WorldWideScience

Sample records for terrastar terrestrial application

  1. From Extraterrestrial to Terrestrial Applications

    Strobl, G. F. X.; Laroche, G.; Rasch, K.-D.; Hey, G.

    In the early 1950s, Bell Laboratories in the USA investigated possible applications of silicon semiconductors in electronics. While improving transistors, Bell scientists Gerald Pearson and Calvin Fuller invented the first silicon solar cell. That first effort was further improved for applications in remote humid locations by Darryl Chapin [1]. The first experiment with silicon yielded an efficiency of 2.3%. Improvements with regard to the dopants, the metallic contacts to the p- and n-side and the application of an antireflection coating led to efficiencies of 4%. In 1954, cells with 6% efficiency could be reliably manufactured.

  2. Isotope powered Stirling generator for terrestrial applications

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  3. Application of Terrestrial Environments in Orion Assessments

    Barbre, Robert E.

    2016-01-01

    This presentation summarizes the Marshall Space Flight Center Natural Environments Terrestrial and Planetary Environments (TPE) Team support to the NASA Orion space vehicle. The TPE utilizes meteorological data to assess the sensitivities of the vehicle due to the terrestrial environment. The Orion vehicle, part of the Multi-Purpose Crew Vehicle Program, is designed to carry astronauts beyond low-earth orbit and is currently undergoing a series of tests including Exploration Test Flight (EFT) - 1. The presentation describes examples of TPE support for vehicle design and several tests, as well as support for EFT-1 and planning for upcoming Exploration Missions while emphasizing the importance of accounting for the natural environment's impact to the vehicle early in the vehicle's program.

  4. Assessment of radioisotope heaters for remote terrestrial applications

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications

  5. Aerospace gas/liquid separator for terrestrial applications

    Mondt, J.F.

    1996-01-01

    The space gas/liquid separator, a key component in the heat transport subsystem of a space reactor power system, was developed to remove helium gas from liquid lithium in zero gravity. Helium is generated from lithium irradiation in the reactor core and would reach saturation in lithium after 48 hours of full power operations. The gas/liquid separator is also applicable for large commercial powerplants to deaerate the water before and after the feedwater heaters. Another terrestrial application is for industrial companies to use the gas/liquid separator and wet chemistry to remove all the gases from the air and only discharge clean air to the atmosphere. An additional application that resulted from this gas/liquid separator technology, was separating liquid carbon dioxide from nitrogen. This application is opposite from the space application in that it is removing a liquid from a gas rather than a gas from a liquid

  6. Utilization of space technology for terrestrial solar power applications

    Yasui, R. K.; Patterson, R. E.

    1974-01-01

    A description is given of the evolution of photovoltaic power systems designed and built for terrestrial applications, giving attention to problem areas which are currently impeding the further development of such systems. The rooftop testing of surplus solar panels is considered along with solar powered seismic observatories, solar powered portable radio sets, and design considerations identified from past experience. Present activities discussed are related to a solar powered on-shore beacon flasher system, a solar powered buoy, and a solar powered beacon flasher buoy.

  7. Gas-cooled reactors for advanced terrestrial applications

    Kesavan, K.; Lance, J.R.; Jones, A.R.; Spurrier, F.R.; Peoples, J.A.; Porter, C.A.; Bresnahan, J.D.

    1986-01-01

    Conceptual design of a power plant on an inert gas cooled nuclear coupled to an open, air Brayton power conversion cycle is presented. The power system, called the Westinghouse GCR/ATA (Gas-Cooled Reactors for Advanced Terrestrial Applications), is designed to meet modern military needs, and offers the advantages of secure, reliable and safe electrical power. The GCR/ATA concept is adaptable over a range of 1 to 10 MWe power output. Design descriptions of a compact, air-transportable forward base unit for 1 to 3 MWe output and a fixed-base, permanent installation for 3 to 10 MWe output are presented

  8. Investigating the Suitability of Mirrorless Cameras in Terrestrial Photogrammetric Applications

    Incekara, A. H.; Seker, D. Z.; Delen, A.; Acar, A.

    2017-11-01

    Digital single-lens reflex cameras (DSLR) which are commonly referred as mirrored cameras are preferred for terrestrial photogrammetric applications such as documentation of cultural heritage, archaeological excavations and industrial measurements. Recently, digital cameras which are called as mirrorless systems that can be used with different lens combinations have become available for using similar applications. The main difference between these two camera types is the presence of the mirror mechanism which means that the incoming beam towards the lens is different in the way it reaches the sensor. In this study, two different digital cameras, one with a mirror (Nikon D700) and the other without a mirror (Sony a6000), were used to apply close range photogrammetric application on the rock surface at Istanbul Technical University (ITU) Ayazaga Campus. Accuracy of the 3D models created by means of photographs taken with both cameras were compared with each other using difference values between field and model coordinates which were obtained after the alignment of the photographs. In addition, cross sections were created on the 3D models for both data source and maximum area difference between them is quite small because they are almost overlapping. The mirrored camera has become more consistent in itself with respect to the change of model coordinates for models created with photographs taken at different times, with almost the same ground sample distance. As a result, it has been determined that mirrorless cameras and point cloud produced using photographs obtained from these cameras can be used for terrestrial photogrammetric studies.

  9. Applications of landscape genetics to connectivity research in terrestrial animals [Chapter 12

    Lisette P. Waits; Samuel A. Cushman; Steve F. Spear

    2016-01-01

    Landscape genetic studies have focused on terrestrial animals more than any other taxonomic group. This chapter focuses on applications of landscape genetics for understanding connectivity of terrestrial animal populations. It starts with a general introduction covering unique characteristics and challenges of the terrestrial study system. This is followed by...

  10. INVESTIGATING THE SUITABILITY OF MIRRORLESS CAMERAS IN TERRESTRIAL PHOTOGRAMMETRIC APPLICATIONS

    A. H. Incekara

    2017-11-01

    Full Text Available Digital single-lens reflex cameras (DSLR which are commonly referred as mirrored cameras are preferred for terrestrial photogrammetric applications such as documentation of cultural heritage, archaeological excavations and industrial measurements. Recently, digital cameras which are called as mirrorless systems that can be used with different lens combinations have become available for using similar applications. The main difference between these two camera types is the presence of the mirror mechanism which means that the incoming beam towards the lens is different in the way it reaches the sensor. In this study, two different digital cameras, one with a mirror (Nikon D700 and the other without a mirror (Sony a6000, were used to apply close range photogrammetric application on the rock surface at Istanbul Technical University (ITU Ayazaga Campus. Accuracy of the 3D models created by means of photographs taken with both cameras were compared with each other using difference values between field and model coordinates which were obtained after the alignment of the photographs. In addition, cross sections were created on the 3D models for both data source and maximum area difference between them is quite small because they are almost overlapping. The mirrored camera has become more consistent in itself with respect to the change of model coordinates for models created with photographs taken at different times, with almost the same ground sample distance. As a result, it has been determined that mirrorless cameras and point cloud produced using photographs obtained from these cameras can be used for terrestrial photogrammetric studies.

  11. Commercialization of terrestrial applications of aerospace power technology

    Landsberg, D.R.

    1992-01-01

    The potential for commercialization of terrestrial energy systems based upon aerospace power technology's explored. Threats to the aerospace power technology industry, caused by the end of the cold war and weak world economy are described. There are also new opportunities caused by increasing terrestrial energy needs and world-wide concern for the environment. In this paper, the strengths and weaknesses of the aerospace power industry in commercializing terrestrial energy technologies are reviewed. Finally, actions which will enable the aerospace power technology industry to commercialize products into terrestrial energy markets are described

  12. Terrestrial Micro Renewable Energy Applications of Space Technology

    Komerath, N. M.; Komerath, P. P.

    This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.

  13. Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids

    Dever, Timothy P.; Trase, Larry M.; Soeder, James F.

    2014-01-01

    This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.

  14. Application of terrestrial laser scanning for measuring tree crown structures

    Pretzsch, H.; Seifert, S.; Huang, P.

    2011-01-01

    This paper addresses the potential of terrestrial laser scanning (TLS) for describing and modelling of tree crown structure and dynamics. We first present a general approach for the metabolic and structural scaling of tree crowns. Out of this approach we emphasize those normalization and scaling parameters which become accessible by TLS. For example we show how the individual tree leaf area index, convex hull, and its space-filling by leaves can be extracted out of laser scan data. This contributes to a theoretical and empirical substantiation of crown structure models which were missing so far for e.g. quantification of structural and species diversity in forest stands, inventory of crown biomass, species detection by remote sensing, and understanding of self- and alien-thinning in pure and mixed stands. Up to now works on this topic delivered a rather scattered empirical knowledge mainly by single inventories of trees and stands. In contrast, we recommend to start with a model approach, and to complete existing data with repeated TLS inventories in order to come to a consistent and theoretically based model of tree crowns. (author) [de

  15. Smart Grid Development Issues for Terrestrial and Space Applications

    Soeder, James F.

    2014-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  16. Magnetic suspension and flywheels: Spaceborne and terrestrial applications

    Poubeau, P C

    1981-01-01

    Satellite attitude control, using inertia wheels, is discussed. Elimination of friction effects through application of magnetic bearings is considered. The inertia wheel/magnetic bearing configuration can also be used to store kinetic energy. Higher rotational velocities create a need for stronger rotor construction materials, improved mechanical properties can be achieved with composite materials. Kinetic energy storage for earthside applications (solar energy storage electric vehicles) is mentioned.

  17. Applications of plasma core reactors to terrestrial energy systems

    Lantham, T.S.; Biancardi, F.R.; Rodgers, R.J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrail applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times

  18. Recent terrestrial and undersea applications of radioisotope thermoelectric generators (RTGs)

    Rosell, F.E. Jr.

    1976-01-01

    For more than a decade the Navy has used strontium-90 RTGs as remote power sources under diverse conditions at various global locations. Four recent projects which give a general cross-section of the types of applications for which RTGs have been found suitable are discussed

  19. Stirling engine alternatives for the terrestrial solar application

    Stearns, J.

    1985-01-01

    The first phase of the present study of Stirling engine alternatives for solar thermal-electric generation has been completed. Development risk levels are considered to be high for all engines evaluated. Free-piston type and Ringbom-type Stirling engine-alternators are not yet developed for the 25 to 50-kW electrical power range, although smaller machines have demonstrated the inherent robustness of the machines. Kinematic-type Stirling engines are presently achieving a 3500 hr lifetime or longer on critical components, and lifetime must still be further extended for the solar application. Operational and technical characteristics of all types of Stirling engines have been reviewed with engine developers. Technical work of merit in progress in each engine development organization should be recognized and supported in an appropriate manner.

  20. Environmental requirements for flat plate photovoltaic modules for terrestrial applications

    Hoffman, A. R.; Ross, R. G., Jr.

    1979-01-01

    The environmental test requirements that have been developed for flat plate modules purchased through Department of Energy funding are described. Concurrent with the selection of the initial qualification tests from space program experience - temperature cycling and humidity - surveys of existing photovoltaic systems in the field revealed that arrays were experiencing the following failure modes: interconnect breakage, delamination, and electrical termination corrosion. These coupled with application-dependent considerations led to the development of additional qualification tests, such as cyclic pressure loading, warped mounting surface, and hail. Rationale for the selection of tests, their levels and durations is described. Comparisons between field-observed degradation and test-induced degradation show a positive correlation with some of the observed field effects. Also, the tests are proving useful for detecting design, process, and workmanship deficiencies. The status of study efforts for the development of environmental requirements for field-related problems is reviewed.

  1. Terrestrial applications of bone and muscle research in microgravity

    Booth, F. W.

    1994-08-01

    Major applications to people on Earth are possible from NASA-sponsored research on bone and muscle which is conducted either in microgravity or on Earth using models mimicking microgravity. In microgravity bone and muscle mass are lost. Humans experience a similar loss under certain conditions on Earth. Bone and muscle loss exist on Earth as humans age from adulthood to senescence, during limb immobilization for healing of orthopedic injuries, during wheelchair confinement because of certain diseases, and during chronic bed rest prescribed for curing of diseases. NASA-sponsored research is dedicated to learning both what cause bone and muscle loss as well as finding out how to prevent this loss. The health ramifications of these discoveries will have major impact. Objective 1.6 of Healthy People 2000, a report from the U.S. Department of Health and Human Services, states that the performance of physical activities that improve muscular strength, muscular endurance, and flexibility is particularly important to maintaining functional independence and social integration in older adults /1/. This objective further states that these types of physical activities are important because they may protect against disability, an event which costs the U.S. economy hugh sums of money. Thus NASA research related to bone and muscle loss has potential major impact on the quality of life in the U.S. Relative to its potential health benefits, NASA and Congressional support of bone and muscle research is funded is a very low level.

  2. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  3. The requirements and feasibility of business planning in the office of space and terrestrial applications

    Greenberg, J. S.; Miller, B. P.

    1979-01-01

    The feasibility of applying strategic business planning techniques which are developed and used in the private sector to the planning of certain projects within the NASA Office of Space and Terrestrial Applications was assessed. The methods of strategic business planning that are currently in use in the private sector are examined. The typical contents of a private sector strategic business plan and the techniques commonly used to develop the contents of the plan are described, along with modifications needed to apply these concepts to public sector projects. The current long-range planning process in the Office of Space and Terrestrial Applications is reviewed and program initiatives that might be candidates for the use of strategic business planning techniques are identified. In order to more fully illustrate the information requirements of a strategic business plan for a NASA program, a sample business plan is prepared for a hypothetical Operational Earth Resources Satellite program.

  4. Potential Applications of Gosat Based Carbon Budget Products to Refine Terrestrial Ecosystem Model

    Kondo, M.; Ichii, K.

    2011-12-01

    Estimation of carbon exchange in terrestrial ecosystem associates with difficulties due to complex entanglement of physical and biological processes: thus, the net ecosystem productivity (NEP) estimated from simulation often differs among process-based terrestrial ecosystem models. In addition to complexity of the system, validation can only be conducted in a point scale since reliable observation is only available from ground observations. With a lack of large spatial data, extension of model simulation to a global scale results in significant uncertainty in the future carbon balance and climate change. Greenhouse gases Observing SATellite (GOSAT), launched by the Japanese space agency (JAXA) in January, 2009, is the 1st operational satellite promised to deliver the net land-atmosphere carbon budget to the terrestrial biosphere research community. Using that information, the model reproducibility of carbon budget is expected to improve: hence, gives a better estimation of the future climate change. This initial analysis is to seek and evaluate the potential applications of GOSAT observation toward the sophistication of terrestrial ecosystem model. The present study was conducted in two processes: site-based analysis using eddy covariance observation data to assess the potential use of terrestrial carbon fluxes (GPP, RE, and NEP) to refine the model, and extension of the point scale analysis to spatial using Carbon Tracker product as a prototype of GOSAT product. In the first phase of the experiment, it was verified that an optimization routine adapted to a terrestrial model, Biome-BGC, yielded the improved result with respect to eddy covariance observation data from AsiaFlux Network. Spatial data sets used in the second phase were consists of GPP from empirical algorithm (e.g. support vector machine), NEP from Carbon Tracker, and RE from the combination of these. These spatial carbon flux estimations was used to refine the model applying the exactly same

  5. A dual use case study of space technologies for terrestrial medical applications (Conference Presentation)

    Cozmuta, Ioana

    2017-05-01

    Many challenges exist in understanding the human body as a whole, its adaptability, its resilience, its immunological response, its healing and regeneration power. New knowledge is usually obtained by exploring unique conditions and environments and space is one such variable. Primarily, these attributes have been studied in space for the purpose of understanding the effect of the space environment on long duration space travel. However a myriad of lessons learned have emerged that are important for terrestrial medicine problems such as cardiovascular changes, intracranial pressure changes, vision changes, reduced immunity, etc. For medical study purposes, the changes induced by the space environment on the human body are in general fast and predictable; they persist while in the space environment but also revert to the initial pre-flight healthy state upon return to Earth. This provides a unique cycle to study wellness and disease prediction as well as to develop more effective countermeasures for the benefit of people on earth. At a scientific level, the environment of space can be used to develop new lines of investigations and new knowledge to push the terrestrial state of the art (i.e. study of phase diagrams, identification of new system's states, etc). Moreover, the specialized requirements for space medicine have driven advances in terrestrial medical technologies in areas such as monitoring, diagnostic, prevention and treatment. This talk will provide an overview of compelling examples in key areas of interest for terrestrial medical applications.

  6. Application of the idea of morphism in solar-terrestrial physics and space weather

    Mateev, Lachezar; Tassev, Yordan; Velinov, Peter

    2016-01-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. In the present work we introduce a new mathematical approach to the study of physical processes in the system Sun-Earth. For example, in the ionization of the ionosphere and atmosphere under the influence of cosmic rays a model is used that applies the principle of homomorphism. When calculating the parameters of space weather such as solar wind, interplanetary magnetic fields, Earth’s magnetosphere, geomagnetic storms and others, the introduction and application of mathematical objects is appropriate: morphisms, groups, categories, monads, functors, natural transformations and others. Such an approach takes into account the general laws of physical processes in the system Sun – Earth and helps in their testing and calculation. It is useful for such complex systems and processes as these in the solar-terrestrial physics and space weather. Some methods for algebraic structures can be introduced. These methods give the possibility for axiomatization of the physical data reality and the application of algebraic methods for their processing. Here we give the base for the transformation from the algebraic theory of categories and morphisms to the physical structure of concepts and data. Such problems are principally considered in the proposed work. Key words: pace weather, space radiation environment, solar effects, forecasting, energetic solar particles, cosmic rays

  7. Quantitative Morphometric Analysis of Terrestrial Glacial Valleys and the Application to Mars

    Allred, Kory

    Although the current climate on Mars is very cold and dry, it is generally accepted that the past environments on the planet were very different. Paleo-environments may have been warm and wet with oceans and rivers. And there is abundant evidence of water ice and glaciers on the surface as well. However, much of that comes from visual interpretation of imagery and other remote sensing data. For example, some of the characteristics that have been utilized to distinguish glacial forms are the presence of landscape features that appear similar to terrestrial glacial landforms, constraining surrounding topography, evidence of flow, orientation, elevation and valley shape. The main purpose of this dissertation is to develop a model that uses quantitative variables extracted from elevation data that can accurately categorize a valley basin as either glacial or non-glacial. The application of this model will limit the inherent subjectivity of image analysis by human interpretation. The model developed uses hypsometric attributes (elevation-area relationship), a newly defined variable similar to the equilibrium line altitude for an alpine glacier, and two neighborhood search functions intended to describe the valley cross-sectional curvature, all based on a digital elevation model (DEM) of a region. The classification model uses data-mining techniques trained on several terrestrial mountain ranges in varied geologic and geographic settings. It was applied to a select set of previously catalogued locations on Mars that resemble terrestrial glaciers. The results suggest that the landforms do have a glacial origin, thus supporting much of the previous research that has identified the glacial landforms. This implies that the paleo-environment of Mars was at least episodically cold and wet, probably during a period of increased planetary obliquity. Furthermore, the results of this research and the implications thereof add to the body of knowledge for the current and past

  8. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  9. A multiparameter wearable physiologic monitoring system for space and terrestrial applications

    Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.; hide

    2005-01-01

    A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.

  10. Application of a new Terrestrial Telecommunications System in the European Air Traffic

    Draško Marin

    2012-10-01

    Full Text Available Aeronautical Public Correspondence (APC is a telecommtmicationsse!Vice, which enables passengers onboard aircraftto make telecommunication calls to people on the ground.This article describes the terrestrial communications seiVicewhich is based on cellular network for the European CEPTmember countries (CEPT- European Conference of Postaland Telecommunications Administrations named TerrestrialFlight Telecommunications System (TFTS.This system is a Pan-European System, which means theusage of hannonised frequencies in Europe with hannonisedstandards for the TFTS equipment, which have been issued bythe European Telecommunications Standard Institute (ETSI.Frequencies allocated for TFTS have been designated bythe World Administrative Radio Conference, WARC-92 withfrequency bandwidth of 2x5 MHz:1670- 1675 MHz, for ground to air1800- 1805 MHz, for air to ground.TFTS planning is perfonned by the application of frequencyblocks (42 blocks with 164 channels in total. Bandwidthof each radio channel, which contains 4 speech channels,is equal to 30.3 kHz.Due to the very high flight of the aircraft (about 13,000 m,it needs a long distance between the centres of cells (radio stationon the ground to avoid the eo-channel or adjacent channelinteJference.The article presents the planning process with typical cellradius of240km or 350km. In the viewofthatfact, the need ispointed out for finding a compromise solution with regard toemitting power and the influence of interference.Final(v, it is noted that TFTS ground radio stations inCroatia, which are located in Zagreb and Split, may cover theterritory of some neighbouring countries other than Croatia,which is important from the commercial point of view.

  11. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Application requirements for ancillary terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. 25.149 Section 25.149 Telecommunication FEDERAL COMMUNICATIONS...

  12. Experimental analysis of a capillary pumped loop for terrestrial applications with several evaporators in parallel

    Blet, Nicolas; Bertin, Yves; Ayel, Vincent; Romestant, Cyril; Platel, Vincent

    2016-01-01

    Highlights: • This paper introduces experimental studies of a CPLTA with 3 evaporators in parallel. • Operating principles of mono-evaporator CPLTA are reminded. • A reference test with the new bench with only one evaporator is introduced. • Global behavior of the multi-evaporators loop is presented and discussed. • Some additional thermohydraulic couplings are revealed. - Abstract: In the context of high-dissipation electronics cooling for ground transportation, a new design of two-phase loop has been improved in recent years: the capillary pumped loop for terrestrial application (CPLTA). This hybrid system, between the two standard capillary pumped loop (CPL) and loop heat pipe (LHP), has been widely investigated with a single evaporator, and so a single dissipative area, to know its mean operating principles and thermohydraulic couplings between the components. To aim to extend its scope of applications, a new experimental CPLTA with three evaporators in parallel is studied in this paper with methanol as working fluid. Even if the dynamics of the loop in multi-evaporators mode appears on the whole similar to that with a single operating evaporator, additional couplings are highlighted between the several evaporators. A decoupling between vapor generation flow rate and pressure drop in each evaporator is especially revealed. The impact of this phenomenon on the conductance at evaporator is analyzed.

  13. Testing the Application of Terrestrial Laser Scanning to Measure Forest Canopy Gap Fraction

    F. Mark Danson

    2013-06-01

    Full Text Available Terrestrial laser scanners (TLS have the potential to revolutionise measurement of the three-dimensional structure of vegetation canopies for applications in ecology, hydrology and climate change. This potential has been the subject of recent research that has attempted to measure forest biophysical variables from TLS data, and make comparisons with two-dimensional data from hemispherical photography. This research presents a systematic comparison between forest canopy gap fraction estimates derived from TLS measurements and hemispherical photography. The TLS datasets used in the research were obtained between April 2008 and March 2009 at Delamere Forest, Cheshire, UK. The analysis of canopy gap fraction estimates derived from TLS data highlighted the repeatability and consistency of the measurements in comparison with those from coincident hemispherical photographs. The comparison also showed that estimates computed considering only the number of hits and misses registered in the TLS datasets were consistently lower than those estimated from hemispherical photographs. To examine this difference, the potential information available in the intensity values recorded by TLS was investigated and a new method developed to estimate canopy gap fraction proposed. The new approach produced gap fractions closer to those estimated from hemispherical photography, but the research also highlighted the limitations of single return TLS data for this application.

  14. A compact, inherently safe liquid metal reactor plant concept for terrestrial defense power applications

    Magee, P.M.; Dubberley, A.E.; Lutz, D.E.; Palmer, R.S.

    1987-01-01

    A compact, inherently safe, liquid metal reactor concept based on the GE PRISM innovative LMR design has been developed for terrestrial defense power applications in the 2-50 MWe range. The concept uses a small, sodium-cooled, U-5%Zr metal fueled reactor contained within two redundant steel vessels. The core is designed to operate at a low power density and temperature (925 F) and can operate 30 years without refueling. One two primary coolant loops, depending upon the plant size, transport heat from the core to sodium-to-air, double-wall heat exchangers. Power is produced by a gas turbine operated in a closed ''bottoming'' cycle that employs intercoolers between the compressor stages and a recuperator. Inherent safety is provided by passive means only; operator action is not required to ensure plant safety even for events normally considered Beyond Design Basis Accidents. In addition to normal shutdown heat removal via the sodium-to-air heat exchangers, the design utilizes an inherently passive radiant vessel auxiliary cooling system similar to that designed for PRISM. The use of an air cycle gas turbine eliminates the cost and complexity of the sodium-water reactor pressure relief system required for a steam cycle sodium-cooled reactor

  15. Application of terrestrial 'structure-from-motion' photogrammetry on a medium-size Arctic valley glacier: potential, accuracy and limitations

    Hynek, Bernhard; Binder, Daniel; Boffi, Geo; Schöner, Wolfgang; Verhoeven, Geert

    2014-05-01

    Terrestrial photogrammetry was the standard method for mapping high mountain terrain in the early days of mountain cartography, until it was replaced by aerial photogrammetry and airborne laser scanning. Modern low-price digital single-lens reflex (DSLR) cameras and highly automatic and cheap digital computer vision software with automatic image matching and multiview-stereo routines suggest the rebirth of terrestrial photogrammetry, especially in remote regions, where airborne surveying methods are expensive due to high flight costs. Terrestrial photogrammetry and modern automated image matching is widely used in geodesy, however, its application in glaciology is still rare, especially for surveying ice bodies at the scale of some km², which is typical for valley glaciers. In August 2013 a terrestrial photogrammetric survey was carried out on Freya Glacier, a 6km² valley glacier next to Zackenberg Research Station in NE-Greenland, where a detailed glacier mass balance monitoring was initiated during the last IPY. Photos with a consumer grade digital camera (Nikon D7100) were taken from the ridges surrounding the glacier. To create a digital elevation model, the photos were processed with the software photoscan. A set of ~100 dGPS surveyed ground control points on the glacier surface was used to georeference and validate the final DEM. Aim of this study was to produce a high resolution and high accuracy DEM of the actual surface topography of the Freya glacier catchment with a novel approach and to explore the potential of modern low-cost terrestrial photogrammetry combined with state-of-the-art automated image matching and multiview-stereo routines for glacier monitoring and to communicate this powerful and cheap method within the environmental research and glacier monitoring community.

  16. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many

  17. Application of Integrated Photogrammetric and Terrestrial Laser Scanning Data to Cultural Heritage Surveying

    Klapa, Przemyslaw; Mitka, Bartosz; Zygmunt, Mariusz

    2017-12-01

    The terrestrial laser scanning technology has a wide spectrum of applications, from land surveying, civil engineering and architecture to archaeology. The technology is capable of obtaining, in a short time, accurate coordinates of points which represent the surface of objects. Scanning of buildings is therefore a process which ensures obtaining information on all structural elements a building. The result is a point cloud consisting of millions of elements which are a perfect source of information on the object and its surrounding. The photogrammetric techniques allow documenting an object in high resolution in the form of orthophoto plans, or are a basis to develop 2D documentation or obtain point clouds for objects and 3D modelling. Integration of photogrammetric data and TLS brings a new quality in surveying historic monuments. Historic monuments play an important cultural and historical role. Centuries-old buildings require constant renovation and preservation of their structural and visual invariability while maintaining safety of people who use them. The full process of surveying allows evaluating the actual condition of monuments and planning repairs and renovations. Huge sizes and specific types of historic monuments cause problems in obtaining reliable and full information on them. The TLS technology allows obtaining such information in a short time and is non-invasive. A point cloud is not only a basis for developing architectural and construction documentation or evaluation of actual condition of a building. It also is a real visualization of monuments and their entire environment. The saved image of object surface can be presented at any time and place. A cyclical TLS survey of historic monuments allows detecting structural changes and evaluating damage and changes that cause deformation of monument’s components. The paper presents application of integrated photogrammetric data and TLS illustrated on an example of historic monuments from southern

  18. Application of terrestrial laser scanning to the development and updating of the base map

    Klapa, Przemysław; Mitka, Bartosz

    2017-06-01

    The base map provides basic information about land to individuals, companies, developers, design engineers, organizations, and government agencies. Its contents include spatial location data for control network points, buildings, land lots, infrastructure facilities, and topographic features. As the primary map of the country, it must be developed in accordance with specific laws and regulations and be continuously updated. The base map is a data source used for the development and updating of derivative maps and other large scale cartographic materials such as thematic or topographic maps. Thanks to the advancement of science and technology, the quality of land surveys carried out by means of terrestrial laser scanning (TLS) matches that of traditional surveying methods in many respects. This paper discusses the potential application of output data from laser scanners (point clouds) to the development and updating of cartographic materials, taking Poland's base map as an example. A few research sites were chosen to present the method and the process of conducting a TLS land survey: a fragment of a residential area, a street, the surroundings of buildings, and an undeveloped area. The entire map that was drawn as a result of the survey was checked by comparing it to a map obtained from PODGiK (pol. Powiatowy Ośrodek Dokumentacji Geodezyjnej i Kartograficznej - Regional Centre for Geodetic and Cartographic Records) and by conducting a field inspection. An accuracy and quality analysis of the conducted fieldwork and deskwork yielded very good results, which provide solid grounds for predicating that cartographic materials based on a TLS point cloud are a reliable source of information about land. The contents of the map that had been created with the use of the obtained point cloud were very accurately located in space (x, y, z). The conducted accuracy analysis and the inspection of the performed works showed that high quality is characteristic of TLS surveys. The

  19. Application of Digital Terrestrial Photogrammetry in Architectural Conservation: the Mosque of Abdullah Ibn Salam of Oran

    Boukerch, I.; Takarli, B.; Mahmoudi, R.; Tellai, S.; Chadli, D.

    2016-10-01

    Studies on the architectural heritage can now be supported by three-dimensional reconstruction of actual buildings. The 3D digital model can be an effective medium for documenting the current state of historic buildings but also to create a resource for researchers who conduct their analysis on historical evolution. Architectural photogrammetry has its own specifications in relation to other photogrammetric applications, however it meets these expectations. The traditional approach requires the use of metric cameras but with the development of computational techniques, this requirement is overcome and opens the way for the use of non-metric camera. The use of the shots that is no longer restricted to the parallel configuration of bundles, the images may be convergent, horizontal or oblique. Combining and modelling several cameras increasingly powerful in resolution and stability, has great scope and the same workflow can be used in varied applications. ISPRS and ICOMOS created CIPA because they both believe that a monument can be restored and protected only when it has been fully measured and documented and when its development has been documented several times, i.e. monitored, also with respect to its environment, and stored in proper heritage information and management systems. In this paper the 3D modelling of an important cultural site using terrestrial photogrammetric techniques for architectural preservation is presented. The site is the mosque of Abdullah Ibn Salam, Built in 1880 at the initiative of Simon Kanoui, also known as the Great Synagogue of Oran was inaugurated in 1918 only. It was one of the largest and most beautiful synagogues in North Africa. It was built with stone imported from Jerusalem. This place of worship became in 1975 the mosque of Abdullah Ibn Salam who was a rich Jew of Medina who was converted to Islam. The structure is modelled using 321 oriented photos taken in five series of shots that cover all the façade and the interior of

  20. Terrestrial liming to promote Atlantic Salmon recovery in Nova Scotia - approaches needed and knowledge gained after a trial application

    Sterling, S. M.; Angelidis, C.; Armstrong, M.; Biagi, K. M.; Clair, T. A.; Jackson, N.; Breen, A.

    2014-09-01

    Populations of Atlantic salmon (Salmo salar) in Southwest Nova Scotia (SWNS) have plummeted since the 1980s. Acidification is considered a main threat to this population. The lakes and streams of SWNS were among the most heavily acidified in North America during the last century and calcium levels are predicted to continue to fall in coming decades. One of the most promising mitigation options to reduce the risk of extirpation of the SWNS Salmo salar is terrestrial liming; however, both the chemistry of SWNS rivers, and effective strategies for terrestrial liming in SWNS are poorly understood. Here we have launched the first terrestrial liming study in Nova Scotia, employing a test hydrologic source area liming strategy in a 5 ha experimental catchment in SWNS, Maria Brook; we apply an average local application rate of 13 t ha-1 to 10% of the 47 ha catchment. We employ high frequency stream monitoring to complement grab sampling to identify which constituents pose a threat to Salmo salar and to identify strategies for larger scale terrestrial liming that would fit the local conditions. Results indicate that the water chemistry conditions are currently at toxic levels for Salmo salar throughout the year, with levels of ionic aluminium exceeding toxic thresholds almost 100% of the time. The stream chemistry in Maria Brook is remarkably similar to pre-recovery conditions in other heavily acidified watersheds, such as Birkenes in Norway. Our results support the hypothesis that there has been no recovery from acidification in SWNS. Results from the first year of post-liming do not show an improvement in stream chemistry levels, and further lime application is needed to improve the water chemistry conditions to needed levels for the recovery of Salmo salar.

  1. The Development of Terrestrial Water Cycle Applications for SMAP Soil Moisture Data Products

    Soil moisture storage sits at the locus of the terrestrial water cycle and governs the relative partitioning of precipitation into various land surface flux components. Consequently, improved observational constraint of soil moisture variations should improve our ability to globally monitor the te...

  2. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  3. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  4. Application of Unmanned Air Vehicles (UAV) in monitoring of terrestrial habitats

    Sørensen, Peter Borgen; Strandberg, Beate; Bak, Jesper Leth

    2015-01-01

    I the last years there have been high focus on UAVs (drones) for many civil purposes and UAVs are also increasingly used for ecological data gathering. This presentation will first make an appetizer to show the new possibilities of using UAVs. The traditional concept of separating “data......” that are “real” from “models” that are “simulations” has to be refined in the area of field investigations, in order to utilize UAVs to make a revolution in data and understanding about the terrestrial habitats. However, this is not straightforward, and the presentation will line up the obstacles for using UAVs...

  5. Quantifying spatially derived carrying capacity occupation: Framework for characterisation modelling and application to terrestrial acidification

    Bjørn, Anders; Margni, M.; Bulle, C.

    *year. This metric resembles that of the ecological footprint method and may be compared to the availability of land or water. The framework was applied to the terrestrial acidification impact category. The geochemical steady-state model PROFILE was used to quantify carrying capacities as deposition levels......The popularity of the ecological footprint method and the planetary boundaries concept shows an increasing interest among decision makers in comparing environmental impacts to carrying capacities of natural systems. Recently carrying capacity-based normalisation references were developed for impact...

  6. Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica

    Hyoungsig Cho

    2015-09-01

    Full Text Available A terrestrial Light Detection and Ranging (LIDAR system has high productivity and accuracy for topographic mapping, but the harsh conditions of Antarctica make LIDAR operation difficult. Low temperatures cause malfunctioning of the LIDAR system, and unpredictable strong winds can deteriorate data quality by irregularly shaking co-registration targets. For stable and efficient LIDAR operation in Antarctica, this study proposes and demonstrates the following practical solutions: (1 a lagging cover with a heating pack to maintain the temperature of the terrestrial LIDAR system; (2 co-registration using square planar targets and two-step point-merging methods based on extracted feature points and the Iterative Closest Point (ICP algorithm; and (3 a georeferencing module consisting of an artificial target and a Global Navigation Satellite System (GNSS receiver. The solutions were used to produce a topographic map for construction of the Jang Bogo Research Station in Terra Nova Bay, Antarctica. Co-registration and georeferencing precision reached 5 and 45 mm, respectively, and the accuracy of the Digital Elevation Model (DEM generated from the LIDAR scanning data was ±27.7 cm.

  7. Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica.

    Cho, Hyoungsig; Hong, Seunghwan; Kim, Sangmin; Park, Hyokeun; Park, Ilsuk; Sohn, Hong-Gyoo

    2015-09-16

    A terrestrial Light Detection and Ranging (LIDAR) system has high productivity and accuracy for topographic mapping, but the harsh conditions of Antarctica make LIDAR operation difficult. Low temperatures cause malfunctioning of the LIDAR system, and unpredictable strong winds can deteriorate data quality by irregularly shaking co-registration targets. For stable and efficient LIDAR operation in Antarctica, this study proposes and demonstrates the following practical solutions: (1) a lagging cover with a heating pack to maintain the temperature of the terrestrial LIDAR system; (2) co-registration using square planar targets and two-step point-merging methods based on extracted feature points and the Iterative Closest Point (ICP) algorithm; and (3) a georeferencing module consisting of an artificial target and a Global Navigation Satellite System (GNSS) receiver. The solutions were used to produce a topographic map for construction of the Jang Bogo Research Station in Terra Nova Bay, Antarctica. Co-registration and georeferencing precision reached 5 and 45 mm, respectively, and the accuracy of the Digital Elevation Model (DEM) generated from the LIDAR scanning data was ±27.7 cm.

  8. Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications

    Mohammed, Hani Mahmoud

    This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an

  9. Application of terrestrial laser scanning to the development and updating of the base map

    Klapa Przemysław

    2017-06-01

    Full Text Available The base map provides basic information about land to individuals, companies, developers, design engineers, organizations, and government agencies. Its contents include spatial location data for control network points, buildings, land lots, infrastructure facilities, and topographic features. As the primary map of the country, it must be developed in accordance with specific laws and regulations and be continuously updated. The base map is a data source used for the development and updating of derivative maps and other large scale cartographic materials such as thematic or topographic maps. Thanks to the advancement of science and technology, the quality of land surveys carried out by means of terrestrial laser scanning (TLS matches that of traditional surveying methods in many respects.

  10. Differential equation of exospheric lateral transport and its application to terrestrial hydrogen

    Hodges, R. R., Jr.

    1973-01-01

    The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.

  11. Terrestrial Hydrological Data from NASA's Hydrology Data and Information Services Center (HDISC): Products, Services, and Applications

    Fang, Hongliang; Beaudoing, Hiroko K.; Mocko, David M.; Rodell, Matthew; Teng, Bill; Vollmer, Bruce

    2010-01-01

    Terrestrial hydrological variables are important in global hydrology, climate, and carbon cycle studies. The North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) have been generating a series of land surface states (soil moisture, snow, and temperature) and fluxes (evapotranspiration, radiation, and heat flux) variables. These data, hosted at and available from NASA s Hydrology Data and Information Services Center (HDISC), include the NLDAS hourly 1/8 degree products and the GLDAS 3-hourly 0.25 and 1.0 degree products. HDISC provides easy access and visualization and analysis capabilities for these products, thus reducing the time and resources spent by scientists on data management and facilitating hydrological research. Users can perform spatial and parameter subsetting, data format transformation, and data analysis operations without needing to first download the data. HDISC is continually being developed as a data and services portal that supports weather and climate forecasts, and water and energy cycle research.

  12. Application of terrestrial photogrammetry for the mass balance calculation on Montasio Occidentale Glacier (Julian Alps, Italy)

    Piermattei, Livia; Carturan, Luca; Calligaro, Simone; Blasone, Giacomo; Guarnieri, Alberto; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio

    2014-05-01

    Digital elevation models (DEMs) of glaciated terrain are commonly used to measure changes in geometry and hence infer the mass balance of glaciers. Different tools and methods exist to obtain information about the 3D geometry of terrain. Recent improvements on the quality and performance of digital cameras for close-range photogrammetry, and the development of automatic digital photogrammetric processing makes the 'structure from motion' photogrammetric technique (SfM) competitive for high quality 3D models production, compared to efficient but also expensive and logistically-demanding survey technologies such as airborn and terrestrial laser scanner (TLS). The purpose of this work is to test the SfM approach, using a consumer-grade SLR camera and the low-cost computer vision-based software package Agisoft Photoscan (Agisoft LLC), to monitor the mass balance of Montasio Occidentale glacier, a 0.07km2, low-altitude, debris-covered glacier located in the Eastern Italian Alps. The quality of the 3D models produced by the SfM process has been assessed by comparison with digital terrain models obtained through TLS surveys carried out at the same dates. TLS technique has indeed proved to be very effective in determining the volume change of this glacier in the last years. Our results shows that the photogrammetric approach can produce point cloud densities comparable to those derived from TLS measurements. Furthermore, the horizontal and vertical accuracies are also of the same order of magnitude as for TLS (centimetric to decimetric). The effect of different landscape characteristics (e.g. distance from the camera or terrain gradient) and of different substrata (rock, debris, ice, snow and firn) was also evaluated in terms of SfM reconstruction's accuracy vs. TLS. Given the good results obtained on the Montasio Occidentale glacier, it can be concluded that the terrestrial photogrammetry, with the advantageous features of portability, ease of use and above all low costs

  13. Water for Two Worlds: Designing Terrestrial Applications for Exploration-class Sanitation Systems

    Adams, Constance; Andersson, Ingvar; Feighery, John

    2004-01-01

    At the United Nations Millennium Summit in September of 2000, the world leaders agreed on an ambitious agenda for reducing poverty and improving lives: the Millennium Development Goals (MDGs), a list of issues they consider highly pernicious, threatening to human welfare and, thereby, to global security and prosperity. Among the eight goals are included fundamental human needs such as the eradication of extreme poverty and hunger, the promotion of gender equality, the reduction of child mortality and improvement of maternal health, and ensuring the sustainability of our shared environment. In order to help focus the efforts to meet these goals, the United Nations (UN) has established a set of eighteen concrete targets, each with an associated schedule. Among these is Target 10: "By 2015, reduce by half the proportion of people without access to safe drinking water." A closely related target of equal dignity was agreed at the World Summit on Sustainable Development (Johannesburg, September 2002): "By 2015, reduce by half the proportion of people without access to basic sanitation." One of the greatest successes in the development of Exploration-class technologies for closed-loop, sustainable support of long-duration human space missions has been the work both ESA and NASA have done in bioregenerative water reclamation (WRS), and secondarily, in solid-waste management. Solid-waste and WRS systems tend to be combined in the commercial world into the field of sanitation, although as we will see, the most essential principles of sustainable terrestrial sanitation actually insist upon the separation of solid and liquid excreta. Seeing the potential synergy between the space program ALS technologies developed for Mars and the urgent needs of hundreds of millions of people for secure access to clean water here on Earth, we set out to organize the adaptation of these technologies to help the United Nations Development Programme (UNDP) meet Target 10. In this paper, we will

  14. Nuclear reactor closed Brayton cycle power conversion system optimization trends for extra-terrestrial applications

    Ashe, T.L.; Baggenstoss, W.G.; Bons, R.

