WorldWideScience

Sample records for terrain-based mission planning

  1. Mission-directed path planning for planetary rover exploration

    Science.gov (United States)

    Tompkins, Paul

    2005-07-01

    Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot

  2. Pose estimation-based path planning for a tracked mobile robot traversing uneven terrains

    OpenAIRE

    Jun , Jae-Yun; Saut , Jean-Philippe; Benamar , Faïz

    2015-01-01

    International audience; A novel path-planning algorithm is proposed for a tracked mobile robot to traverse uneven terrains, which can efficiently search for stability sub-optimal paths. This algorithm consists of combining two RRT-like algorithms (the Transition-based RRT (T-RRT) and the Dynamic-Domain RRT (DD-RRT) algorithms) bidirectionally and of representing the robot-terrain interaction with the robot’s quasi-static tip-over stability measure (assuming that the robot traverses uneven ter...

  3. Search Problems in Mission Planning and Navigation of Autonomous Aircraft. M.S. Thesis

    Science.gov (United States)

    Krozel, James A.

    1988-01-01

    An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft.

  4. Linear Temporal Logic-based Mission Planning

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-06-01

    Full Text Available In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Temporal Logic to give a representation for such complex task specification and constraints. The specifications are used by a verification engine to judge the feasibility and suitability of plans. The planner gives a motion strategy as output. Finally a controller is used to generate the desired trajectory to achieve such a goal. The approach is tested using simulations on the LTLMoP mission planning tool, operating over the Robot Operating System. Simulation results generated using high level planners and low level controllers work simultaneously for mission planning and controlling the physical behavior of the robot.

  5. Path Planning and Replanning for Mobile Robot Navigation on 3D Terrain: An Approach Based on Geodesic

    Directory of Open Access Journals (Sweden)

    Kun-Lin Wu

    2016-01-01

    Full Text Available In this paper, mobile robot navigation on a 3D terrain with a single obstacle is addressed. The terrain is modelled as a smooth, complete manifold with well-defined tangent planes and the hazardous region is modelled as an enclosing circle with a hazard grade tuned radius representing the obstacle projected onto the terrain to allow efficient path-obstacle intersection checking. To resolve the intersections along the initial geodesic, by resorting to the geodesic ideas from differential geometry on surfaces and manifolds, we present a geodesic-based planning and replanning algorithm as a new method for obstacle avoidance on a 3D terrain without using boundary following on the obstacle surface. The replanning algorithm generates two new paths, each a composition of two geodesics, connected via critical points whose locations are found to be heavily relying on the exploration of the terrain via directional scanning on the tangent plane at the first intersection point of the initial geodesic with the circle. An advantage of this geodesic path replanning procedure is that traversability of terrain on which the detour path traverses could be explored based on the local Gauss-Bonnet Theorem of the geodesic triangle at the planning stage. A simulation demonstrates the practicality of the analytical geodesic replanning procedure for navigating a constant speed point robot on a 3D hill-like terrain.

  6. Rough terrain motion planning for actively reconfigurable mobile robots

    International Nuclear Information System (INIS)

    Brunner, Michael

    2015-01-01

    In the aftermath of the Tohoku earthquake and the nuclear meltdown at the power plant of Fukushima Daiichi in 2011, reconfigurable robots like the iRobot Packbot were deployed. Instead of humans, the robots were used to investigate contaminated areas. Other incidents are the two major earthquakes in Northern Italy in May 2012. Besides many casualties, a large number of historical buildings was severely damaged. Due to the imminent danger of collapse, it was too dangerous for rescue personnel to enter many of the buildings. Therefore, the sites were inspected by reconfigurable robots, which are able to traverse the rubble and debris of the partially destroyed buildings. This thesis develops a navigation system enabling wheeled and tracked robots to safely traverse rough terrain and challenging structures. It consists of a planning mechanism and a controller. The focus of this thesis, however, is on the contribution to motion planning. The planning scheme employs a hierarchical approach to motion planning for actively reconfigurable robots in rough environments. Using a map of the environment the algorithm estimates the traversability under the consideration of uncertainties. Based on this analysis, an initial path search determines an approximate solution with respect to the robot's operating limits.Subsequently, a detailed planning step refines the initial path where it is required. The refinement step considers the robot's actuators and stability in addition to the quantities of the first search. Determining the robot-terrain interaction is very important in rough terrain. This thesis presents two path refinement approaches: a deterministic and a randomized approach. The experimental evaluation investigates the separate components of the planning scheme, the robot-terrain interaction for instance.In simulation as well as in real world experiments the evaluation demonstrates the necessity of such a planning algorithm in rough terrain and it provides

  7. Rough terrain motion planning for actively reconfigurable mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Michael

    2015-02-05

    In the aftermath of the Tohoku earthquake and the nuclear meltdown at the power plant of Fukushima Daiichi in 2011, reconfigurable robots like the iRobot Packbot were deployed. Instead of humans, the robots were used to investigate contaminated areas. Other incidents are the two major earthquakes in Northern Italy in May 2012. Besides many casualties, a large number of historical buildings was severely damaged. Due to the imminent danger of collapse, it was too dangerous for rescue personnel to enter many of the buildings. Therefore, the sites were inspected by reconfigurable robots, which are able to traverse the rubble and debris of the partially destroyed buildings. This thesis develops a navigation system enabling wheeled and tracked robots to safely traverse rough terrain and challenging structures. It consists of a planning mechanism and a controller. The focus of this thesis, however, is on the contribution to motion planning. The planning scheme employs a hierarchical approach to motion planning for actively reconfigurable robots in rough environments. Using a map of the environment the algorithm estimates the traversability under the consideration of uncertainties. Based on this analysis, an initial path search determines an approximate solution with respect to the robot's operating limits.Subsequently, a detailed planning step refines the initial path where it is required. The refinement step considers the robot's actuators and stability in addition to the quantities of the first search. Determining the robot-terrain interaction is very important in rough terrain. This thesis presents two path refinement approaches: a deterministic and a randomized approach. The experimental evaluation investigates the separate components of the planning scheme, the robot-terrain interaction for instance.In simulation as well as in real world experiments the evaluation demonstrates the necessity of such a planning algorithm in rough terrain and it provides

  8. Knowledge-inducing Global Path Planning for Robots in Environment with Hybrid Terrain

    Directory of Open Access Journals (Sweden)

    Yi-nan Guo

    2010-09-01

    Full Text Available In complex environment with hybrid terrain, different regions may have different terrain. Path planning for robots in such environment is an open NP-complete problem, which lacks effective methods. The paper develops a novel global path planning method based on common sense and evolution knowledge by adopting dual evolution structure in culture algorithms. Common sense describes terrain information and feasibility of environment, which is used to evaluate and select the paths. Evolution knowledge describes the angle relationship between the path and the obstacles, or the common segments of paths, which is used to judge and repair infeasible individuals. Taken two types of environments with different obstacles and terrain as examples, simulation results indicate that the algorithm can effectively solve path planning problem in complex environment and decrease the computation complexity for judgment and repair of infeasible individuals. It also can improve the convergence speed and have better computation stability.

