to drought stress. The results of this explorative study indicate that the role of terrestrial vegetation under different forcing scenarios depends crucially on the rate of the ecosystems adaptation to drought stress. The faster the adaptation of important ecosystems such as forests the better global climate is protected from abrupt climate changes. (author) 1 fig., 3 refs.

  14. Deep Atomic Binding (DAB) Approach in Interpretation of Fission Products Behavior in Terrestrial and Water Ecosystems

    International Nuclear Information System (INIS)

    Ajlouni, Abdul-Wali M.S.

    2006-01-01

    A large number of studies and models were established to explain the fission products (FP) behavior within terrestrial and water ecosystems, but a number of behaviors were non understandable, which always attributed to unknown reasons. According to DAB hypothesis, almost all fission products behaviors in terrestrial and water ecosystems could be interpreted in a wide coincidence. The gab between former models predictions, and field behavior of fission products after accidents like Chernobyl have been explained. DAB represents a tool to reduce radio-phobia as well as radiation protection expenses. (author)

  15. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.

    Science.gov (United States)

    An, Y-J; Joo, Y-H; Hong, I-Y; Ryu, H-W; Cho, K-S

    2004-10-01

    The degradation characteristics of toluene coupled to nitrate reduction were investigated in enrichment culture and the microbial communities of toluene-degrading denitrifying consortia were characterized by denaturing gradient gel electrophoresis (DGGE) technique. Anaerobic nitrate-reducing bacteria were enriched from oil-contaminated soil samples collected from terrestrial (rice field) and marine (tidal flat) ecosystems. Enriched consortia degraded toluene in the presence of nitrate as a terminal electron acceptor. The degradation rate of toluene was affected by the initial substrate concentration and co-existence of other hydrocarbons. The types of toluene-degrading denitrifying consortia depended on the type of ecosystem. The clone RS-7 obtained from the enriched consortium of the rice field was most closely related to a toluene-degrading and denitrifying bacterium, Azoarcus denitrificians (A. tolulyticus sp. nov.). The clone TS-11 detected in the tidal flat enriched consortium was affiliated to Thauera sp. strain S2 (T. aminoaromatica sp. nov.) that was able to degrade toluene under denitrifying conditions. This indicates that environmental factors greatly influence microbial communities obtained from terrestrial (rice field) and marine (tidal flat) ecosystems.

  16. Dual role of lignin in plant litter decomposition in terrestrial ecosystems.

    Science.gov (United States)

    Austin, Amy T; Ballaré, Carlos L

    2010-03-09

    Plant litter decomposition is a critical step in the formation of soil organic matter, the mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems. Biotic decomposition in mesic ecosystems is generally negatively correlated with the concentration of lignin, a group of complex aromatic polymers present in plant cell walls that is recalcitrant to enzymatic degradation and serves as a structural barrier impeding microbial access to labile carbon compounds. Although photochemical mineralization of carbon has recently been shown to be important in semiarid ecosystems, litter chemistry controls on photodegradative losses are not understood. We evaluated the importance of litter chemistry on photodegradation of grass litter and cellulose substrates with varying levels of lignin [cellulose-lignin (CL) substrates] under field conditions. Using wavelength-specific light attenuation filters, we found that light-driven mass loss was promoted by both UV and visible radiation. The spectral dependence of photodegradation correlated with the absorption spectrum of lignin but not of cellulose. Field incubations demonstrated that increasing lignin concentration reduced biotic decomposition, as expected, but linearly increased photodegradation. In addition, lignin content in CL substrates consistently decreased in photodegradative incubations. We conclude that lignin has a dual role affecting litter decomposition, depending on the dominant driver (biotic or abiotic) controlling carbon turnover. Under photodegradative conditions, lignin is preferentially degraded because it acts as an effective light-absorbing compound over a wide range of wavelengths. This mechanistic understanding of the role of lignin in plant litter decomposition will allow for more accurate predictions of carbon dynamics in terrestrial ecosystems.

  17. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems

    Science.gov (United States)

    Vitousek, Peter M.; Menge, Duncan N.L.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.

  18. Ecological risk assessment for the terrestrial ecosystem under chronic radioactive pollution - Ecological risk assessment for the biota on regional radioactive waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Lavrentyeva, G.V.; Synzynys, B.I.; Shoshina, R.R.; Mirzeabasov, O.A. [Obninsk Institute for Nuclear Power Engineering, branch of the National Research Nuclear University MEPhI, Department of Ecology, Studgorodok,1, 249040 Obninsk, Kaluga region (Russian Federation)

    2014-07-01

    of their values; establishment of reference species and indices; assessment and analysis of critical loads by plotting 'dose-effect' dependencies; ecological risk assessment from critical loads versus permissible values; plotting of risk functions to calculate the expected adverse alterations in the ecosystem. The following reference species have been deduced from experimental results for the tested territory: the terrestrial mollusk shrubby Snail (Bradybaena fruticum) of fauna representatives and the number of colony-forming units (CFU) of soil micro-biota representatives. The calculations and mapping have shown that in the territory studied the area with excess critical loads is 48% for CFU and 61% for {sup 90}Sr accumulation coefficient. The analyzed risk functions give evidence of highly probable negative alterations in the tested ecosystem: 85% for CFU and 99% for {sup 90}Sr accumulation coefficient. Based on the results obtained the storage risk for a terrestrial ecosystem is considered to be inadmissible and this implies unstable conditions in the territory in the nearest future. (authors)

  19. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  20. Application of a terrestrial ecosystem model (ORCHIDEE-STICS) in simulating energy and CO2 fluxes in Asian rice croplands

    Science.gov (United States)

    Wang, X.; Piao, S.; Ciais, P.; Vuichard, N.

    2012-12-01

    Process-based terrestrial ecosystem models have shown great potentials in predicting the response of managed ecosystems to environmental changes. However, the simulated water and carbon fluxes over rice ecosystems in tropical Asia are still subject to large uncertainties, partly due to poorly constrained parameters in the models. Here, a terrestrial ecosystem model incorporating a more realistic crop module (ORCHIDEE-STICS) was calibrated against in-situ flux data and observed and remotely sensed leaf area indexes over rice ecosystems in Asia. The key parameters adjusted include maximum photosynthetic carboxylation rate (Vcmax) and electron transport rate (Vjmax), temperature sensitivity of heterotrophic respiration (Q10) and a series of critical thresholds for different crop development stages. Compared with the observations, the calibrated model more realistically simulated the seasonal and year-to-year variation of the observed water and carbon fluxes with reductions in the root mean square difference and better timing in the crop development stages. Sensitivity tests further reveal that management practices like the timing of transplanting and draining could affect the seasonal and inter-annual variation of the net carbon exchange, suggesting that the absence of explicit accounting the change of management practices in the terrestrial ecosystem models may induce large uncertainties in predicting cropland ecosystem response to future climate change.

  1. The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    DEFF Research Database (Denmark)

    Douglas, Thomas A.; Loseto, Lisa L.; MacDonald, Robie W.

    2012-01-01

    the fate of Hg in most ecosystems, and the role of trophic processes in controlling Hg in higher order animals are also included. Case studies on Eastern Beaufort Sea beluga (Delphinapterus leucas) and landlocked Arctic char (Salvelinus alpinus) are presented as examples of the relationship between...... into non-biological archives is also addressed. The review concludes by identifying major knowledge gaps in our understanding, including: (1) the rates of Hg entry into marine and terrestrial ecosystems and the rates of inorganic and MeHg uptake by Arctic microbial and algal communities; (2...

  2. [Characteristics of terrestrial ecosystem primary productivity in East Asia based on remote sensing and process-based model].

    Science.gov (United States)

    Zhang, Fang-Min; Ju, Wei-Min; Chen, Jing-Ming; Wang, Shao-Qiang; Yu, Gui-Rui; Han, Shi-Jie

    2012-02-01

    Based on the bi-linearly interpolated meteorological reanalysis data from National Centers for Environmental Prediction, USA and by using the leaf area index data derived from the GIMMS NDVI to run the process-based Boreal Ecosystems Productivity Simulator (BEPS) model, this paper simulated and analyzed the spatiotemporal characteristics of the terrestrial ecosystem gross primary productivity (GPP) and net primary productivity (NPP) in East Asia in 2000-2005. Before regional simulating and calculating, the observation GPP data of different terrestrial ecosystem in 15 experimental stations of AsiaFlux network and the inventory measurements of NPP at 1300 sampling sites were applied to validate the BEPS GPP and NPP. The results showed that BEPS could well simulate the changes in GPP and NPP of different terrestrial ecosystems, with the R2 ranging from 0.86 to 0.99 and the root mean square error (RMSE) from 0.2 to 1.2 g C x m(-2) x d(-1). The simulated values by BEPS could explain 78% of the changes in annual NPP, and the RMSE was 118 g C x m(-2) x a(-1). In 2000-2005, the averaged total GPP and total NPP of the terrestrial ecosystems in East Asia were 21.7 and 10.5 Pg C x a(-1), respectively, and the GPP and NPP exhibited similar spatial and temporal variation patterns. During the six years, the total NPP of the terrestrial ecosystems varied from 10.2 to 10.7 Pg C x a(-1), with a coefficient of variation being 2. 2%. High NPP (above 1000 g C x m(-2) x a(-1)) occurred in the southeast island countries, while low NPP (below 30 g C x m(-2) x a(-1)) occurred in the desert area of Northwest China. The spatial patterns of NPP were mainly attributed to the differences in the climatic variables across East Asia. The NPP per capita also varied greatly among different countries, which was the highest (70217 kg C x a(-1)) in Mongolia, far higher than that (1921 kg C x a(-1)) in China, and the lowest (757 kg C x a(-1)) in India.

  3. Soil ecosystem functioning under climate change: plant species and community effects

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  4. [Effects and mechanism of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem].

    Science.gov (United States)

    Wang, Li-qin; Qi, Yu-chun; Dong, Yun-she; Peng, Qin; Guo, Shu-fang; He, Yun-long; Yan, Zhong-qing

    2015-11-01

    As a widespread natural phenomenon in the soil of middle and high latitude as well as high altitude, freeze-thawing cycles have a great influence on the nitrogen cycle of terrestrial ecosystem in non-growing season. Freeze-thawing cycles can alter the physicochemical and biological properties of the soil, which thereby affect the migration and transformation of soil nitrogen. The impacts of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem found in available studies remain inconsistent, the mechanism is still not clear, and the research methods also need to be further explored and innovated. So it is necessary to sum up and analyze the existing achievements in order to better understand the processes of soil nitrogen cycle subjected to freeze-thawing cycles. This paper reviewed the research progress in China and abroad about the effects and mechanisms of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem, including mineralization, immobilization, nitrification and denitrification, N leakage and gaseous loss, and analyzed the deficiencies of extant research. The possible key research topics that should be urgently paid more attention to in the future were also discussed.

  5. The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences

    Directory of Open Access Journals (Sweden)

    Judith Sitters

    2017-04-01

    Full Text Available It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N and phosphorus (P recycled through herbivore release (i.e., waste N:P are mainly determined by the stoichiometric composition of the herbivore's food (food N:P and its body nutrient content (body N:P. Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C:N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

  6. Assessing antiquity and turnover of terrestrial ecosystems in eastern North America using fossil pollen data: A preliminary study

    International Nuclear Information System (INIS)

    Liu Yao; Jackson, Stephen T; Brewer, Simon; Williams, John W

    2010-01-01

    We explored formal approaches to identifying and interpreting the antiquity and turnover of terrestrial ecosystems in eastern North America using pollen records. Preliminary results of cluster analyses, receiver-operating characteristic (ROC) analyses, and likelihood estimation of ecosystem analog in a simple Bayesian model allow assessment of modern ecosystem antiquities and past ecosystem turnovers. Approaches discussed in this study thus provide a vehicle for further studies.

  7. Terrestrial invertebrates in the Rhynie chert ecosystem.

    Science.gov (United States)

    Dunlop, Jason A; Garwood, Russell J

    2018-02-05

    The Early Devonian Rhynie and Windyfield cherts remain a key locality for understanding early life and ecology on land. They host the oldest unequivocal nematode worm (Nematoda), which may also offer the earliest evidence for herbivory via plant parasitism. The trigonotarbids (Arachnida: Trigonotarbida) preserve the oldest book lungs and were probably predators that practiced liquid feeding. The oldest mites (Arachnida: Acariformes) are represented by taxa which include mycophages and predators on nematodes today. The earliest harvestman (Arachnida: Opiliones) includes the first preserved tracheae, and male and female genitalia. Myriapods are represented by a scutigeromorph centipede (Chilopoda: Scutigeromorpha), probably a cursorial predator on the substrate, and a putative millipede (Diplopoda). The oldest springtails (Hexapoda: Collembola) were probably mycophages, and another hexapod of uncertain affinities preserves a gut infill of phytodebris. The first true insects (Hexapoda: Insecta) are represented by a species known from chewing (non-carnivorous?) mandibles. Coprolites also provide insights into diet, and we challenge previous assumptions that several taxa were spore-feeders. Rhynie appears to preserve a largely intact community of terrestrial animals, although some expected groups are absent. The known fossils are (ecologically) consistent with at least part of the fauna found around modern Icelandic hot springs.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Author(s).

  8. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    Science.gov (United States)

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo

    2010-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.

  9. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM site

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden); ed.

    2008-12-15

    This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing ecological data and data from disciplines such as hydrology, quaternary geology and chemistry. The description therefore includes a number of different processes that drive element fluxes in the ecosystems, such as net primary production, heterotrophic respiration, transpiration, and horizontal transport from land to streams and lakes. Moreover, the human appropriation of the landscape is described with regard to land use and potential and actual utilization of food resources both today and in a historical perspective

  10. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM site

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2008-12-01

    This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing ecological data and data from disciplines such as hydrology, quaternary geology and chemistry. The description therefore includes a number of different processes that drive element fluxes in the ecosystems, such as net primary production, heterotrophic respiration, transpiration, and horizontal transport from land to streams and lakes. Moreover, the human appropriation of the landscape is described with regard to land use and potential and actual utilization of food resources both today and in a historical perspective

  11. Changes of evapotranspiration and water yield in China's terrestrial ecosystems during the period from 2000 to 2010

    Science.gov (United States)

    Liu, Y.; Zhou, Y.; Ju, W.; Chen, J.; Wang, S.; He, H.; Wang, H.; Guan, D.; Zhao, F.; Li, Y.; Hao, Y.

    2013-04-01

    Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle and altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China since water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) dataset and other spatial data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield and influences of temperature, precipitation, land cover types, and LAI on ET were analyzed. The validations with ET measured at 5 typical ChinaFLUX sites and inferred using statistical hydrological data in 10 basins showed that the BEPS model was able to simulate daily and annual ET well at site and basin scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China and with precipitation in the arid and semiarid areas of northwest and north China. In the Tibet Plateau and humid southeast China, the increase in precipitation might cause ET to decrease. The national mean annual ET varied from 345.5 mm yr-1 in 2001 to 387.8 mm yr-1 in 2005, with an average of 369.8 mm yr-1 during the study period. The overall increase rate of 1.7 mm yr-2 (r = 0.43 p = 0.19) was mainly driven by the increase of total ET in forests. During the period from 2006 to 2009, precipitation and LAI decreased widely and consequently

  12. Green Ocean Amazon 2014/15 Terrestrial Ecosystem Project (Geco) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, Kolby [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-06-01

    In conjunction with the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility GoAmazon campaign, the Terrestrial Ecosystem Science (TES)-funded Green Ocean Amazon (GoAmazon 2014/15) terrestrial ecosystem project (Geco) was designed to: • evaluate the strengths and weaknesses of leaf-level algorithms for biogenic volatile organic compounds (BVOCs) emissions in Amazon forests near Manaus, Brazil, and • conduct mechanistic field studies to characterize biochemical and physiological processes governing leaf- and landscape-scale tropical forest BVOC emissions, and the influence of environmental drivers that are expected to change with a warming climate. Through a close interaction between modeling and observational activities, including the training of MS and PhD graduate students, post-doctoral students, and technicians at the National Institute for Amazon Research (INPA), the study aimed at improving the representation of BVOC-mediated biosphere-atmosphere interactions and feedbacks under a warming climate. BVOCs can form cloud condensation nuclei (CCN) that influence precipitation dynamics and modify the quality of down welling radiation for photosynthesis. However, our ability to represent these coupled biosphere-atmosphere processes in Earth system models suffers from poor understanding of the functions, identities, quantities, and seasonal patterns of BVOC emissions from tropical forests as well as their biological and environmental controls. The Model of Emissions of Gases and Aerosols from Nature (MEGAN), the current BVOC sub-model of the Community Earth System Model (CESM), was evaluated to explore mechanistic controls over BVOC emissions. Based on that analysis, a combination of observations and experiments were studied in forests near Manaus, Brazil, to test existing parameterizations and algorithm structures in MEGAN. The model was actively modified as needed to improve tropical BVOC emission simulations on

  13. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  14. Assessing the Impacts of forest degradation on water, energy, and carbon budgets in Amazon forest using the Functionally Assembled Terrestrial Ecosystem Simulator

    Science.gov (United States)

    Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2017-12-01

    Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach

  15. Terrestrial Ecosystem Responses to Species Gains and Losses

    NARCIS (Netherlands)

    Wardle, D.A.; Bardgett, R.D.; Callaway, R.; Putten, van der W.H.

    2011-01-01

    Ecosystems worldwide are losing some species and gaining others, resulting in an interchange of species that is having profound impacts on how these ecosystems function. However, research on the effects of species gains and losses has developed largely independently of one another. Recent conceptual

  16. Terrestrial ecosystem responses to species gains and losses

    NARCIS (Netherlands)

    Wardle, D.A.; Bardgett, R.D.; Callaway, R.M.; Van der Putten, W.H.

    2011-01-01

    Ecosystems worldwide are losing some species and gaining others, resulting in an interchange of species that is having profound impacts on how these ecosystems function. However, research on the effects of species gains and losses has developed largely independently of one another. Recent conceptual

  17. [Assessment of shallow groundwater nitrate concentrations in typical terrestrial ecosystems of Chinese Ecosystem Research Network (CERN) during 2004-2009].

    Science.gov (United States)

    Xu, Zhi-Wei; Zhang, Xin-Yu; Sun, Xiao-Min; Yuan, Guo-Fu; Wang, Sheng-Zhong; Liu, Wen-Hua

    2011-10-01

    The nitrate-N (NO3(-) -N) concentrations of 38 shallow groundwater wells from 31 of the typical terrestrial ecosystems on Chinese Ecosystem Research Network (CERN) were assessed using the monitoring data from 2004 to 2009. The results showed that the average values of NO3(-) -N concentrations were significantly higher in the agricultural (4.85 mg x L(-1) +/- 0.42 mg x L(-1)), desert (oasis) (3.72 mg x L(-1) +/- 0.42 mg x L(-1)) and urban ecosystems (3.77 mg x L(-1) 0.51 mg x L(-1)) than in the grass (1.59 mg x L(-1) +/- 0.35 mg L(-1)) and forest ecosystems (0.39 mg x L(-1) +/- 0.03 mg x L(-1)). Nitrate was the major form of nitrogen, with between 56% to 88% of nitrogen in the nitrate-N form in the shallow groundwater of desert (oasis), urban and agricultural ecosystems. Nitrate-N concentrations for some agricultural ecosystems (Ansai, Yanting, Yucheng) and desert (oasis) ecosystems (Cele, Linze, Akesu) analysis exceeded the 10 mg x L(-1) World Health Organization drinking water standards between 14.3% and 84.6%. Significant seasonality was found in Ansai, Fengqiu, Yanting agricultural ecosystems and the Beijing urban ecosystem using the relatively high frequency monitoring data, with the higher nitrate concentrations usually found during summer and winter months. The monitoring results indicated that the shallow groundwater of agricultural ecosystems was contaminated by agricultural management practices, i.e. fertilization, while the shallow groundwater of forest ecosystems was under natural condition with no contamination from human activities.

  18. The circumpolar biodiversity monitoring program - Terrestrial plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    , northern communities, and scientists to detect, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity. This presentation will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based...... monitoring with survey-based monitoring and remotely sensed data. The CBMP Terrestrial Plan intends to build upon and expand existing monitoring networks, engaging participants across a range of capacity and interests. The presentation will summarize the recommended focal soil ecosystem components...... and attributes to monitor in the plan related to soil invertebrates. Focal Ecosystem Components (FECs) of the soil decomposer system include the soil living invertebrates such as microarthropods, enchytraeids and earthworms and the functions performed by microorganisms such as nitrification, decomposition...

  19. Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations.

    Science.gov (United States)

    Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D

    2015-01-01

    There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.

  20. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  1. Future of Plant Functional Types in Terrestrial Biosphere Models

    Science.gov (United States)

    Wullschleger, S. D.; Euskirchen, E. S.; Iversen, C. M.; Rogers, A.; Serbin, S.

    2015-12-01

    Earth system models describe the physical, chemical, and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modelers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current, and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration, and shrub expansion. However, representation of above- and especially belowground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water, and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology, and remote sensing will be

  2. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits

    Czech Academy of Sciences Publication Activity Database

    Musavi, T.; Migliavacca, M.; van de Weg, M. J.; Kattge, J.; Wohlfahrt, G.; van Bodegom, P. M.; Reichstein, M.; Bahn, M.; Carrara, A.; Domingues, T. F.; Gavazzi, M.; Gianelle, D.; Gimeno, C.; Granier, A.; Gruening, C.; Havránková, Kateřina; Herbst, M.; Hrynkiw, Ch.; Kalhori, A.; Kaminski, T.; Klumpp, K.; Kolari, P.; Longdoz, B.; Minerbi, S.; Montagnani, L.; Moors, E.; Oechel, W.; Reich, P. B.; Rohatyn, S.; Rossi, A.; Rotenberg, E.; Varlagin, A.; Wilkinson, M.; Wirth, C.; Mahecha, M. D.

    2016-01-01

    Roč. 6, č. 20 (2016), s. 7352-7366 ISSN 2045-7758 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : gross primary production * cross-biome analysis * relative growth-rate * plant traits * carbon-dioxide * forest productivity * wide-range * environmental variation * nutrient concentrations * terrestrial biosphere * ecosystem functional property * eddy covariance * fluxnet * interannual variability * photosynthetic capacity * plant traits * spatiotemporal variability * TRY database Subject RIV: EH - Ecology, Behaviour Impact factor: 2.440, year: 2016

  3. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems

    OpenAIRE

    Stubbington, Rachel; England, Judy; Wood, Paul J.; Sefton, Catherine E.M.

    2017-01-01

    Temporary streams are defined by periodic flow cessation, and may experience partial or complete loss of surface water. The ecology and hydrology of these transitional aquatic-terrestrial ecosystems have received unprecedented attention in recent years. Research has focussed on the arid, semi-arid, and Mediterranean regions in which temporary systems are the dominant stream type, and those in cooler, wetter temperate regions with an oceanic climate influence are also receiving increasing atte...

  4. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    Science.gov (United States)

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  5. The terrestrial ecosystem program for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ostler, W.K.; O'Farrell, T.P.

    1994-01-01

    DOE has implemented a program to monitor and mitigate impacts associated with site Characterization Activities at Yucca Mountain on the environment. This program has a sound experimental and statistical base. Monitoring data has been collected for parts of the program since 1989. There have been numerous changes in the Terrestrial Ecosystems Program since 1989 that reflect changes in the design and locations of Site Characterization Activities. There have also been changes made in the mitigation techniques implemented to protect important environmental resources based on results from the research efforts at Yucca Mountain. These changes have strengthened DOE efforts to ensure protection of the environmental during Site Characterization. DOE,has developed and implemented an integrated environmental program that protects the biotic environment and will restore environmental quality at Yucca Mountain

  6. Isotopic tracers for net primary productivity for a terrestrial ecosystem: a case study of the Volta River basin

    International Nuclear Information System (INIS)

    Hayford, E.K.; Odamtten, G.T.; Enu-Kwesi, L.

    2006-01-01

    The coupling effect of vapour release and CO2 uptake during photosynthesis plays an important role in the carbon and hydrologic cycles. The water use efficiency (WUE) for transpiration was used in calculating the net primary productivity (NPP) for terrestrial ecosystem. Three parameters were used in calculating the water and carbon balance of the River Volta watershed. These are 1) stable isotopes of hydrogen and oxygen, 2) long-term data on precipitation and evapotranspiration, and 3) stoichiometric relations of water and carbon. Results indicate that soils in the watershed annually respire 0.199 Pg C, and that the NPP is +0.029 Pg C yr-1. This implies an annual change in CO2 to the atmosphere within the watershed. Annually, River Volta watershed receives about 380 km3 of rainfall; approximately 50 per cent of which is returned to the atmosphere through plant transpiration. Associated with annual transpiration flux is a carbon flux of 0.170 x 1015 g C yr-1 or 428 g C m-2 yr-1 from the terrestrial ecosystem. Modeled estimates of heterotrophic soil respiration exceeds slightly the estimated NPP values, implying that carbon flux to and from the Volta river watershed is close to being in balance. In other words, the watershed releases annually more carbon dioxide to the atmosphere than it takes. Apart from the terrestrial carbon flux, the balance of photosynthesis and respiration in the Volta lake was also examined. The lake was found to release carbon dioxide to the atmosphere although the magnitude of the flux is smaller than that of the terrestrial ecosystem. (au)

  7. The Importance of Uncertainty and Sensitivity Analysis in Process-based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems — Selected Papers from a Workshop Organized by the International Society for Ecological Modelling (ISEM) at the Third Biennal Meeting of the International Environmental Modelling and Software Society (IEMSS) in Burlington, Vermont, USA, August 9-13, 2006

    Science.gov (United States)

    Larocque, Guy R.; Bhatti, Jagtar S.; Liu, Jinxun; Ascough, James C.; Gordon, Andrew M.

    2008-01-01

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. They address many basic issues of ecosystems structure and functioning, such as the role of internal feedback in ecosystem dynamics. The critical factor in these phenomena is scale, as these processes operate at scales from the minute (e.g. particulate pollution impacts on trees and other organisms) to the global (e.g. climate change). Research efforts remain important to improve the capability of such models to better represent the dynamics of terrestrial ecosystems, including the C, nutrient, (e.g. N) and water cycles. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they make realistic predictions when used appropriately. However, decision makers must be aware of their limitations by having the opportunity to evaluate the uncertainty associated with process-based models (Smith and Heath, 2001 and Allen et al., 2004). The variation in scale of issues currently being addressed by modelling efforts makes the evaluation of uncertainty a daunting task.

  8. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America.

    Science.gov (United States)

    Medvigy, David; Moorcroft, Paul R

    2012-01-19

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.

  9. Uncertainties in carbon residence time and NPP-driven carbon uptake in terrestrial ecosystems of the conterminous USA: a Bayesian approach

    Directory of Open Access Journals (Sweden)

    Xuhui Zhou

    2012-10-01

    Full Text Available Carbon (C residence time is one of the key factors that determine the capacity of ecosystem C storage. However, its uncertainties have not been well quantified, especially at regional scales. Assessing uncertainties of C residence time is thus crucial for an improved understanding of terrestrial C sequestration. In this study, the Bayesian inversion and Markov Chain Monte Carlo (MCMC technique were applied to a regional terrestrial ecosystem (TECO-R model to quantify C residence times and net primary productivity (NPP-driven ecosystem C uptake and assess their uncertainties in the conterminous USA. The uncertainty was represented by coefficient of variation (CV. The 13 spatially distributed data sets of C pools and fluxes have been used to constrain TECO-R model for each biome (totally eight biomes. Our results showed that estimated ecosystem C residence times ranged from 16.6±1.8 (cropland to 85.9±15.3 yr (evergreen needleleaf forest with an average of 56.8±8.8 yr in the conterminous USA. The ecosystem C residence times and their CV were spatially heterogeneous and varied with vegetation types and climate conditions. Large uncertainties appeared in the southern and eastern USA. Driven by NPP changes from 1982 to 1998, terrestrial ecosystems in the conterminous USA would absorb 0.20±0.06 Pg C yr−1. Their spatial pattern was closely related to the greenness map in the summer with larger uptake in central and southeast regions. The lack of data or timescale mismatching between the available data and the estimated parameters lead to uncertainties in the estimated C residence times, which together with initial NPP resulted in the uncertainties in the estimated NPP-driven C uptake. The Bayesian approach with MCMC inversion provides an effective tool to estimate spatially distributed C residence time and assess their uncertainties in the conterminous USA.

  10. Global meta-analysis of leaf area index in wetlands indicates uncertainties in understanding of their ecosystem function

    Science.gov (United States)

    Dronova, I.; Taddeo, S.; Foster, K.

    2017-12-01

    Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more

  11. Radioactive characterization of the terrestrial ecosystem in the area of location of the Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sibello Hernandez, R.Y.; Alonso Hernandez, C.M.; Diaz Asencio, M.; Cartas Aguila, H. A.

    1999-01-01

    In this work the results are exposed obtained by the Laboratory of Environmental Surveillance in the radioactive characterization of the existent terrestrial ecosystem in the area of location of the Juragua Nuclear Power Plants in Cienfuegos, Cuba, starting from 1986 and up to 1993

  12. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-10-18

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  13. Biodiversity and Resilience of Ecosystem Functions.

    Science.gov (United States)

    Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M

    2015-11-01

    Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)

    NARCIS (Netherlands)

    Huerta Lwanga, Esperanza; Gertsen, H.F.; Gooren, H.; Peters, P.D.; Salanki, T.E.; Ploeg, van der M.J.C.; Besseling, E.; Koelmans, A.A.; Geissen, V.

    2016-01-01

    Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, <150 μm)

  15. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior

    Science.gov (United States)

    Tschudy, R.H.; Pillmore, C.L.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-01-01

    The palynologically defined Cretaceous-Tertiary boundary in the western interior of North America occurs at the top of an iridium-rich clay layer. The boundary is characterized by the abrupt disappearance of certain pollen species, immediately followed by a pronounced, geologically brief change in the ratio of fern spores to angiosperm pollen. The occurrence of these changes at two widely separated sites implies continentwide disruption of the terrestrial ecosystem, probably caused by a major catastrophic event at the end of the period.

  16. Trends in land surface phenology and atmospheric CO2 seasonality in the Northern Hemisphere terrestrial ecosystems

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2017-12-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystems on the atmospheric CO2 concentration and 13C/12C isotope ratio seasonality. Atmospheric CO2 and 13C/12C seasonality is controlled by vegetation phenology, but is not identical because growth will typically commence some time before and terminate some time after the net carbon exchange changes sign in spring and autumn, respectively. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations to determine how changes in vegetation productivity and phenology affect both the atmospheric CO2 and 13C/12C seasonality. Differences and similarities in recent trends of CO2 and 13C/12C seasonality and vegetation phenology will be discussed. Furthermore, we use the NDVI observations, and atmospheric CO2 and 13C/12C data to show the trends and variability of the timing of peak season plant activity. Preliminary results show that the peak season plant activity of the Northern Hemisphere extra-tropical terrestrial ecosystems is shifting towards spring, largely in response to the warming-induced advance of the start of growing season. Besides, the spring-ward shift of the peak plant activity is contributing the most to the increasing peak season productivity. In other words, earlier start of growing season is highly linked to earlier arrival of peak of season and higher NDVI. Changes in the timing of peak season plant activity are expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.

  17. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  18. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: Model description

    International Nuclear Information System (INIS)

    Nikolov, Ned; Zeller, Karl F.

    2003-01-01

    A new biophysical model (FORFLUX) is presented to link ozone deposition with carbon and water cycles in terrestrial ecosystems. - A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO 2 - transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3 model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO 2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems

  19. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions.

    Science.gov (United States)

    Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G; Müller, Henry; Berg, Gabriele

    2014-09-01

    Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria. © 2014 John Wiley & Sons Ltd.

  20. Change in terrestrial ecosystem water-use efficiency over the last three decades.

    Science.gov (United States)

    Huang, Mengtian; Piao, Shilong; Sun, Yan; Ciais, Philippe; Cheng, Lei; Mao, Jiafu; Poulter, Ben; Shi, Xiaoying; Zeng, Zhenzhong; Wang, Yingping

    2015-06-01

    Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem-scale water-use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data-driven models derived from satellite observations and process-oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m(-2)  mm(-1)  yr(-1) under the single effect of rising CO2 ('CO2 '), climate change ('CLIM') and nitrogen deposition ('NDEP'), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE-CO2 shows global increases, (ii) EWUE-CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE-NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data-driven MTE model, however, shows a slight decline of EWUE during the same period (-0.0005 g C m(-2)  mm(-1)  yr(-1) ), which differs from process-model (0.0064 g C m(-2)  mm(-1)  yr(-1) ) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO2 reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data-driven model and the process-oriented models across different ecosystems. Change in water-use efficiency defined from transpiration-based WUEt (GPP/TR) and inherent water-use efficiency (IWUEt , GPP×VPD/TR) in response to rising CO2 , climate change, and nitrogen deposition are also discussed. Our analyses will

  1. Global simulation of interactions between groundwater and terrestrial ecosystems

    Science.gov (United States)

    Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.

    2016-12-01

    study the influence of shallow groundwater on terrestrial ecosystem processes. We will present results of global simulations to demonstrate the effects on C, N, and water fluxes.

  2. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    Science.gov (United States)

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  3. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    Directory of Open Access Journals (Sweden)

    Dongsheng Zhao

    Full Text Available The impact of regional climate change on net primary productivity (NPP is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN, a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  4. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.