    1990-01-01

    Extra-terrestrial exploration and development missions of the next century will require reliable, low-mass power generation modules of 100 kW e and more. These modules will be required to support both fixed-base and manned rover/explorer power needs. Low insolation levels at and beyond Mars and long periods of darkness on the moon make solar conversion less desirable for surface missions. For these missions, a closed Brayton cycle energy conversion system coupled with a reactor heat source is a very attractive approach. The authors conducted parametric studies to assess optimized system design trends for nuclear-Brayton systems as a function of operating environment and user requirements. The inherent design flexibility of the closed Brayton cycle energy conversion system permits ready adaptation of the system to future design constraints. This paper describes a dramatic contrast between system designs requiring man-rated shielding. The paper also considers the ramification of using indigenous materials to provide reactor shielding for a fixed-base power source

  15. MODELLING LANDSCAPE MORPHODYNAMICS BY TERRESTRIAL PHOTOGRAMMETRY: AN APPLICATION TO BEACH AND FLUVIAL SYSTEMS

    E. Sánchez-García

    2016-06-01

    Full Text Available Beach and fluvial systems are highly dynamic environments, being constantly modified by the action of different natural and anthropic phenomena. To understand their behaviour and to support a sustainable management of these fragile environments, it is very important to have access to cost-effective tools. These methods should be supported on cutting-edge technologies that allow monitoring the dynamics of the natural systems with high periodicity and repeatability at different temporal and spatial scales instead the tedious and expensive field-work that has been carried out up to date. The work herein presented analyses the potential of terrestrial photogrammetry to describe beach morphology. Data processing and generation of high resolution 3D point clouds and derived DEMs is supported by the commercial Agisoft PhotoScan. Model validation is done by comparison of the differences in the elevation among the photogrammetric point cloud and the GPS data along different beach profiles. Results obtained denote the potential that the photogrammetry 3D modelling has to monitor morphological changes and natural events getting differences between 6 and 25 cm. Furthermore, the usefulness of these techniques to control the layout of a fluvial system is tested by the performance of some modeling essays in a hydraulic pilot channel.

  16. Application of airborne gamma spectrometric survey data to estimating terrestrial gamma-ray dose rates: An example in California

    Wollenberg, H.A.; Revzan, K.L.; Smith, A.R.

    1992-01-01

    The authors examine the applicability of radioelement data from the National Aerial Radiometric Reconnaissance (NARR) to estimate terrestrial gamma-ray absorbed dose rates, by comparing dose rates calculated from aeroradiometric surveys of U, Th, and K concentrations in 1 x 2 degree quadrangles with dose rates calculated from a radiogeologic data base and the distribution of lithologies in California. Gamma-ray dose rates increase generally from north to south following lithological trends. Low values of 25--30 nG/h occur in the northernmost quadrangles where low-radioactivity basaltic and ultramafic rocks predominate. Dose rates then increase southward due to the preponderance of clastic sediments and basic volcanics of the Franciscan Formation and Sierran metamorphics in north central and central California, and to increasing exposure southward of the Sierra Nevada batholith, Tertiary marine sedimentary rocks, intermediate to acidic volcanics, and granitic rocks of the Coast Ranges. High values, to 100 nGy/h occur in southeastern California, due primarily to the presence of high-radioactivity Precambrian and pre Cenozoic metamorphic rocks. Lithologic-based estimates of mean dose rates in the quadrangles generally match those from aeroradiometric data, with statewide means of 63 and 60 nGy/h, respectively. These are intermediate between a population-weighted global average of 51 nGy/h and a weighted continental average of 70 nGy/h, based on the global distribution of rock types. The concurrence of lithologically- and aeroradiometrically- determined dose rates in California, with its varied geology and topography encompassing settings representative of the continents, indicates that the NARR data are applicable to estimates of terrestrial absorbed dose rates from natural gamma emitters

  17. Application of terrestrial laser scanning for coastal geomorphologic research questions in western Greece

    Hoffmeister, Dirk; Curdt, Constanze; Tilly, Nora; Ntageretzis, Konstantin; Aasen, Helge; Vött, Andreas; Bareth, Georg

    2013-04-01

    Coasts are areas of permanent change, influenced by gradual changes and sudden impacts. In particular, western Greece is a tectonically active region, due to the nearby plate boundary of the Hellenic Arc. The region has suffered from numerous earthquakes and tsunamis during prehistoric and historic times and is thus characterized by a high seismic and tsunami hazard risk. Additionally, strong winter storms may reach considerable dimensions. In this study, terrestrial laser scanning was applied for (i) annual change detection at seven coastal areas of western Greece for three years (2009-2011) and (ii) accurate parameter detection of large boulders, dislocated by high-energy wave impacts. The Riegl LMS-Z420i laser scanner was used in combination with a precise DGPS system (Topcon HiPer Pro) for all surveys. Each scan position and a further target were recorded for georeferencing and merging of the point clouds. (i) For the annual detection of changes, reference points for the base station of the DGPS system were marked. High-resolution digital elevation models (HRDEM) were generated from each dataset of the different years and are compared to each other, resulting in mass balances. (ii) 3D-models of dislocated boulders were reconstructed and parameters (e.g. volume in combination with density measurements, distance and height above present sea-level) were derived for the solution of wave transport equations, which estimate the minimum wave height or velocity that is necessary for boulder movement. (i) Our results show that annual changes are detectable by multi-temporal terrestrial laser scanning. In general, volumetric changes and affected areas are quantifiable and maps of changes can be established. On exposed beach areas, bigger changes were detectable, where seagrass and sand is eroded and gravel accumulated. In opposite, only minor changes for elevated areas are derived. Dislocated boulders on several sites showed no movement. At coastal areas with a high

  18. Applications of the First Law to Ecological Systems. Physical Processes in Terrestrial and Aquatic Ecosystems, Thermodynamics.

    Stevenson, R. D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This report describes concepts presented in another module called "The First Law of…

  19. Application of models to conservation planning for terrestrial birds in North America

    Fitzgerald, Jane A.; Thogmartin, Wayne E.; Dettmers, Randy; Jones, Tim; Rustay, Christopher; Ruth, Janet M.; Thompson, Frank R.; Will, Tom; Millspaugh, Joshua J.; Thompson, Frank R.

    2009-01-01

    Partners in Flight (PIF), a public–private coalition for the conservation of land birds, has developed one of four international bird conservation plans recognized under the auspices of the North American Bird Conservation Initiative (NABCI). Partners in Flight prioritized species most in need of conservation attention and set range-wide population goals for 448 species of terrestrial birds. Partnerships are now tasked with developing spatially explicit estimates of the distribution, and abundance of priority species across large ecoregions and identifying habitat acreages needed to support populations at prescribed levels. The PIF Five Elements process of conservation design identifies five steps needed to implement all bird conservation at the ecoregional scale. Habitat assessment and landscape characterization describe the current amounts of different habitat types and summarize patch characteristics, and landscape configurations that define the ability of a landscape to sustain healthy bird populations and are a valuable first step to describing the planning area before pursuing more complex species-specific models. Spatially linked database models, landscape-scale habitat suitability models, and statistical models are viable alternatives for predicting habitat suitability or bird abundance across large planning areas to help assess conservation opportunities, design landscapes to meet population objectives, and monitor change in habitat suitability or bird numbers over time.Bird conservation in the United States is a good example of the use of models in large-scale wildlife conservation planning because of its geographic extent, focus on multiple species, involvement of multiple partners, and use of simple to complex models. We provide some background on the recent development of bird conservation initiatives in the United States and the approaches used for regional conservation assessment and planning. We focus on approaches being used for landscape

  20. Extraterrestrial Hemorrhage Control: Terrestrial Developments in Technique, Technology, and Philosophy with Applicability to Traumatic Hemorrhage in Space

    Kirkpatrick, Andrew; Dawson, David; Campbell, Mark; Jones, Jeff; Ball, Chad G.; Hamilton, Douglas R.; Dulchavsky, Scott; McBeth, Paul; Holcomb, John

    2004-01-01

    Managing injury and illness during long duration space flight limits efforts to explore beyond low earths orbit. Traumatic injury may be expected to occur in space and is a frequent cause of preventable deaths, often related to uncontrolled or ongoing hemorrhage (H). Such bleeding causes 40% of terrestrial injury mortality. Current guidelines emphasize early control of H compared to intravenous infusions. Recent advances in surgical and critical care may be applicable to trauma care in space, with appropriate considerations of the extreme logistical and personnel limitations. Methods: Recent developments in technique, resuscitation fluids, hemoglobin (Hb) substitutes, hemostatic agents, interventional angiography, damage control principles, and concepts related to suspended animation were reviewed. Results: H associated with instability frequently requires definitive intervention. Direct pressure should be applied to all compressible bleeding, but novel approaches are required for intracavitary noncompressible bleeding. Intravenous hemostatic agents such as recombinant Factor VII may facilitate hemostasis especially when combined with a controlled hypotension approach. Both open and laparoscopic techniques could be used in weightlessness, but require technical expertise not likely to be available. Specific rehearsed invasive techniques such as laparotomy with packing, or arterial catherterization with with robotic intravascular embolization might be considered . Hemodynamic support, thermal manipulation, or pharmacologic induction of a state of metabolic down regulation for whole body preservation may be appropriate. Hypertonic saline, with or without dextran, may temporize vascular support and decrease reperfusion injury, with less mass than other solutions. Hb substitutes have other theoretical advantages. Conclusions: Terrestrial developments suggest potential novel strategies to control H in space, but will required a coordinated program of evaluation and

  1. Feasibility study of a small, thorium-based fission power system for space and terrestrial applications

    Worrall, Michael Jason

    One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the

  2. Very small HTGR nuclear power plant concepts for special terrestrial applications

    McDonald, C.F.; Goodjohn, A.J.

    1983-01-01

    The role of the very small nuclear power plant, of a few megawatts capacity, is perceived to be for special applications where an energy source as required but the following prevail: 1) no indigenous fossil fuel source, in long transport distances that add substantially to the cost of oil, coal in gas, and 3) secure long-term power production for defense applications with freedom from fuel supply lines. A small High Temperature Gas-Cooled reactor (HTGR) plant could provide the total energy needs for 1) a military installation, 2) an island base of strategic significance, 3) an industrial community or 4) an urban area. The small HTGR is regarded as a fixed-base installation (as opposed to a mobile system). All of the major components would be factory fabricated and transported to the site where emphasis would be placed on minimizing the construction time. The very small HTGR plant, currently in an early stage of design definition, has the potential for meeting the unique needs of the small energy user in both the military and private sectors. The plant may find acceptance for specialized applications in the industrialized nations and to meet the energy needs of developing nations. Emphasis in the design has been placed on safety, simplicity and compactness

  3. Cosmogenic radionuclides. Theory and applications in the terrestrial and space environments

    Beer, Juerg; Steiger, Rudolf von; McCracken, Ken

    2012-01-01

    Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.

  4. Cosmogenic radionuclides. Theory and applications in the terrestrial and space environments

    Beer, Juerg [Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz, Duebendorf (Switzerland); Steiger, Rudolf von [International Space Science Insitute, Bern (Switzerland); McCracken, Ken [Maryland Univ., College Park (United States). IPST

    2012-07-01

    Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.

  5. New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications

    Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.

    2013-01-01

    Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The

  6. Use of nuclear space technology of direct energy conversion for terrestrial application

    Chitaykin, V.I.; Meleta, Ye.A.; Yarygin, V.I.; Mikheyev, A.S.; Tulin, S.M.

    2000-01-01

    In due time the SSC RF-IPPE exercised the scientific supervision and directly participated in the development, fabrication, space flight test and maintenance of the direct energy conversion nuclear power plants (NPP) for space application under the 'BUK' and 'TOPAZ' programs. We have used the acquired experience and the high technologies developed for the 'BUK' NPP with a thermoelectric conversion of thermal (nuclear) energy into electrical one in the development under the order of RAO 'GAZPROM' of the natural gas fired self contained thermoelectric current sources (AIT-500) and heat and electricity sources (TEP-500). These are intended for electrochemical rust protection of gas pipelines and for the electricity and heat supply to the telemetric and microwave-link systems located along the gas pipelines. Of special interest at the moment are the new developments of self contained current sources with the electrical output of ∼500 Wel for new gas pipelines being constructed under the projects such as the 'Yamal-Europe' project. The electrochemical rust protection of gas pipelines laying on unsettled and non-electrified territory of arctic regions of Russia is performed by means of the so-called Cathodic Protection Stations (CPS). Accounting for a complex of rather rigid requirements imposed by arctic operating conditions, the most attractive sources of electricity supply to the CPS are the thermoelectric heat-into-electricity converters and the generators (TEG). This paper deals with the essential results of the development, investigation and testing of unconventional TEGs using the low-temperature bismuth-tellurium thermoelectric batteries assembled together as tubular thermoelectric batteries with a radial ring geometry built into the gas-heated thermoelectric modules, which are collected to make up either the thermoelectric plants for heat and electricity supply or the self contained power sources. One of the peculiarities of these plants is the combination of

  7. Terrestrial magnetosphere

    Pande, D.C.; Agarwal, D.C.

    1982-01-01

    This paper presents a review about terrestrial magnetosphere. During the last few years considerable investigation have been carried out about the properties of Solar Wind and its interaction with planetary magnetic fields. It is therefore of high importance to accumulate all the investigations in a comprehensive form. The paper reviews the property of earth's magnetosphere, magnetosheath, magneto pause, polar cusps, bow shook and plasma sheath. (author)

  8. Development and application of terrestrial food-chain models to assess health risks to man from releases of pollutants to the environment

    Kaye, S.V.; Hoffman, O.; McDowell-Boyer, L.M.; Baes, C.F.

    1982-01-01

    The paper reviews development and application of mathematical models used to predict the terrestrial food-chain transport of pollutants of potential importance to human health. A distinction is made between models developed specifically for assessment applications and models which may function as research tools. Differentiation is also made between models whose structure is based on steady-state relationships among food-chain compartments and dynamic models developed to simulate food-chain and pollutant kinetics. The strengths and weaknesses of these models are related to the needs of the model-user, the availability of relevant data for parameter quantification, and the feasibility for model validation. For assessment purposes, an optimum level of structural complexity will be achieved when all parameters are readily measurable and predictive error due to unforeseen correlations among parameters is small. The optimum level of simplification, however, will be determined by model validation results and the ease of model implementation. Most examples are derived from models used to assess the terrestrial food-chain transport of radionuclides because assessment methodologies for other types of pollutants are only at an early stage of development. It is concluded that current limitations in parameter quantification and model validation will probably restrict most assessment applications of terrestrial food-chain models to a type of screening calculation. However, once pollutant releases actually occur, environmental monitoring will be necessary to ensure that potential model misprediction does not result in unacceptable consequences. (author)

  9. Development and application of terrestrial food chain models to assess health risks to man and releases of pollutants to the environment

    Kaye, S.V.; Hoffman, F.O.; McDowell-Boyer, L.M.; Baes, C.F.

    1981-01-01

    This paper reviews the development and application of mathematical models used to predict the terrestrial food chain transport of pollutants of potential importance to human health. A distinction is made between models developed specifically for assessment applications and models which may function as research tools. Differentiation is also made between models whose structure is based on steady-state relationships among food chain compartments and dynamic models developed to simulate food chain and pollutant kinetics. The strengths and weaknesses of these models are related to the needs of the model user, the availability of relevant data for parameter quantification, and the feasibility for model validation. For assessment purposes, an optimum level of structural complexity will be achieved when all parameters are readily measurable and predictive error due to unforeseen correlations among parameters is small. The optimum level of simplification, however, will be determined by model validation results and the ease of model implementation. Most examples are derived from models used to assess the terrestrial food chain transport of radionuclides because assessment methodologies for other types of pollutants are only at an early stage of development. It is concluded that current limitations in parameter quantification and model validation will probably restrict most assessment applications of terrestrial food chain models to a type of screening calculation. However, once pollutant releases actually occur, environmental monitoring will be necessary to ensure that potential model misprediction does not result in unacceptable consequences

  10. The Combined Strength of Thermodynamics and Comparative Planetology: Application of Activity Models to Core Formation in Terrestrial Bodies

    Righter, K.; Pando, K. M.; Danielson, L. R.

    2015-01-01

    Recent models for accretion of terrestrial bodies involve metal-silicate equilibrium as the metallic core formed during growth. Most elements considered are either refractory or well studied elements for which effects of pressure, temperature, oxygen fugacity, and metallic liquid composition are well known. There are a large number of elements that are both siderophile and volatile, whose fate in such models is unknown, largely due to a lack of data at comparable conditions and com-positions (FeNi core with light elements such as S, C, Si, and O). We have focused on Ge, In, As, Sb and determined the effect of Si and C on metal-silicate partitioning, and developed a thermo-dynamic model that allows application of these new data to a wide range of planetary bodies. New experiments: We have previously carried out experiments with FeSi metallic liquid at C-saturated conditions at 1600 and 1800 C [4]. In a new series of experiments we investigate the effect of Si in carbon-free systems at 1600 C for comparison. Experiments were carried out at 1 GPa in MgO capsules using the same basaltic starting composition as in previous studies. The MgO capsule reacts with the silicate melt to form more MgO-rich liquids that have 22-26 wt% MgO. Experimental met-als and silicates were analyzed using a combination of electron microprobe analysis and laser ablation ICP-MS. Results: The new results can be interpreted by considering Ge as an example, in the simple exchange equilibrium Fe + GeO = FeO + Ge, where the equilibrium constant Kd can be examined as a function of Si content of the metal. The slope of lnKd vs. (1-XSi) for this new series allows derivation of the epsilon interaction parameter for each of these four elements and Si (both C-saturated and C-free).All four elements have positive epsilon values, indicating that Si causes a decrease in the partition coefficients; values are 6.6, 6.5, 27.8 and 25.2 for In, Ge, As, and Sb, respectively, at 1 GPa and 1600 C. As an example of

  11. Cutaneous application of an accessory-gland secretion after sperm exchange in a terrestrial slug (Mollusca : Pulmonata)

    Benke, Mandy; Reise, Heike; Montagne-Wajer, Kora; Koene, Joris M

    Competition for fertilisation in hermaphroditic animals seems to have led to many odd behaviours and complex morphologies involved in the transfer of accessory-gland products to the partner. Terrestrial slugs of the genus Deroceras show remarkably elaborate and interspecifically diverse penis

  12. Application of a terrestrial ecosystem model (ORCHIDEE-STICS) in simulating energy and CO2 fluxes in Asian rice croplands

    Wang, X.; Piao, S.; Ciais, P.; Vuichard, N.

    2012-12-01

    Process-based terrestrial ecosystem models have shown great potentials in predicting the response of managed ecosystems to environmental changes. However, the simulated water and carbon fluxes over rice ecosystems in tropical Asia are still subject to large uncertainties, partly due to poorly constrained parameters in the models. Here, a terrestrial ecosystem model incorporating a more realistic crop module (ORCHIDEE-STICS) was calibrated against in-situ flux data and observed and remotely sensed leaf area indexes over rice ecosystems in Asia. The key parameters adjusted include maximum photosynthetic carboxylation rate (Vcmax) and electron transport rate (Vjmax), temperature sensitivity of heterotrophic respiration (Q10) and a series of critical thresholds for different crop development stages. Compared with the observations, the calibrated model more realistically simulated the seasonal and year-to-year variation of the observed water and carbon fluxes with reductions in the root mean square difference and better timing in the crop development stages. Sensitivity tests further reveal that management practices like the timing of transplanting and draining could affect the seasonal and inter-annual variation of the net carbon exchange, suggesting that the absence of explicit accounting the change of management practices in the terrestrial ecosystem models may induce large uncertainties in predicting cropland ecosystem response to future climate change.

  13. Phytopharmacology of Tribulus terrestris.

    Shahid, M; Riaz, M; Talpur, M M A; Pirzada, T

    2016-01-01

    Tribulus terrestris is an annual herb which belongs to the Zygophyllaceae family. This plant has been used in traditional medicine for the treatment of various diseases for hundreds of decades. The main active phytoconstituents of this plant include flavonoids, alkaloids, saponins, lignin, amides, and glycosides. The plant parts have different pharmacological activities including aphrodisiac, antiinflammatory, antimicrobial and antioxidant potential. T. terrestris is most often used for infertility and loss of libido. It has potential application as immunomodulatory, hepatoprotective, hypolipidemic, anthelmintic and anticarcinogenic activities. The aim of the present article is to create a database for further investigation of the phytopharmacological properties of this plant to promote research. This study will definitely help to confirm its traditional use along with its value-added utility, eventually leading to higher revenues from the plant.

  14. The Application of an Online Data Visualization Tool, Ptplot, in the World Data Center (WDC for Solar-Terrestrial Science (STS in IPS Radio and Space Services, Australia

    K Wang

    2013-02-01

    Full Text Available Ptplot is a set of two dimensional signal plotters components written in Java with multiple properties, such as being embeddable in applets or applications, utilizing automatic or manual tick marks, logarithmic axes, infinite zooming, and much more. The World Data Centre of IPS applies Ptplot as a multiple function online data plot tool by converting various text format data files into Ptplot recognizable XML files with the AWK language. At present, Ptplot has allowed eight archived solar-terrestrial science data sets to be easily plotted, viewed, and downloaded from the IPS web site.

  15. Terrestrial ecology

    Anon.

    1977-01-01

    The main effort of the Terrestrial Ecology Division has been redirected to a comprehensive study of the Espiritu Santo Drainage Basin located in northeastern Puerto Rico. The general objective are to provide baseline ecological data for future environmental assessment studies at the local and regional levels, and to provide through an ecosystem approach data for the development of management alternatives for the wise utilization of energy, water, and land resources. The interrelationships among climate, vegetation, soils, and man, and their combined influence upon the hydrologic cycle will be described and evaluated. Environmental management involves planning and decision making, and both require an adequate data base. At present, little is known about the interworkings of a complete, integrated system such as a drainage basin. A literature survey of the main research areas confirmed that, although many individual ecologically oriented studies have been carried out in a tropical environment, few if any provide the data base required for environmental management. In view of rapidly changing socio-economic conditions and natural resources limitations, management urgently requires data from these systems: physical (climatological), biological, and cultural. This integrated drainage basin study has been designed to provide such data. The scope of this program covers the hydrologic cycle as it is affected by the interactions of the physical, biological, and cultural systems

  16. Validation and Application of the Modified Satellite-Based Priestley-Taylor Algorithm for Mapping Terrestrial Evapotranspiration

    Yunjun Yao

    2014-01-01

    Full Text Available Satellite-based vegetation indices (VIs and Apparent Thermal Inertia (ATI derived from temperature change provide valuable information for estimating evapotranspiration (LE and detecting the onset and severity of drought. The modified satellite-based Priestley-Taylor (MS-PT algorithm that we developed earlier, coupling both VI and ATI, is validated based on observed data from 40 flux towers distributed across the world on all continents. The validation results illustrate that the daily LE can be estimated with the Root Mean Square Error (RMSE varying from 10.7 W/m2 to 87.6 W/m2, and with the square of correlation coefficient (R2 from 0.41 to 0.89 (p < 0.01. Compared with the Priestley-Taylor-based LE (PT-JPL algorithm, the MS-PT algorithm improves the LE estimates at most flux tower sites. Importantly, the MS-PT algorithm is also satisfactory in reproducing the inter-annual variability at flux tower sites with at least five years of data. The R2 between measured and predicted annual LE anomalies is 0.42 (p = 0.02. The MS-PT algorithm is then applied to detect the variations of long-term terrestrial LE over Three-North Shelter Forest Region of China and to monitor global land surface drought. The MS-PT algorithm described here demonstrates the ability to map regional terrestrial LE and identify global soil moisture stress, without requiring precipitation information.

  17. A Condensation–coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds

    Ohno, Kazumasa; Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2017-02-01

    A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our model by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation–coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.

  18. A Condensation–coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds

    Ohno, Kazumasa; Okuzumi, Satoshi

    2017-01-01

    A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our model by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation–coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.

  19. Application of Terrestrial Laser Scanner with an Integrated Thermal Camera in Non-Destructive Evaluation of Concrete Surface of Hydrotechnical Objects

    Kaczmarek, Łukasz Dominik; Dobak, Paweł Józef; Kiełbasiński, Kamil

    2017-12-01

    The authors present possible applications of thermal data as an additional source of information on an object's behaviour during the technical assessment of the condition of a concrete surface. For the study one of the most recent propositions introduced by Zoller + Fröhlich company was used, which is an integration of a thermal camera with a terrestrial laser scanner. This solution enables an acquisition of geometric and spectral data on the surveyed object and also provides information on the surface's temperature in the selected points. A section of the dam's downstream concrete wall was selected as the subject of the study for which a number of scans were carried out and a number of thermal images were taken at different times of the day. The obtained thermal data was confronted with the acquired spectral information for the specified points. This made it possible to carry out broader analysis of the surface and an inspection of the revealed fissure. The thermal analysis of said fissure indicated that the temperature changes within it are slower, which may affect the way the concrete works and may require further elaboration by the appropriate experts. Through the integration of a thermal camera with a terrestrial laser scanner one can not only analyse changes of temperature in the discretely selected points but on the whole surface as well. Moreover, it is also possible to accurately determine the range and the area of the change affecting the surface. The authors note the limitations of the presented solution like, inter alia, the resolution of the thermal camera.

  20. Application of Terrestrial Laser Scanner with an Integrated Thermal Camera in Non-Destructive Evaluation of Concrete Surface of Hydrotechnical Objects

    Kowalska Maria

    2017-12-01

    Full Text Available The authors present possible applications of thermal data as an additional source of information on an object’s behaviour during the technical assessment of the condition of a concrete surface. For the study one of the most recent propositions introduced by Zoller + Fröhlich company was used, which is an integration of a thermal camera with a terrestrial laser scanner. This solution enables an acquisition of geometric and spectral data on the surveyed object and also provides information on the surface’s temperature in the selected points. A section of the dam’s downstream concrete wall was selected as the subject of the study for which a number of scans were carried out and a number of thermal images were taken at different times of the day. The obtained thermal data was confronted with the acquired spectral information for the specified points. This made it possible to carry out broader analysis of the surface and an inspection of the revealed fissure. The thermal analysis of said fissure indicated that the temperature changes within it are slower, which may affect the way the concrete works and may require further elaboration by the appropriate experts. Through the integration of a thermal camera with a terrestrial laser scanner one can not only analyse changes of temperature in the discretely selected points but on the whole surface as well. Moreover, it is also possible to accurately determine the range and the area of the change affecting the surface. The authors note the limitations of the presented solution like, inter alia, the resolution of the thermal camera.

  1. Effective leaf area index retrieving from terrestrial point cloud data: coupling computational geometry application and Gaussian mixture model clustering

    Jin, S.; Tamura, M.; Susaki, J.

    2014-09-01

    Leaf area index (LAI) is one of the most important structural parameters of forestry studies which manifests the ability of the green vegetation interacted with the solar illumination. Classic understanding about LAI is to consider the green canopy as integration of horizontal leaf layers. Since multi-angle remote sensing technique developed, LAI obliged to be deliberated according to the observation geometry. Effective LAI could formulate the leaf-light interaction virtually and precisely. To retrieve the LAI/effective LAI from remotely sensed data therefore becomes a challenge during the past decades. Laser scanning technique can provide accurate surface echoed coordinates with densely scanned intervals. To utilize the density based statistical algorithm for analyzing the voluminous amount of the 3-D points data is one of the subjects of the laser scanning applications. Computational geometry also provides some mature applications for point cloud data (PCD) processing and analysing. In this paper, authors investigated the feasibility of a new application for retrieving the effective LAI of an isolated broad leaf tree. Simplified curvature was calculated for each point in order to remove those non-photosynthetic tissues. Then PCD were discretized into voxel, and clustered by using Gaussian mixture model. Subsequently the area of each cluster was calculated by employing the computational geometry applications. In order to validate our application, we chose an indoor plant to estimate the leaf area, the correlation coefficient between calculation and measurement was 98.28 %. We finally calculated the effective LAI of the tree with 6 × 6 assumed observation directions.

  2. Characterizing Terrestrial Exoplanets

    Meadows, V. S.; Lustig-Yaeger, J.; Lincowski, A.; Arney, G. N.; Robinson, T. D.; Schwieterman, E. W.; Deming, L. D.; Tovar, G.

    2017-11-01

    We will provide an overview of the measurements, techniques, and upcoming missions required to characterize terrestrial planet environments and evolution, and search for signs of habitability and life.

  3. Innovative Approaches for the Dissemination of Near Real-time Geostationary Satellite Data for Terrestrial and Space Weather Applications

    Jedlovec, G.; McGrath, K.; Meyer, P. J.; Berndt, E.

    2017-12-01

    A GOES-R series receiving station has been installed at the NASA Marshall Space Flight Center (MSFC) to support GOES-16 transition-to-operations projects of NASA's Earth science program and provide a community portal for GOES-16 data access. This receiving station is comprised of a 6.5-meter dish; motor-driven positioners; Quorum feed and demodulator; and three Linux workstations for ingest, processing, display, and subsequent product generation. The Community Satellite Processing Package (CSPP) is used to process GOES Rebroadcast data from the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS), and Space Environment In-Situ Suite (SEISS) into Level 1b and Level 2 files. GeoTIFFs of the imagery from several of these instruments are ingested into an Esri Arc Enterprise Web Map Service (WMS) server with tiled imagery displayable through a web browser interface or by connecting directly to the WMS with a Geographic Information System software package. These data also drive a basic web interface where users can manually zoom to and animate regions of interest or acquire similar results using a published Application Program Interface. While not as interactive as a WMS-driven interface, this system is much more expeditious with generating and distributing requested imagery. The legacy web capability enacted for the predecessor GOES Imager currently supports approximately 500,000 unique visitors each month. Dissemination capabilities have been refined to support a significantly larger number of anticipated users. The receiving station also supports NASA's Short-term Prediction, Research, and Transition Center's (SPoRT) project activities to dissemination near real-time ABI RGB products to National Weather Service National Centers, including the Satellite Analysis Branch, National Hurricane Center, Ocean Prediction Center, and Weather Prediction Center, where they

  4. V. Terrestrial vertebrates

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  5. Application of the Monte Carlo method for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples

    Baccouche, S.; Al-Azmi, D.; Karunakara, N.; Trabelsi, A.

    2012-01-01

    Gamma-ray measurements in terrestrial/environmental samples require the use of high efficient detectors because of the low level of the radionuclide activity concentrations in the samples; thus scintillators are suitable for this purpose. Two scintillation detectors were studied in this work; CsI(Tl) and NaI(Tl) with identical size for measurement of terrestrial samples for performance study. This work describes a Monte Carlo method for making the full-energy efficiency calibration curves for both detectors using gamma-ray energies associated with the decay of naturally occurring radionuclides 137 Cs (661 keV), 40 K (1460 keV), 238 U ( 214 Bi, 1764 keV) and 232 Th ( 208 Tl, 2614 keV), which are found in terrestrial samples. The magnitude of the coincidence summing effect occurring for the 2614 keV emission of 208 Tl is assessed by simulation. The method provides an efficient tool to make the full-energy efficiency calibration curve for scintillation detectors for any samples geometry and volume in order to determine accurate activity concentrations in terrestrial samples. - Highlights: ► CsI (Tl) and NaI (Tl) detectors were studied for the measurement of terrestrial samples. ► Monte Carlo method was used for efficiency calibration using natural gamma emitting terrestrial radionuclides. ► The coincidence summing effect occurring for the 2614 keV emission of 208 Tl is assessed by simulation.

  6. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  7. Carbon dioxide efficiency of terrestrial enhanced weathering

    Moosdorf, Nils; Renforth, Philip; Hartmann, Jens

    2014-01-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimi...

  8. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  9. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

    J. Joiner

    2013-10-01

    Full Text Available Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2. The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT. GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0

  10. Does terrestrial epidemiology apply to marine systems?

    McCallum, Hamish I.; Kuris, Armand M.; Harvell, C. Drew; Lafferty, Kevin D.; Smith, Garriet W.; Porter, James

    2004-01-01

    Most of epidemiological theory has been developed for terrestrial systems, but the significance of disease in the ocean is now being recognized. However, the extent to which terrestrial epidemiology can be directly transferred to marine systems is uncertain. Many broad types of disease-causing organism occur both on land and in the sea, and it is clear that some emergent disease problems in marine environments are caused by pathogens moving from terrestrial to marine systems. However, marine systems are qualitatively different from terrestrial environments, and these differences affect the application of modelling and management approaches that have been developed for terrestrial systems. Phyla and body plans are more diverse in marine environments and marine organisms have different life histories and probably different disease transmission modes than many of their terrestrial counterparts. Marine populations are typically more open than terrestrial ones, with the potential for long-distance dispersal of larvae. Potentially, this might enable unusually rapid propagation of epidemics in marine systems, and there are several examples of this. Taken together, these differences will require the development of new approaches to modelling and control of infectious disease in the ocean.

  11. Ecological transfer mechanisms - Terrestrial

    Martin, W.E.; Raines, Gilbert E.; Bloom, S.G.; Levin, A.A.

    1969-01-01

    Radionuclides produced by nuclear excavation detonations and released to the environment may enter a variety of biogeochemical cycles and follow essentially the same transfer pathways as their stable-element counterparts. Estimation of potential internal radiation doses to individuals and/or populations living in or near fallout-contaminated areas requires analysis of the food-chain and other ecological pathways by which radionuclides released to the environment may be returned to man. A generalized materials transfer diagram, applicable to the forest, agricultural, freshwater and marine ecosystems providing food and water to the indigenous population of Panama and Colombia in regions that could be affected by nuclear excavation of a sea-level canal between the Atlantic and Pacific Oceans, is presented. Transfer mechanisms effecting the movement of stable elements and radionuclides in terrestrial ecosystems are discussed, and methods used to simulate these processes by means of mathematical models are described to show how intake values are calculated for different radionuclides in the major ecological pathways leading to man. These data provide a basis for estimating potential internal radiation doses for comparison with the radiation protection criteria established by recognized authorities; and this, in turn, provides a basis for recommending measures to insure the radiological safety of the nuclear operation plan. (author)

  12. Ecological transfer mechanisms - Terrestrial

    Martin, W E; Raines, Gilbert E; Bloom, S G; Levin, A A [Battelle Memorial Institute, CoIumbus, OH (United States)

    1969-07-01

    Radionuclides produced by nuclear excavation detonations and released to the environment may enter a variety of biogeochemical cycles and follow essentially the same transfer pathways as their stable-element counterparts. Estimation of potential internal radiation doses to individuals and/or populations living in or near fallout-contaminated areas requires analysis of the food-chain and other ecological pathways by which radionuclides released to the environment may be returned to man. A generalized materials transfer diagram, applicable to the forest, agricultural, freshwater and marine ecosystems providing food and water to the indigenous population of Panama and Colombia in regions that could be affected by nuclear excavation of a sea-level canal between the Atlantic and Pacific Oceans, is presented. Transfer mechanisms effecting the movement of stable elements and radionuclides in terrestrial ecosystems are discussed, and methods used to simulate these processes by means of mathematical models are described to show how intake values are calculated for different radionuclides in the major ecological pathways leading to man. These data provide a basis for estimating potential internal radiation doses for comparison with the radiation protection criteria established by recognized authorities; and this, in turn, provides a basis for recommending measures to insure the radiological safety of the nuclear operation plan. (author)

  13. Application of the Monte Carlo method for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples

    Baccouche, S., E-mail: souad.baccouche@cnstn.rnrt.tn [UR-MDTN, National Center for Nuclear Sciences and Technology, Technopole Sidi Thabet, 2020 Sidi Thabet (Tunisia); Al-Azmi, D., E-mail: ds.alazmi@paaet.edu.kw [Department of Applied Sciences, College of Technological Studies, Public Authority for Applied Education and Training, Shuwaikh, P.O. Box 42325, Code 70654 (Kuwait); Karunakara, N., E-mail: karunakara_n@yahoo.com [University Science Instrumentation Centre, Mangalore University, Mangalagangotri 574199 (India); Trabelsi, A., E-mail: adel.trabelsi@fst.rnu.tn [UR-MDTN, National Center for Nuclear Sciences and Technology, Technopole Sidi Thabet, 2020 Sidi Thabet (Tunisia); UR-UPNHE, Faculty of Sciences of Tunis, El-Manar University, 2092 Tunis (Tunisia)

    2012-01-15

    Gamma-ray measurements in terrestrial/environmental samples require the use of high efficient detectors because of the low level of the radionuclide activity concentrations in the samples; thus scintillators are suitable for this purpose. Two scintillation detectors were studied in this work; CsI(Tl) and NaI(Tl) with identical size for measurement of terrestrial samples for performance study. This work describes a Monte Carlo method for making the full-energy efficiency calibration curves for both detectors using gamma-ray energies associated with the decay of naturally occurring radionuclides {sup 137}Cs (661 keV), {sup 40}K (1460 keV), {sup 238}U ({sup 214}Bi, 1764 keV) and {sup 232}Th ({sup 208}Tl, 2614 keV), which are found in terrestrial samples. The magnitude of the coincidence summing effect occurring for the 2614 keV emission of {sup 208}Tl is assessed by simulation. The method provides an efficient tool to make the full-energy efficiency calibration curve for scintillation detectors for any samples geometry and volume in order to determine accurate activity concentrations in terrestrial samples. - Highlights: Black-Right-Pointing-Pointer CsI (Tl) and NaI (Tl) detectors were studied for the measurement of terrestrial samples. Black-Right-Pointing-Pointer Monte Carlo method was used for efficiency calibration using natural gamma emitting terrestrial radionuclides. Black-Right-Pointing-Pointer The coincidence summing effect occurring for the 2614 keV emission of {sup 208}Tl is assessed by simulation.

  14. Introduced Terrestrial Species (Future)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  15. Terrestrial ecosystems and biodiversity

    Davis-Reddy, Claire

    2017-10-01

    Full Text Available Ecoregions Terrestrial Biomes Protected Areas Climate Risk and Vulnerability: A Handbook for Southern Africa | 75 7.2. Non-climatic drivers of ecosystem change 7.2.1. Land-use change, habitat loss and fragmentation Land-use change and landscape... concentrations of endemic plant and animal species, but these mainly occur in areas that are most threatened by human activity. Diverse terrestrial ecosystems in the region include tropical and sub-tropical forests, deserts, savannas, grasslands, mangroves...

  16. Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry.

    Seager, S; Bains, W; Petkowski, J J

    2016-06-01

    Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? Although a few biosignature gases are prominent in Earth's atmospheric spectrum (O2, CH4, N2O), others have been considered as being produced at or able to accumulate to higher levels on exo-Earths (e.g., dimethyl sulfide and CH3Cl). Life on Earth produces thousands of different gases (although most in very small quantities). Some might be produced and/or accumulate in an exo-Earth atmosphere to high levels, depending on the exo-Earth ecology and surface and atmospheric chemistry. To maximize our chances of recognizing biosignature gases, we promote the concept that all stable and potentially volatile molecules should initially be considered as viable biosignature gases. We present a new approach to the subject of biosignature gases by systematically constructing lists of volatile molecules in different categories. An exhaustive list up to six non-H atoms is presented, totaling about 14,000 molecules. About 2500 of these are CNOPSH compounds. An approach for extending the list to larger molecules is described. We further show that about one-fourth of CNOPSH molecules (again, up to N = 6 non-H atoms) are known to be produced by life on Earth. The list can be used to study classes of chemicals that might be potential biosignature gases, considering their accumulation and possible false positives on exoplanets with atmospheres and surface environments different from Earth's. The list can also be used for terrestrial biochemistry applications, some examples of which are provided. We provide an online community usage database to serve as a registry for volatile molecules

  17. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model

    C. Lu

    2010-09-01

    Full Text Available Continental-scale estimations of terrestrial methane (CH4 and nitrous oxide (N2O fluxes over a long time period are crucial to accurately assess the global balance of greenhouse gases and enhance our understanding and prediction of global climate change and terrestrial ecosystem feedbacks. Using a process-based global biogeochemical model, the Dynamic Land Ecosystem Model (DLEM, we quantified simultaneously CH4 and N2O fluxes in North America's terrestrial ecosystems from 1979 to 2008. During the past 30 years, approximately 14.69 ± 1.64 T g C a−1 (1 T g = 1012 g of CH4, and 1.94 ± 0.1 T g N a−1 of N2O were released from terrestrial ecosystems in North America. At the country level, both the US and Canada acted as CH4 sources to the atmosphere, but Mexico mainly oxidized and consumed CH4 from the atmosphere. Wetlands in North America contributed predominantly to the regional CH4 source, while all other ecosystems acted as sinks for atmospheric CH4, of which forests accounted for 36.8%. Regarding N2O emission in North America, the US, Canada, and Mexico contributed 56.19%, 18.23%, and 25.58%, respectively, to the continental source over the past 30 years. Forests and croplands were the two ecosystems that contributed most to continental N2O emission. The inter-annual variations of CH4 and N2O fluxes in North America were mainly attributed to year-to-year climatic variability. While only annual precipitation was found to have a significant effect on annual CH4 flux, both mean annual temperature and annual precipitation were significantly correlated to annual N2O flux. The regional estimates and spatiotemporal patterns of terrestrial ecosystem CH4 and N2O fluxes in North America generated in this study provide useful information for global change research and policy making.

  18. Terrestrial Analogs to Mars

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  19. Terrestrial and extraterrestrial fullerenes

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  20. Histories of terrestrial planets

    Benes, K.

    1981-01-01

    The uneven historical development of terrestrial planets - Mercury, Venus, Earth, Moon and Mars - is probably due to the differences in their size, weight and rotational dynamics in association with the internal planet structure, their distance from the Sun, etc. A systematic study of extraterrestrial planets showed that the time span of internal activity was not the same for all bodies. It is assumed that the initial history of all terrestrial planets was marked with catastrophic events connected with the overall dynamic development of the solar system. In view of the fact that the cores of small terrestrial bodies cooled quicker, their geological development almost stagnated after two or three thousand million years. This is what probably happened to the Mercury and the Moon as well as the Mars. Therefore, traces of previous catastrophic events were preserved on the surface of the planets. On the other hand, the Earth is the most metamorphosed terrestrial planet and compared to the other planets appears to be atypical. Its biosphere is significantly developed as well as the other shell components, its hydrosphere and atmosphere, and its crust is considerably differentiated. (J.P.)

  1. Terrestrial planet formation.

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  2. Radionuclides in terrestrial ecosystems

    Bocock, K.L.