  9. GPS test range mission planning

    Science.gov (United States)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  10. PHOTOGRAMMETRIC MISSION PLANNER FOR RPAS

    Directory of Open Access Journals (Sweden)

    F. Gandor

    2015-08-01

    Full Text Available This paper presents a development of an open-source flight planning tool for Remotely Piloted Aircraft Systems (RPAS that is dedicated to high-precision photogrammetric mapping. This tool contains planning functions that are usually available in professional mapping systems for manned aircrafts as well as new features related to GPS signal masking in complex (e.g. mountainous terrain. The application is based on the open-source Java SDK (Software Development Kit World Wind from NASA that contains the main geospatial components facilitating the development itself. Besides standard planning functions known from other mission planners, we mainly focus on additional features dealing with safety and accuracy, such as GPS quality assessment. The need for the development came as a response for unifying mission planning across different platforms (e.g. rotary or fixed wing operating over terrain of different complexity. A special attention is given to the user interface, that is intuitive to use and cost-effective with respect to computer resources.

  11. Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment

    Science.gov (United States)

    Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.

    2011-09-01

    This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.

  12. Walking the Walk/Talking the Talk: Mission Planning with Speech-Interactive Agents

    Science.gov (United States)

    Bell, Benjamin; Short, Philip; Webb, Stewart

    2010-01-01

    The application of simulation technology to mission planning and rehearsal has enabled realistic overhead 2-D and immersive 3-D "fly-through" capabilities that can help better prepare tactical teams for conducting missions in unfamiliar locales. For aircrews, detailed terrain data can offer a preview of the relevant landmarks and hazards, and threat models can provide a comprehensive glimpse of potential hot zones and safety corridors. A further extension of the utility of such planning and rehearsal techniques would allow users to perform the radio communications planned for a mission; that is, the air-ground coordination that is critical to the success of missions such as close air support (CAS). Such practice opportunities, while valuable, are limited by the inescapable scarcity of complete mission teams to gather in space and time during planning and rehearsal cycles. Moreoever, using simulated comms with synthetic entities, despite the substantial training and cost benefits, remains an elusive objective. In this paper we report on a solution to this gap that incorporates "synthetic teammates" - intelligent software agents that can role-play entities in a mission scenario and that can communicate in spoken language with users. We employ a fielded mission planning and rehearsal tool so that our focus remains on the experimental objectives of the research rather than on developing a testbed from scratch. Use of this planning tool also helps to validate the approach in an operational system. The result is a demonstration of a mission rehearsal tool that allows aircrew users to not only fly the mission but also practice the verbal communications with air control agencies and tactical controllers on the ground. This work will be presented in a CAS mission planning example but has broad applicability across weapons systems, missions and tactical force compositions.

  13. Planning Routes Across Economic Terrains: Maximizing Utility, Following Heuristics

    Science.gov (United States)

    Zhang, Hang; Maddula, Soumya V.; Maloney, Laurence T.

    2010-01-01

    We designed an economic task to investigate human planning of routes in landscapes where travel in different kinds of terrain incurs different costs. Participants moved their finger across a touch screen from a starting point to a destination. The screen was divided into distinct kinds of terrain and travel within each kind of terrain imposed a cost proportional to distance traveled. We varied costs and spatial configurations of terrains and participants received fixed bonuses minus the total cost of the routes they chose. We first compared performance to a model maximizing gain. All but one of 12 participants failed to adopt least-cost routes and their failure to do so reduced their winnings by about 30% (median value). We tested in detail whether participants’ choices of routes satisfied three necessary conditions (heuristics) for a route to maximize gain. We report failures of one heuristic for 7 out of 12 participants. Last of all, we modeled human performance with the assumption that participants assign subjective utilities to costs and maximize utility. For 7 out 12 participants, the fitted utility function was an accelerating power function of actual cost and for the remaining 5, a decelerating power function. We discuss connections between utility aggregation in route planning and decision under risk. Our task could be adapted to investigate human strategy and optimality of route planning in full-scale landscapes. PMID:21833269

  14. PLANNING ROUTES ACROSS ECONOMIC TERRAINS: MAXIMIZING UTILITY, FOLLOWING HEURISTICS

    Directory of Open Access Journals (Sweden)

    Hang eZhang

    2010-12-01

    Full Text Available We designed an economic task to investigate human planning of routes in landscapes where travel in different kinds of terrain incurs different costs. Participants moved their finger across a touch screen from a starting point to a destination. The screen was divided into distinct kinds of terrain and travel within each kind of terrain imposed a cost proportional to distance traveled. We varied costs and spatial configurations of terrains and participants received fixed bonuses minus the total cost of the routes they chose. We first compared performance to a model maximizing gain. All but one of 12 participants failed to adopt least-cost routes and their failure to do so reduced their winnings by about 30% (median value. We tested in detail whether participants’ choices of routes satisfied three necessary conditions (heuristics for a route to maximize gain. We report failures of one heuristic for 7 out of 12 participants. Last of all, we modeled human performance with the assumption that participants assign subjective utilities to costs and maximize utility. For 7 out 12 participants, the fitted utility function was an accelerating power function of actual cost and for the remaining 5, a decelerating power function. We discuss connections between utility aggregation in route planning and decision under risk. Our task could be adapted to investigate human strategy and optimality of route planning in full-scale landscapes.

  15. Mission planning for space based satellite surveillance experiments with the MSX

    Science.gov (United States)

    Sridharan, R.; Fishman, T.; Robinson, E.; Viggh, H.; Wiseman, A.

    1994-01-01

    The Midcourse Space Experiment is a BMDO-sponsored scientific satellite set for launch within the year. The satellite will collect phenomenology data on missile targets, plumes, earth limb backgrounds and deep space backgrounds in the LWIR, visible and ultra-violet spectral bands. It will also conduct functional demonstrations for space-based space surveillance. The Space-Based Visible sensor, built by Lincoln Laboratory, Massachusetts Institute of Technology, is the primary sensor on board the MSX for demonstration of space surveillance. The SBV Processing, Operations and Control Center (SPOCC) is the mission planning and commanding center for all space surveillance experiments using the SBV and other MSX instruments. The guiding principle in the SPOCC Mission Planning System was that all routine functions be automated. Manual analyst input should be minimal. Major concepts are: (I) A high level language, called SLED, for user interface to the system; (2) A group of independent software processes which would generally be run in a pipe-line mode for experiment commanding but can be run independently for analyst assessment; (3) An integrated experiment cost computation function that permits assessment of the feasibility of the experiment. This paper will report on the design, implementation and testing of the Mission Planning System.