    Science.gov (United States)

    He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as

  5. Modeling Carbon Turnover in Five Terrestrial Ecosystems in the Boreal Zone Using Multiple Criteria of Acceptance

    International Nuclear Information System (INIS)

    Karlberg, Louise; Gustafsson, David; Jansson, Per-Erik

    2006-01-01

    Estimates of carbon fluxes and turnover in ecosystems are key elements in the understanding of climate change and in predicting the accumulation of trace elements in the biosphere. In this paper we present estimates of carbon fluxes and turnover times for five terrestrial ecosystems using a modeling approach. Multiple criteria of acceptance were used to parameterize the model, thus incorporating large amounts of multi-faceted empirical data in the simulations in a standardized manner. Mean turnover times of carbon were found to be rather similar between systems with a few exceptions, even though the size of both the pools and the fluxes varied substantially. Depending on the route of the carbon through the ecosystem, turnover times varied from less than one year to more than one hundred, which may be of importance when considering trace element transport and retention. The parameterization method was useful both in the estimation of unknown parameters, and to identify variability in carbon turnover in the selected ecosystems

  6. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  7. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions.

    Science.gov (United States)

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N

    2017-12-01

    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  8. The effects of land cover and land use change on the contemporary carbon balance of the arctic and boreal terrestrial ecosystems of northern Eurasia

    Science.gov (United States)

    Hayes, Daniel J.; McGuire, A. David; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.

    2010-01-01

    Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.

  9. Experimental terrestrial soil-core microcosm test protocol. A method for measuring the potential ecological effects, fate, and transport of chemicals in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Van Voris, P.; Tolle, D.A.; Arthur, M.F.

    1985-06-01

    In order to protect the environment properly and have a realistic appraisal of how a chemical will act in the environment, tests of ecological effects and chemical fate must be performed on complex assemblages of biotic and abiotic components (i.e., microcosms) as well as single species. This protocol is one which could be added to a series of tests recently developed as guidelines for Section 4 of the Toxic Substances Control Act (P.L. 94-469; U.S.C., Section 2601-2629). The terrestrial soil-core microcosm is designed to supply site-specific and possibly regional information on the probable chemical fate and ecological effects resulting from release of a chemical substance to a terrestrial ecosystem. The EPA will use the data resulting from this test system to compare the potential hazards of a chemical with others that have been previously evaluated.

  10. Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient.

    Science.gov (United States)

    Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A

    2016-11-01

    The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative

  11. 'One physical system': Tansley's ecosystem as Earth's critical zone.

    Science.gov (United States)

    Richter, Daniel deB; Billings, Sharon A

    2015-05-01

    Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Functional traits explain ecosystem function through opposing mechanisms.

    Science.gov (United States)

    Cadotte, Marc W

    2017-08-01

    The ability to explain why multispecies assemblages produce greater biomass compared to monocultures, has been a central goal in the quest to understand biodiversity effects on ecosystem function. Species contributions to ecosystem function can be driven by two processes: niche complementarity and a selection effect that is influenced by fitness (competitive) differences, and both can be approximated with measures of species' traits. It has been hypothesised that fitness differences are associated with few, singular traits while complementarity requires multidimensional trait measures. Here, using experimental data from plant assemblages, I show that the selection effect was strongest when trait dissimilarity was low, while complementarity was greatest with high trait dissimilarity. Selection effects were best explained by a single trait, plant height. Complementarity was correlated with dissimilarity across multiple traits, representing above and below ground processes. By identifying the relevant traits linked to ecosystem function, we obtain the ability to predict combinations of species that will maximise ecosystem function. © 2017 John Wiley & Sons Ltd/CNRS.

  13. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica.

    Science.gov (United States)

    Thomazini, A; Francelino, M R; Pereira, A B; Schünemann, A L; Mendonça, E S; Almeida, P H A; Schaefer, C E G R

    2016-08-15

    Soils and vegetation play an important role in the carbon exchange in Maritime Antarctica but little is known on the spatial variability of carbon processes in Antarctic terrestrial environments. The objective of the current study was to investigate (i) the soil development and (ii) spatial variability of ecosystem respiration (ER), net ecosystem CO2 exchange (NEE), gross primary production (GPP), soil temperature (ST) and soil moisture (SM) under four distinct vegetation types and a bare soil in Keller Peninsula, King George Island, Maritime Antarctica, as follows: site 1: moss-turf community; site 2: moss-carpet community; site 3: phanerogamic antarctic community; site 4: moss-carpet community (predominantly colonized by Sanionia uncinata); site 5: bare soil. Soils were sampled at different layers. A regular 40-point (5×8 m) grid, with a minimum separation distance of 1m, was installed at each site to quantify the spatial variability of carbon exchange, soil moisture and temperature. Vegetation characteristics showed closer relation with soil development across the studied sites. ER reached 2.26μmolCO2m(-2)s(-1) in site 3, where ST was higher (7.53°C). A greater sink effect was revealed in site 4 (net uptake of 1.54μmolCO2m(-2)s(-1)) associated with higher SM (0.32m(3)m(-3)). Spherical models were fitted to describe all experimental semivariograms. Results indicate that ST and SM are directly related to the spatial variability of CO2 exchange. Heterogeneous vegetation patches showed smaller range values. Overall, poorly drained terrestrial ecosystems act as CO2 sink. Conversely, where ER is more pronounced, they are associated with intense soil carbon mineralization. The formations of new ice-free areas, depending on the local soil drainage condition, have an important effect on CO2 exchange. With increasing ice/snow melting, and resulting widespread waterlogging, increasing CO2 sink in terrestrial ecosystems is expected for Maritime Antarctica. Copyright

  14. Climate control of terrestrial carbon exchange across biomes and continents

    Energy Technology Data Exchange (ETDEWEB)

    Yi Chuixiang; Wolbeck, John; Xu Xiyan [School of Earth and Environmental Sciences, Queens College, City University of New York, NY 11367 (United States); Ricciuto, Daniel [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Li Runze [Department of Statistics, Pennsylvania State University, University Park, PA 16802 (United States); Nilsson, Mats [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden); Aires, Luis [CESAM and Department of Environmental Engineering, School of Technology and Management, Polytechnic Institute of Leiria (Portugal); Albertson, John D [Department of Civil and Environmental Engineering, Duke University, Durham, NC 22708-0287 (United States); Ammann, Christof [Federal Research Station Agroscope Reckenholz-Taenikon, Reckenholzstrasse 191, 8046 Zuerich (Switzerland); Arain, M Altaf [School of Geography and Earth Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada); De Araujo, Alessandro C [Instituto Nacional de Pesquisas da Amazonia, Programa LBA, Campus-II, Manaus-Amazonas 69060 (Brazil); Aubinet, Marc [University of Liege, Gembloux Agro-Bio Tech, Unit of Biosystem Physics, 2 Passage des Deportes, 5030 Gembloux (Belgium); Aurela, Mika [Finnish Meteorological Institute, Climate Change Research, FI-00101 Helsinki (Finland); Barcza, Zoltan [Department of Meteorology, Eoetvoes Lorand University, H-1117 Budapest, Pazmany setany 1/A (Hungary); Barr, Alan [Climate Research Division, Environment Canada, Saskatoon, SK, S7N 3H5 (Canada); Berbigier, Paul [INRA, UR1263 EPHYSE, Villenave d' Ornon F-33883 (France); Beringer, Jason [School of Geography and Environmental Science, Monash University, Clayton, Victoria 3800 (Australia); Bernhofer, Christian [Institute of Hydrology and Meteorology, Dresden University of Technology, Pienner Strasse 23, D-01737, Tharandt (Germany)

    2010-07-15

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO{sub 2} exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 deg. N). The sensitivity of NEE to mean annual temperature breaks down at {approx} 16 deg. C (a threshold value of mean annual temperature), above which no further increase of CO{sub 2} uptake with temperature was observed and dryness influence overrules temperature influence.

  15. Climate control of terrestrial carbon exchange across biomes and continents

    International Nuclear Information System (INIS)

    Yi Chuixiang; Wolbeck, John; Xu Xiyan; Ricciuto, Daniel; Li Runze; Nilsson, Mats; Aires, Luis; Albertson, John D; Ammann, Christof; Arain, M Altaf; De Araujo, Alessandro C; Aubinet, Marc; Aurela, Mika; Barcza, Zoltan; Barr, Alan; Berbigier, Paul; Beringer, Jason; Bernhofer, Christian

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO 2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 deg. N). The sensitivity of NEE to mean annual temperature breaks down at ∼ 16 deg. C (a threshold value of mean annual temperature), above which no further increase of CO 2 uptake with temperature was observed and dryness influence overrules temperature influence.

  16. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    Science.gov (United States)

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  17. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model

    Directory of Open Access Journals (Sweden)

    C. Lu

    2010-09-01

    Full Text Available Continental-scale estimations of terrestrial methane (CH4 and nitrous oxide (N2O fluxes over a long time period are crucial to accurately assess the global balance of greenhouse gases and enhance our understanding and prediction of global climate change and terrestrial ecosystem feedbacks. Using a process-based global biogeochemical model, the Dynamic Land Ecosystem Model (DLEM, we quantified simultaneously CH4 and N2O fluxes in North America's terrestrial ecosystems from 1979 to 2008. During the past 30 years, approximately 14.69 ± 1.64 T g C a−1 (1 T g = 1012 g of CH4, and 1.94 ± 0.1 T g N a−1 of N2O were released from terrestrial ecosystems in North America. At the country level, both the US and Canada acted as CH4 sources to the atmosphere, but Mexico mainly oxidized and consumed CH4 from the atmosphere. Wetlands in North America contributed predominantly to the regional CH4 source, while all other ecosystems acted as sinks for atmospheric CH4, of which forests accounted for 36.8%. Regarding N2O emission in North America, the US, Canada, and Mexico contributed 56.19%, 18.23%, and 25.58%, respectively, to the continental source over the past 30 years. Forests and croplands were the two ecosystems that contributed most to continental N2O emission. The inter-annual variations of CH4 and N2O fluxes in North America were mainly attributed to year-to-year climatic variability. While only annual precipitation was found to have a significant effect on annual CH4 flux, both mean annual temperature and annual precipitation were significantly correlated to annual N2O flux. The regional estimates and spatiotemporal patterns of terrestrial ecosystem CH4 and N2O fluxes in North America generated in this study provide useful information for global change research and policy making.

  18. Comparing the Influence of Wildfire and Prescribed Burns on Watershed Nitrogen Biogeochemistry Using 15N Natural Abundance in Terrestrial and Aquatic Ecosystem Components

    Science.gov (United States)

    Stephan, Kirsten; Kavanagh, Kathleen L.; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and δ15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of δ15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar δ15N differed between wildfire and prescribed burn sites; the δ15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss δ15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that δ15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post

  19. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.

    Science.gov (United States)

    Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G

    2007-03-01

    There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting research emphasizes the importance of indirect UV radiation effects on plants, pathogens, herbivores, soil microbes and ecosystem processes below the surface. Although photosynthesis of higher plants and mosses is seldom affected by enhanced or reduced UV-B radiation in most field studies, effects on growth and morphology (form) of higher plants and mosses are often manifested. This can lead to small reductions in shoot production and changes in the competitive balance of different species. Fungi and bacteria are generally more sensitive to damage by UV-B radiation than are higher plants. However, the species differ in their UV-B radiation sensitivity to damage, some being affected while others may be very tolerant. This can lead to changes in species composition of microbial communities with subsequent influences on processes such as litter decomposition. Changes in plant chemical composition are commonly reported due to UV-B manipulations (either enhancement or attenuation of UV-B in sunlight) and may lead to substantial reductions in consumption of plant tissues by insects. Although sunlight does not penetrate significantly into soils, the biomass and morphology of plant root systems of plants can be modified to a much greater degree than plant shoots. Root mass can exhibit sizeable declines with more UV-B. Also, UV-B-induced changes in soil microbial communities and biomass, as well as altered populations of small invertebrates have been reported and these changes have important implications for mineral nutrient cycling in the soil. Many new developments in understanding the underlying mechanisms mediating plant response to UV-B radiation have emerged. This new information is helpful in understanding common responses of plants to UV-B radiation

  20. Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity

    Science.gov (United States)

    Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188

  1. Calibration of two complex ecosystem models with different likelihood functions

    Science.gov (United States)

    Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán

    2014-05-01

    The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model

  2. The greenhouse gas balance of Italy. An insight on managed and natural terrestrial ecosystems

    International Nuclear Information System (INIS)

    Valentini, Riccardo; Miglietta, Franco

    2015-01-01

    Comprehensively addresses the full greenhouse gases budget of the Italian landscape. Presents the results of the national project CARBOITALY. Provides new data and analyses in the framework of climate policies. The book addresses in a comprehensive way the full greenhouse gases budget of the Italian landscape, focusing on land use and terrestrial ecosystems. In recent years there has been a growing interest in the role of terrestrial ecosystems with regard to the carbon cycle and only recently a regional approach has been considered for its specificity in terms of new methodologies for observations and models and its relevance for national policies on mitigation and adaptation to climate changes. In terms of methods this book describes the role of flux networks and data-driven models, airborne regional measurements of fluxes and specific sectoral approaches related to important components of the human and natural landscapes. There is also a growing need on the part of institutions, agencies and policy stakeholders for new data and analyses enabling them to improve their national inventories of greenhouse gases and their compliance with the UNFCCC process. In this respect the data presented is a basis for a full carbon accounting and available to relevant stakeholders for improvements and/or verification of national inventories. The wealth of research information is the result of a national project, CARBOITALY, which involved 15 Italian institutions and several researchers to provide new data and analyses in the framework of climate policies.

  3. The greenhouse gas balance of Italy. An insight on managed and natural terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Riccardo [Tuscia Univ., Viterbo (Italy). Dept. for Innovation in Biological, Agro-Food and Forest System (DIBAF); Euro-Mediterranean Center on Climate Changes (CMCC), Viterbo (Italy). Impacts on Agriculture, Forest and Natural Ecosystem Division (IAFENT); Miglietta, Franco (ed.) [National Research Council of Italy (CNR) and Edmund Mach Foundation, San Michele all' Adige (Italy). FoxLab Inst. of Biometeorology

    2015-04-01

    Comprehensively addresses the full greenhouse gases budget of the Italian landscape. Presents the results of the national project CARBOITALY. Provides new data and analyses in the framework of climate policies. The book addresses in a comprehensive way the full greenhouse gases budget of the Italian landscape, focusing on land use and terrestrial ecosystems. In recent years there has been a growing interest in the role of terrestrial ecosystems with regard to the carbon cycle and only recently a regional approach has been considered for its specificity in terms of new methodologies for observations and models and its relevance for national policies on mitigation and adaptation to climate changes. In terms of methods this book describes the role of flux networks and data-driven models, airborne regional measurements of fluxes and specific sectoral approaches related to important components of the human and natural landscapes. There is also a growing need on the part of institutions, agencies and policy stakeholders for new data and analyses enabling them to improve their national inventories of greenhouse gases and their compliance with the UNFCCC process. In this respect the data presented is a basis for a full carbon accounting and available to relevant stakeholders for improvements and/or verification of national inventories. The wealth of research information is the result of a national project, CARBOITALY, which involved 15 Italian institutions and several researchers to provide new data and analyses in the framework of climate policies.

  4. Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models

    Science.gov (United States)

    Sun, Yan; Peng, Shushi; Goll, Daniel S.; Ciais, Philippe; Guenet, Bertrand; Guimberteau, Matthieu; Hinsinger, Philippe; Janssens, Ivan A.; Peñuelas, Josep; Piao, Shilong; Poulter, Benjamin; Violette, Aurélie; Yang, Xiaojuan; Yin, Yi; Zeng, Hui

    2017-07-01

    Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO2, none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from (1) changes in C stocks and (2) changes in NPP. The C stock-based additional P demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648-1606 Tg P for RCP2.6 and 924-2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Overall, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.

  5. Development of a data driven process-based model for remote sensing of terrestrial ecosystem productivity, evapotranspiration, and above-ground biomass

    Science.gov (United States)

    El Masri, Bassil

    2011-12-01

    Modeling terrestrial ecosystem functions and structure has been a subject of increasing interest because of the importance of the terrestrial carbon cycle in global carbon budget and climate change. In this study, satellite data were used to estimate gross primary production (GPP), evapotranspiration (ET) for two deciduous forests: Morgan Monroe State forest (MMSF) in Indiana and Harvard forest in Massachusetts. Also, above-ground biomass (AGB) was estimated for the MMSF and the Howland forest (mixed forest) in Maine. Surface reflectance and temperature, vegetation indices, soil moisture, tree height and canopy area derived from the Moderate Resolution Imagining Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMRS-E), LIDAR, and aerial imagery respectively, were used for this purpose. These variables along with others derived from remotely sensed data were used as inputs variables to process-based models which estimated GPP and ET and to a regression model which estimated AGB. The process-based models were BIOME-BGC and the Penman-Monteith equation. Measured values for the carbon and water fluxes obtained from the Eddy covariance flux tower were compared to the modeled GPP and ET. The data driven methods produced good estimation of GPP and ET with an average root mean square error (RMSE) of 0.17 molC/m2 and 0.40 mm/day, respectively for the MMSF and the Harvard forest. In addition, allometric data for the MMSF were used to develop the regression model relating AGB with stem volume. The performance of the AGB regression model was compared to site measurements using remotely sensed data for the MMSF and the Howland forest where the model AGB RMSE ranged between 2.92--3.30 Kg C/m2. Sensitivity analysis revealed that improvement in maintenance respiration estimation and remotely sensed maximum photosynthetic activity as well as accurate estimate of canopy resistance will result in improved GPP and ET predictions. Moreover, AGB estimates were

  6. Sensitivity of global ocean biogeochemical dynamics to ecosystem structure in a future climate

    Science.gov (United States)

    Manizza, Manfredi; Buitenhuis, Erik T.; Le Quéré, Corinne

    2010-07-01

    Terrestrial and oceanic ecosystem components of the Earth System models (ESMs) are key to predict the future behavior of the global carbon cycle. Ocean ecosystem models represent low complexity compared to terrestrial ecosystem models. In this study we use two ocean biogeochemical models based on the explicit representation of multiple planktonic functional types. We impose to the models the same future physical perturbation and compare the response of ecosystem dynamics, export production (EP) and ocean carbon uptake (OCU) to the same physical changes. Models comparison shows that: (1) EP changes directly translate into changes of OCU on decadal time scale, (2) the representation of ecosystem structure plays a pivotal role at linking OCU and EP, (3) OCU is highly sensitive to representation of ecosystem in the Equatorial Pacific and Southern Oceans.

  7. Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model.

    Science.gov (United States)

    Kuribayashi, Masatoshi; Noh, Nam-Jin; Saitoh, Taku M; Ito, Akihiko; Wakazuki, Yasutaka; Muraoka, Hiroyuki

    2017-06-01

    Accurate projection of carbon budget in forest ecosystems under future climate and atmospheric carbon dioxide (CO 2 ) concentration is important to evaluate the function of terrestrial ecosystems, which serve as a major sink of atmospheric CO 2 . In this study, we examined the effects of spatial resolution of meteorological data on the accuracies of ecosystem model simulation for canopy phenology and carbon budget such as gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) of a deciduous forest in Japan. Then, we simulated the future (around 2085) changes in canopy phenology and carbon budget of the forest by incorporating high-resolution meteorological data downscaled by a regional climate model. The ecosystem model overestimated GPP and ER when we inputted low-resolution data, which have warming biases over mountainous landscape. But, it reproduced canopy phenology and carbon budget well, when we inputted high-resolution data. Under the future climate, earlier leaf expansion and delayed leaf fall by about 10 days compared with the present state was simulated, and also, GPP, ER and NEP were estimated to increase by 25.2%, 23.7% and 35.4%, respectively. Sensitivity analysis showed that the increase of NEP in June and October would be mainly caused by rising temperature, whereas that in July and August would be largely attributable to CO 2 fertilization. This study suggests that the downscaling of future climate data enable us to project more reliable carbon budget of forest ecosystem in mountainous landscape than the low-resolution simulation due to the better predictions of leaf expansion and shedding.

  8. Modelling accumulation of radionuclides in terrestrial ecosystems originating from a long-term groundwater contamination

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdenaes, Annemieke I. [Dept. of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7001, 750 07 Uppsala (Sweden); Eckersten, Henrik [Dept. of Ecology and Crop Production, SLU, P.O. Box 7042, 750 07 Uppsala (Sweden); Reinlert, Andre [Dept. of Physical Geography and Ecosystems Analysis, Lund University, 223 62 Lund (Sweden); MMT, Sven Kaellfelts Gata 11 SE 426 71 Vaestra Froelunda (Sweden); Gustafsson, David; Jansson, Per-Erik [Dept. Land and Water Resources, KTH, SE 100 44, Stockholm (Sweden); Ekstroem, Per-Anders [Facilia AB, Gustavlundsvaegen 151A, 167 51 Bromma (Sweden); Greger, Maria [Dept. of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm (Sweden)

    2014-07-01

    This study was conducted as part of the risk assessment of final deposits of nuclear fuel waste. The overall objective is to assess the possible accumulation of radionuclides in terrestrial ecosystems after an eventual long-term groundwater contamination. The specific objectives are to assess: i) What proportion of the contamination will accumulate in the soil-plant-system? ii) Where in the soil-plant- system will it accumulate? iii) Which ecosystem characteristics and radionuclides properties are important for the accumulation? and iv) Under which circumstances do losses from the ecosystems occur? We developed the dynamic model Tracey (Gaerdenaes et al. 2009) describing cycling of radionuclides in terrestrial ecosystems with high temporal resolution (1 day). The model is a multi-compartmental model in which fluxes and storage of radionuclides are described for different plant parts and soil pools in each of the 10 soil layers. The radionuclide fluxes are driven either by water or carbon fluxes. The water and the carbon fluxes are simulated with the dynamic, bio-geophysical Coup Model (Jansson and Karlberg, 2004). Tracey includes two root uptake approaches of radionuclides; (i) passive uptake driven by root water uptake and (ii) active uptake driven by plant growth. A linear approach describes the adsorption of radionuclides to soil particles and organic matter. Tracey was applied on two ecosystems with contrasting hydrology, the mixed Pinus-Picea forests found in the dry, elevated areas and the Alnus forests found in the wet, low-land areas of Uppland in central east Sweden. Different varieties of the two forest types were created by varying the root depth and radiation use efficiency. The climate was cold-temperate and based on 30-year daily weather data from Uppsala. The assumed groundwater contamination was close to 1 mg of an unspecified radionuclide per m2 and year. This load corresponds to 1 Bq per m{sup 2} and year of {sup 238}U, a common long

  9. Terrestrial Steering Group. 2014. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Aastrup, Peter; Aronsson, Mora; Barry, Tom

    capacity and information may be currently available and (b) to outline near-term required steps to begin implementing the plan and reporting on an initial set of Arctic terrestrial biodiversity focal ecosystem component attributes. The specific objectives of the workshop were to: Identify key products...... for TSG for the next two years. Identify key components of a pan-Arctic status report for priority focal ecosystem components (FEC) attributes for policy and decision makers. Develop a prioritized set of activities to meet reporting objectives. Identify key milestones and timelines for the successful...... implementation of the Arctic Terrestrial Biodiversity Monitoring Plan for the next two years. Identify expert networks required for successful implementation of the plan. Identify key gaps and opportunities for the TSG related to plan implementation and identify near-term next steps to address gaps....

  10. Reed beds may facilitate transfer of tributyltin from aquatic to terrestrial ecosystems through insect vectors in the Archipelago Sea, SW Finland.

    Science.gov (United States)

    Lilley, Thomas M; Meierjohann, Axel; Ruokolainen, Lasse; Peltonen, Jani; Vesterinen, Eero; Kronberg, Leif; Nikinmaa, Mikko

    2012-08-01

    Due to their adsorptive behavior, organotin compounds (OTCs), such as tributyltin (TBT), are accumulated in aquatic sediments. They resist biodegradation and, despite a ban in 2008, are a potential source for future exposure. Sediment OTCs have mostly been measured from sites of known high concentrations such as ports, shipping lanes, and marine dredging waste sites. The possible flow of OTCs from marine to terrestrial ecosystems, however, has not been studied. In the present study, the authors assessed whether sediments in common reed beds (Phragmites australis) accumulate TBT and whether chironomid (Diptera: Chironomidae) communities developing in reed-bed sediments act as vectors in the transfer of TBT from aquatic to terrestrial ecosystems in the Airisto channel, Archipelago Sea. The authors also investigated whether distance from the only known source and depth and TBT concentration of the adjacent shipping lane affect reed-bed concentrations. Thirty-six sites along the Airisto channel were sampled at 2-km intervals with triplicate samples from reed beds and the adjacent shipping lane for sediment and seven reed-bed sites for chironomids, and these were analyzed with an solid phase extraction liquid chromatography tamdem mass spectrometry method. The closer to the source the sample site was, the higher the measured TBT concentrations were; and the deeper the shipping lane, the lower the concentration of TBT in reed-bed sediments. The chironomid TBT concentrations correlated with reed-bed sediment TBT concentrations and showed evidence of accumulation. Therefore, TBT may be transferred, through the food web, from aquatic to terrestrial ecosystems relatively close to a source through ecosystem boundaries, such as common reed beds, which are areas of high insect biomass production in the Archipelago Sea. Copyright © 2012 SETAC.

  11. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    Science.gov (United States)

    Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Watson, David B.; Adams, Michael W. W.; Alm, Eric J.; Adams, Paul D.; Arkin, Adam P.

    2018-01-01

    ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. PMID:29463661

  12. Equilibration of the terrestrial water, nitrogen, and carbon cycles

    OpenAIRE

    Schimel, David S.; Braswell, B. H.; Parton, W. J.

    1997-01-01

    Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that l...

  13. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

    Science.gov (United States)

    Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett

    2015-01-01

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115

  14. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  15. Characteristics of terrestrial and aquatic ecosystems of two locations in Deaf Smith and Swisher Counties, Texas

    International Nuclear Information System (INIS)

    1984-11-01

    According to the Civilian Radioactive Waste Management Program and the Nuclear Waste Policy Act of 1982 (P.L. 97-425), a potential nuclear waste repository site must be chosen with consideration of potential impacts on terrestrial and aquatic ecosystems. This report is a preliminary environmental characterization of two locations in the Texas Panhandle, one in Deaf Smith County and the other in Swisher County, that have been recommended for further study. A description of important natural areas is offered as a basis for comparative studies of the two locations and for the identification and screening of potential repository sites. Information on current land uses, potential habitats, and expected plant and wildlife species is provided to assist field investigators in the collection of baseline data in support of further siting activities. The results of limited field surveys are also included. The report is in two parts. Part I contains a characterization of terrestrial ecological resources based upon limited field surveys aimed at verifying the presence of plant communities and wildlife habitats. It also presents inventories of species with special status, species with recreational and economic importance, and species of ecological value to important or special-status species. Part II presents information on aquatic ecosystems and resources derived primarily from a review of the literature, interviews, and limited field surveys. 21 figures, 18 tables

  16. Distributional (in)congruence of biodiversity-ecosystem functioning

    NARCIS (Netherlands)

    Mulder, C.; Boit, A.; Mori, S.; Vonk, J.A.; Dyer, S.D.; Faggiano, L.; Geisen, S.; González, A.L.; Kaspari, M.; Lavorel, S.; Marquet, P.A.; Rossberg, A.G.; Sterner, R.W.; Voigt, W.; Wall, D.H.

    2012-01-01

    The majority of research on biodiversity-ecosystem functioning in laboratories has concentrated on a few traits, but there is increasing evidence from the field that functional diversity controls ecosystem functioning more often than does species number. Given the importance of traits as predictors

  17. The terrestrial isopod microbiome: An all-in-one toolbox for animal-microbe interactions of ecological relevance

    Directory of Open Access Journals (Sweden)

    Didier Bouchon

    2016-09-01

    Full Text Available Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host-microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g. cellulose or lignins. If this were the case, then (i the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e. Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum and Rhabdochlamydia porcellionis, while others are well-known intracellular pathogens (Rickettsiella spp. or reproductive parasites (Wolbachia sp.. Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host

  18. The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal-Microbe Interactions of Ecological Relevance.

    Science.gov (United States)

    Bouchon, Didier; Zimmer, Martin; Dittmer, Jessica

    2016-01-01

    Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity, and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host-microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g., cellulose or lignins). If this were the case, then (i) the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii) these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e., Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum, and Rhabdochlamydia porcellionis ), while others are well-known intracellular pathogens ( Rickettsiella spp.) or reproductive parasites ( Wolbachia sp.). Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host populations

  19. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    Directory of Open Access Journals (Sweden)

    Zhili He

    2018-02-01

    Full Text Available Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN, representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5 increased significantly (P < 0.05 as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.

  20. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach.

    Science.gov (United States)

    Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R

    2018-02-01

    The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  1. β-Diversity, Community Assembly, and Ecosystem Functioning.

    Science.gov (United States)

    Mori, Akira S; Isbell, Forest; Seidl, Rupert

    2018-05-25

    Evidence is increasing for positive effects of α-diversity on ecosystem functioning. We highlight here the crucial role of β-diversity - a hitherto underexplored facet of biodiversity - for a better process-level understanding of biodiversity change and its consequences for ecosystems. A focus on β-diversity has the potential to improve predictions of natural and anthropogenic influences on diversity and ecosystem functioning. However, linking the causes and consequences of biodiversity change is complex because species assemblages in nature are shaped by many factors simultaneously, including disturbance, environmental heterogeneity, deterministic niche factors, and stochasticity. Because variability and change are ubiquitous in ecosystems, acknowledging these inherent properties of nature is an essential step for further advancing scientific knowledge of biodiversity-ecosystem functioning in theory and practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Mapping and Quantifying Biodiversity and Ecosystem Services Related to Terrestrial Vertebrates: A National Approach

    Science.gov (United States)

    Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is a...

  3. USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L; Doug Martin, D; Michael Paller, M; Eric Nelson, E

    2007-01-12

    Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here. This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.

  4. Remote sensing of Essential Biodiversity Variables: new measurements linking ecosystem structure, function and composition

    Science.gov (United States)

    Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.

    2017-12-01

    Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.

  5. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change

    Science.gov (United States)

    Midgley, Guy F.; Bond, William J.

    2015-09-01

    Projections of ecosystem and biodiversity change for Africa under climate change diverge widely. More than other continents, Africa has disturbance-driven ecosystems that diversified under low Neogene CO2 levels, in which flammable fire-dependent C4 grasses suppress trees, and mega-herbivore action alters vegetation significantly. An important consequence is metastability of vegetation state, with rapid vegetation switches occurring, some driven by anthropogenic CO2-stimulated release of trees from disturbance control. These have conflicting implications for biodiversity and carbon sequestration relevant for policymakers and land managers. Biodiversity and ecosystem change projections need to account for both disturbance control and direct climate control of vegetation structure and function.

  6. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  7. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function

    Directory of Open Access Journals (Sweden)

    P. A. Fay

    2011-10-01

    Full Text Available Precipitation and temperature drive many aspects of terrestrial ecosystem function. Climate change scenarios predict increasing precipitation variability and temperature, and long term experiments are required to evaluate the ecosystem consequences of interannual climate variation, increased growing season (intra-annual rainfall variability, and warming. We present results from an experiment applying increased growing season rainfall variability and year round warming in native tallgrass prairie. During ten years of study, total growing season rainfall varied 2-fold, and we found ~50–200% interannual variability in plant growth and aboveground net primary productivity (ANPP, leaf carbon assimilation (ACO2, and soil CO2 efflux (JCO2 despite only ~40% variation in mean volumetric soil water content (0–15 cm, Θ15. Interannual variation in soil moisture was thus amplified in most measures of ecosystem response. Differences between years in Θ15 explained the greatest portion (14–52% of the variation in these processes. Experimentally increased intra-annual season rainfall variability doubled the amplitude of intra-annual soil moisture variation and reduced Θ15 by 15%, causing most ecosystem processes to decrease 8–40% in some or all years with increased rainfall variability compared to ambient rainfall timing, suggesting reduced ecosystem rainfall use efficiency. Warming treatments increased soil temperature at 5 cm depth, particularly during spring, fall, and winter. Warming advanced canopy green up in spring, increased winter JCO2, and reduced summer JCO2 and forb ANPP, suggesting that the effects of warming differed in cooler versus warmer parts of the year. We conclude that (1 major ecosystem processes in this grassland may be substantially altered by predicted changes in

  8. Effect of trophic level on the radiocesium frequency distribution in aquatic and terrestrial ecosystems at Chornobyl and nuclear sites in the United States

    International Nuclear Information System (INIS)

    Smith, Michael H.; Tsyusko-Omeltchenko, Olga; Oleksyk, Taras K.

    2003-01-01

    There are significant linear relationship between the standard deviation and the mean of radiocesium concentration for samples of soils, sediments, plants, and animals from Chornobyl and nuclear sites in the United States. The universal occurrence of this relationship in all types of samples suggests that a non-normal frequency distribution should be expected. The slopes of these relationships are similar for fish and mammals from the two regions of the world but those for plants are not. The slopes for plants are similar for aquatic and terrestrial ecosystems within each region. We hypothesize that there are relationships between the four moments of the frequency distribution of radiocesium (mean, variance, skewness, and kurtosis), and that these relationships are caused by the functional properties of the organisms and other characteristics of the ecosystem. The way in which radiocesium was distributed across the landscape does not seem to be a factor in determining the form of the frequency distribution. (author)

  9. Risk assessment for human health and terrestrial ecosystem under chronic radioactive pollution near regional radioactive waste storage

    Science.gov (United States)

    Lavrentyeva, G. V.; Katkova, M. N.; Shoshina, R. R.; Synzynys, B. I.