    1981-01-01

    This report summarizes information on the distribution and movement of radionuclides in semi-natural terrestrial ecosystems in north-west England with particular emphasis on inputs to, and outputs from ecosystems; on plant and soil aspects; and on radionuclides in fallout and in discharges by the nuclear industry. (author)

  3. Forest inventory with terrestrial LiDAR

    Bauwens, Sébastien; Bartholomeus, Harm; Calders, Kim; Lejeune, Philippe

    2016-01-01

    The application of static terrestrial laser scanning (TLS) in forest inventories is becoming more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract forest attributes. The use of a mobile laser scanner (MLS) would reduce this occlusion. In this

  4. Terrestrial and aquatic ecotoxicity assessment of Cr(VI) by the ReCiPe method calculation (LCIA): application on an old industrial contaminated site.

    Adam, Véronique; Quaranta, Gaétana; Loyaux-Lawniczak, Stéphanie

    2013-05-01

    The most stable forms of chromium in the environment are chromium (III) and chromium (VI), the former being relatively immobile and necessary for organisms, and the latter being highly soluble and toxic. It is thus important to characterise ecotoxicological impacts of Cr(VI). However, there are still some important uncertainties in the calculation of ecotoxicological impacts of heavy metals in the LCIA global approach. The aim of this paper is to understand how the spatial and dynamic characterization of life cycle inventory (LCI) data can be exploited in life cycle impact assessment and particularly for the evaluation of the aquatic and terrestrial ecotoxicity of Cr(VI). To quantify these impacts, we studied an industrial waste landfill in the North of France that was contaminated with chromium. On the polluted area, the aquatic contamination is due to the slag heap as well as to chromium spots in soil. The soil contamination is mainly due to infiltration of chromium from the infill. The concentration of Cr(VI) in soil and water varies according to seasonal climatic variations and groundwater level. These variations have an effect on the Cr(VI) fate factor, in particular on transfer and residence time of the substance. This study underlines the spatial distribution of aquatic ecotoxicity and the temporal variation of freshwater ecotoxicity. We analysed the correlation between precipitation, temperature, concentration and ecotoxicity impact. With regards to the terrestrial ecotoxicity, the study focused on the vertical variation of the ecotoxicity and the major role of the soil layer composition into terrestrial pollution.

  5. Experiment on Synchronous Timing Signal Detection from ISDB-T Terrestrial Digital TV Signal with Application to Autonomous Distributed ITS-IVC Network

    Karasawa, Yoshio; Kumagai, Taichi; Takemoto, Atsushi; Fujii, Takeo; Ito, Kenji; Suzuki, Noriyoshi

    A novel timing synchronizing scheme is proposed for use in inter-vehicle communication (IVC) with an autonomous distributed intelligent transport system (ITS). The scheme determines the timing of packet signal transmission in the IVC network and employs the guard interval (GI) timing in the orthogonal frequency divisional multiplexing (OFDM) signal currently used for terrestrial broadcasts in the Japanese digital television system (ISDB-T). This signal is used because it is expected that the automotive market will demand the capability for cars to receive terrestrial digital TV broadcasts in the near future. The use of broadcasts by automobiles presupposes that the on-board receivers are capable of accurately detecting the GI timing data in an extremely low carrier-to-noise ratio (CNR) condition regardless of a severe multipath environment which will introduce broad scatter in signal arrival times. Therefore, we analyzed actual broadcast signals received in a moving vehicle in a field experiment and showed that the GI timing signal is detected with the desired accuracy even in the case of extremely low-CNR environments. Some considerations were also given about how to use these findings.

  6. Working group 4: Terrestrial

    Anon.

    1993-01-01

    A working group at a Canada/USA symposium on climate change and the Arctic identified major concerns and issues related to terrestrial resources. The group examined the need for, and the means of, involving resource managers and users at local and territorial levels in the process of identifying and examining the impacts and consequences of climatic change. Climatic change will be important to the Arctic because of the magnitude of the change projected for northern latitudes; the apparent sensitivity of its terrestrial ecosystems, natural resources, and human support systems; and the dependence of the social, cultural, and economic welfare of Arctic communities, businesses, and industries on the health and quality of their environment. Impacts of climatic change on the physical, biological, and associated socio-economic environment are outlined. Gaps in knowledge needed to quantify these impacts are listed along with their relationships with resource management. Finally, potential actions for response and adaptation are presented

  7. Terrestrial plant methane production

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  8. The Solar-Terrestrial Environment

    Hargreaves, John Keith

    1995-05-01

    The book begins with three introductory chapters that provide some basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magnetosphere, and structures, dynamics, disturbances, and irregularities. The concluding chapter deals with technological applications. The account is introductory, at a level suitable for readers with a basic background in engineering or physics. The intent is to present basic concepts, and for that reason, the mathematical treatment is not complex. SI units are given throughout, with helpful notes on cgs units where these are likely to be encountered in the research literature. This book is suitable for advanced undergraduate and graduate students who are taking introductory courses on upper atmospheric, ionospheric, or magnetospheric physics. This is a successor to The Upper Atmosphere and Solar-Terrestrial Relations, published in 1979.

  9. OMI Satellite and Ground-Based Pandora Observations and Their Application to Surface NO2 Estimations at Terrestrial and Marine Sites

    Kollonige, Debra E.; Thompson, Anne M.; Josipovic, Miroslav; Tzortziou, Maria; Beukes, Johan P.; Burger, Roelof; Martins, Douglas K.; van Zyl, Pieter G.; Vakkari, Ville; Laakso, Lauri

    2018-01-01

    The Pandora spectrometer that uses direct-Sun measurements to derive total column amounts of gases provides an approach for (1) validation of satellite instruments and (2) monitoring of total column (TC) ozone (O3) and nitrogen dioxide (NO2). We use for the first time Pandora and Ozone Monitoring Instrument (OMI) observations to estimate surface NO2 over marine and terrestrial sites downwind of urban pollution and compared with in situ measurements during campaigns in contrasting regions: (1) the South African Highveld (at Welgegund, 26°34'10″S, 26°56'21″E, 1,480 m asl, 120 km southwest of the Johannesburg-Pretoria megacity) and (2) shipboard U.S. mid-Atlantic coast during the 2014 Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) cruise. In both cases, there were no local NOx sources but intermittent regional pollution influences. For TC NO2, OMI and Pandora difference is 20%, with Pandora higher most times. Surface NO2 values estimated from OMI and Pandora columns are compared to in situ NO2 for both locations. For Welgegund, the planetary boundary layer (PBL) height, used in converting column to surface NO2 value, has been estimated by three methods: co-located Atmospheric Infrared Sounder (AIRS) observations; a model simulation; and radiosonde data from Irene, 150 km northeast of the site. AIRS PBL heights agree within 10% of radiosonde-derived values. Absolute differences between Pandora- and OMI-estimated surface NO2 and the in situ data are better at the terrestrial site ( 0.5 ppbv and 1 ppbv or greater, respectively) than under clean marine air conditions, with differences usually >3 ppbv. Cloud cover and PBL variability influence these estimations.

  10. Arctic Terrestrial Biodiversity Monitoring Plan

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  11. A Spherical Aerial Terrestrial Robot

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  12. Critical levels and loads of atmospheric pollutants for terrestrial and aquatic ecosystems. The emergence of a scientific concept. Application potentials and their limits

    Landmann, G.

    1993-01-01

    The 'critical loads and levels' are defined as the highest atmospheric deposition rate or concentration of a gaseous pollutant, respectively, that will not cause harmful effects on sensitive elements of an ecosystem. The recent emergence of the concept of critical loads and levels is described, from the first explicit mention in 1986 to the production of the first European maps in 1991. The difficulties linked to the definition of the concept and to its english-derived terminology are discussed. The main approaches used for assessing critical loads and levels are briefly described. Important research is developed under the auspices of the Convention of Geneva (Long Range Transboundary Air Pollution Transport, UN-ECE), arising from intensive studies which have been carried out on the effects of air pollution on terrestrial and aquatic ecosystems for the past ten or fifteen years. Current knowledge is summarized, as well as the remaining gaps (and questions) which hinder the calculation of the critical thresholds. Finally, beyond the fundamental relevance of this scientifically sound and easily understood concept, its limits are pointed out. In brief, the 'critical loads and levels' concept is attractive and motivating to many scientists: it implies to apply an integrated and finalized approach, favors the prospecting of poorly known ecosystems and regions, and represents an interesting interface with decision makers

  13. Application of a Terrestrial Laser Scanner (TLS to the Study of the Séchilienne Landslide (Isère, France

    Marion Jaud

    2010-12-01

    Full Text Available The active Séchilienne landslide (Isère, France has been continuously monitored by tacheometry, radar and extensometry devices for 25 years. Indeed, if the 3 mil. m3 of rocks in the active zone named ―Ruines‖ fell down, the debris would dam the Romanche valley. The breaking of the dam by overtopping and rapid erosion would bring a catastrophic flood and other dramatic consequences throughout the valley. Given the rockfall hazard in the most active zone, it is impossible to use targets in this area: Only reflectorless remote sensing techniques can provide information. A time-series of seven Terrestrial Laser Scanner (TLS point clouds acquired between 2004 and 2007 enable us to monitor the 3D displacements of the whole scanned area, although point coverage is not homogeneous. From this sequential monitoring, the volume of registered collapses can be deduced and the landslide movement along the main geological structures can be inferred. From monitoring associated subsidence and toppling observed on TLS data, it can be deduced that blocks rearrangements are linked to structural settings and that the Séchilienne landslide is complex. To conclude, TLS point clouds enable an accurate monitoring of the evolution of the inaccessible "Ruines" area and, proven its ability to provide reliable kinematic information, even in areas where on-site instrumentation is infeasible.

  14. Contaminant exposure in terrestrial vertebrates

    Smith, Philip N.; Cobb, George P.; Godard-Codding, Celine; Hoff, Dale; McMurry, Scott T.; Rainwater, Thomas R.; Reynolds, Kevin D.

    2007-01-01

    Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research. - Both biotic and abiotic factors determine chemical exposure for terrestrial vertebrates

  15. Terrestrial Water Storage

    Rodell, M.; Chambers, D. P.; Famiglietti, J. S.

    2015-01-01

    During 2014 dryness continued in the Northern Hemisphere and relative wetness continued in the Southern Hemisphere (Fig. 2.21; Plate 2.1g). These largely canceled out such that the global land surface began and ended the year with a terrestrial water storage (TWS) anomaly slightly below 0 cm (equivalent height of water; Fig. 2.22). TWS is the sum of groundwater, soil moisture, surface water, snow, and ice. Groundwater responds more slowly to meteorological phenomena than the other components because the overlying soil acts as a low pass filter, but often it has a larger range of variability on multiannual timescales (Rodell and Famiglietti 2001; Alley et al. 2002).In situ groundwater data are only archived and made and Tanzania. The rest of the continent experienced mixed to dry conditions. Significant reductions in TWS in Greenland, Antarctica, and southern coastal Alaska reflect ongoing ice sheet and glacier ablation, not groundwater depletion.

  16. Variability of basin-scale terrestrial water storage from a novel application of the water budget equation: the Amazon and the Mississippi

    Yoon, J.; Zeng, N.; Mariotti, A.; Swenson, S.

    2007-12-01

    In an approach termed the P-E-R (or simply PER) method, we apply the basin water budget equation to diagnose the long-term variability of the total terrestrial water storage (TWS). The key input variables are observed precipitation (P) and runoff (R), and estimated evaporation (E). Unlike typical offline land-surface model estimate where only atmospheric variables are used as input, the direct use of observed runoff in the PER method imposes an important constraint on the diagnosed TWS. Although there lack basin-scale observations of evaporation, the tendency of E to have significantly less variability than the difference between precipitation and runoff (P-R) minimizes the uncertainties originating from estimated evaporation. Compared to the more traditional method using atmospheric moisture convergence (MC) minus R (MCR method), the use of observed precipitation in PER method is expected to lead to general improvement, especially in regions atmospheric radiosonde data are too sparse to constrain the atmospheric model analyzed MC such as in the remote tropics. TWS was diagnosed using the PER method for the Amazon (1970-2006) and the Mississippi Basin (1928-2006), and compared with MCR method, land-surface model and reanalyses, and NASA's GRACE satellite gravity data. The seasonal cycle of diagnosed TWS over the Amazon is about 300 mm. The interannual TWS variability in these two basins are 100-200 mm, but multi-dacadal changes can be as large as 600-800 mm. Major droughts such as the Dust Bowl period had large impact with water storage depleted by 500 mm over a decade. Within the short period 2003-2006 when GRACE data was available, PER and GRACE show good agreement both for seasonal cycle and interannual variability, providing potential to cross-validate each other. In contrast, land-surface model results are significantly smaller than PER and GRACE, especially towards longer timescales. While we currently lack independent means to verify these long-term changes

  17. Tidally Heated Terrestrial Exoplanets

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  18. Solar-terrestrial physics

    Patel, V.L.

    1977-01-01

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: geomagnetic field; coordinate systems; geomagnetic indices; Dst index; auroral electrojet index AE; daily, 27-day and semi-annual variations of geomagnetic field; micropulsation; geomagnetic storms; storm sudden commencement (SSC) or sudden commencement (SC); initial phase; ring current; sudden impulses; ionosphere; D region; polar cap absorption; sudden ionospheric disturbance; E region; sporadic E; equatorial electrojet; solar flare effect; F 1 and F 2 regions; spread F; travelling ionospheric disturbances; magnetosphere; magnetospheric coordinate systems; plasmasphere; magnetosheath; magnetospheric tail; substorm; radiation belts or Van Allen belts; whistlers; VLF emissions; aurora; auroral forms; auroral oval and auroral zones; auroral intensity; stable auroral red arcs; pulsing aurora; polar glow aurora; and airglow. (B.R.H.)

  19. Aquatic and Terrestrial Environment 2004

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  20. Sampling Terrestrial Environments for Bacterial Polyketides

    Patrick Hill

    2017-04-01

    Full Text Available Bacterial polyketides are highly biologically active molecules that are frequently used as drugs, particularly as antibiotics and anticancer agents, thus the discovery of new polyketides is of major interest. Since the 1980s discovery of polyketides has slowed dramatically due in large part to the repeated rediscovery of known compounds. While recent scientific and technical advances have improved our ability to discover new polyketides, one key area has been under addressed, namely the distribution of polyketide-producing bacteria in the environment. Identifying environments where producing bacteria are abundant and diverse should improve our ability to discover (bioprospect new polyketides. This review summarizes for the bioprospector the state-of-the-field in terrestrial microbial ecology. It provides insight into the scientific and technical challenges limiting the application of microbial ecology discoveries for bioprospecting and summarizes key developments in the field that will enable more effective bioprospecting. The major recent efforts by researchers to sample new environments for polyketide discovery is also reviewed and key emerging environments such as insect associated bacteria, desert soils, disease suppressive soils, and caves are highlighted. Finally strategies for taking and characterizing terrestrial samples to help maximize discovery efforts are proposed and the inclusion of non-actinomycetal bacteria in any terrestrial discovery strategy is recommended.

  1. Global analytic treatment of terrestrial photogrammetric networks

    Mayoud, M

    1980-01-01

    In order to solve certain special CERN metrology problems, analytical terrestrial photogrammetry may have some advantages which are first discussed along with their drawbacks and limitations. In this application, it is necessary to carry out a rigorous and global adjustment of the observations and simultaneously process all the perspective ray bundles. The basic principles, the least squares solution and the stochastic analysis of the results are presented. However, for the CERN project, one wonders if the production of digital theodolites is going to reduce the advantages of the photogrammetric method. (12 refs).

  2. Utilization of the terrestrial cyanobacteria

    Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yokoshima, Mika; Yamaguchi, Yuji; Takenaka, Hiroyuki

    The terrestrial, N _{2}-fixing cyanobacterium, Nostoc commune has expected to utilize for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. Previously, the first author indicated that desiccation related genes were analyzed and the suggested that the genes were related to nitrogen fixation and metabolisms. In this report, we suggest possibility of agriculture, using the cyanobacterium. Further, we also found radioactive compounds accumulated N. commune (cyanobacterium) in Fukushima, Japan after nuclear accident. Thus, it is investigated to decontaminate radioactive compounds from the surface soil by the cyanobacterium and showed to accumulate radioactive compounds using the cyanobacterium. We will discuss utilization of terrestrial cyanobacteria under closed environment. Keyword: Desiccation, terrestrial cyanobacteria, bioremediation, agriculture

  3. Soil and terrestrial biology studies

    Anon.

    1976-01-01

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO 2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  4. Structure of the terrestrial planets

    Lyttleton, R.A.

    1977-01-01

    Recent reviews (cf. Runcorn, 1968; or Cook, 1972, 1975) on the structure of the planets omit reference to the phase-change hypothesis for the nature of the terrestrial core, despite that numerous prior predictions of the theory based on this hypothesis have subsequently been borne out as correct. These reviews also ignore the existence of theoretical calculations of the internal structure of Venus which can be computed with high accuracy by use of the terrestrial seismic data. Several examples of numerous mistakes committed in these reviews are pointed out. (Auth.)

  5. Priapism caused by 'Tribulus terrestris'.

    Campanelli, M; De Thomasis, R; Tenaglia, R L

    2016-01-01

    A 36-year-old Caucasian man was diagnosed with a 72-h-lasting priapism that occurred after the assumption of a Herbal supplement based on Tribulus terrestris, which is becoming increasingly popular for the treatment of sexual dysfunction. The patient underwent a cavernoglandular shunt (Ebbehoj shunt) in order to obtain complete detumescence, from which derived negative post-episode outcomes on sexual function. All patients consuming non-FDA-approved alternative supplements such as Tribulus terrestris should be warned about the possible serious side effects.

  6. Carbon dioxide efficiency of terrestrial enhanced weathering.

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  7. The Planetary Terrestrial Analogues Library (PTAL)

    Werner, S. C.; Dypvik, H.; Poulet, F.; Rull Perez, F.; Bibring, J.-P.; Bultel, B.; Casanova Roque, C.; Carter, J.; Cousin, A.; Guzman, A.; Hamm, V.; Hellevang, H.; Lantz, C.; Lopez-Reyes, G.; Manrique, J. A.; Maurice, S.; Medina Garcia, J.; Navarro, R.; Negro, J. I.; Neumann, E. R.; Pilorget, C.; Riu, L.; Sætre, C.; Sansano Caramazana, A.; Sanz Arranz, A.; Sobron Grañón, F.; Veneranda, M.; Viennet, J.-C.; PTAL Team

    2018-04-01

    The Planetary Terrestrial Analogues Library project aims to build and exploit a spectral data base for the characterisation of the mineralogical and geological evolution of terrestrial planets and small solar system bodies.

  8. Terrestrial Steering Group. 2014. Arctic Terrestrial Biodiversity Monitoring Plan

    Aastrup, Peter; Aronsson, Mora; Barry, Tom

    capacity and information may be currently available and (b) to outline near-term required steps to begin implementing the plan and reporting on an initial set of Arctic terrestrial biodiversity focal ecosystem component attributes. The specific objectives of the workshop were to: Identify key products...... for TSG for the next two years. Identify key components of a pan-Arctic status report for priority focal ecosystem components (FEC) attributes for policy and decision makers. Develop a prioritized set of activities to meet reporting objectives. Identify key milestones and timelines for the successful...... implementation of the Arctic Terrestrial Biodiversity Monitoring Plan for the next two years. Identify expert networks required for successful implementation of the plan. Identify key gaps and opportunities for the TSG related to plan implementation and identify near-term next steps to address gaps....

  9. Water vapor estimation using digital terrestrial broadcasting waves

    Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.

    2017-03-01

    A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.

  10. Terrestrial photovoltaic technologies - Recent progress in manufacturing R&D

    Witt, C. E.; Surek, T.; Mitchell, R. L.; Symko-Davies, M.; Thomas, H. P.

    2000-05-15

    This paper describes photovoltaics (PV) as used for energy generation in terrestrial applications. A brief historical perspective of PV development is provided. Solar-to-electricity conversion efficiencies for various photovoltaic materials are presented, as well as expectations for further material improvements. Recent progress in reducing manufacturing costs through process R&D and product improvements are described. Applications that are most suitable for the different technologies are discussed. Finally, manufacturing capacities and current and projected module manufacturing costs are presented.

  11. Spatial vision in Bombus terrestris

    Aravin eChakravarthi

    2016-02-01

    Full Text Available Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg-1 of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana and another bumblebee species (B. impatiens. We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.09 cycles deg-1 and 1.26. for 0.18 cycles deg-1.

  12. Transformation procedures in 3D terrestrial coordinate systems

    Sedlák Vladimír

    2001-12-01

    Full Text Available Transformation procedures belong to the main tasks of surveyor working in a field of geodesy, for example in satellite geodesy or astronomical geodesy. It is necessary to know transformation procedures in 3D terrestrial (Earth coordinate systems. Increasingly a dynamic advance growth of application of satellite navigation systems, for example GPS (Global Positioning System into engineering surveying, real estate register and others spheres of applied geodesy and geo-surveying (mine surveying exacts knowledge of these transformation procedures between coordinates in various coordinate systems. These tasks are common for daily work for various practical surveyors too, not only for theoretical scientific working surveyors.Conventional Terrestrial System is 3D coordinate system what is the most important coordinate system in global geodesy. Conventional Terrestrial System is an approximation of the nature coordinate system of the Earth. The origin of this coordinate system is placed in the earth substantial centre of gravity and in the centre of geoid. Conventional Terrestrial System is the Cartesian right-handed coordinate system, i.e. positive one. The Local Astronomical System is 3D coordinate system too and it belongs to an important coordinate system in geodesy from its practical point of view. Many geodetic measurements are realized in this coordinate system. Designation of this coordinate system as astronomical system expresses its sticking to a normal line to an equipotential plane, i.e. to a vertical. Local Astronomical system is the left-handed cartesian coordinate system.Transformation procedures in 3D terrestrial coordinate systems with theory of these systems are presented in the paper. Transformation in the local astronomical coordinate system presents common transformation in a frame of an adjustment of various local geodetic networks. In a case of satellite measurements (GPS, satellite altimetry, etc. transformation between local and

  13. Groundwater and Terrestrial Water Storage

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  14. Comparative Climatology of Terrestrial Planets

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  15. Dietary characterization of terrestrial mammals.

    Pineda-Munoz, Silvia; Alroy, John

    2014-08-22

    Understanding the feeding behaviour of the species that make up any ecosystem is essential for designing further research. Mammals have been studied intensively, but the criteria used for classifying their diets are far from being standardized. We built a database summarizing the dietary preferences of terrestrial mammals using published data regarding their stomach contents. We performed multivariate analyses in order to set up a standardized classification scheme. Ideally, food consumption percentages should be used instead of qualitative classifications. However, when highly detailed information is not available we propose classifying animals based on their main feeding resources. They should be classified as generalists when none of the feeding resources constitute over 50% of the diet. The term 'omnivore' should be avoided because it does not communicate all the complexity inherent to food choice. Moreover, the so-called omnivore diets actually involve several distinctive adaptations. Our dataset shows that terrestrial mammals are generally highly specialized and that some degree of food mixing may even be required for most species.

  16. Terrestrial Zone Exoplanets and Life

    Matthews, Brenda

    2018-01-01

    One of the most exciting results from ALMA has been the detection of significant substructure within protoplanetary disks that can be linked to planet formation processes. For the first time, we are able to observe the process of assembly of material into larger bodies within such disks. It is not possible, however, for ALMA to probe the growth of planets in protoplanetary disks at small radii, i.e., in the terrestrial zone, where we expect rocky terrestrial planets to form. In this regime, the optical depths prohibit observation at the high frequencies observed by ALMA. To probe the effects of planet building processes and detect telltale gaps and signatures of planetary mass bodies at such small separations from the parent star, we require a facility of superior resolution and sensitivity at lower frequencies. The ngVLA is just such a facility. We will present the fundamental science that will be enabled by the ngVLA in protoplanetary disk structure and the formation of planets. In addition, we will discuss the potential for an ngVLA facility to detect the molecules that are the building blocks of life, reaching limits well beyond those reachable with the current generation of telescopes, and also to determine whether such planets will be habitable based on studies of the impact of stars on their nearest planetary neighbours.

  17. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions.

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N

    2017-12-01

    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  18. DECIPHERING THERMAL PHASE CURVES OF DRY, TIDALLY LOCKED TERRESTRIAL PLANETS

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2015-03-20

    Next-generation space telescopes will allow us to characterize terrestrial exoplanets. To do so effectively it will be crucial to make use of all available data. We investigate which atmospheric properties can, and cannot, be inferred from the broadband thermal phase curve of a dry and tidally locked terrestrial planet. First, we use dimensional analysis to show that phase curves are controlled by six nondimensional parameters. Second, we use an idealized general circulation model to explore the relative sensitivity of phase curves to these parameters. We find that the feature of phase curves most sensitive to atmospheric parameters is the peak-to-trough amplitude. Moreover, except for hot and rapidly rotating planets, the phase amplitude is primarily sensitive to only two nondimensional parameters: (1) the ratio of dynamical to radiative timescales and (2) the longwave optical depth at the surface. As an application of this technique, we show how phase curve measurements can be combined with transit or emission spectroscopy to yield a new constraint for the surface pressure and atmospheric mass of terrestrial planets. We estimate that a single broadband phase curve, measured over half an orbit with the James Webb Space Telescope, could meaningfully constrain the atmospheric mass of a nearby super-Earth. Such constraints will be important for studying the atmospheric evolution of terrestrial exoplanets as well as characterizing the surface conditions on potentially habitable planets.

  19. Puncturevine (Tribulus terrestris L.: noxious weed or powerful medical herb

    Zvonko Pacanoski

    2014-03-01

    Full Text Available Tribulus terrestris L., an annual dicot species of the family Zygophyllaceae, is a common herb that is often found in disturbed habitats and agricultural areas in many parts of the temperate, tropical and desert regions of the world. T. terrestris is an aggressive species that has the potential to injure livestock, reduce hay and wool values, detour recreationists and reduces plant biodivesity. The species may become troublesome because of its weedy potential. It has been declared a weed in at least 37 countries and in at least 21 crops (cotton, maize, vineyards, orchards, etc.. It is adapted to a wide range of climatic conditions and grows on a wide variety of soil types. The management of T. terrestris can be achieved by herbicide application, mechanical (hand pulling, hoeing, mulching and biological control methods. Beside its invasive potential as a noxious and troublesome weed, T. terrestris is considered highly useful herb which is used for various purposes in folk and modern medicine and sport, as well.

  20. Workshop on Oxygen in the Terrestrial Planets

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  1. Measurement of the terrestrial magnetic field and its anomalies

    Duret, D.

    1994-01-01

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs

  2. Indexes and parameters of activity in solar-terrestrial physics

    Minasyants, G.S.; Minasyants, T.M.

    2005-01-01

    The daily variation of different indexes and parameters of the solar-terrestrial physics at the 23 cycle were considered to find the most important from them for the forecast of geomagnetic activity. The validity of application of the Wolf numbers in quality of the characteristic of solar activity at sunspots is confirmed. The best geo-effective parameter in the arrival of the interplanetary shock from coronal mass ejection to an orbit of the Earth. (author)

  3. Terrestrial gamma-ray flashes

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  4. Terrestrial gamma-ray flashes

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-01-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models

  5. Radionuclide transfer in terrestrial animals

    DiGregorio, D.; Kitchings, T.; Van Voris, P.

    1978-01-01

    The analysis of dispersion of radionuclides in terrestrial food chains, generally, is a series of equations identifying the fractional input and outflow rates from trophic level to trophic level. Data that are prerequisite inputs for these food chain transport models include: (1) identification of specific transport pathway, (2) assimilation at each pathway link, and (3) the turnover rate or retention function by successive receptor species in the appropriate food chain. In this report, assimilation coefficients, biological half-lives, and excretion rates for a wide variety of vertebrate and invertebrate species and radionuclides have been compiled from an extensive search of the available literature. Using the information accumulated from the literature, correlations of nuclide metabolism and body weight are also discussed. (author)

  6. Methyl mercury in terrestrial compartments

    Stoeppler, M.; Burow, M.; Padberg, S.; May, K.

    1993-09-01

    On the basis of the analytical methodology available at present the state of the art for the determination of total mercury and of various organometallic compounds of mercury in air, precipitation, limnic systems, soils, plants and biota is reviewed. This is followed by the presentation and discussion of examples for the data obtained hitherto for trace and ultratrace levels of total mercury and mainly methyl mercury in terrestrial and limnic environments as well as in biota. The data discussed stem predominantly from the past decade in which, due to significant methodological progress, many new aspects were elucidated. They include the most important results in this area achieved by the Research Centre (KFA) Juelich within the project 'Origin and Fate of Methyl Mercury' (contracts EV4V-0138-D and STEP-CT90-0057) supported by the Commission of the European Communities, Brussels. (orig.) [de

  7. Traumatic insemination in terrestrial arthropods.

    Tatarnic, Nikolai J; Cassis, Gerasimos; Siva-Jothy, Michael T

    2014-01-01

    Traumatic insemination is a bizarre form of mating practiced by some invertebrates in which males use hypodermic genitalia to penetrate their partner's body wall during copulation, frequently bypassing the female genital tract and ejaculating into their blood system. The requirements for traumatic insemination to evolve are stringent, yet surprisingly it has arisen multiple times within invertebrates. In terrestrial arthropods traumatic insemination is most prevalent in the true bug infraorder Cimicomorpha, where it has evolved independently at least three times. Traumatic insemination is thought to occur in the Strepsiptera and has recently been recorded in fruit fly and spider lineages. We review the putative selective pressures that may have led to the evolution of traumatic insemination across these lineages, as well as the pressures that continue to drive divergence in male and female reproductive morphology and behavior. Traumatic insemination mechanisms and attributes are compared across independent lineages.

  8. Phytopharmacological overview of Tribulus terrestris

    Chhatre, Saurabh; Nesari, Tanuja; Somani, Gauresh; Kanchan, Divya; Sathaye, Sadhana

    2014-01-01

    Tribulus terrestris (family Zygophyllaceae), commonly known as Gokshur or Gokharu or puncture vine, has been used for a long time in both the Indian and Chinese systems of medicine for treatment of various kinds of diseases. Its various parts contain a variety of chemical constituents which are medicinally important, such as flavonoids, flavonol glycosides, steroidal saponins, and alkaloids. It has diuretic, aphrodisiac, antiurolithic, immunomodulatory, antidiabetic, absorption enhancing, hypolipidemic, cardiotonic, central nervous system, hepatoprotective, anti-inflammatory, analgesic, antispasmodic, anticancer, antibacterial, anthelmintic, larvicidal, and anticariogenic activities. For the last few decades or so, extensive research work has been done to prove its biological activities and the pharmacology of its extracts. The aim of this review is to create a database for further investigations of the discovered phytochemical and pharmacological properties of this plant to promote research. This will help in confirmation of its traditional use along with its value-added utility, eventually leading to higher revenues from the plant. PMID:24600195

  9. Terrestrial atmosphere, water and astrobiology

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  10. Terrestrial pathways of radionuclide particulates

    Boone, F.W.; Ng, Y.C.

    1981-01-01

    Formulations are developed for computing potential human intake of 13 radionuclides via the terrestrial food chains. The formulations are an extension of the NRC methodology. Specific regional crop and livestock transfer and fractional distribution data from the southern part of the U.S.A. are provided and used in the computation of comparative values with those computed by means of USNRC Regulatory Guide 1.109 formulations. In the development of the model, emphasis was also placed on identifying the various time-delay compartments of the food chains and accounting for all of the activity initially deposited. For all radionuclides considered, except 137 Cs, the new formulations predict lower potential intakes from the total of all food chains combined than do the comparable Regulatory Guide formulations by as much as a factor of 40. For 137 Cs the new formulations predict 10% higher potential intakes. (author)

  11. Hepatoprotective and Antioxidant Activities of Tribulus Terrestris

    Harraz, Fathalla M; Ghazy, Nabila M; Hammoda, Hala M; Nafeaa, Abeer A.; Abdallah, Ingy I.

    2015-01-01

    Tribulus terrestris L. has been used in folk medicine throughout history. The present study examined the acute toxicity of the total ethanolic extract of T. Terrestris followed by investigation of the hepatoprotective activity of the total ethanolic extract and different fractions of the aerial

  12. Estimating Exposure of Terrestrial Wildlife to Contaminants

    Sample, B.E.

    1994-01-01

    This report presents a general model for exposure of terrestrial wildlife to contaminants (Sect. 2), methods for estimating parameters of the model (Sect. 3), species specific parameters for endpoint species on the Oak Ridge Reservation (ORR) (Sect. 4), and a sample application (Sect. 5). Exposure can be defined as the coincidence in both space and time of a receptor and a stressor, such that the receptor and stressor come into contact and interact (Risk Assessment Forum 1992). In the context of ecological risk assessment, receptors include all endpoint species or communities identified for a site [see Suter (1989) and Suter et al. (1994) for discussions of ecological endpoints for waste sites]. In the context of waste site assessments, stressors are chemical contaminations, and the contact and interaction are uptake of the contaminant by the receptor. Without sufficient exposure of the receptor to the contaminants, there is no ecological risk. Unlike some other endpoint assemblages, terrestrial wildlife are significantly exposed to contaminants in multiple media. They may drink or swim in contaminated water, ingest contaminated food and soil, and breath contaminated air. In addition, because most wildlife are mobile, moving among and within habitats, exposure is not restricted to a single location. They may integrate contamination from several spatially discrete sources. Therefore, exposure models for terrestrial wildlife must include multiple media. This document provides models and parameters for estimating exposure of birds and mammals. Reptiles and amphibians are not considered because few data exist with which to assess exposure to these organisms. In addition, because toxicological data are scarce for both classes, evaluation of the significance of exposure estimates is problematic. However, the general exposure estimation procedure developed herein for birds and mammals is applicable to reptiles and amphibians. Exposure models must be appropriate to the

  13. Photovoltaics. [research and development of terrestrial electric power systems

    Smith, J. L.

    1981-01-01

    The federal government has sponsored a program of research and development on terrestrial photovoltaic systems that is designed to reduce the costs of such systems through technological advances. There are many potential paths to lower system costs, and successful developments have led to increased private investment in photovoltaics. The prices for photovoltaic collectors and systems that appear to be achievable within this decade offer hope that the systems will soon be attractive in utility applications within the United States. Most of the advances achieved will also be directly applicable to the remote markets in which photovoltaic systems are now commercially successful

  14. Solar generators in terrestrial communication technology. Pt. 1

    Sommer, E

    1978-01-01

    To begin with, the basic terms solar cell, solar cell module, solar generator, and solar generator system are defined and illustrated by examples. After this, the advantages and disadvantages of solar generators in power supply for terrestrial communications as compared to dry cell batteries, diesel generators and mains operation are discussed with a view to technical, economic, and ecological aspects. After some hints for an optimum design of systems, a comprehensive, general list of possible applications is given. The second part will give a detailed description of typical and exemplary applications.

  15. Steroidal saponins from Tribulus terrestris.

    Kang, Li-Ping; Wu, Ke-Lei; Yu, He-Shui; Pang, Xu; Liu, Jie; Han, Li-Feng; Zhang, Jie; Zhao, Yang; Xiong, Cheng-Qi; Song, Xin-Bo; Liu, Chao; Cong, Yu-Wen; Ma, Bai-Ping

    2014-11-01

    Sixteen steroidal saponins, including seven previously unreported compounds, were isolated from Tribulus terrestris. The structures of the saponins were established using 1D and 2D NMR spectroscopy, mass spectrometry, and chemical methods. They were identified as: 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-2α,3β,22α,26-tetrol-12-one (terrestrinin C), 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-22α,26-diol-3,12-dione (terrestrinin D), 26-O-β-d-glucopyranosyl-(25S)-furost-4-en-22α,26-diol-3,6,12-trione (terrestrinin E), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-3β,22α,26-triol-12-one (terrestrinin F), 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-12β,22α,26-triol-3-one (terrestrinin G), 26-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl-(25R)-furost-4-en-22α,26-diol-3,12-dione (terrestrinin H), and 24-O-β-d-glucopyranosyl-(25S)-5α-spirostan-3β,24β-diol-12-one-3-O-β-d-glucopyranosyl-(1→4)-β-d-galactopyranoside (terrestrinin I). The isolated compounds were evaluated for their platelet aggregation activities. Three of the known saponins exhibited strong effects on the induction of platelet aggregation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Sex ratio variation in the bumblebee Bombus terrestris

    Duchateau, Marie José; Velthuis, Hayo H. W.; Boomsma, Jacobus Jan

    2004-01-01

    Bombus terrestris, bumblebees, colony development, queen control, reproductive strategies, sex allocation......Bombus terrestris, bumblebees, colony development, queen control, reproductive strategies, sex allocation...

  17. The Circumpolar Biodiversity Monitoring Program Terrestrial Plan

    Christensen, Tom; Payne, J.; Doyle, M.

    , understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity, and to identify knowledge gaps and priorities. This poster will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based monitoring...... and coastal environments. The CBMP Terrestrial Plan is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect...

  18. Methane emissions form terrestrial plants

    Bergamaschi, P.; Dentener, F.; Grassi, G.; Leip, A.; Somogyi, Z.; Federici, S.; Seufert, G.; Raes, F. [European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy)

    2006-07-01

    In a recent issue of Nature Keppler et al. (2006) report the discovery that terrestrial plants emit CH4 under aerobic conditions. Until now it was thought that bacterial decomposition of plant material under anaerobic conditions, such as in wetlands and water flooded rice paddies, is the main process leading to emissions from terrestrial ecosystems. In a first attempt to upscale these measurements, the authors estimate that global total emissions may be 149 Tg CH4/yr (62-236 Tg CH4/yr), with the main contribution estimated from tropical forests and grasslands (107 Tg CH4/yr with a range of 46-169 Tg CH4/yr). If confirmed, this new source of emission would constitute a significant fraction of the total global methane sources (estimated 500-600 Tg CH4/yr for present day total natural and anthropogenic sources) and have important implications for the global CH4 budget. To accommodate it within the present budget some sources would need to be re-assessed downwards and/or some sinks re-assessed upwards. Furthermore, also considering that methane is a {approx}23 times more powerful greenhouse gas than CO2, the possible feedbacks of these hitherto unknown CH4 emissions on global warming and their impacts on greenhouse gases (GHG) mitigation strategies need to be carefully evaluated. The merit of the paper is without doubt related to the remarkable discovery of a new process of methane emissions active under aerobic conditions. However, we think that the applied approach of scaling up emissions from the leaf level to global totals by using only few measured data (mainly from herbaceous species) and the Net Primary Productivity of the main biomes is scientifically questionable and tends to overestimate considerably the global estimates, especially for forest biomes. Furthermore, some significant constraints on the upper limit of the global natural CH4 emissions arise from the pre-industrial CH4 budget. Pre-industrial atmospheric CH4 mixing ratios have been measured

  19. Possible climates on terrestrial exoplanets.

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect.

  20. Durable terrestrial bedrock predicts submarine canyon formation

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  1. Energy-Efficient Optimal Power Allocation in Integrated Wireless Sensor and Cognitive Satellite Terrestrial Networks.

    Shi, Shengchao; Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan

    2017-09-04

    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach's method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint.

  2. Effects of chemicals on terrestrial ecosystems exhibiting different types of stability. Pt. 2. Application of fractal geometry to structural analysis in terrestrial ecotoxicology; Auswirkungen von Chemikalien auf terrestrische Oekosysteme unterschiedlichen Stabilitaetstyps. T. 2. Anwendung der fraktalen Geometrie zur Strukturanalyse in der terrestrischen Oekotoxikologie

    Bornkamm, R.; Darius, F.

    1995-04-01

    The problem at issue in the present study was whether and how reactions of terrestial ecosystems to anthropogenic xenobiotics can be measured and interpreted. For this pupose test were performed on two types of vegetation which are primarily distinguishable by their reproductive strategies (via seeds and buds, respectively) and also represented by plants of different taxonomic classes. The chemicals used were two low-dosed herbicides (2.4.5-T and atrazine) which elicit responses on several important physiological levels of the plant organism. Strength and duration of responses differed considerably between the two plant systems studied. These observations gave rise to the question as to what can be said on the tested plant systems in general concerning the extent and reversibility of the effects brought about by these interventions. For this purpose the processes assumed to be acting within the biocoeonoces had to be formulated in a model and interpreted. The resultant model permits following the chain of events leading from an individual stress reaction to a complex response of the whole system. It was possible to compare various simulation results with the reactions found in tests on real ecosystems and in other cases to derive from the hypotheses capable of experimental verification. The authors believe that activities in terrestrial ecotoxicology should go beyond the gathering of data from empirical substance testing, which is undoubtedly a necessity for licensing procedures, by furthering basic research. Theoretical considerations make it seem unrealistic to attempt predictions on the future development of any certain ecosystem (whether with or without anthropogenic stress). Statements on the probability of effects, by contrast, to have a certain validty, provided they are based on a sufficient knowledge of type-specific responses of systems and of influences of background conditions. (orig.) [Deutsch] Fuer die Bearbeitung des Problems, ob und wie Reaktionen

  3. The geometry of terrestrial laser scanning; identification of errors, modeling and mitigation of scanning geometry

    Soudarissanane, S.S.

    2016-01-01

    Over the past few decades, Terrestrial Laser Scanners are increasingly being used in a broad spectrum of applications, from surveying to civil engineering, medical modeling and forensics. Especially surveying applications require on one hand a quickly obtainable, high resolution point cloud but also

  4. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  5. Grazing livestock are exposed to terrestrial cyanobacteria

    McGorum , Bruce C; Pirie , R Scott; Glendinning , Laura; McLachlan , Gerry; Metcalf , James S; Banack , Sandra A; Cox , Paul A; Codd , Geoffrey A

    2015-01-01

    While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in al...

  6. Linking animals aloft with the terrestrial landscape

    Buler, Jeffrey J.; Barrow, Wylie; Boone, Matthew; Dawson, Deanna K.; Diehl, Robert H.; Moore, Frank R.; Randall, Lori A.; Schreckengost, Timothy; Smolinsky, Jaclyn A.

    2018-01-01

    Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals.

  7. Anthropogenic transformation of the terrestrial biosphere.

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

  8. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  9. Groundwater and Terrestrial Water Storage

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  10. Sampling supraglacial debris thickness using terrestrial photogrammetry

    Nicholson, Lindsey; Mertes, Jordan

    2017-04-01

    The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with <10cm resolution. A Trimble Geo7X differential GPS with Zephyr antenna, along with a local base station, was used to precisely measure marked ground control points to scale the photogrammetric surface model. Measurements of debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.

  11. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Alberto Reyna

    2014-01-01

    Full Text Available This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction.