  16. Evaluating terrain based criteria for snow avalanche exposure ratings using GIS

    Science.gov (United States)

    Delparte, Donna; Jamieson, Bruce; Waters, Nigel

    2010-05-01

    Snow avalanche terrain in backcountry regions of Canada is increasingly being assessed based upon the Avalanche Terrain Exposure Scale (ATES). ATES is a terrain based classification introduced in 2004 by Parks Canada to identify "simple", "challenging" and "complex" backcountry areas. The ATES rating system has been applied to well over 200 backcountry routes, has been used in guidebooks, trailhead signs and maps and is part of the trip planning component of the AVALUATOR™, a simple decision-support tool for backcountry users. Geographic Information Systems (GIS) offers a means to model and visualize terrain based criteria through the use of digital elevation model (DEM) and land cover data. Primary topographic variables such as slope, aspect and curvature are easily derived from a DEM and are compatible with the equivalent evaluation criteria in ATES. Other components of the ATES classification are difficult to extract from a DEM as they are not strictly terrain based. An overview is provided of the terrain variables that can be generated from DEM and land cover data; criteria from ATES which are not clearly terrain based are identified for further study or revision. The second component of this investigation was the development of an algorithm for inputting suitable ATES criteria into a GIS, thereby mimicking the process avalanche experts use when applying the ATES classification to snow avalanche terrain. GIS based classifications were compared to existing expert assessments for validity. The advantage of automating the ATES classification process through GIS is to assist avalanche experts with categorizing and mapping remote backcountry terrain.

  17. Artificial Neural Network Based Mission Planning Mechanism for Spacecraft

    Science.gov (United States)

    Li, Zhaoyu; Xu, Rui; Cui, Pingyuan; Zhu, Shengying

    2018-04-01

    The ability to plan and react fast in dynamic space environments is central to intelligent behavior of spacecraft. For space and robotic applications, many planners have been used. But it is difficult to encode the domain knowledge and directly use existing techniques such as heuristic to improve the performance of the application systems. Therefore, regarding planning as an advanced control problem, this paper first proposes an autonomous mission planning and action selection mechanism through a multiple layer perceptron neural network approach to select actions in planning process and improve efficiency. To prove the availability and effectiveness, we use autonomous mission planning problems of the spacecraft, which is a sophisticated system with complex subsystems and constraints as an example. Simulation results have shown that artificial neural networks (ANNs) are usable for planning problems. Compared with the existing planning method in EUROPA, the mechanism using ANNs is more efficient and can guarantee stable performance. Therefore, the mechanism proposed in this paper is more suitable for planning problems of spacecraft that require real time and stability.

  18. Rapid Optimal Generation Algorithm for Terrain Following Trajectory Based on Optimal Control

    Institute of Scientific and Technical Information of China (English)

    杨剑影; 张海; 谢邦荣; 尹健

    2004-01-01

    Based on the optimal control theory, a 3-dimensionnal direct generation algorithm is proposed for anti-ground low altitude penetration tasks under complex terrain. By optimizing the terrain following(TF) objective function,terrain coordinate system, missile dynamic model and control vector, the TF issue is turning into the improved optimal control problem whose mathmatical model is simple and need not solve the second order terrain derivative. Simulation results prove that this method is reasonable and feasible. The TF precision is in the scope from 0.3 m to 3.0 m,and the planning time is less than 30 min. This method have the strongpionts such as rapidness, precision and has great application value.

  19. ARAC terrain data base

    International Nuclear Information System (INIS)

    Walker, H.

    1982-11-01

    A terrain data base covering the continental United States at 500-meter resolution has been generated. Its function is to provide terrain data for input to mesoscale atmospheric models that are used as part of the Atmospheric Release Advisory Capability at Lawrence Livermore Laboratory (LLNL). The structure of the data base as it exists on the LLNL computer system is described. The data base has been written to tapes for transfer to other systems and the format of these tapes is also described

  20. Automated and Adaptive Mission Planning for Orbital Express

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel; Koblick, Darin

    2008-01-01

    The Orbital Express space mission was a Defense Advanced Research Projects Agency (DARPA) lead demonstration of on-orbit satellite servicing scenarios, autonomous rendezvous, fluid transfers of hydrazine propellant, and robotic arm transfers of Orbital Replacement Unit (ORU) components. Boeing's Autonomous Space Transport Robotic Operations (ASTRO) vehicle provided the servicing to the Ball Aerospace's Next Generation Serviceable Satellite (NextSat) client. For communication opportunities, operations used the high-bandwidth ground-based Air Force Satellite Control Network (AFSCN) along with the relatively low-bandwidth GEO-Synchronous space-borne Tracking and Data Relay Satellite System (TDRSS) network. Mission operations were conducted out of the RDT&E Support Complex (RSC) at the Kirtland Air Force Base in New Mexico. All mission objectives were met successfully: The first of several autonomous rendezvous was demonstrated on May 5, 2007; autonomous free-flyer capture was demonstrated on June 22, 2007; the fluid and ORU transfers throughout the mission were successful. Planning operations for the mission were conducted by a team of personnel including Flight Directors, who were responsible for verifying the steps and contacts within the procedures, the Rendezvous Planners who would compute the locations and visibilities of the spacecraft, the Scenario Resource Planners (SRPs), who were concerned with assignment of communications windows, monitoring of resources, and sending commands to the ASTRO spacecraft, and the Mission planners who would interface with the real-time operations environment, process planning products and coordinate activities with the SRP. The SRP position was staffed by JPL personnel who used the Automated Scheduling and Planning ENvironment (ASPEN) to model and enforce mission and satellite constraints. The lifecycle of a plan began three weeks outside its execution on-board. During the planning timeframe, many aspects could change the plan

  1. Virtual terrain: a security-based representation of a computer network

    Science.gov (United States)

    Holsopple, Jared; Yang, Shanchieh; Argauer, Brian

    2008-03-01

    Much research has been put forth towards detection, correlating, and prediction of cyber attacks in recent years. As this set of research progresses, there is an increasing need for contextual information of a computer network to provide an accurate situational assessment. Typical approaches adopt contextual information as needed; yet such ad hoc effort may lead to unnecessary or even conflicting features. The concept of virtual terrain is, therefore, developed and investigated in this work. Virtual terrain is a common representation of crucial information about network vulnerabilities, accessibilities, and criticalities. A virtual terrain model encompasses operating systems, firewall rules, running services, missions, user accounts, and network connectivity. It is defined as connected graphs with arc attributes defining dynamic relationships among vertices modeling network entities, such as services, users, and machines. The virtual terrain representation is designed to allow feasible development and maintenance of the model, as well as efficacy in terms of the use of the model. This paper will describe the considerations in developing the virtual terrain schema, exemplary virtual terrain models, and algorithms utilizing the virtual terrain model for situation and threat assessment.

  2. Centralized mission planning and scheduling system for the Landsat Data Continuity Mission

    Science.gov (United States)

    Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki

    2014-01-01

    Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.

  3. Hanford Mission Plan risk-based prioritization methodologies

    International Nuclear Information System (INIS)

    Hesser, W.A.; Madden, M.S.; Pyron, N.M.; Butcher, J.L.