    2017-01-01

    An impact of the radioactive waste storage facility at the regional population was assessed under supervision of IAEA. It was made in accordance with the methodology for assessment of doses and risks to human storage using different scenarios of radionuclides releases into the environment. The following scenarios were considered: leakage of fluid, resuspension of dust, fire, flooding. Thy evaluation of radiation doses received and the risks to the human showed that the risk has been acceptable for all scenarios. An approach for an ecological risk assessment for terrestrial ecosystem is presented as five modules: selection of the ecosystem-receptor of radiation effects; determination of reference species of living organisms and their survival indices; the critical load as an absorbed dose rate is calculated from the dependence between the absorbed Sr-90 radiation dose rate and the coefficient of radioactive strontium accumulation in mollusc shells; the critical dose; risk is assessed from a part of the ecosystem territory with increased mollusc loading; uncertainties appeared at each stage of risk assessment are characterized. The risk of exposure to the repository on the ecosystem should be characterized as unacceptable.

  10. Risk assessment for human health and terrestrial ecosystem under chronic radioactive pollution near regional radioactive waste storage

    International Nuclear Information System (INIS)

    Lavrentyeva, G V; Katkova, M N; Shoshina, R R; Synzynys, B I

    2017-01-01

    An impact of the radioactive waste storage facility at the regional population was assessed under supervision of IAEA. It was made in accordance with the methodology for assessment of doses and risks to human storage using different scenarios of radionuclides releases into the environment. The following scenarios were considered: leakage of fluid, resuspension of dust, fire, flooding. Thy evaluation of radiation doses received and the risks to the human showed that the risk has been acceptable for all scenarios. An approach for an ecological risk assessment for terrestrial ecosystem is presented as five modules: selection of the ecosystem-receptor of radiation effects; determination of reference species of living organisms and their survival indices; the critical load as an absorbed dose rate is calculated from the dependence between the absorbed Sr-90 radiation dose rate and the coefficient of radioactive strontium accumulation in mollusc shells; the critical dose; risk is assessed from a part of the ecosystem territory with increased mollusc loading; uncertainties appeared at each stage of risk assessment are characterized. The risk of exposure to the repository on the ecosystem should be characterized as unacceptable. (paper)

  11. Proliferation of MISS-related microbial mats following the end-Permian mass extinction in terrestrial ecosystems: Evidence from the Lower Triassic of the Yiyang area, Henan Province, North China

    Science.gov (United States)

    Tu, Chenyi; Chen, Zhong-Qiang; Retallack, Gregory J.; Huang, Yuangeng; Fang, Yuheng

    2016-03-01

    Microbially induced sedimentary structures (MISSs) are commonly present in siliciclastic shallow marine settings following the end-Permian mass extinction, but have been rarely reported in the post-extinction terrestrial ecosystems. Here, we present six types of well-preserved MISSs from the upper Sunjiagou Formation and lower Liujiagou Formation of Induan (Early Triassic) age in the Yiyang area, Henan Province, North China. These MISSs include: polygonal sand cracks, worm-like structures, wrinkle structures, sponge pore fabrics, gas domes, and leveled ripple marks. Microanalysis shows that these MISSs are characterized by thin clayey laminae and filamentous mica grains arranged parallel to bedding plane as well as oriented matrix supported quartz grains, which are indicative of biogenic origin. Facies analysis suggests that the MISS-hosting sediments were deposited in a fluvial sedimentary system during the Early Triassic, including lake delta, riverbeds/point bars, and flood plain paleoenvironments. Abundant MISSs from Yiyang indicate that microbes also proliferated in terrestrial ecosystems in the aftermath of the Permian-Triassic (P-Tr) biocrisis, like they behaved in marine ecosystems. Microbial blooms, together with dramatic loss of metazoans, may reflect environmental stress and degradation of terrestrial ecosystems or arid climate immediately after the severe Permian-Triassic ecologic crisis.

  12. MODIS-derived terrestrial primary production [chapter 28

    Science.gov (United States)

    Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani

    2011-01-01

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...

  13. Plant species and functional group combinations affect green roof ecosystem functions.

    Science.gov (United States)

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  14. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    Science.gov (United States)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  15. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    Science.gov (United States)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul; Loveland, Thomas R.

    2018-01-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr−1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr−1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr−1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  16. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    Science.gov (United States)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul C.; Loveland, Thomas R.

    2018-04-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr‑1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr‑1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr‑1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  17. Terrestrial gross carbon dioxide uptake : Global distribution and covariation with climate

    NARCIS (Netherlands)

    Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M. Altaf; Baldocchi, Dennis D.; Bonan, Gordon B.; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W.; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher M.; Woodward, F. Ian; Papale, Dario

    2010-01-01

    Terrestrial gross primary production (GPP) is the largest global CO 2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year-1) using eddy covariance flux data and various diagnostic models. Tropical forests

  18. Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems

    Directory of Open Access Journals (Sweden)

    Jonathan Bennie

    2015-03-01

    Full Text Available The rapid growth in electric light usage across the globe has led to increasing presence of artificial light in natural and semi-natural ecosystems at night. This occurs both due to direct illumination and skyglow - scattered light in the atmosphere. There is increasing concern about the effects of artificial light on biological processes, biodiversity and the functioning of ecosystems. We combine intercalibrated Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS images of stable night-time lights for the period 1992 to 2012 with a remotely sensed landcover product (GLC2000 to assess recent changes in exposure to artificial light at night in 43 global ecosystem types. We find that Mediterranean-climate ecosystems have experienced the greatest increases in exposure, followed by temperate ecosystems. Boreal, Arctic and montane systems experienced the lowest increases. In tropical and subtropical regions, the greatest increases are in mangroves and subtropical needleleaf and mixed forests, and in arid regions increases are mainly in forest and agricultural areas. The global ecosystems experiencing the greatest increase in exposure to artificial light are already localized and fragmented, and often of particular conservation importance due to high levels of diversity, endemism and rarity. Night time remote sensing can play a key role in identifying the extent to which natural ecosystems are exposed to light pollution.

  19. Effects of long-range transported acidification on the bio-diversity in terrestrial ecosystems; Effekter av langtransporterte forsuringer paa biodiversitet i terrestriske oekosystemer

    Energy Technology Data Exchange (ETDEWEB)

    Hoeiland, K [Oslo Univ. (Norway)

    1996-01-01

    The conference paper deals with the environmental effects of long-range transported pollutants on the biodiversity in the terrestrial ecosystems. The paper discusses different chemical substances existing in the atmosphere and their influence on vegetation together with the effects on biodiversity from acidification. 4 refs.

  20. Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems

    International Nuclear Information System (INIS)

    Gerten, Dieter; Lucht, Wolfgang; Ostberg, Sebastian; Heinke, Jens; Kundzewicz, Zbigniew W; Rastgooy, Johann; Schellnhuber, Hans Joachim; Kowarsch, Martin; Kreft, Holger; Warren, Rachel

    2013-01-01

    This modelling study demonstrates at what level of global mean temperature rise (ΔT g ) regions will be exposed to significant decreases of freshwater availability and changes to terrestrial ecosystems. Projections are based on a new, consistent set of 152 climate scenarios (eight ΔT g trajectories reaching 1.5–5 ° C above pre-industrial levels by 2100, each scaled with spatial patterns from 19 general circulation models). The results suggest that already at a ΔT g of 2 ° C and mainly in the subtropics, higher water scarcity would occur in >50% out of the 19 climate scenarios. Substantial biogeochemical and vegetation structural changes would also occur at 2 ° C, but mainly in subpolar and semiarid ecosystems. Other regions would be affected at higher ΔT g levels, with lower intensity or with lower confidence. In total, mean global warming levels of 2 ° C, 3.5 ° C and 5 ° C are simulated to expose an additional 8%, 11% and 13% of the world population to new or aggravated water scarcity, respectively, with >50% confidence (while ∼1.3 billion people already live in water-scarce regions). Concurrently, substantial habitat transformations would occur in biogeographic regions that contain 1% (in zones affected at 2 ° C), 10% (3.5 ° C) and 74% (5 ° C) of present endemism-weighted vascular plant species, respectively. The results suggest nonlinear growth of impacts along with ΔT g and highlight regional disparities in impact magnitudes and critical ΔT g levels. (letter)

  1. Rare species support vulnerable functions in high-diversity ecosystems.

    Science.gov (United States)

    Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  2. Functional traits in agriculture: agrobiodiversity and ecosystem services.

    Science.gov (United States)

    Wood, Stephen A; Karp, Daniel S; DeClerck, Fabrice; Kremen, Claire; Naeem, Shahid; Palm, Cheryl A

    2015-09-01

    Functional trait research has led to greater understanding of the impacts of biodiversity in ecosystems. Yet, functional trait approaches have not been widely applied to agroecosystems and understanding of the importance of agrobiodiversity remains limited to a few ecosystem processes and services. To improve this understanding, we argue here for a functional trait approach to agroecology that adopts recent advances in trait research for multitrophic and spatially heterogeneous ecosystems. We suggest that trait values should be measured across environmental conditions and agricultural management regimes to predict how ecosystem services vary with farm practices and environment. This knowledge should be used to develop management strategies that can be easily implemented by farmers to manage agriculture to provide multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Variations and trends of terrestrial NPP and its relation to climate

    Indian Academy of Sciences (India)

    Considering global climate change, near surface temperature is the major factor affecting the terrestrial ecosystem, followed by the precipitation. This means terrestrial ecosystem NPP is more closely related to near surface temperature than precipitation. Between 1976 and 2005, NPP shows an obvious increasing temporal ...

  4. The meaning of functional trait composition of food webs for ecosystem functioning.

    Science.gov (United States)

    Gravel, Dominique; Albouy, Camille; Thuiller, Wilfried

    2016-05-19

    There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. © 2016 The Author(s).

  5. Future directions of ecosystem science

    Science.gov (United States)

    Baron, Jill S.; Galvin, Kathleen A.

    1990-01-01

    Scientific knowledge about ecosystem structure and function has expanded greatly during the past few decades. Terrestrial and aquatic nutrient cycling, ecosystem energetics, population dynamics, belowground processes, and food webs have been studied at the plot, stand, watershed, and landscape levels at many locations around the globe. Ideas about terrestrial-atmospheric interactions and human interference in these processes have changed dramatically. There is new appreciation of the need to incorporate into ecosystem studies the interactions between human populations and the ecosystem, not only because humans affect ecosystem processes, but because these systems support human populations (Glantz 1988, Holden 1988, Parry et al. 1988, WCED 1987). Recent advances in ecosystem science are due, in part, to technological improvements in computing power, new laboratory and field physical and chemical analytical techniques, and satellite imagery for remote sensing of Earth's structure and dynamics. Modeling and geographic information systems have provided the capability for integrating multiple data sets with process simulations to generate hypotheses about regional ecosystem function. Concurrent with these scientific developments has been a growing concern about the links between the health of the environment and world-wide industrial, land, and resource-management practices. Environmental damage at the local level was widely recognized in the 1960s, prompting the environmental movement of that decade. Regional environmental problems with multiple effects and politically difficult solutions have been perceived more recently; the issue of acidic deposition provides an example of such a second-generation concern (Clark and Holling 1985). Today there is a growing awareness of global-scale environmental degradation brought about by the combined actions of all peoples on Earth (Clark 1989, Woodmansee et al. 1988). The three levels of environmental concern--local, regional

  6. Ring-testing and field-validation of a terrestrial model ecosystem - An instrument for testing potentially harmful substances: effects of carbendazim on nutrient cycling.

    NARCIS (Netherlands)

    van Gestel, C.A.M.; Koolhaas, J.E.; Schallnass, H.-J.; Rodrigues, J.M.L.; Jones, S.E.

    2004-01-01

    The effect of the fungicide carbendazim (applied in the formulation Derosal®) on nutrient cycling in soil was determined in Terrestrial Model Ecosystem (TME) tests and corresponding field-validation studies, which were performed in four different countries (United Kingdom, Germany, Portugal, and The

  7. A National Approach to Map and Quantify Terrestrial Vertebrate Biodiversity within an Ecosystem Services Framework

    Science.gov (United States)

    Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is a...

  8. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge

    Science.gov (United States)

    Hooper, D.U.; Chapin, F. S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; Schmid, B.; SetSlS, H.; Symstad, A.J.; Vandermeer, J.; Wardle, D.A.

    2005-01-01

    Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1) Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts

  9. Terrestrial carbon cycle affected by non-uniform climate warming

    International Nuclear Information System (INIS)

    Jianyang Xia; Yiqi Luo; Jiquan Chen; Shilong Piao; Ciais, Philippe; Shiqiang Wan

    2014-01-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30 degrees and 90 degrees N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research. (authors)

  10. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  11. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems.

    Science.gov (United States)

    Barnosky, Anthony D; Hadly, Elizabeth A; Gonzalez, Patrick; Head, Jason; Polly, P David; Lawing, A Michelle; Eronen, Jussi T; Ackerly, David D; Alex, Ken; Biber, Eric; Blois, Jessica; Brashares, Justin; Ceballos, Gerardo; Davis, Edward; Dietl, Gregory P; Dirzo, Rodolfo; Doremus, Holly; Fortelius, Mikael; Greene, Harry W; Hellmann, Jessica; Hickler, Thomas; Jackson, Stephen T; Kemp, Melissa; Koch, Paul L; Kremen, Claire; Lindsey, Emily L; Looy, Cindy; Marshall, Charles R; Mendenhall, Chase; Mulch, Andreas; Mychajliw, Alexis M; Nowak, Carsten; Ramakrishnan, Uma; Schnitzler, Jan; Das Shrestha, Kashish; Solari, Katherine; Stegner, Lynn; Stegner, M Allison; Stenseth, Nils Chr; Wake, Marvalee H; Zhang, Zhibin

    2017-02-10

    Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change. Copyright © 2017, American Association for the Advancement of Science.

  12. Rare species support vulnerable functions in high-diversity ecosystems.

    Directory of Open Access Journals (Sweden)

    David Mouillot

    Full Text Available Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees, we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by

  13. Data-driven diagnostics of terrestrial carbon dynamics over North America

    Science.gov (United States)

    Jingfeng Xiao; Scott V. Ollinger; Steve Frolking; George C. Hurtt; David Y. Hollinger; Kenneth J. Davis; Yude Pan; Xiaoyang Zhang; Feng Deng; Jiquan Chen; Dennis D. Baldocchi; Bevery E. Law; M. Altaf Arain; Ankur R. Desai; Andrew D. Richardson; Ge Sun; Brian Amiro; Hank Margolis; Lianhong Gu; Russell L. Scott; Peter D. Blanken; Andrew E. Suyker

    2014-01-01

    The exchange of carbon dioxide is a key measure of ecosystem metabolism and a critical intersection between the terrestrial biosphere and the Earth's climate. Despite the general agreement that the terrestrial ecosystems in North America provide a sizeable carbon sink, the size and distribution of the sink remain uncertain. We use a data-driven approach to upscale...

  14. A model using marginal efficiency of investment to analyse carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1)

    Science.gov (United States)

    Thomas, R. Q.; Williams, M.

    2014-04-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. However there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) using emergent constraints provided by marginal returns on investment for C and/or N allocation. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C : N, while a more recently reported non-linear relationship performed better. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C

  15. A model using marginal efficiency of investment to analyze carbon and nitrogen interactions in terrestrial ecosystems (ACONITE Version 1)

    Science.gov (United States)

    Thomas, R. Q.; Williams, M.

    2014-09-01

    Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System Modeling community. However, there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) based on the outcome of assessments of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N

  16. Environmental research programme. Ecological research. Annual report 1994. Urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, terrestrial ecosystem research, environmental pollution and health

    International Nuclear Information System (INIS)

    1995-01-01

    In the annual report 1994 of the Federal Ministry of Research and Technology, the points of emphasis of the ecological research programme and their financing are discussed. The individual projects in the following subject areas are described in detail: urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, other ecosystems and landscapes, terrestrial ecosystem research, environmental pollution and human health and cross-sectional activities in ecological research. (vhe) [de

  17. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach

    NARCIS (Netherlands)

    Bannar-Martin, K.; Kremer, C.; Ernest, S.K. Morgan; Leibold, M.; Auge, H.; Chase, J.; Declerck, S.A.J.; Eisenhauer, Nico; Harpole, W.S.; Hillebrand, H.; Isbell, F.; Koffel, T.; Larsen, S.; Narwani, A.; Petermann, J.; Roscher, C.; Sarmento Cabral, J.; Supp, S.

    2018-01-01

    The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness

  18. Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems

    Science.gov (United States)

    Nicholas A. Sutfin; Ellen E. Wohl; Kathleen A. Dwire

    2016-01-01

    Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long-term (> 102 years) storage. Research in ecosystem processing emphasizes the...

  19. Grazing management that regenerates ecosystem function and ...

    African Journals Online (AJOL)

    Grazing management that regenerates ecosystem function and grazingland ... in ecosystem improvement, productivity, soil carbon and fertility, water-holding ... for sufficient time to produce resource improvement, sound animal production, and ...

  20. Linking Ecosystem Services Benefit Transfer Databases and Ecosystem Services Production Function Libraries

    Science.gov (United States)

    The quantification or estimation of the economic and non-economic values of ecosystem services can be done from a number of distinct approaches. For example, practitioners may use ecosystem services production function models (ESPFMs) for a particular location, or alternatively, ...

  1. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems.

    Science.gov (United States)

    Gratton, Claudio; Vander Zanden, M Jake

    2009-10-01

    Recently, food web studies have started exploring how resources from one habitat or ecosystem influence trophic interactions in a recipient ecosystem. Benthic production in lakes and streams can be exported to terrestrial habitats via emerging aquatic insects and can therefore link aquatic and terrestrial ecosystems. In this study, we develop a general conceptual model that highlights zoobenthic production, insect emergence, and ecosystem geometry (driven principally by area-to-edge ratio) as important factors modulating the flux of aquatic production across the ecosystem boundary. Emerging insect flux, defined as total insect production emerging per meter of shoreline (g C x m(-1) x yr(-1)) is then distributed inland using decay functions and is used to estimate insect deposition rate to terrestrial habitats (g C x m(-2) x yr(-1)). Using empirical data from the literature, we simulate insect fluxes across the water-land ecosystem boundary to estimate the distribution of fluxes and insect deposition inland for lakes and streams. In general, zoobenthos in streams are more productive than in lakes (6.67 vs. 1.46 g C x m(-2) x yr(-1)) but have lower insect emergence to aquatic production ratios (0.19 vs. 0.30). However, as stream width is on average smaller than lake radius, this results in flux (F) estimates 2 1/2 times greater for lakes than for streams. Ultimately, insect deposition onto land (within 100 m of shore) adjacent to average-sized lakes (10-ha lakes, 0.021 g C x m(-2) x yr(-1)) is greater than for average-sized streams (4 m width, 0.002 g C x m(-2) x yr(-1)) used in our comparisons. For the average lake (both in size and productivity), insect deposition rate approaches estimates of terrestrial secondary production in low-productivity ecosystems (e.g., deserts and tundra, approximately 0.07 g C x m(-2) x yr(-1)). However, larger lakes (1300 ha) and streams (16 m) can have average insect deposition rates (approximately 0.01-2.4 g C x m(-2) x yr(-1

  2. A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem.

    Science.gov (United States)

    Bhattacharya, Satya Sundar; Kim, Ki-Hyun; Das, Subhasish; Uchimiya, Minori; Jeon, Byong Hun; Kwon, Eilhann; Szulejko, Jan E

    2016-02-01

    Among the numerous sources of greenhouse gases, emissions of CO2 are considerably affected by changes in the extent and type of land use, e.g., intensive agriculture, deforestation, urbanization, soil erosion, or wetland drainage. As a feasible option to control emissions from the terrestrial ecosystems, the scientific community has explored the possibility of enhancing soil carbon (C) storage capacity. Thus, restoration of damaged lands through conservation tillage, crop rotation, cover cropping, reforestation, sub-soiling of compacted lands, sustainable water management practices, and organic manuring are the major antidotes against attenuation of soil organic C (SOC) stocks. In this research, we focused on the effect of various man-made activities on soil biotic organics (e.g., green-, farm-yard manure, and composts) to understand how C fluxes from various sources contribute to the establishment of a new equilibrium in the terrestrial ecosystems. Although such inputs substitute a portion of chemical fertilizers, they all undergo activities that augment the rate and extent of decay to deplete the SOC bank. Here, we provide perspectives on the balancing factors that control the mineralization rate of organic matter. Our arguments are placed in the background of different land use types and their impacts on forests, agriculture, urbanization, soil erosion, and wetland destruction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources

    Science.gov (United States)

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew F.; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; hide

    2017-01-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them.

  4. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    Science.gov (United States)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  5. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.

    Science.gov (United States)

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most

  6. Too big or too narrow? Disturbance characteristics determine the functional resilience in virtual microbial ecosystems

    Science.gov (United States)

    König, Sara; Firle, Anouk-Letizia; Koehnke, Merlin; Banitz, Thomas; Frank, Karin

    2017-04-01

    dramatically. Under recurrent disturbance events, this threshold is shifted to lower disturbance sizes. The more frequent disturbances are recurring, the lower is the critical disturbance size. Our simulation results indicate the importance of spatial characteristics of disturbance events for the functional resilience of microbial ecosystems. Critical values for disturbance size and fragmentation emerge from an interplay between both characteristics. In consequence, a precise definition of the specific disturbance regime is necessary for analysing functional resilience. With this study, we show that we need to consider the influence of fragmentation in terrestrial environments not only on population extincions but also on the resilience of ecosystem functions. Moreover, spatial disturbance characteristics - which are widely discussed on landscape scale - are an important factor on smaller scales, too.

  7. Functional ecomorphology: Feedbacks between form and function in fluvial landscape ecosystems

    Science.gov (United States)

    Fisher, Stuart G.; Heffernan, James B.; Sponseller, Ryan A.; Welter, Jill R.

    2007-09-01

    The relationship between form and function has been a central organizing principle in biology throughout its history as a formal science. This concept has been relevant from molecules to organisms but loses meaning at population and community levels where study targets are abstract collectives and assemblages. Ecosystems include organisms and abiotic factors but ecosystem ecology too has developed until recently without a strong spatially explicit reference. Landscape ecology provides an opportunity to once again anneal form and function and to consider reciprocal causation between them. This ecomorphologic view can be applied at a variety of ecologically relevant scales and consists of an investigation of how geomorphology provides a structural template that shapes, and is shaped by ecological processes. Running water ecosystems illustrate several principles governing the interaction of landscape form and ecological function subsumed by the concept of "Functional Ecomorphology". Particularly lucrative are ecosystem-level interactions between geologic form and biogeochemical processes integrated by hydrologic flowpaths. While the utility of a flowpath-based approach is most apparent in streams, spatially explicit biogeochemical processing pervades all landscapes and may be of general ecological application.

  8. Terrestrial forest management plan for Palmyra Atoll

    Science.gov (United States)

    Hathaway, Stacie A.; McEachern, Kathryn; Fisher, Robert N.

    2011-01-01

    This 'Terrestrial Forest Management Plan for Palmyra Atoll' was developed by the U.S. Geological Survey (USGS) for The Nature Conservancy (TNC) Palmyra Program to refine and expand goals and objectives developed through the Conservation Action Plan process. It is one in a series of adaptive management plans designed to achieve TNC's mission toward the protection and enhancement of native wildlife and habitat. The 'Terrestrial Forest Management Plan for Palmyra Atoll' focuses on ecosystem integrity and specifically identifies and addresses issues related to assessing the status and distribution of resources, as well as the pressures acting upon them, most specifically nonnative and potentially invasive species. The plan, which presents strategies for increasing ecosystem integrity, provides a framework to implement and track the progress of conservation and restoration goals related to terrestrial resources on Palmyra Atoll. The report in its present form is intended to be an overview of what is known about historical and current forest resources; it is not an exhaustive review of all available literature relevant to forest management but an attempt to assemble as much information specific to Palmyra Atoll as possible. Palmyra Atoll is one of the Northern Line Islands in the Pacific Ocean southwest of the Hawai`ian Islands. It consists of many heavily vegetated islets arranged in a horseshoe pattern around four lagoons and surrounded by a coral reef. The terrestrial ecosystem consists of three primary native vegetation types: Pisonia grandis forest, coastal strand forest, and grassland. Among these vegetation types, the health and extent of Pisonia grandis forest is of particular concern. Overall, the three vegetation types support 25 native plant species (two of which may be extirpated), 14 species of sea birds, six shore birds, at least one native reptile, at least seven native insects, and six native land crabs. Green and hawksbill turtles forage at Palmyra Atoll

  9. Strategies for conservation of endangered ecosystems

    International Nuclear Information System (INIS)

    Ashraf, M.; Hussain, M.; Ahmad, M.S.A.

    2012-01-01

    The planet Earth is known to host a rich biodiversity owing to its suitable environmental conditions for life and at a larger scale it is regarded as a major ecosystem. Healthy existence of living organisms in this ecosystem depends on proper functioning of all the associated environmental factors. Since millennia, living organisms have adapted to thrive under a limited range of environmental conditions. Nevertheless previous history of the earth and fossil records indicates that the biodiversity housed by the planet earth has experienced five major catastrophic extinctions due to change in physical environment. Even currently, it is undergoing sixth major extinction event mainly due to anthropogenic activities. The human activities are proving a dual menace for biodiversity. On the one hand, it is causing habitat loss through intensive deforestation, conversion of different natural plant communities for agriculture, and urbanization and industrialization. Moreover, it is resulting in habitat degradation by polluting both terrestrial and aquatic ecosystems, emitting air pollutants resulting in acid rains, ozone layer depletion, global warming, heavy metal contamination and eutrophication of water bodies. As a result, healthy existence of both terrestrial and aquatic ecosystems and their associated biodiversity is altogether threatened. Worldwide efforts are underway to conserve the threatened ecosystems and their related biodiversity. A number of international conventions have been held to conserve natural ecosystems. Pakistan being a signatory of these conventions has its obligation to join hands with international community to conserve the endangered ecosystems within as well as outside its bounds. Under the existing scenario the objective of organizing this symposium was to pinpoint the threats to endangered ecosystems of the world in general and those in Pakistan in particular, and to develop suitable strategies for conservation of such paralyzed ecosystems

  10. Isotopic identification of nitrogen hotspots across natural terrestrial ecosystems

    Directory of Open Access Journals (Sweden)

    E. Bai

    2012-08-01

    Full Text Available Nitrogen (N influences local biological processes, ecosystem productivity, the composition of the atmospheric-climate system, and the human endeavour as a whole. Here we use natural variations in N isotopes, coupled with two models, to trace global pathways of N loss from the land to the water and atmosphere. We show that denitrification accounts for approximately 35 % of total N losses from the natural soil, with NO, N2O, and N2 fluxes equal to 15.7 ± 4.7 Tg N yr−1, 10.2 ± 3.0 Tg N yr−1, and 21.0 ± 6.1 Tg N yr−1, respectively. Our analysis points to tropical regions as the major "hotspot" of nitrogen export from the terrestrial biosphere, accounting for 71 % of global N losses from the natural land surface. The poorly studied Congo Basin is further identified as one of the major natural sources of atmospheric N2O. Extra-tropical areas, by contrast, lose a greater fraction of N via leaching pathways (~77 % of total N losses than do tropical biomes, likely contributing to N limitations of CO2 uptake at higher latitudes. Our results provide an independent constraint on global models of the N cycle among different regions of the unfertilized biosphere.

  11. Ring-testing and field-validation of a terrestrial model ecosystem TME) - An instrument for testing potentially harmful substances: conceptual approach and study design.

    NARCIS (Netherlands)

    Knacker, T.; van Gestel, C.A.M.; Jones, S.E.; Soares, A.M.V.M.; Schallnass, H.-J.; Förster, B.; Edwards, C.A.

    2004-01-01

    During spring and summer 1999 a ring-test and field-validation study with an open, intact Terrestrial Model Ecosystem (TME) was conducted at four different European sites (Amsterdam, The Netherlands; Bangor, U.K.; Coimbra, Portugal; Flörsheim, Germany). The objective of the study was to establish a

  12. Ring-testing and field-validation of a terrestrial model ecosystem (TME) - An instrument for testing potentially harmful substances: effects of carbendazim on enchytraeids.

    NARCIS (Netherlands)

    Moser, T.; van Gestel, C.A.M.; Jones, S.E.; Koolhaas, J.E.; Rodrigues, J.M.L.; Römbke, J.

    2004-01-01

    The effects of the fungicide carbendazim (applied in the formulation Derosal®) on enchytraeids were determined in Terrestrial Model Ecosystem (TME) tests and field-validation studies. TMEs consisted of intact soil columns (diameter 17.5 cm; length 40 cm) taken from a grassland or, in one case, from

  13. Ring-testing and field-validation of a terrestrial model ecosystem (TME) - An instrument for testing potentially harmful substances: effects of carbendazim on nematodes.

    NARCIS (Netherlands)

    Moser, T.; Schallnass, H.-J.; Jones, S.E.; van Gestel, C.A.M.; Koolhaas, J.E.; Rodrigues, J.M.L.; Römbke, J.

    2004-01-01

    The effects of the fungicide carbendazim (applied in the formulation Derosal®) on nematodes was determined in Terrestrial Model Ecosystem (TME) tests and field-validation studies. TMEs consisted of intact soil columns (diameter 17.5 cm; length 40 cm) taken from a grassland or, in one case, from an

  14. Assessment of land use impact on water-related ecosystem services capturing the integrated terrestrial-aquatic system.

    Science.gov (United States)

    Maes, Wouter H; Heuvelmans, Griet; Muys, Bart

    2009-10-01

    Although the importance of green (evaporative) water flows in delivering ecosystem services has been recognized, most operational impact assessment methods still focus only on blue water flows. In this paper, we present a new model to evaluate the effect of land use occupation and transformation on water quantity. Conceptually based on the supply of ecosystem services by terrestrial and aquatic ecosystems, the model is developed for, but not limited to, land use impact assessment in life cycle assessment (LCA) and requires a minimum amount of input data. Impact is minimal when evapotranspiration is equal to that of the potential natural vegetation, and maximal when evapotranspiration is zero or when it exceeds a threshold value derived from the concept of environmental water requirement. Three refinements to the model, requiring more input data, are proposed. The first refinement considers a minimal impact over a certain range based on the boundary evapotranspiration of the potential natural vegetation. In the second refinement the effects of evaporation and transpiration are accounted for separately, and in the third refinement a more correct estimate of evaporation from a fully sealed surface is incorporated. The simplicity and user friendliness of the proposed impact assessment method are illustrated with two examples.

  15. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.

    Science.gov (United States)

    Powell, Jeff R; Rillig, Matthias C

    2018-03-30

    Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Regional zooplankton dispersal provides spatial insurance for ecosystem function.

    Science.gov (United States)

    Symons, Celia C; Arnott, Shelley E

    2013-05-01

    Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change - Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time-since-disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon-Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl-a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics. © 2012 Blackwell Publishing Ltd.

  17. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Directory of Open Access Journals (Sweden)

    M. Chen

    2011-09-01

    Full Text Available Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM, should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI, Land Surface Water Index (LSWI and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr−1 and net primary production (NPP ranges from 3.81 to 4.38 Pg C yr−1 and net ecosystem production (NEP varies within 0.08–0.73 Pg C yr−1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr−1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  18. Functional redundancy and food web functioning in linuron-exposed ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    De Laender, F., E-mail: frederik.delaender@ugent.be [Laboratory of Environmental Toxicity and Aquatic Ecology, Ghent University, Plateaustraat 22, 9000 Ghent (Belgium); Van den Brink, P.J., E-mail: Paul.vandenBrink@wur.nl [Department of Aquatic Ecology and Water Quality Management, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Janssen, C.R., E-mail: colin.janssen@ugent.be [Laboratory of Environmental Toxicity and Aquatic Ecology, Ghent University, Plateaustraat 22, 9000 Ghent (Belgium)

    2011-10-15

    An extensive data set describing effects of the herbicide linuron on macrophyte-dominated microcosms was analysed with a food web model to assess effects on ecosystem functioning. We showed that sensitive phytoplankton and periphyton groups in the diets of heterotrophs were gradually replaced by more tolerant phytoplankton species as linuron concentrations increased. This diet shift - showing redundancy among phytoplankton species - allowed heterotrophs to maintain their functions in the contaminated microcosms. On an ecosystem level, total gross primary production was up to hundred times lower in the treated microcosms but the uptake of dissolved organic carbon by bacteria and mixotrophs was less sensitive. Food web efficiency was not consistently lower in the treated microcosms. We conclude that linuron predominantly affected the macrophytes but did not alter the overall functioning of the surrounding planktonic food web. Therefore, a risk assessment that protects macrophyte growth also protects the functioning of macrophyte-dominated microcosms. - Highlights: > Food web modelling reveals the functional response of species and ecosystem to linuron. > Primary production was more sensitive to linuron than bacterial production. > Linuron replaced sensitive phytoplankton by tolerant phytoplankton in heterotrophs' diets. > Linuron did not change the functioning of heterotrophs. - Food web modelling reveals functional redundancy of the planktonic community in microcosms treated with linuron.

  19. Functional redundancy and food web functioning in linuron-exposed ecosystems

    International Nuclear Information System (INIS)

    De Laender, F.; Van den Brink, P.J.; Janssen, C.R.