  12. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  13. Satellite and terrestrial radio positioning techniques a signal processing perspective

    Dardari, Davide; Falletti, Emanuela

    2014-01-01

    * The first book to combine satellite and terrestrial positioning techniques - vital for the understanding and development of new technologies * Written and edited by leading experts in the field, with contributors belonging to the European Commission's FP7 Network of Excellence NEWCOM++ Applications to a wide range of fields, including sensor networks, emergency services, military use, location-based billing, location-based advertising, intelligent transportation, and leisure Location-aware personal devices and location-based services have become ever more prominent in the past few years

  14. Cost-Loss Analysis of Ensemble Solar Wind Forecasting: Space Weather Use of Terrestrial Weather Tools

    Henley, E. M.; Pope, E. C. D.

    2017-12-01

    This commentary concerns recent work on solar wind forecasting by Owens and Riley (2017). The approach taken makes effective use of tools commonly used in terrestrial weather—notably, via use of a simple model—generation of an "ensemble" forecast, and application of a "cost-loss" analysis to the resulting probabilistic information, to explore the benefit of this forecast to users with different risk appetites. This commentary aims to highlight these useful techniques to the wider space weather audience and to briefly discuss the general context of application of terrestrial weather approaches to space weather.

  15. The XII Century Towers, a Benchmark of the Rome Countryside almost Cancelled: the Safeguard Plan by Low Cost Uav and Terrestrial Dsm Photogrammetry Surveying and 3d Web GIS Applications

    Barelli, L.; Paolini, P.; Forti, G.

    2017-11-01

    "Giving a bird-fly look at the Rome countryside, throughout the Middle Age central period, it would show as if the multiple city towers has been widely spread around the territory" on a radial range of maximum thirty kilometers far from the Capitol Hill center (Carocci and Vendittelli, 2004). This is the consequence of the phenomenon identified with the "Incasalamento" neologism, described in depth in the following paper, intended as the general process of expansion of the urban society interests outside the downtown limits, started from the half of the XII and developed through all the XIII century, slowing down and ending in the following years. From the XIX century till today the architectural finds of this reality have raised the interest of many national and international scientists, which aimed to study and catalog them all to create a complete framework that, cause of its extension, didn't allow yet attempting any element by element detailed analysis. From the described situation has started our plan of intervention, we will apply integrated survey methods and technologies of terrestrial and UAV near stereo-photogrammetry, by the use of low cost drones, more than action cameras and reflex on extensible rods, integrated and referenced with GPS and topographic survey. In the final project we intend to produce some 3D scaled and textured surface models of any artifact (almost two hundreds were firstly observed still standing), to singularly study the dimensions and structure, to analyze the building materials and details and to formulate an hypothesis about any function, based even on the position along the territory. These models, successively georeferenced, will be imported into a 2D and 3D WebGIS and organized in layers made visible on basemaps of reference, as much as on historical maps.

  16. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)

    Huerta Lwanga, Esperanza; Gertsen, H.F.; Gooren, H.; Peters, P.D.; Salanki, T.E.; Ploeg, van der M.J.C.; Besseling, E.; Koelmans, A.A.; Geissen, V.

    2016-01-01

    Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, <150 μm)

  17. Terrestrial Energy bets on molten salt reactors

    Anon.

    2015-01-01

    Terrestrial Energy is a Canadian enterprise, founded in 2013, for marketing the integral molten salt reactor (IMSR). A first prototype (called MSRE and with an energy output of 8 MW) was designed and operated between 1965 and 1969 by the Oak Ridge National Laboratory. IMSR is a small, modular reactor with a thermal energy output of 400 MW. According to Terrestrial Energy the technology of conventional power reactors is too complicated and too expensive. On the contrary IMSR's technology appears to be simple, easy to operate and affordable. With a staff of 30 people Terrestrial Energy appears to be a start-up in the nuclear sector. A process of pre-licensing will be launched in 2016 with the Canadian nuclear safety authority. (A.C.)

  18. Ancient Terrestrial Carbon: Lost and Found

    Freeman, K. H.

    2017-12-01

    Carbon fluxes in terrestrial environments dominate the global carbon cycle. The fluxes of terrestrial carbon are strongly tied to regional climate due to the influences of temperature, water, and nutrient dynamics on plant productivity. However, climate also influences the destruction of terrestrial organic matter, through weathering, erosion, and biomass loss via fire and oxidative microbial processes. Organic geochemical methods enable us to interrogate past terrestrial carbon dynamics and learn how continental processes might accelerate, or mitigate carbon transfer to the atmosphere, and the associated greenhouse warming. Terrestrial soil systems represent the weathering rind of the continents, and are inherently non-depositional and erosive. The production, transport, and depositional processes affecting organics in continental settings each impart their own biases on the amount and characteristics of preserved carbon. Typically, the best archives for biomarker records are sediments in ancient lakes or subaqueous fans, which represents a preservation bias that tends to favor wetter environments. Paleosols, or ancient soils, formed under depositional conditions that, for one reason or another, truncated soil ablation, erosion, or other loss processes. In modern soils, widely ranging organic carbon abundances are almost always substantially greater than the trace amounts of carbon left behind in ancient soils. Even so, measureable amounts of organic biomarkers persist in paleosols. We have been investigating processes that preserve soil organic carbon on geologic timescales, and how these mechanisms may be sensitive to past climate change. Climate-linked changes in temperature, moisture, pH, and weathering processes can impact carbon preservation via organo-mineral sorption, soil biogeochemistry, and stability based on the physical and chemical properties of organic compounds. These will be discussed and illustrated with examples from our studies of Cenozoic

  19. Evolutionary tracks of the terrestrial planets

    Matsui, Takafumi; Abe, Yutaka

    1987-01-01

    On the basis of the model proposed by Matsui and Abe, the authors show that two major factors - distance from the Sun and the efficiency of retention of accretional energy - control the early evolution of the terrestrial planets. A diagram of accretional energy versus the optical depth of a proto-atmosphere provides a means to follow the evolutionary track of surface temperature of the terrestrial planets and an explanation for why the third planet in our solar system is an 'aqua'-planet. 15 refs; 3 figs

  20. Magnetic reconnection in the terrestrial magnetosphere

    Feldman, W.C.

    1984-01-01

    An overview is given of quantitative comparisons between measured phenomena in the terrestrial magnetosphere thought to be associated with magnetic reconnection, and related theoretical predictions based on Petschek's simple model. Although such a comparison cannot be comprehensive because of the extended nature of the process and the relatively few in situ multipoint measurements made to date, the agreement is impressive where comparisons have been possible. This result leaves little doubt that magnetic reconnection does indeed occur in the terrestrial magnetosphere. The maximum reconnection rate, expressed in terms of the inflow Mach number, M/sub A/, is measured to be M/sub A/ = 0.2 +- 0.1

  1. Terrestrial propagation of long electromagnetic waves

    Galejs, Janis; Fock, V A

    2013-01-01

    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  2. Terrestrial and exposure histories of Antarctic meteorites

    Nishiizumi, K.

    1986-01-01

    Records of cosmogenic effects were studied in a large suite of Antarctic meteorites. The cosmogenic nuclide measurements together with cosmic ray track measurements on Antartic meteorites provide information such as exposure age, terrestrial age, size and depth in meteoroid or parent body, influx rate in the past, and pairing. The terrestrail age is the time period between the fall of the meteorite on the Earth and the present. To define terrestrial age, two or more nuclides with different half-lives and possibly noble gases are required. The cosmogenic radionuclides used are C-14, Kr-81, Cl-36, Al-26, Be-10, Mn-53, and K-40

  3. Terrestrial and exposure histories of Antarctic meteorites

    Nishiizumi, K.

    1986-01-01

    Records of cosmogenic effects were studied in a large suite of Antarctic meteorites. The cosmogenic nuclide measurements together with cosmic ray track measurements on Antartic meteorites provide information such as exposure age, terrestrial age, size and depth in meteoroid or parent body, influx rate in the past, and pairing. The terrestrail age is the time period between the fall of the meteorite on the Earth and the present. To define terrestrial age, two or more nuclides with different half-lives and possibly noble gases are required. The cosmogenic radionuclides used are C-14, Kr-81, Cl-36, Al-26, Be-10, Mn-53, and K-40.

  4. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae).

    Huerta Lwanga, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A; Geissen, Violette

    2016-03-01

    Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, digestion of ingested organic matter, microplastic was concentrated in cast, especially at the lowest dose (i.e., 7% in litter) because that dose had the highest proportion of digestible organic matter. Whereas 50 percent of the microplastics had a size of earthworms. These concentration-transport and size-selection mechanisms may have important implications for fate and risk of microplastic in terrestrial ecosystems.

  5. Multivariate and multiscale data assimilation in terrestrial systems: a review.

    Montzka, Carsten; Pauwels, Valentijn R N; Franssen, Harrie-Jan Hendricks; Han, Xujun; Vereecken, Harry

    2012-11-26

    More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a

  6. Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review

    Harry Vereecken

    2012-11-01

    Full Text Available More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF, Particle Filter (PF and variational methods (3/4D-VAR. In this review, we distinguish between four major DA approaches: (1 univariate single-scale DA (UVSS, which is the approach used in the majority of published DA applications, (2 univariate multiscale DA (UVMS referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3 multivariate single-scale DA (MVSS dealing with the assimilation of at least two different data types, and (4 combined multivariate multiscale DA (MVMS. Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a

  7. High efficiency, long life terrestrial solar panel

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  8. Solar and terrestrial radiation: methods and measurements

    Coulson, Kinsell L

    1975-01-01

    ... AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. Ill Fifth Avenue, New York, New York 10003 United Kingdom Edition published by A C A D E M I C PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 Library of Congress Cataloging in Publication Data Coulson, Kinsell L Solar and terrestrial radiation. Inclu...

  9. Strategies for monitoring terrestrial animals and habitats

    Richard Holthausen; Raymond L. Czaplewski; Don DeLorenzo; Greg Hayward; Winifred B. Kessler; Pat Manley; Kevin S. McKelvey; Douglas S. Powell; Leonard F. Ruggiero; Michael K. Schwartz; Bea Van Horne; Christina D. Vojta

    2005-01-01

    This General Technical Report (GTR) addresses monitoring strategies for terrestrial animals and habitats. It focuses on monitoring associated with National Forest Management Act planning and is intended to apply primarily to monitoring efforts that are broader than individual National Forests. Primary topics covered in the GTR are monitoring requirements; ongoing...

  10. South African red data book - Terrestrial mammals

    Smithers, RHN

    1986-01-01

    Full Text Available Currently, 243 species of terrestrial wild mammals are known to occur in the Republic of South Africa. Using the well established IUCN definitions, 42 of these may be considered as exposed to some level of threat of extinction. Three species...

  11. Furostanol and Spirostanol Saponins from Tribulus terrestris.

    Wang, Zhen-Fang; Wang, Bing-Bing; Zhao, Yang; Wang, Fang-Xu; Sun, Yan; Guo, Rui-Jie; Song, Xin-Bo; Xin, Hai-Li; Sun, Xin-Guang

    2016-03-30

    Twelve new steroidal saponins, including eleven furostanol saponins, terrestrinin J-T (1-11), and one spirostanol saponin, terrestrinin U (12), together with seven known steroidal saponins 13-19 were isolated from T. terrestris. The structures of the new compounds were established on the basis of spectroscopic data, including 1D and 2D NMR and HRESIMS, and comparisons with published data.

  12. Terrestrial water fluxes dominated by transpiration: Comment

    Daniel R. Schlaepfer; Brent E. Ewers; Bryan N. Shuman; David G. Williams; John M. Frank; William J. Massman; William K. Lauenroth

    2014-01-01

    The fraction of evapotranspiration (ET) attributed to plant transpiration (T) is an important source of uncertainty in terrestrial water fluxes and land surface modeling (Lawrence et al. 2007, Miralles et al. 2011). Jasechko et al. (2013) used stable oxygen and hydrogen isotope ratios from 73 large lakes to investigate the relative roles of evaporation (E) and T in ET...

  13. Ethnopharmacological Studies of Tribulus Terrestris (Linn). in ...

    Synergism and antagonism impact of different plant metabolites present in crude fruit extract of Tribulus terrestris 'the herbal Viagra' have been studied. Variability in plant composition, biomass and metabolites concentration in different modules was significantly contributed by spatial factor. However the edhaphic ...

  14. Enabling novel planetary and terrestrial mechanisms using electroactive materials at the JPL's NDEAA Lab

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Lih, Shyh-Shiuh

    2004-01-01

    Increasingly, electroactive materials are used to produce acutators, sensors, displays and other elements of mechanisms and devices. In recognition of the potential of these materials, research at the JPL's NDEAA Lab have led to many novel space and terrestrial applications. This effort involves mostly the use of piezoelectric and electroactive polymers (EAP).

  15. Louisiana ESI: T_MAMMAL (Terrestrial Mammal Polygons)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for terrestrial mammals in Louisiana. Vector polygons in this data set represent terrestrial mammal...

  16. Surface exposure dating of non-terrestrial bodies using optically stimulated luminescence: A new method

    Sohbati, Reza; Jain, Mayank; Murray, Andrew

    2012-01-01

    We propose a new method for in situ surface exposure dating of non-terrestrial geomorphological features using optically stimulated luminescence (OSL); our approach is based on the progressive emptying of trapped charge with exposure to light at depth into a mineral surface. A complete model of t...... charge population. The potential dating applications for (a) include dust accumulation, volcanic rocks and impact-related sediments, and for (b) fault scarps, rock-falls, landslides and ice-scoured bedrock. Using assumptions based on terrestrial observations we expect that this approach...

  17. Terrestrial forest management plan for Palmyra Atoll

    Hathaway, Stacie A.; McEachern, Kathryn; Fisher, Robert N.

    2011-01-01

    This 'Terrestrial Forest Management Plan for Palmyra Atoll' was developed by the U.S. Geological Survey (USGS) for The Nature Conservancy (TNC) Palmyra Program to refine and expand goals and objectives developed through the Conservation Action Plan process. It is one in a series of adaptive management plans designed to achieve TNC's mission toward the protection and enhancement of native wildlife and habitat. The 'Terrestrial Forest Management Plan for Palmyra Atoll' focuses on ecosystem integrity and specifically identifies and addresses issues related to assessing the status and distribution of resources, as well as the pressures acting upon them, most specifically nonnative and potentially invasive species. The plan, which presents strategies for increasing ecosystem integrity, provides a framework to implement and track the progress of conservation and restoration goals related to terrestrial resources on Palmyra Atoll. The report in its present form is intended to be an overview of what is known about historical and current forest resources; it is not an exhaustive review of all available literature relevant to forest management but an attempt to assemble as much information specific to Palmyra Atoll as possible. Palmyra Atoll is one of the Northern Line Islands in the Pacific Ocean southwest of the Hawai`ian Islands. It consists of many heavily vegetated islets arranged in a horseshoe pattern around four lagoons and surrounded by a coral reef. The terrestrial ecosystem consists of three primary native vegetation types: Pisonia grandis forest, coastal strand forest, and grassland. Among these vegetation types, the health and extent of Pisonia grandis forest is of particular concern. Overall, the three vegetation types support 25 native plant species (two of which may be extirpated), 14 species of sea birds, six shore birds, at least one native reptile, at least seven native insects, and six native land crabs. Green and hawksbill turtles forage at Palmyra Atoll

  18. Automatic Tree Data Removal Method for Topography Measurement Result Using Terrestrial Laser Scanner

    Yokoyama, H.; Chikatsu, H.

    2017-02-01

    Recently, laser scanning has been receiving greater attention as a useful tool for real-time 3D data acquisition, and various applications such as city modelling, DTM generation and 3D modelling of cultural heritage sites have been proposed. And, former digital data processing were demanded in the past digital archive techniques for cultural heritage sites. However, robust filtering method for distinguishing on- and off-terrain points by terrestrial laser scanner still have many issues. In the past investigation, former digital data processing using air-bone laser scanner were reported. Though, efficient tree removal methods from terrain points for the cultural heritage are not considered. In this paper, authors describe a new robust filtering method for cultural heritage using terrestrial laser scanner with "the echo digital processing technology" as latest data processing techniques of terrestrial laser scanner.

  19. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  20. MODIS-derived terrestrial primary production [chapter 28

    Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani

    2011-01-01

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...

  1. Overview of Photocatalysis, Photocatalytic Surface Materials Studies, and Demonstration of Self-Cleaning Materials for Space and Terrestrial Based Applications at the Infinity Science Center at NASA Stennis Space Center

    Underwood, Lauren W.

    2012-01-01

    Research into photocatalytic technology has been progressing for over three decades in the early 1990s Japanese and European companies initiate research into photocatalytic technology. In the 1996 specific focus on the technology with the first large-scale application: the construction of a church in Rome (Jubilee Church). And in 2000 Europe and Japan research into the benefits of photocatalytic technology. Currently, photocatalytic technology continues to improve, and with time development is becoming more efficient and effective. What is Photocatalysis? Photo: phenomenon induced by the light, having specifically a wavelength around 320-400 nm (artificial or natural sunlight). Catalyst: a material that induces a reaction but is not consumed or transformed by it. The catalyst remains constantly available. In this case, the catalyst is made with nano-particles of titanium oxide (Ti02).

  2. Improving Completeness of Geometric Models from Terrestrial Laser Scanning Data

    Clemens Nothegger

    2011-12-01

    Full Text Available The application of terrestrial laser scanning for the documentation of cultural heritage assets is becoming increasingly common. While the point cloud by itself is sufficient for satisfying many documentation needs, it is often desirable to use this data for applications other than documentation. For these purposes a triangulated model is usually required. The generation of topologically correct triangulated models from terrestrial laser scans, however, still requires much interactive editing. This is especially true when reconstructing models from medium range panoramic scanners and many scan positions. Because of residual errors in the instrument calibration and the limited spatial resolution due to the laser footprint, the point clouds from different scan positions never match perfectly. Under these circumstances many of the software packages commonly used for generating triangulated models produce models which have topological errors such as surface intersecting triangles, holes or triangles which violate the manifold property. We present an algorithm which significantly reduces the number of topological errors in the models from such data. The algorithm is a modification of the Poisson surface reconstruction algorithm. Poisson surfaces are resilient to noise in the data and the algorithm always produces a closed manifold surface. Our modified algorithm partitions the data into tiles and can thus be easily parallelized. Furthermore, it avoids introducing topological errors in occluded areas, albeit at the cost of producing models which are no longer guaranteed to be closed. The algorithm is applied to scan data of sculptures of the UNESCO World Heritage Site Schönbrunn Palace and data of a petrified oyster reef in Stetten, Austria. The results of the method’s application are discussed and compared with those of alternative methods.

  3. Terrestrial ecosystems in a changing world

    Canadell, J.G. [CSIRO Marine and Atmospheric Research, Canberra, ACT (Australia). Global Carbon Project; Pataki, D.E. [California Univ., Irvine, CA (United States). Dept. of Earth System Science]|[California Univ., Irvine, CA (United States). Dept. of Ecology and Evolutionary Biology; Pitelka, L.F. (eds.) [Maryland Univ., Frostburg, MD (United States). Appalachian Lab.

    2007-07-01

    Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including: * key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity, * ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and * sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate. The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system. (orig.)

  4. Effect factors for terrestrial acidification in Brazil

    Crespo Mendes, Natalia; Laurent, Alexis; Hauschild, Michael Zwicky

    conditions, which is an essential approach considering countries like Brazil, with high biodiversity. Previous studies have assessed the impacts of terrestrial acidification from the estimations of the potential losses of vascular plants species richness as a result of exposure to acidifying substances...... for 13 biomes, with 2409 species addressed for whole world. In this context this work aims to provide spatially-differentiated effect factors (EF) for terrestrial acidification in Brazil and support the development of spatially-differentiated characterization factors for Brazil. In order to maintain...... in Brazil, represented by 33167 species, indicating that this is a comprehensive study. Maps of soil pH in Brazil were extracted at 1-km resolution and pH values were extracted for the depth range of 0-30cm. For each ecoregion, species richness was plotted against soil pH and the exposure-response curves...

  5. Spiral arms, comets and terrestrial catastrophism

    Clube, S.V.M.; Napier, W.M.

    1982-01-01

    A review is presented of an hypothesis of terrestrial catastrophism in which comets grow in molecular clouds and are captured by the Sun as it passes through the spiral arms of the Galaxy. Assuming that comets are a major supplier of the Earth-crossing (Appollo) asteroid population, the latter fluctuates correspondingly and leads to episodes of terrestrial bombardment. Changes in the rotational momentum of core and mantle, generated by impacts, lead to episodes of magnetic field reversal and tectonic activity, while surface phenomena lead to ice-ages and mass extinctions. An episodic geophysical history with an interstellar connection is thus implied. If comets in spiral arms are necessary intermediaries in the process of star formation, the theory also has implications relating to early solar system history and galactic chemistry. These aspects are briefly discussed with special reference to the nature of spiral arms. (author)

  6. The circumpolar biodiversity monitoring program - Terrestrial plan

    Christensen, Tom; Payne, J.; Doyle, M.

    , northern communities, and scientists to detect, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity. This presentation will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based...... monitoring with survey-based monitoring and remotely sensed data. The CBMP Terrestrial Plan intends to build upon and expand existing monitoring networks, engaging participants across a range of capacity and interests. The presentation will summarize the recommended focal soil ecosystem components...... and attributes to monitor in the plan related to soil invertebrates. Focal Ecosystem Components (FECs) of the soil decomposer system include the soil living invertebrates such as microarthropods, enchytraeids and earthworms and the functions performed by microorganisms such as nitrification, decomposition...

  7. MAFF monitoring of the terrestrial environment

    Sherlock, J.C.

    1993-01-01

    This paper addresses the food surveillance programme of the Ministry of Agriculture, Fisheries and Food (MAFF), in particular the Terrestrial Radioactivity Monitoring Programme (TRAMP) and the estimation of dietary intake of radionuclides. To define the surveillance programme the following issues need to be decided upon: 1) the type of food which should be analysed; 2) the nature of the contaminants which should be analysed; and 3) the geographical location from which the food samples should be taken. (author)

  8. A molecular palaeobiological exploration of arthropod terrestrialization

    Lozano-Fernandez, Jesus; Carton, Robert; Tanner, Alastair R.

    2016-01-01

    to the colonization of land is the most likely scenario.Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record,Myriapoda are inferred to have colonized land......, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’....

  9. Astrophysical and terrestrial neutrinos in Supernova detectors

    Lagage, P.O.

    1985-09-01

    Supernova (SN) explosions are the place of very fundamental phenomena, whose privileged messengers are neutrinos. But such events are very rare. Then, SN detection has to be combined with other purposes. The recent developments of SN detectors have been associated with developments of underground particle physics (proton decay, monopoles ...). But here, I will restrict myself to discuss the possibilities for a supernova detector to be sensitive to other sources of neutrinos, astrophysical or terrestrial

  10. Furostanol and Spirostanol Saponins from Tribulus terrestris

    Zhen-Fang Wang

    2016-03-01

    Full Text Available Twelve new steroidal saponins, including eleven furostanol saponins, terrestrinin J–T (1–11, and one spirostanol saponin, terrestrinin U (12, together with seven known steroidal saponins 13–19 were isolated from T. terrestris. The structures of the new compounds were established on the basis of spectroscopic data, including 1D and 2D NMR and HRESIMS, and comparisons with published data.

  11. Terrestrial water fluxes dominated by transpiration.

    Jasechko, Scott; Sharp, Zachary D; Gibson, John J; Birks, S Jean; Yi, Yi; Fawcett, Peter J

    2013-04-18

    Renewable fresh water over continents has input from precipitation and losses to the atmosphere through evaporation and transpiration. Global-scale estimates of transpiration from climate models are poorly constrained owing to large uncertainties in stomatal conductance and the lack of catchment-scale measurements required for model calibration, resulting in a range of predictions spanning 20 to 65 per cent of total terrestrial evapotranspiration (14,000 to 41,000 km(3) per year) (refs 1, 2, 3, 4, 5). Here we use the distinct isotope effects of transpiration and evaporation to show that transpiration is by far the largest water flux from Earth's continents, representing 80 to 90 per cent of terrestrial evapotranspiration. On the basis of our analysis of a global data set of large lakes and rivers, we conclude that transpiration recycles 62,000 ± 8,000 km(3) of water per year to the atmosphere, using half of all solar energy absorbed by land surfaces in the process. We also calculate CO2 uptake by terrestrial vegetation by connecting transpiration losses to carbon assimilation using water-use efficiency ratios of plants, and show the global gross primary productivity to be 129 ± 32 gigatonnes of carbon per year, which agrees, within the uncertainty, with previous estimates. The dominance of transpiration water fluxes in continental evapotranspiration suggests that, from the point of view of water resource forecasting, climate model development should prioritize improvements in simulations of biological fluxes rather than physical (evaporation) fluxes.

  12. Some effects of pollutants in terrestrial ecosystems

    Stickel, W.H.; McIntyre, A.D.; Mills, C.F.

    1975-01-01

    occur when persistent chemicals enter organisms that eliminate them poorly. However, loss of chemicals in the food chain must be more common than accumulation. The great concentration from water to aquatic organism is chiefly a physical phenomenon, not a food chain effect, but it affords high starting levels for these chains. Terrestrial food chains often start at a high level with heavily contaminated, struggling prey. Litter feeders are another important base. Vegetation may be contaminated enough to be dangerous to animals that eat it. Dermal and respiratory routes of intoxication occur in the wild, but the oral route is far more important at most times and places. The organisms that govern soil fertility and texture are affected more by cultivation than by pesticides. Above ground, growing knowledge of resistance, species differences, and biological controls is leading to integrated control, in which use of chemicals is limited and specific. We do not know what is happening to most nontarget invertebrates. Amphibians and reptiles may be killed by applications of insecticides, but are not highly sensitive and can carry large residues. Effects of these residues on reproduction are little known. Heavy kills of birds by pesticides still occur in the field. Fish-eating and bird-eating birds also undergo shell thinning and related reproductive troubles in many areas, sometimes to the point of population decline and local or regional extermination. DDE most often correlates with shell thinning in the wild and in experiments. No other known chemical approaches DDE in causing severe and lasting shell thinning. Herbivorous birds seem to be largely immune to this effect. It is uncertain how much dieldrin and PCBs contribute to embryotoxicity in carnivorous birds. Mammals may be killed by the more toxic pesticides, but some of the commonest small rodents are so resistant, and lose their residues so rapidly, that they are of little

  13. Terrestrial Ecosystems - Land Surface Forms of the Conterminous United States

    Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2009-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated land surface form classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe . A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. Since land surface forms strongly influence the differentiation and distribution of terrestrial ecosystems, they are one of the key input layers in this biophysical stratification. After extensive investigation into various land surface form mapping methodologies, the decision was made to use the methodology developed by the Missouri Resource Assessment Partnership (MoRAP). MoRAP made modifications to Hammond's land surface form classification, which allowed the use of 30-meter source data and a 1-km2 window for analyzing the data cell and its surrounding cells (neighborhood analysis). While Hammond's methodology was based on three topographic variables, slope, local relief, and profile type, MoRAP's methodology uses only slope and local relief. Using the MoRAP method, slope is classified as gently sloping when more than 50 percent of the area in a 1-km2 neighborhood has slope less than 8 percent, otherwise the area is considered moderately sloping. Local relief, which is the difference between the maximum and minimum elevation in a neighborhood, is classified into five groups: 0-15 m, 16-30 m, 31-90 m, 91-150 m, and >150 m. The land surface form classes are derived by combining slope and local relief to create eight landform classes: flat plains (gently sloping and local relief = 90 m), low hills (not gently sloping and local relief = 150 m). However, in the USGS application of the MoRAP methodology, an additional local relief group was used (> 400 m) to capture additional local topographic variation. As a result, low

  14. Radioisotope power sources in the terrestrial and marine environment

    Holleman, T.J.; Wahlquist, E.J.

    1976-01-01

    In response to user agency needs, the Energy Research and Development Administration (ERDA), Division of Nuclear Research and Applications (NRA), has undertaken a variety of research and development efforts to insure the availability of highly reliable, long-lived nuclear power sources for special purpose terrestrial missions planned for the late 1970's and early 1980's. One such effort currently being pursued is the development of a 1kW(e) Stirling Radioisotope Power System for integration into an Unmanned Free Swimming Submersible (UFSS) demonstration vehicle now under development by the Naval Research Laboratory. Another important effort which NRA has undertaken is a study to evaluate both isotope fueled and non-isotope fueled unattended power systems in the 2kW(e) range for application in cold regions. In the lower power ranges of Radioisotope Thermoelectric Generators, NRA continues to support new development efforts and new application areas. The Division is providing assistance to the Navy on a 1 / 2 W(e) RTG for use in various underwater applications. The various efforts are briefly discussed

  15. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  16. Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals.

    Crane, Mark; Finnegan, Meaghean; Weltje, Lennart; Kosmala-Grzechnik, Sylwia; Gross, Melanie; Wheeler, James R

    2016-10-01

    Amphibians are currently the most threatened and rapidly declining group of vertebrates and this has raised concerns about their potential sensitivity and exposure to plant protection products and other chemicals. Current environmental risk assessment procedures rely on surrogate species (e.g. fish and birds) to cover the risk to aquatic and terrestrial life stages of amphibians, respectively. Whilst a recent meta-analysis has shown that in most cases amphibian aquatic life stages are less sensitive to chemicals than fish, little research has been conducted on the comparative sensitivity of terrestrial amphibian life stages. Therefore, in this paper we address the questions "What is the relative sensitivity of terrestrial amphibian life stages to acute chemical oral exposure when compared with mammals and birds?" and "Are there correlations between oral toxicity data for amphibians and data for mammals or birds?" Identifying a relationship between these data may help to avoid additional vertebrate testing. Acute oral amphibian toxicity data collected from the scientific literature and ecotoxicological databases were compared with toxicity data for mammals and birds. Toxicity data for terrestrial amphibian life stages are generally sparse, as noted in previous reviews. Single-dose oral toxicity data for terrestrial amphibian life stages were available for 26 chemicals and these were positively correlated with LD50 values for mammals, while no correlation was found for birds. Further, the data suggest that oral toxicity to terrestrial amphibian life stages is similar to or lower than that for mammals and birds, with a few exceptions. Thus, mammals or birds are considered adequate toxicity surrogates for use in the assessment of the oral exposure route in amphibians. However, there is a need for further data on a wider range of chemicals to explore the wider applicability of the current analyses and recommendations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods.

    Kleinschmidt, R; Watson, D

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km(2)), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h(-1) (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. Terrestrial Planet Formation from an Annulus -- Revisited

    Deienno, Rogerio; Walsh, Kevin J.; Kretke, Katherine A.; Levison, Harold F.

    2018-04-01

    Numerous recent theories of terrestrial planet formation suggest that, in order to reproduce the observed large Earth to Mars mass ratio, planets formed from an annulus of material within 1 au. The success of these models typically rely on a Mars sized embryo being scattered outside 1 au (to ~1.5 au) and starving, while those remaining inside 1 au continue growing, forming Earth and Venus. In some models the scattering is instigated by the migration of giant planets, while in others an embryo-instability naturally occurs due to the dissipation of the gaseous solar nebula. While these models can typically succeed in reproducing the overall mass ratio among the planets, the final angular momentum deficit (AMD) of the present terrestrial planets in our Solar System, and their radial mass concentration (RMC), namely the position where Mars end up in the simulations, are not always well reproduced. Assuming that the gas nebula may not be entirely dissipated when such an embryo-instability happens, here, we study the effects that the time of such an instability can have on the final AMD and RMC. In addition, we also included energy dissipation within embryo-embryo collisions by assuming a given coefficient of restitution for collisions. Our results show that: i) dissipation within embryo-embryo collisions do not play any important role in the final terrestrial planetary system; ii) the final AMD decreases only when the number of final planets formed increases; iii) the RMC tends to always be lower than the present value no matter the number of final planets; and iv) depending on the time that the embryo-instability happen, if too early, with too much gas still present, a second instability will generally happen after the dissipation of the gas nebula.

  19. Halogens in chondritic meteorites and terrestrial accretion

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  20. Fermi GBM Observations of Terrestrial Gamma Flashes

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  1. Terrestrial plant methane production and emission

    Bruhn, Dan; Møller, Ian M.; Mikkelsen, Teis Nørgaard

    2012-01-01

    In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce...... aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  2. Digital terrestrial television broadcasting technology and system

    2015-01-01

    Now under massive deployment worldwide, digital terrestrial television broadcasting (DTTB) offers one of the most attractive ways to deliver digital TV over the VHF/UHF band. Written by a team of experts for specialists and non-specialists alike, this book serves as a comprehensive guide to DTTB. It covers the fundamentals of channel coding and modulation technologies used in DTTB, as well as receiver technology for synchronization, channel estimation, and equalization. It also covers the recently introduced Chinese DTTB standard, using the SFN network in Hong Kong as an example.

  3. MAFF monitoring of the terrestrial environment

    Sherlock, J.C.

    1991-01-01

    This paper addresses the MAFF food surveillance programme, in particular our Terrestrial Radioactivity Monitoring Programme (TRAMP), and the estimation of dietary intake of radionuclides. The MAFF programme exists primarily to demonstrate that authorized discharges of radioactivity to the environment do not result in individuals receiving doses of radiation in excess of accepted limits. The estimation radionuclide intake ensures over estimation rather than underestimation of dose. Improvements in detection limits and absorption level research could lower the calculated dose to man from radionuclides in food without losing their validity. (author)

  4. Bryophyte in the Beginning of Terrestrial Life

    Özcan ŞİMŞEK

    2016-12-01

    Full Text Available The beginning of life has been wondered by human beings since ancient ages. The widely accepted opinion is that life began in water and after that landed. In this process, the landing of plants and adapting to terrestrial life of plants are important stages. The last 20 years it’s been done many researches to find out the relationship of bryophytes and tracheophytes. The results of these researches revealed that in evolutionary development process bryophytes and tracheophytes are sister groups. Thesis about earliest land plants are bryophytes is widely accepted recent years. To understand evolutionary process and plants of today’s better, researches about bryophytes must increase.

  5. Grand scheme for solar-terrestrial research

    Intriligator, D.S.

    1985-01-01

    The study of solar wind and its interaction with magnetic fields and electrical currents is examined. The effects of magnetic storms caused by solar wind interaction with magnetic fields in the magnetosphere and ionosphere are described. The effect of magnetospheric plasma processes on spacecraft operations and the operation of ground-based systems are explained. The development of an International Solar Terrestrial Physics program, which will be designed to place diagnostic experiments on a collection of spacecraft positioned near space is discussed; the components of the program are described

  6. A New Furostanol Glycoside from Tribulus terrestris

    Tonghua Liu

    2010-01-01

    Full Text Available Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-β-D-glucopyranosyl-(25S-5α-furostane-20(22-en-12-one-3β, 26-diol-3-O-α-L-rhamnopyranosyl-(1→2-[β-D-glucopyranosyl-(1→4]-β-D-galactopyranoside (1 on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.

  7. Two new furostanol saponins from Tribulus terrestris.

    Xu, Ya-Juan; Xu, Tun-Hai; Zhou, Hai-Ou; Li, Bo; Xie, Sheng-Xu; Si, Yun-Shan; Liu, Yue; Liu, Tong-Hua; Xu, Dong-Ming

    2010-05-01

    Two new furostanol saponins were isolated from the fruits of Tribulus terrestris L. Their structures were established as 26-O-beta-D-glucopyranosyl-(25S)-5alpha-furost-20(22)-en-3beta,26-diol-3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-glucopyranosyl-(1 --> 4)]-beta-D-galactopyranoside (1) and 26-O-beta-D-glucopyranosyl-(25S)-5alpha-furost-20(22)-en-12-one-3beta,26-diol-3-O-beta-D-galactopyranosyl-(1 --> 2)-beta-D-glucopyranosyl-(1 --> 4)-beta-D-galactopyranoside (2) on the basis of spectroscopic data as well as chemical evidence.

  8. A new furostanol glycoside from Tribulus terrestris.

    Xu, Yajuan; Liu, Yonghong; Xu, Tunhai; Xie, Shengxu; Si, Yunshan; Liu, Yue; Zhou, Haiou; Liu, Tonghua; Xu, Dongming

    2010-01-27

    Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-beta-D-glucopyranosyl-(25S)-5alpha-furostane-20(22)-en-12-one-3beta, 26-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)]-beta-D-galactopyranoside (1) on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.

  9. Handbook of the Solar-Terrestrial Environment

    Kamide, Y

    2007-01-01

    The Handbook of the Solar-Terrestrial Environment is a unique compendium. Recognized international leaders in their field contribute chapters on basic topics of solar physics, space plasmas and the Earth's magnetosphere, and on applied topics like the aurora, magnetospheric storms, space weather, space climatology and planetary science. This book will be of highest value as a reference for researchers working in the area of planetary and space science. However, it is also written in a style accessible to graduate students majoring in those fields.

  10. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods

    Kleinschmidt, R.; Watson, D.

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km 2 ), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h −1 (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. - Highlights: • A baseline terrestrial air kerma map of Queensland, Australia was developed using geochemical data from a major drainage catchment ultra-low density sampling program

  11. Terrestrial invertebrates in the Rhynie chert ecosystem.

    Dunlop, Jason A; Garwood, Russell J

    2018-02-05

    The Early Devonian Rhynie and Windyfield cherts remain a key locality for understanding early life and ecology on land. They host the oldest unequivocal nematode worm (Nematoda), which may also offer the earliest evidence for herbivory via plant parasitism. The trigonotarbids (Arachnida: Trigonotarbida) preserve the oldest book lungs and were probably predators that practiced liquid feeding. The oldest mites (Arachnida: Acariformes) are represented by taxa which include mycophages and predators on nematodes today. The earliest harvestman (Arachnida: Opiliones) includes the first preserved tracheae, and male and female genitalia. Myriapods are represented by a scutigeromorph centipede (Chilopoda: Scutigeromorpha), probably a cursorial predator on the substrate, and a putative millipede (Diplopoda). The oldest springtails (Hexapoda: Collembola) were probably mycophages, and another hexapod of uncertain affinities preserves a gut infill of phytodebris. The first true insects (Hexapoda: Insecta) are represented by a species known from chewing (non-carnivorous?) mandibles. Coprolites also provide insights into diet, and we challenge previous assumptions that several taxa were spore-feeders. Rhynie appears to preserve a largely intact community of terrestrial animals, although some expected groups are absent. The known fossils are (ecologically) consistent with at least part of the fauna found around modern Icelandic hot springs.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Author(s).

  12. Terrestrial Sagnac delay constraining modified gravity models

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  13. Generation and applications of extra-terrestrial environments on earth

    Beysens, D.A.; van Loon, J.J.W.A.

    2015-01-01

    This book has been prepared under the auspice of the European Low Gravity Research Association (ELGRA). The main task of ELGRA is to foster the scientific community in Europe and beyond in conducting gravity and space-related research. This publication is dedicated to the science community, and

  14. Towards operational environmental applications using terrestrial remote sensing

    Veldkamp JG; Velde RJ van de; LBG

    1996-01-01

    Dit rapport beschrijft de resultaten van het Beleidscommissie Remote Sensing (BCRS) project 'Verankering van toepassingen van terrestrische remote sensing bij RIVM'. Het had ten eerste tot doel te voldoen aan de voorwaarden, zoals gesteld in de inventarisatie van remote sensing als

  15. Aerogel-Based Antennas for Aerospace and Terrestrial Applications

    Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)

    2016-01-01

    Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.

  16. Consequences of simulating terrestrial N dynamics for projecting future terrestrial C storage

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2009-04-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation patterns, as well as soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. Notably, O-CN simulates realistic responses of net primary productivity, foliage area, and foliage N content to elevated atmospheric [CO2] as evidenced at free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge). We re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric [CO2], N deposition and climatic changes over the 21st century. We find that accounting for terrestrial N cycling about halves the potential to store C in response to increases in atmospheric CO2 concentrations; mainly due to a reduction of the net C uptake in temperate and boreal forests. Nitrogen deposition partially alleviates the effect of N limitation, but is by far not sufficient to compensate for the effect completely. These findings underline the importance of an accurate representation of nutrient limitations in future projections of the terrestrial net CO2 exchanges and therefore land-climate feedback studies.

  17. Intersystem Interference Reduction for Overlaid HAPS-Terrestrial CDMA System

    Huang, Jeng-Ji; Wang, Wei-Ting; Li, Mingfu; Shiung, David; Ferng, Huei-Wen

    In this letter, we propose that directional antennas, combined with power management, be incorporated to reduce intersystem interference in a shared band overlaid high altitude platform station (HAPS)-terrestrial code division multiple access (CDMA) system. To eliminate the HAPS to terrestrial interference, the HAPS is accessed only via directional antennas under the proposed scheme. By doing so, the uplink power to the HAPS can accordingly be increased, so that the terrestrial to HAPS interference is also effectively suppressed.

  18. Equilibration of the terrestrial water, nitrogen, and carbon cycles

    Schimel, David S.; Braswell, B. H.; Parton, W. J.

    1997-01-01

    Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that l...

  19. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  20. A STUDY ABOUT TERRESTRIAL LASER SCANNING FOR RECONSTRUCTION OF PRECAST CONCRETE TO SUPPORT QLASSIC ASSESSMENT

    M. A. Aziz

    2016-09-01

    Full Text Available Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC. Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape. To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  1. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides.

    Brühl, Carsten A; Pieper, Silvia; Weber, Brigitte

    2011-11-01

    Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline. Copyright © 2011 SETAC.

  2. a Study about Terrestrial Laser Scanning for Reconstruction of Precast Concrete to Support Qlassic Assessment

    Aziz, M. A.; Idris, K. M.; Majid, Z.; Ariff, M. F. M.; Yusoff, A. R.; Luh, L. C.; Abbas, M. A.; Chong, A. K.

    2016-09-01

    Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  3. Can space ties on board GNSS satellites replace terrestrial ties in the implementation of Terrestrial Reference Frames?