    1994-08-01

    Sites across the US Department (DOE) complex recognize the critical need for a systematic method for prioritizing among their work scope activities. Here at the Hanford Site, Pacific Northwest Laboratory and Westinghouse Hanford Company (WHC) conducted preliminary research into techniques to meet this need and assist managers in making financial resource allocation decisions. This research is a subtask of the risk management task of the Hanford Mission Plan as described in the WHC Integrated Planning Work Breakdown Structure 1.8.2 Fiscal Year 1994 Work Plan. The research team investigated prioritization techniques used at other DOE sites and compared them with the Priority Planning Grid (PPG), a tool used at Hanford. The authors concluded that the PPG could be used for prioritization of resource allocation, but it needed to be revised to better reflect the Site's priorities and objectives. The revised PPG was tested with three Hanford programs, the PPG was modified, and updated procedures were prepared

  4. The Mission Operations Planning Assistant

    Science.gov (United States)

    Schuetzle, James G.

    1987-01-01

    The Mission Operations Planning Assistant (MOPA) is a knowledge-based system developed to support the planning and scheduling of instrument activities on the Upper Atmospheric Research Satellite (UARS). The MOPA system represents and maintains instrument plans at two levels of abstraction in order to keep plans comprehensible to both UARS Principal Investigators and Command Management personnel. The hierarchical representation of plans also allows MOPA to automatically create detailed instrument activity plans from which spacecraft command loads may be generated. The MOPA system was developed on a Symbolics 3640 computer using the ZetaLisp and ART languages. MOPA's features include a textual and graphical interface for plan inspection and modification, recognition of instrument operational constraint violations during the planning process, and consistency maintenance between the different planning levels. This paper describes the current MOPA system.

  5. Integrated payload and mission planning, phase 3. Volume 3: Ground real-time mission operations

    Science.gov (United States)

    White, W. J.

    1977-01-01

    The payloads tentatively planned to fly on the first two Spacelab missions were analyzed to examine the cost relationships of providing mission operations support from onboard vs the ground-based Payload Operations Control Center (POCC). The quantitative results indicate that use of a POCC, with data processing capability, to support real-time mission operations is the most cost effective case.

  6. A terrain-based site characterization map of California with implications for the contiguous United States

    Science.gov (United States)

    Yong, Alan K.; Hough, Susan E.; Iwahashi, Junko; Braverman, Amy

    2012-01-01

    We present an approach based on geomorphometry to predict material properties and characterize site conditions using the VS30 parameter (time‐averaged shear‐wave velocity to a depth of 30 m). Our framework consists of an automated terrain classification scheme based on taxonomic criteria (slope gradient, local convexity, and surface texture) that systematically identifies 16 terrain types from 1‐km spatial resolution (30 arcsec) Shuttle Radar Topography Mission digital elevation models (SRTM DEMs). Using 853 VS30 values from California, we apply a simulation‐based statistical method to determine the mean VS30 for each terrain type in California. We then compare the VS30 values with models based on individual proxies, such as mapped surface geology and topographic slope, and show that our systematic terrain‐based approach consistently performs better than semiempirical estimates based on individual proxies. To further evaluate our model, we apply our California‐based estimates to terrains of the contiguous United States. Comparisons of our estimates with 325 VS30 measurements outside of California, as well as estimates based on the topographic slope model, indicate our method to be statistically robust and more accurate. Our approach thus provides an objective and robust method for extending estimates of VS30 for regions where in situ measurements are sparse or not readily available.

  7. A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Zhaoyu Zhai

    2018-06-01

    Full Text Available As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS as a Multi-Agent System (MAS. Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP. In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.

  8. I/O-Efficient Algorithms for Problems on Grid-Based Terrains

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Toma, Laura; Vitter, Jeffrey Scott

    2001-01-01

    The potential and use of Geographic Information Systems is rapidly increasing due to the increasing availability of massive amounts of geospatial data from projects like NASA's Mission to Planet Earth. However, the use of these massive datasets also exposes scalability problems with existing GIS...... hydrologic attributes of a terrain. We present the results of an extensive set of experiments on real-life terrain datasets of different sizes and characteristics. Our experiments show that while our new algorithm scales nicely with dataset size, the previously known algorithm "breaks down" once the size...

  9. Scout Rover Applications for Forward Acquisition of Soil and Terrain Data

    Science.gov (United States)

    Sonsalla, R.; Ahmed, M.; Fritsche, M.; Akpo, J.; Voegele, T.

    2014-04-01

    As opposed to the present mars exploration missions future mission concepts ask for a fast and safe traverse through vast and varied expanses of terrain. As seen during the Mars Exploration Rover (MER) mission the rovers suffered a lack of detailed soil and terrain information which caused Spirit to get permanently stuck in soft soil. The goal of the FASTER1 EU-FP7 project is to improve the mission safety and the effective traverse speed for planetary rover exploration by determining the traversability of the terrain and lowering the risk to enter hazardous areas. To achieve these goals, a scout rover will be used for soil and terrain sensing ahead of the main rover. This paper describes a highly mobile, and versatile micro scout rover that is used for soil and terrain sensing and is able to co-operate with a primary rover as part of the FASTER approach. The general reference mission idea and concept is addressed within this paper along with top-level requirements derived from the proposed ESA/NASA Mars Sample Return mission (MSR) [4]. Following the mission concept and requirements [3], a concept study for scout rover design and operations has been performed [5]. Based on this study the baseline for the Coyote II rover was designed and built as shown in Figure 1. Coyote II is equipped with a novel locomotion concept, providing high all terrain mobility and allowing to perform side-to-side steering maneuvers which reduce the soil disturbance as compared to common skid steering [6]. The rover serves as test platform for various scout rover application tests ranging from locomotion testing to dual rover operations. From the lessons learned from Coyote II and for an enhanced design, a second generation rover (namely Coyote III) as shown in Figure 2 is being built. This rover serves as scout rover platform for the envisaged FASTER proof of concept field trials. The rover design is based on the test results gained by the Coyote II trials. Coyote III is equipped with two

  10. GIS-Based Terrain Analysis of Balakot Region after Occurred Landslide Disaster in October 2005

    Directory of Open Access Journals (Sweden)

    Abdul Salam Soomro

    2011-10-01

    Full Text Available The landslide susceptibility models require the appropriate and reliable terrain analytical based study of the landslides prone areas using SRTM (Shuttle Radar Topography Mission data, based on certain GIS (Geographical Information Systems and remote sensing techniques. This research paper focuses on the analysis of the terrain conditions of Balakot region. The analytical operations have been used in the different phases: (i Extracting the study area from the large data; (ii preparing it into grid format; (iii developing contour lines with certain contour intervals (iv Re-classification of it into required classes and (v preparation of digital terrain model with its different required various supplementary models for analyzing the terrain conditions of the study area located in Mansehra district, north part of Pakistan where the great earthquake induced landslide disaster occurred in October 2005. This analytical study has notified the different sensitive issues concerning to the critical slope angles, variation in the elevation and the surface of study area. The various distinctions in the terrain phenomenon validate the occurred and probable landslides because the topography of such study area can predict the various probable landslide hazards, vulnerability and risk threats in the region again. This analytical study can be useful for the decisive authorities by becoming pro-active to rebuild the region to mitigate the expected losses from the natural disaster.