    2011-01-01

    An extensive data set describing effects of the herbicide linuron on macrophyte-dominated microcosms was analysed with a food web model to assess effects on ecosystem functioning. We showed that sensitive phytoplankton and periphyton groups in the diets of heterotrophs were gradually replaced by more tolerant phytoplankton species as linuron concentrations increased. This diet shift - showing redundancy among phytoplankton species - allowed heterotrophs to maintain their functions in the contaminated microcosms. On an ecosystem level, total gross primary production was up to hundred times lower in the treated microcosms but the uptake of dissolved organic carbon by bacteria and mixotrophs was less sensitive. Food web efficiency was not consistently lower in the treated microcosms. We conclude that linuron predominantly affected the macrophytes but did not alter the overall functioning of the surrounding planktonic food web. Therefore, a risk assessment that protects macrophyte growth also protects the functioning of macrophyte-dominated microcosms. - Highlights: → Food web modelling reveals the functional response of species and ecosystem to linuron. → Primary production was more sensitive to linuron than bacterial production. → Linuron replaced sensitive phytoplankton by tolerant phytoplankton in heterotrophs' diets. → Linuron did not change the functioning of heterotrophs. - Food web modelling reveals functional redundancy of the planktonic community in microcosms treated with linuron.

  20. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    International Nuclear Information System (INIS)

    Hsu, M.J.; Selvaraj, K.; Agoramoorthy, G.

    2006-01-01

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan

  1. Review on the effects of toxicants on freshwater ecosystem functions

    International Nuclear Information System (INIS)

    Peters, K.; Bundschuh, M.; Schäfer, R.B.

    2013-01-01

    We reviewed 122 peer-reviewed studies on the effects of organic toxicants and heavy metals on three fundamental ecosystem functions in freshwater ecosystems, i.e. leaf litter breakdown, primary production and community respiration. From each study meeting the inclusion criteria, the concentration resulting in a reduction of at least 20% in an ecosystem function was standardized based on median effect concentrations of standard test organisms (i.e. algae and daphnids). For pesticides, more than one third of observations indicated reductions in ecosystem functions at concentrations that are assumed being protective in regulation. Moreover, the reduction in leaf litter breakdown was more pronounced in the presence of invertebrate decomposers compared to studies where only microorganisms were involved in this function. High variability within and between studies hampered the derivation of a concentration–effect relationship. Hence, if ecosystem functions are to be included as protection goal in chemical risk assessment standardized methods are required. -- Highlights: •Quantitative review of 122 studies on effects of toxicants on ecosystem functions. •Variation between studies hampered derivation of concentration–effect relationships. •Adverse effects of pesticide were observed below thresholds corresponding to regulation. •Effects on leaf breakdown were greater when invertebrates were involved. -- Concentrations assumed as protective in chemical regulation cause adverse effects in three fundamental ecosystem functions

  2. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).

    Science.gov (United States)

    Pan, Yude; Melillo, Jerry M; McGuire, A David; Kicklighter, David W; Pitelka, Louis F; Hibbard, Kathy; Pierce, Lars L; Running, Steven W; Ojima, Dennis S; Parton, William J; Schimel, David S

    1998-04-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO 2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO 2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO 2 . In this study, we analyze the responses of net primary production (NPP) to doubled CO 2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO 2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO 2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO 2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO 2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO 2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO 2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which

  3. El Niño effects on the dynamics of terrestrial ecosystems

    NARCIS (Netherlands)

    Holmgren, M.; Scheffer, M.; Ezcurra, E.; Gutiérrez, J.R.; Mohren, G.M.J.

    2001-01-01

    New studies are showing that the El Niño Southern Oscillation (ENSO) has major implications for the functioning of different ecosystems, ranging from deserts to tropical rain forests. ENSO-induced pulses of enhanced plant productivity can cascade upward through the food web invoking unforeseen

  4. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices.

    Science.gov (United States)

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-02-22

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Maximum entropy models of ecosystem functioning

    International Nuclear Information System (INIS)

    Bertram, Jason

    2014-01-01

    Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on the information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example

  6. Maximum entropy models of ecosystem functioning

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Jason, E-mail: jason.bertram@anu.edu.au [Research School of Biology, The Australian National University, Canberra ACT 0200 (Australia)

    2014-12-05

    Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on the information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.

  7. The Future of Evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

    KAUST Repository

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; Kilic, Ayse; Tu, Kevin; Miralles, Diego G.; Perret, Johan; Lagouarde, Jean-Pierre; Waliser, Duane; Purdy, Adam J.; French, Andrew; Schimel, David; Famiglietti, James S.; Stephens, Graeme; Wood, Eric F.

    2017-01-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them. This article is protected by copyright. All rights reserved.

  8. The Future of Evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

    KAUST Repository

    Fisher, Joshua B.

    2017-03-11

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them. This article is protected by copyright. All rights reserved.

  9. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change

    Science.gov (United States)

    Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.

    2015-01-01

    Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in

  10. Plant functional traits predict green roof ecosystem services.

    Science.gov (United States)

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  11. Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey.

    Science.gov (United States)

    Evrendilek, Fatih; Gulbeyaz, Onder

    2008-09-01

    The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.

  12. Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations

    Science.gov (United States)

    Li, Wei; Ciais, Philippe; Wang, Yilong; Yin, Yi; Peng, Shushi; Zhu, Zaichun; Bastos, Ana; Yue, Chao; Ballantyne, Ashley P.; Broquet, Grégoire; Canadell, Josep G.; Cescatti, Alessandro; Chen, Chi; Cooper, Leila; Friedlingstein, Pierre; Le Quéré, Corinne; Myneni, Ranga B.; Piao, Shilong

    2018-01-01

    To assess global carbon cycle variability, we decompose the net land carbon sink into the sum of gross primary productivity (GPP), terrestrial ecosystem respiration (TER), and fire emissions and apply a Bayesian framework to constrain these fluxes between 1980 and 2014. The constrained GPP and TER fluxes show an increasing trend of only half of the prior trend simulated by models. From the optimization, we infer that TER increased in parallel with GPP from 1980 to 1990, but then stalled during the cooler periods, in 1990-1994 coincident with the Pinatubo eruption, and during the recent warming hiatus period. After each of these TER stalling periods, TER is found to increase faster than GPP, explaining a relative reduction of the net land sink. These results shed light on decadal variations of GPP and TER and suggest that they exhibit different responses to temperature anomalies over the last 35 years.

  13. Levels and transfer of 210Po and 210Pb in Nordic terrestrial ecosystems

    DEFF Research Database (Denmark)

    Brown, J.E.; Gjelsvik, R.; Roos, Per

    2011-01-01

    concentrations of the main dose forming radionuclides 210Po and 210Pb in biota from terrestrial ecosystems thus providing insight into the behaviour of these radioisotopes. Samples of soil, plants and animals were collected at Dovrefjell, Central Norway and Olkiluoto, Finland. Soil profiles from Dovrefjell...... exhibited an approximately exponential fall in 210Pb activity concentrations from elevated levels in humus/surface soils to “supported” levels at depth. Activity concentrations of 210Po in fauna (invertebrates, mammals, birds) ranged between 2 and 123 Bq kg−1 d.w. and in plants and lichens between 20...... and 138 Bq kg−1 d.w.. The results showed that soil humus is an important reservoir for 210Po and 210Pb and that fauna in close contact with this media may also exhibit elevated levels of 210Po. Concentration ratios appear to have limited applicability with regards to prediction of activity concentrations...

  14. Vertical structure and pH as factors for chitinolytic and pectinolytic microbial community of soils and terrestrial ecosystems of different climatic zones

    Science.gov (United States)

    Lukacheva, Evgeniya; Natalia, Manucharova

    2016-04-01

    Chitin is a naturally occurring fibre-forming polymer that plays a protective role in many lower animals similar to that of cellulose in plants. Also it's a compound of cell walls of fungi. Chemically it is a long-chain unbranched polysaccharide made of N-acetylglucosamine residues; it is the second most abundant organic compound in nature, after cellulose. Pectin is a structural heteropolysaccharide contained in the primary cell walls of terrestrial plants. Roots of the plants and root crops contain pectin. Chitin and pectin are widely distributed throughout the natural world. Structural and functional features of the complex microbial degradation of biopolymers one of the most important direction in microbial ecology. But there is no a lot of data concerns degradation in vertical structure of terrestrial ecosystems and detailed studies concerning certain abiotic features as pH. Microbial complexes of natural areas were analyzed only as humus horizons (A1) of the soil profile. Only small part of microbial community could be studied with this approach. It is known that ecosystems have their own structure. It is possible to allocate some vertical tiers: phylloplane, litter (soil covering), soil. We investigated chitinolytic and pectinolytic microbial communities dedicated to different layers of the ecosystems. Also it was described depending on pH dominated in certain ecosystem with certain conditions. Quantity of eukaryote and procaryote organisms increased in the test samples with chitin and pectin. Increasing of eukaryote in samples with pectin was more then in samples with chitin. Also should be noted the significant increasing of actinomycet's quantity in the samples with chitin in comparison with samples with pectin. The variety and abundance of bacteria in the litter samples increased an order of magnitude as compared to other probes. Further prokaryote community was investigated by method FISH (fluorescence in situ hybridization). FISH is a cytogenetic

  15. Tree diversity does not always improve resistance of forest ecosystems to drought

    DEFF Research Database (Denmark)

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia

    2014-01-01

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, b...

  16. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P.A.

    2000-06-01

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, {sup 226}Ra, {sup 210}Pb, and {sup 210}Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities.

  17. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    International Nuclear Information System (INIS)

    Thomas, P.A.

    2000-01-01

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, 226 Ra, 210 Pb, and 210 Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities

  18. Quantifying effects of biodiversity on ecosystem functioning across times and places†

    Science.gov (United States)

    Isbell, Forest; Cowles, Jane; Dee, Laura E.; Loreau, Michel; Reich, Peter B.; Gonzalez, Andrew; Hector, Andy; Schmid, Bernhard

    2018-01-01

    Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments. PMID:29493062

  19. Structural and functional loss in restored wetland ecosystems.

    Directory of Open Access Journals (Sweden)

    David Moreno-Mateos

    2012-01-01

    Full Text Available Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages, and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils, remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha and wetlands restored in warm (temperate and tropical climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.

  20. Ring-testing and field-validation of a terrestrial model ecosystem (TME) - An instrument for testing potentially harmful substances: effects of carbendazim on soil microarthropod communities.

    NARCIS (Netherlands)

    Koolhaas, J.E.; van Gestel, C.A.M.; Römbke, J.; Soares, A.M.V.M.; Jones, S.E.

    2004-01-01

    The effects of the fungicide carbendazim (applied in the formulation Derosal) on soil microarthropod communities was determined in three Terrestrial Model Ecosystem (TME) tests and a field-validation study for a period of 16 weeks after application. TMEs consisted of intact soil columns (diameter

  1. A new method for large-scale assessment of change in ecosystem functioning in relation to land degradation

    Science.gov (United States)

    Horion, Stephanie; Ivits, Eva; Verzandvoort, Simone; Fensholt, Rasmus

    2017-04-01

    Ongoing pressures on European land are manifold with extreme climate events and non-sustainable use of land resources being amongst the most important drivers altering the functioning of the ecosystems. The protection and conservation of European natural capital is one of the key objectives of the 7th Environmental Action Plan (EAP). The EAP stipulates that European land must be managed in a sustainable way by 2020 and the UN Sustainable development goals define a Land Degradation Neutral world as one of the targets. This implies that land degradation (LD) assessment of European ecosystems must be performed repeatedly allowing for the assessment of the current state of LD as well as changes compared to a baseline adopted by the UNCCD for the objective of land degradation neutrality. However, scientifically robust methods are still lacking for large-scale assessment of LD and repeated consistent mapping of the state of terrestrial ecosystems. Historical land degradation assessments based on various methods exist, but methods are generally non-replicable or difficult to apply at continental scale (Allan et al. 2007). The current lack of research methods applicable at large spatial scales is notably caused by the non-robust definition of LD, the scarcity of field data on LD, as well as the complex inter-play of the processes driving LD (Vogt et al., 2011). Moreover, the link between LD and changes in land use (how land use changes relates to change in vegetation productivity and ecosystem functioning) is not straightforward. In this study we used the segmented trend method developed by Horion et al. (2016) for large-scale systematic assessment of hotspots of change in ecosystem functioning in relation to LD. This method alleviates shortcomings of widely used linear trend model that does not account for abrupt change, nor adequately captures the actual changes in ecosystem functioning (de Jong et al. 2013; Horion et al. 2016). Here we present a new methodology for

  2. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity.

    Science.gov (United States)

    Langenheder, Silke; Bulling, Mark T; Solan, Martin; Prosser, James I

    2010-05-26

    With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning relationships, suggests that detailed knowledge of how individual

  3. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity.

    Directory of Open Access Journals (Sweden)

    Silke Langenheder

    Full Text Available BACKGROUND: With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. METHODOLOGY/PRINCIPAL FINDINGS: Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. CONCLUSIONS/SIGNIFICANCE: Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity

  4. Geospatial Analysis of Climate-Related Changes in North American Arctic Ecosystems and Implications for Terrestrial Flora and Fauna

    Science.gov (United States)

    Amirazodi, S.; Griffin, R.

    2016-12-01

    Climate change induces range shifts among many terrestrial species in Arctic regions. At best, warming often forces poleward migration if a stable environment is to be maintained. At worst, marginal ecosystems may disappear entirely without a contiguous shift allowing migratory escape to similar environs. These changing migration patterns and poleward range expansion push species into higher latitudes where ecosystems are less stable and more sensitive to change. This project focuses on ecosystem geography and interspecies relationships and interactions by analyzing seasonality and changes over time in variables including the following: temperature, precipitation, vegetation, physical boundaries, population demographics, permafrost, sea ice, and food and water availability. Publicly available data from remote sensing platforms are used throughout, and processed with both commercially available and open sourced GIS tools. This analysis describes observed range changes for selected North American species, and attempts to provide insight into the causes and effects of these phenomena. As the responses to climate change are complex and varied, the goal is to produce the aforementioned results in an easily understood set of geospatial representations to better support decision making regarding conservation prioritization and enable adaptive responses and mitigation strategies.

  5. Earthworm functional traits and interspecific interactions affect plant nitrogen acquisition and primary production

    NARCIS (Netherlands)

    Andriuzzi, Walter; Schmidt, Olaf; Brussaard, L.; Faber, J.H.; Bolger, T.

    2016-01-01

    We performed a greenhouse experiment to test how the functional diversity of earthworms, the dominant group of soil macro-invertebrates in many terrestrial ecosystems, affects nitrogen cycling and plant growth. Three species were chosen to represent a range of functional traits: Lumbricus terrestris

  6. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    Science.gov (United States)

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  7. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    Science.gov (United States)

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  8. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    Science.gov (United States)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  9. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis.

    Science.gov (United States)

    Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil

    2018-03-01

    Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.

  10. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime

    Science.gov (United States)

    Wrona, Frederick J.; Johansson, Margareta; Culp, Joseph M.; Jenkins, Alan; Mârd, Johanna; Myers-Smith, Isla H.; Prowse, Terry D.; Vincent, Warwick F.; Wookey, Philip A.

    2016-03-01

    Numerous international scientific assessments and related articles have, during the last decade, described the observed and potential impacts of climate change as well as other related environmental stressors on Arctic ecosystems. There is increasing recognition that observed and projected changes in freshwater sources, fluxes, and storage will have profound implications for the physical, biogeochemical, biological, and ecological processes and properties of Arctic terrestrial and freshwater ecosystems. However, a significant level of uncertainty remains in relation to forecasting the impacts of an intensified hydrological regime and related cryospheric change on ecosystem structure and function. As the terrestrial and freshwater ecology component of the Arctic Freshwater Synthesis, we review these uncertainties and recommend enhanced coordinated circumpolar research and monitoring efforts to improve quantification and prediction of how an altered hydrological regime influences local, regional, and circumpolar-level responses in terrestrial and freshwater systems. Specifically, we evaluate (i) changes in ecosystem productivity; (ii) alterations in ecosystem-level biogeochemical cycling and chemical transport; (iii) altered landscapes, successional trajectories, and creation of new habitats; (iv) altered seasonality and phenological mismatches; and (v) gains or losses of species and associated trophic interactions. We emphasize the need for developing a process-based understanding of interecosystem interactions, along with improved predictive models. We recommend enhanced use of the catchment scale as an integrated unit of study, thereby more explicitly considering the physical, chemical, and ecological processes and fluxes across a full freshwater continuum in a geographic region and spatial range of hydroecological units (e.g., stream-pond-lake-river-near shore marine environments).

  11. Declining resilience of ecosystem functions under biodiversity loss.

    Science.gov (United States)

    Oliver, Tom H; Isaac, Nick J B; August, Tom A; Woodcock, Ben A; Roy, David B; Bullock, James M

    2015-12-08

    The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions--specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.

  12. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: summary of improvements and new modeling possibilities

    Science.gov (United States)

    Hidy, Dóra; Barcza, Zoltán; Marjanović, Hrvoje; Zorana Ostrogović Sever, Maša; Dobor, Laura; Gelybó, Györgyi; Fodor, Nándor; Pintér, Krisztina; Churkina, Galina; Running, Steven; Thornton, Peter; Bellocchi, Gianni; Haszpra, László; Horváth, Ferenc; Suyker, Andrew; Nagy, Zoltán

    2016-12-01

    The process-based biogeochemical model Biome-BGC was enhanced to improve its ability to simulate carbon, nitrogen, and water cycles of various terrestrial ecosystems under contrasting management activities. Biome-BGC version 4.1.1 was used as a base model. Improvements included addition of new modules such as the multilayer soil module, implementation of processes related to soil moisture and nitrogen balance, soil-moisture-related plant senescence, and phenological development. Vegetation management modules with annually varying options were also implemented to simulate management practices of grasslands (mowing, grazing), croplands (ploughing, fertilizer application, planting, harvesting), and forests (thinning). New carbon and nitrogen pools have been defined to simulate yield and soft stem development of herbaceous ecosystems. The model version containing all developments is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module; in this paper, Biome-BGCMuSo v4.0 is documented). Case studies on a managed forest, cropland, and grassland are presented to demonstrate the effect of model developments on the simulation of plant growth as well as on carbon and water balance.

  13. The behavior of 89Sr and tritium water (HTO) in a model terrestrial-aquatic ecosystem

    International Nuclear Information System (INIS)

    Zhang Yongxi; Wang Shouxiang; Chen Chuangqun; Sun Zhiming; Huang Dan; Hu Bingmin

    1993-08-01

    The effect of land polluted by 89 Sr on water body and the immigration of HTO from water body to land were studied in a modelling terrestrial-aquatic ecosystem. The results are as follows: (1) The 89 Sr in soil quickly migrated to common bean plants and its concentration in common bean plants was increasing with the time, but the concentration of 89 Sr in soil was exponentially declining with the depth. About 5% of 89 Sr was migrated to water body by rainfall then distributed to other components, and it can be concentrated by aquatics in a certain degree. (2) when HTO entered into the water body, it would migrate to other components of the ecosystem. and the HTO in the pool was linearly decreasing with the time. However, the concentration of HTO in the sediments and aquatics would firstly increase then reached the peak and went down. The tritium of HTO was existed in two forms in the sediments and aquatics, free water (HTO) and bound tritium. HTO was also migrated to the adjacent land soil and absorbed by land crop plants, within one and half months the land system contained 24% of the total tritium in the aquatic system

  14. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    Science.gov (United States)

    Olson, R. J.; Scurlock, J. M. O.; Turner, R. S.; Jennings, S. V.

    1995-01-01

    Estimating terrestrial net primary production (NPP) using remote-sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Program's (IGBP's) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  15. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S. [Oak Ridge National Lab., TN (United States); Scurlock, J.M.O. [King`s College London, (England); Jennings, S.V. [Tennessee Univ., Knoxville, TN (United States)

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  16. The use of the multivariate Principal Response Curve (PRC) for community analysis: a case study on the effects of carbendazim on enchytraeids in Terrestrial Model Ecosystems (TME).

    NARCIS (Netherlands)

    Moser, T.; Römbke, J.; Schallnass, H.-J.; van Gestel, C.A.M.

    2007-01-01

    The effects of the fungicide carbendazim (formulation Derosal®) on enchytraeids were determined in Terrestrial Model Ecosystem (TME) tests. TMEs consisted of intact soil columns (diameter 17.5 cm; length 40 cm) taken from three grassland sites (Amsterdam (The Netherlands), Bangor (Wales, England)

  17. The Circumpolar Biodiversity Monitoring Program Terrestrial Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    , understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity, and to identify knowledge gaps and priorities. This poster will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based monitoring...... and coastal environments. The CBMP Terrestrial Plan is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect...

  18. A National System to Map and Quantify Terrestrial Vertebrate ...

    Science.gov (United States)

    Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions to maintain the sustainable nature of our environment now and into the future. Because of the variability among living organisms and levels of organization (e.g. genetic, species, ecosystem), biodiversity has always been difficult to measure precisely, especially within a systematic manner and over multiple scales.Nevertheless, the need to measure and assess occurrence of biodiversity, changes over time and space, agents of change, and consequences for the provision of ecosystem services for human livelihood remains important. In answer to this challenge, the U.S. Environmental Protection Agency has created a partnership with other Federal agencies, academic institutions, and Non-Governmental Organizations to develop the EnviroAtlas (https://www.epa.gov/enviroatlas), an online national Decision Support Tool that allows users to view and analyze the geographical description of the supply and demand for ecosystem services, as well as the drivers of change. As part of the EnviroAtlas, an approach has been developed that uses deductive habitat models for all the terrestrial vertebrates of the conterminous United States and cluste

  19. Variations and trends of terrestrial NPP and its relation to climate ...

    Indian Academy of Sciences (India)

    Using global terrestrial ecosystem net primary productivity (NPP) data, we validated the simulated multi-model ensemble ..... tion on the solar radiation at six Canadian stations; Solar ... balance have enhanced the terrestrial carbon sink in the.

  20. Functional approach in estimation of cultural ecosystem services of recreational areas

    Science.gov (United States)

    Sautkin, I. S.; Rogova, T. V.

    2018-01-01

    The article is devoted to the identification and analysis of cultural ecosystem services of recreational areas from the different forest plant functional groups in the suburbs of Kazan. The study explored two cultural ecosystem services supplied by forest plants by linking these services to different plant functional traits. Information on the functional traits of 76 plants occurring in the forest ecosystems of the investigated area was collected from reference books on the biological characteristics of plant species. Analysis of these species and traits with the Ward clustering method yielded four functional groups with different potentials for delivering ecosystem services. The results show that the contribution of species diversity to services can be characterized through the functional traits of plants. This proves that there is a stable relationship between biodiversity and the quality and quantity of ecosystem services. The proposed method can be extended to other types of services (regulating and supporting). The analysis can be used in the socio-economic assessment of natural ecosystems for recreation and other uses.

  1. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Selvaraj, K. [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Agoramoorthy, G. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China)]. E-mail: agoram@mail.tajen.edu.tw

    2006-09-15

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan.

  2. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Science.gov (United States)

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  3. Mercury Exposure Affects the Reproductive Success of a Free-living Terrestrial Songbird, the Carolina Wren, (Thryothrus ludovicianus)

    Science.gov (United States)

    The impacts of mercury contamination on aquatic-feeding wildlife are well-established, but recent attention has focused on the effects of mercury on species in terrestrial ecosystems. Despite mounting evidence of mercury accumulation in terrestrial ecosystems, there is little dat...

  4. Convergence and Divergence in a Multi-Model Ensemble of Terrestrial Ecosystem Models in North America

    Science.gov (United States)

    Dungan, J. L.; Wang, W.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.

    2009-12-01

    In support of NACP, we are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to evaluate uncertainties among ecosystem models, satellite datasets, and in-situ measurements. The models used in the experiment include public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. The reference datasets include MODIS Gross Primary Production (GPP) and Net Primary Production (NPP) products, Fluxnet measurements, and other observational data. The simulation results and the reference datasets are consistently processed and systematically compared in the climate (temperature-precipitation) space; in particular, an alternative to the Taylor diagram is developed to facilitate model-data intercomparisons in multi-dimensional space. The key findings of this study indicate that: the simulated GPP/NPP fluxes are in general agreement with observations over forests, but are biased low (underestimated) over non-forest types; large uncertainties of biomass and soil carbon stocks are found among the models (and reference datasets), often induced by seemingly “small” differences in model parameters and implementation details; the simulated Net Ecosystem Production (NEP) mainly responds to non-respiratory disturbances (e.g. fire) in the models and therefore is difficult to compare with flux data; and the seasonality and interannual variability of NEP varies significantly among models and reference datasets. These findings highlight the problem inherent in relying on only one modeling approach to map surface carbon fluxes and emphasize the pressing necessity of expanded and enhanced monitoring systems to narrow critical structural and parametrical uncertainties among ecosystem models.

  5. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem.

    Science.gov (United States)

    Rudolf, Volker H W; Rasmussen, Nick L

    2013-05-01

    A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because

  6. Restoring ecosystem functions and services by overcoming soil threats - The case of Mt. Hekla area in Iceland

    Science.gov (United States)

    Thorsson, Johann; Petursdottir, Thorunn

    2015-04-01

    Soils are one of the main fundamental bodies of terrestrial ecosystems. Soil functions contribute substantially to the ecosystem services humans and all other living beings depend on. Current soil threats are in most cases related to anthropogenic impacts and derived environmental pressures. For instance, overexploitation has in many cases damaged ecosystem resilience, affected current equilibrium and caused severe soil degradation. The resulting dysfunctional ecosystems are incapable of providing necessary ecosystem services. In such cases ecosystem restoration is necessary to restore ecosystem functions and ecological succession. The Mt. Hekla area in Iceland is an example of land suffering from accelerated erosion amplified by anthropogenic impacts. The area is 900 km2 located in South Iceland in the vicinity of the volcano Mt. Hekla. Today over 40% of the area is classified as eroded but historical documents indicate that vast part of the area were fertile and vegetated at the time of settlement, 1100 years ago; hence was able to withstand the geological disturbances occurring prior to the arrival of man as is obvious from the pristine woody patches still remaining. Severe soil degradation followed the large-scale deforestation and overgrazing that took place within the area. The initial land degradation event is considered to have occurred in the 11th century, but has been ongoing since then in several episodes. The Þjórsá glacial river flows through the area and carries enormous amounts of sediments every year. After the deforestation, the ecosystem resilience was damaged and the land left exposed to the elements. Eventually large scale wind erosion started, followed with water erosion and increased impact of freeze-thaw processes. The Soil Conservation Service of Iceland started working in the area in the early 20th century and land reclamation operations have been ongoing until this day. Considerable successes have been made as is manifested in the fact

  7. An evaluation of the ecological and environmental security on China's terrestrial ecosystems.

    Science.gov (United States)

    Zhang, Hongqi; Xu, Erqi

    2017-04-11

    With rapid economic growth, industrialization, and urbanization, various ecological and environmental problems occur, which threaten and undermine the sustainable development and domestic survival of China. On the national scale, our progress remains in a state of qualitative or semi-quantitative evaluation, lacking a quantitative evaluation and a spatial visualization of ecological and environmental security. This study collected 14 indictors of water, land, air, and biodiversity securities to compile a spatial evaluation of ecological and environmental security in terrestrial ecosystems of China. With area-weighted normalization and scaling transformations, the veto aggregation (focusing on the limit indicator) and balanced aggregation (measuring balanced performance among different indicators) methods were used to aggregate security evaluation indicators. Results showed that water, land, air, and biodiversity securities presented different spatial distributions. A relatively serious ecological and environmental security crisis was found in China, but presented an obviously spatial variation of security evaluation scores. Hotspot areas at the danger level, which are scattered throughout the entirety of the country, were identified. The spatial diversities and causes of ecological and environmental problems in different regions were analyzed. Spatial integration of regional development and proposals for improving the ecological and environmental security were put forward.

  8. Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements

    Science.gov (United States)

    Katata, Genki

    2014-07-01

    Recent progress in modeling fogwater (and low cloud water) deposition over terrestrial ecosystems during fogwater droplet interception by vegetative surfaces is reviewed. Several types of models and parameterizations for fogwater deposition are discussed with comparing assumptions, input parameter requirements, and modeled processes. The relationships among deposition velocity of fogwater (Vd) in model results, wind speed, and plant species structures associated with literature values are gathered for model validation. Quantitative comparisons between model results and observations in forest environments revealed differences as large as 2 orders of magnitude, which are likely caused by uncertainties in measurement techniques over heterogeneous landscapes. Results from the literature review show that Vd values ranged from 2.1 to 8.0 cm s-1 for short vegetation, whereas Vd = 7.7-92 cm s-1 and 0-20 cm s-1 for forests measured by throughfall-based methods and the eddy covariance method, respectively. This review also discusses the current understanding of the impacts of fogwater deposition on atmosphere-land interactions and over complex terrain based on results from numerical studies. Lastly, future research priorities in innovative modeling and observational approaches for model validation are outlined.

  9. Multiproxy evidence for terrestrial and aquatic ecosystem responses during the 8.2 ka cold event as recorded at Højby Sø, Denmark

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Rasmussen, Peter; Noe-Nygaard, Nanna

    2010-01-01

    ecosystems to the 8.2 ka cold event. A reduced pollen production by thermophilous deciduous tree taxa in the period c. 8250–8000 cal yr BP reveal that the forest ecosystem was affected by low temperatures during the summer and winter/early-spring seasons. This finding is consistent with the timing of the 8.......2 ka cold event as registered in the Greenland ice cores. At Højby Sø, the climate anomaly appears to have started 200–250 yr earlier than the 8.2 ka cold event as the lake proxy data provide strong evidence for a precipitation-induced distinct increase in catchment soil erosion beginning around 8500...... cal yr BP. Alteration of the terrestrial environment then resulted in a major aquatic ecosystem change with nutrient enrichment of the lake and enhanced productivity, which lasted until c. 7900 cal yr BP. Keywords: 8.2 ka cold event; Lake sediments; Palaeoclimate; Pollen; Macrofossils; Geochemistry...

  10. Integration of Long term experiments on terrestrial ecosystem in AnaEE-France Research Infrastructure : concept and adding value

    Science.gov (United States)

    Chanzy, André; Chabbi, Abad; Houot, Sabine; Lafolie, François; Pichot, Christian; Raynal, Hélène; Saint-André, Laurent; Clobert, Jean; Greiveldinger, Lucile

    2015-04-01

    Continental ecosystems represent a critical zone that provide key ecological services to human populations like biomass production, that participate to the regulation of the global biogeochemical cycles and contribute and contribute to the maintenance of air and water quality. Global changes effects on continental ecosystems are likely to impact the fate of humanity, which is thus facing numerous challenges, such as an increasing demand for food and energy, competition for land and water use, or rapid climate warming. Hence, scientific progress in our understanding of the continental critical zone will come from studies that address how biotic and abiotic processes react to global changes. Long term experiments are required to take into account ecosystem inertia and feedback loops and to characterize trends and threshold in ecosystem dynamics. In France, 20 long-term experiments on terrestrial ecosystems are gathered within a single Research Infrastructure: ANAEE-France (http://www.anaee-s.fr), which is a part of AnaEE-Europe (http://www.anaee.com/). Each experiment consist in applying differentiated pressures on different plot over a long period (>20 years) representative of a range of management options. The originality of such infrastructure is a combination of experimental set up and long-term monitoring of simultaneous measurements of key ecosystem variables and parameters through a multi-disciplinary approach and replications of each treatment that improve the statistical strength of the results. The sites encompass gradients of climate conditions, ecosystem complexity and/or management, and can be used for calibration/validation of ecosystem functioning models as well as for the design of ecosystem management strategies. Gathering those experiments in a single research infrastructure is an important issue to enhance their visibility and increase the number of hosting scientific team by offering a range of services. These are: • Access to the ongoing long

  11. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models

    Directory of Open Access Journals (Sweden)

    Akihiko Ito

    2016-05-01

    Full Text Available The seasonal-cycle amplitude (SCA of the atmosphere–ecosystem carbon dioxide (CO2 exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP, we investigated how well the SCA of atmosphere–ecosystem CO2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO2, climate, land-use, and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr−1. In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their

  12. Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Science.gov (United States)

    Wollheim, W.M.; Stewart, R. J.; Aiken, George R.; Butler, Kenna D.; Morse, Nathaniel B.; Salisbury, J.

    2015-01-01

    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.

  13. Uncertainty of Monetary Valued Ecosystem Services - Value Transfer Functions for Global Mapping.

    Directory of Open Access Journals (Sweden)

    Stefan Schmidt

    Full Text Available Growing demand of resources increases pressure on ecosystem services (ES and biodiversity. Monetary valuation of ES is frequently seen as a decision-support tool by providing explicit values for unconsidered, non-market goods and services. Here we present global value transfer functions by using a meta-analytic framework for the synthesis of 194 case studies capturing 839 monetary values of ES. For 12 ES the variance of monetary values could be explained with a subset of 93 study- and site-specific variables by utilizing boosted regression trees. This provides the first global quantification of uncertainties and transferability of monetary valuations. Models explain from 18% (water provision to 44% (food provision of variance and provide statistically reliable extrapolations for 70% (water provision to 91% (food provision of the terrestrial earth surface. Although the application of different valuation methods is a source of uncertainty, we found evidence that assuming homogeneity of ecosystems is a major error in value transfer function models. Food provision is positively correlated with better life domains and variables indicating positive conditions for human well-being. Water provision and recreation service show that weak ownerships affect valuation of other common goods negatively (e.g. non-privately owned forests. Furthermore, we found support for the shifting baseline hypothesis in valuing climate regulation. Ecological conditions and societal vulnerability determine valuation of extreme event prevention. Valuation of habitat services is negatively correlated with indicators characterizing less favorable areas. Our analysis represents a stepping stone to establish a standardized integration of and reporting on uncertainties for reliable and valid benefit transfer as an important component for decision support.