    Bruni, Sara; Zerbini, Susanna; Altamimi, Zuheir; Rebischung, Paul; Errico, Maddalena; Santi, Efisio

    2016-04-01

    The realization of Terrestrial Reference Frames (TRFs) must be periodically updated in order to account for newly acquired observations and for upgrades in data analysis procedures and/or combination techniques. Any innovative computation strategy should ameliorate the definition of the frame physical parameters, upon which a number of scientific applications critically rely. On the basis of the requirements of scientific cutting edge studies, the geodetic community has estimated that the present day challenge in the determination of TRFs is to provide a frame that is accurate and long-term stable at the level of 1 mm and 0.1 mm/y respectively. This work aims at characterizing the frame realized by a combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite Systems (GNSS) observations via their co-location on board GNSS spacecrafts. In particular, it is established how such a frame compares to the traditional ITRF computation and what is the impact on the realization of the frame origin and scale. Four years of data from a global network encompassing about one hundred GNSS stations and all SLR sites have been analyzed. In order to ensure the highest possible consistency, the raw data of both techniques are treated with the same analysis Software (Bernese GNSS Software 5.2) following IERS2010 Conventions. Both weekly and long term solutions are carried out exploiting either the Bernese or the Combination and Analysis of Terrestrial Reference Frames (CATREF) Software packages. We present the results of a combination study involving GNSS data and SLR observations to the two LAGEOS and to the GNSS satellites equipped with retroreflector arrays. The latter type of measurements is currently not included in the computation of the official ITRF solutions. The assessment of the benefit that they could provide to the definition of the origin and scale of the ITRF is however worth investigating, as such data provide the potential for linking the GNSS and

  4. Photovoltaic applications

    Sidrach, M.

    1992-01-01

    The most common terrestrial applications of photovoltaic plants are reviewed. Classification of applications can be done considering end-use sectors and load profiles (consumption demand). For those systems with direct coupling the working point is determined by the intersection of the load line with the I-V curve Design guidelines are provided for photovoltaic systems. This lecture focusses on the distribution system and safeguards

  5. Solar terrestrial coupling through space plasma processes

    Birn, J.

    2000-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations

  6. Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.

    Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G

    2016-12-02

    We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.

  7. Actinide elements in aquatic and terrestrial environments

    Bondietti, E.A.

    1978-01-01

    Progress is reported in terrestrial ecology studies with regard to plutonium in biota from the White Oak Creek forest; comparative distribution of plutonium in two forest ecosystems; an ecosystem model of plutonium dynamics; actinide element metabolism in cotton rats; and crayfish studies. Progress is reported in aquatic studies with regard to transuranics in surface waters, frogs, benthic algae, and invertebrates from pond 3513; and radioecology of transuranic elements in cotton rats bordering waste pond 3513. Progress is also reported in stability of trivalent plutonium in White Oak Lake water; chemistry of plutonium, americium, curium, and uranium in pond water; uranium, thorium, and plutonium in small mammals; and effect of soil pretreatment on the distribution of plutonium

  8. Visual interface for space and terrestrial analysis

    Dombrowski, Edmund G.; Williams, Jason R.; George, Arthur A.; Heckathorn, Harry M.; Snyder, William A.

    1995-01-01

    The management of large geophysical and celestial data bases is now, more than ever, the most critical path to timely data analysis. With today's large volume data sets from multiple satellite missions, analysts face the task of defining useful data bases from which data and metadata (information about data) can be extracted readily in a meaningful way. Visualization, following an object-oriented design, is a fundamental method of organizing and handling data. Humans, by nature, easily accept pictorial representations of data. Therefore graphically oriented user interfaces are appealing, as long as they remain simple to produce and use. The Visual Interface for Space and Terrestrial Analysis (VISTA) system, currently under development at the Naval Research Laboratory's Backgrounds Data Center (BDC), has been designed with these goals in mind. Its graphical user interface (GUI) allows the user to perform queries, visualization, and analysis of atmospheric and celestial backgrounds data.

  9. Radio techniques for probing the terrestrial ionosphere.

    Hunsucker, R. D.

    The subject of the book is a description of the basic principles of operation, plus the capabilities and limitations of all generic radio techniques employed to investigate the terrestrial ionosphere. The purpose of this book is to present to the reader a balanced treatment of each technique so they can understand how to interpret ionospheric data and decide which techniques are most effective for studying specific phenomena. The first two chapters outline the basic theory underlying the techniques, and each following chapter discusses a separate technique. This monograph is entirely devoted to techniques in aeronomy and space physics. The approach is unique in its presentation of the principles, capabilities and limitations of the most important presently used radio techniques. Typical examples of data are shown for the various techniques, and a brief historical account of the technique development is presented. An extended annotated bibliography of the salient papers in the field is included.

  10. Terrestrial nitrogen cycles: Some unanswered questions

    Vitousek, P.

    1984-01-01

    Nitrogen is generally considered to be the element which most often limits the growth of plants in both natural and agricultural ecosystems. It regulates plant growth because photosynthetic rates are strongly dependent on the concentration of nitrogen in leaves, and because relatively large mounts of protein are required for cell division and growth. Yet nitrogen is abundant in the biosphere - the well-mixed pool in the atmosphere is considered inexhaustible compared to biotic demand, and the amount of already fixed organic nitrogen in soils far exceeds annual plant uptake in terrestrial ecosystems. In regions where natural vegetation is not nitrogen limited, continuous cultivation induces nitrogen deficiency. Nitrogen loss from cultivated lands is more rapid than that of other elements, and nitrogen fertilization is generally required to maintain crop yield under any continuous system. The pervasiveness of nitrogen deficiency in many natural and most managed sites is discussed.

  11. Accelerated stress testing of terrestrial solar cells

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  12. The Digital Dividend of Terrestrial Broadcasting

    Beutler, Roland

    2012-01-01

    The “digital revolution” of the last two decades has pervaded innumerable aspects of our daily lives and changed our planet irreversibly. The shift from analog to digital broadcasting has facilitated a seemingly infinite variety of new applications—audience interactivity being but one example. The greater efficiency and compression of digital media have endowed broadcasters with a “digital dividend” of spare transmission capacity over and above the requirements of terrestrial broadcasting. The question is, who will use it, and how? Comparing the European experience with that of broadcasters elsewhere in the world, the author sketches the current status of international frequency management, quantifies the value of the “dividend” itself, analyzes the details of the analog-to-digital switchovers already completed, and posits what the future holds for the sector. As we grapple with new devices, inconceivable a mere generation ago, that allow us to access digital media instantly, anywhere and at any...

  13. Radionuclide transport processes in terrestrial ecosystems

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  14. New steroidal glycosides from Tribulus terrestris L.

    Chen, Gang; Liu, Tao; Lu, Xuan; Wang, Hai-Feng; Hua, Hui-Ming; Pei, Yue-Hu

    2012-01-01

    Two new steroidal glycosides were isolated from Tribulus terrestris L. Their structures were elucidated as 26-O-β-D-glucopyranosyl-5α-furostan-12-one-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (1) and 26-O-β-D-glucopyranosyl-5α-furostan-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (2) by spectroscopic methods including 1D and 2D NMR experiments.

  15. An effective method for terrestrial arthropod euthanasia.

    Bennie, Neil A C; Loaring, Christopher D; Bennie, Mikaella M G; Trim, Steven A

    2012-12-15

    As scientific understanding of invertebrate life increases, so does the concern for how to end that life in an effective way that minimises (potential) suffering and is also safe for those carrying out the procedure. There is increasing debate on the most appropriate euthanasia methods for invertebrates as their use in experimental research and zoological institutions grows. Their popularity as pet species has also led to an increase in the need for greater veterinary understanding. Through the use of a local injection of potassium chloride (KCl) initially developed for use in American lobsters, this paper describes a safe and effective method for euthanasia in terrestrial invertebrates. Initial work focused on empirically determining the dose for cockroaches, which was then extrapolated to other arthropod species. For this method of euthanasia, we propose the term 'targeted hyperkalosis' to describe death through terminal depolarisation of the thoracic ganglia as a result of high potassium concentration.

  16. Geology and Habitability of Terrestrial Planets

    Fishbaugh, Kathryn E; Raulin, François; Marais, David J; Korablev, Oleg

    2007-01-01

    Given the fundamental importance of and universal interest in whether extraterrestrial life has developed or could eventually develop in our solar system and beyond, it is vital that an examination of planetary habitability goes beyond simple assumptions such as, "Where there is water, there is life." This book has resulted from a workshop at the International Space Science Institute (ISSI) in Bern, Switzerland (5-9 September 2005) that brought together planetary geologists, geophysicists, atmospheric scientists, and biologists to discuss the multi-faceted problem of how the habitability of a planet co-evolves with the geology of the surface and interior, the atmosphere, and the magnetosphere. Each of the six chapters has been written by authors with a range of expertise so that each chapter is itself multi-disciplinary, comprehensive, and accessible to scientists in all disciplines. These chapters delve into what life needs to exist and ultimately to thrive, the early environments of the young terrestrial pl...

  17. Can terrestrial diversity be predicted from soil morphology?

    Fournier, Bertrand; Guenat, Claire; Mitchell, Edward

    2010-05-01

    equivalently for all taxonomic group. In this study, we explored the potential of soil morphology as a proxy for biodiversity. We used results of a previous research seeking at developing soil morphology based indicators for floodplain restoration assessment, as well as surveys of vegetation, bacteria, earthworms, and terrestrial arthropods from the same site (River Thur, CCES project RECORD: http://www.swiss-experiment.ch/index.php/Record:Home) to analyse the relationships among soil morphology and biodiversity variables and assess the efficiency of this river widening. Furthermore, we defined the best performing predictive soil variables for each taxa. Soil morphology indicators performed well in predicting terrestrial arthropod richness supporting the idea that this relatively simple indicator may represent a useful tool for the rapid assessment of floodplain restoration success. However, the indicators performed variously concerning other taxa highlighting the methods limitation and giving clues for future improvements. We conclude by discussing the potential of soil morphology in conservation biology and its possible applications for nature practitioners.

  18. Model coupler for coupling of atmospheric, oceanic, and terrestrial models

    Nagai, Haruyasu; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok

    2007-02-01

    A numerical simulation system SPEEDI-MP, which is applicable for various environmental studies, consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical databases for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. It is applicable for any models with three-dimensional structured grid system, which is used by most environmental and hydrodynamic models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  19. Future hotspots of terrestrial mammal loss

    Visconti, Piero; Pressey, Robert L.; Giorgini, Daniele; Maiorano, Luigi; Bakkenes, Michel; Boitani, Luigi; Alkemade, Rob; Falcucci, Alessandra; Chiozza, Federica; Rondinini, Carlo

    2011-01-01

    Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world. PMID:21844048

  20. Intermittent Astrophysical Radiation Sources and Terrestrial Life

    Melott, Adrian

    2013-04-01

    Terrestrial life is exposed to a variety of radiation sources. Astrophysical observations suggest that strong excursions in cosmic ray flux and spectral hardness are expected. Gamma-ray bursts and supernovae are expected to irradiate the atmosphere with keV to GeV photons at irregular intervals. Supernovae will produce large cosmic ray excursions, with time development varying with distance from the event. Large fluxes of keV to MeV protons from the Sun pose a strong threat to electromagnetic technology. The terrestrial record shows cosmogenic isotope excursions which are consistent with major solar proton events, and there are observations of G-stars suggesting that the rate of such events may be much higher than previously assumed. In addition there are unknown and unexplained astronomical transients which may indicate new classes of events. The Sun, supernovae, and gamma-ray bursts are all capable of producing lethal fluences, and some are expected on intervals of 10^8 years or so. The history of life on Earth is filled with mass extinctions at a variety of levels of intensity. Most are not understood. Astrophysical radiation may play a role, particularly from large increases in muon irradiation on the ground, and changes in atmospheric chemistry which deplete ozone, admitting increased solar UVB. UVB is strongly absorbed by DNA and proteins, and breaks the chemical bonds---it is a known carcinogen. High muon fluxes will also be damaging to such molecules, but experiments are needed to pin down the rate. Solar proton events which are not directly dangerous for the biota may nevertheless pose a major threat to modern electromagnetic technology through direct impact on satellites and magnetic induction of large currents in power grids, disabling transformers. We will look at the kind of events that are expected on timescales from human to geological, and their likely consequences.

  1. TERRESTRIAL PLANET FORMATION FROM AN ANNULUS

    Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu [Southwest Research Institute, 1050 Walnut St. Suite 300, Boulder, CO 80302 (United States)

    2016-09-01

    It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately including effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.

  2. The terrestrial record of Late Heavy Bombardment

    Lowe, Donald R.; Byerly, Gary R.

    2018-04-01

    Until recently, the known impact record of the early Solar System lay exclusively on the surfaces of the Moon, Mars, and other bodies where it has not been erased by later weathering, erosion, impact gardening, and/or tectonism. Study of the cratered surfaces of these bodies led to the concept of the Late Heavy Bombardment (LHB), an interval from about 4.1 to 3.8 billion years ago (Ga) during which the surfaces of the planets and moons in the inner Solar System were subject to unusually high rates of bombardment followed by a decline to present low impact rates by about 3.5 Ga. Over the past 30 years, however, it has become apparent that there is a terrestrial record of large impacts from at least 3.47 to 3.22 Ga and from 2.63 to 2.49 Ga. The present paper explores the earlier of these impact records, providing details about the nature of the 8 known ejecta layers that constitute the evidence for large terrestrial impacts during the earlier of these intervals, the inferred size of the impactors, and the potential effects of these impacts on crustal development and life. The existence of this record implies that LHB did not end abruptly at 3.8-3.7 Ga but rather that high impact rates, either continuous or as impact clusters, persisted until at least the close of the Archean at 2.5 Ga. It implies that the shift from external, impact-related controls on the long-term development of the surface system on the Earth to more internal, geodynamic controls may have occurred much later in geologic history than has been supposed previously.

  3. Grazing livestock are exposed to terrestrial cyanobacteria.

    McGorum, Bruce C; Pirie, R Scott; Glendinning, Laura; McLachlan, Gerry; Metcalf, James S; Banack, Sandra A; Cox, Paul A; Codd, Geoffrey A

    2015-02-25

    While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in all samples tested, including 6 plant washings, 1 soil sample and ileal contents from 2 grazing horses. Further work was performed to test the hypothesis that ingestion of cyanotoxins contributes to the pathogenesis of some currently unexplained diseases of grazing horses, including equine grass sickness (EGS), equine motor neuron disease (EMND) and hepatopathy. Phormidium population density was significantly higher on EGS fields than on control fields. The cyanobacterial neurotoxic amino acid 2,4-diaminobutyric acid (DAB) was detected in plant washings from EGS fields, but worst case scenario estimations suggested the dose would be insufficient to cause disease. Neither DAB nor the cyanobacterial neurotoxins β-N-methylamino-L-alanine and N-(2-aminoethyl) glycine were detected in neural tissue from 6 EGS horses, 2 EMND horses and 7 control horses. Phormidium was present in low numbers on plants where horses had unexplained hepatopathy. This study did not yield evidence linking known cyanotoxins with disease in grazing horses. However, further study is warranted to identify and quantify toxins produced by cyanobacteria on livestock fields, and determine whether, under appropriate conditions, known or unknown cyanotoxins contribute to currently unexplained diseases in grazing livestock.

  4. The terrestrial biosphere in the SFR region

    Jerling, L; Isaeus, M [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T; Schueldt, R [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m{sup 2} for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results in a

  5. The terrestrial biosphere in the SFR region

    Jerling, L.; Isaeus, M.

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m 2 for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results in a coarse

  6. The terrestrial biosphere in the SFR region

    Jerling, L.; Isaeus, M. [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J. [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T.; Schueldt, R. [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m{sup 2} for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results

  7. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Bing Song; Shuli Niu; Ruise Luo; Yiqi Luo; Jiquan Chen; Guirui Yu; Janusz Olejnik; Georg Wohlfahrt; Gerard Kiely; Ako Noormets; Leonardo Montagnani; Alessandro Cescatti; Vincenzo Magliulo; Beverly Elizabeth Law; Magnus Lund; Andrej Varlagin; Antonio Raschi; Matthias Peichl; Mats B. Nilsson; Lutz Merbold

    2014-01-01

    Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and...

  8. The decadal state of the terrestrial carbon cycle

    Velde, van der I.R.; Bloom, J.; Exbrayat, J.; Feng, L.; Williams, M.

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  9. Microplastics as an emerging threat to terrestrial ecosystems.

    de Souza Machado, Anderson Abel; Kloas, Werner; Zarfl, Christiane; Hempel, Stefan; Rillig, Matthias C

    2018-04-01

    Microplastics (plastics plastic litter or from direct environmental emission. Their potential impacts in terrestrial ecosystems remain largely unexplored despite numerous reported effects on marine organisms. Most plastics arriving in the oceans were produced, used, and often disposed on land. Hence, it is within terrestrial systems that microplastics might first interact with biota eliciting ecologically relevant impacts. This article introduces the pervasive microplastic contamination as a potential agent of global change in terrestrial systems, highlights the physical and chemical nature of the respective observed effects, and discusses the broad toxicity of nanoplastics derived from plastic breakdown. Making relevant links to the fate of microplastics in aquatic continental systems, we here present new insights into the mechanisms of impacts on terrestrial geochemistry, the biophysical environment, and ecotoxicology. Broad changes in continental environments are possible even in particle-rich habitats such as soils. Furthermore, there is a growing body of evidence indicating that microplastics interact with terrestrial organisms that mediate essential ecosystem services and functions, such as soil dwelling invertebrates, terrestrial fungi, and plant-pollinators. Therefore, research is needed to clarify the terrestrial fate and effects of microplastics. We suggest that due to the widespread presence, environmental persistence, and various interactions with continental biota, microplastic pollution might represent an emerging global change threat to terrestrial ecosystems. © 2017 John Wiley & Sons Ltd.

  10. Climate control of terrestrial carbon exchange across biomes and continents

    Chuixiang Yi; Daniel Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; John Frank; William J. Massman

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes...

  11. Growing technology earthy Tribulus terrestris (Tribulus terrestris L.) and its use

    HUDSKÁ, Miluše

    2015-01-01

    This bachelor thesis deals with Puncturevine (Tribulus terrestris) as for planting, content substances, pharmacological use and with influences of planting technology or elicitors upon the active substance contents. Saponines, flavonoids, and phytosterols are the main active substances of Puncturevine. The saponines act as aphrodisiacs, the flavonoids treat with heart diseases and the phytosterols decrease the cholesterol concentration in blood plasma. The active substance contents depend on ...

  12. The early evolution of the atmospheres of terrestrial planets

    Raulin, François; Muller, Christian; Nixon, Conor; Astrophysics and Space Science Proceedings : Volume 35

    2013-01-01

    “The Early Evolution of the Atmospheres of Terrestrial Planets” presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth’s transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are ...

  13. Accelerator mass analyses of meteorites - carbon-14 terrestrial ages

    Miura, Y.; Rucklidge, J.; Beukens, R.; Fireman, E.

    1988-01-01

    Carbon-14 terrestrial ages of ten Antarctic meteorites have been measured by the IsoTrace accelerator mass spectrometry (AMS). The 14 C terrestrial age of 1 gram sample was determined from 14 C concentrations collected at melt and re-melt temperatures, compared with the 14 C concentration of the known Bruderheim chondrite. Yamato-790448 (LL3) chondrite was found to be the oldest terrestrial age of 3x10 4 years in the nine Yamato chondrites, whereas Yamato-791630 (L4) chondrite is considered to be the youngest chondrites less than thousand years. Allan Hills chondrite of ALH-77231 (L6) shows older terrestrial age than the nine Yamato chondrites. New accelerator data of the terrestrial age show higher accuracy with smaller sample than the previous counting method. (author)

  14. Tribulus terrestris Extract Improves Human Sperm Parameters In Vitro

    Khaleghi, Sara; Bakhtiari, Mitra; Asadmobini, Atefeh; Esmaeili, Farzane

    2016-01-01

    Objective. The object of present study was to investigate the effects of direct addition of Tribulus terrestris extract on human sperm parameters. Design. Semen specimens from 40 healthy men volunteers were divided into 4 groups: one group received no treatment (control group) while the others were incubated with 20, 40, and 50 µg/mL of T terrestris extract (experimental groups). Motility, viability, and DNA fragmentation were assessed in all groups. Results. The incubation of human semen with 40 and 50 μg/mL of T terrestris extract significantly enhanced total sperm motility, number of progressive motile spermatozoa, and curvilinear velocity over 60 to 120 minutes’ holding time (P terrestris extract (P terrestris extract to human sperm could affect male fertility capacity. PMID:27694560

  15. Tribulus terrestris Extract Improves Human Sperm Parameters In Vitro.

    Khaleghi, Sara; Bakhtiari, Mitra; Asadmobini, Atefeh; Esmaeili, Farzane

    2016-09-30

    The object of present study was to investigate the effects of direct addition of Tribulus terrestris extract on human sperm parameters. Semen specimens from 40 healthy men volunteers were divided into 4 groups: one group received no treatment (control group) while the others were incubated with 20, 40, and 50 µg/mL of T terrestris extract (experimental groups). Motility, viability, and DNA fragmentation were assessed in all groups. The incubation of human semen with 40 and 50 μg/mL of T terrestris extract significantly enhanced total sperm motility, number of progressive motile spermatozoa, and curvilinear velocity over 60 to 120 minutes' holding time (P terrestris extract (P terrestris extract to human sperm could affect male fertility capacity. © The Author(s) 2016.

  16. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  17. Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health

    Wike, L

    2005-06-01

    conditions. Also, as with the aquatic RBAs using macroinvertebrates, ants have a wide variety of functional foraging or feeding groups, by whose abundance or scarcity an evaluation of the system health may be made. Much of the ground work has been done for useful ant RBAs, but it has primarily been in Australia, Europe, the US desert Southwest, and South America. However, the work already done will transport well to other ecoregions and as has been done with the IBI, it could be adapted with an appropriate investment of time and resources. It would be necessary to establish taxonomic expertise, allocate the local ant fauna to functional groups, and evaluation and modification of metrics and characteristics used to develop indices in the existing methods. Successful adaptation and application of an ant RBA would provide a cost effective, useful, and robust tool for evaluating the health of terrestrial ecosystems anywhere in the region.

  18. The decadal state of the terrestrial carbon cycle : Global retrievals of terrestrial carbon allocation, pools, and residence times

    Bloom, A Anthony; Exbrayat, Jean-François; van der Velde, Ivar R; Feng, Liang; Williams, Mathew

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  19. A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions.

    Forbey, Jennifer Sorensen; Dearing, M Denise; Gross, Elisabeth M; Orians, Colin M; Sotka, Erik E; Foley, William J

    2013-04-01

    We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.

  20. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity.

    Vavrek, Matthew J

    2016-09-01

    During the Mesozoic (242-66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species-area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. © 2016 The Author(s).

  1. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency.

    Taipale, Sami J; Galloway, Aaron W E; Aalto, Sanni L; Kahilainen, Kimmo K; Strandberg, Ursula; Kankaala, Paula

    2016-08-11

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton.

  2. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-01-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  3. Towards a global terrestrial species monitoring program

    Schmeller, Dirk S.; Julliard, Romain; Bellingham, Peter J.; Böhm, Monika; Brummitt, Neil; Chiarucci, Alessandro; Couvet, Denis; Elmendorf, Sarah; Forsyth, David M.; Moreno, Jaime García; Gregory, Richard D.; Magnusson, William E.; Martin, Laura J.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pereira, Henrique M.; Proença, Vânia; van Swaay, Chris A.M.; Yahara, Tetsukazu; Belnap, Jayne

    2015-01-01

    Introduction: The Convention for Biological Diversity’s (CBD) Strategic Plan for Biodiversity 2011-2020 envisions that “By 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people.” Although 193 parties have adopted these goals, there is little infrastructure in place to monitor global biodiversity trends. Recent international conservation policy requires such data to be up-to-date, reliable, comparable among sites, relevant, and understandable; as is becoming obvious from the work plan adopted by the Intergovernmental Panel for Biodiversity and Ecosystem Services (IPBES: www.ipbes.net/; http://tinyurl.com/ohdnknq). In order to meet the five strategic goals of the Strategic Plan for Biodiversity 2011-2020 and its 20 accompanying Aichi Targets for 2020 (www.cbd.int/sp/targets/), advances need to be made in coordinating large-scale biodiversity monitoring and linking these with environmental data to develop a comprehensive Global Observation Network, as is the main idea behind GEOSS the Global Earth Observation System of Systems (Christian 2005)...Here we identify ten requirements important for the successful implementation of a global biodiversity monitoring network under the flag of GEO BON and especially a global terrestrial species monitoring program.

  4. Pollen and spores of terrestrial plants

    Bernhardt, Christopher E.; Willard, Debra A.; Shennan, Ian; Long, Antony J.; Horton, Benjamin P.

    2015-01-01

    Pollen and spores are valuable tools in reconstructing past sea level and climate because of their ubiquity, abundance, and durability as well as their reciprocity with source vegetation to environmental change (Cronin, 1999; Traverse, 2007; Willard and Bernhardt, 2011). Pollan is found in many sedimentary environments, from freshwater to saltwater, terrestrial to marine. It can be abundant in a minimal amount of sample material, for example half a gram, as concentrations can be as high as four million grains per gram (Traverse, 2007). The abundance of pollen in a sample lends it to robust statistical analysis for the quantitative reconstruction of environments. The outer cell wall is resistant to decay in sediments and allows palynomorphs (pollen and spores) to record changes in plant communities and sea level over millions of years. These characteristics make pollen and spores a powerful tool to use in sea-level research.This chapter describes the biology of pollen and spores and how they are transported and preserved in sediments. We present a methodology for isolating pollen from sediments and a general language and framework to identify pollen as well as light micrographs of a selection of common pollen grains, We then discuss their utility in sea-level research.

  5. Mapping and Quantifying Terrestrial Vertebrate Biodiversity at ...

    The ability to assess, report, map, and forecast functions of ecosystems is critical to our capacity to make informed decisions to maintain the sustainable nature of our environment. Because of the variability among living organisms and levels of organization (e.g. genetic, species, ecosystem), biodiversity has always been difficult to measure precisely, especially within a systematic manner and over multiple scales. In answer to this challenge, the U.S. Environmental Protection Agency has created a partnership with other Federal agencies, academic institutions, and Non-Governmental Organizations to develop the EnviroAtlas (https://www.epa.gov/enviroatlas), an online national Decision Support Tool that allows users to view and analyze the geographical description of the supply and demand for ecosystem services, as well as the drivers of change. As part of the EnviroAtlas, an approach has been developed that uses deductive habitat models for all terrestrial vertebrates of the conterminous United States and clusters them into biodiversity metrics that relate to ecosystem service-relevant categories. Metrics, such as species and taxon richness, have been developed and integrated with other measures of biodiversity. Collectively, these metrics provide a consistent scalable process from which to make geographic comparisons, provide thematic assessments, and to monitor status and trends in biodiversity. The national biodiversity component operates across approximatel

  6. Crustal development in the terrestrial planets

    Taylor, S. R.

    1985-01-01

    The development of planetary crusts may be divided into primary, resulting from melting during accretion, and secondary crusts developed by partial melting from planetary mantles. The Mercurian crust is probably primary with no compelling evidence of later basaltic extrusions. Reflectance spectral evidence for the existence Fe2(+) is equivocal. The Viking Lander XRF data on Mars indicate basaltic material at both sites 4,000 km apart. Surface aeolian processes would be expected to provide a homogeneous average of the crust, but no evidence of more siliceous material is present. This conclusion is weakly supported by the Russian gamma ray data. No evidence for granite appears from the Russian Venera XRF data which indicates MORB-type and alkali basalt (4% K2O) surface compositions. The highlands of Ishtar Terra and Aphrodite probably owe their elevation to tectonic processes rather than compositional effects. Venus may thus resemble the early Archean Earth. The terrestrial granitic continental crust is a product of episodic multiple partial melting events, probably a consequence of the presence of surface water.

  7. The shape of terrestrial abundance distributions

    Alroy, John

    2015-01-01

    Ecologists widely accept that the distribution of abundances in most communities is fairly flat but heavily dominated by a few species. The reason for this is that species abundances are thought to follow certain theoretical distributions that predict such a pattern. However, previous studies have focused on either a few theoretical distributions or a few empirical distributions. I illustrate abundance patterns in 1055 samples of trees, bats, small terrestrial mammals, birds, lizards, frogs, ants, dung beetles, butterflies, and odonates. Five existing theoretical distributions make inaccurate predictions about the frequencies of the most common species and of the average species, and most of them fit the overall patterns poorly, according to the maximum likelihood–related Kullback-Leibler divergence statistic. Instead, the data support a low-dominance distribution here called the “double geometric.” Depending on the value of its two governing parameters, it may resemble either the geometric series distribution or the lognormal series distribution. However, unlike any other model, it assumes both that richness is finite and that species compete unequally for resources in a two-dimensional niche landscape, which implies that niche breadths are variable and that trait distributions are neither arrayed along a single dimension nor randomly associated. The hypothesis that niche space is multidimensional helps to explain how numerous species can coexist despite interacting strongly. PMID:26601249

  8. Some Studies of Terrestrial Impact Cratering Rate

    Jetsu L.

    2011-06-01

    Full Text Available In 1984, a 28.4 Myr periodicity was detected in the ages of terrestrial impact craters and a 26 Myr periodicity in the epochs of mass extinctions of species. Periodic comet showers from the Oort cloud seemed to cause catastrophic events linked to mass extinctions of species. Our first study revealed that the only significant detected periodicity is the “human signal” caused by the rounding of these data into integer numbers. The second study confirmed that the original 28.4 Myr periodicity detection was not significant. The third study revealed that the quality and the quantity of the currently available data would allow detection of real periodicity only if all impacts have been periodic, which cannot be the case. The detection of a periodic signal, if present, requires that more craters should be discovered and the accuracy of age estimates improved. If we sometimes will be able to find the difference between the craters caused by asteroid and comet impacts, the aperiodic component could be removed. The lunar impact craters may eventually provide the required supplementary data.

  9. Dinosaurs and the Cretaceous Terrestrial Revolution

    Lloyd, Graeme T; Davis, Katie E; Pisani, Davide; Tarver, James E; Ruta, Marcello; Sakamoto, Manabu; Hone, David W.E; Jennings, Rachel; Benton, Michael J

    2008-01-01

    The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125–80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR. PMID:18647715

  10. Energetics of the terrestrial bow shock

    Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik

    2017-04-01

    The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.

  11. Terrestrial Environment (Climatic) Criteria Guidelines for use in Aerospace Vehicle Development. 2008 Revision

    Johnson, D. L. (Editor)

    2008-01-01

    This document provides guidelines for the terrestrial environment that are specifically applicable in the development of design requirements/specifications for NASA aerospace vehicles, payloads, and associated ground support equipment. The primary geographic areas encompassed are the John F. Kennedy Space Center, FL; Vandenberg AFB, CA; Edwards AFB, CA; Michoud Assembly Facility, New Orleans, LA; John C. Stennis Space Center, MS; Lyndon B. Johnson Space Center, Houston, TX; George C. Marshall Space Flight Center, Huntsville, AL; and the White Sands Missile Range, NM. This document presents the latest available information on the terrestrial environment applicable to the design and operations of aerospace vehicles and supersedes information presented in NASA-HDBK-1001 and TM X-64589, TM X-64757, TM-78118, TM-82473, and TM-4511. Information is included on winds, atmospheric thermodynamic models, radiation, humidity, precipitation, severe weather, sea state, lightning, atmospheric chemistry, seismic criteria, and a model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth. In addition, a section has been included to provide information on the general distribution of natural environmental extremes in the conterminous United States, and world-wide, that may be needed to specify design criteria in the transportation of space vehicle subsystems and components. A section on atmospheric attenuation has been added since measurements by sensors on certain Earth orbital experiment missions are influenced by the Earth s atmosphere. There is also a section on mission analysis, prelaunch monitoring, and flight evaluation as related to the terrestrial environment inputs. The information in these guidelines is recommended for use in the development of aerospace vehicle and related equipment design and associated operational criteria, unless otherwise stated in contract work specifications. The terrestrial environmental data in these guidelines are

  12. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  13. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; hide

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  14. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  15. Soft Legged Wheel-Based Robot with Terrestrial Locomotion Abilities

    Ali Sadeghi

    2016-12-01

    Full Text Available In recent years robotics has been influenced by a new approach, soft-robotics, bringing the idea that safe interaction with user and more adaptation to the environment can be achieved by exploiting easily deformable materials and flexible components in the structure of robots. In 2016, the soft-robotics community has promoted a new robotics challenge, named RoboSoft Grand Challenge, with the aim of bringing together different opinions on the usefulness and applicability of softness and compliancy in robotics. In this paper we describe the design and implementation of a terrestrial robot based on two soft legged wheels. The tasks predefined by the challenge were set as targets in the robot design, which finally succeeded to accomplish all the tasks. The wheels of the robot can passively climb over stairs and adapt to slippery grounds using two soft legs embedded in their structure. The soft legs, fabricated by integration of soft and rigid materials and mounted on the circumference of a conventional wheel, succeed to enhance its functionality and easily adapt to unknown grounds. The robot has a semi stiff tail that helps in the stabilization and climbing of stairs. An active wheel is embedded at the extremity of the tail in order to increase the robot maneuverability in narrow environments. Moreover two parallelogram linkages let the robot to reconfigure and shrink its size allowing entering inside gates smaller than its initial dimensions.

  16. The Use of Resistivity Methods in Terrestrial Forensic Searches

    Wolf, R. C.; Raisuddin, I.; Bank, C.

    2013-12-01

    The increasing use of near-surface geophysical methods in forensic searches has demonstrated the need for further studies to identify the ideal physical, environmental and temporal settings for each geophysical method. Previous studies using resistivity methods have shown promising results, but additional work is required to more accurately interpret and analyze survey findings. The Ontario Provincial Police's UCRT (Urban Search and Rescue; Chemical, Biolgical, Radiological, Nuclear and Explosives; Response Team) is collaborating with the University of Toronto and two additional universities in a multi-year study investigating the applications of near-surface geophysical methods to terrestrial forensic searches. In the summer of 2012, on a test site near Bolton, Ontario, the OPP buried weapons, drums and pigs (naked, tarped, and clothed) to simulate clandestine graves and caches. Our study aims to conduct repeat surveys using an IRIS Syscal Junior with 48 electrode switching system resistivity-meter. These surveys will monitor changes in resistivity reflecting decomposition of the object since burial, and identify the strengths and weaknesses of resistivity when used in a rural, clandestine burial setting. Our initial findings indicate the usefulness of this method, as prominent resistivity changes have been observed. We anticipate our results will help to assist law enforcement agencies in determining the type of resistivity results to expect based on time since burial, depth of burial and state of dress of the body.

  17. Natural and man-made terrestrial electromagnetic noise: an outlook

    A. Meloni

    2007-06-01

    Full Text Available The terrestrial environment is continuously exposed to electromagnetic radiations which set up a «background» electromagnetic noise. Within the Non Ionizing Radiation band (NIR, i.e. for frequencies lower than 300 GHz, this background can have a natural or an artificial origin. Natural origins of electromagnetic radiations are generally atmospheric or cosmic while artificial origins are technological applications, power transmission, communications, etc. This paper briefly describes the natural and man-made electromagnetic noise in the NIR band. Natural noise comes from a large variety of sources involving different physical phenomena and covering a wide range of frequencies and showing various propagation characteristics with an extremely broad range of power levels. Due to technological growth man-made electromagnetic noise is nowadays superimposed on natural noise almost everywhere on Earth. In the last decades man-made noise has increased dramatically over and above the natural noise in residential and business areas. This increase has led some scientists to consider possible negative effects of electromagnetic waves on human life and living systems in general. Accurate measurements of natural and man-made electromagnetic noise are necessary to understand the relative power levels in the different bands and their influence on life.

  18. Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review

    Harmens, H.; Foan, L.; Simon, V.; Mills, G.

    2013-01-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes. - Highlights: ► Terrestrial mosses are suitable organisms to monitor deposition of POPs. ► They provide a good indication of spatial patterns and temporal trends. ► Mosses have been used as biomonitors of PAHs, PCBs, PBDEs dioxins and furans. ► Few studies have assessed the relationship between concentrations in air and mosses. - Mosses are suitable biomonitors of persistent organic pollutants (POPs).

  19. Influence of multiple global change drivers on terrestrial carbon storage

    Yue, Kai; Fornara, Dario A; Yang, Wanqin

    2017-01-01

    The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum of their indivi......The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum...... additive effects of multiple global change drivers into future assessments of the C storage ability of terrestrial ecosystems....

  20. Transfer coefficients for terrestrial foodchain: their derivation and limitations

    Ng, Y.C.; Colsher, C.S.; Thompson, S.E.

    1979-01-01

    Transfer coefficients to predict the passage of isotopes from the environment to terrestrial foods have been derived for various radionuclides of importance in the nuclear fuel cycle. These data update and extend previously recommended handbook values. We derive transfer coefficients to terrestrial foods and describe the systematics of the derived transfer coefficients. Suggestions are offered for changes in the values of transfer coefficients to terrestrial foods that now appear in federal regulatory guides. Deficiencies in our present knowledge concerning transfer coefficients and limitations in the use of these values to ensure compliance with radiation protection standards are discussed

  1. Interworking evolution of mobile satellite and terrestrial networks

    Matyas, R.; Kelleher, P.; Moller, P.; Jones, T.

    1993-01-01

    There is considerable interest among mobile satellite service providers in interworking with terrestrial networks to provide a universal global network. With such interworking, subscribers may be provided a common set of services such as those planned for the Public Switched Telephone Network (PSTN), the Integrated Services Digital Network (ISDN), and future Intelligent Networks (IN's). This paper first reviews issues in satellite interworking. Next the status and interworking plans of terrestrial mobile communications service providers are examined with early examples of mobile satellite interworking including a discussion of the anticipated evolution towards full interworking between mobile satellite and both fixed and mobile terrestrial networks.

  2. What Drives Carbon Isotope Fractionation by the Terrestrial Biosphere?

    Still, Christopher; Rastogi, Bharat

    2017-11-01

    During photosynthesis, terrestrial plants preferentially assimilate the lighter and much more abundant form of carbon, 12C, which accounts for roughly 99% of naturally occurring forms of this element. This photosynthetic preference for lighter carbon is driven principally by differences in molecular diffusion of carbon dioxide with differing 13C/12C across stomatal pores on leaves, followed by differences in carboxylation rates by the Rubisco enzyme that is central to the process of photosynthesis. As a result of these slight preferences, which work out to about a 2% difference in the fixation rates of 12CO2 versus 13CO2 by C3 vegetation, plant tissues are depleted in the heavier form of carbon (13C) relative to atmospheric CO2. This difference has been exploited in a wide range of scientific applications, as the photosynthetic isotope signature is passed to ecosystem carbon pools and through ecological food webs. What is less appreciated is the signature that terrestrial carbon exchanges leave on atmospheric CO2, as the net uptake of carbon by land plants during their growing season not only draws down the local CO2 concentration, it also leaves behind relatively more CO2 molecules containing 13C. The converse happens outside the growing season, when autotrophic and heterotrophic respiration predominate. During these periods, atmospheric CO2 concentration increases and its corresponding carbon isotope composition becomes relatively depleted in 13C as the products of photosynthesis are respired, along with some small isotope fractionation that happen downstream of the initial photosynthetic assimilation. Similar phenomena were first observed at shorter time scales by the eminent carbon cycle scientist, Charles (Dave) Keeling. Keeling collected samples of air in glass flasks from sites along the Big Sur coast that he later measured for CO2 concentration and carbon isotope composition (δ13C) in his lab (Keeling, 1998). From these samples, Keeling observed increasing

  3. Biological control of the terrestrial carbon sink

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  4. Biological control of the terrestrial carbon sink

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  5. Topographic-driven instabilities in terrestrial bodies

    Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.

    2013-12-01

    Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.

  6. Tidal heating in multilayered terrestrial exoplanets

    Henning, Wade G.; Hurford, Terry, E-mail: wade.g.henning@nasa.gov [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2014-07-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  7. Tidal Heating in Multilayered Terrestrial Exoplanets

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  8. Cause of Cambrian Explosion - Terrestrial or Cosmic?

    Steele, Edward J; Al-Mufti, Shirwan; Augustyn, Kenneth A; Chandrajith, Rohana; Coghlan, John P; Coulson, S G; Ghosh, Sudipto; Gillman, Mark; Gorczynski, Reginald M; Klyce, Brig; Louis, Godfrey; Mahanama, Kithsiri; Oliver, Keith R; Padron, Julio; Qu, Jiangwen; Schuster, John A; Smith, W E; Snyder, Duane P; Steele, Julian A; Stewart, Brent J; Temple, Robert; Tokoro, Gensuke; Tout, Christopher A; Unzicker, Alexander; Wainwright, Milton; Wallis, Jamie; Wallis, Daryl H; Wallis, Max K; Wetherall, John; Wickramasinghe, D T; Wickramasinghe, J T; Wickramasinghe, N Chandra; Liu, Yongsheng

    2018-08-01

    We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ∼500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion - life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Tidal heating in multilayered terrestrial exoplanets

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R E is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  10. Terrestrial and aquatic mammals of the Pantanal

    CJR. Alho

    Full Text Available Different works have registered the number of mammal species within the natural habitats of the Pantanal based on currently known records, with species richness ranging from 89 to 152 of annotated occurrences. Our present list sums 174 species. However, at least three factors have to be emphasised to deal with recorded numbers: 1 to establish the ecotone limit between the floodplain (which is the Pantanal and its neighbouring domain like the Cerrado, besides the existence of maps recently produced; 2 the lack of intensive surveys, especially on small mammals, rodents and marsupials; and 3 the constant taxonomic revision on bats, rodents and marsupials. Some species are very abundant - for example the capybara Hydrochoerus hydrochaeris and the crab-eating fox Cerdocyon thous, and some are rare, and others are still intrinsically rare - for example, the bush dog Speothos venaticus. Abundance of species is assumed to reflect ecological resources of the habitat. Local diversity and number of individuals of wild rodents and marsupials also rely on the offering of ecological resources and behavioural specialisation to microhabitat components. A large number of species interact with the type of the vegetation of the habitat, by means of habitat selection through active patterns of ecological behaviour, resulting on dependency on arboreal and forested habitats of the Pantanal. In addition, mammals respond to seasonal shrinking-and-expansion of habitats due to flooding regime of the Pantanal. The highest number of species is observed during the dry season, when there is a considerable expansion of terrestrial habitats, mainly seasonally flooded grassland. Major threats to mammal species are the loss and alteration of habitats due to human intervention, mainly deforestation, unsustainable agricultural and cattle-ranching practices, which convert the natural vegetation into pastures. The Pantanal still harbours about a dozen of species officially listened

  11. Environmental aspects: - Atmospheric, - aquatic, - terrestrial dispersion of radionuclides

    Kirchmann, R.

    1982-01-01

    After general introductory remarks the paper deals with the dispersion of radionuclides in the atmosphere and in the aquatic environment as well as with the transfer through the terrestrial environment. (RW)

  12. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  13. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American...

  14. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    National Aeronautics and Space Administration — This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American Carbon...