  11. Towards a new generation of mission planning systems: Flexibility and performance

    Science.gov (United States)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    This paper presents some new approaches which are required for a better adequacy of Mission Planning Systems. In particular, the performance flexibility and genericity issues are discussed based on experience acquired through various Mission Planning systems developed by Matra Marconi Space.

  12. An Optimized Method for Terrain Reconstruction Based on Descent Images

    Directory of Open Access Journals (Sweden)

    Xu Xinchao

    2016-02-01

    Full Text Available An optimization method is proposed to perform high-accuracy terrain reconstruction of the landing area of Chang’e III. First, feature matching is conducted using geometric model constraints. Then, the initial terrain is obtained and the initial normal vector of each point is solved on the basis of the initial terrain. By changing the vector around the initial normal vector in small steps a set of new vectors is obtained. By combining these vectors with the direction of light and camera, the functions are set up on the basis of a surface reflection model. Then, a series of gray values is derived by solving the equations. The new optimized vector is recorded when the obtained gray value is closest to the corresponding pixel. Finally, the optimized terrain is obtained after iteration of the vector field. Experiments were conducted using the laboratory images and descent images of Chang’e III. The results showed that the performance of the proposed method was better than that of the classical feature matching method. It can provide a reference for terrain reconstruction of the landing area in subsequent moon exploration missions.

  13. Robustness of mission plans for unmanned aircraft

    Science.gov (United States)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls

  14. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia

    Directory of Open Access Journals (Sweden)

    Shiff Clive

    2010-11-01

    Full Text Available Abstract Background Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. Methods A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Results Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM digital elevation data (DEM were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER DEM. Conclusions The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight

  15. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia.

    Science.gov (United States)

    Clennon, Julie A; Kamanga, Aniset; Musapa, Mulenga; Shiff, Clive; Glass, Gregory E

    2010-11-05

    Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM. The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal

  16. Artificial intelligence for the EChO mission planning tool

    Science.gov (United States)

    Garcia-Piquer, Alvaro; Ribas, Ignasi; Colomé, Josep

    2015-12-01

    The Exoplanet Characterisation Observatory (EChO) has as its main goal the measurement of atmospheres of transiting planets. This requires the observation of two types of events: primary and secondary eclipses. In order to yield measurements of sufficient Signal-to-Noise Ratio to fulfil the mission objectives, the events of each exoplanet have to be observed several times. In addition, several criteria have to be considered to carry out each observation, such as the exoplanet visibility, its event duration, and no overlapping with other tasks. It is expected that a suitable mission plan increases the efficiency of telescope operation, which will represent an important benefit in terms of scientific return and operational costs. Nevertheless, to obtain a long term mission plan becomes unaffordable for human planners due to the complexity of computing the huge number of possible combinations for finding an optimum solution. In this contribution we present a long term mission planning tool based on Genetic Algorithms, which are focused on solving optimization problems such as the planning of several tasks. Specifically, the proposed tool finds a solution that highly optimizes the defined objectives, which are based on the maximization of the time spent on scientific observations and the scientific return (e.g., the coverage of the mission survey). The results obtained on the large experimental set up support that the proposed scheduler technology is robust and can function in a variety of scenarios, offering a competitive performance which does not depend on the collection of exoplanets to be observed. Specifically, the results show that, with the proposed tool, EChO uses 94% of the available time of the mission, so the amount of downtime is small, and it completes 98% of the targets.

  17. Global terrain classification using Multiple-Error-Removed Improved-Terrain (MERIT) to address susceptibility of landslides and other geohazards

    Science.gov (United States)

    Iwahashi, J.; Yamazaki, D.; Matsuoka, M.; Thamarux, P.; Herrick, J.; Yong, A.; Mital, U.

    2017-12-01

    A seamless model of landform classifications with regional accuracy will be a powerful platform for geophysical studies that forecast geologic hazards. Spatial variability as a function of landform on a global scale was captured in the automated classifications of Iwahashi and Pike (2007) and additional developments are presented here that incorporate more accurate depictions using higher-resolution elevation data than the original 1-km scale Shuttle Radar Topography Mission digital elevation model (DEM). We create polygon-based terrain classifications globally by using the 280-m DEM interpolated from the Multi-Error-Removed Improved-Terrain DEM (MERIT; Yamazaki et al., 2017). The multi-scale pixel-image analysis method, known as Multi-resolution Segmentation (Baatz and Schäpe, 2000), is first used to classify the terrains based on geometric signatures (slope and local convexity) calculated from the 280-m DEM. Next, we apply the machine learning method of "k-means clustering" to prepare the polygon-based classification at the globe-scale using slope, local convexity and surface texture. We then group the divisions with similar properties by hierarchical clustering and other statistical analyses using geological and geomorphological data of the area where landslides and earthquakes are frequent (e.g. Japan and California). We find the 280-m DEM resolution is only partially sufficient for classifying plains. We nevertheless observe that the categories correspond to reported landslide and liquefaction features at the global scale, suggesting that our model is an appropriate platform to forecast ground failure. To predict seismic amplification, we estimate site conditions using the time-averaged shear-wave velocity in the upper 30-m (VS30) measurements compiled by Yong et al. (2016) and the terrain model developed by Yong (2016; Y16). We plan to test our method on finer resolution DEMs and report our findings to obtain a more globally consistent terrain model as there

  18. Region based route planning - Multi-abstraction route planning based on intermediate level vision processing

    Science.gov (United States)

    Doshi, Rajkumar S.; Lam, Raymond; White, James E.

    1989-01-01

    Intermediate and high level processing operations are performed on vision data for the organization of images into more meaningful, higher-level topological representations by means of a region-based route planner (RBRP). The RBRP operates in terrain scenarios where some or most of the terrain is occluded, proceeding without a priori maps on the basis of two-dimensional representations and gradient-and-roughness information. Route planning is accomplished by three successive abstractions and yields a detailed point-by-point path by searching only within the boundaries of relatively small regions.

  19. UAV Mission Planning: From Robust to Agile

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.; Wagelmans, A.

    2015-01-01

    Unmanned Aerial Vehicles (UAVs) are important assets for information gathering in Intelligence Surveillance and Reconnaissance (ISR) missions. Depending on the uncertainty in the planning parameters, the complexity of the mission and its constraints and requirements, different planning methods might

  20. Stereo-vision-based terrain mapping for off-road autonomous navigation

    Science.gov (United States)

    Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.

    2009-05-01

    Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as nogo regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.

  1. Improving the Operations of the Earth Observing One Mission via Automated Mission Planning

    Science.gov (United States)

    Chien, Steve A.; Tran, Daniel; Rabideau, Gregg; Schaffer, Steve; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We describe the modeling and reasoning about operations constraints in an automated mission planning system for an earth observing satellite - EO-1. We first discuss the large number of elements that can be naturally represented in an expressive planning and scheduling framework. We then describe a number of constraints that challenge the current state of the art in automated planning systems and discuss how we modeled these constraints as well as discuss tradeoffs in representation versus efficiency. Finally we describe the challenges in efficiently generating operations plans for this mission. These discussions involve lessons learned from an operations model that has been in use since Fall 2004 (called R4) as well as a newer more accurate operations model operational since June 2009 (called R5). We present analysis of the R5 software documenting a significant (greater than 50%) increase in the number of weekly observations scheduled by the EO-1 mission. We also show that the R5 mission planning system produces schedules within 15% of an upper bound on optimal schedules. This operational enhancement has created value of millions of dollars US over the projected remaining lifetime of the EO-1 mission.