  14. Ecosystem functional response across precipitation extremes in a sagebrush steppe.

    Science.gov (United States)

    Tredennick, Andrew T; Kleinhesselink, Andrew R; Taylor, J Bret; Adler, Peter B

    2018-01-01

    Precipitation is predicted to become more variable in the western United States, meaning years of above and below average precipitation will become more common. Periods of extreme precipitation are major drivers of interannual variability in ecosystem functioning in water limited communities, but how ecosystems respond to these extremes over the long-term may shift with precipitation means and variances. Long-term changes in ecosystem functional response could reflect compensatory changes in species composition or species reaching physiological thresholds at extreme precipitation levels. We conducted a five year precipitation manipulation experiment in a sagebrush steppe ecosystem in Idaho, United States. We used drought and irrigation treatments (approximately 50% decrease/increase) to investigate whether ecosystem functional response remains consistent under sustained high or low precipitation. We recorded data on aboveground net primary productivity (ANPP), species abundance, and soil moisture. We fit a generalized linear mixed effects model to determine if the relationship between ANPP and soil moisture differed among treatments. We used nonmetric multidimensional scaling to quantify community composition over the five years. Ecosystem functional response, defined as the relationship between soil moisture and ANPP, was similar among irrigation and control treatments, but the drought treatment had a greater slope than the control treatment. However, all estimates for the effect of soil moisture on ANPP overlapped zero, indicating the relationship is weak and uncertain regardless of treatment. There was also large spatial variation in ANPP within-years, which contributes to the uncertainty of the soil moisture effect. Plant community composition was remarkably stable over the course of the experiment and did not differ among treatments. Despite some evidence that ecosystem functional response became more sensitive under sustained drought conditions, the response

  15. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Pagès, Jordi F.; Arthur, Rohan; Alcoverro, Teresa

    2016-01-01

    While large herbivores can have strong impacts on terrestrial ecosystems, much less is known of their role in aquatic systems. We reviewed the literature to determine: (1) which large herbivores (>10 kg) have a (semi-)aquatic lifestyle and are important consumers of submerged vascular plants, (2)

  16. Spatial Assessment of Forest Ecosystem Functions and Services using Human Relating Factors for SDG

    Science.gov (United States)

    Song, C.; Lee, W. K.; Jeon, S. W.; Kim, T.; Lim, C. H.

    2015-12-01

    Application of ecosystem service concept in environmental related decision making could be numerical and objective standard for policy maker between preserving and developing perspective of environment. However, pursuing maximum benefit from natural capital through ecosystem services caused failure by losing ecosystem functions through its trade-offs. Therefore, difference between ecosystem functions and services were demonstrated and would apply human relating perspectives. Assessment results of ecosystem functions and services can be divided 3 parts. Tree growth per year set as the ecosystem function factor and indicated through so called pure function map. After that, relating functions can be driven such as water conservation, air pollutant purification, climate change regulation, and timber production. Overall process and amount are numerically quantified. These functional results can be transferred to ecosystem services by multiplying economic unit value, so function reflecting service maps can be generated. On the other hand, above services, to implement more reliable human demand, human reflecting service maps are also be developed. As the validation, quantified ecosystem functions are compared with former results through pixel based analysis. Three maps are compared, and through comparing difference between ecosystem function and services and inversed trends in function based and human based service are analysed. In this study, we could find differences in PF, FRS, and HRS in relation to based ecosystem conditions. This study suggests that the differences in PF, FRS, and HRS should be understood in the decision making process for sustainable management of ecosystem services. Although the analysis is based on in sort existing process separation, it is important to consider the possibility of different usage of ecosystem function assessment results and ecosystem service assessment results in SDG policy making. Furthermore, process based functional approach

  17. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats

    International Nuclear Information System (INIS)

    Stevens, Carly J.; Manning, Pete; Berg, Leon J.L. van den; Graaf, Maaike C.C. de; Wamelink, G.W. Wieger; Boxman, Andries W.; Bleeker, Albert; Vergeer, Philippine; Arroniz-Crespo, Maria; Limpens, Juul; Lamers, Leon P.M.; Bobbink, Roland; Dorland, Edu

    2011-01-01

    While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NH x and NO y ) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and reduced nitrogen inputs are occurring, this oversight requires attention. One reason for this knowledge gap is that plants experience a different NH x :NO y ratio in soil to that seen in atmospheric deposits because atmospheric inputs are modified by soil transformations, mediated by soil pH. Consequently species of neutral and alkaline habitats are less likely to encounter high NH 4 + concentrations than species from acid soils. We suggest that the response of vascular plant species to changing ratios of NH x :NO y deposits will be driven primarily by a combination of soil pH and nitrification rates. Testing this hypothesis requires a combination of experimental and survey work in a range of systems. - Changing ratios of NH x and NO y in deposition has important consequences for ecosystem function.

  18. Indicators of ecosystem function identify alternate states in the sagebrush steppe.

    Science.gov (United States)

    Kachergis, Emily; Rocca, Monique E; Fernandez-Gimenez, Maria E

    2011-10-01

    Models of ecosystem change that incorporate nonlinear dynamics and thresholds, such as state-and-transition models (STMs), are increasingly popular tools for land management decision-making. However, few models are based on systematic collection and documentation of ecological data, and of these, most rely solely on structural indicators (species composition) to identify states and transitions. As STMs are adopted as an assessment framework throughout the United States, finding effective and efficient ways to create data-driven models that integrate ecosystem function and structure is vital. This study aims to (1) evaluate the utility of functional indicators (indicators of rangeland health, IRH) as proxies for more difficult ecosystem function measurements and (2) create a data-driven STM for the sagebrush steppe of Colorado, USA, that incorporates both ecosystem structure and function. We sampled soils, plant communities, and IRH at 41 plots with similar clayey soils but different site histories to identify potential states and infer the effects of management practices and disturbances on transitions. We found that many IRH were correlated with quantitative measures of functional indicators, suggesting that the IRH can be used to approximate ecosystem function. In addition to a reference state that functions as expected for this soil type, we identified four biotically and functionally distinct potential states, consistent with the theoretical concept of alternate states. Three potential states were related to management practices (chemical and mechanical shrub treatments and seeding history) while one was related only to ecosystem processes (erosion). IRH and potential states were also related to environmental variation (slope, soil texture), suggesting that there are environmental factors within areas with similar soils that affect ecosystem dynamics and should be noted within STMs. Our approach generated an objective, data-driven model of ecosystem dynamics

  19. Climate control of terrestrial carbon exchange across biomes and continents

    Science.gov (United States)

    Chuixiang Yi; Daniel Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; John Frank; William J. Massman

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes...

  20. Risk of severe climate change impact on the terrestrial biosphere

    International Nuclear Information System (INIS)

    Heyder, Ursula; Schaphoff, Sibyll; Gerten, Dieter; Lucht, Wolfgang

    2011-01-01

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO 2 concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  1. Risk of severe climate change impact on the terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Heyder, Ursula; Schaphoff, Sibyll; Gerten, Dieter; Lucht, Wolfgang, E-mail: Ursula.Heyder@pik-potsdam.de, E-mail: Sibyll.Schaphoff@pik-potsdam.de [Potsdam Institute for Climate Impact Research, Telegraphenberg A62, 14473 Potsdam (Germany)

    2011-07-15

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO{sub 2} concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  2. Identifying thresholds for ecosystem-based management.

    Directory of Open Access Journals (Sweden)

    Jameal F Samhouri

    Full Text Available BACKGROUND: One of the greatest obstacles to moving ecosystem-based management (EBM from concept to practice is the lack of a systematic approach to defining ecosystem-level decision criteria, or reference points that trigger management action. METHODOLOGY/PRINCIPAL FINDINGS: To assist resource managers and policymakers in developing EBM decision criteria, we introduce a quantitative, transferable method for identifying utility thresholds. A utility threshold is the level of human-induced pressure (e.g., pollution at which small changes produce substantial improvements toward the EBM goal of protecting an ecosystem's structural (e.g., diversity and functional (e.g., resilience attributes. The analytical approach is based on the detection of nonlinearities in relationships between ecosystem attributes and pressures. We illustrate the method with a hypothetical case study of (1 fishing and (2 nearshore habitat pressure using an empirically-validated marine ecosystem model for British Columbia, Canada, and derive numerical threshold values in terms of the density of two empirically-tractable indicator groups, sablefish and jellyfish. We also describe how to incorporate uncertainty into the estimation of utility thresholds and highlight their value in the context of understanding EBM trade-offs. CONCLUSIONS/SIGNIFICANCE: For any policy scenario, an understanding of utility thresholds provides insight into the amount and type of management intervention required to make significant progress toward improved ecosystem structure and function. The approach outlined in this paper can be applied in the context of single or multiple human-induced pressures, to any marine, freshwater, or terrestrial ecosystem, and should facilitate more effective management.

  3. Assessing Structure and Condition of Temperate And Tropical Forests: Fusion of Terrestrial Lidar and Airborne Multi-Angle and Lidar Remote Sensing

    Science.gov (United States)

    Saenz, Edward J.

    Forests provide vital ecosystem functions and services that maintain the integrity of our natural and human environment. Understanding the structural components of forests (extent, tree density, heights of multi-story canopies, biomass, etc.) provides necessary information to preserve ecosystem services. Increasingly, remote sensing resources have been used to map and monitor forests globally. However, traditional satellite and airborne multi-angle imagery only provide information about the top of the canopy and little about the forest structure and understory. In this research, we investigative the use of rapidly evolving lidar technology, and how the fusion of aerial and terrestrial lidar data can be utilized to better characterize forest stand information. We further apply a novel terrestrial lidar methodology to characterize a Hemlock Woolly Adelgid infestation in Harvard Forest, Massachusetts, and adapt a dynamic terrestrial lidar sampling scheme to identify key structural vegetation profiles of tropical rainforests in La Selva, Costa Rica.

  4. Mapping and Quantifying Terrestrial Vertebrate Biodiversity at ...

    Science.gov (United States)

    The ability to assess, report, map, and forecast functions of ecosystems is critical to our capacity to make informed decisions to maintain the sustainable nature of our environment. Because of the variability among living organisms and levels of organization (e.g. genetic, species, ecosystem), biodiversity has always been difficult to measure precisely, especially within a systematic manner and over multiple scales. In answer to this challenge, the U.S. Environmental Protection Agency has created a partnership with other Federal agencies, academic institutions, and Non-Governmental Organizations to develop the EnviroAtlas (https://www.epa.gov/enviroatlas), an online national Decision Support Tool that allows users to view and analyze the geographical description of the supply and demand for ecosystem services, as well as the drivers of change. As part of the EnviroAtlas, an approach has been developed that uses deductive habitat models for all terrestrial vertebrates of the conterminous United States and clusters them into biodiversity metrics that relate to ecosystem service-relevant categories. Metrics, such as species and taxon richness, have been developed and integrated with other measures of biodiversity. Collectively, these metrics provide a consistent scalable process from which to make geographic comparisons, provide thematic assessments, and to monitor status and trends in biodiversity. The national biodiversity component operates across approximatel

  5. Towards 250 m mapping of terrestrial primary productivity over Canada

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  6. Terrestrial carbon storage dynamics: Chasing a moving target

    Science.gov (United States)

    Luo, Y.; Shi, Z.; Jiang, L.; Xia, J.; Wang, Y.; Kc, M.; Liang, J.; Lu, X.; Niu, S.; Ahlström, A.; Hararuk, O.; Hastings, A.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K. E.; Wang, Y.

    2015-12-01

    Terrestrial ecosystems have been estimated to absorb roughly 30% of anthropogenic CO2 emissions. Past studies have identified myriad drivers of terrestrial carbon storage changes, such as fire, climate change, and land use changes. Those drivers influence the carbon storage change via diverse mechanisms, which have not been unified into a general theory so as to identify what control the direction and rate of terrestrial carbon storage dynamics. Here we propose a theoretical framework to quantitatively determine the response of terrestrial carbon storage to different exogenous drivers. With a combination of conceptual reasoning, mathematical analysis, and numeric experiments, we demonstrated that the maximal capacity of an ecosystem to store carbon is time-dependent and equals carbon input (i.e., net primary production, NPP) multiplying by residence time. The capacity is a moving target toward which carbon storage approaches (i.e., the direction of carbon storage change) but usually does not attain. The difference between the capacity and the carbon storage at a given time t is the unrealized carbon storage potential. The rate of the storage change is proportional to the magnitude of the unrealized potential. We also demonstrated that a parameter space of NPP, residence time, and carbon storage potential can well characterize carbon storage dynamics quantified at six sites ranging from tropical forests to tundra and simulated by two versions (carbon-only and coupled carbon-nitrogen) of the Australian Community Atmosphere-Biosphere Land Ecosystem (CABLE) Model under three climate change scenarios (CO2 rising only, climate warming only, and RCP8.5). Overall this study reveals the unified mechanism unerlying terrestrial carbon storage dynamics to guide transient traceability analysis of global land models and synthesis of empirical studies.

  7. Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.

    Science.gov (United States)

    O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F

    2017-08-31

    In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.

  8. Soil and terrestrial biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO 2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  9. Biodiversity and ecosystem functioning in evolving food webs.

    Science.gov (United States)

    Allhoff, K T; Drossel, B

    2016-05-19

    We use computer simulations in order to study the interplay between biodiversity and ecosystem functioning (BEF) during both the formation and the ongoing evolution of large food webs. A species in our model is characterized by its own body mass, its preferred prey body mass and the width of its potential prey body mass spectrum. On an ecological time scale, population dynamics determines which species are viable and which ones go extinct. On an evolutionary time scale, new species emerge as modifications of existing ones. The network structure thus emerges and evolves in a self-organized manner. We analyse the relation between functional diversity and five community level measures of ecosystem functioning. These are the metabolic loss of the predator community, the total biomasses of the basal and the predator community, and the consumption rates on the basal community and within the predator community. Clear BEF relations are observed during the initial build-up of the networks, or when parameters are varied, causing bottom-up or top-down effects. However, ecosystem functioning measures fluctuate only very little during long-term evolution under constant environmental conditions, despite changes in functional diversity. This result supports the hypothesis that trophic cascades are weaker in more complex food webs. © 2016 The Author(s).

  10. Asynchrony among local communities stabilises ecosystem function of metacommunities

    DEFF Research Database (Denmark)

    Wilcox, Kevin R.; Tredennick, Andrew T.; Koerner, Sally E.

    2017-01-01

    Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities...

  11. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Heide-Joergensen, H S; Johnsen, I [Koebenhavns Univ., Botanisk Inst., Oekologisk afd. (Denmark)

    1998-12-31

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  12. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    International Nuclear Information System (INIS)

    Heide-Joergensen, H.S.; Johnsen, I.

    1997-01-01

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  13. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Heide-Joergensen, H.S.; Johnsen, I. [Koebenhavns Univ., Botanisk Inst., Oekologisk afd. (Denmark)

    1997-12-31

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  14. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    Science.gov (United States)

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  15. Artificial Light at Night Affects Organism Flux across Ecosystem Boundaries and Drives Community Structure in the Recipient Ecosystem

    Directory of Open Access Journals (Sweden)

    Alessandro Manfrin

    2017-10-01

    Full Text Available Artificial light at night (ALAN is a widespread alteration of the natural environment that can affect the functioning of ecosystems. ALAN can change the movement patterns of freshwater animals that move into the adjacent riparian and terrestrial ecosystems, but the implications for local riparian consumers that rely on these subsidies are still unexplored. We conducted a 2-year field experiment to quantify changes of freshwater-terrestrial linkages by installing streetlights in a previously light-naïve riparian area adjacent to an agricultural drainage ditch. We compared the abundance and community composition of emerging aquatic insects, flying insects, and ground-dwelling arthropods with an unlit control site. Comparisons were made within and between years using two-way generalized least squares (GLS model and a BACI design (Before-After Control-Impact. Aquatic insect emergence, the proportion of flying insects that were aquatic in origin, and the total abundance of flying insects all increased in the ALAN-illuminated area. The abundance of several night-active ground-dwelling predators (Pachygnatha clercki, Trochosa sp., Opiliones increased under ALAN and their activity was extended into the day. Conversely, the abundance of nocturnal ground beetles (Carabidae decreased under ALAN. The changes in composition of riparian predator and scavenger communities suggest that the increase in aquatic-to-terrestrial subsidy flux may cascade through the riparian food web. The work is among the first studies to experimentally manipulate ALAN using a large-scale field experiment, and provides evidence that ALAN can affect processes that link adjacent ecosystems. Given the large number of streetlights that are installed along shorelines of freshwater bodies throughout the globe, the effects could be widespread and represent an underestimated source of impairment for both aquatic and riparian systems.

  16. Photosynthesis, Nitrogen, Their Adjustment and its Effects on Ecosystem Carbon Gain at Elevated CO(sub 2)l. A Comparison of Loblolly and Ponderosa Pines; FINAL

    International Nuclear Information System (INIS)

    Ball, J. Timothy; Eichelmann, Hillar Y.; Tissue, David T.; Lewis, James D.; Picone, Johnn B.; Ross, Peter D.

    1996-01-01

    A functional understanding of terrestrial ecosystem carbon processes is essential for two reasons. First, carbon flow is a most fundamental aspects of ecosystem function as it mediates most of the energy flow in these systems. Second, carbon flow also mediates the majority of energy flow in the global economy and will do for the foreseeable future. The increased atmospheric carbon dioxide and its inevitable flow through global ecosystems will influence ecosystem processes. There is, of course, great interest in the potential of ecosystems to sequester some of the carbon being loaded into the atmosphere by economic activity

  17. Australia's TERN: Building, Sustaining and Advancing Collaborative Long Term Ecosystem Research Networks

    Science.gov (United States)

    HEld, A. A.; Phinn, S. R.

    2012-12-01

    TERN is Australia's Terrestrial Ecosystem Research Network (www.tern.org.au) is one of several environmental data collection, storage and sharing projects developed through the government's research infrastructure programs 2008-2014. This includes terrestrial and coastal ecosystem data collection infrastructure across multiple disciplines, hardware, software and processes used to store, analyse and integrate data sets. TERN's overall objective is to build the collaborations, infrastructure and programs to meet the needs of ecosystem science communities in Australia in the long term, through institutional frameworks necessary to establish a national terrestrial ecosystem site and observational network, coordinated networks enabling cooperation and operational experience; public access to quality assured and appropriately licensed data; and allowing the terrestrial ecosystem research community to define and sustain the terrestrial observing paradigm into the longer term. This paper explains how TERN was originally established, and now operates, along with plans to sustain itself in the future. TERN is implemented through discipline/technical groups referred to as "TERN Facilities". Combined, the facilities provide observations of surface mass and energy fluxes over key ecosystems, biophysical remote sensing data, ecological survey plots, soils information, and coastal ecosystems and associated water quality variables across Australia. Additional integrative facilities cover elements of ecoinformatics, data-scaling and modelling, and linking science to management. A central coordination and portal facility provides meta-data storage, data identification, legal and licensing support. Data access, uploading, meta-data generation, DOI attachment and licensing is completed at each facility's own portal level. TERN also acts as the open-data repository of choice for Australian scientists required to publish their data. Several key lessons we have learnt, will be presented

  18. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    Science.gov (United States)

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  19. Does Your Terrestrial Model Capture Key Arctic-Boreal Relationships?: Functional Benchmarks in the ABoVE Model Benchmarking System

    Science.gov (United States)

    Stofferahn, E.; Fisher, J. B.; Hayes, D. J.; Schwalm, C. R.; Huntzinger, D. N.; Hantson, W.

    2017-12-01

    The Arctic-Boreal Region (ABR) is a major source of uncertainties for terrestrial biosphere model (TBM) simulations. These uncertainties are precipitated by a lack of observational data from the region, affecting the parameterizations of cold environment processes in the models. Addressing these uncertainties requires a coordinated effort of data collection and integration of the following key indicators of the ABR ecosystem: disturbance, vegetation / ecosystem structure and function, carbon pools and biogeochemistry, permafrost, and hydrology. We are continuing to develop the model-data integration framework for NASA's Arctic Boreal Vulnerability Experiment (ABoVE), wherein data collection is driven by matching observations and model outputs to the ABoVE indicators via the ABoVE Grid and Projection. The data are used as reference datasets for a benchmarking system which evaluates TBM performance with respect to ABR processes. The benchmarking system utilizes two types of performance metrics to identify model strengths and weaknesses: standard metrics, based on the International Land Model Benchmarking (ILaMB) system, which relate a single observed variable to a single model output variable, and functional benchmarks, wherein the relationship of one variable to one or more variables (e.g. the dependence of vegetation structure on snow cover, the dependence of active layer thickness (ALT) on air temperature and snow cover) is ascertained in both observations and model outputs. This in turn provides guidance to model development teams for reducing uncertainties in TBM simulations of the ABR.

  20. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    Science.gov (United States)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    The forest fire is one of the most catalysing agents which degrade an ecosystems leading to the loss of net and gross primary productivity (NPP & GPP) and carbon sequestration service. Additionally, it can suppress the efficiency of service providing capacity of an ecosystem throughout the time and space. Remote sensing-based forest fire estimation in a diverse ecosystem is very much essential for mitigating the biodiversity and productivity losses due to the forest fire. Satellite-based Land Surface Temperature (LST) has been calculated for the pre-fire and fire years to identify the burn severity hotspot across all eco-regions in the Lower Himalaya region. Several burn severity indices: Normalized Burn Ratio (NBR), Burnt Area Index (BAI), Normalized Multiband Drought Index (NMDI), Soil Adjusted Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Enhance Vegetation Index (EVI) have been used in this study to quantify the spatial and temporal changes (delta) of the selected indices. Two Light Use Efficiency (LUE) models: Carnegie- Ames-Stanford-Approach (CASA) and Vegetation Photosynthesis Model (VPM) have been used to quantify the terrestrial Net Primary Productivity (NPP) in the pre-fire and fire years across all biomes of the region. A novel approach has been preceded in this field to demonstrate the correlation between forest fire density (FFD) and NPP. A strong positive correlation was found between burn severity indices and predicted NPP: BAI and NPP (r = 0.49), NBR and NPP: (r = 0.58), EVI and NPP: (r = 0.72), SAVI and NPP: (r = 0.67), whereas, a negative association has noted between the NMDI and NPP: (r = -0.36) during the both studied years. Results have shown that the NPP is highly correlated with the forest fire density (R2 = 0.75, RMSE = 5.03 gC m-2 month-1). The estimated LST of the individual fire days has witnessed a sharp temperature increase by > 6oC - 9oC in comparison to the non-fire days clearly indicates high fire risk (in

  1. Scale dependence of absorption of photosynthetically active radiation in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Asner, G.P.; Wessman, C.A.; Archer, S.

    1998-01-01

    The fraction of photosynthetically active radiation absorbed by plant canopies (fAPAR) is a critical biophysical variable for extrapolating ecophysiological measurements from the leaf to landscape scale. Quantification of fAPAR determinants at the landscape level is needed to improve the interpretation of remote sensing data, to facilitate its use in constraining ecosystem process models, and to improve synoptic-scale links between carbon and nutrient cycles. Most canopy radiation budget studies have focused on light attenuation in plant canopies, with little regard for the importance of the scale-dependent biophysical and structural factors (e.g., leaf and stem optical properties, leaf and stem area, and extent of vegetation structural types) that ultimately determine fAPAR at canopy and landscape scales. Most studies have also assumed that nonphotosynthetic vegetation (litter and stems) contributes little to fAPAR. Using a combined field measurement and radiative transfer modeling approach, we quantified (a) the relative role of the leaf-, canopy-, and landscape-level factors that determine fAPAR in terrestrial ecosystems and (b) the magnitude of PAR absorption by grass litter and woody plant stems. Variability in full spectral-range (400–2500 nm) reflectance/transmittance and PAR (400–700 nm) absorption at the level of individual leaf, stem, and litter samples was quantified for a wide array of broadleaf arborescent and grass species along a 900-km north–south Texas savanna transect. Among woody growth forms, leaf reflectance and transmittance spectra were statistically comparable between populations, species within a genus, and functional types (deciduous vs. evergreen, legume vs. nonlegume). Within the grass life-form, spectral properties were statistically comparable between species and C 3 /C 4 physiologies. We found that tissue-level PAR absorption among species, genera, functional groups, and growth forms and between climatologically diverse regions

  2. Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning

    Science.gov (United States)

    Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.

    2012-01-01

    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440

  3. Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems.

    Directory of Open Access Journals (Sweden)

    Duncan N L Menge

    Full Text Available Nutrient limitation to net primary production (NPP displays a diversity of patterns as ecosystems develop over a range of timescales. For example, some ecosystems transition from N limitation on young soils to P limitation on geologically old soils, whereas others appear to remain N limited. Under what conditions should N limitation and P limitation prevail? When do transitions between N and P limitation occur? We analyzed transient dynamics of multiple timescales in an ecosystem model to investigate these questions. Post-disturbance dynamics in our model are controlled by a cascade of rates, from plant uptake (very fast to litter turnover (fast to plant mortality (intermediate to plant-unavailable nutrient loss (slow to weathering (very slow. Young ecosystems are N limited when symbiotic N fixation (SNF is constrained and P weathering inputs are high relative to atmospheric N deposition and plant N:P demand, but P limited under opposite conditions. In the absence of SNF, N limitation is likely to worsen through succession (decades to centuries because P is mineralized faster than N. Over long timescales (centuries and longer this preferential P mineralization increases the N:P ratio of soil organic matter, leading to greater losses of plant-unavailable N versus P relative to plant N:P demand. These loss dynamics favor N limitation on older soils despite the rising organic matter N:P ratio. However, weathering depletion favors P limitation on older soils when continual P inputs (e.g., dust deposition are low, so nutrient limitation at the terminal equilibrium depends on the balance of these input and loss effects. If NPP switches from N to P limitation over long time periods, the transition time depends most strongly on the P weathering rate. At all timescales SNF has the capacity to overcome N limitation, so nutrient limitation depends critically on limits to SNF.

  4. Uncertainty of Monetary Valued Ecosystem Services – Value Transfer Functions for Global Mapping

    Science.gov (United States)

    Schmidt, Stefan; Manceur, Ameur M.; Seppelt, Ralf

    2016-01-01

    Growing demand of resources increases pressure on ecosystem services (ES) and biodiversity. Monetary valuation of ES is frequently seen as a decision-support tool by providing explicit values for unconsidered, non-market goods and services. Here we present global value transfer functions by using a meta-analytic framework for the synthesis of 194 case studies capturing 839 monetary values of ES. For 12 ES the variance of monetary values could be explained with a subset of 93 study- and site-specific variables by utilizing boosted regression trees. This provides the first global quantification of uncertainties and transferability of monetary valuations. Models explain from 18% (water provision) to 44% (food provision) of variance and provide statistically reliable extrapolations for 70% (water provision) to 91% (food provision) of the terrestrial earth surface. Although the application of different valuation methods is a source of uncertainty, we found evidence that assuming homogeneity of ecosystems is a major error in value transfer function models. Food provision is positively correlated with better life domains and variables indicating positive conditions for human well-being. Water provision and recreation service show that weak ownerships affect valuation of other common goods negatively (e.g. non-privately owned forests). Furthermore, we found support for the shifting baseline hypothesis in valuing climate regulation. Ecological conditions and societal vulnerability determine valuation of extreme event prevention. Valuation of habitat services is negatively correlated with indicators characterizing less favorable areas. Our analysis represents a stepping stone to establish a standardized integration of and reporting on uncertainties for reliable and valid benefit transfer as an important component for decision support. PMID:26938447

  5. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Howard, B.J.; Kennedy, V.H.; Nelson, A.

    1983-06-01

    A bibliographical database has been developed to provide quick access to research and background literature in the field of radioecology. This is a development of an earlier database described by Nelson (Bocock 1981). ITE's particular fields of interest have led to a subject bias in the bibliography towards studies in Cumbria, especially those concerned with radionuclides originating from the reprocessing plant at Sellafield, and towards ecological research studies that are complementary to radionuclide studies. Other subjects covered, include the chemistry of radionuclides, budgets and transfers within ecosystems and techniques for the analysis of environmental samples. ITE's research objectives have led to the establishment of a specialized database which is intended to complement rather than compete with the large international databases made available by suppliers such as IRS-DIALTECH or DIALOG. Currently the database holds about 1900 references which are stored on a 2 1/2 megabyte hard disk on a Digital PDP11/34 computer operating under a time shared system. The references follow a standard format. (author)

  6. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    Science.gov (United States)

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  7. Marine biodiversity–ecosystem functions under uncertain environmental futures

    Science.gov (United States)

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  8. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning.

    Directory of Open Access Journals (Sweden)

    Anna Villnäs

    Full Text Available Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential, gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH(4(+ and dissolved Si. Although effluxes of PO(4(3- were not altered significantly, changes were observed in sediment PO(4(3- sorption capability. The duration of hypoxia (i.e. number of days of stress explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the

  9. Assessing climate change effects on mountain ecosystems using integrated models: A case study

    Science.gov (United States)

    Fagre, Daniel B.; Running, Steven W.; Keane, Robert E.; Peterson, David L.

    2005-01-01

    Mountain systems are characterized by strong environmental gradients, rugged topography and extreme spatial heterogeneity in ecosystem structure and composition. Consequently, most mountainous areas have relatively high rates of endemism and biodiversity, and function as species refugia in many areas of the world. Mountains have long been recognized as critical entities in regional climatic and hydrological dynamics but their importance as terrestrial carbon stores has only been recently underscored (Schimel et al. 2002; this volume). Mountain ecosystems, therefore, are globally important as well as unusually complex. These ecosystems challenge our ability to understand their dynamics and predict their response to climatic variability and global-scale environmental change.

  10. Anthropogenic transformation of the terrestrial biosphere.

    Science.gov (United States)

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

  11. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    Science.gov (United States)

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  12. Priority conservation plans of ecological function areas for terrestrial endangered mammals in China

    OpenAIRE

    Gongqi Sun; Yi Qu; Meiqing Tang; Xiao Liu; Xiaofeng Luan

    2013-01-01

    To reduce costs and maximize species protection in China, we identified conservation priorities of endangered terrestrial mammals. Using geographic information system (GIS), we identified the irreplaceable values (IR) of 1,434 units of the terrestrial ecological function areas. Based on the IR values of the units, we divided the units into three classes with decreasing priorities, including the mandatory reserve (MR) units (20), the negotiable reserve (NR) units (29), and the partially reserv...

  13. Effects of atmospheric deposition of pesticides on terrestrial organisms in the Netherlands

    NARCIS (Netherlands)

    Jong FMW de; Luttik R; SEC

    2004-01-01

    At present there is much focus on the atmospheric dispersal of pesticides. However, there is very little known about the effects of atmospheric deposition, especially in terrestrial ecosystems. In the study described here, a start has been made to clarify the possible effects on terrestrial

  14. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan.

    Science.gov (United States)

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-06-09

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  15. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Hwey-Lian Hsieh

    2015-06-01

    Full Text Available The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  16. Ecosystem function and biodiversity on coral reefs

    OpenAIRE

    Ogden, J.; Done, T.; Salvat, B.

    1994-01-01

    The article highlights a workshop held in Key West, Florida in November 1993 attended by a group of 35 international scientists where topics of ecosystem function and biodiversity on coral reefs were discussed.

  17. Linking ecosystem service supply to stakeholder concerns on ...

    Science.gov (United States)

    Policies to protect coastal resources may lead to greater social, economic, and ecological returns when they consider potential co-benefits and trade-offs on land. In Guánica Bay watershed, Puerto Rico, a watershed management plan is being implemented to restore declining quality of coral reefs due to sediment and nutrient runoff. However, recent stakeholder workshops indicated uncertainty about benefits for the local community. A total of 19 metrics were identified to capture stakeholder concerns, including 15 terrestrial ecosystem services in the watershed and 4 metrics in the coastal zone. Ecosystem service production functions were applied to quantify and map ecosystem service supply in 1) the Guánica Bay watershed and 2) a highly engineered upper multi-watershed area connected to the lower watershed via a series of reservoirs and tunnels. These two watersheds were compared to other watersheds in Puerto Rico. Relative to other watersheds, the Upper Guánica watershed had high air pollutant removal rates, forest habitat area, biodiversity of charismatic and endangered species, but low farmland quality and low sediment retention. The Lower Guánica watershed had high rates of denitrification and high levels of marine-based recreational and fishing opportunities compared to other watersheds, but moderate to low air pollutant removal, soil carbon content, sediment and nutrient retention, and terrestrial biodiversity. Our results suggest that actions in the wat

  18. Enhanced Input of Terrestrial Particulate Organic Matter Reduces the Resilience of the Clear-Water State of Shallow Lakes: A Model Study

    NARCIS (Netherlands)

    Lischke, B.; Hilt, S.; Janse, J.H.; Kuiper, J.J.; Mehner, T.; Mooij, W.M.; Gaedke, U.

    2014-01-01

    The amount of terrestrial particulate organic matter (t-POM) entering lakes is predicted to increase as a result of climate change. This may especially alter the structure and functioning of ecosystems in small, shallow lakes which can rapidly shift from a clear-water, macrophyte-dominated into a

  19. Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition.