  15. Electrochemical Power Plant for Terrestrial Flight Platforms, Phase I

    National Aeronautics and Space Administration — An electrochemical power plant is proposed by MicroCell Technologies to provide power to terrestrial flight platforms. Our power plant is based upon a proton...

  16. Terrestrial radiation level in selected asphalt plants in Port Harcourt ...

    Terrestrial radiation level in selected asphalt plants in Port Harcourt, Nigeria. ... An environmental radiation survey in asphalt processing plants in Rivers State was been carried out ... Therefore the results show significant radiological risk.

  17. Generation of terrestrial radiation database in the Larsemann Hills, Antarctica

    Pal, Rupali; Dhabekar, Bhushan; Jose, Jis Romal; Chinnaesakki, S.; Bakshi, A.K.; Datta, D.; Pradeepkumar, K.S.

    2018-01-01

    Natural background radiation in the environment includes terrestrial radiation, cosmic radiation from space and air activity due to radon/thoron. It is known that cosmic contribution increases near the poles. The terrestrial component is largely due to 232 Th and 238 U series and 40 K. BARC under the cosmic ray dosimetry project with National Centre for Antarctic and Ocean Research (NCAOR) has taken up measurement of natural background radiation at Larsemann Hills, Antarctica. The project includes generation of baseline data on terrestrial radioactivity in water, soil and rock and estimation of cosmic ray doses. Extensive radiation surveys were carried out by the BARC team in the 35 th and 36 th expedition in and around Larsemann hills in East Antarctica where the third Indian station 'Bharati' is situated. This paper presents mapping of terrestrial radiation levels in Antarctica which will help in strengthening the background radiation database and develop a Radiation Informatics System (RIS)

  18. Climate control of terrestrial carbon exchange across biomes and continents

    Yi, Chuixiang; Ricciuto, Daniel; Li, Runze

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships betwe...

  19. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    Hsu, M.J.; Selvaraj, K.; Agoramoorthy, G.

    2006-01-01

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan

  20. Research progress in airborne surveys of terrestrial gamma radiation

    Burson, Z.G.

    1974-01-01

    Progress during the last few years in airborne surveys of terrestrial gamma radiation, i.e. in the measuring, recording, and interpreting of gamma ray signals in NaI(Tl) crystals, is discussed. Non-terrestrial background contributions have been accurately characterized. The feasibility of determining the water equivalent of snow cover by aerial survey techniques has been demonstrated. Repeat surveys over areas surrounding reactor sites can now be used to detect average differences of less than 1.0 μR/hr in terrestrial gamma radiation levels. New data acquisition and recording systems allow isotope concentrations and total inventories to be measured in spatial resolutions of a few hundred feet. Aerial survey data have been combined with population distribution data to obtain population exposure values from natural terrestrial gamma radiation around reactor sites

  1. Floral display, reproductive success, and conservation of terrestrial orchids

    Kindlmann, Pavel; Jersáková, Jana

    2005-01-01

    Roč. 26, - (2005), s. 136-144 ISSN 0361-185X Institutional research plan: CEZ:AV0Z60870520 Keywords : deceptiveness * fruit set * number of flowers * Orchis morio * terrestrial orchids Subject RIV: EH - Ecology, Behaviour

  2. Allium hookeri , Thw. Enum. A lesser known terrestrial perennial ...

    A lesser known terrestrial perennial herb used as food and its ethnobotanical ... from the wilderness, for consumption and traditional healing of various ailments. ... plants, the lifestyles of the people are changed and they prefer 'junk foods'.

  3. Coastal niches for terrestrial predators: a stable isotope study

    Mellbrand, K.; Hamback, P.A., E-mail: peter.hamback@botan.su.se [Stockholm Univ., Dept. of Botany, Stockholm (Sweden)

    2010-12-15

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  4. Terrestrial Planet Finder Coronagraph High Accuracy Optical Propagation, Phase I

    National Aeronautics and Space Administration — The Terrestrial Planet Finder (TPF) project is considering several approaches to discovering planets orbiting stars far from earth and assessing their suitability to...

  5. Coastal niches for terrestrial predators: a stable isotope study

    Mellbrand, K.; Hamback, P.A.

    2010-01-01

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  6. Climate control of terrestrial carbon exchange across biomes and continents

    Yi, C.; Ricciuto, D.; Li, R.; Hendriks, D.M.D.; Moors, E.J.; Valentini, R.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between

  7. Climate control of terrestrial carbon exchange across biomes and continents

    Yi, C.; Jacobs, C.M.J.; Moors, E.J.; Elbers, J.A.

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between

  8. THE BENEFITS OF TERRESTRIAL LASER SCANNING AND HYPERSPECTRAL DATA FUSION PRODUCTS

    S. J. Buckley

    2012-10-01

    Full Text Available Close range hyperspectral imaging is a developing method for the analysis and identification of material composition in many applications, such as in within the earth sciences. Using compact imaging devices in the field allows near-vertical topography to be imaged, thus bypassing the key limitations of viewing angle and resolution that preclude the use of airborne and spaceborne platforms. Terrestrial laser scanning allows 3D topography to be captured with high precision and spatial resolution. The combination of 3D geometry from laser scanning, and material properties from hyperspectral imaging allows new fusion products to be created, adding new information for solving application problems. This paper highlights the advantages of terrestrial lidar and hyperspectral integration, focussing on the qualitative and quantitative aspects, with examples from a geological field application. Accurate co-registration of the two data types is required. This allows 2D pixels to be linked to the 3D lidar geometry, giving increased quantitative analysis as classified material vectors are projected to 3D space for calculation of areas and examination of spatial relationships. User interpretation of hyperspectral results in a spatially-meaningful manner is facilitated using visual methods that combine the geometric and mineralogical products in a 3D environment. Point cloud classification and the use of photorealistic modelling enhance qualitative validation and interpretation, and allow image registration accuracy to be checked. A method for texture mapping of lidar meshes with multiple image textures, both conventional digital photos and hyperspectral results, is described. The integration of terrestrial laser scanning and hyperspectral imaging is a valuable means of providing new analysis methods, suitable for many applications requiring linked geometric and chemical information.

  9. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency

    Taipale, Sami J.; Galloway, Aaron W. E.; Aalto, Sanni L.; Kahilainen, Kimmo K.; Strandberg, Ursula; Kankaala, Paula

    2016-01-01

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terr...

  10. Microbial rhodopsins on leaf surfaces of terrestrial plants

    Atamna-Ismaeel, Nof; Finkel, Omri M.; Glaser, Fabian; Sharon, Itai; Schneider, Ron; Post, Anton F.; Spudich, John L.; von Mering, Christian; Vorholt, Julia A.; Iluz, David; Béjà, Oded; Belkin, Shimshon

    2011-01-01

    The above-ground surfaces of terrestrial plants, the phyllosphere, comprise the main interface between the terrestrial biosphere and solar radiation. It is estimated to host up to 1026 microbial cells that may intercept part of the photon flux impinging on the leaves. Based on 454-pyrosequencing-generated metagenome data, we report on the existence of diverse microbial rhodopsins in five distinct phyllospheres from tamarisk (Tamarix nilotica), soybean (Glycine max), Arabidopsis (Arabidopsis t...

  11. Investigation on the toxic potential of Tribulus terrestris in vitro.

    Abudayyak, M; Jannuzzi, A T; Özhan, G; Alpertunga, B

    2015-04-01

    Tribulus terrestris L. (Zygophyllaceae) has been commonly used to energize, vitalize, and improve sexual function and physical performance in men. This study investigates the potential cytotoxic and genotoxic, and endocrine disrupting activities of T. terrestris in vitro. The whole T. terrestris plant was extracted with water, methanol, and chloroform. The genotoxic potential of T. terrestris extracts at 3-2400 µg/mL was assessed by Comet assay in a rat kidney cell line (NRK-52E) and by Ames assay in Salmonella typhimurium TA98 and TA100 strains. Endocrine disrupting effects of the extracts at concentrations of 0.22-25 000 µg/mL were assessed by YES/YAS assay in Saccharomyces cerevisiae. Cytotoxic activity of the extracts was determined by the MTT test in NRK-52E cells. The different exposure times were used for four tests (3-48 h). The methanol extract of T. terrestris IC50 value was 160 µg/mL. The other extracts did not show cytotoxic effects. In the Comet and Ames genotoxicity assays, none of the extracts possessed genotoxic activities at concentrations of 0-2400 µg/mL. Only the water extract of T. terrestris induced frame shift mutations after metabolic activation. The water extract also showed estrogenic activity by YES/YAS assay in S. cerevisiae at concentrations ≥27 µg/mL (≥2.6-fold), while the other T. terrestris extracts had anti-estrogenic properties. Tribulus terrestris had estrogenic and genotoxic activities. The study was useful in determining its toxicological effects and the precautions regarding consumption.

  12. STUDY OF ANTIBACTERIAL EFFECT OF TRIBULUS TERRESTRIS EXTRACT.

    Mohanad H. Hussein.

    2018-01-01

    This study was designed to evaluated antimicrobial activity of Tribulus terrestris aqueous extract against some pathogenic microorganisms. So that, the aqueous extract of Tribulus terrestris was screened for its anti-microbial activity using the plate agar diffusion method. It was tested against four bacteria species; two Gram-positive bacteria (Bacillus subtilis, and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The susceptibility of the...

  13. Data base for terrestrial food pathways dose commitment calculations

    Bailey, C.E.

    1979-01-01

    A computer program is under development to allow calculation of the dose-to-man in Georgia and South Carolina from ingestion of radionuclides in terrestrial foods resulting from deposition of airborne radionuclides. This program is based on models described in Regulatory Guide 1.109 (USNRC, 1977). The data base describes the movement of radionuclides through the terrestrial food chain, growth and consumption factors for a variety of radionuclides

  14. Shell bone histology indicates terrestrial palaeoecology of basal turtles

    Scheyer, Torsten; Sander, P. Martin

    2009-01-01

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys que...

  15. A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria.

    Kuhne, S; Strieth, D; Lakatos, M; Muffler, K; Ulber, R

    2014-12-20

    Cyanobacteria offer great potential for the production of biotechnological products for pharmaceutical applications. However, these organisms can only be cultivated efficiently using photobioreactors (PBR). Under submerged conditions though, terrestrial cyanobacteria mostly grow in a suboptimal way, which makes this cultivation-technique uneconomic and thus terrestrial cyanobacteria unattractive. Therefore, a novel emersed photobioreactor (ePBR) has been developed, which can provide the natural conditions for these organisms. Proof of concept as well as first efficiency tests are conducted using the terrestrial cyanobacteria Trichocoleus sociatus as a model organism. The initial maximum growth rate of T. sociatus (0.014±0.001h(-1)) in submerged systems could be increased by 35%. Furthermore, it is now possible to control desiccation-correlated product formation and related metabolic processes. This is shown for the production of extracellular polymeric substances (EPS). In this case the yield of 0.068±0.006g of EPS/g DW could be increased by more than seven times. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Accuracy of cultural heritage 3D models by RPAS and terrestrial photogrammetry

    M. Bolognesi

    2014-06-01

    Full Text Available The combined use of high-resolution digital images taken from ground as well as from RPAS (Remotely Piloted Aircraft Systems have significantly increased the potential of close range digital photogrammetry applications in Cultural Heritage surveying and modeling. It is in fact possible, thanks to SfM (Structure from Motion, to simultaneously process great numbers of aerial and terrestrial images for the production of a dense point cloud of an object. In order to analyze the accuracy of results, we started numerous tests based on the comparison between 3D digital models of a monumental complex realized by the integration of aerial and terrestrial photogrammetry and an accurate TLS (Terrestrial Laser Scanner reference model of the same object. A lot of digital images of a renaissance castle, assumed as test site, have been taken both by ground level and by RPAS at different distances and flight altitudes and with different flight patterns. As first step of the experimentation, the images were previously processed with Agisoft PhotoScan, one of the most popular photogrammetric software. The comparison between the photogrammetric DSM of the monument and a TLS reference one was carried out by evaluating the average deviation between the points belonging to the two entities, both globally and locally, on individual façades and architectural elements (sections and particular. In this paper the results of the first test are presented. A good agreement between photogrammetric and TLS digital models of the castle is pointed out.

  17. Radionuclide biological half-life values for terrestrial and aquatic wildlife

    Beresford, N.A.; Beaugelin-Seiller, K.; Burgos, J.; Cujic, M.; Fesenko, S.; Kryshev, A.; Pachal, N.; Real, A.; Su, B.S.; Tagami, K.; Vives i Batlle, J.; Vives-Lynch, S.; Wells, C.; Wood, M.D.

    2015-01-01

    The equilibrium concentration ratio is typically the parameter used to estimate organism activity concentrations within wildlife dose assessment tools. Whilst this is assumed to be fit for purpose, there are scenarios such as accidental or irregular, fluctuating, releases from licensed facilities when this might not be the case. In such circumstances, the concentration ratio approach may under- or over-estimate radiation exposure depending upon the time since the release. To carrying out assessments for such releases, a dynamic approach is needed. The simplest and most practical option is representing the uptake and turnover processes by first-order kinetics, for which organism- and element-specific biological half-life data are required. In this paper we describe the development of a freely available international database of radionuclide biological half-life values. The database includes 1907 entries for terrestrial, freshwater, riparian and marine organisms. Biological half-life values are reported for 52 elements across a range of wildlife groups (marine = 9, freshwater = 10, terrestrial = 7 and riparian = 3 groups). Potential applications and limitations of the database are discussed. - Highlights: • 1907 biological half-life values have been collated for wildlife species. • Data cover 52 elements. • 27 marine, freshwater, riparian and terrestrial organisms are included.

  18. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  19. NFC Solutions for Purchasing Public Transport Tickets at Babahoyo Terrestrial Terminal

    José Rosado Anzules

    2018-02-01

    Full Text Available Buying tickets at the Babahoyo terrestrial terminal can become a slow process, causing delays and costs for users to queue to be able to mobilize to the different destinations on o er. The objective of the project is to demonstrate the feasibility of using the computer system that implements NFC technology through mobile phones and smart cards that allow to speed up the purchase process, all for frequent travelers who must use this service. The data presented in this article were obtained through an exploratory study of qualitative and quantitative nature. The people who participated in the study were the users of the Babahoyo terrestrial terminal transport, who answered questions to determine their level of acceptance to a computer system using NFC technologies and the results determined that a large majority were available to use telephones and smart card readers. About 90% of respondents believe that the software will have a positive impact on the ticketing process at the Babahoyo terrestrial terminal. Even in the country, the advantages of NFC have not been seen, however, it is expected that by 2018 will have a high impact by the use of applications that make use of the benefits provided by this technology. NFC technology emerged about 15 years ago, however, in Ecuador has not yet become popular the use of it.

  20. Object-Based Coregistration of Terrestrial Photogrammetric and ALS Point Clouds in Forested Areas

    Polewski, P.; Erickson, A.; Yao, W.; Coops, N.; Krzystek, P.; Stilla, U.

    2016-06-01

    Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics, coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76 x 121 m2) and a photogrammetric point cloud (33 x 35 m2) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically, for the real plot data, 24

  1. Comparing Terrestrial Organic Carbon Cycle Dynamics in Interglacial and Glacial Climates in the South American Tropics

    Fornace, K. L.; Galy, V.; Hughen, K. A.

    2014-12-01

    The application of compound-specific radiocarbon dating to molecular biomarkers has allowed for tracking of specific organic carbon pools as they move through the environment, providing insight into complex processes within the global carbon cycle. Here we use this technique to investigate links between glacial-interglacial climate change and terrestrial organic carbon cycling in the catchments of Cariaco Basin and Lake Titicaca, two tropical South American sites with well-characterized climate histories since the last glacial period. By comparing radiocarbon ages of terrestrial biomarkers (leaf wax compounds) with deposition ages in late glacial and Holocene sediments, we are able to gauge the storage time of these compounds in the catchments in soils, floodplains, etc. before transport to marine or lacustrine sediments. We are also able to probe the effects of temperature and hydrologic change individually by taking advantage of opposite hydrologic trends at the two sites: while both were colder during the last glacial period, precipitation at Titicaca decreased from the last glacial period to the Holocene, but the late glacial was marked by drier conditions at Cariaco. Preliminary data from both sites show a wide range of apparent ages of long-chain n-fatty acids (within error of 0 to >10,000 years older than sediment), with the majority showing ages on the order of several millennia at time of deposition and age generally increasing with chain length. While late glacial leaf waxes appear to be older relative to sediment than those deposited in the Holocene at both sites, at Cariaco we find a ~2-3 times larger glacial-interglacial age difference than at Titicaca. We hypothesize that at Titicaca the competing influences of wetter and colder conditions during the last glacial period, which respectively tend to increase and decrease the rate of organic carbon turnover on land, served to minimize the contrast between glacial and interglacial leaf wax storage time

  2. Debris disks as signposts of terrestrial planet formation

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by

  3. Terrestrial multi-view photogrammetry for landslide monitoring

    Stumpf, A.; Malet, J.; Allemand, P.; Skupinski, G.; Pierrot-Deseilligny, M.

    2013-12-01

    Multi-view stereo (MVS) surface reconstruction from large photo collections is being increasingly used for geoscience applications, and a number of different software solution and processing streamlines have been suggested. Open source libraries to perform feature point extraction, pose estimation, bundle adjustment and dense matching are available providing high quality results at low costs, and transparency of the implemented algorithms. Within the computer vision community benchmark datasets with toy examples and architectural scenes are frequently used to evaluate dense matching algorithms but relatively few studies have addressed the evaluation of complete processing pipelines for complex natural landscapes such as landslides developed in high mountain terrains. In order to obtain surface displacement maps of an active landslide (Super-Sauze, Southern French Alps) from multi-temporal terrestrial photographs over a period of three years, this work targeted the evaluation of three different non-commercial processing pipelines. The tested packages include VisualSfM[1], CMVS-PMVS [2], Apero and MicMac [URL]. The image acquisition focused on either subparts of the landslide (toe, main scarp) or targeted the reconstruction of a global model of the entire landslide. All images were processed with three different pipelines namely VisualSfM + CMVS-PMVS, Apero + CMVS-PMVS and Apero + MicMac and the resulting point clouds were evaluated with terrestrial and airborne LiDAR. Our results show that all multi-view stereo pipelines provide useful results to quantify surface displacement at accuracies between 1-10 cm depending on the acquisition geometry and the object distance. For pose estimation and bundle adjustment, Apero is the more accurate and versatile tool allowing the use of more sophisticated lens models and the direct integration of ground control points in the bundle adjustment. The dense matching algorithms with MicMac enables the reconstruction of denser point

  4. Software agents for the dissemination of remote terrestrial sensing data

    Toomey, Christopher N.; Simoudis, Evangelos; Johnson, Raymond W.; Mark, William S.

    1994-01-01

    Remote terrestrial sensing (RTS) data is constantly being collected from a variety of space-based and earth-based sensors. The collected data, and especially 'value-added' analyses of the data, are finding growing application for commercial, government, and scientific purposes. The scale of this data collection and analysis is truly enormous; e.g., by 1995, the amount of data available in just one sector, NASA space science, will reach 5 petabytes. Moreover, the amount of data, and the value of analyzing the data, are expected to increase dramatically as new satellites and sensors become available (e.g., NASA's Earth Observing System satellites). Lockheed and other companies are beginning to provide data and analysis commercially. A critical issue for the exploitation of collected data is the dissemination of data and value-added analyses to a diverse and widely distributed customer base. Customers must be able to use their computational environment (eventually the National Information Infrastructure) to obtain timely and complete information, without having to know the details of where the relevant data resides and how it is accessed. Customers must be able to routinely use standard, widely available (and, therefore, low cost) analyses, while also being able to readily create on demand highly customized analyses to make crucial decisions. The diversity of user needs creates a difficult software problem: how can users easily state their needs, while the computational environment assumes the responsibility of finding (or creating) relevant information, and then delivering the results in a form that users understand? A software agent is a self-contained, active software module that contains an explicit representation of its operational knowledge. This explicit representation allows agents to examine their own capabilities in order to modify their goals to meet changing needs and to take advantage of dynamic opportunities. In addition, the explicit representation

  5. The physical and theoretical basis of solar-terrestrial relationships 1. Equatorial locations

    Njau, E.C.

    1988-07-01

    The theory of solar-terrestrial relationships developed earlier by the author is extended to incorporate expressions that represent the non-linear responses of the earth-atmosphere system to incoming solar radiation in a more detailed manner. Application of the extended theory to equatorial locations leads to new and interesting features that are consistent with past observations. It also predicts the existence of new oscillations in the equatorial atmosphere whose causative physical processes are given and explained. Non-equatorial locations are treated along similar lines in Part 2 of the series. (author). 44 refs

  6. A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris.

    Zhu, Wenyi; Du, Yijie; Meng, Hong; Dong, Yinmao; Li, Li

    2017-07-11

    Tribulus terrestris L. (TT) is an annual plant of the family Zygophyllaceae that has been used for generations to energize, vitalize, and improve sexual function and physical performance in men. The fruits and roots of TT have been used as a folk medicine for thousands of years in China, India, Sudan, and Pakistan. Numerous bioactive phytochemicals, such as saponins and flavonoids, have been isolated and identified from TT that are responsible alone or in combination for various pharmacological activities. This review provides a comprehensive overview of the traditional applications, phytochemistry, pharmacology and overuse of TT and provides evidence for better medicinal usage of TT.

  7. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  8. CO-REGISTRATION OF DSMs GENERATED BY UAV AND TERRESTRIAL LASER SCANNING SYSTEMS

    R. A. Persad

    2016-06-01

    Full Text Available An approach for the co-registration of Digital Surface Models (DSMs derived from Unmanned Aerial Vehicles (UAVs and Terrestrial Laser Scanners (TLS is proposed. Specifically, a wavelet-based feature descriptor for matching surface keypoints on the 2.5D DSMs is developed. DSMs are useful in wide-scope of various applications such as 3D building modelling and reconstruction, cultural heritage, urban and environmental planning, aircraft navigation/path routing, accident and crime scene reconstruction, mining as well as, topographic map revision and change detection. For these listed applications, it is not uncommon that there will be a need for automatically aligning multi-temporal DSMs which may have been acquired from multiple sensors, with different specifications over a period of time, and may have various overlaps. Terrestrial laser scanners usually capture urban facades in an accurate manner; however this is not the case for building roof structures. On the other hand, vertical photography from UAVs can capture the roofs. Therefore, the automatic fusion of UAV and laser-scanning based DSMs is addressed here as it serves various geospatial applications.

  9. Community Decadal Panel for Terrestrial Analogs to Mars

    Barlow, N. G.; Farr, T.; Baker, V. R.; Bridges, N.; Carsey, F.; Duxbury, N.; Gilmore, M. S.; Green, J. R.; Grin, E.; Hansen, V.; Keszthelyi, L.; Lanagan, P.; Lentz, R.; Marinangeli, L.; Morris, P. A.; Ori, G. G.; Paillou, P.; Robinson, C.; Thomson, B.

    2001-11-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites for Mars, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel is considering the following two key questions: (1) How do terrestrial analog studies tie in to the MEPAG science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel is considering the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  10. Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 These test methods cover the measurement of solar energy transmittance and reflectance (terrestrial) of materials in sheet form. Method A, using a spectrophotometer, is applicable for both transmittance and reflectance and is the referee method. Method B is applicable only for measurement of transmittance using a pyranometer in an enclosure and the sun as the energy source. Specimens for Method A are limited in size by the geometry of the spectrophotometer while Method B requires a specimen 0.61 m2 (2 ft2). For the materials studied by the drafting task group, both test methods give essentially equivalent results. 1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Estimating exposure of terrestrial wildlife to contaminants

    Sample, B.E.; Suter, G.W. II.

    1994-09-01

    This report describes generalized models for the estimation of contaminant exposure experienced by wildlife on the Oak Ridge Reservation. The primary exposure pathway considered is oral ingestion, e.g. the consumption of contaminated food, water, or soil. Exposure through dermal absorption and inhalation are special cases and are not considered hereIN. Because wildlife mobile and generally consume diverse diets and because environmental contamination is not spatial homogeneous, factors to account for variation in diet, movement, and contaminant distribution have been incorporated into the models. To facilitate the use and application of the models, life history parameters necessary to estimate exposure are summarized for 15 common wildlife species. Finally, to display the application of the models, exposure estimates were calculated for four species using data from a source operable unit on the Oak Ridge Reservation

  12. Estimating exposure of terrestrial wildlife to contaminants

    Sample, B.E.; Suter, G.W. II

    1994-09-01

    This report describes generalized models for the estimation of contaminant exposure experienced by wildlife on the Oak Ridge Reservation. The primary exposure pathway considered is oral ingestion, e.g. the consumption of contaminated food, water, or soil. Exposure through dermal absorption and inhalation are special cases and are not considered hereIN. Because wildlife mobile and generally consume diverse diets and because environmental contamination is not spatial homogeneous, factors to account for variation in diet, movement, and contaminant distribution have been incorporated into the models. To facilitate the use and application of the models, life history parameters necessary to estimate exposure are summarized for 15 common wildlife species. Finally, to display the application of the models, exposure estimates were calculated for four species using data from a source operable unit on the Oak Ridge Reservation.

  13. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the

  14. Terrestrial microbes in martian and chondritic meteorites

    Airieau, S.; Picenco, Y.; Andersen, G.

    2007-08-01

    Introduction: The best extraterrestrial analogs for microbiology are meteorites. The chemistry and mineralogy of Asteroid Belt and martian (SNC) meteorites are used as tracers of processes that took place in the early solar system. Meteoritic falls, in particular those of carbonaceous chondrites, are regarded as pristine samples of planetesimal evolution as these rocks are primitive and mostly unprocessed since the formation of the solar system 4.56 billion years ago. Yet, questions about terrestrial contamination and its effects on the meteoritic isotopic, chemical and mineral characteristics often arise. Meteorites are hosts to biological activity as soon as they are in contact with the terrestrial biosphere, like all rocks. A wide biodiversity was found in 21 chondrites and 8 martian stones, and was investigated with cell culture, microscopy techniques, PCR, and LAL photoluminetry. Some preliminary results are presented here. The sample suite included carbonaceous chondrites of types CR, CV, CK, CO, CI, and CM, from ANSMET and Falls. Past studies documented the alteration of meteorites by weathering and biological activity [1]-[4]. Unpublished observations during aqueous extraction for oxygen isotopic analysis [5], noted the formation of biofilms in water in a matter of days. In order to address the potential modification of meteoritic isotopic and chemical signatures, the culture of microbial contaminating species was initiated in 2005, and after a prolonged incubation, some of the species obtained from cell culture were analyzed in 2006. The results are preliminary, and a systematic catalog of microbial contaminants is developing very slowly due to lack of funding. Methods: The primary method was cell culture and PCR. Chondrites. Chondritic meteorite fragments were obtained by breaking stones of approximately one gram in sterile mortars. The core of the rocks, presumably less contaminated than the surface, was used for the present microbial study, and the

  15. TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER

    Traub, Wesley A.

    2012-01-01

    Data from Kepler's first 136 days of operation are analyzed to determine the distribution of exoplanets with respect to radius, period, and host-star spectral type. The analysis is extrapolated to estimate the percentage of terrestrial, habitable-zone (HZ) exoplanets. The Kepler census is assumed to be complete for bright stars (magnitude 0.5 Earth radius and periods β–1 , with β ≅ 0.71 ± 0.08; and an extrapolation to longer periods gives the frequency of terrestrial planets in the HZs of FGK stars as η ⊕ ≅ (34 ± 14)%. Thus about one-third of FGK stars are predicted to have at least one terrestrial, HZ planet.

  16. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  17. Busting dust: from cosmic grains to terrestrial microbes

    Mendis, D.A.

    2001-01-01

    Electrostatic charging can have important consequences for both the growth and disruption of microparticulates immersed in a plasma. In this topical review, my emphasis is on the latter process, while I extend the term microparticulates not only to include ordinary inanimate cosmic or terrestrial dust but also to include terrestrial microbes whose sizes range from tens of nanometers (viruses) to tens of micrometers (bacteria). Following a description of the basic mechanism of electrostatic disruption of a solid body, I will discuss the role of size, shape and surface irregularity on the process. I will also consider the mitigating role of electric field emission of electrons on the disruption process of a negatively charged grain as its size falls below a critical size. I will conclude by reviewing some early evidence for the electrostatic disruption of cosmic grains, and the very recent evidence for the electrostatic disruption of the bacterial cell membranes in terrestrial sterilization experiments. (orig.)

  18. [Feasibility study for whole plant medicinal use of Tribulus terrestris].

    Yang, Li; Wang, Chunyu; Han, Meiw; Yang, Limin

    2009-09-01

    The content differences of leaf, plant and fruit of Tribulus terrestris was compared to study the feasibility of whole plant medicinal use. The samples were collected in three typical habitats and six different production areas of T. terrestris. The main medicinal ingredients saponins and flavonoids were determined in root, stem, leaf and fruit during the harvest time. The two ingredients were abounded in leaf and more than 2.61 times as in other parts of the plant. The results showed that there were no differences between the whole plant and the fruit. It should pay more attentions on the collection, preservation and utilization of the leaf of T. terrestris in the harvesting and processing stage. The whole plant for medical use was feasibility based on the content of the ingredients.

  19. Distribution of {sup 129}I in terrestrial surface water environments

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  20. Earth as a radio source: terrestrial kilometric radiation. Progress report

    Gurnett, D.A.

    1974-02-01

    Radio wave experiments on the IMP-6 and 8 satellites have shown that the earth emits very intense electromagnetic radiation in the frequency range from about 50 kHz to 500 kHz. A peak intensity the total power emitted in this frequency range is about 1 billion watts. The earth is, therefore, a very intense planetary radio source, with a total power output comparable to the decametric radio emission from Jupiter. This radio emission from the earth is referred to as terrestrial kilometric radiation. Terrestrial kilometric radiation appears to originate from low altitudes (less than 3.0 Re) in the auroral region. Possible mechanisms which can explain the generation and propagation of the terrestrial kilometric radiation are discussed. (U.S.)

  1. Microalgal and Terrestrial Transport Biofuels to Displace Fossil Fuels

    Lucas Reijnders

    2009-02-01

    Full Text Available Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn, sugar beet or wheat and biodiesel from rapeseed. When terrestrial biofuels are to replace mineral oil-derived transport fuels, large areas of good agricultural land are needed: about 5x108 ha in the case of biofuels from sugarcane or oil palm, and at least 1.8-3.6x109 ha in the case of ethanol from wheat, corn or sugar beet, as produced in industrialized countries. Biofuels from microalgae which are commercially produced with current technologies do not appear to outperform terrestrial plants such as sugarcane in their ability to displace fossil fuels. Whether they will able to do so on a commercial scale in the future, is uncertain.

  2. Mercury in the Canadian Arctic terrestrial environment: an update.

    Gamberg, Mary; Chételat, John; Poulain, Alexandre J; Zdanowicz, Christian; Zheng, Jiancheng

    2015-03-15

    Contaminants in the Canadian Arctic have been studied over the last twenty years under the guidance of the Northern Contaminants Program. This paper provides the current state of knowledge on mercury (Hg) in the Canadian Arctic terrestrial environment. Snow, ice, and soils on land are key reservoirs for atmospheric deposition and can become sources of Hg through the melting of terrestrial ice and snow and via soil erosion. In the Canadian Arctic, new data have been collected for snow and ice that provide more information on the net accumulation and storage of Hg in the cryosphere. Concentrations of total Hg (THg) in terrestrial snow are highly variable but on average, relatively low (Porcupine caribou herd vary among years but there has been no significant increase or decrease over the last two decades. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies.

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E L

    2012-04-01

    Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits.

  4. Semi-Automatic Registration of Airborne and Terrestrial Laser Scanning Data Using Building Corner Matching with Boundaries as Reliability Check

    Liang Cheng

    2013-11-01

    Full Text Available Data registration is a prerequisite for the integration of multi-platform laser scanning in various applications. A new approach is proposed for the semi-automatic registration of airborne and terrestrial laser scanning data with buildings without eaves. Firstly, an automatic calculation procedure for thresholds in density of projected points (DoPP method is introduced to extract boundary segments from terrestrial laser scanning data. A new algorithm, using a self-extending procedure, is developed to recover the extracted boundary segments, which then intersect to form the corners of buildings. The building corners extracted from airborne and terrestrial laser scanning are reliably matched through an automatic iterative process in which boundaries from two datasets are compared for the reliability check. The experimental results illustrate that the proposed approach provides both high reliability and high geometric accuracy (average error of 0.44 m/0.15 m in horizontal/vertical direction for corresponding building corners for the final registration of airborne laser scanning (ALS and tripod mounted terrestrial laser scanning (TLS data.

  5. Surveying a fossil oyster reef using terrestrial laser scanning

    Haring, A.; Exner, U.; Harzhauser, M.

    2009-04-01

    is suitable for answering certain questions of paleontologists and geologists. Finally, structural measurements may be performed in a geological software application, without treading on the fragile surface. On the other hand, paleontologists are interested in knowing if the oyster axes are aligned randomly or if they show a systematic alignment, in order to draw conclusions on the ocean currents at that time. For data processing, we use the 3D modeling software Geomagic Studio and the DTM (Digital Terrain Model) software SCOP++. The entire site has also been systematically documented by a large number of digital photographs. The obtained texture information allows a visual interpretation of the underlying surface. We discuss in how far such a 3D model derived from terrestrial laser scanner data may be useful to support the research work of geoscientists.

  6. Terrestrial dissolved organic matter distribution in the North Sea.

    Painter, Stuart C; Lapworth, Dan J; Woodward, E Malcolm S; Kroeger, Silke; Evans, Chris D; Mayor, Daniel J; Sanders, Richard J

    2018-07-15

    The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Terrestrial Analogs to Mars: NRC Community Panel Decadal Report

    Farr, T. G.

    2002-12-01

    A report was completed recently by a Community Panel for the NRC Decadal Study of Solar System Exploration. The desire was for a review of the current state of knowledge and for recommendations for action over the next decade. The topic of this panel, Terrestrial Analogs to Mars, was chosen to bring attention to the need for an increase in analog studies in support of the increased pace of Mars exploration. It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all of these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the overarching science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel considered the issues of data collection and archiving, value of field workshops, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities. Parts of this work were performed under contract to NASA.

  8. Evaluation of radiological doses to the terrestrial plants around Trombay

    Ajay Kumar; Singhal, R.K.; Preetha, J.; Joshi, S.N.; Hegde, A.G.

    2005-01-01

    Existing policies for radiation protection do not provide explicit criteria for the protection of species other than humans, i.e. not for flora and fauna. Concern over this omission is now being widely expressed and moves are under way to evaluate the doses to terrestrial and aquatic biota. During the present work radiological doses (external and internal) to the terrestrial plants were evaluated by estimating the concentration of anthropogenic ( 137 Cs, 90 Sr) and natural radionuclides ( 238 U, 232 Th and 40 K) in the plant leaves and by measuring the external gamma radiation due to different radionuclide. The soil and vegetation sample were collected from fifteen sampling locations around the different locations at Trombay. The samples were processed as per IAEA (International Atomic Energy Agency) protocol for the estimation of naturally occurring and anthropogenic radionuclides in soil and terrestrial plants. The gamma emitting radionuclides were measured by high resolution gamma (HPGe) spectrometry system. Maximum exposure (external + internal) to the terrestrial plants was observed due to 232 Th while 238 U showed minimum exposure. The average value of radiation exposure to the terrestrial plants for 40 K, 137 Cs, 90 Sr, 238 U and 232 Th was 1555.2 ± 92.4, 691.2 ± 54.3, 2564.1 ± 534.9, 82.5 ±5.2, and 4419.6 ± 1165.5 μGy/y respectively. The radiation exposure (external + internal ) to the terrestrial plants due to all radionuclides was found within the permissible limits (i.e. 10 mGy/d) as per recommended by the United States, Department of Energy (DOE). (author)

  9. Linking terrestrial and marine conservation planning and threats analysis.

    Tallis, Heather; Ferdaña, Zach; Gray, Elizabeth

    2008-02-01

    The existence of the Gulf of Mexico dead zone makes it clear that marine ecosystems can be damaged by terrestrial inputs. Marine and terrestrial conservation planning need to be aligned in an explicit fashion to fully represent threats to marine systems. To integrate conservation planning for terrestrial and marine systems, we used a novel threats assessment that included 5 cross-system threats in a site-prioritization exercise for the Pacific Northwest coast ecoregion (U.S.A.). Cross-system threats are actions or features in one ecological realm that have effects on species in another realm. We considered bulkheads and other forms of shoreline hardening threats to terrestrial systems and roads, logging, agriculture, and urban areas threats to marine systems. We used 2 proxies of freshwater influence on marine environments, validated against a mechanistic model and field observations, to propagate land-based threats into marine sites. We evaluated the influence of cross-system threats on conservation priorities by comparing MARXAN outputs for 3 scenarios that identified terrestrial and marine priorities simultaneously: (1) no threats, (2) single-system threats, and (3) single- and cross-system threats. Including cross-system threats changed the threat landscape dramatically. As a result the best plan that included only single-system threats identified 323 sites (161,500 ha) at risk from cross-system threats. Including these threats changed the location of best sites. By comparing the best and sum solutions of the single- and cross-system scenarios, we identified areas ideal for preservation or restoration through integrated management. Our findings lend quantitative support to the call for explicitly integrated decision making and management action in terrestrial and marine ecosystems.

  10. Measurement of the terrestrial magnetic field and its anomalies; Mesures du champ magnetique terrestre et de ses anomalies

    Duret, D.

    1994-12-31

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs.

  11. Terrestrial neutron-induced soft errors in advanced memory devices

    Nakamura, Takashi; Ibe, Eishi; Yahagi, Yasuo; Kameyama, Hideaki

    2008-01-01

    Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices. This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features. Sample Chapter(s). Chapter 1: Introduction (238 KB). Table A.30 mentioned in Appendix A.6 on

  12. Environmental radionuclides tracers and timers of terrestrial processes

    Froehlich, Klaus

    2009-01-01

    The book presents a state-of-the-art summary of knowledge on the use of radionuclides to study processes and systems in the continental part of the Earth's environment. It is conceived as a companion to the two volumes of this series, which deal with isotopes as tracers in the marine environment (Livingston, Marine Radioactivity) and with the radioecology of natural and man-made terrestrial systems (Shaw, Radioactivity in Terrestrial Ecosystems). Although the book focuses on natural and anthropogenic radionuclides (radioactive isotopes), it also refers to stable environmental isotopes, which i

  13. Terrestrial radioactivity monitoring programme (TRAMP) report for 1986

    1988-01-01

    The Ministry of Agriculture, Fisheries and Food (MAFF) undertakes a comprehensive independent monitoring programme for radioactivity in terrestrial foodstuffs in England and Wales, this report presents the results from the first full year of operation of this programme and complements the data published annually by the Ministry's Directorate of Fisheries Research in respect of the aquatic environment. This work is undertaken in Wales on behalf of the Secretary of State. The Terrestrial Radioactivity Monitoring Programme (TRAMP) concentrates on samples of agricultural produce (milk, crops, meat) collected from the vicinity of the major nuclear sites in England and Wales and is independent of monitoring undertaken for various purposes by site operators. (author)

  14. Radio Astronomy Explorer /RAE/. I - Observations of terrestrial radio noise.

    Herman, J. R.; Caruso, J. A.; Stone, R. G.

    1973-01-01

    Radio Astronomy Explorer (RAE) I data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial radio noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 dB and more above cosmic noise background, on frequencies above the F-layer critical frequency.

  15. Comparision of the Martian Gullies With Terrestrial Ones

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    2005-12-01

    Some of the geomorphological features in Mars are the gullies. Some theories developed tried to explained its origin, either by liquid water, liquid carbon dioxide or flows of dry granular material. We made a comparative analysis of the Martian gullies with the terrestrial ones. We present the characteristics of some terrestrial gullies formed at cold enviroment, sited at the Nevado de Toluca volcanoe near Toluca City, Mexico. We compare them with Martian gullies, choisen from four different areas, to recognize possible processes evolved in its formation. Also, we measured the lenghts of those Martian gullies and their range was from 24 m 1775 m.

  16. Cumulus convection and the terrestrial water-vapor distribution

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  17. Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems

    Tockner, K.

    2009-04-01

    Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition

  18. Dynamic modeling system for the transfer of radioactivity in terrestrial food chains

    Simmonds, J.R.; Linsley, G.S.

    1981-01-01

    A dynamic modeling system is described for the transfer of radionuclides in terrestrial food chains. The main features of the system are its ability to predict the time dependence of the major transfer processes and its flexibility and applicability to a range of contamination scenarios. The modeling system is regarded as a basic framework on which more realistic models can be based, given the availability of reliable environmental transfer data. An example of such a development is included for 90 Sr in the pasture-cow-milk pathway. The model predicts annual average concentrations of 90 Sr in milk caused by fallout in the United Kingdom to within 15% of measured values for over most of the 20-y period for which data exist. It makes possible the evaluation of the time dependence of the contributions of various transfer processes. Following acute releases to the atmosphere or releases in any other contamination scenario where direct deposition is absent, certain pathways often not considered in food-chain models, such as the external contamination of plants caused by resuspension processes or the ingestion of contaminants together with soil by grazing animals, are shown to be potentially important in the transfer of activity to man. The main application of dynamic food-chain models is the prediction of the consequences of accidental releases to the terrestrial environment. The predictions can be used in planning countermeasures and in assessing the health, economic, and social impacts of accidental release

  19. Laser scanner 3D terrestri e mobile

    Mario Ciamba

    2013-08-01

    Full Text Available Recentemente si è svolto a Roma un evento dimostrativo per informare, professionisti e ricercatori del settore inerente il rilievo strumentale, sulle recenti innovazioni che riguardano i laser scanner 3d. Il mercato della strumentazione dedicata al rilevamento architettonico e dell'ambiente, offre molte possibilità di scelta. Oggi i principali marchi producono strumenti sempre più efficienti ed ideati per ambiti di applicazione specifici, permettendo ai professionisti, la giusta scelta in termini di prestazioni ed economia. A demonstration event was recently held in Rome with the aim to inform professionals and researchers on recent innovations on instrumental survey related to the 3d laser scanner. The market of instrumentation for architectural survey offers many possibilitiesof choice. Today the major brands produce instruments that are more efficient and designed for specific areas of application, allowing the right choice in terms of performance and economy.