  2. Mission Operations Planning and Scheduling System (MOPSS)

    Science.gov (United States)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  3. Linear Temporal Logic-based Mission Planning

    OpenAIRE

    Anil Kumar; Rahul Kala

    2016-01-01

    In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Tem...

  4. Path Planning Software and Graphics Interface for an Autonomous Vehicle, Accounting for Terrain Features

    National Research Council Canada - National Science Library

    Hurezeanu, Vlad

    2000-01-01

    .... This vehicle performs tasks to include surveying fields, laying mines, and teleoperation. The capability of the vehicle will be increased if its supporting software plans paths that take into account the terrain features...

  5. Surveillance mission planning for UAVs in GPS-denied urban environment

    Science.gov (United States)

    Pengfei, Wang

    In this thesis, the issues involved in the mission planning of UAVs for city surveillance have been studied. In this thesis, the research includes two major parts. Firstly, a mission planning system is developed that generates mission plans for a group of fixed-wing UAVs with on-board gimballed cameras to provide continuous surveillance over an urban area. Secondly, the problem of perching location selection (as part of perch-and-stare surveillance mission) for rotary-wing UAVs in a GPS-denied environment is studied. In this kind of mission, a UAV is dispatched to perch on a roof of a building to keep surveillance on a given target. The proposed algorithms to UAV surveillance mission planning (fixed-wing and rotary-wing) have been implemented and tested. It represents an important step towards achieving autonomous planning in UAV surveillance missions.

  6. Mission Operations Planning with Preferences: An Empirical Study

    Science.gov (United States)

    Bresina, John L.; Khatib, Lina; McGann, Conor

    2006-01-01

    This paper presents an empirical study of some nonexhaustive approaches to optimizing preferences within the context of constraint-based, mixed-initiative planning for mission operations. This work is motivated by the experience of deploying and operating the MAPGEN (Mixed-initiative Activity Plan GENerator) system for the Mars Exploration Rover Mission. Responsiveness to the user is one of the important requirements for MAPGEN, hence, the additional computation time needed to optimize preferences must be kept within reasonabble bounds. This was the primary motivation for studying non-exhaustive optimization approaches. The specific goals of rhe empirical study are to assess the impact on solution quality of two greedy heuristics used in MAPGEN and to assess the improvement gained by applying a linear programming optimization technique to the final solution.

  7. Planning and design considerations in karst terrain

    Science.gov (United States)

    Fischer, J. A.; Greene, R. W.; Ottoson, R. S.; Graham, T. C.

    1988-10-01

    This article discusses the various steps that the authors feel are necessary to the successful progression of an engineered project sited in karst terrain. The procedures require a multidisciplined approach with liaison and cooperation among the various parties to the project. Initially, the prospective owner must have sufficient understanding of the potential engineering problems to incorporate the engineering geologist into the early stages of any planned acquisition. The first step in an investigation should include a review of the available geologic information, aerial photo interpretation, consultation with the State Geological Survey, and a geologic reconnaissance of the prospective site and surrounding area. A go-no-go decision as to purchase can often been made at an early time. Although, in some instances, more study is needed for a particularly intriguing property. The second stage should consider the various planning alternatives that are feasible based upon the limited available information. At this stage planning/purchase decisions can be made as to purchasing options, value of the property, design constraints, and the possible economic penalties that could be associated with the potential site construction. Various planning and construction alternatives should be considered in this phase of the work. The third stage should include a site investigation program of moderate size, consisting of test pits and/or exploratory borings. The borings should be drilled using water as the drilling fluid, with an experienced crew and qualified technical inspection. The authors find the use of geophysical techniques can be extremely misleading unless used in conjunction with exploratory drilling. Successful evaluations using geophysical procedures occur only under ideal conditions. The geotechnical viability of the plan and preliminary design should be investigated in the fourth phase. Additionally, the physical parameters required for the design of structures

  8. IMPERA: Integrated Mission Planning for Multi-Robot Systems

    Directory of Open Access Journals (Sweden)

    Daniel Saur

    2015-10-01

    Full Text Available This paper presents the results of the project IMPERA (Integrated Mission Planning for Distributed Robot Systems. The goal of IMPERA was to realize an extraterrestrial exploration scenario using a heterogeneous multi-robot system. The main challenge was the development of a multi-robot planning and plan execution architecture. The robot team consists of three heterogeneous robots, which have to explore an unknown environment and collect lunar drill samples. The team activities are described using the language ALICA (A Language for Interactive Agents. Furthermore, we use the mission planning system pRoPhEt MAS (Reactive Planning Engine for Multi-Agent Systems to provide an intuitive interface to generate team activities. Therefore, we define the basic skills of our team with ALICA and define the desired goal states by using a logic description. Based on the skills, pRoPhEt MAS creates a valid ALICA plan, which will be executed by the team. The paper describes the basic components for communication, coordinated exploration, perception and object transportation. Finally, we evaluate the planning engine pRoPhEt MAS in the IMPERA scenario. In addition, we present further evaluation of pRoPhEt MAS in more dynamic environments.

  9. Candidate functions for advanced technology implementation in the Columbus mission planning environment

    Science.gov (United States)

    Loomis, Audrey; Kellner, Albrecht

    1988-01-01

    The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.

  10. Artificial intelligence for the EChO long-term mission planning tool

    Science.gov (United States)

    García-Piquer, Álvaro; Ribas, Ignasi; Colomé, Josep

    2014-08-01

    The Exoplanet Characterisation Observatory (EChO) was an ESA mission candidate competing for a launch opportunity within the M3 call. Its main aim was to carry out research on the physics and chemistry of atmospheres of transiting planets. This requires the observation of two types of events: primary and secondary eclipses. The events of each exoplanet have to be observed several times in order to obtain measurements with adequate Signal-to-Noise Ratio. Furthermore, several criteria must be considered to perform an observation, among which we can highlight the exoplanet visibility, its event duration, and the avoidance of overlapping with other tasks. It is important to emphasize that, since the communications for transferring data from ground stations to the spacecraft are restricted, it is necessary to compute a long-term plan of observations in order to provide autonomy to the observatory. Thus, a suitable mission plan will increase the efficiency of telescope operation, and this will result in a raise of the scientific return and a reduction of operational costs. Obtaining a long-term mission plan becomes unaffordable for human planners due to the complexity of computing the large amount of possible combinations for finding a near-optimal solution. In this contribution we present a long-term mission planning tool based on Genetic Algorithms, which are focused on solving optimization problems such as the planning of several tasks. Specifically, the proposed tool finds a solution that highly optimizes the objectives defined, which are based on the maximization of the time spent on scientific observations and the scientific return (e.g., the coverage of the mission survey). The results obtained on the large experimental set up support that the proposed scheduler technology is robust and can function in a variety of scenarios, offering a competitive performance which does not depend on the collection of objects to be observed. Finally, it is noteworthy that the