    Science.gov (United States)

    McLaughlin, Daniel L; Cohen, Matthew J

    2013-10-01

    Wetlands provide numerous ecosystem services, from habitat provision to pollutant removal, floodwater storage, and microclimate regulation. Delivery of particular services relies on specific ecological functions, and thus to varying degree on wetland ecological condition, commonly quantified as departure from minimally impacted reference sites. Condition assessments are widely adopted as regulatory indicators of ecosystem function, and for some services (e.g., habitat) links between condition and function are often direct. For others, however, links are more tenuous, and using condition alone to enumerate ecosystem value (e.g., for compensatory mitigation) may underestimate important services. Hydrologic function affects many services cited in support of wetland protection both directly (floodwater retention, microclimate regulation) and indirectly (biogeochemical cycling, pollutant removal). We investigated links between condition and hydrologic function to test the hypothesis, embedded in regulatory assessment of wetland value, that condition predicts function. Condition was assessed using rapid and intensive approaches, including Florida's official wetland assessment tool, in 11 isolated forested wetlands in north Florida (USA) spanning a land use intensity gradient. Hydrologic function was assessed using hydrologic regime (mean, variance, and rates of change of water depth), and measurements of groundwater exchange and evapotranspiration (ET). Despite a wide range in condition, no systematic variation in hydrologic regime was observed; indeed reference sites spanned the full range of variation. In contrast, ET was affected by land use, with higher rates in intensive (agriculture and urban) landscapes in response to higher leaf area. ET determines latent heat exchange, which regulates microclimate, a valuable service in urban heat islands. Higher ET also indicates higher productivity and thus carbon cycling. Groundwater exchange regularly reversed flow direction

  20. Ecosystems and climate interactions in the boreal zone of northern Eurasia

    International Nuclear Information System (INIS)

    Vygodskaya, N N; Groisman, P Ya; Tchebakova, N M; Kurbatova, J A; Panfyorov, O; Parfenova, E I; Sogachev, A F

    2007-01-01

    The climate system and terrestrial ecosystems interact as they change. In northern Eurasia these interactions are especially strong, span all spatial and timescales, and thus have become the subject of an international program: the Northern Eurasia Earth Science Partnership Initiative (NEESPI). Without trying to cover all areas of these interactions, this paper introduces three examples of the principal micrometeorological, mesometeorological and subcontinental feedbacks that control climate-terrestrial ecosystem interactions in the boreal zone of northern Eurasia. Positive and negative feedbacks of forest paludification, of windthrow, and of climate-forced displacement of vegetation zones are presented. Moreover the interplay of different scale feedbacks, the multi-faceted nature of ecosystems-climate interactions and their potential to affect the global Earth system are shown. It is concluded that, without a synergetic modeling approach that integrates all major feedbacks and relationships between terrestrial ecosystems and climate, reliable projections of environmental change in northern Eurasia are impossible, which will also bring into question the accuracy of global change projections

  1. Matrix intensification alters avian functional group composition in adjacent rainforest fragments.

    Directory of Open Access Journals (Sweden)

    Justus P Deikumah

    Full Text Available Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.

  2. Mapping ecosystem functions and services in Eastern Europe using global-scale data sets

    NARCIS (Netherlands)

    Schulp, C.J.E.; Alkemade, R.; Klein Goldewijk, K.; Petz, K.

    2012-01-01

    To assess future interactions between the environment and human well-being, spatially explicit ecosystem service models are needed. Currently available models mainly focus on provisioning services and do not distinguish changes in the functioning of the ecosystem (Ecosystem Functions – ESFs) and

  3. Assessment of long-term effects of climate change on biodiversity and vulnerability of terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Oene, H.; Berendse, F.; De Kovel, C.G.F. [Nature Consevation and Plant Ecology Group, Wageningen University, Wageningen (Netherlands); Alkemade, J.R.M.; Bakkenes, M.; Ihle, F. [National Institute of Public Health and the Environment RIVM, Bilthoven (Netherlands)

    1999-07-01

    The aim of this project was to analyze the effects of climatic change on plant species diversity and ecosystem functioning. The direct effects of climatic change on plant species diversity are analyzed using a species based probabilistic Model (EUROMOVE) that relates the probability of occurrence of ca 1400 European plant species to climatic variables as the mean temperature of the coldest month, the effective temperature sum, the annual precipitation, the annual potential and actual evapotranspiration, the length of the growing season, and the mean growing season temperature. The indirect effects of raised C0{sub 2} levels and increased temperatures on ecosystem functioning and the consequences of these indirect effects for plant diversity are analyzed by combining a mechanistic simulation model (NUCOM) with regression models. NUCOM predicts the effects of environmental changes on dominant plant species composition and ecosystem variables. The predicted ecosystem variables are linked to plant species diversity of subordinate species by regression models, using Ellenberg indices for N availability, soil acidity, soil moisture, and light intensity. With these two approaches, the consequences of climatic change scenarios (IPCC Baseline A, IPCC Stabilization 450) and N deposition scenarios (reduced, constant) are analyzed for Europe (EUROMOVE) and part of the Netherlands (NUCOM). The results showed that the direct effects of climatic change may have large impact on plant species diversity and distribution. The indirect effects of climatic change on plant diversity appeared minor but effects of changes in soil moisture are not included. Other environmental changes like eutrofication and human impact have large effect on ecosystem variables and plant species diversity. Reductions in nitrogen emission have a positive effect but take time to become apparent. 49 refs.

  4. Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile.

    Science.gov (United States)

    Anderson, Christopher B; Rosemond, Amy D

    2007-11-01

    Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of

  5. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan

    OpenAIRE

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-01-01

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats...

  6. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants.

  7. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Science.gov (United States)

    T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...

  8. Continental-scale effects of nutrient pollution on stream ecosystem functioning.

    Science.gov (United States)

    Woodward, Guy; Gessner, Mark O; Giller, Paul S; Gulis, Vladislav; Hladyz, Sally; Lecerf, Antoine; Malmqvist, Björn; McKie, Brendan G; Tiegs, Scott D; Cariss, Helen; Dobson, Mike; Elosegi, Arturo; Ferreira, Verónica; Graça, Manuel A S; Fleituch, Tadeusz; Lacoursière, Jean O; Nistorescu, Marius; Pozo, Jesús; Risnoveanu, Geta; Schindler, Markus; Vadineanu, Angheluta; Vought, Lena B-M; Chauvet, Eric

    2012-06-15

    Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.

  9. An experimental framework to identify community functional components driving ecosystem processes and services delivery

    Czech Academy of Sciences Publication Activity Database

    Dias, A. T. C.; Berg, M. P.; de Bello, Francesco; Oosten, A. R. V.; Bílá, Karolína; Morreti, M.

    2013-01-01

    Roč. 101, č. 1 (2013), s. 29-37 ISSN 0022-0477 R&D Projects: GA ČR GAP505/12/1296 Institutional support: RVO:67985939 ; RVO:67179843 Keywords : CWM * ecosystem functioning * ecosystem processes * ecosystem services * functional divergence * functional diversity * functional evenness * functional richness * mass ratio hypothesis * Rao index Subject RIV: EH - Ecology, Behaviour; EF - Botanics (BU-J) Impact factor: 5.694, year: 2013

  10. Linking marine resources to ecotonal shifts of water uptake by terrestrial dune vegetation.

    Science.gov (United States)

    Greaver, Tara L; Sternberg, Leonel L da S

    2006-09-01

    As evidence mounts that sea levels are rising, it becomes increasingly important to understand the role of ocean water within terrestrial ecosystem dynamics. Coastal sand dunes are ecosystems that occur on the interface of land and sea. They are classic ecotones characterized by zonal distribution of vegetation in response to strong gradients of environmental factors from the ocean to the inland. Despite the proximity of the dune ecosystem to the ocean, it is generally assumed that all vegetation utilizes only freshwater and that water sources do not change across the ecotone. Evidence of ocean water uptake by vegetation would redefine the traditional interpretation of plant-water relations in the dune ecosystem and offer new ideas for assessing maritime influences on function and spatial distribution of plants across the dune. The purpose of this study was to identify sources of water (ocean, ground, and rain) taken up by vegetation using isotopic analysis of stem water and to evaluate water uptake patterns at the community level based on the distribution and assemblage of species. Three coastal dune systems located in southern Florida, USA, and the Bahamian bank/platform system were investigated. Plant distributions across the dune were zonal for 61-94% of the 18 most abundant species at each site. Species with their highest frequency on the fore dune (nearest the ocean) indicate ocean water uptake as evidenced by delta 18O values of stem water. In contrast, species most frequent in the back dune show no evidence of ocean water uptake. Analysis of species not grouped by frequency, but instead sampled along a transect from the ocean toward the inland, indicates that individuals from the vegetation assemblage closest to the ocean had a mixed water-harvesting strategy characterized by plants that may utilize ocean, ground-, and/or rainwater. In contrast, the inland vegetation relies mostly on rainwater. Our results show evidence supporting ocean water use by dune

  11. Ecosystem Function: Cyanobacteria Solutions, A Missed Opportunity?

    Science.gov (United States)

    Stream and wetland riparian functions integrate the relationships between species, their habitats and fostering ecosystem resilience, which is critical to resilience – i.e., ensuring long-term sustainability. These relationships are dependent on the drivers of ecological functio...

  12. [Assessment on the changing conditions of ecosystems in key ecological function zones in China].

    Science.gov (United States)

    Huang, Lin; Cao, Wei; Wu, Dan; Gong, Guo-li; Zhao, Guo-song

    2015-09-01

    In this paper, the dynamics of ecosystem macrostructure, qualities and core services during 2000 and 2010 were analyzed for the key ecological function zones of China, which were classified into four types of water conservation, soil conservation, wind prevention and sand fixation, and biodiversity maintenance. In the water conservation ecological function zones, the areas of forest and grassland ecosystems were decreased whereas water bodies and wetland were increased in the past 11 years, and the water conservation volume of forest, grassland and wetland ecosystems increased by 2.9%. This region needs to reverse the decreasing trends of forest and grassland ecosystems. In the soil conservation ecological function zones, the area of farmland ecosystem was decreased, and the areas of forest, grassland, water bodies and wetland ecosystems were increased. The total amount of the soil erosion was reduced by 28.2%, however, the soil conservation amount of ecosystems increased by 38.1%. In the wind prevention and sand fixation ecological function zones, the areas of grassland, water bodies and wetland ecosystems were decreased, but forest and farmland ecosystems were increased. The unit amount of the soil. wind erosion was reduced and the sand fixation amount of ecosystems increased lightly. In this kind of region that is located in arid and semiarid areas, ecological conservation needs to reduce farmland area and give priority to the protection of the original ecological system. In the biodiversity maintenance ecological function zones, the areas of grassland and desert ecosystems were decreased and other types were increased. The human disturbances showed a weakly upward trend and needs to be reduced. The key ecological function zones should be aimed at the core services and the protecting objects, to assess quantitatively on the effectiveness of ecosystem conservation and improvement.

  13. Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning

    OpenAIRE

    Woodward , Guy; Gessner , Mark O.; Giller , Paul S.; Gulis , Vladislav; Hladyz , Sally; Lecerf , Antoine; Malmqvist , Björn; McKie , Brendan G.; Tiegs , Scott D.; Cariss , Helen; Dobson , Mike; Elosegi , Arturo; Ferreira , Veronica; Graça , Manuel A. S.; Fleituch , Tadeusz

    2012-01-01

    International audience; Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 100...

  14. Different cesium-137 transfers to forest and stream ecosystems

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N.; Iwamoto, Aimu; Okada, Kengo

    2016-01-01

    Understanding the mechanisms of "1"3"7Cs movement across different ecosystems is crucial for projecting the environmental impact and management of nuclear contamination events. Here, we report differential movement of "1"3"7Cs in adjacent forest and stream ecosystems. The food webs of the forest and stream ecosystems in our study were similar, in that they were both dominated by detrital-based food webs and the basal energy source was terrestrial litter. However, the concentration of "1"3"7Cs in stream litter was significantly lower than in forest litter, the result of "1"3"7Cs leaching from litter in stream water. The difference in "1"3"7Cs concentrations between the two types of litter was reflected in the "1"3"7Cs concentrations in the animal community. While the importance of "1"3"7Cs fallout and the associated transfer to food webs has been well studied, research has been primarily limited to cases in a single ecosystem. Our results indicate that there are differences in the flow of "1"3"7Cs through terrestrial and aquatic ecosystems, and that "1"3"7Cs concentrations are reduced in both basal food resources and higher trophic animals in aquatic systems, where primary production is subsidized by a neighboring terrestrial ecosystem. - Highlights: • Detrital-based food web structure was observed in both forest and stream ecosystems. • The "1"3"7Cs concentration in litter was 4 times lower in stream than in forest. • The difference of "1"3"7Cs concentration in litter reflected in animal contamination. • "1"3"7Cs leaching from litter decreases contamination level of stream food web. - Leaching from litter in stream decreases "1"3"7Cs concentration in litter, and the contamination level of food web in stream ecosystem is lower than that in adjacent forest ecosystem.

  15. CLIMOOR. Climate driven changes in the functioning of heath and moorland ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Beier, C. [ed.; Tietema, A.; Riis Nielsen, T.; Emmett, B.; Estiarte, M.; Penuelas, J.; Llorens Guash, L.; Williams, D.; Gordon, C.; Pugh, B.; Roda, F.; Gundersen, P.; Gorissen, A.

    2000-01-01

    Emission of green house gases, partly generated from human activities, reduces the loss of heat from the earth thereby potentially causing climate change. This change in climate has been predicted to result in a 1-3 deg. C increase in temperature with more vigorous rainstorms and prolonged drought periods in the coming 100 years. The consequence of such climatic changes for the terrestrial ecosystems are largely unknown. In order to improve our understanding of the ecosystem response to climate change and thereby to improve the basis for the international negotiations and political decisions to avoid or minimise climate change and its effects, a European research project CLIMOOR has been initiated. The project is a cross European research project involving 6 research groups from Denmark, the Netherlands, UK and Spain and is funded by EU and the participating institutions. The project investigates the potential effects of warming and drought on heath and moorland ecosystems at four European sites. The ecosystems are manipulated at field scale by reducing the heat loss at night by IR-reflective curtains and by removing the precipitation during a 2 month period in the summer. The effects of these manipulations on the plants and the soil are studied. This report describes the technique used to apply the climate change at field scale and presents some preliminary results after the first growing season. EU and the participating institutions fund CLIMOOR. (au)

  16. Towards an integration of biodiversity-ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services

    NARCIS (Netherlands)

    Hines, Jes; van der Putten, W.H.; De Deyn, G.B.; Wagg, Cameron; Voigt, Winfried; Mulder, Christian; Weisser, Wolfgang W.; Engel, Jan; Melian, Carlos; Scheu, Stefan; Birkhofer, Klaus; Ebeling, Anne; Scherber, Christoph; Eisenhauer, Nico

    2015-01-01

    Ecosystem responses to changes in species diversity are often studied individually. However, changes in species diversity can simultaneously influence multiple interdependent ecosystem functions. Therefore, an important challenge is to determine when and how changes in species diversity that

  17. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many

  18. Levels and transfer of 210Po and 210Pb in Nordic terrestrial ecosystems

    International Nuclear Information System (INIS)

    Brown, J.E.; Gjelsvik, R.; Roos, P.; Kalas, J.A.; Outola, I.; Holm, E.

    2011-01-01

    Recent developments regarding environmental impact assessment methodologies for radioactivity have precipitated the need for information on levels of naturally occurring radionuclides within and transfer to wild flora and fauna. The objectives of this study were therefore to determine activity concentrations of the main dose forming radionuclides 210 Po and 210 Pb in biota from terrestrial ecosystems thus providing insight into the behaviour of these radioisotopes. Samples of soil, plants and animals were collected at Dovrefjell, Central Norway and Olkiluoto, Finland. Soil profiles from Dovrefjell exhibited an approximately exponential fall in 210 Pb activity concentrations from elevated levels in humus/surface soils to 'supported' levels at depth. Activity concentrations of 210 Po in fauna (invertebrates, mammals, birds) ranged between 2 and 123 Bq kg -1 d.w. and in plants and lichens between 20 and 138 Bq kg -1 d.w. The results showed that soil humus is an important reservoir for 210 Po and 210 Pb and that fauna in close contact with this media may also exhibit elevated levels of 210 Po. Concentration ratios appear to have limited applicability with regards to prediction of activity concentrations of 210 Po in invertebrates and vertebrates. Biokinetic models may provide a tool to explore in a more mechanistic way the behaviour of 210 Po in this system.

  19. Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems.

    Science.gov (United States)

    Chae, Yooeun; Kim, Dokyung; An, Youn-Joo

    2018-04-30

    Fluorine can flow into the environment after leakage or spill accidents and these excessive amounts can cause adverse effects on terrestrial ecosystems. Using three media (filter paper, soil, and filter-paper-on-soil), we investigated the toxic effects of fluorine on the germination and growth of crops (barley, mung bean, sorghum, and wheat), on the activities of soil exoenzymes (acid phosphatase, arylsulfatase, fluorescein diacetate hydrolase, and urease) and on the survival, abnormality, and cytotoxicity of Eisenia andrei earthworms. The germination and growth of crops were affected by fluorine as exposure concentration increased. The activities of the four enzymes after 0-, 3-, 10-, and 20-day periods varied as exposure concentration increased. According to in vivo and in vitro earthworm assays, E. andrei mortality, abnormality, and cytotoxicity increased with increasing fluorine concentration. Overall, fluorine significantly affected each tested species in the concentration ranges used in this study. The activities of soil exoenzymes were also affected by soil fluorine concentration, although in an inconsistent manner. Albeit the abnormally high concentrations of fluorine in soil compared to that observed under natural conditions, its toxicity was much restrained possibly due to the adsorption of fluorine on soil particles and its combination with soil cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning.

    Science.gov (United States)

    Barnes, Andrew D; Jochum, Malte; Mumme, Steffen; Haneda, Noor Farikhah; Farajallah, Achmad; Widarto, Tri Heru; Brose, Ulrich

    2014-10-28

    Our knowledge about land-use impacts on biodiversity and ecosystem functioning is mostly limited to single trophic levels, leaving us uncertain about whole-community biodiversity-ecosystem functioning relationships. We analyse consequences of the globally important land-use transformation from tropical forests to oil palm plantations. Species diversity, density and biomass of invertebrate communities suffer at least 45% decreases from rainforest to oil palm. Combining metabolic and food-web theory, we calculate annual energy fluxes to model impacts of land-use intensification on multitrophic ecosystem functioning. We demonstrate a 51% reduction in energy fluxes from forest to oil palm communities. Species loss clearly explains variation in energy fluxes; however, this relationship depends on land-use systems and functional feeding guilds, whereby predators are the most heavily affected. Biodiversity decline from forest to oil palm is thus accompanied by even stronger reductions in functionality, threatening to severely limit the functional resilience of communities to cope with future global changes.

  1. Ecosystem services as a common language for coastal ecosystem-based management.

    Science.gov (United States)

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  2. Radio-capacity of ecosystems

    International Nuclear Information System (INIS)

    Kultakhmedov, Yu.; Kultakhmedova-Vyshnyakova, V.

    1997-01-01

    This paper consider a universal approach to ecosystems of different types, based on representation of their radio-capacity. The concept of ecosystem includes reproduction of components (bio-productivity) and conditions such as maintaining of environment quality. Radio-capacity in the case of radionuclide pollution appears in accumulation and redistribution of radionuclides in the ecosystem. As a result the radionuclides are redistributed and buried in soil or lake bottom sediments. Estimation models for the radio-capacity of water and terrestrial ecosystems are represented. The calculations of the radio-capacity factor of water ecosystems are performed, and the high radio-capacity of a freshwater reservoir (F=0.6-0.8) and extremely high radio-capacity of a reservoir cascade (F c =0.99) is shown material from the Dnieper's cascade reservoirs. The methods of radio-capacity estimation of agroecosystems, wood and marine ecosystems are developed. (authors)

  3. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting.

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P; Clow, David W; Striegl, Robert G

    2016-01-05

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71-149) teragrams of carbon per year (TgC⋅y(-1)) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9-65) TgC⋅y(-1) in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36-110) TgC⋅y(-1) or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass-flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity.

  4. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting

    Science.gov (United States)

    Butman, David; Stackpoole, Sarah; Stets, Edward; McDonald, Cory P.; Clow, David W.; Striegl, Robert G.

    2016-01-01

    Inland water ecosystems dynamically process, transport, and sequester carbon. However, the transport of carbon through aquatic environments has not been quantitatively integrated in the context of terrestrial ecosystems. Here, we present the first integrated assessment, to our knowledge, of freshwater carbon fluxes for the conterminous United States, where 106 (range: 71–149) teragrams of carbon per year (TgC⋅y−1) is exported downstream or emitted to the atmosphere and sedimentation stores 21 (range: 9–65) TgC⋅y−1 in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant flux at 69 (range: 36–110) TgC⋅y−1 or 65% of the total aquatic carbon flux for the conterminous United States. Comparing our results with the output of a suite of terrestrial biosphere models (TBMs), we suggest that within the current modeling framework, calculations of net ecosystem production (NEP) defined as terrestrial only may be overestimated by as much as 27%. However, the internal production and mineralization of carbon in freshwaters remain to be quantified and would reduce the effect of including aquatic carbon fluxes within calculations of terrestrial NEP. Reconciliation of carbon mass–flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional research and modeling capacity. PMID:26699473

  5. Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China

    Science.gov (United States)

    Zhu, Q.; Jiang, H.; Peng, C.; Liu, J.; Wei, X.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.

    2011-01-01

    Water use efficiency (WUE) is an important variable used in climate change and hydrological studies in relation to how it links ecosystem carbon cycles and hydrological cycles together. However, obtaining reliable WUE results based on site-level flux data remains a great challenge when scaling up to larger regional zones. Biophysical, process-based ecosystem models are powerful tools to study WUE at large spatial and temporal scales. The Integrated BIosphere Simulator (IBIS) was used to evaluate the effects of climate change and elevated CO2 concentrations on ecosystem-level WUE (defined as the ratio of gross primary production (GPP) to evapotranspiration (ET)) in relation to terrestrial ecosystems in China for 2009–2099. Climate scenario data (IPCC SRES A2 and SRES B1) generated from the Third Generation Coupled Global Climate Model (CGCM3) was used in the simulations. Seven simulations were implemented according to the assemblage of different elevated CO2 concentrations scenarios and different climate change scenarios. Analysis suggests that (1) further elevated CO2concentrations will significantly enhance the WUE over China by the end of the twenty-first century, especially in forest areas; (2) effects of climate change on WUE will vary for different geographical regions in China with negative effects occurring primarily in southern regions and positive effects occurring primarily in high latitude and altitude regions (Tibetan Plateau); (3) WUE will maintain the current levels for 2009–2099 under the constant climate scenario (i.e. using mean climate condition of 1951–2006 and CO2concentrations of the 2008 level); and (4) WUE will decrease with the increase of water resource restriction (expressed as evaporation ratio) among different ecosystems.

  6. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    Science.gov (United States)

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  7. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Biome-BGC is a computer program that estimates fluxes and storage of energy, water, carbon, and nitrogen for the vegetation and soil components of terrestrial...

  8. Effects of Climate and Ecosystem Disturbances on Biogeochemical Cycling in a Semi-Natural Terrestrial Ecosystem

    International Nuclear Information System (INIS)

    Beier, Claus; Schmidt, Inger Kappel; Kristensen, Hanne Lakkenborg

    2004-01-01

    The effects of increased temperature and potential ecosystem disturbances on biogeochemical cycling were investigated by manipulation of temperature in a mixed Calluna/grass heathland in Denmark. A reflective curtain covered the vegetation during the night to reduce the heat loss of IR radiation from the ecosystem to the atmosphere. This 'night time warming' was done for 3 years and warmed the air and soil by 1.1 deg. C. Warming was combined with ecosystem disturbances, including infestation by Calluna heather beetles (Lochmaea suturalis Thompson) causing complete defoliation of Calluna leaves during the summer 2000, and subsequent harvesting of all aboveground biomass during the autumn. Small increases in mineralisation rates were induced by warming and resulted in increased leaching of nitrogen from the organic soil layer. The increased nitrogen leaching from the organic soil layer was re-immobilised in the mineral soil layer as warming stimulated plant growth and thereby increased nitrogen immobilisation. Contradictory to the generally moderate effects of warming, the heather beetle infestation had very strong effects on mineralisation rates and the plant community. The grasses completely out-competed the Calluna plants which had not re-established two years after the infestation, probably due to combined effects of increased nutrient availability and the defoliation of Calluna. On the short term, ecosystem disturbances may have very strong effects on internal ecosystem processes and plant community structure compared to the more long-term effects of climate change

  9. Interannual Variations in Ecosystem Oxidative Ratio in Croplands, Deciduous Forest, Coniferous Forest, and Early Successional Forest Ecosystems

    Science.gov (United States)

    Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.

  10. Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems

    Directory of Open Access Journals (Sweden)

    Francisco Sánchez-Bayo

    2016-11-01

    Full Text Available The widespread use of systemic neonicotinoid insecticides in agriculture results first in contamination of the soil of the treated crops, and secondly in the transfer of residues to the aquatic environment. The high toxicity of these insecticides to aquatic insects and other arthropods has been recognized, but there is little awareness of the impacts these chemicals have on aquatic environments and the ecosystem at large. Recent monitoring studies in several countries, however, have revealed a world-wide contamination of creeks, rivers and lakes with these insecticides, with residue levels in the low μg/L (ppb range. The current extent of aquatic contamination by neonicotinoids is reviewed first, and the findings contrasted with the known acute and chronic toxicity of neonicotinoids to various aquatic organisms. Impacts on populations and aquatic communities, mostly using mesocosms, are reviewed next to identify the communities most at risk from those that undergo little or no impact. Finally, the ecological links between aquatic and terrestrial organisms are considered. The consequences for terrestrial vertebrate species that depend mainly on this food source are discussed together with impacts on ecosystem function. Gaps in knowledge stem from difficulties in obtaining long-term experimental data that relates the effects on individual organisms to impacts on populations and ecosystems. The paper concludes with a summary of findings and the implications they have for the larger ecosystem.

  11. Net exchanges of CO2, CH4 and N2O between the terrestrial ecosystems and the atmosphere in boreal and arctic region: Towards a full greenhouse gas budget

    Science.gov (United States)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Kamaljit, K.; Pan, S.

    2014-12-01

    Boreal and arctic terrestrial ecosystem is a unique ecological region due to large portion of wetland and permafrost distribution. Increasing disturbances, like permafrost-thaw, fire event, climate extreme, would greatly change the patterns and variations of greenhouse gas emission and further affect the feedback between terrestrial ecosystem and climate change. Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) accounted for more than 85% of the radioactive forcing (RF) due to long-lived greenhouse gases. However, few studies have considered the full budget of three gases together in this region. In this study, we used a process-based model (Dynamic Land Ecosystem Model), driven by multiple global change factors, to quantify the magnitude, spatial and temporal variation of CO2, CH4 and N2O across the boreal and arctic regions. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of factorial simulations, we further quantify the relative contribution of climate, atmospheric composition, fire to the CO2, CH4 and N2O fluxes. Continued warming climate potentially could shift the inter-annual and intra-annual variation of greenhouse gases fluxes. The understanding of full budget in this region could provide insights for reasonable future projection, which is also crucial for developing effective mitigation strategies.

  12. Riparian ecosystems and buffers - multiscale structure, function, and management: introduction

    Science.gov (United States)

    Kathleen A. Dwire; Richard R. Lowrance

    2006-01-01

    Given the importance of issues related to improved understanding and management of riparian ecosystems and buffers, the American Water Resources Association (AWRA) sponsored a Summer Specialty Conference in June 2004 at Olympic Valley, California, entitled 'Riparian Ecosystems and Buffers: Multiscale Structure, Function, and Management.' The primary objective...

  13. Increased light-use efficiency in northern terrestrial ecosystems indicated by CO 2 and greening observations: INCREASE IN NH LIGHT USE EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Rebecca T. [Science and Solutions for a Changing Planet DTP, Imperial College London, London UK; AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, London UK; Department of Physics, Imperial College London, London UK; Prentice, Iain Colin [AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, London UK; Grantham Institute: Climate Change and the Environment, Imperial College London, London UK; Graven, Heather [Department of Physics, Imperial College London, London UK; Grantham Institute: Climate Change and the Environment, Imperial College London, London UK; Ciais, Philippe [Laboratoire des Sciences du Climat et de l' Environnement, Saint-Aubin France; Fisher, Joshua B. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Hayes, Daniel J. [School of Forest Resources, University of Maine, Orono Maine USA; Huang, Maoyi [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huntzinger, Deborah N. [School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff Arizona USA; Ito, Akihiko [Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba Japan; Jain, Atul [Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana Illinois USA; Mao, Jiafu [Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee USA; Michalak, Anna M. [Department of Global Ecology, Carnegie Institution for Science, Stanford California USA; Peng, Shushi [Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing China; Poulter, Benjamin [Department of Ecology, Montana State University, Bozeman Montana USA; Ricciuto, Daniel M. [Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee USA; Shi, Xiaoying [Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee USA; Schwalm, Christopher [Woods Hole Research Center, Falmouth Massachusetts USA; Tian, Hanqin [International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn Alabama USA; Zeng, Ning [Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park Maryland USA

    2016-11-04

    Observations show an increasing amplitude in the seasonal cycle of CO2 (ASC) north of 45°N of 56 ± 9.8% over the last 50 years and an increase in vegetation greenness of 7.5–15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO2 concentrations. We find that the modeled change in ASC is too small but the mean greening trend is generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE.

  14. [Service value assessment of orchard ecosystem: a case of Putian City of Fujian].

    Science.gov (United States)

    Chen, Jing; Wu, Duan-wang

    2011-09-01

    Based on the equivalent weight factor of China terrestrial ecosystem service value, and by using ecosystem service value assessment model, this paper evaluated the orchard ecosystem service value in Putian City. In 2002-2008, the orchard ecosystem service value in the City had an overall increasing trend, among which, the service value of gas regulation and water resource conservation had a fluctuation trend of decreased after an initial increase, and that of other functions increased rapidly in 2002-2006 and then developed mildly. The service value of regulation function was higher than that of direct use function, showing that only on the basis of preserving well the functions of ecosystem, could the orchard ecosystem be claimed and used. As most of the orchards in the City are on hills or mountains, the construction and ecological protection of the orchards are obviously disjointed, making the orchards become bare land or other land-use types, resulting in serious soil erosion and degradation, which not only destroyed the orchard ecology, but also gave negative effects on the production efficiency of agriculture. In the future construction of Putian orchards, it should implement comprehensive planning and management of mountain areas, water regions, farm lands, forest lands, and paths, reduce the orchard construction costs by taking advantage of high and new technologies in light of the local conditions and the demands of domestic and foreign markets, and promote the virtuous circle of ecosystem by comprehensive utilization of resources and regulation of biological interaction to make the structure of the orchard ecosystem approached to scientific and rational.

  15. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review

    Energy Technology Data Exchange (ETDEWEB)

    Viglizzo, E.F., E-mail: evigliz@cpenet.com.ar [INTA, EEA Anguil, Grupo de Investigaciones en Gestión Ambiental (GIGA), Av. Spinetto 785, 6300 Santa Rosa, La Pampa (Argentina); INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa (Argentina); UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa (Argentina); Jobbágy, E.G. [CONICET, Andes 950, 5700 San Luis, San Luis (Argentina); Grupo de Estudios Ambientales IMASL, Ejército de los, Andes 950, 5700 San Luis, San Luis (Argentina); Ricard, M.F. [INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa (Argentina); UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa (Argentina); Paruelo, J.M. [Laboratorio de Análisis Regional y Teledetección, Departamento de Métodos Cuantitativos Sistemas de información, Facultad de Agronomía and IFEVA, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417 Buenos Aires (Argentina)

    2016-08-15

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. - Highlights: • The partition of regulatory services in ecosystems poses a major policy challenge. • We examined how partitions occur at the hydrosphere

  16. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review

    International Nuclear Information System (INIS)

    Viglizzo, E.F.; Jobbágy, E.G.; Ricard, M.F.; Paruelo, J.M.

    2016-01-01

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. - Highlights: • The partition of regulatory services in ecosystems poses a major policy challenge. • We examined how partitions occur at the hydrosphere

  17. Linking terrestrial and marine conservation planning and threats analysis.

    Science.gov (United States)

    Tallis, Heather; Ferdaña, Zach; Gray, Elizabeth

    2008-02-01

    The existence of the Gulf of Mexico dead zone makes it clear that marine ecosystems can be damaged by terrestrial inputs. Marine and terrestrial conservation planning need to be aligned in an explicit fashion to fully represent threats to marine systems. To integrate conservation planning for terrestrial and marine systems, we used a novel threats assessment that included 5 cross-system threats in a site-prioritization exercise for the Pacific Northwest coast ecoregion (U.S.A.). Cross-system threats are actions or features in one ecological realm that have effects on species in another realm. We considered bulkheads and other forms of shoreline hardening threats to terrestrial systems and roads, logging, agriculture, and urban areas threats to marine systems. We used 2 proxies of freshwater influence on marine environments, validated against a mechanistic model and field observations, to propagate land-based threats into marine sites. We evaluated the influence of cross-system threats on conservation priorities by comparing MARXAN outputs for 3 scenarios that identified terrestrial and marine priorities simultaneously: (1) no threats, (2) single-system threats, and (3) single- and cross-system threats. Including cross-system threats changed the threat landscape dramatically. As a result the best plan that included only single-system threats identified 323 sites (161,500 ha) at risk from cross-system threats. Including these threats changed the location of best sites. By comparing the best and sum solutions of the single- and cross-system scenarios, we identified areas ideal for preservation or restoration through integrated management. Our findings lend quantitative support to the call for explicitly integrated decision making and management action in terrestrial and marine ecosystems.

  18. Bird functional diversity decreases with time since disturbance: Does patchy prescribed fire enhance ecosystem function?.