  20. Laser scanner 3D terrestri e mobile

    Mario Ciamba

    2013-08-01

    Full Text Available Recentemente si è svolto a Roma un evento dimostrativo per informare, professionisti e ricercatori del settore inerente il rilievo strumentale, sulle recenti innovazioni che riguardano i laser scanner 3d. Il mercato della strumentazione dedicata al rilevamento architettonico e dell'ambiente, offre molte possibilità di scelta. Oggi i principali marchi producono strumenti sempre più efficienti ed ideati per ambiti di applicazione specifici, permettendo ai professionisti, la giusta scelta in termini di prestazioni ed economia.A demonstration event was recently held in Rome with the aim to inform professionals and researchers on recent innovations on instrumental survey related to the 3d laser scanner. The market of instrumentation for architectural survey offers many possibilitiesof choice. Today the major brands produce instruments that are more efficient and designed for specific areas of application, allowing the right choice in terms of performance and economy.

  1. Recent progress in terrestrial photovoltaic collector technology

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  2. Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems

    Didden, W.; Römbke, J.

    2001-01-01

    This review article surveys the available data on enchytraeid sensitivity toward chemical stress, and the effects of chemical stress on enchytraeid communities in terrestrial ecosystems. The factors affecting bioavailability of stressors to enchytraeids and the nature of direct and indirect effects

  3. Facial trauma among victims of terrestrial transport accidents.

    d'Avila, Sérgio; Barbosa, Kevan Guilherme Nóbrega; Bernardino, Ítalo de Macedo; da Nóbrega, Lorena Marques; Bento, Patrícia Meira; E Ferreira, Efigênia Ferreira

    2016-01-01

    In developing countries, terrestrial transport accidents - TTA, especially those involving automobiles and motorcycles - are a major cause of facial trauma, surpassing urban violence. This cross-sectional census study attempted to determine facial trauma occurrence with terrestrial transport accidents etiology, involving cars, motorcycles, or accidents with pedestrians in the northeastern region of Brazil, and examine victims' socio-demographic characteristics. Morbidity data from forensic service reports of victims who sought care from January to December 2012 were analyzed. Altogether, 2379 reports were evaluated, of which 673 were related to terrestrial transport accidents and 103 involved facial trauma. Three previously trained and calibrated researchers collected data using a specific form. Facial trauma occurrence rate was 15.3% (n=103). The most affected age group was 20-29 years (48.3%), and more men than women were affected (2.81:1). Motorcycles were involved in the majority of accidents resulting in facial trauma (66.3%). The occurrence of facial trauma in terrestrial transport accident victims tends to affect a greater proportion of young and male subjects, and the most prevalent accidents involve motorcycles. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  4. Incorporation of microplastics from litter into burrows of Lumbricus terrestris

    Huerta Lwanga, Esperanza; Gertsen, H.F.; Gooren, H.; Peters, P.; Salanki, T.E.; Ploeg, van der M.; Besseling, E.; Koelmans, A.A.; Geissen, V.

    2017-01-01

    Pollution caused by plastic debris is an urgent environmental problem. Here, we assessed the effects of microplastics in the soil surface litter on the formation and characterization of burrows built by the anecic earthworm Lumbricus terrestris in soil and quantified the amount of microplastics that

  5. Automatic registration of terrestrial point cloud using panoramic reflectance images

    Kang, Z.

    2008-01-01

    Much attention is paid to registration of terrestrial point clouds nowadays. Research is carried out towards improved efficiency and automation of the registration process. This paper reports a new approach for point clouds registration utilizing reflectance panoramic images. The approach follows a

  6. Heritability of sperm length in the bumblebee Bombus terrestris

    Baer, Boris; de Jong, Gerdien; Schmid-Hempel, Regula

    2006-01-01

    estimates of narrow sense heritability of sperm length in a social insect, the bumblebee Bombus terrestris. In spite of a balanced and straightforward rearing design of colonies, and the possibility to replicate measurements of sperm within single males nested within colonies, the analysis proved...

  7. A larval hunger signal in the bumblebee Bombus terrestris

    Den Boer, Susanne Petronella A; Duchateau, Marie-Jose

    2006-01-01

    Larvae of Bombus terrestris, a pollen-storing bumblebee, are dependent on progressive provisioning by workers. We test the hypothesis that larval cuticular chemicals can act as a hunger signal. We first show with a new classical conditioning experiment, using a Y-shaped tube, that workers can...

  8. Herbivores Enforce Sharp Boundaries Between Terrestrial and Aquatic Ecosystems

    Sarneel, Judith M.; Huig, N.; Veen, G. F.; Rip, W.; Bakker, E. S.

    2014-01-01

    The transitions between ecosystems (ecotones) are often biodiversity hotspots, but we know little about the forces that shape them. Today, often sharp boundaries with low diversity are found between terrestrial and aquatic ecosystems. This has been attributed to environmental factors that hamper

  9. Terrestrial acidification during the end-Permian biosphere crisis?

    Sephton, Mark A.; Jiao, Dan; Engel, Michael H.; Looy, Cindy V.; Visscher, Henk

    Excessive acid rainfall associated with emplacement of the Siberian Traps magmatic province is increasingly accepted as a major contributing factor to the end-Permian biosphere crisis. However, direct proxy evidence of terrestrial acidification is so far not available. In this paper, we seek to

  10. Heinrich event 4 characterized by terrestrial proxies in southwestern Europe

    J. M. López-García

    2013-05-01

    Full Text Available Heinrich event 4 (H4 is well documented in the North Atlantic Ocean as a cooling event that occurred between 39 and 40 Ka. Deep-sea cores around the Iberian Peninsula coastline have been analysed to characterize the H4 event, but there are no data on the terrestrial response to this event. Here we present for the first time an analysis of terrestrial proxies for characterizing the H4 event, using the small-vertebrate assemblage (comprising small mammals, squamates and amphibians from Terrassa Riera dels Canyars, an archaeo-palaeontological deposit located on the seaboard of the northeastern Iberian Peninsula. This assemblage shows that the H4 event is characterized in northeastern Iberia by harsher and drier terrestrial conditions than today. Our results were compared with other proxies such as pollen, charcoal, phytolith, avifauna and large-mammal data available for this site, as well as with the general H4 event fluctuations and with other sites where H4 and the previous and subsequent Heinrich events (H5 and H3 have been detected in the Mediterranean and Atlantic regions of the Iberian Peninsula. We conclude that the terrestrial proxies follow the same patterns as the climatic and environmental conditions detected by the deep-sea cores at the Iberian margins.

  11. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems

    Alistair M. S. Smith; Crystal A. Kolden; Wade T. Tinkham; Alan F. Talhelm; John D. Marshall; Andrew T. Hudak; Luigi Boschetti; Michael J. Falkowski; Jonathan A. Greenberg; John W. Anderson; Andrew Kliskey; Lilian Alessa; Robert F. Keefe; James R. Gosz

    2014-01-01

    Climate change is altering the species composition, structure, and function of vegetation in natural terrestrial ecosystems. These changes can also impact the essential ecosystem goods and services derived from these ecosystems. Following disturbances, remote-sensing datasets have been used to monitor the disturbance and describe antecedent conditions as a means of...

  12. A Google Earth Grand Tour of the Terrestrial Planets

    De Paor, Declan; Coba, Filis; Burgin, Stephen

    2016-01-01

    Google Earth is a powerful instructional resource for geoscience education. We have extended the virtual globe to include all terrestrial planets. Downloadable Keyhole Markup Language (KML) files (Google Earth's scripting language) associated with this paper include lessons about Mercury, Venus, the Moon, and Mars. We created "grand…

  13. Terrestrial ecological responses of climate change in the Northern hemisphere

    Forchhammer, M.C.

    2001-01-01

    Focusing on the single most important atmospheric phenomenon in the Northern hemisphere, the North Atlantic Oscillation (NAO), the author reviews the recent studies coupling the NAO with the ecology of a wide range of terrestrial organisms. In particular, the author focuses on low variations in the NAO affect phenotypic variation in life history Traits and, ultimately, dynamics of populations and of interacting species. (LN)

  14. A review of climate change effects on terrestrial rangeland birds

    D. M. Finch; K. E. Bagne; M. M. Friggens; D. M. Smith; K. M. Brodhead

    2011-01-01

    We evaluated existing literature on predicted and known climate change effects on terrestrial rangeland birds. We asked the following questions: 1) How does climate change affect birds? 2) How will birds respond to climate change? 3) Are species already responding? 4) How will habitats be impacted?

  15. Medicinal properties, phytochemistry and pharmacology of tribulus terrestris l. (zygophyllaceae)

    Hashim, S.; Bakht, T.

    2014-01-01

    Tribulus terrestris (puncture vine) belongs to family Zygophyllaceae and it is a herbaceous, mat forming plant in nature. It extensively grows in warm dry tropics all over the world and ecologically adaptated as a typical C4 xeromorphic plant. T. terrestris is a noxious weed along with its use in many countries as a folk medicine for different purposes from time immemorial. Ancient records describe various medicinal properties of T. terrestris as a popular source to cure variety of different disease conditions in China, India, and Greece. The plant is used directly as a herb or as a main component for production of a number of medicines and food supplements such as for physical rejuvenation, therapy for the conditions affecting liver, kidney, cardiovascular system and immune systems. Also it is used as a folk medicine for increased muscle strength, sexual potency and in treatments of urinary infections, heart diseases and cough. It is considered invigorating stimulant, aphrodisiac, and nutritive. This review discusses the most commonly recognized medicinal properties of this herb. The chemistry of T. terrestris extracts to establish the relationship between medicinal properties of this important plant will also be reviewed. (author)

  16. Data acquisition considerations for Terrestrial Laser Scanning of forest plots

    Wilkes, Phil; Lau Sarmiento, Alvaro; Disney, Mathias; Calders, Kim; Burt, Andrew; Gonzalez De Tanago Meñaca, J.; Bartholomeus, Harm; Brede, Benjamin; Herold, Martin

    2017-01-01

    The poor constraint of forest Above Ground Biomass (AGB) is responsible, in part, for large uncertainties in modelling future climate scenarios. Terrestrial Laser Scanning (TLS) can be used to derive unbiased and non-destructive estimates of tree structure and volume and can, therefore, be used to

  17. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    We tested the hypothesis that diurnal changes in terrestrial CO2 exchange are driven exclusively by the direct effect of the physical environment on plant physiology. We failed to corroborate this assumption, finding instead large diurnal fluctuations in whole ecosystem carbon assimilation across a ...

  18. Integration of Satellite and Terrestrial Networks at JPL

    Pinck, D. S.

    1995-01-01

    This presentation focuses on the activities at JPL on the integration of satellite and terrestrial networks for mobile and personal communications. Activities fall into two categories: 1)advanced systems work, and 2)laboratory and field experimentation. Results of a workshop held at JPL on PCS integration and interoperability will be presented. Experiments will be described.

  19. Ageing effects on image sensors due to terrestrial cosmic radiation

    Nampoothiri, G.G.; Horemans, M.L.R.; Theuwissen, A.J.P.

    2011-01-01

    We analyze the “ageing” effect on image sensors introduced by neutrons present in natural (terrestrial) cosmic environment. The results obtained at sea level are corroborated for the first time with accelerated neutron beam tests and for various image sensor operation conditions. The results reveal

  20. On a specimen of Lumbricus terrestris, L. with bifurcated tail

    Horst, R.

    1886-01-01

    In the last number of the »Annals and Magazine of Nat. History” (Dec. 1885), I find a notice of Prof. Jeffrey Bell about two Lumbrici with bifid hinder ends, one specimen belonging to L. terrestris, the other to L. foetidus; moreover he mentions a specimen, presenting a similar remarquable

  1. Feeding frequency and caste differentiation in Bombus terrestris larvae

    Ribeiro, M.F.; Velthuis, H.H.W.; Duchateau, Marie José; Tweel, I. van der

    1998-01-01

    The frequency with which bumble bee larvae are fed during their development was studied using video-recordings. The behaviour of the workers while feeding worker, male and queen larvae of Bombus terrestris was recorded. At the beginning of development, female larvae of both castes were fed at a

  2. Serine protease from midgut of Bombus terrestris males

    Brabcová, Jana; Kindl, Jiří; Valterová, Irena; Pichová, Iva; Zarevúcka, Marie; Brabcová, J.; Jágr, Michal; Mikšík, Ivan

    2013-01-01

    Roč. 82, č. 3 (2013), s. 117-128 ISSN 0739-4462 R&D Projects: GA ČR GA203/09/1446; GA TA ČR TA01020969 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : Bombus terrestris * midgut * serine protease * bumblebee Subject RIV: CE - Biochemistry; CE - Biochemistry (FGU-C) Impact factor: 1.160, year: 2013

  3. Enhanced Estimation of Terrestrial Loadings for TMDLs: Normalization Approach

    TMDL implementation plans to remediate pathogen-impaired streams are usually based on deterministic terrestrial fate and transport (DTFT) models. A novel protocol is proposed that can effectively, efficiently, and explicitly capture the predictive uncertainty of DTFT models used to establish terres...

  4. Structural monitoring of tunnels using terrestrial laser scanning

    Lindenbergh, R.C.; Uchanski, L.; Bucksch, A.; Van Gosliga, R.

    2009-01-01

    In recent years terrestrial laser scanning is rapidly evolving as a surveying technique for the monitoring of engineering objects like roof constructions, mines, dams, viaducts and tunnels. The advantage of laser scanning above traditional surveying methods is that it allows for the rapid

  5. 76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations

    2011-08-12

    ... Draft Regulatory Guides in the ``Regulatory Guides'' collection of the NRC's Library at http://www.nrc... Stations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment... draft regulatory guide (DG), DG-4016, ``Terrestrial Environmental Studies for Nuclear Power Stations...

  6. FLAVONOIDS IN THE GRASS OF TRIBULUS TERRESTRIS L.

    P. E. Khudenko

    2015-01-01

    Full Text Available The article presents active parts of Tribulus terrestris L. as a perspective sample for study. We have provided an example of flavo-noids determination with high-performance liquid chromatography / MS at the Waters Acquility chromatographer with tandem quad-rupolar MS-detector TQD (Waters.

  7. Origin and evolution of life on terrestrial planets.

    Brack, A; Horneck, G; Cockell, C S; Bérces, A; Belisheva, N K; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.

  8. Effects of climate change on terrestrial animals [Chapter 9

    Megan M. Friggens; Mary I. Williams; Karen E. Bagne; Tosha T. Wixom; Samuel A. Cushman

    2018-01-01

    The Intermountain Adaptation Partnership (IAP) region encompasses a high diversity of grassland, shrubland, and forest habitats across a broad range of elevational gradients, supporting high biodiversity in the interior western United States. Terrestrial species comprise a wide range of life forms, each expressing varying levels of habitat specialization and life...

  9. Climate control of terrestrial carbon exchange across biomes and continents

    Yi, C.; Ricciuto, D.; Marek, Michal V.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 034007 ISSN 1748-9326 Institutional research plan: CEZ:AV0Z60870520 Keywords : NEE * climate control * terrestrial carbon sequestration * temperature * dryness * eddy flux * biomes * photosynthesis * respiration * global carbon cycle Subject RIV: EH - Ecology, Behaviour Impact factor: 3.049, year: 2010

  10. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg. Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  11. Status and potential of terrestrial carbon sequestration in West Virginia

    Benktesh D. Sharma; Jingxin. Wang

    2011-01-01

    Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...

  12. Microalgal and terrestrial transport biofuels to displace fossil fuels

    Reijnders, L.

    2009-01-01

    Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn,

  13. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  14. Modelling of the radionuclide transport through terrestrial food chains

    Hanusik, V.

    1991-01-01

    The paper presents a terrestrial food chains model for computing potential human intake of radionuclides released into the atmosphere during normal NPP operation. Attention is paid to the choice of model parameter values. Results obtained by our approach are compared to those applied in current methodology. (orig.) [de

  15. Function of Wildfire-Deposited Pyrogenic Carbon in Terrestrial Ecosystems

    Melissa R. A. Pingree

    2017-08-01

    Full Text Available Fire is an important driver of change in most forest, savannah, and prairie ecosystems and fire-altered organic matter, or pyrogenic carbon (PyC, conveys numerous functions in soils of fire-maintained terrestrial ecosystems. Although an exceptional number of recent review articles and books have addressed agricultural soil application of charcoal or biochar, few reviews have addressed the functional role of naturally formed PyC in fire-maintained ecosystems. Recent advances in molecular spectroscopic techniques have helped strengthen our understanding of PyC as a ubiquitous, complex material that is capable of altering soil chemical, physical, and biological properties and processes. The uniquely recalcitrant nature of PyC in soils is partly a result of its stable C = C double-bonded, graphene-like structure and C-rich, N-poor composition. This attribute allows it to persist in soils for hundreds to thousands of years and represent net ecosystem C sequestration in fire-maintained ecosystems. The rapid formation of PyC during wildfire or anthropogenic fire events short-circuits the normally tortuous pathway of recalcitrant soil C formation. Existing literature also suggests that PyC provides an essential role in the cycling of certain nutrients, greatly extending the timeframe by which fires influence soil processes and facilitating recovery in ecosystems where organic matter inputs are low and post-fire surface soil bacterial and fungal activity is reduced. The high surface area of PyC allows for the adsorption a broad spectrum of organic compounds that directly or indirectly influence microbial processes after fire events. Adsorption capacity and microsite conditions created by PyC yields a “charosphere” effect in soil with heightened microbial activity in the vicinity of PyC. In this mini-review, we explore the function of PyC in natural and semi-natural settings, provide a mechanistic approach to understanding these functions, and examine

  16. Terrestrial Background Reduction in RPM Systems by Direct Internal Shielding

    Robinson, Sean M.; Ashbaker, Eric D.; Schweppe, John E.

    2008-01-01

    Gamma-ray detection systems that are close to the earth or other sources of background radiation often require shielding, especially when trying to detect a relatively weak source. One particular case of interest that we address in this paper is that encountered by the Radiation Portal Monitors (RPMs) systems placed at border-crossing Ports of Entry (POE). These RPM systems are used to screen for illicit radiological materials, and they are often placed in situations where terrestrial background is large. In such environments, it is desirable to consider simple physical modifications that could be implemented to reduce the effects from background radiation without affecting the flow of traffic and the normal operation of the portal. Simple modifications include adding additional shielding to the environment, either inside or outside the apparatus. Previous work (2) has shown the utility of some of these shielding configurations for increasing the Signal to Noise Ratio (SNR) of gross-counting RPMs. Because the total cost for purchasing and installing RPM systems can be quite expensive, in the range of hundreds of thousands of dollars for each cargo-screening installation, these shielding variations may offer increases in detection capability for relatively small cost. Several modifications are considered here in regard to their real-world applicability, and are meant to give a general idea of the effectiveness of the schemes used to reduce background for both gross-counting and spectroscopic detectors. These scenarios are modeled via the Monte-Carlo N-Particle (MCNP) code package (1) for ease of altering shielding configurations, as well as enacting unusual scenarios prior to prototyping in the field. The objective of this paper is to provide results representative of real modifications that could enhance the sensitivity of this, as well as the next generation of radiation detectors. The models used in this work were designed to provide the most general results for

  17. Ring-testing and field-validation of a terrestrial model ecosystem (TME) - An instrument for testing potentially harmful substances: effects of carbendazim on soil microarthropod communities.

    Koolhaas, J.E.; van Gestel, C.A.M.; Römbke, J.; Soares, A.M.V.M.; Jones, S.E.

    2004-01-01

    The effects of the fungicide carbendazim (applied in the formulation Derosal) on soil microarthropod communities was determined in three Terrestrial Model Ecosystem (TME) tests and a field-validation study for a period of 16 weeks after application. TMEs consisted of intact soil columns (diameter

  18. End-to-end network models encompassing terrestrial, wireless, and satellite components

    Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.

    2004-08-01

    Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.

  19. Standard Test Method for Solar Transmittance (Terrestrial) of Sheet Materials Using Sunlight

    American Society for Testing and Materials. Philadelphia

    1986-01-01

    1.1 This test method covers the measurement of solar transmittance (terrestrial) of materials in sheet form by using a pyranometer, an enclosure, and the sun as the energy source. 1.2 This test method also allows measurement of solar transmittance at angles other than normal incidence. 1.3 This test method is applicable to sheet materials that are transparent, translucent, textured, or patterned. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. RAMS Model for Terrestrial Pathways Version 3. 0 (for microcomputers). Model-Simulation

    Niebla, E.

    1989-01-01

    The RAMS Model for Terrestrial Pathways is a computer program for calculation of numeric criteria for land application and distribution and marketing of sludges under the sewage-sludge regulations at 40 CFR Part 503. The risk-assessment models covered assume that municipal sludge with specified characteristics is spread across a defined area of ground at a known rate once each year for a given number of years. Risks associated with direct land application of sludge applied after distribution and marketing are both calculated. The computer program calculates the maximum annual loading of contaminants that can be land applied and still meet the risk criteria specified as input. Software Description: The program is written in the Turbo/Basic programming language for implementation on IBM PC/AT or compatible machines using DOS 3.0 or higher operating system. Minimum core storage is 512K.

  1. Terrestrial carbon storage dynamics: Chasing a moving target

    Luo, Y.; Shi, Z.; Jiang, L.; Xia, J.; Wang, Y.; Kc, M.; Liang, J.; Lu, X.; Niu, S.; Ahlström, A.; Hararuk, O.; Hastings, A.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K. E.; Wang, Y.

    2015-12-01

    Terrestrial ecosystems have been estimated to absorb roughly 30% of anthropogenic CO2 emissions. Past studies have identified myriad drivers of terrestrial carbon storage changes, such as fire, climate change, and land use changes. Those drivers influence the carbon storage change via diverse mechanisms, which have not been unified into a general theory so as to identify what control the direction and rate of terrestrial carbon storage dynamics. Here we propose a theoretical framework to quantitatively determine the response of terrestrial carbon storage to different exogenous drivers. With a combination of conceptual reasoning, mathematical analysis, and numeric experiments, we demonstrated that the maximal capacity of an ecosystem to store carbon is time-dependent and equals carbon input (i.e., net primary production, NPP) multiplying by residence time. The capacity is a moving target toward which carbon storage approaches (i.e., the direction of carbon storage change) but usually does not attain. The difference between the capacity and the carbon storage at a given time t is the unrealized carbon storage potential. The rate of the storage change is proportional to the magnitude of the unrealized potential. We also demonstrated that a parameter space of NPP, residence time, and carbon storage potential can well characterize carbon storage dynamics quantified at six sites ranging from tropical forests to tundra and simulated by two versions (carbon-only and coupled carbon-nitrogen) of the Australian Community Atmosphere-Biosphere Land Ecosystem (CABLE) Model under three climate change scenarios (CO2 rising only, climate warming only, and RCP8.5). Overall this study reveals the unified mechanism unerlying terrestrial carbon storage dynamics to guide transient traceability analysis of global land models and synthesis of empirical studies.

  2. NASA HRP Immunology Discipline - Use of Terrestrial Analogs

    Crucian, Brian

    2014-01-01

    Due to the cost and operational constraints, as well as technical implementation limitations, it is desirous to perform relevant space physiology investigations first in terrestrial 'space analogs'. This is particularly true for initial investigations, which may then provide appropriate focus for subsequent flight investigations, or for mechanistic investigations that simply cannot be performed during spaceflight. Appropriate analog choice is extremely important. There are a wide variety of terrestrial space analogs, each relevant to a particular physiological discipline (or disciplines) and each with a particular fidelity (or lack thereof) to spaceflight, and each with unique operational constraints. The HRP Immunology Discipline is tasked with managing the HRP Risk concerning clinical risk for Astronaut crews related to spaceflight-associated immune dysregulation. Such dysregulation has been documented to occur during spaceflight, and found to persist for the duration of a 6-month ISS mission. Studies continue to characterize the onorbit phenomenon, but it generally consists of diminished immunocyte function, dysregulated cytokine profiles, and persistent herpesvirus reactivation. Causes are thought to synergistically include microgravity, psychological or physiological stress, radiation, and/or circadian misalignment. An appropriate terrestrial analog for immune dysregulation would replicate as many of these influences as possible. Such analogs may include clinostat or bioreactor cell culture (microgravity), hindlimb suspension (stress, fluid shifts, hypokinesis), or human deployment to remote or extreme environments (isolation, stress, circadian). Also, the laboratory setting may be used as an analog, or to augment analogs, such as sleep deprivation/misalignment or human centrifugation to replicate gravitational stress. As an appropriate example of a NASA Disciplines use of Terrestrial space analogs, this talk will discuss spaceflight associated immune

  3. An investigation of Martian and terrestrial dust devils

    Ringrose, Timothy John

    2004-10-01

    It is the purpose of this work to provide an insight into the theoretical and practical dynamics of dust devils and how they are detected remotely from orbit or in situ on planetary surfaces. There is particular interest in the detection of convective vortices on Mars; this has been driven by involvement in the development of the Beagle 2 Environmental Sensor Suite. This suite of sensors is essentially a martian weather station and will be the first planetary lander experiment specifically looking for the presence of dust devils on Mars. Dust devils are characterised by their visible dusty core and intense rotation. The physics of particle motion, including dust lofting and the rotational dynamics within convective vortices are explained and modelled. This modelling has helped in identifying dust devils in meteorological data from both terrestrial and martian investigations. An automated technique for dust devil detection using meteorological data has been developed. This technique searches data looking for the specific vortex signature as well as detecting other transient events. This method has been tested on both terrestrial and martian data with surprising results. 38 possible convective vortices were detected in the first 60 sols of the Viking Lander 2 meteorological data. Tests were also carried out on data from a terrestrial dust devil campaign, which provided conclusive evidence from visual observations of the reliability of this technique. A considerable amount of this work does focus on terrestrial vortices. This is to aid in the understanding of dust devils, specifically how, why and when they form. Both laboratory and terrestrial fieldwork is investigated, providing useful data on the general structure of dust devils.

  4. Preparation and characterization of Tribulus terrestris-loaded nanoparticles

    M. Khanavi*

    2017-11-01

    Full Text Available Background and objectives: Tribulus terrestris is a flowering herb (Zygophyllaceae with several properties in folk medicine such as diuretic, tonic, aphrodisiac, analgesic, astringent, and stomachic-lithotripter activities. Although, some extracts and phytochemicals represent excellent bio-activity in vitro, less or no in vivo activity is observed due to their improper molecular size. The intend of this research was investigation of the feasibility of encapsulating T. terrestris into [poly (lactic-co-glycolic acid] PLGA nanoparticles. Methods: Aerial parts of the plant were extracted with aqueous ethanol 85% by percolation apparatus. The nanoparticles of T. terrestris-loaded were prepared using a modified simultaneous double-emulsion solvent evaporation/diffusion method. Elucidations were made on the basis of scanning electron microscopy (SEM and differential scanning calorimetry (DSC. The content of nanoparticles was analyzed by HPLC with indirect method. Results: The results stated that increasing the portion of plant extract could cause bigger size with no considerable increase in polydispersity index (PDI. The encapsulation efficiency of T. terrestris-loaded nanoparticles was 40.3 to 78.5 and the drug loadings were 0.806 to 6.104, with different ratios of extract. The overall pattern of the release in SDS 1% in dialysis bag in all formulations showed similar and biphasic release kinetic, an initial burst release in the first day followed by constant release over 10 days. Conclusion: An effective approach for the preparation of T. terrestris-loaded PLGA nanoparticles was performed. The controlled release profile showed that these biodegradable PLGA nanoparticles had great potential and should be given particular consideration in further biological researches.

  5. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation.

    Bori, Jaume; Vallès, Bettina; Ortega, Lina; Riva, Maria Carme

    2016-09-01

    In this study chemical analyses and ecotoxicity tests were applied for the assessment of a heavily hydrocarbon-contaminated soil prior and after the application of a remediation procedure that consisted in the stimulation of soil autochthonous populations of hydrocarbon degraders in static-ventilated biopiles. Terrestrial bioassays were applied in mixtures of test soils and artificial control soil and studied the survival and reproduction of Eisenia fetida and the avoidance response of E. fetida and Folsomia candida. Effects on aquatic organisms were studied by means of acute tests with Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna performed on aqueous elutriates from test soils. The bioremediation procedure led to a significant reduction in the concentration of hydrocarbons (from 34264 to 3074 mg kg(-1), i.e., 91 % decrease) and toxicity although bioassays were not able to report a percentage decrease of toxicity as high as the percentage reduction. Sublethal tests proved the most sensitive terrestrial bioassays and avoidance tests with earthworms and springtails showed potential as monitoring tools of hydrocarbon remediation due to their high sensitivity and short duration. The concentrations of hydrocarbons in water extracts from test soils were 130 and 100 μg L(-1) before and after remediation, respectively. Similarly to terrestrial tests, most aquatic bioassays detected a significant reduction in toxicity, which was almost negligible at the end of the treatment. D. magna survival was the most affected by soil elutriates although toxicity to the crustacean was associated to the salinity of the samples rather than to the concentration of hydrocarbons. Ecotoxicity tests with aqueous soil elutriates proved less relevant in the assessment of hydrocarbon-contaminated soils due to the low hydrosolubility of hydrocarbons and the influence of the physicochemical parameters of the aquatic medium.

  6. A Meteorological Distribution System for High Resolution Terrestrial Modeling (MicroMet)

    Liston, G. E.; Elder, K.

    2004-12-01

    Spatially distributed terrestrial models generally require atmospheric forcing data on horizontal grids that are of higher resolution than available meteorological data. Furthermore, the meteorological data collected may not necessarily represent the area of interest's meteorological variability. To address these deficiencies, computationally efficient and physically realistic methods must be developed to take available meteorological data sets (e.g., meteorological tower observations) and generate high-resolution atmospheric-forcing distributions. This poster describes MicroMet, a quasi-physically-based, but simple meteorological distribution model designed to produce high-resolution (e.g., 5-m to 1-km horizontal grid increments) meteorological data distributions required to run spatially distributed terrestrial models over a wide variety of landscapes. The model produces distributions of the seven fundamental atmospheric forcing variables required to run most terrestrial models: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, and precipitation. MicroMet includes a preprocessor that analyzes meteorological station data and identifies and repairs potential data deficiencies. The model uses known relationships between meteorological variables and the surrounding area (primarily topography) to distribute those variables over any given landscape. MicroMet performs two kinds of adjustments to available meteorological data: 1) when there are data at more than one location, at a given time, the data are spatially interpolated over the domain using a Barnes objective analysis scheme, and 2) physical sub-models are applied to each MicroMet variable to improve its realism at a given point in space and time with respect to the terrain. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) will be used as example Micro

  7. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN

    Rozanov, V.V.; Rozanov, A.V.; Kokhanovsky, A.A.; Burrows, J.P.

    2014-01-01

    SCIATRAN is a comprehensive software package for the modeling of radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40μm) including multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The software is capable of modeling spectral and angular distributions of the intensity or the Stokes vector of the transmitted, scattered, reflected, and emitted radiation assuming either a plane-parallel or a spherical atmosphere. Simulations are done either in the scalar or in the vector mode (i.e. accounting for the polarization) for observations by space-, air-, ship- and balloon-borne, ground-based, and underwater instruments in various viewing geometries (nadir, off-nadir, limb, occultation, zenith-sky, off-axis). All significant radiative transfer processes are accounted for. These are, e.g. the Rayleigh scattering, scattering by aerosol and cloud particles, absorption by gaseous components, and bidirectional reflection by an underlying surface including Fresnel reflection from a flat or roughened ocean surface. The software package contains several radiative transfer solvers including finite difference and discrete-ordinate techniques, an extensive database, and a specific module for solving inverse problems. In contrast to many other radiative transfer codes, SCIATRAN incorporates an efficient approach to calculate the so-called Jacobians, i.e. derivatives of the intensity with respect to various atmospheric and surface parameters. In this paper we discuss numerical methods used in SCIATRAN to solve the scalar and vector radiative transfer equation, describe databases of atmospheric, oceanic, and surface parameters incorporated in SCIATRAN, and demonstrate how to solve some selected radiative transfer problems using the SCIATRAN package. During the last decades, a lot of studies have been published demonstrating that SCIATRAN is a valuable

  8. Radioisotope battery for particular application

    Shen Tianjian; Liang Daihua; Cai Jianhua; Dai Zhimin; Xia Huihao; Wang Jianhua; Sun Sen; Yu Guojun; Wang Xiao; Wang Dongxing; Liu Xin

    2010-01-01

    Radioisotope battery, as a new type of power source, was developed in 1960s. It is advantageous in terms of long working life, high reliability, flexibility to rugged environment, maintenance free, and high capacity rate, hence its unique applications in space, isolated terrestrial or ocean spots, deep waters, and medicine. In this paper, we analysz the primary performances and classification of radioisotope thermoelectric generator, as well as characteristic, basic principle,and structure of radioisotope thermoelectric generator (RTG), which is the most popular in application of radioisotope battery in space, undersea, terrestrial and medicine. A prospect for development and application of radioisotope battery in the 21 st century is given, too. (authors)

  9. The terrestrial carbon cycle on the regional and global scale : modeling, uncertainties and policy relevance

    Minnen, van J.G.

    2008-01-01

    Contains the chapters: The importance of three centuries of climate and land-use change for the global and regional terrestrial carbon cycle; and The terrestrial C cycle and its role in the climate change policy

  10. Antibacterial activity of Tribulus terrestris methanol extract against clinical isolates of Escherichia coli

    Batoei Sara

    2016-06-01

    Full Text Available Introduction:Tribulus terrestris L. is traditionally used for treatment of urinary tract infections. Escherichia coli, as the most prominent agent of urinary tract infections, can be sensitive to T. terrestris extract.

  11. Variations and trends of terrestrial NPP and its relation to climate ...

    Using global terrestrial ecosystem net primary productivity (NPP) data, we validated the simulated multi-model ensemble ..... tion on the solar radiation at six Canadian stations; Solar ... balance have enhanced the terrestrial carbon sink in the.

  12. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    Justin S Strong

    Full Text Available The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator. This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.

  13. Study on transfer coefficients of 90Sr, 137Cs, natural U, 226Ra and 239Pu in terrestrial food chains

    Qin Suyun; Qi Yong; Li Shuqin; Zhou Caiyun; Zhang Jingjuan; Li Jikai; Li Xuequn

    1995-01-01

    The aim of study was to provide values of transfer parameter of 90 Sr, 137 Cs, Natural U, 226 Ra and 239 Pu in terrestrial food chains, more applicable for Chinese socio-natural conditions. Data of radionuclides contents in agricultural crops and in associated soils, in sheep tissues and in associated grasses were collected in couples. The transfer coefficients in terrestrial food chains (soil-crops, grasses-sheep tissues) were calculated. On basis of statistical analysis, the representative values and 95% ranges of transfer coefficient for 5 radionuclides in 7 kind of agricultural products for southern moist areas and north dry areas were given. Regression analysis showed that relation between the transfer coefficients and the radionuclide contents in their associated soils present a negative correlation, it could be described with a equation: Y = aX -b

  14. Constitutional basis of longevity in the cetacea: do the whales and the terrestrial mammals obey the same laws

    Sacher, G.A.

    1978-01-01

    The maximum lifespans in captivity for terrestrial mammalian species can be estimated by means of a multiple linear regression of logarithm of lifespan (L) on the logarithm of adult brain weight (E) and body weight (S). This paper describes the application of regression formulas based on data from terrestrial mammals to the estimation of odontocete and mysticete lifespans. The regression formulas predict cetacean lifespans that are in accord with the data on maximum cetacean lifespans obtained in recent years by objective age determination procedures. More remarkable is the correct prediction by the regression formulas that the odontocete species have nearly constant lifespans, almost independent of body weight over a 300:1 body weight range. This prediction is a consequence of the fact, remarkable in itself, that over this body weight range the Odontoceti have a brain:body allometric slope of 1/3, as compared to a slope of 2/3 for the Mammalia as a whole.

  15. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids

    Sinninghe Damsté, J.S.; Hopmans, E.C.; Weijers, J.W.H.; Schefuß, E.; Herfort, L.; Schouten, S.

    2004-01-01

    We propose a novel tracer for terrestrial organic carbon in sediments based on the analysis of tetraether lipids using high-performance liquid chromatography/mass spectrometry (HPLC/MS). Analysis of terrestrial soil and peats shows that branched tetraether lipids are predominant in terrestrial

  16. Pengaruh Jamu Dengan Tribulus Terrestris Terhadap Kualitas Sperma Tikus Wistar Jantan (Rattus Norvegicus)

    Pelealu, Delano; Tendean, Lydia; Wantouw, Benny

    2015-01-01

    : Tribulus terrestris dikenal sebagai bahan yang dapat memperbaiki kualitas sperma. Salah satu jenis jamu yang diproduksi di Indonesia mengandung Tribulus terrestris Penelitian ini bertujuan untuk mengetahui pengaruh jamu dengan Tribulus terrestris terhadap konsentrasi, motilitas, dan morfologi spermatozoa tikus wistar jantan (Rattus norvegicus). Penelitian ini menggunakan metode eksperimental. Sampel 9 ekor tikus wistar jantan (Rattus norvegicus) dibagi menjadi 3 kelompok yakni, kelompok P0 ...

  17. Development of new historical global Nitrogen fertilizer map and the evaluation of their impacts on terrestrial N cycling and the evaluation of their impacts on terrestrial N cycling

    Nishina, K.; Ito, A.; Hayashi, S.

    2015-12-01

    The use of synthetic nitrogen fertilizer was rapidly growing up after the birth of Haber-Bosch process in the early 20th century. The recent N loading derived from these sources on terrestrial ecosystems was estimated 2 times higher than biogenic N fixation in terrestrial ecosystems (Gruber et al., 2009). However, there are still large uncertainties in cumulative N impacts on terrestrial impact at global scale. In this study, to assess historical N impacts at global scale, we made a new global N fertilizer input map, which was a spatial-temporal explicit map (during 1960-2010) and considered the fraction of NH4+ and NO3- in the N fertilizer inputs. With the developed N fertilizer map, we evaluated historical N20 cycling changes by land-use changes and N depositions in N cycling using ecosystem model 'VISIT'. Prior to the downscaling processes for global N fertilizer map, we applied the statistical data imputation to FAOSTAT data due to there existing many missing data especially in developing countries. For the data imputation, we used multiple data imputation method proposed by Honaker & King (2010). The statistics of various types of synthetic fertilizer consumption are available in FAOSTAT, which can be sorted by the content of NH4+ and NO3-, respectively. To downscaling the country by country N fertilizer consumptions data to the 0.5˚x 0.5˚ grid-based map, we used historical land-use map in Earthstat (Rumankutty et al., 1999). Before the assignment of N fertilizer in each grid, we weighted the double cropping regions to be more N fertilizer input on to these regions. Using M3-Crops Data (Monfreda et al., 2008), we picked up the dominant cropping species in each grid cell. After that, we used Crop Calendar in SAGE dataset (Sacks et al., 2010) and determined schedule of N fertilizer input in each grid cell using dominant crop calendar. Base fertilizer was set to be 7 days before transplanting and second fertilizer to be 30 days after base fertilizer application

  18. DRAWING AND LANDSCAPE SIMULATION FOR JAPANESE GARDEN BY USING TERRESTRIAL LASER SCANNER

    R. Kumazaki

    2015-05-01

    Full Text Available Recently, many laser scanners are applied for various measurement fields. This paper investigates that it was useful to use the terrestrial laser scanner in the field of landscape architecture and examined a usage in Japanese garden. As for the use of 3D point cloud data in the Japanese garden, it is the visual use such as the animations. Therefore, some applications of the 3D point cloud data was investigated that are as follows. Firstly, ortho image of the Japanese garden could be outputted for the 3D point cloud data. Secondly, contour lines of the Japanese garden also could be extracted, and drawing was became possible. Consequently, drawing of Japanese garden was realized more efficiency due to achievement of laborsaving. Moreover, operation of the measurement and drawing could be performed without technical skills, and any observers can be operated. Furthermore, 3D point cloud data could be edited, and some landscape simulations that extraction and placement of tree or some objects were became possible. As a result, it can be said that the terrestrial laser scanner will be applied in landscape architecture field more widely.

  19. Drawing and Landscape Simulation for Japanese Garden by Using Terrestrial Laser Scanner

    Kumazaki, R.; Kunii, Y.

    2015-05-01

    Recently, many laser scanners are applied for various measurement fields. This paper investigates that it was useful to use the terrestrial laser scanner in the field of landscape architecture and examined a usage in Japanese garden. As for the use of 3D point cloud data in the Japanese garden, it is the visual use such as the animations. Therefore, some applications of the 3D point cloud data was investigated that are as follows. Firstly, ortho image of the Japanese garden could be outputted for the 3D point cloud data. Secondly, contour lines of the Japanese garden also could be extracted, and drawing was became possible. Consequently, drawing of Japanese garden was realized more efficiency due to achievement of laborsaving. Moreover, operation of the measurement and drawing could be performed without technical skills, and any observers can be operated. Furthermore, 3D point cloud data could be edited, and some landscape simulations that extraction and placement of tree or some objects were became possible. As a result, it can be said that the terrestrial laser scanner will be applied in landscape architecture field more widely.

  20. Effects of ionizing radiation on terrestrial plants and animals: A workshop report

    Barnthouse, L.W.

    1995-12-01

    The US Department of Energy (DOE) Air, Water, and Radiation Division (EH-412) is preparing to issue protective radiological standards for aquatic and terrestrial organisms. To support this effort, DOE sponsored a workshop to evaluate the adequacy of current approaches to radiological protection. Workshop participants reviewed and discussed a 1992 International Atomic Energy Agency (IAEA) report on radiological protection of biota for its adequacy and completeness in answering the following questions: can DOE use these data and conclusions for promulgating radiological standards for the protection of terrestrial organisms; are the conclusions given in this report still valid or have they been superseded by more recent data? The consensus of the workshop participants was that the dose limits for animals and plants recommended by the IAEA are adequately supported by the available scientific information. Participants agreed, however, that better guidance on application of those dose limits is needed. Participants further agreed with the IAEA that dose limits deigned to protect humans generally protect biota as well, except when (1) human access is restricted without restricting access by biota, (2) unique exposure pathways exist, (3) rare or endangered species are present, or (4) other stresses are significant. To deal with these exceptions, site-specific exposures should be considered in developing secondary standards

  1. CURB-BASED STREET FLOOR EXTRACTION FROM MOBILE TERRESTRIAL LIDAR POINT CLOUD

    S. Ibrahim

    2012-07-01

    Full Text Available Mobile terrestrial laser scanners (MTLS produce huge 3D point clouds describing the terrestrial surface, from which objects like different street furniture can be generated. Extraction and modelling of the street curb and the street floor from MTLS point clouds is important for many applications such as right-of-way asset inventory, road maintenance and city planning. The proposed pipeline for the curb and street floor extraction consists of a sequence of five steps: organizing the 3D point cloud and nearest neighbour search; 3D density-based segmentation to segment the ground; morphological analysis to refine out the ground segment; derivative of Gaussian filtering to detect the curb; solving the travelling salesman problem to form a closed polygon of the curb and point-inpolygon test to extract the street floor. Two mobile laser scanning datasets of different scenes are tested with the proposed pipeline. The results of the extracted curb and street floor are evaluated based on a truth data. The obtained detection rates for the extracted street floor for the datasets are 95% and 96.53%. This study presents a novel approach to the detection and extraction of the road curb and the street floor from unorganized 3D point clouds captured by MTLS. It utilizes only the 3D coordinates of the point cloud.