  11. Benefits of advanced software techniques for mission planning systems

    Science.gov (United States)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-10-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  12. Onboard autonomous mission re-planning for multi-satellite system

    Science.gov (United States)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2018-04-01

    This paper presents an onboard autonomous mission re-planning system for Multi-Satellites System (MSS) to perform onboard re-planing in disruptive situations. The proposed re-planning system can deal with different potential emergency situations. This paper uses Multi-Objective Hybrid Dynamic Mutation Genetic Algorithm (MO-HDM GA) combined with re-planning techniques as the core algorithm. The Cyclically Re-planning Method (CRM) and the Near Real-time Re-planning Method (NRRM) are developed to meet different mission requirements. Simulations results show that both methods can provide feasible re-planning sequences under unforeseen situations. The comparisons illustrate that using the CRM is average 20% faster than the NRRM on computation time. However, by using the NRRM more raw data can be observed and transmitted than using the CRM within the same period. The usability of this onboard re-planning system is not limited to multi-satellite system. Other mission planning and re-planning problems related to autonomous multiple vehicles with similar demands are also applicable.

  13. Terrain-Toolkit

    DEFF Research Database (Denmark)

    Wang, Qi; Kaul, Manohar; Long, Cheng

    2014-01-01

    , as will be shown, is used heavily for query processing in spatial databases; and (3) they do not provide the surface distance operator which is fundamental for many applications based on terrain data. Motivated by this, we developed a tool called Terrain-Toolkit for terrain data which accepts a comprehensive set......Terrain data is becoming increasingly popular both in industry and in academia. Many tools have been developed for visualizing terrain data. However, we find that (1) they usually accept very few data formats of terrain data only; (2) they do not support terrain simplification well which...

  14. Hexographic Method of Complex Town-Planning Terrain Estimate

    Science.gov (United States)

    Khudyakov, A. Ju

    2017-11-01

    The article deals with the vital problem of a complex town-planning analysis based on the “hexographic” graphic analytic method, makes a comparison with conventional terrain estimate methods and contains the method application examples. It discloses a procedure of the author’s estimate of restrictions and building of a mathematical model which reflects not only conventional town-planning restrictions, but also social and aesthetic aspects of the analyzed territory. The method allows one to quickly get an idea of the territory potential. It is possible to use an unlimited number of estimated factors. The method can be used for the integrated assessment of urban areas. In addition, it is possible to use the methods of preliminary evaluation of the territory commercial attractiveness in the preparation of investment projects. The technique application results in simple informative graphics. Graphical interpretation is straightforward from the experts. A definite advantage is the free perception of the subject results as they are not prepared professionally. Thus, it is possible to build a dialogue between professionals and the public on a new level allowing to take into account the interests of various parties. At the moment, the method is used as a tool for the preparation of integrated urban development projects at the Department of Architecture in Federal State Autonomous Educational Institution of Higher Education “South Ural State University (National Research University)”, FSAEIHE SUSU (NRU). The methodology is included in a course of lectures as the material on architectural and urban design for architecture students. The same methodology was successfully tested in the preparation of business strategies for the development of some territories in the Chelyabinsk region. This publication is the first in a series of planned activities developing and describing the methodology of hexographical analysis in urban and architectural practice. It is also

  15. Supervised Autonomy for Exploration and Mobile Manipulation in Rough Terrain with a Centaur-like Robot

    Directory of Open Access Journals (Sweden)

    Max Schwarz

    2016-10-01

    Full Text Available Planetary exploration scenarios illustrate the need for autonomous robots that are capable to operate in unknown environments without direct human interaction. At the DARPA Robotics Challenge, we demonstrated that our Centaur-like mobile manipulation robot Momaro can solve complex tasks when teleoperated. Motivated by the DLR SpaceBot Cup 2015, where robots should explore a Mars-like environment, find and transport objects, take a soil sample, and perform assembly tasks, we developed autonomous capabilities for Momaro. Our robot perceives and maps previously unknown, uneven terrain using a 3D laser scanner. Based on the generated height map, we assess drivability, plan navigation paths, and execute them using the omnidirectional drive. Using its four legs, the robot adapts to the slope of the terrain. Momaro perceives objects with cameras, estimates their pose, and manipulates them with its two arms autonomously. For specifying missions, monitoring mission progress, on-the-fly reconfiguration, and teleoperation, we developed a ground station with suitable operator interfaces. To handle network communication interruptions and latencies between robot and ground station, we implemented a robust network layer for the ROS middleware. With the developed system, our team NimbRo Explorer solved all tasks of the DLR SpaceBot Camp 2015. We also discuss the lessons learned from this demonstration.

  16. Applications of artificial intelligence to mission planning

    Science.gov (United States)

    Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.

    1990-01-01

    The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.

  17. System and Method for Aiding Pilot Preview, Rehearsal, Review, and Real-Time Visual Acquisition of Flight Mission Progress

    Science.gov (United States)

    Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)

    2012-01-01

    Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.

  18. GEMMP - A Google Maps Enabled Mobile Mission Planning Tool for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Steven Seeley

    2012-05-01

    Full Text Available Many applications for mobile robotics involve operations in remote, outdoor environments. In these environments, it can be difficult to plan missions dynamically due to the lack of portability of existing mission planning software. Mobile platforms allow access to the Web from nearly anywhere while other features, like touch interfaces, simplify user interaction, and GPS integration allows developers and users to take advantage to location-based services. In this paper, we describe a prototype AUV mission planner developed on the Android platform, created to aid and enhance the capability of an existing AUV mission planner, VectorMap, developed and maintained by OceanServer Technology, by taking advantage of the capabilities of existing mobile computing technology.

  19. Detection of helicopter landing sites in unprepared terrain

    Science.gov (United States)

    Peinecke, Niklas

    2014-06-01

    The primary usefulness of helicopters shows in missions where regular aircraft cannot be used, especially HEMS (Helicopter Emergency Medical Services). This might be due to requirements for landing in unprepared areas without dedicated runway structures, and an extended exibility to y to more than one previously unprepared target. One example of such missions are search and rescue operations. An important task of such a mission is to locate a proper landing spot near the mission target. Usually, the pilot would have to evaluate possible landing sites by himself, which can be time-intensive, fuel-costly, and generally impossible when operating in degraded visual environments. We present a method for pre-selecting a list of possible landing sites. After specifying the intended size, orientation and geometry of the site, a choice of possibilities is presented to the pilot that can be ordered by means of wind direction, terrain constraints like maximal slope and roughness, and proximity to a mission target. The possible choices are calculated automatically either from a pre-existing terrain data base, or from sensor data collected during earlier missions, e.g., by collecting data with radar or laser sensors. Additional data like water-body maps and topological information can be taken into account to avoid landing in dangerous areas under adverse view conditions. In case of an emergency turnaround the list can be re-ordered to present alternative sites to the pilot. We outline the principle algorithm for selecting possible landing sites, and we present examples of calculated lists.