    Science.gov (United States)

    Sitters, Holly; Di Stefano, Julian; Christie, Fiona; Swan, Matthew; York, Alan

    2016-01-01

    Animal species diversity is often associated with time since disturbance, but the effects of disturbances such as fire on functional diversity are unknown. Functional diversity measures the range, abundance, and distribution of trait values in a community, and links changes in species composition with the consequences for ecosystem function. Improved understanding of the relationship between time since fire (TSF) and functional diversity is critical given that the frequency of both prescribed fire and wildfire is expected to increase. To address this knowledge gap, we examined responses of avian functional diversity to TSF and two direct measures of environmental heterogeneity, plant diversity, and structural heterogeneity. We surveyed birds across a 70-year chronosequence spanning four vegetation types in southeast Australia. Six bird functional traits were used to derive four functional diversity indices (richness, evenness, divergence, and dispersion) and the effects of TSF, plant diversity and structural heterogeneity on species richness and the functional diversity indices were examined using mixed models. We used a regression tree method to identify traits associated with species more common in young vegetation. Functional richness and dispersion were negatively associated with TSF in all vegetation types, suggesting that recent prescribed fire generates heterogeneous vegetation and provides greater opportunities for resource partitioning. Species richness was not significantly associated with TSF, and is probably an unreliable surrogate for functional diversity in fire-prone systems. A positive, relationship between functional evenness and structural heterogeneity was comnon to all vegetation types, suggesting that fine-scale (tens of meters) structural variation can enhance ecosystem function. Species more common in young vegetation were primarily linked by their specialist diets, indicating that ecosystem services such as seed dispersal and insect control

  19. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM: a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs

    Directory of Open Access Journals (Sweden)

    R. Pavlick

    2013-06-01

    Full Text Available Terrestrial biosphere models typically abstract the immense diversity of vegetation forms and functioning into a relatively small set of predefined semi-empirical plant functional types (PFTs. There is growing evidence, however, from the field ecology community as well as from modelling studies that current PFT schemes may not adequately represent the observed variations in plant functional traits and their effect on ecosystem functioning. In this paper, we introduce the Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM as a new approach to terrestrial biosphere modelling with a richer representation of functional diversity than traditional modelling approaches based on a small number of fixed PFTs. JeDi-DGVM simulates the performance of a large number of randomly generated plant growth strategies, each defined by a set of 15 trait parameters which characterize various aspects of plant functioning including carbon allocation, ecophysiology and phenology. Each trait parameter is involved in one or more functional trade-offs. These trade-offs ultimately determine whether a strategy is able to survive under the climatic conditions in a given model grid cell and its performance relative to the other strategies. The biogeochemical fluxes and land surface properties of the individual strategies are aggregated to the grid-cell scale using a mass-based weighting scheme. We evaluate the simulated global biogeochemical patterns against a variety of field and satellite-based observations following a protocol established by the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegetation structural properties are reasonably well simulated by JeDi-DGVM, and compare favourably with other state-of-the-art global vegetation models. We also evaluate the simulated patterns of functional diversity and the sensitivity of the JeDi-DGVM modelling approach to the number of sampled strategies. Altogether, the results demonstrate the

  20. Biodiversity, ecosystem functions and services in environmental risk assessment: introduction to the special issue.

    Science.gov (United States)

    Schäfer, Ralf B

    2012-01-15

    This Special Issue focuses on the questions if and how biodiversity, ecosystem functions and resulting services could be incorporated into the Ecological Risk Assessment (ERA). Therefore, three articles provide a framework for the integration of ecosystem services into ERA of soils, sediments and pesticides. Further articles demonstrate ways how stakeholders can be integrated into an ecosystem service-based ERA for soils and describe how the current monitoring could be adapted to new assessment endpoints that are directly linked to ecosystem services. Case studies show that the current ERA may not be protective for biodiversity, ecosystem functions and resulting services and that both pesticides and salinity currently adversely affect ecosystem functions in the field. Moreover, ecological models can be used for prediction of new protection goals and could finally support their implementation into the ERA. Overall, the Special Issue stresses the urgent need to enhance current procedures of ERA if biodiversity, ecosystem functions and resulting services are to be protected. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. 7Be content in rainfall and soil deposition in South American coastal ecosystems

    International Nuclear Information System (INIS)

    Cardoso, R.; Ayub, J. Juri; Anjos, Roberto Meigikos dos; Cid, Alberto Silva; Velasco, H.

    2011-01-01

    Full text: Research about input, circulation and accumulation of natural and anthropogenic radionuclides in terrestrial ecosystems allows examining sources, establishing time scales and elucidating environmental processes. Thinking this way, researchers at UFF and UNSL have applied short-lived particle-reactive tracers to understand the behaviour of species evolution, functioning and restorations of natural and semi-natural ecosystems as well as to investigate the patterns and frequency of disturbances due to modern global changes. This can be accomplished through a detailed understanding on the hydrology and water circulation pattern, soil characteristics, erosion, resuspension, reduction/oxidation, speciation, precipitation and accumulation, diagenetic processes and microbial activities. 7 Be is a natural radionuclide (Eγ = 477.6 keV, t 1 / 2 = 53.3 d), which originates in the upper atmosphere as a result of bombardment by cosmic rays. The global distribution of this radionuclide provides a valuable means for testing and validating global circulation models on short time-scales. Its removal from the atmosphere by wet or dry deposition provides a useful tool for developing and validation of models about transport processes from the troposphere to the land surface. Knowledge of site-specific atmospheric fluxes is also crucial to evaluate the impact of atmospherically delivered pollutants on terrestrial ecosystems. The distribution of South American lands on different latitudes and its diversified topography can influence the development and action of many atmospheric systems contributing to generate non-homogeneous climatic conditions in this region. Increasing anthropogenic loads can further modify the precipitation rates and hence the climate of this region. Therefore it is important to study intra-system and inter-system interactions in different South American terrestrial ecosystems. Since 2006, UNSL has been investigating the 7 Be contents in rainfall and

  2. Some remarks on the functions of European coastal ecosystems

    NARCIS (Netherlands)

    van der Maarel, E

    2003-01-01

    Amongst the various functions of European coastal ecosystems the information functions are by far the most important. Information is provided mainly through the various aspects of biodiversity: taxon diversity, genetic diversity, community (P) diversity, phylogentic distinctiveness, rarity and

  3. Using ecological production functions to link ecological processes to ecosystem services.

    Science.gov (United States)

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively ...

  4. Changes in rainfall patterns in Mediterranean ecosystems: the MIND project

    Directory of Open Access Journals (Sweden)

    Papale D

    2007-12-01

    Full Text Available Will Mediterranean terrestrial ecosystems be affected by the expected changes in precipitation regimes? If so, by how much and in which direction? These questions are at the basis of the research performed in context of the EU MIND project, whose key objectives were: i to investigate the potential effects of increasing drought on Mediterranean terrestrial ecosystems at the process, ecosystem and regional scales and ii to assess ecosystem vulnerability to changes in rainfall patterns. A network of experimental study sites has been created in Portugal, Spain, France and Italy, where field manipulations alter the amount of water available to the ecosystem. The most up-to-date methods of ecophysiology, micrometeorology, soil ecology and remote sensing have been used to elucidate the mechanisms that regulate the response of vegetation and soil to changes in water availability. This information is providing the basis for the implementation and validation of simulation models capable of predicting the drought response of Mediterranean terrestrial ecosystems, and their vulnerability to future climate change, on a larger scale. The out-coming results are elucidating how water availability affects plant ecophysiological processes, the dynamics of soil carbon and the overall exchange of mass and energy between the land and the atmosphere. This paper focuses on some of the important, yet preliminary, results on C and energy fluxes that have been obtained at the large scale troughfall manipulation experiment (Tolfa, Italy, in a forest dominated by Arbutus unedo L.

  5. Are soils in urban ecosystems compacted? A citywide analysis.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2011-10-23

    Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.

  6. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.

    Science.gov (United States)

    Marklein, Alison R; Houlton, Benjamin Z

    2012-02-01

    • Biologically essential elements--especially nitrogen (N) and phosphorus (P)--constrain plant growth and microbial functioning; however, human activities are drastically altering the magnitude and pattern of such nutrient limitations on land. Here we examine interactions between N and P cycles of P mineralizing enzyme activities (phosphatase enzymes) across a wide variety of terrestrial biomes. • We synthesized results from 34 separate studies and used meta-analysis to evaluate phosphatase activity with N, P, or N×P fertilization. • Our results show that N fertilization enhances phosphatase activity, from the tropics to the extra-tropics, both on plant roots and in bulk soils. By contrast, P fertilization strongly suppresses rates of phosphatase activity. • These results imply that phosphatase enzymes are strongly responsive to changes in local nutrient cycle conditions. We also show that plant phosphatases respond more strongly to fertilization than soil phosphatases. The tight coupling between N and P provides a mechanism for recent observations of N and P co-limitation on land. Moreover, our results suggest that terrestrial plants and microbes can allocate excess N to phosphatase enzymes, thus delaying the onset of single P limitation to plant productivity as can occur via human modifications to the global N cycle. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  7. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles.

    Science.gov (United States)

    Young, Vanessa K Hilliard; Vest, Kaitlyn G; Rivera, Angela R V; Espinoza, Nora R; Blob, Richard W

    2017-01-01

    Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions. © 2017 The Author(s).

  8. Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica

    Science.gov (United States)

    Quesada, A.; Camacho, A.; Rochera, C.; Velázquez, D.

    2009-11-01

    This article describes the development of an international and multidisciplinary project funded by the Spanish Polar Programme on Byers Peninsula (Livingston Island, South Shetlands). The project adopted Byers Peninsula as an international reference site for coastal and terrestrial (including inland waters) research within the framework of the International Polar Year initiative. Over 30 scientists from 12 countries and 26 institutions participated in the field work, and many others participated in the processing of the samples. The main themes investigated were: Holocene changes in climate, using both lacustrine sediment cores and palaeo-nests of penguins; limnology of the lakes, ponds, rivers and wetlands; microbiology of microbial mats, ecology of microbial food webs and viral effects on aquatic ecosystems; ornithology, with investigations on a Gentoo penguin rookery ( Pygoscelis papua) as well as the flying ornithofauna; biocomplexity and life cycles of species from different taxonomic groups; analysis of a complete watershed unit from a landscape perspective; and human impacts, specifically the effect of trampling on soil characteristics and biota. Byers Peninsula offers many features as an international reference site given it is one of the largest ice-free areas in the Antarctic Peninsula region, it has a variety of different landscape units, and it hosts diverse aquatic ecosystems. Moreover, the Byers Peninsula is a hotspot for Antarctic biodiversity, and because of its high level of environmental protection, it has been very little affected by human activities. Finally, the proximity to the Spanish polar installations on Livingston Island and the experience derived from previous expeditions to the site make it logistically feasible as a site for ongoing monitoring and research.

  9. A new Cretaceous terrestrial ecosystem from Gondwana with the description of a new sauropod dinosaur

    Directory of Open Access Journals (Sweden)

    Jorge O. Calvo

    2007-09-01

    Full Text Available A unique site at the northern area of Patagonia (Neuquén, Argentina reveals a terrestrial ecosystem preserved in a detail never reported before in a Late Cretaceous deposit. An extraordinary diversity and abundance of fossils was found concentrated in a 0.5 m horizon in the same quarry, including a new titanosaur sauropod, Futalognkosaurus dukei n.gen., n.sp, which is the most complete giant dinosaur known so far. Several plant leaves, showing a predominance of angiosperms over gymnosperms that likely constituted the diet of F. dukei were found too. Other dinosaurs (sauropods, theropods, ornithopods, crocodylomorphs, pterosaurs, and fishes were also discovered, allowing a partial reconstruction of this Gondwanan continental ecosystem.Um depósito fóssil na região norte da Patagônia (Neuquén, Argentina revela um ecossistema nunca antes registrado a este nível de detalhes em depósitos do Cretáceo Superior. Uma diversidade e abundância extraordinária de fósseis encontra-se concentrada em uma camada de 0,5 m no mesmo sítio, incluindo um novo saurópodo titanossaurídeo, Futalognkosaurus dukei n. gen, n. sp., que é o mais completo dinossauro gigante encontrado até a presente data. Foram descobertas váriasfolhas de plantas indicando a predominância de angiospermas sobre gimnospermas que possivelmente formavam a base da dieta de F. dukei. Outros dinossauros (saurópodes, terópodes, ornitópodes, crocodilomorfos, pterossauros e peixes foram também encontrados possibilitando a reconstrução parcialdeste ecossistema continental do Gondwana.

  10. Imaging spectroscopy for ecological analysis in forest and grassland ecosystems

    NARCIS (Netherlands)

    Homolova, L.

    2014-01-01

    Terrestrial vegetation is an important component of the Earth’s biosphere and therefore playing an essential role in climate regulation, carbon sequestration, and it provides large variety of services to humans. For a sustainable management of terrestrial ecosystems it is essential to understand

  11. Aquatic pollution increases use of terrestrial prey subsidies by stream fish

    Science.gov (United States)

    Kraus, Johanna M.; Pomeranz, Justin F.; Todd, Andrew S.; Walters, David M.; Schmidt, Travis S.; Wanty, Richard B.

    2016-01-01

    Stream food webs are connected with their riparian zones through cross-ecosystem movements of energy and nutrients. The use and impact of terrestrial subsidies on aquatic consumers is determined in part by in situ biomass of aquatic prey. Thus, stressors such as aquatic pollutants that greatly reduce aquatic secondary production could increase the need for and reliance of stream consumers on terrestrial resource subsidies.

  12. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    Science.gov (United States)

    Tian, H.; Melillo, J. M.; Kicklighter, D. W.; McGuire, A. D.; Helfrich, J.

    1999-04-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900 1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2Pg C) and soil organic carbon decreasing by 1.9% (1.1Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7Pg C

  13. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Czech Academy of Sciences Publication Activity Database

    Song, B.; Niu, S.; Luo, R.; Chen, J.; Yu, G.; Olejnik, Janusz; Wohlfahrt, G.; Kiely, G.; Noormels, A.; Montagnani, L.; Cescatti, A.; Magliulo, V.; Law, B. E.; Lund, M.; Varlagin, A.; Raschi, A.; Peichl, M.; Nilsson, M.; Merbold, L.

    2014-01-01

    Roč. 7, č. 5 (2014), s. 419-428 ISSN 1752-9921 Institutional support: RVO:67179843 Keywords : activation energy * ecosystem respiration * index of water availability * gross primary productivity Subject RIV: EH - Ecology, Behaviour Impact factor: 2.646, year: 2014

  14. Environmental radionuclides tracers and timers of terrestrial processes

    CERN Document Server

    Froehlich, Klaus

    2009-01-01

    The book presents a state-of-the-art summary of knowledge on the use of radionuclides to study processes and systems in the continental part of the Earth's environment. It is conceived as a companion to the two volumes of this series, which deal with isotopes as tracers in the marine environment (Livingston, Marine Radioactivity) and with the radioecology of natural and man-made terrestrial systems (Shaw, Radioactivity in Terrestrial Ecosystems). Although the book focuses on natural and anthropogenic radionuclides (radioactive isotopes), it also refers to stable environmental isotopes, which i

  15. Re-introducing environmental change drivers in biodiversity-ecosystem functioning research

    Science.gov (United States)

    De Laender, Frederik; Rohr, Jason R.; Ashauer, Roman; Baird, Donald J.; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J.; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J.

    2016-01-01

    For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly re-introducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next, we show how this reintroduction improves experimental control over community composition and structure, which helps to obtain mechanistic insight about how multiple aspects of biodiversity relate to function, and how biodiversity and function relate in food-webs. We also highlight challenges for the proposed re-introduction, and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. PMID:27742415

  16. Mercury exposure in terrestrial birds far downstream of an historical point source

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Allyson K., E-mail: allyson.jackson@briloon.org [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States); Evers, David C.; Folsom, Sarah B. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Condon, Anne M. [U.S. Fish and Wildlife Service, 6669 Short Lane, Gloucester, VA 23061 (United States); Diener, John; Goodrick, Lizzie F. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); McGann, Andrew J. [Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States); Schmerfeld, John [U.S. Fish and Wildlife Service, 6669 Short Lane, Gloucester, VA 23061 (United States); Cristol, Daniel A. [Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States)

    2011-12-15

    Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source. - Highlights: > We report blood mercury levels for terrestrial songbirds downstream of contamination. > Blood mercury levels remain elevated above reference for at least 137 km downstream. > Trends vary based on foraging guild and migration strategy. > Mercury affects terrestrial biota farther downstream than previously documented. - Blood mercury levels of forest songbirds remain elevated above reference levels for at least 137 km downstream of historical point source.

  17. Terrestrial ecology in South Africa - project abstracts for 1980-1981

    CSIR Research Space (South Africa)

    Huntley, BJ

    1982-12-01

    Full Text Available Abstracts are provided for research projects conducted during 1980-1981 in South African terrestrial ecosystems. The abstracts are arranged alphabetically according to author name and a keyword index is provided....

  18. Biodiversity and ecosystem functioning in dynamic landscapes

    Science.gov (United States)

    Brose, Ulrich; Hillebrand, Helmut

    2016-01-01

    The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships

  19. From water to land: How an invasive clam may function as a resource pulse to terrestrial invertebrates.

    Science.gov (United States)

    Novais, Adriana; Souza, Allan T; Ilarri, Martina; Pascoal, Cláudia; Sousa, Ronaldo

    2015-12-15

    Resource pulses are episodes of low frequency, large magnitude and short duration that result in increased resource availability in space and time, with consequences for food web dynamics. Studies assessing the importance of resource pulses by invasive alien species in the interface between terrestrial and aquatic ecosystems are rare, especially those in the direction from water to land. This study assessed the importance of massive die-offs of the Asian clam Corbicula fluminea (Müller, 1774) as a resource pulse to the terrestrial invertebrate community after an extreme climatic event using a manipulative experiment. We used 5 levels of C. fluminea density (0, 100, 500, 1000 and 2000ind·m(-2)), with terrestrial invertebrates being censused 7, 30 and 90days after C. fluminea addition. We also assessed the possible effect of plots position, where plots that delimited the experiment were assigned as edge plots and the remaining as core plots. Clear differences were detected in abundance, biomass, richness and diversity of terrestrial invertebrates depending on the C. fluminea density, time and position. Interestingly, the highest abundance of adult Diptera was observed 7days after C. fluminea addition, whereas that of the other terrestrial invertebrates was on day 30, both with C. fluminea densities higher than 500ind·m(-2) located on the edge of the experimental design. This study highlights the importance of major resource pulses after massive die-offs of invasive bivalves, contributing with remarkable amounts of carrion for adjacent terrestrial systems. Part of this carrion can be consumed directly by a great number of invertebrate species while the remainder can enter the detrital food web. Given the high density and biomass attained by several invasive bivalves worldwide and the predicted increase in the number, intensity and magnitude of extreme climatic events, the ecological importance of this phenomenon should be further investigated. Copyright © 2015

  20. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions

    Science.gov (United States)

    Mahdavi, P.; Bergmeier, E.

    2016-07-01

    Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.

  1. Ecosystem carbon storage does not vary with increasing mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Paul Selmants; Creighton Litton; Christian P. Giardina; Greg P. Asner

    2014-01-01

    Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem...

  2. The role of tectonic uplift, climate, and vegetation in the long-term terrestrial phosphorous cycle

    Directory of Open Access Journals (Sweden)

    C. Buendía

    2010-06-01

    Full Text Available Phosphorus (P is a crucial element for life and therefore for maintaining ecosystem productivity. Its local availability to the terrestrial biosphere results from the interaction between climate, tectonic uplift, atmospheric transport, and biotic cycling. Here we present a mathematical model that describes the terrestrial P-cycle in a simple but comprehensive way. The resulting dynamical system can be solved analytically for steady-state conditions, allowing us to test the sensitivity of the P-availability to the key parameters and processes. Given constant inputs, we find that humid ecosystems exhibit lower P availability due to higher runoff and losses, and that tectonic uplift is a fundamental constraint. In particular, we find that in humid ecosystems the biotic cycling seem essential to maintain long-term P-availability. The time-dependent P dynamics for the Franz Josef and Hawaii chronosequences show how tectonic uplift is an important constraint on ecosystem productivity, while hydroclimatic conditions control the P-losses and speed towards steady-state. The model also helps describe how, with limited uplift and atmospheric input, as in the case of the Amazon Basin, ecosystems must rely on mechanisms that enhance P-availability and retention. Our novel model has a limited number of parameters and can be easily integrated into global climate models to provide a representation of the response of the terrestrial biosphere to global change.

  3. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes?

    Science.gov (United States)

    Jones, Stuart E.; Solomon, Christopher T.; Weidel, Brian C.

    2012-01-01

    Cross-ecosystem fluxes are ubiquitous in food webs and are generally thought of as subsidies to consumer populations. Yet external or allochthonous inputs may in fact have complex and habitat-specific effects on recipient ecosystems. In lakes, terrestrial inputs of organic carbon contribute to basal resource availability, but can also reduce resource availability via shading effects on phytoplankton and periphyton. Terrestrial inputs might therefore either subsidise or subtract from consumer production. We developed and parameterised a simple model to explore this idea. The model estimates basal resource supply and consumer production given lake-level characteristics including total phosphorus (TP) and dissolved organic carbon (DOC) concentration, and consumer-level characteristics including resource preferences and growth efficiencies. Terrestrial inputs diminished primary production and total basal resource supply at the whole-lake level, except in ultra-oligotrophic systems. However, this system-level generalisation masked complex habitat-specific effects. In the pelagic zone, dissolved and particulate terrestrial carbon inputs were available to zooplankton via several food web pathways. Consequently, zooplankton production usually increased with terrestrial inputs, even as total whole-lake resource availability decreased. In contrast, in the benthic zone the dominant, dissolved portion of the terrestrial carbon load had predominantly negative effects on resource availability via shading of periphyton. Consequently, terrestrial inputs always decreased zoobenthic production except under extreme and unrealistic parameterisations of the model. Appreciating the complex and habitat-specific effects of allochthonous inputs may be essential for resolving the effects of cross-habitat fluxes on consumers in lakes and other food webs.

  4. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  5. Land Use in LCA: Including Regionally Altered Precipitation to Quantify Ecosystem Damage.

    Science.gov (United States)

    Lathuillière, Michael J; Bulle, Cécile; Johnson, Mark S

    2016-11-01

    The incorporation of soil moisture regenerated by precipitation, or green water, into life cycle assessment has been of growing interest given the global importance of this resource for terrestrial ecosystems and food production. This paper proposes a new impact assessment model to relate land and water use in seasonally dry, semiarid, and arid regions where precipitation and evapotranspiration are closely coupled. We introduce the Precipitation Reduction Potential midpoint impact representing the change in downwind precipitation as a result of a land transformation and occupation activity. Then, our end-point impact model quantifies terrestrial ecosystem damage as a function of precipitation loss using a relationship between woody plant species richness, water and energy regimes. We then apply the midpoint and end-point models to the production of soybean in Southeastern Amazonia which has resulted from the expansion of cropland into tropical forest, with noted effects on local precipitation. Our proposed cause-effect chain represents a complementary approach to previous contributions which have focused on water consumption impacts and/or have represented evapotranspiration as a loss to the water cycle.

  6. Coastal niches for terrestrial predators: a stable isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Mellbrand, K.; Hamback, P.A., E-mail: peter.hamback@botan.su.se [Stockholm Univ., Dept. of Botany, Stockholm (Sweden)

    2010-12-15

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  7. Coastal niches for terrestrial predators: a stable isotope study

    International Nuclear Information System (INIS)

    Mellbrand, K.; Hamback, P.A.

    2010-01-01

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  8. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    Science.gov (United States)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  9. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    Science.gov (United States)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  10. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  11. List identifies threatened ecosystems

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  12. Nonautonomous linear system of the terrestrial carbon cycle

    Science.gov (United States)

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to

  13. Floodplain Hydrodynamics and Ecosystem Function in a Dryland Wetland

    Science.gov (United States)

    Rodriguez, J. F.; Sandi, S. G.; Saco, P. M.; Wen, L.; Saintilan, N.; Kuczera, G. A.

    2017-12-01

    The Macquarie Marshes is a floodplain wetland system located in the semiarid region of south-east Australia, regularly flooded by small channels and creeks that get their water from a regulated river system. Flood-dependent vegetation in the wetland includes semi-permanent wetland areas (reed beds, lagoons, and mixed marsh), and floodplain forests and woodlands mainly dominated by River Red Gum (Eucalyptus Camaldulensis). These plant communities support a rich ecosystem and provide sanctuary for birds, frogs and fish and their ecological importance has been recognized under the Ramsar convention. During droughts, wetland vegetation can deteriorate or transition to terrestrial vegetation. Most recently, during the Millennium drought (2001-2009) large areas of water couch and common reeds transitioned to terrestrial vegetation and many patches of River Red Gum reported up to an 80% mortality. Since then, a significant recovery has occurred after a few years of record or near record rainfall. In order to support management decisions regarding watering of the wetland from the upstream reservoir, we have developed an eco-hydraulic model that relates vegetation distribution to the inundation regime (present and past) determined by floodplain hydrodynamics. The model couples hydrodynamic simulations with a rules-based vegetation module that considers water requirements for different plant associations and transition rules accounting for patch dynamics and vegetation resilience. The model has been setup and calibrated with satellite-derived inundation and vegetation maps as well as fractional cover products during the period from 1991 to 2013. We use the model to predict short-term wetland evolution under dry and wet future conditions.

  14. Influence of multiple global change drivers on terrestrial carbon storage

    DEFF Research Database (Denmark)

    Yue, Kai; Fornara, Dario A; Yang, Wanqin

    2017-01-01

    The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum of their indivi......The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum...... additive effects of multiple global change drivers into future assessments of the C storage ability of terrestrial ecosystems....

  15. Freshwater processing of terrestrial dissolved organic matter: What governs lability?

    Science.gov (United States)

    D'Andrilli, J.; Smith, H. J.; Junker, J. R.; Scholl, E. A.; Foreman, C. M.

    2016-12-01

    Aquatic and terrestrial ecosystems are linked through the transfer of energy and materials. Allochthonous organic matter (OM) is central to freshwater ecosystem function, influencing local food webs, trophic state, and nutrient availability. In order to understand the nature and fate of OM from inland headwaters to the open ocean, it is imperative to understand the links between OM lability and ecosystem function. Thus, biological, chemical, and physical factors need to be evaluated together to inform our understanding of environmental lability. We performed a laboratory processing experiment on naturally occurring OM leachates from riparian leaves, grasses, and pine needles. Measures of water chemistry, OM optical and molecular characterization, bacterial abundances, microbial assemblage composition, respiration, and C:N:P were integrated to discern the nature and fate of labile and recalcitrant OM in a freshwater stream. Peak processing of all OM sources in the stream water occurred after two days, with spikes in bacterial cell abundances, respiration rates, microbial assemblage shifts, and maximum C utilization. Respiration rates and microbial assemblages were dependent on the degree of lability of the OM molecular composition. Within the first few days, no differences in respiration rates were observed between leachate sources, however, beyond day five, the rates diverged with C processing efficiency correlated with OM lability. Originally comprised of amino acid-like, labile fluorescent species, the inoculated stream water OM became more recalcitrant after 16 days, indicating humification processing over time. Our study highlights the importance of interdisciplinary approaches for understanding the processing and fate of OM in aquatic ecosystems.

  16. Chapter Four : Towards an Integration of Biodiversity–Ecosystem Functioning and Food Web Theory to Evaluate Relationships between Multiple Ecosystem Services

    NARCIS (Netherlands)

    Hines, J.; Putten, van der W.H.; Deyn, de G.B.; Wagg, C.; Voigt, W.; Mulder, C.; Weisser, W.W.; Engel, J.; Melian, C.; Scheu, S.; Birkhofer, K.; Ebeling, A.; Scherber, C.; Eisenhauer, N.

    2015-01-01

    Ecosystem responses to changes in species diversity are often studied individually. However, changes in species diversity can simultaneously influence multiple interdependent ecosystem functions. Therefore, an important challenge is to determine when and how changes in species diversity that

  17. Tree diversity does not always improve resistance of forest ecosystems to drought.

    Science.gov (United States)

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur

    2014-10-14

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.

  18. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    Science.gov (United States)

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  19. Mapping of critical loads of acidity for the Italian terrestrial ecosystems; Mappa dei carichi critici di acidita' totale riferita al territorio italiano

    Energy Technology Data Exchange (ETDEWEB)

    Bonanni, P.; Brini, S.; Delmonaco, G.; Liburdi, C.; Trocciola, A.; Vetrella, G. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1999-07-01

    In this report the mapping of critical loads of acidity for the Italian terrestrial ecosystems is presented. The level 0 method (Stockholm Environment Institute) has been used to determine sensitivity to acid deposition; this semi-quantitative method has been modified to address some Italian characteristics. The sensitivity of the Italian soils to acidification is not particularly elevated: there are really only few small areas with poor tolerance to acid depositions in the north-east Italy, Alpine and Prealpine region. [Italian] Nel presente relazione vengono riportati i risultati della mappatura riferita ad ecosistemi terrestri del territorio italiano, dei carichi critici per l'acidita' totale. Il calcolo dei carichi e' stato eseguito sulla base della metodologia messa a punto dallo Stockholm Environment Institute con alcune modifiche per adattarlo meglio alle caratteristiche del territorio italiano. Si dimostra che la sensibilita' dei suoli italiani all'acidificazione non sia particolarmente elevata: sono state riscontrate infatti solo alcune aree, peraltro con superficie limitata, con una scarsa tolleranza alle deposizioni acide nelle zone del Nord Est, in zona alpina e prealpina.

  20. Source-pathway-receptor investigation of the fate of trace elements derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting

    International Nuclear Information System (INIS)

    Sneddon, Jennifer; Clemente, Rafael; Riby, Philip; Lepp, Nicholas W.

    2009-01-01

    Spent shotgun pellets may contaminate terrestrial ecosystems. We examined the fate of elements originating from shotgun pellets in pasture and woodland ecosystems. Two source-receptor pathways: i) soil-soil pore water-plant and ii) whole earthworm/worm gut contents - washed and unwashed small mammal hair were investigated. Concentrations of Pb and associated contaminants were higher in soils from shot areas than controls. Arsenic and lead concentrations were positively correlated in soils, soil pore water and associated biota. Element concentrations in biota were below statutory levels in all locations. Bioavailability of lead to small mammals, based on concentrations in washed body hair was low. Lead movement from soil water to higher trophic levels was minor compared to lead adsorbed onto body surfaces. Lead was concentrated in earthworm gut and some plants. Results indicate that managed game shooting presents minimal risk in terms of element transfer to soils and their associated biota. - Source-receptor pathway analysis of a managed game shooting site showed no environmental risk of trace element transfer.

  1. Source-pathway-receptor investigation of the fate of trace elements derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Jennifer [School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Clemente, Rafael, E-mail: rclemente@cebas.csic.e [School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Riby, Philip [School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Lepp, Nicholas W., E-mail: n.w.lepp@ljmu.ac.u [School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2009-10-15

    Spent shotgun pellets may contaminate terrestrial ecosystems. We examined the fate of elements originating from shotgun pellets in pasture and woodland ecosystems. Two source-receptor pathways: i) soil-soil pore water-plant and ii) whole earthworm/worm gut contents - washed and unwashed small mammal hair were investigated. Concentrations of Pb and associated contaminants were higher in soils from shot areas than controls. Arsenic and lead concentrations were positively correlated in soils, soil pore water and associated biota. Element concentrations in biota were below statutory levels in all locations. Bioavailability of lead to small mammals, based on concentrations in washed body hair was low. Lead movement from soil water to higher trophic levels was minor compared to lead adsorbed onto body surfaces. Lead was concentrated in earthworm gut and some plants. Results indicate that managed game shooting presents minimal risk in terms of element transfer to soils and their associated biota. - Source-receptor pathway analysis of a managed game shooting site showed no environmental risk of trace element transfer.

  2. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    OpenAIRE

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aqu...

  3. Can terrestrial diversity be predicted from soil morphology?

    Science.gov (United States)

    Fournier, Bertrand; Guenat, Claire; Mitchell, Edward

    2010-05-01

    Restoration ecology is a young discipline and, as a consequence, many concepts and methods are not yet mature. A good example of this is the case of floodplains which have been intensively embanked, dammed or otherwise engineered in industrialized countries, but are now increasingly being restored, often at high cost. There is however much confusion over the goals of floodplain restoration projects and the methods, criteria, and indicators to assess their success. Nature practitioners are interested in knowing how many and which variables are needed for an efficient monitoring and/or assessment. Although many restoration success assessment methods have been developed to meet this need, most indicators currently used are complicated and expensive or provide only spatially or temporally limited information on these complex systems. Perhaps as a result, no standard method has yet been defined and post-restoration monitoring is not systematically done. Optimizing indicators would help improve the credibility of restoration projects and would thus help to convince stakeholders and managers to support monitoring programs. As a result, defining the predictive power of restoration success indicators, as well as selecting the most pertinent variables among the ones currently used is of major importance for a sustainable and adaptive management of our river ecosystems. Soil characteristics determine key functions (e.g. decomposition) and ecosystem structure (e.g. vegetation) in terrestrial ecosystems. They therefore have a high potential information value that is, however, generally not considered in floodplain restoration assessment. In order to explore this potential, we recently developed a new synthetic indicator based on soil morphology for the evaluation of river restoration success. Following Hutchinson's ecological niche concept, we hypothesised that terrestrial biodiversity can be predicted based on soil characteristics, but that these characteristics do not perform

  4. Multi-proxy reconstructions and the power of integration across marine, terrestrial, and freshwater ecosystems. (Invited)

    Science.gov (United States)

    Black, B.