  2. Effects of ionizing radiation on terrestrial plants and animals: A workshop report

    Barnthouse, L.W.

    1995-12-01

    The US Department of Energy (DOE) Air, Water, and Radiation Division (EH-412) is preparing to issue protective radiological standards for aquatic and terrestrial organisms. To support this effort, DOE sponsored a workshop to evaluate the adequacy of current approaches to radiological protection. Workshop participants reviewed and discussed a 1992 International Atomic Energy Agency (IAEA) report on radiological protection of biota for its adequacy and completeness in answering the following questions: can DOE use these data and conclusions for promulgating radiological standards for the protection of terrestrial organisms; are the conclusions given in this report still valid or have they been superseded by more recent data? The consensus of the workshop participants was that the dose limits for animals and plants recommended by the IAEA are adequately supported by the available scientific information. Participants agreed, however, that better guidance on application of those dose limits is needed. Participants further agreed with the IAEA that dose limits deigned to protect humans generally protect biota as well, except when (1) human access is restricted without restricting access by biota, (2) unique exposure pathways exist, (3) rare or endangered species are present, or (4) other stresses are significant. To deal with these exceptions, site-specific exposures should be considered in developing secondary standards.

  3. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony; Safta, Cosmin; Munger, William

    2017-09-01

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.

  4. Landsat-8: Science and product vision for terrestrial global change research

    Roy, David P.; Wulder, M.A.; Loveland, Thomas R.; Woodcock, C.E.; Allen, R. G.; Anderson, M. C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; Scambos, T.A.; Schaaf, Crystal B.; Schott, J.R.; Sheng, Y.; Vermote, E. F.; Belward, A.S.; Bindschadler, R.; Cohen, W.B.; Gao, F.; Hipple, J. D.; Hostert, Patrick; Huntington, J.; Justice, C.O.; Kilic, A.; Kovalskyy, Valeriy; Lee, Z. P.; Lymburner, Leo; Masek, J.G.; McCorkel, J.; Shuai, Y.; Trezza, R.; Vogelmann, James; Wynne, R.H.; Zhu, Z.

    2014-01-01

    Landsat 8, a NASA and USGS collaboration, acquires global moderate-resolution measurements of the Earth's terrestrial and polar regions in the visible, near-infrared, short wave, and thermal infrared. Landsat 8 extends the remarkable 40 year Landsat record and has enhanced capabilities including new spectral bands in the blue and cirrus cloud-detection portion of the spectrum, two thermal bands, improved sensor signal-to-noise performance and associated improvements in radiometric resolution, and an improved duty cycle that allows collection of a significantly greater number of images per day. This paper introduces the current (2012–2017) Landsat Science Team's efforts to establish an initial understanding of Landsat 8 capabilities and the steps ahead in support of priorities identified by the team. Preliminary evaluation of Landsat 8 capabilities and identification of new science and applications opportunities are described with respect to calibration and radiometric characterization; surface reflectance; surface albedo; surface temperature, evapotranspiration and drought; agriculture; land cover, condition, disturbance and change; fresh and coastal water; and snow and ice. Insights into the development of derived ‘higher-level’ Landsat products are provided in recognition of the growing need for consistently processed, moderate spatial resolution, large area, long-term terrestrial data records for resource management and for climate and global change studies. The paper concludes with future prospects, emphasizing the opportunities for land imaging constellations by combining Landsat data with data collected from other international sensing systems, and consideration of successor Landsat mission requirements.

  5. Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description

    Jan Hackenberg

    2014-05-01

    Full Text Available This paper presents a method for fitting cylinders into a point cloud, derived from a terrestrial laser-scanned tree. Utilizing high scan quality data as the input, the resulting models describe the branching structure of the tree, capable of detecting branches with a diameter smaller than a centimeter. The cylinders are stored as a hierarchical tree-like data structure encapsulating parent-child neighbor relations and incorporating the tree’s direction of growth. This structure enables the efficient extraction of tree components, such as the stem or a single branch. The method was validated both by applying a comparison of the resulting cylinder models with ground truth data and by an analysis between the input point clouds and the models. Tree models were accomplished representing more than 99% of the input point cloud, with an average distance from the cylinder model to the point cloud within sub-millimeter accuracy. After validation, the method was applied to build two allometric models based on 24 tree point clouds as an example of the application. Computation terminated successfully within less than 30 min. For the model predicting the total above ground volume, the coefficient of determination was 0.965, showing the high potential of terrestrial laser-scanning for forest inventories.

  6. ORIENTATION AND DENSE RECONSTRUCTION OF UNORDERED TERRESTRIAL AND AERIAL WIDE BASELINE IMAGE SETS

    J. Bartelsen

    2012-07-01

    Full Text Available In this paper we present an approach for detailed and precise automatic dense 3D reconstruction using images from consumer cameras. The major difference between our approach and many others is that we focus on wide-baseline image sets. We have combined and improved several methods, particularly, least squares matching, RANSAC, scale-space maxima and bundle adjustment, for robust matching and parameter estimation. Point correspondences and the five-point algorithm lead to relative orientation. Due to our robust matching method it is possible to orient images under much more unfavorable conditions, for instance concerning illumination changes or scale differences, than for often used operators such as SIFT. For dense reconstruction, we use our orientation as input for Semiglobal Matching (SGM resulting into dense depth images. The latter can be fused into a 2.5D model for eliminating the redundancy of the highly overlapping depth images. However, some applications require full 3D models. A solution to this problem is part of our current work, for which preliminary results are presented in this paper. With very small unmanned aerial systems (Micro UAS it is possible to acquire images which have a perspective similar to terrestrial images and can thus be combined with them. Such a combination is useful for an almost complete 3D reconstruction of urban scenes. We have applied our approach to several hundred aerial and terrestrial images and have generated detailed 2.5D and 3D models of urban areas.

  7. VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

    Parsons-Wingerter, Patricia; Kao, David; Valizadegan, Hamed; Martin, Rodney; Murray, Matthew C.; Ramesh, Sneha; Sekaran, Srinivaas

    2017-01-01

    Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes. NASA developed an innovative, globally requested beta-level software, VESsel GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

  8. Probabilistic determination of the ecological risk from OTNE in aquatic and terrestrial compartments based on US-wide monitoring data.

    McDonough, Kathleen; Casteel, Kenneth; Zoller, Ann; Wehmeyer, Kenneth; Hulzebos, Etje; Rila, Jean-Paul; Salvito, Daniel; Federle, Thomas

    2017-01-01

    OTNE [1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthyl)ethan-1-one; trade name Iso E Super] is a fragrance ingredient commonly used in consumer products which are disposed down the drain. This research measured effluent and sludge concentrations of OTNE at 44 US wastewater treatment plants (WWTP). The mean effluent and sludge concentrations were 0.69 ± 0.65 μg/L and 20.6 ± 33.8 mg/kg dw respectively. Distribution of OTNE effluent concentrations and dilution factors were used to predict surface water and sediment concentrations and distributions of OTNE sludge concentrations and loading rates were used to predict terrestrial concentrations. The 90th percentile concentration of OTNE in US WWTP mixing zones was predicted to be 0.04 and 0.85 μg/L under mean and 7Q10 low flow (lowest river flow occurring over a 7 day period every 10 years) conditions respectively. The 90th percentile sediment concentrations under mean and 7Q10 low flow conditions were predicted to be 0.081 and 1.6 mg/kg dw respectively. Based on current US sludge application practices, the 90th percentile OTNE terrestrial concentration was 1.38 mg/kg dw. The probability of OTNE concentrations being below the predicted no effect concentration (PNEC) for the aquatic and sediment compartments was greater than 99%. For the terrestrial compartment, the probability of OTNE concentrations being lower than the PNEC was 97% for current US sludge application practices. Based on the results of this study, OTNE concentrations in US WWTP effluent and sludge do not pose an ecological risk to aquatic, sediment and terrestrial organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods

    Owen, L.A.; Bright, Jordon; Finkel, R.C.; Jaiswal, M.K.; Kaufman, D.S.; Mahan, S.; Radtke, U.; Schneider, J.S.; Sharp, W.; Singhvi, A.K.; Warren, C.N.

    2007-01-01

    A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of southeastern California, USA was studied with the goal of comparing accelerator mass spectrometry (AMS) radiocarbon, luminescence, electron spin resonance (ESR), terrestrial cosmogenic radionuclide (TCN) surface exposure, amino acid racemization (AAR) and U-series dating methods. The pattern of ages obtained by the different methods illustrates the complexity of processes acting in the lakeshore environment and highlights the utility of a multi-method approach. TCN surface exposure ages (mostly ???20-30 ka) record the initial erosion of shoreline benches, whereas radiocarbon ages on shells (determined in this and previous studies) within the spit, supported by AAR data, record its construction at fluctuating lake levels from ???16 to 10 ka. Luminescence ages on spit sediment (???6-7 ka) and ESR ages on spit shells (???4 ka) are anomalously young relative to radiocarbon ages of shells within the same deposits. The significance of the surprisingly young luminescence ages is not clear. The younger ESR ages could be a consequence of post-mortem enrichment of U in the shells. High concentrations of detrital thorium in tufa coating spit gravels inhibited the use of single-sample U-series dating. Detailed comparisons such as this provide one of the few means of assessing the accuracy of Quaternary dating techniques. More such comparisons are needed. ?? 2007 Elsevier Ltd and INQUA.

  10. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-01-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of “self-rewetting fluids”, i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59–61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20–100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  11. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-11-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of "self-rewetting fluids", i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59-61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20-100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  12. The behaviour of iodine in the terrestrial environment

    Christiansen, J.V.

    1990-02-01

    Literature on the geochemistry of iodine is surveyed, focusing on fundamental chemical aspects which influence the migration behaviour of iodine in the terrestrial environment. It is stated that the organic fraction in soil plays the predominant role in the retention of iodine. Simple aromatic molecules serve as simple models for humic acid, and humic acid is iodinated catalyzed by haloperoxidases. The enzymatically controlled iodination of humic acid is described in detail and it is demonstrated that the results may reflect a kind of equilibrium. It is shown that soil extracts are able to catalyze the iodination of humic acid and it is suggested that extracellular peroxidases in soil are reponsible for the reaction. The enzymatically controlled iodination of humic acid is discussed and some considerations about the influence on the migration of iodine in the terrestrial environment are given. (author) 4 tabs., 26 ills., 82 refs

  13. Terrestrial ecology. Comprehensive study of the grassland biome

    Anon.

    1976-01-01

    Terrestrial ecology and grassland biome studies are designed to characterize the biota of the Hanford Reservation, elucidate seasonal dynamics of plant productivity, decomposition and mineral behavior patterns of important plant communities, and, to study the response of these communities to important natural environmental stresses, such as weather, wildfire and man-induced alterations of communities (influenced by grazing cattle and severe mechanical disturbance of the soil, such as affected by plowing or burial of waste materials or construction activities). A detailed account of the important findings of a 5-yr study is currently being prepared by the terrestrial ecology section staff for publication as a contribution to the International Biological Program Grassland Biome project

  14. The carbon balance of terrestrial ecosystems of China

    Pilli R

    2009-05-01

    Full Text Available A comment is made on a recent letter published on Nature, in which different methodologies are applied to estimate the carbon balance of terrestrial ecosystems of China. A global carbon sink of 0.19-0.26 Pg per year is estimated during the 1980s and 1990s, and it is estimated that in 2006 terrestrial ecosystems have absorbed 28-37 per cent of global carbon emissions in China. Most of the carbon absorption is attributed to large-scale plantation made since the 1980s and shrub recovery. These results will certainly be valuable in the frame of the so-called “REDD” (Reducing Emissions from Deforestation forest Degradation in developing countries mechanism (UN convention on climate change UNFCCC.

  15. Osmotic stress tolerance in semi-terrestrial tardigrades

    Heidemann, Nanna W T; Smith, Daniel K.; Hygum, Thomas L.

    2016-01-01

    Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high......-ionic osmolytes as compared to NaCl. Ramazzottius oberhaeuseri furthermore readily regained activity following gradual increases in non-ionic osmolytes and NaCl of up to 2434 ± 28 and 1905 ± 3 mOsm kg−1, respectively, showing that short-term acclimation promoted salt stress tolerance. Our results suggest...... that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress....

  16. Capture of terrestrial-sized moons by gas giant planets.

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  17. In situ measurements of dose rates from terrestrial gamma rays

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  18. Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere

    Michael J Wilkins

    2014-09-01

    Full Text Available Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on Trends and Future Challenges in Sampling The Deep Subsurface was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation’s Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

  19. Optimal Strategies for Probing Terrestrial Exoplanet Atmospheres with JWST

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael

    2018-01-01

    It is imperative that the exoplanet community determines the feasibility and the resources needed to yield high fidelity atmospheric compositions from terrestrial exoplanets. In particular, LHS 1140b and the TRAPPIST-1 system, already slated for observations by JWST’s Guaranteed Time Observers, will be the first two terrestrial planets observed by JWST. I will discuss optimal observing strategies for observing these two systems, focusing on the NIRSpec Prism (1-5μm) and the combination of NIRISS SOSS (1-2.7μm) and NIRSpec G395H (3-5μm). I will also introduce currently unsupported JWST readmodes that have the potential to greatly increase the precision on our atmospheric spectra. Lastly, I will use information content theory to compute the expected confidence interval on the retrieved abundances of key molecular species and temperature profiles as a function of JWST observing cycles.

  20. Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST

    Kreidberg, Laura

    2018-01-01

    A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.

  1. Survey of nematodes associated with terrestrial slugs in Norway.

    Ross, J L; Ivanova, E S; Hatteland, B A; Brurberg, M B; Haukeland, S

    2016-09-01

    A survey of nematodes associated with terrestrial slugs was conducted for the first time in Norway. A total of 611 terrestrial slugs were collected from 32 sample sites. Slugs were identified by means of morphological examination, dissection of genitalia and molecular analysis using mitochondrial DNA. Twelve slug species were identified, representing four different slug families. Internal nematodes were identified by means of morphological analysis and the sequencing of the 18S rRNA gene. Of the sample sites studied, 62.5% were found to be positive for nematode parasites, with 18.7% of all slugs discovered being infected. Five nematode species were identified in this study: Alloionema appendiculatum, Agfa flexilis, Angiostoma limacis, Angiostoma sp. and Phasmarhabditis hermaphrodita. Of these species, only one nematode was previously undescribed (Angiostoma sp.). This is the first record of the presence of A. appendiculatum, A. flexilis and A. limacis in Norway.

  2. Hidden dental diversity in the oldest terrestrial apex predator Dimetrodon.

    Brink, Kirstin S; Reisz, Robert R

    2014-01-01

    Paleozoic sphenacodontid synapsids are the oldest known fully terrestrial apex predators. Dimetrodon and other sphenacodontids are the first terrestrial vertebrates to have strong heterodonty, massive skulls and well-developed labio-lingually compressed and recurved teeth with mesial and distal cutting edges (carinae). Here we reveal that the dentition of Dimetrodon and other sphenacodontids is diverse. Tooth morphology includes simple carinae with smooth cutting edges and elaborate enamel features, including the first occurrence of cusps and true denticles (ziphodonty) in the fossil record. A time-calibrated phylogenetic analysis indicates that changes in dental morphology occur in the absence of any significant changes in skull morphology, suggesting that the morphological change is associated with changes in feeding style and trophic interactions in these ecosystems. In addition, the available evidence indicates that ziphodonty evolved for the first time in the largest known species of the genus Dimetrodon and independently from the ziphodont teeth observed in some therapsids.

  3. Terrestrial gamma dose rate in Pahang state Malaysia

    Gabdo, H.T.; Federal College of Education, Yola; Ramli, A.T.; Sanusi, M.S.; Saleh, M.A.; Garba, N.N.; Ahmadu Bello University, Zaria

    2014-01-01

    Environmental terrestrial gamma radiations (TGR) were measured in Pahang state Malaysia between January and April 2013. The TGR dose rates ranged from 26 to 750 nGy h -1 . The measurements were done based on geology and soil types of the area. The mean TGR dose rate was found to be 176 ± 5 nGy h -1 . Few areas of relatively enhanced activity were located in Raub, Temerloh, Bentong and Rompin districts. These areas have external gamma dose rates of between 500 and 750 nGy h -1 . An Isodose map of the state was produced using ArcGIS9 software version 9.3. To evaluate the radiological hazard due to terrestrial gamma dose, the annual effective dose equivalent and the mean population weighted dose rate were calculated and found to be 0.22 mSv year -1 and 168 nGy h -1 respectively. (author)

  4. European Policies of Digital Terrestrial Television. Antecedents, Characterization and Alternatives

    Lic. María Trinidad García Leiva

    2006-01-01

    Full Text Available DTT is one of the existing platforms that can deliver audiovisual content and digital services. Such profile is precisely what includes it in the European Union’s agenda to ensure access to the benefits of Information Society (IS and presents it as the natural successor for the role of offering universal television services once switch-off has taken place. In 1993, a new phase in the history of the European audiovisual policy began, characterized by the concern around the IS and the Convergence. In this context, a positioning regarding digital television arose, conditioning the European policies related to the digitalization of the terrestrial nets in a polarized and subordinated sense. To the study of these DTT policies is devoted this article, which defends the need of its democratization to reach a more efficient terrestrial television service, enabling at the same time, a digital platform that could offer IS services to the whole population.

  5. Irregular flowering patterns in terrestrial orchids: theories vs. empirical data

    P. Kindlmann

    2001-11-01

    Full Text Available Empirical data on many species of terrestrial orchids suggest that their between-year flowering pattern is extremely irregular and unpredictable. A long search for the reason has hitherto proved inconclusive. Here we summarise and critically review the hypotheses that were put forward as explanations of this phenomenon: irregular flowering was attributed to costs associated with sexual reproduction, to herbivory, or to the chaotic behaviour of the system represented by difference equations describing growth of the vegetative and reproductive organs. None of these seems to explain fully the events of a transition from flowering one year to sterility or absence the next year. Data on the seasonal growth of leaves and inflorescence of two terrestrial orchid species, Epipactis albensis and Dactylorhiza fuchsii and our previous results are then used here to fill gaps in what has been published until now and to test alternative explanations of the irregular flowering patterns of orchids.

  6. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  7. Trends and future challenges in sampling the deep terrestrial biosphere.

    Wilkins, Michael J; Daly, Rebecca A; Mouser, Paula J; Trexler, Ryan; Sharma, Shihka; Cole, David R; Wrighton, Kelly C; Biddle, Jennifer F; Denis, Elizabeth H; Fredrickson, Jim K; Kieft, Thomas L; Onstott, Tullis C; Peterson, Lee; Pfiffner, Susan M; Phelps, Tommy J; Schrenk, Matthew O

    2014-01-01

    Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on "Trends and Future Challenges in Sampling The Deep Subsurface" was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation's Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

  8. Nest wax triggers worker reproduction in the bumblebee Bombus terrestris

    Rottler-Hoermann, Ann-Marie; Schulz, Stefan; Ayasse, Manfred

    2016-01-01

    Social insects are well known for their high level of cooperation. Workers of the primitively eusocial bumblebee Bombus terrestris are able to produce male offspring in the presence of a queen. Nonetheless, they only compete for reproduction, in the so-called competition phase, when the workforce is large enough to support the rearing of reproductives. So far, little is known about the proximate mechanisms underlying the shift between altruism and selfish behaviour in bumblebee workers. In th...

  9. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  10. Land use related silica dynamics in terrestrial ecosystems.

    Clymans, Wim

    2012-01-01

    Silicon (Si) provides the base component for well-balanced food-webs in aquatic systems. Here, together with nitrogen and phosphorous Si determines phytoplankton composition, and plays a major role in eutrophication problems and carbon sequestration. Rivers are the primary source of Si for the oceans, and is ultimately derived from mineral weathering. However there is growing evidence illustrating the importance of biological Si cycling in terrestrial ecosystems. Riverine Si fluxes will be af...

  11. Terrestrial Microgravity Model and Threshold Gravity Simulation using Magnetic Levitation

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars. The paper will discuss experiments md modeling work to date in support of this project.

  12. Terrestrial gravity data analysis for interim gravity model improvement

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  13. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.

    Wright, Traver J; Davis, Randall W

    2015-07-01

    Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. © 2015. Published by The Company of Biologists Ltd.

  14. Terrestrial Microgravity Model and Threshold Gravity Simulation sing Magnetic Levitation

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successiblly simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  15. Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science

    Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.

    2004-01-01

    Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.

  16. Non-terrestrial food source for Fiordland brachiopods

    Lyon, G.L.; Richardson, Joyce

    1983-05-01

    Carbon-13 analyses were determined for brachiopods and particulate organic matter from Fiordland waters. Brachiopod delta 13 $ 0 C are about -18 per mille which is significantly enriched in 13 C relative to the particulate matter (about -23 per mille) and different from local terrestrial matter (about -28 per mille). There is no carbon-13 evidence for non-marine food in the diet of brachiopods

  17. Integration of Satellite and Terrestrial Systems in Future Multimedia Communications

    Evans, Barry; Werner, Markus; Lutz, Erich; Bousquet, Michel; Corazza, Giovanni E; Maral, Gerard; Rumeau, Robert; Ferro, Erina

    2005-01-01

    In this article we examine the role of satellite communications in future telecommunication networks and service provision. Lessons from the past indicate that satellites are successful as a result of their wide area coverage or speed to market for new services. Niche areas such as coverage of air and sea will persist, but for land masses convergence of fixed, mobile, and broadcasting will dictate that the only way forward for satellites is in an integrated format with terrestrial systems. We...

  18. Terrestrial gamma ray flash production by active lightning leader channels

    İnan, Umran Savaş; Carlson, B. E.; Lehtinen, N. G.

    2017-01-01

    The production of terrestrial gamma ray flashes (TGFs) requires a seed energetic electron source and a strong electric field. Lightning leaders naturally provide seed electrons by cold runaway and strong electric fields by charge accumulation on the channel. We model possible TGF production in such fields by simulating the charges and currents on the channel. The resulting electric fields then drive simulations of runaway relativistic electron avalanche and photon emission. Photon spectra and...

  19. Terrestrial gamma ray flash production by lightning current pulses

    İnan, Umran Savaş; Carlson, B. E.; Lehtinen, N. G.

    2017-01-01

    Terrestrial gamma ray flashes (TGFs) are brief bursts of gamma rays observed by satellites, typically in coincidence with detectable lightning. We incorporate TGF observations and the key physics behind current TGF production theories with lightning physics to produce constraints on TGF production mechanisms. The combined constraints naturally suggest a mechanism for TGF production by current pulses in lightning leader channels. The mechanism involves local field enhancements due to charge re...

  20. Sustained periodic terrestrial locomotion in air-breathing fishes.

    Pace, C M; Gibb, A C

    2014-03-01

    While emergent behaviours have long been reported for air-breathing osteichthyians, only recently have researchers undertaken quantitative analyses of terrestrial locomotion. This review summarizes studies of sustained periodic terrestrial movements by air-breathing fishes and quantifies the contributions of the paired appendages and the axial body to forward propulsion. Elongate fishes with axial-based locomotion, e.g. the ropefish Erpetoichthys calabaricus, generate an anterior-to-posterior wave of undulation that travels down the axial musculoskeletal system and pushes the body against the substratum at multiple points. In contrast, appendage-based locomotors, e.g. the barred mudskipper Periophthalmus argentilineatus, produce no axial bending during sustained locomotion, but instead use repeated protraction-retraction cycles of the pectoral fins to elevate the centre of mass and propel the entire body anteriorly. Fishes that use an axial-appendage-based mechanism, e.g. walking catfishes Clarias spp., produce side-to-side, whole-body bending in co-ordination with protraction-retraction cycles of the pectoral fins. Once the body is maximally bent to one side, the tail is pressed against the substratum and drawn back through the mid-sagittal plane, which elevates the centre of mass and rotates it about a fulcrum formed by the pectoral fin and the ground. Although appendage-based terrestrial locomotion appears to be rare in osteichthyians, many different species appear to have converged upon functionally similar axial-based and axial-appendage-based movements. Based on common forms observed across divergent taxa, it appears that dorsoventral compression of the body, elongation of the axial skeleton or the presence of robust pectoral fins can facilitate effective terrestrial movement by air-breathing fishes. © 2014 The Fisheries Society of the British Isles.

  1. Ecological effects of transuranics in the terrestrial environment

    Whicker, F.W.

    1980-01-01

    This chapter explores the ecological effects of transuranium radionuclides in terrestrial environments. No direct studies that relate the level of transuranic contamination to specific changes in structure or function of ecological systems have been carried out. The only alternative approach presently available is to infer such relationships from observations of biota in contaminated environments and models. Advantages and shortcomings of these observations as well as those of the direct experimental approach are discussed

  2. Nematodes from terrestrial and freshwater habitats in the Arctic

    2014-01-01

    Abstract We present an updated list of terrestrial and freshwater nematodes from all regions of the Arctic, for which records of properly identified nematode species are available: Svalbard, Jan Mayen, Iceland, Greenland, Nunavut, Northwest territories, Alaska, Lena River estuary, Taymyr and Severnaya Zemlya and Novaya Zemlya. The list includes 391 species belonging to 146 genera, 54 families and 10 orders of the phylum Nematoda. PMID:25197239

  3. Limno-terrestrial Tardigrada of the Nearctic Realm

    Juliana G. HINTON

    2007-09-01

    Full Text Available We examined all available records of limno-terrestrial tardigrade distribution in the Nearctic realm (Greenland, Canada, Alaska, the continental United States of America, and northern Mexico, both to compare this fauna with other realms and to investigate distribution within North America. We included only those records in which tardigrades had been identified to species. Of 204 Nearctic limno-terrestrial tardigrade species, 38 were cosmopolitan, while 55 were unique to the Nearctic realm. The Nearctic tardigrade fauna is most similar to the Palearctic, with 135 species in common, 39 of which have not been reported elsewhere. The Nearctic realm shares 82 species with the Neotropical realm, only 10 which are not also Palearctic. These data are consistent with the geological history of the three realms, and indicate a distinction between Laurasian and Gondwanan tardigrade faunas. Although little is known about limno-terrestrial tardigrade distribution in much of North America, there are several excellent regional or local surveys. Many species are distributed widely throughout the continent, but 30.0% of Nearctic species have been reported from a single site. Cluster analysis of the fauna of 11 Nearctic regions shows that the Arctic and sub-Arctic fauna constitute a regional fauna distinct from the rest of the continent. Ecological analysis is hampered by inconsistent reporting of tardigrade substrate, though available data suggest little substrate specificity in terrestrial tardigrades. Most species are found in both mosses and lichens. Many are also present in soil and leaf litter, but few are found only in these substrates.

  4. Schistosomiasis and nutritional myopathy in a Brazilian tapir (Tapirus terrestris).

    Yamini, B; Schillhorn van Veen, T W

    1988-10-01

    Gross lesions suggestive of severe hepatoenteropathy and myopathy were noted in a 4.5-yr-old Brazilian tapir (Tapirus terrestris) from a zoo in Michigan (USA). The major microscopic lesions were granulomatous hepatitis and hemorrhagic enteritis associated with non-operculated eggs compatible with those of the Schistosomatidae (Digenea). Skeletal muscle and tongue contained foci of severe acute myodegeneration and necrosis. The hepatic vitamin E value of 1.3 ppm dry weight was considered critically low.

  5. Contaminants in the Greenland terrestrial and freshwater environment. National assessment

    Riget, F.; Aastrup, P.; Dietz, R.

    1997-01-01

    The present report reviews the available information on heavy metals, persistent organic pollutants and radioactivity in the Greenland freshwater and terrestrial environments. Levels in lake sediments, soil, humus and organisms are presented, spatial and temporal trends are discussed and where possible also biological effects. Many of the contaminants that occur in the Greenland environment originate from distant sources outside of the region, and are transported to the Arctic via three major pathways - atmospheric, terrestrial/freshwater and marine. The main sources of pollution in Greenland is considered to be the industrialization of Eurasia. Pollutants are mainly. The organochlorine levels in Greenland char are typically in the low range compared to values reported from Canada. The Greenland sediment samples showed all organochlorine values below the detection limits of 0.1 μg/kg dry weight, thus being among the lowest contaminated sediments within the Arctic. The total content of PAH in the Greenland sediment samples ranged between 78-635 μ3 g/kg dry wight, with a geometric mean of 178 μg/kg, comparable to or lower than reported values from other arctic countries. The lowest concentrations of anthropogenic radionuclides in the Greenland terrestrial and freshwater environment are found in the northern parts of Greenland and the highest in the south western parts. The main source of anthropogenic radioactivity is nuclear weapons testing in the atmosphere and the fallout from this activity is closely related to the amounts of precipitation. The predominant foodchain in the Arctic with regard to transport of radiocaesium to man is: Lichen-reindeer-man. Although the doses from the terrestrial foodchain are 20 times higher than those received from the marine foodchain, they are not considered to be of any relevance for the human health in Greenland. 4 appendices contain experimental results. (EG)

  6. Resource subsidies between stream and terrestrial ecosystems under global change

    Larsen, Stefano; Muehlbauer, Jeffrey D.; Marti Roca, Maria Eugenia

    2016-01-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream–terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream–riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream–terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic

  7. Towards 250 m mapping of terrestrial primary productivity over Canada

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  8. The transfer of radionuclides in the terrestrial environment

    Oehlenschlaeger, M.

    1991-04-01

    The transfer of radionuclides in the terrestrial environment have been investigated. The thesis is divided into two parts. Part I; Dynamic model for the transfer of radionuclides in the terrestrial environment. The study comprises the development of a compartment model, that simulates the dynamic transport of radioactive pollution in the terrestrial environment. The dynamic processes include, dry and wet deposition, soil resuspension, plant growth, root uptake, foliar interception, animal metabolism, agricultural practice, and production of bread. The ingested amount of radioactivity, by man, is multiplied by a dose conversion factor to yield a dose estimate. The dynamic properties and the predictive accuracy of the model have been tested. The results support the dynamics very well and predicitions within a factor of three, of a hypothetical accident, are likely. Part II; Influence of plant variety on the root transfer of radiocaesium. Studies of genetic differences, in plant uptake of radiocaesium, were concluded with a pot experiment. Four varieties of spring barley and three varieties of rye-grass have been tested in two types of soil. The results for barley showed a significant difference between the four varieties. Analyses of variance confirmed a high root uptake of radiocaesium in the variety Sila and a significantly lower root uptake in the variety Apex in each type of soil. The pattern between the varieties was identical in 1988, 1989 and 1990. Similarly for the grass varieties, one variety, the Italian rye grass, was identified as having the relatively highest uptake of radiocaesium. (author) 22 tabs., 30 ills., 56 refs

  9. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.

  10. Measurement Axis Searching Model for Terrestrial Laser Scans Registration

    Shaoxing Hu

    2016-01-01

    Full Text Available Nowadays, terrestrial Lidar scans can cover rather a large area; the point densities are strongly varied because of the line-of-sight measurement principle in potential overlaps with scans taken from different viewpoints. Most of the traditional methods focus on registration algorithm and ignore searching model. Sometimes the traditional methods are directly used to align two point clouds; a large critically unsolved problem of the large biases will be created in areas distant from the overlaps while the local overlaps are often aligned well. So a novel measurement axis searching model (MASM has been proposed in this paper. The method includes four steps: (1 the principal axis fitting, (2 the measurement axis generation, (3 low-high-precision search, and (4 result generation. The principal axis gives an orientation to the point cloud; the search scope is limited by the measurement axis. The point cloud orientation can be adjusted gradually until the achievement of the global optimum using low- and high-precision search. We perform some experiments with simulated point clouds and real terrestrial laser scans. The results of simulated point clouds have shown the processing steps of our method, and the results of real terrestrial laser scans have shown the sensitivity of the approach with respect to the indoor and outdoor scenes.

  11. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  12. Structural Analysis of Hand Drawn Bumblebee Bombus terrestris Silk

    Andrea L. Woodhead

    2016-07-01

    Full Text Available Bombus terrestris, commonly known as the buff-tailed bumblebee, is native to Europe, parts of Africa and Asia. It is commercially bred for use as a pollinator of greenhouse crops. Larvae pupate within a silken cocoon that they construct from proteins produced in modified salivary glands. The amino acid composition and protein structure of hand drawn B. terrestris, silk fibres was investigated through the use of micro-Raman spectroscopy. Spectra were obtained from single fibres drawn from the larvae salivary gland at a rate of 0.14 cm/s. Raman spectroscopy enabled the identification of poly(alanine, poly(alanine-glycine, phenylalanine, tryptophan, and methionine, which is consistent with the results of amino acid analysis. The dominant protein conformation was found to be coiled coil (73% while the β-sheet content of 10% is, as expected, lower than those reported for hornets and ants. Polarized Raman spectra revealed that the coiled coils were highly aligned along the fibre axis while the β-sheet and random coil components had their peptide carbonyl groups roughly perpendicular to the fibre axis. The protein orientation distribution is compared to those of other natural and recombinant silks. A structural model for the B. terrestris silk fibre is proposed based on these results.

  13. Forelimb bone curvature in terrestrial and arboreal mammals

    Keith Henderson

    2017-04-01

    Full Text Available It has recently been proposed that the caudal curvature (concave caudal side observed in the radioulna of terrestrial quadrupeds is an adaptation to the habitual action of the triceps muscle which causes cranial bending strains (compression on cranial side. The caudal curvature is proposed to be adaptive because longitudinal loading induces caudal bending strains (increased compression on the caudal side, and these opposing bending strains counteract each other leaving the radioulna less strained. If this is true for terrestrial quadrupeds, where triceps is required for habitual elbow extension, then we might expect that in arboreal species, where brachialis is habitually required to maintain elbow flexion, the radioulna should instead be cranially curved. This study measures sagittal curvature of the ulna in a range of terrestrial and arboreal primates and marsupials, and finds that their ulnae are curved in opposite directions in these two locomotor categories. This study also examines sagittal curvature in the humerus in the same species, and finds differences that can be attributed to similar adaptations: the bone is curved to counter the habitual muscle action required by the animal’s lifestyle, the difference being mainly in the distal part of the humerus, where arboreal animals tend have a cranial concavity, thought to be in response the carpal and digital muscles that pull cranially on the distal humerus.

  14. TERRESTRIAL EFFECTS OF NEARBY SUPERNOVAE IN THE EARLY PLEISTOCENE

    Thomas, B. C.; Engler, E. E. [Department of Physics and Astronomy, Washburn University, Topeka, KS 66621 (United States); Kachelrieß, M. [Institutt for fysikk, NTNU, Trondheim (Norway); Melott, A. L. [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Overholt, A. C. [Department of Science and Mathematics, MidAmerica Nazarene University, Olathe, KS 66062 (United States); Semikoz, D. V., E-mail: brian.thomas@washburn.edu [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, F-119 75205 Paris (France)

    2016-07-20

    Recent results have strongly confirmed that multiple supernovae happened at distances of ∼100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing {sup 60}Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  15. The solar generation childhood and adolescence of terrestrial photovoltaics

    Wolfe, Philip R

    2018-01-01

    The first book to address the early development of the photovoltaic industry, and the pioneering researchers and companies in the sector. Well before the end of this century, solar power will be the world's dominant power source. This book looks at the origins of this smart sustainable energy technology, tracing the pioneering years from its inception following the 1973 oil crisis to the end of the last millennium—just as the sector was poised for explosive growth. It focuses on the progress of the early terrestrial photovoltaic sector, often in the face of skepticism or apathy. It also covers the research and achievements of people and organizations within the PV business. Written by a leader in the field with more than 40 years of experience and an international reputation in the sustainable energy industry, The Solar Generation: Childhood and Adolescence of Terrestrial Photovoltaics offers enlightening coverage on the terrestrial PV industry. The first part of this 3-volume set provides a historical bac...

  16. Terrestrial ecosystems: an ecological content for radionuclide research

    Heal, O.W.; Horrill, A.D.

    1983-01-01

    The distribution and retention of radionuclides within terrestrial ecosystems varies greatly with both the radionuclide and the environmental conditions. Physico-chemical conditions, particularly those of the soil, strongly influence element retention but superimposed and interacting with these conditions are the biological processes which control the dynamics of the labile fraction of most elements. Net ecosystem production expresses the complementary biological processes of primary production and decomposition which control the internal element dynamics and the balance of inputs to and outputs from terrestrial ecosystems. Analysis of ecosystem structure and function has shown that although research often concentrates on relatively stable stages of ecosystem development, element retention is high during the early stages of ecosystem succession through the accumulation of plant biomass and dead organic matter. Element output tends to increase with time reaching a balance with inputs in mature ecosystems. Following disturbance, plant uptake tends to be reduced and decomposition stimulated, resulting in increased output until secondary succession and accumulation is re-established. Research on element dynamics in ecosystems indicates that major factors influencing the mobility of radionuclides in terrestrial systems will be the successional state of the ecosystem and intensity of disturbance. (author)

  17. Processing horizontal networks measured by integrated terrestrial and GPS technologies

    Vincent Jakub

    2003-09-01

    Full Text Available Local horizontal networks in which GPS and terrestrial measurements (TER are done are often established at present. Iin other networks, the previous terrestrial measurements can be completed with quantities from contemporary GPS observations (tunnel nets, mining nets with surface and underground parts and other long-shaped nets.The processing of such heterobeneous (GPS, TER networks whose terrestrial measurements are performed as point coordinate measurements (∆X, ∆Y using (geodetic total stationIn is presented in this paper. In such network structures it is then available:- the values ∆X, ∆Y from TER observations which are transformed in the plane of S-JTSK for adjustement,- the values ∆X, ∆Y in the plane S-JTSK that can be obtained by 3D transformation of WGS84 netpoint coordinates from GPS observations to corresponding coordinates S-JTSK.For common adjusting all the ∆X, ∆Y, some elements of the network geometry (e.g. distances should be measured by both methods (GPS, TER. This approach makes possible an effective homogenisation of both network parts what is equivalent to saying that an expressive influence reduction on local frame realizations of S-JTSK in the whole network can be made.Results of network processing obtained in proposed manner are acceptable in general and they are equivalent (accuracy, reliability to results of another processing methods.

  18. Substrate attributes determine gait in a terrestrial gastropod.

    McKee, Amberle; Voltzow, Janice; Pernet, Bruno

    2013-02-01

    Some terrestrial gastropods are able to move using two gaits: adhesive crawling, where the entire foot is separated from the substrate only by a thin layer of mucus and the snail leaves a continuous mucus trail; and loping, where regions of the foot arch above the substrate and the snail leaves a discontinuous mucus trail. Loping has been interpreted as a means of rapidly escaping predators. We found that the pulmonate Cornu aspersum moved using adhesive crawling on dry acrylic or glass substrates, but loped on dry concrete or wood. Loping snails did not move more rapidly than snails using adhesive crawling. Snails moving on concrete secreted a greater volume of pedal mucus per area of trail than those moving on acrylic; locomotion on concrete thus requires greater expenditure of mucus than does locomotion on acrylic. Because loping snails deposit a smaller area of mucus per distance traveled than do snails using adhesive crawling, loping may conserve mucus when moving on porous, absorbent substrates. Members of several other terrestrial pulmonate taxa can also lope on concrete, suggesting that this plasticity in gait is widespread among terrestrial snails.

  19. A collaborative approach for estimating terrestrial wildlife abundance

    Ransom, Jason I.; Kaczensky, Petra; Lubow, Bruce C.; Ganbaatar, Oyunsaikhan; Altansukh, Nanjid

    2012-01-01

    Accurately estimating abundance of wildlife is critical for establishing effective conservation and management strategies. Aerial methodologies for estimating abundance are common in developed countries, but they are often impractical for remote areas of developing countries where many of the world's endangered and threatened fauna exist. The alternative terrestrial methodologies can be constrained by limitations on access, technology, and human resources, and have rarely been comprehensively conducted for large terrestrial mammals at landscape scales. We attempted to overcome these problems by incorporating local peoples into a simultaneous point count of Asiatic wild ass (Equus hemionus) and goitered gazelle (Gazella subgutturosa) across the Great Gobi B Strictly Protected Area, Mongolia. Paired observers collected abundance and covariate metrics at 50 observation points and we estimated population sizes using distance sampling theory, but also assessed individual observer error to examine potential bias introduced by the large number of minimally trained observers. We estimated 5671 (95% CI = 3611–8907) wild asses and 5909 (95% CI = 3762–9279) gazelle inhabited the 11,027 km2 study area at the time of our survey and found that the methodology developed was robust at absorbing the logistical challenges and wide range of observer abilities. This initiative serves as a functional model for estimating terrestrial wildlife abundance while integrating local people into scientific and conservation projects. This, in turn, creates vested interest in conservation by the people who are most influential in, and most affected by, the outcomes.

  20. Dechlorane Plus flame retardant in terrestrial raptors from northern China.

    Chen, Da; Wang, Yan; Yu, Lehuan; Luo, Xiaojun; Mai, Bixian; Li, Shaoshan

    2013-05-01

    While a number of studies have addressed the environmental presence and behavior of the Dechlorane Plus (DP) flame retardant, there is still a dearth of information in terrestrial ecosystems. The present study revealed that median ∑DP (including anti- and syn-DP isomers) concentrations ranged from 10 to 810 ng/g lipid weight in muscle and liver tissues of six terrestrial raptor species collected in 2004-2006 from Beijing, China. Some concentrations rival the greatest DP burdens ever reported in global wildlife. Significant, positive correlations were observed between fanti (concentration ratio of anti-isomer to ∑DP) and ∑DP concentrations in the Eurasian sparrowhawk (Accipiter nisus) tissues. These results suggested that the DP burdens could be substantially driven by the accumulation of the anti-isomer in terrestrial birds. The tissue-specific accumulation of DP further suggested that factors (e.g., hepatic binding enzymes) other than lipid solubility could be important in determining tissue deposition of DP. Copyright © 2013 Elsevier Ltd. All rights reserved.