    2013-12-01

    Over the past decade, dendrochronology (tree-ring analysis) techniques have been increasingly applied to growth increments of various bivalve, fish, and coral species. In particular, the use of crossdating ensures that all increments in a dataset have assigned the correct calendar year of formation and that the resulting chronology is exactly placed in time. Such temporal alignment facilitates direct comparisons among chronologies that span diverse taxa and ecosystems, illustrating the pervasive, synchronizing influence of climate from alpine forests to the continental slope. Such an approach can be particularly beneficial to reconstructions in that each species captures climate signals from its unique 'perspective' of life history and habitat. For example, combinations of tree-ring data and chronologies for the long-lived bivalve Pacific geoduck (Panopea generosa) capture substantially more variance in regional sea surface temperatures than either proxy could explain alone. Just as importantly, networks of chronologies spanning multiple trophic levels can help identify climate variables critical to ecosystem functioning, which can then be targeted to generate most biologically relevant reconstructions possible. Along the west coast of North America, fish and bivalve chronologies in combination with records of seabird reproductive success indicate that winter sea-level pressure is closely associated with California Current productivity, which can be hind-cast over the past six centuries using coastal tree-ring chronologies. Thus, multiple proxies not only increase reconstruction skill, but also help isolate climate variables most closely linked to ecosystem structure and functioning.

  5. Climate control of terrestrial carbon exchange across biomes and continents

    DEFF Research Database (Denmark)

    Yi, Chuixiang; Ricciuto, Daniel; Li, Runze

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships betwe...

  6. Climate control of terrestrial carbon exchange across biomes and continents

    NARCIS (Netherlands)

    Yi, C.; Ricciuto, D.; Li, R.; Hendriks, D.M.D.; Moors, E.J.; Valentini, R.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between

  7. Climate control of terrestrial carbon exchange across biomes and continents

    NARCIS (Netherlands)

    Yi, C.; Jacobs, C.M.J.; Moors, E.J.; Elbers, J.A.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between

  8. Mercury exposure in terrestrial birds far downstream of an historical point source

    International Nuclear Information System (INIS)

    Jackson, Allyson K.; Evers, David C.; Folsom, Sarah B.; Condon, Anne M.; Diener, John; Goodrick, Lizzie F.; McGann, Andrew J.; Schmerfeld, John; Cristol, Daniel A.

    2011-01-01

    Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source. - Highlights: → We report blood mercury levels for terrestrial songbirds downstream of contamination. → Blood mercury levels remain elevated above reference for at least 137 km downstream. → Trends vary based on foraging guild and migration strategy. → Mercury affects terrestrial biota farther downstream than previously documented. - Blood mercury levels of forest songbirds remain elevated above reference levels for at least 137 km downstream of historical point source.

  9. Simulating the net ecosystem CO

    NARCIS (Netherlands)

    Vuichard, Nicolas; Ciais, Philippe; Viovy, Nicolas; Li, Longhui; Ceschia, Eric; Wattenbach, Martin; Bernhofer, Christian; Emmel, Carmen; Grünwald, Thomas; Jans, Wilma; Loubet, Benjamin; Wu, Xiuchen

    2016-01-01

    Over the last decade, efforts have been carried on to develop and evaluate versions of global terrestrial ecosystem models (GTEM) in which crop specificities are represented. The goal of this study is to evaluate the ability of the ORCHIDEE-STICS (Organising Carbon and Hydrology In Dynamic

  10. Doses to Terrestrial Biota in the Vicinity of BNFL Sellafield, Cumbria, UK (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Copplestone, D.; Johnson, M.S.; Jackson, D.; Jones, S.R

    2000-07-01

    Source terms and corresponding radionuclide activity concentrations in biota for {sup 134}Cs, {sup 137}Cs, {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am have been assessed for three semi-natural ecosystems in the vicinity of BNFL Sellafield, Cumbria, UK. Estimates of absorbed doses (mGy.d{sup -1}) have been calculated. Doses to key indicator species, Oniscus asellus (detritivorous invertebrate), Carabus violaceous (predatory invertebrate) and Apodemus sylvaticus (granivorous wood mouse) are discussed with reference to the 1 mGy.d{sup -1} level, below which it is postulated that no observable effects on populations in a terrestrial ecosystem occur. Implications for the 'critical group' and 'reference model' approaches for a framework of radiological environmental protection are discussed. The need to assess the most highly exposed species is advanced. New research focused on the application of biomarker techniques as a mechanism for determining the interactions and effects of environmental contaminants on ecosystem structure and functioning is presented. (author)

  11. Variations of Terrestrial Net Primary Productivity in East Asia

    Directory of Open Access Journals (Sweden)

    Fangmin Zhang

    2012-01-01

    Full Text Available Due to the heterogeneity and complexity of terrestrial ecosystems of East Asia, a better understanding of relationships between climate change and net primary productivity (NPP distribution is important to predict future carbon dynamics. The objective of this study is to analyze the temporal-spatial patterns of NPP in East Asia (10°S - 55°N, 60 - 155°E from 1982 to 2006 using the process-based Boreal Ecosystem Productivity Simulator (BEPS model. Prior to the regional simulation, the annual simulated NPP was validated using field observed NPP demonstrating the ability of BEPS to simulate NPP in different ecosystems of East Asia.

  12. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    Science.gov (United States)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  13. Disturbance, Functional Diversity and Ecosystem Processes: Does Species Identity Matter?

    OpenAIRE

    Emrick III, Verl Roy

    2013-01-01

    The role of disturbance is widely recognized as a fundamental driver of ecological organization from individual species to entire landscapes. Anthropogenic disturbances from military training provide a unique opportunity to examine effects of disturbance on vegetation dynamics, physicochemical soil properties, and ecosystem processes. Additionally, plant functional diversity has been suggested as the key to ecosystem processes such as productivity and nutrient dynamics. I investigated how dis...

  14. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.

    NARCIS (Netherlands)

    Yergeau, E.; Kang, S.; He, Z.; Zhou, J.; Kowalchuk, G.A.

    2007-01-01

    Soil-borne microbial communities were examined via a functional gene microarray approach across a southern polar latitudinal gradient to gain insight into the environmental factors steering soil N- and C-cycling in terrestrial Antarctic ecosystems. The abundance and diversity of functional gene

  15. The terrestrial environmental dynamics of radioactive nuclides released by the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Furukawa, Jun

    2014-01-01

    Research into environmental dynamics of radioactive nuclides released by the Fukushima nuclear accident, especially radiocesium 137 Cs (half-life, 30.1 years), is highly focused especially on diffusion processes of radiocesium into ecosystems, which is high-priority knowledge. Because of relatively sparse knowledge about the reallocation of radiocesium contained in organic matter in terrestrial ecosystems, the effects of diffused rediocesium into ecosystem cannot be accurately estimated. In this article, the terrestrial environmental dynamics of radiocesium mainly in the processes of plant uptake and the possibility of release from plants will be discussed. Plants uptake minerals from soil and these minerals are likewise ingested by animals that feed on plants, including humans. Therefore one of the main gateways of radiocesium into ecosystem is via plants. From the viewpoint of human dietary consumption, rice contamination with radiocesium has been energetically investigated and useful data are accumulating. Processes of radiocesium uptake mechanisms by plants are being researched using legumes, e.g. soybean. Speculation on the possibility of radiocesium release into forest atmosphere via plant activity will be introduced. (author)

  16. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness

    NARCIS (Netherlands)

    Spaak, Jurg W.; Baert, Jan M.; Baird, Donald J.; Eisenhauer, Nico; Maltby, Lorraine; Pomati, Francesco; Radchuk, Viktoriia; Rohr, Jason R.; Brink, van den Paul J.; Laender, De Frederik

    2017-01-01

    There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community

  17. Dynamical implications of bi-directional resource exchange within a meta-ecosystem.

    Science.gov (United States)

    Rodriguez, Marisabel Rodriguez; Kopp, Darin; Allen, Daniel; Kang, Yun

    2018-05-05

    The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic ecosystems that are supported by the literature. Our theoretical results show that bi-directional resource exchange between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosystems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the production of that ecosystem would increase; however, depending on the local environment, the production of the other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network. Copyright © 2018. Published by Elsevier Inc.

  18. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  19. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host-microbiome interactions on understanding ecosystem function.

    Science.gov (United States)

    Weston, David J; Timm, Collin M; Walker, Anthony P; Gu, Lianhong; Muchero, Wellington; Schmutz, Jeremy; Shaw, A Jonathan; Tuskan, Gerald A; Warren, Jeffrey M; Wullschleger, Stan D

    2015-09-01

    Peatlands harbour more than one-third of terrestrial carbon leading to the argument that the bryophytes, as major components of peatland ecosystems, store more organic carbon in soils than any other collective plant taxa. Plants of the genus Sphagnum are important components of peatland ecosystems and are potentially vulnerable to changing climatic conditions. However, the response of Sphagnum to rising temperatures, elevated CO2 and shifts in local hydrology have yet to be fully characterized. In this review, we examine Sphagnum biology and ecology and explore the role of this group of keystone species and its associated microbiome in carbon and nitrogen cycling using literature review and model simulations. Several issues are highlighted including the consequences of a variable environment on plant-microbiome interactions, uncertainty associated with CO2 diffusion resistances and the relationship between fixed N and that partitioned to the photosynthetic apparatus. We note that the Sphagnum fallax genome is currently being sequenced and outline potential applications of population-level genomics and corresponding plant photosynthesis and microbial metabolic modelling techniques. We highlight Sphagnum as a model organism to explore ecosystem response to a changing climate and to define the role that Sphagnum can play at the intersection of physiology, genetics and functional genomics. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  20. The importance of terrestrial carbon in supporting molluscs in the wetlands of Poyang Lake

    Science.gov (United States)

    Zhang, Huan; Yu, Xiubo; Wang, Yuyu; Xu, Jun

    2017-07-01

    Allochthonous organic matter plays an important role in nutrient cycling and energy mobilization in freshwater ecosystems. However, the subsidies of this carbon source in floodplain ecosystems have not yet well understood. We used a Bayesian mixing model and stable isotopes (δ13C and δ15N) of primary food resources and dominant molluscs species, to estimate the relative importance of allochthonous carbon sources for consumers in a representative sub-lake of Poyang Lake during a prolonged dry season. Our study inferred that terrestrial-derived carbon from Carex spp. could be the primary contributor to snails and mussels in Dahuchi Lake. The mean percentage of allochthonous food resources accounted for 35%-50% of the C incorporated by these consumers. Seston was another important energy sources for benthic consumers. However, during the winter and low water-level period, benthic algae and submerged vegetation contributed less carbon to benthic consumers. Our data highlighted the importance of terrestrial organic carbon to benthic consumers in the wetlands of Poyang Lake during the prolonged dry period. Further, our results provided a perspective that linkages between terrestrial and aquatic ecosystems might be facilitated by wintering geese via their droppings.

  1. Intercomparison of Terrestrial Laser Scanning Instruments for Assessing Forested Ecosystems: A Brisbane Field Experiment

    Science.gov (United States)

    Armston, J.; Newnham, G.; Strahler, A. H.; Schaaf, C.; Danson, M.; Gaulton, R.; Zhang, Z.; Disney, M.; Sparrow, B.; Phinn, S. R.; Schaefer, M.; Burt, A.; Counter, S.; Erb, A.; Goodwin, N.; Hancock, S.; Howe, G.; Johansen, K.; Li, Z.; Lollback, G.; Martel, J.; Muir, J.; Paynter, I.; Saenz, E.; Scarth, P.; Tindall, D.; Walker, L.; Witte, C.; Woodgate, W.; Wu, S.

    2013-12-01

    During 28th July - 3rd August, 2013, an international group of researchers brought five terrestrial laser scanners (TLS) to long-term monitoring plots in three eucalyptus-dominated woodland sites near Brisbane, Queensland, Australia, to acquire scans at common locations for calibration and intercomparison.They included: DWEL - a dual-wavelength full-waveform laser scanner (Boston U., U. Massachusetts Lowell, U. Massachusetts Boston, USA) SALCA - a dual-wavelength full-waveform laser scanner (U. Salford, UK) CBL - a canopy biomass lidar, a small ultraportable low-cost multiple discrete return scanner (U. Massachusetts Boston, USA) Riegl VZ400 - a survey-grade commercial waveform scanner (Queensland Government and TERN, U. Queensland, Australia) FARO Focus 3D - a lightweight commercial phase-shift ranging laser scanner (U. Southern Queensland) Two plots were scanned at Karawatha Forest Park, a Terrestrial Ecosystem Research Network (TERN) Supersite, and one plot at D'Aguilar National Park. At each 50 x 100 m plot, a center scan point was surrounded by four scan points located 25 m away in a cross pattern allowing for 3-D reconstructions of scan sites in the form of point clouds. At several center points, multiple instrument configurations (i.e. different beam divergence, angular resolution, pulse rate) were acquired to test the impact of instrument specifications on separation of woody and non-woody materials and estimation of vegetation structure parameters. Three-dimensional Photopoint photographic panoramas were also acquired, providing reconstructions of stems in the form of point clouds using photogrammetric correlation methods. Calibrated reflectance targets were also scanned to compare instrument geometric and radiometric performance. Ancillary data included hemispherical photos, TRAC LAI/clumping measurements, spectra of leaves, bark, litter, and other target components. Wet and dry leaf weights determined water content. Planned intercomparison topics and

  2. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    Science.gov (United States)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-12-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).

  3. Functional trait responses to sediment deposition reduce macrofauna-mediated ecosystem functioning in an estuarine mudflat

    Science.gov (United States)

    Mestdagh, Sebastiaan; Bagaço, Leila; Braeckman, Ulrike; Ysebaert, Tom; De Smet, Bart; Moens, Tom; Van Colen, Carl

    2018-05-01

    Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater-bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the

  4. Functional trait responses to sediment deposition reduce macrofauna-mediated ecosystem functioning in an estuarine mudflat

    Directory of Open Access Journals (Sweden)

    S. Mestdagh

    2018-05-01

    Full Text Available Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC. An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands. The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater–bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our

  5. Aspects of the carbon cycle in terrestrial ecosystems of Northeastern Smaaland

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Lund Univ., Geobiosphere Science Centre (Sweden). Physical Geography and Ecosystems Analysis

    2006-02-15

    Boreal and temperate ecosystems of the northern hemisphere are important for the future development of global climate. In this study, the carbon cycle has been studied in a pine forest, a meadow, a spruce forest and two deciduous forests in the Simpevarp investigation area in southern Sweden (57 deg 5 min N, 34 deg 55 min E). Ground respiration and ground Gross Primary Production (GPP) has been measured three times during spring 2004 with the closed chamber technique. Soil temperature, soil moisture and Photosynthetically Active Radiation (PAR) were also measured. An exponential regression with ground respiration against soil temperature was used to extrapolate respiration over spring 2004. A logarithmic regression with ground GPP against PAR was used to extrapolate GPP in meadow over spring 2004. Ground respiration is affected by soil temperature in all ecosystems but pine, but still it only explains a small part of the variation in respiration and this indicates that other abiotic factors also have an influence. Soil moisture affects respiration in spruce and one of the deciduous ecosystems. A comparison between measured and extrapolated ground respiration indicated that soil temperature could be used to extrapolate ground respiration. PAR is the main factor influencing GPP in all ecosystems but pine, still it could not be used to extrapolate GPP in meadow since too few measurements were done and they were from different periods of spring. Soil moisture did not have any significant effect on GPP. A Dynamic Global Vegetation Model, a DGVM called LPJ-GUESS, was downscaled to the Simpevarp investigation area. The downscaled DGVM was evaluated against measured respiration and soil organic acids for all five ecosystems. In meadow, it was evaluated against Net Primary Production, NPP. For the forest ecosystems, it was evaluated against tree layer carbon pools. The evaluation indicated that the DGVM is reasonably well downscaled to the Simpevarp investigation area and

  6. Aspects of the carbon cycle in terrestrial ecosystems of Northeastern Smaaland

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-02-01

    Boreal and temperate ecosystems of the northern hemisphere are important for the future development of global climate. In this study, the carbon cycle has been studied in a pine forest, a meadow, a spruce forest and two deciduous forests in the Simpevarp investigation area in southern Sweden (57 deg 5 min N, 34 deg 55 min E). Ground respiration and ground Gross Primary Production (GPP) has been measured three times during spring 2004 with the closed chamber technique. Soil temperature, soil moisture and Photosynthetically Active Radiation (PAR) were also measured. An exponential regression with ground respiration against soil temperature was used to extrapolate respiration over spring 2004. A logarithmic regression with ground GPP against PAR was used to extrapolate GPP in meadow over spring 2004. Ground respiration is affected by soil temperature in all ecosystems but pine, but still it only explains a small part of the variation in respiration and this indicates that other abiotic factors also have an influence. Soil moisture affects respiration in spruce and one of the deciduous ecosystems. A comparison between measured and extrapolated ground respiration indicated that soil temperature could be used to extrapolate ground respiration. PAR is the main factor influencing GPP in all ecosystems but pine, still it could not be used to extrapolate GPP in meadow since too few measurements were done and they were from different periods of spring. Soil moisture did not have any significant effect on GPP. A Dynamic Global Vegetation Model, a DGVM called LPJ-GUESS, was downscaled to the Simpevarp investigation area. The downscaled DGVM was evaluated against measured respiration and soil organic acids for all five ecosystems. In meadow, it was evaluated against Net Primary Production, NPP. For the forest ecosystems, it was evaluated against tree layer carbon pools. The evaluation indicated that the DGVM is reasonably well downscaled to the Simpevarp investigation area and

  7. Nitrogen Availability Dampens the Positive Impacts of CO2 Fertilization on Terrestrial Ecosystem Carbon and Water Cycles

    Science.gov (United States)

    He, Liming; Chen, Jing M.; Croft, Holly; Gonsamo, Alemu; Luo, Xiangzhong; Liu, Jane; Zheng, Ting; Liu, Ronggao; Liu, Yang

    2017-11-01

    The magnitude and variability of the terrestrial CO2 sink remain uncertain, partly due to limited global information on ecosystem nitrogen (N) and its cycle. Without N constraint in ecosystem models, the simulated benefits from CO2 fertilization and CO2-induced increases in water use efficiency (WUE) may be overestimated. In this study, satellite observations of a relative measure of chlorophyll content are used as a proxy for leaf photosynthetic N content globally for 2003-2011. Global gross primary productivity (GPP) and evapotranspiration are estimated under elevated CO2 and N-constrained model scenarios. Results suggest that the rate of global GPP increase is overestimated by 85% during 2000-2015 without N limitation. This limitation is found to occur in many tropical and boreal forests, where a negative leaf N trend indicates a reduction in photosynthetic capacity, thereby suppressing the positive vegetation response to enhanced CO2 fertilization. Based on our carbon-water coupled simulations, enhanced CO2 concentration decreased stomatal conductance and hence increased WUE by 10% globally over the 1982 to 2015 time frame. Due to increased anthropogenic N application, GPP in croplands continues to grow and offset the weak negative trend in forests due to N limitation. Our results also show that the improved WUE is unlikely to ease regional droughts in croplands because of increases in evapotranspiration, which are associated with the enhanced GPP. Although the N limitation on GPP increase is large, its associated confidence interval is still wide, suggesting an urgent need for better understanding and quantification of N limitation from satellite observations.

  8. Sensitivity of terrestrial ecosystems to elevated atmospheric CO{sub 2}: Comparisons of model simulation studies to CO{sub 2} effect

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y. [Marine Biological Lab., Woods Hole, MA (United States)

    1995-06-01

    In the context of a project to compare terrestrial ecosystem models, the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), we have analyzed how three biogeochemistry models link plant growth to doubled atmospheric CO{sub 2}. A common set of input data was used to drive three biogeochemistry models, BIOME-BGC, CENTURY and TEM. For the continental United States the simulation results show that with doubled CO{sub 2}, NPP increased by 8.7%, 5.0% and 10.8% for TEM, CENTURY and BIOME-BGC, respectively. At the biome level the range of NPP estimates varied considerably among models. TEM-simulated enhancement of NPP ranged from 2% to 28%; CENTURY, from 2% to 9%; and BIOME-BGC, from 4% to 27%. A transect analysis across several biomes along a latitude at 41.5 N shows that the TEM-simulated CO{sub 2} enhancement of NPP ranged from 0% to 22%; CENTURY, from 1% to 10% and BIOME-BGC, from 1% to 63%. In this study, we have investigated the underlying mechanisms of the three models to reveal how increased CO{sub 2} affects photosynthesis rate, water using efficiency and nutrient cycles. The relative importance of these mechanisms in each of the three biogeochemistry models will be discussed.

  9. Nutrients, Toxins, and Water in Terrestrial and Aquatic Ecosystems Treated with Sewage Plant Effluents. Final Report of the Upland Recharge Program

    Energy Technology Data Exchange (ETDEWEB)

    Woodwell, G. M.; Ballard, J. T.; Clinton, J.; Pecan, E. V.

    1976-01-01

    The objective of this work was to appraise the capacity of terrestrial and aquatic plant communities for absorbing and retaining nutrients and organic matter in sewage and for releasing ''clean'' water. Experimental systems included a sere representative of the Eastern Deciduous Forest, a timothy field, two Phalaris arundinacea meadows, a freshwater marsh, a pond, and a marsh-pond complex. Sewage of two qualities was applied at the rate of 5 cm per week; one treatment was equivalent to the release from a primary treatment sewage plant, the second to that from a secondary treatment plant. Under normal circumstances, without the addition of water or nutrients in sewage, the flux of nutrients into the groundwater was greatest under the agricultural communities and least under the late successional forest communities. All the terrestrial communities were net sources of most elements. Because the agricultural communities were fertilized and a substantial fraction of the fertilizer applied remained after the first year, the agricultural communities appeared to be net sinks during the first year of the experiment. The highest concentrations of nutrients in the percolate of the untreated communities commonly occurred in the earliest stages of succession. This relationship was especially conspicuous for nitrogen. Phosphorus and iron appeared to be held tightly within most ecosystems.

  10. Partitioning inter annual variability in net ecosystem exchange between climatic variability and functional change

    International Nuclear Information System (INIS)

    Hui, D.; Luo, Y.; Katul, G.

    2003-01-01

    Inter annual variability in net ecosystem exchange of carbon is investigated using a homogeneity-of-slopes model to identify the function change contributing to inter annual variability, net ecosystem carbon exchange, and night-time ecosystem respiration. Results of employing this statistical approach to a data set collected at the Duke Forest AmeriFlux site from August 1997 to December 2001 are discussed. The results demonstrate that it is feasible to partition the variation in ecosystem carbon fluxes into direct effects of seasonal and inter annual climatic variability and functional change. 51 refs., 4 tabs., 5 figs

  11. Working group 4: Terrestrial

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A working group at a Canada/USA symposium on climate change and the Arctic identified major concerns and issues related to terrestrial resources. The group examined the need for, and the means of, involving resource managers and users at local and territorial levels in the process of identifying and examining the impacts and consequences of climatic change. Climatic change will be important to the Arctic because of the magnitude of the change projected for northern latitudes; the apparent sensitivity of its terrestrial ecosystems, natural resources, and human support systems; and the dependence of the social, cultural, and economic welfare of Arctic communities, businesses, and industries on the health and quality of their environment. Impacts of climatic change on the physical, biological, and associated socio-economic environment are outlined. Gaps in knowledge needed to quantify these impacts are listed along with their relationships with resource management. Finally, potential actions for response and adaptation are presented

  12. Environmental and Human Controls of Ecosystem Functional Diversity in Temperate South America

    Directory of Open Access Journals (Sweden)

    Domingo Alcaraz-Segura

    2013-01-01

    Full Text Available The regional controls of biodiversity patterns have been traditionally evaluated using structural and compositional components at the species level, but evaluation of the functional component at the ecosystem level is still scarce. During the last decades, the role of ecosystem functioning in management and conservation has increased. Our aim was to use satellite-derived Ecosystem Functional Types (EFTs, patches of the land-surface with similar carbon gain dynamics to characterize the regional patterns of ecosystem functional diversity and to evaluate the environmental and human controls that determine EFT richness across natural and human-modified systems in temperate South America. The EFT identification was based on three descriptors of carbon gain dynamics derived from seasonal curves of the MODIS Enhanced Vegetation Index (EVI: annual mean (surrogate of primary production, seasonal coefficient of variation (indicator of seasonality and date of maximum EVI (descriptor of phenology. As observed for species richness in the southern hemisphere, water availability, not energy, emerged as the main climatic driver of EFT richness in natural areas of temperate South America. In anthropogenic areas, the role of both water and energy decreased and increasing human intervention increased richness at low levels of human influence, but decreased richness at high levels of human influence.

  13. Drought effects on ecosystem functioning and interactions with CO2 and warming - results from CLIMAITE

    Science.gov (United States)

    Beier, Claus; Ibrom, Andreas; Linden, Leon G.; Selsted, Merete B.; Albert, Kristian R.; Kongstad, Jane; Andresen, Louise C.

    2010-05-01

    Current predictions indicate that, unless greenhouse gas emissions are significantly curtailed, atmospheric CO2 concentrations will double during the present century inducing an additional 1.4 to 5.8oC increase in mean global temperature, alterations in global and regional precipitation patterns, and increase the frequency and magnitude of severe weather events (e.g. droughts and floods). Such changes will have strong effects on the terrestrial ecosystems as CO2, temperature and water are main drivers in ecosystem processes. There is growing concern that climate driven changes in precipitation patterns and water availability will have significant effects on ecosystem processes and functioning, and in some regions may be the most influential climate change factor. Yet, it has received much less attention in recent climate change research relative to elevated CO2 and temperature. Furthermore, most precipitation experiments have focussed on water alone despite the fact that at least CO2 and temperature will change simultaneously and both of these factors will have direct or indirect effects on water status and use in the ecosystem. In the CLIMAITE project a Danish heathland has been exposed since 2005 to elevated CO2, temperature and extended drought in a full factorial experiment (Mikkelsen et al., 2008). The CO2 concentration in the canopy level is elevated by 50% by the Free Air Carbon Enrichment (FACE) technique, temperature is elevated by 1-2 °C by the passive night time warming technique and summer drought is extended for 4-6 weeks by rain out shelters. The full factor combination mimics recent climate projections for Denmark 2075. Following the experiments, responses of major ecosystem processes and functioning is recorded. Drought generally leads to hypothesised reductions in most ecosystem processes during and shortly after the drought but on the short term, many of these processes also show a strong potential to recover during rewetting. Drought reduces

  14. Microbial Communities in the Vertical Atmosphere: Effects of Urbanization and the Natural Environment in Four North American Ecosystems

    Science.gov (United States)

    Docherty, K. M.; Lemmer, K. M.; Domingue, K. D.; Spring, A.; Kerber, T. V.; Mooney, M. M.

    2017-12-01

    Airborne transport of microbial communities is a key component of the global ecosystem because it serves as a mechanism for dispersing microbial life between all surface habitats on the planet. However, most of our understanding of airborne microbial distribution is derived from samples collected near the ground. Little is understood about how the vertical layers of the air may act as a habitat filter or how local terrestrial ecosystems contribute to a vast airborne microbial seedbank. Specifically, urbanization may fundamentally alter the terrestrial sources of airborne microbial biodiversity. To address this question, we conducted airborne sampling at minimally disturbed natural sites and paired urban sites in 4 different North American ecosystems: shortgrass steppe, desert scrub, eastern deciduous forest, and northern mesic forest. All natural area sites were co-located with NEON/Ameriflux tower sites collecting atmospheric data. We developed an airborne sampling platform that uses tethered helikites at 3 replicate locations within each ecosystem to launch remote-controlled sampler payloads. We designed sampler payloads to collect airborne bacteria and fungi from 150, 30 and 2 m above the ground. Payload requirements included: ability to be disinfected and remain contaminant-free during transport, remote open/close functionality, payload weight under 6 lbs and automated collection of weather data. After sampling for 6 hours at each location, we extracted DNA collected by the samplers. We also extracted DNA from soil and plant samples collected from each location, and characterized ground vegetation. We conducted bacterial 16S amplicon-based sequencing using Mi-Seq and sequence analysis using QIIME. We used ArcGIS to determine percent land use coverage. Our results demonstrate that terrestrial ecosystem type is the most important factor contributing to differences in airborne bacterial community composition, and that communities differed by ecosystem. The

  15. Introduction. Antarctic ecology: from genes to ecosystems. Part 2. Evolution, diversity and functional ecology.

    Science.gov (United States)

    Rogers, Alex D; Murphy, Eugene J; Johnston, Nadine M; Clarke, Andrew

    2007-12-29

    The Antarctic biota has evolved over the last 100 million years in increasingly isolated and cold conditions. As a result, Antarctic species, from micro-organisms to vertebrates, have adapted to life at extremely low temperatures, including changes in the genome, physiology and ecological traits such as life history. Coupled with cycles of glaciation that have promoted speciation in the Antarctic, this has led to a unique biota in terms of biogeography, patterns of species distribution and endemism. Specialization in the Antarctic biota has led to trade-offs in many ecologically important functions and Antarctic species may have a limited capacity to adapt to present climate change. These include the direct effects of changes in environmental parameters and indirect effects of increased competition and predation resulting from altered life histories of Antarctic species and the impacts of invasive species. Ultimately, climate change may alter the responses of Antarctic ecosystems to harvesting from humans. The unique adaptations of Antarctic species mean that they provide unique models of molecular evolution in natural populations. The simplicity of Antarctic communities, especially from terrestrial systems, makes them ideal to investigate the ecological implications of climate change, which are difficult to identify in more complex systems.

  16. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes?

    Directory of Open Access Journals (Sweden)

    Emily B. Graham

    2016-02-01

    Full Text Available Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

  17. Microtopography recreation benefits ecosystem restoration

    Science.gov (United States)

    Wei Wei; Liding Chen; Lei Yang; F. Fred Samadani; Ge Sun

    2012-01-01

    Within the context of global warming and accelerated human activities, the surrounding environments of many terrestrial ecosystems worldwide have become increasingly deteriorated, such that finding suitable methods and effective environmental technology to confront climate change and prevent land degradation is critical to the health and sustainability of the earth. In...

  18. The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity

    Science.gov (United States)

    Baron, Jill S.; Barber, Mary C.; Adams, Mark; Agboola, Julius I.; Allen, Edith B.; Bealey, William J.; Bobbink, Roland; Bobrovsky, Maxim V.; Bowman, William D.; Branquinho, Cristina; Bustamente, Mercedes M. C.; Clark, Christopher M.; Cocking, Edward C.; Cruz, Cristina; Davidson, Eric A.; Denmead, O. Tom; Dias, Teresa; Dise, Nancy B.; Feest, Alan; Galloway, James N.; Geiser, Linda H.; Gilliam, Frank S.; Harrison, Ian J.; Khanina, Larisa G.; Lu, Xiankai; Manrique, Esteban; Ochoa-Hueso, Raul; Ometto, Jean P. H. B.; Payne, Richard; Scheuschner, Thomas; Sheppard, Lucy J.; Simpson, Gavin L.; Singh, Y. V.; Stevens, Carly J.; Strachan, Ian; Sverdrup, Harald; Tokuchi, Naoko; van Dobben, Hans; Woodin, Sarah

    2014-01-01

    This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.

  19. Terrestrial Carbon[Environmental Pollution: Part I, Special Issue, March 2002, Part II, Special Issue Supplement to 116/3, 2002

    International Nuclear Information System (INIS)

    Mickler, Robert; McNulty, Steven

    2002-01-01

    These issues contain a total of forty-four peer reviewed science papers on terrestrial carbon presented at the Advances in Terrestrial Ecosystem Carbon Inventory, Measurements, and Monitoring Conference held in Raleigh, N.C., in October 2000

  20. Terrestrial Carbon [Environmental Pollution: Part I, Special Issue, March 2002; Part II, Special Issue Supplement to 116/3, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Mickler, Robert (ed.); McNulty, Steven (ed.)

    2002-03-01

    These issues contain a total of forty-four peer reviewed science papers on terrestrial carbon presented at the Advances in Terrestrial Ecosystem Carbon Inventory, Measurements, and Monitoring Conference held in Raleigh, N.C., in October 2000.

  1. Comparison of contaminants from different trophic levels and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.; Riget, F. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Cleemann, M. [Department of Environmental Chemistry, Ministry of Environment and Energy, National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Aarkrog, A. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Johansen, P. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Hansen, J.C. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2000-01-17

    The present paper provides an overview of the priority contaminants and media from the Greenland part of the Arctic Monitoring and Assessment Program. Levels and accumulation patterns of heavy metals, POPs and a radionuclide (137Cs) are compared from the terrestrial, freshwater and marine ecosystems. Of the nine compounds presented, seven (Cd, Hg, Se, {sigma}PCB, {sigma}DDT, {sigma}HCH, HCB) increased in concentration towards higher trophic levels. For these contaminants the concentrations in soil and aquatic sediment were in the same order of magnitude, whereas the concentrations in marine biota were higher than found in the freshwater and terrestrial ecosystems probably due to the presence of longer food chains. Pb and 137Cs showed the reverse pattern compared with the other compounds. The concentrations in soil and aquatic sediments decreased in the order terrestrial, freshwater and marine ecosystems, which was reflected in the biota as well. Reindeer had similar or lower levels of Pb and 137Cs than lichens. Levels of Pb and 137Cs in marine biota did not show the same clear increase towards higher trophic as found for the other analysed compounds. Greenland Inuit contains considerably less mercury but higher levels of {sigma}PCB, {sigma}DDT and HCB than other Arctic marine top consumers.

  2. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen

    Science.gov (United States)

    Cole, J.J.; Carpenter, S.R.; Kitchell, J.; Pace, M.L.; Solomon, C.T.; Weidel, B.

    2011-01-01

    Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ???20-40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic 13C content of these lakes to augment the small, natural contrast in 13