  20. GEMMP - A Google Maps Enabled Mobile Mission Planning Tool for Autonomous Underwater Vehicles

    OpenAIRE

    Steven Seeley; Ramprasad Balasubramanian

    2012-01-01

    Many applications for mobile robotics involve operations in remote, outdoor environments. In these environments, it can be difficult to plan missions dynamically due to the lack of portability of existing mission planning software. Mobile platforms allow access to the Web from nearly anywhere while other features, like touch interfaces, simplify user interaction, and GPS integration allows developers and users to take advantage to location-based services. In this paper, we describe a prototype...

  1. Mission Planning System Increment 5 (MPS Inc 5)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Mission Planning System Increment 5 (MPS Inc 5) Defense Acquisition Management Information...President’s Budget RDT&E - Research, Development, Test, and Evaluation SAE - Service Acquisition Executive TBD - To Be Determined TY - Then Year...Phone: 845-9625 DSN Fax: Date Assigned: May 19, 2014 Program Information Program Name Mission Planning System Increment 5 (MPS Inc 5) DoD

  2. CONTEXT-BASED URBAN TERRAIN RECONSTRUCTION FROM UAV-VIDEOS FOR GEOINFORMATION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. Bulatov

    2012-09-01

    Full Text Available Urban terrain reconstruction has many applications in areas of civil engineering, urban planning, surveillance and defense research. Therefore the needs of covering ad-hoc demand and performing a close-range urban terrain reconstruction with miniaturized and relatively inexpensive sensor platforms are constantly growing. Using (miniaturized unmanned aerial vehicles, (MUAVs, represents one of the most attractive alternatives to conventional large-scale aerial imagery. We cover in this paper a four-step procedure of obtaining georeferenced 3D urban models from video sequences. The four steps of the procedure – orientation, dense reconstruction, urban terrain modeling and geo-referencing – are robust, straight-forward, and nearly fully-automatic. The two last steps – namely, urban terrain modeling from almost-nadir videos and co-registration of models 6ndash; represent the main contribution of this work and will therefore be covered with more detail. The essential substeps of the third step include digital terrain model (DTM extraction, segregation of buildings from vegetation, as well as instantiation of building and tree models. The last step is subdivided into quasi- intrasensorial registration of Euclidean reconstructions and intersensorial registration with a geo-referenced orthophoto. Finally, we present reconstruction results from a real data-set and outline ideas for future work.

  3. To the North Coast of Devon: Collaborative Navigation While Exploring Unfamiliar Terrain

    Science.gov (United States)

    Clancey, William J.; Lee, Pascal; Cockell, Charles S.; Braham, Stephen; Shafto, Mike

    2006-01-01

    Navigation-knowing where one is and finding a safe route-is a fundamental aspect of all exploration. In unfamiliar terrain, one may use maps and instruments such as a compass or binoculars to assist, and people often collaborate in finding their way. This paper analyzes a group of people driving a humvee from a base camp to the north coast of Devon Island in the High Canadian Arctic. A complete audio recording and video during most stops allows a quantitative and semantic analysis of the conversations when the team stopped to take bearings and replan a route. Over a period of 2 hours, the humvee stopped 20 times, with an average duration of 3.15 min/pause and 3.85 min moving forward. The team failed to reach its goal due to difficult terrain causing mechanical problems. The analysis attempts to explain these facts by considering a variety of complicating factors, especially the navigation problem of relating maps and the world to locate the humvee and to plan a route. The analysis reveals patterns in topic structure and turn-taking, supporting the view that the collaboration was efficient, but the tools and information were inadequate for the task. This work is relevant for planning and training for planetary surface missions, as well as developing computer systems that could aid navigation.

  4. AUTONOMOUS UNMANNED HELICOPTER SYSTEM FOR REMOTE SENSING MISSIONS IN UNKNOWN ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    T. Merz

    2012-09-01

    Full Text Available This paper presents the design of an autonomous unmanned helicopter system for low-altitude remote sensing. The proposed concepts and methods are generic and not limited to a specific helicopter. The development was driven by the need for a dependable, modular, and affordable system with sufficient payload capacity suitable for both research and real-world deployment. The helicopter can be safely operated without a backup pilot in a contained area beyond visual range. This enables data collection in inaccessible or dangerous areas. Thanks to its terrain following and obstacle avoidance capability, the system does not require a priori information about terrain elevation and obstacles. Missions are specified in state diagrams and flight plans. We present performance characteristics of our system and show results of its deployment in real-world scenarios. We have successfully completed several dozen infrastructure inspection missions and crop monitoring missions facilitating plant phenomics studies.

  5. Auto Mission Planning System Design for Imaging Satellites and Its Applications in Environmental Field

    Directory of Open Access Journals (Sweden)

    He Yongming

    2016-10-01

    Full Text Available Satellite hardware has reached a level of development that enables imaging satellites to realize applications in the area of meteorology and environmental monitoring. As the requirements in terms of feasibility and the actual profit achieved by satellite applications increase, we need to comprehensively consider the actual status, constraints, unpredictable information, and complicated requirements. The management of this complex information and the allocation of satellite resources to realize image acquisition have become essential for enhancing the efficiency of satellite instrumentation. In view of this, we designed a satellite auto mission planning system, which includes two sub-systems: the imaging satellite itself and the ground base, and these systems would then collaborate to process complicated missions: the satellite mainly focuses on mission planning and functions according to actual parameters, whereas the ground base provides auxiliary information, management, and control. Based on the requirements analysis, we have devised the application scenarios, main module, and key techniques. Comparison of the simulation results of the system, confirmed the feasibility and optimization efficiency of the system framework, which also stimulates new thinking for the method of monitoring environment and design of mission planning systems.

  6. Research and Implementation of Robot Path Planning Based onVSLAM

    Directory of Open Access Journals (Sweden)

    Wang Zi-Qiang

    2018-01-01

    Full Text Available In order to solve the problem of warehouse logistics robots planpath in different scenes, this paper proposes a method based on visual simultaneous localization and mapping (VSLAM to build grid map of different scenes and use A* algorithm to plan path on the grid map. Firstly, we use VSLAMto reconstruct the environment in three-dimensionally. Secondly, based on the three-dimensional environment data, we calculate the accessibility of each grid to prepare occupied grid map (OGM for terrain description. Rely on the terrain information, we use the A* algorithm to solve path planning problem. We also optimize the A* algorithm and improve algorithm efficiency. Lastly, we verify the effectiveness and reliability of the proposed method by simulation and experimental results.

  7. Orbital Express mission operations planning and resource management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  8. Missions and planning for nuclear space power

    International Nuclear Information System (INIS)

    Buden, D.

    1979-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on reactor components has been initiated by the Department of Energy. The missions that are foreseen, the current reactor concept, and the technology program plan are described

  9. Wind flow simulation over flat terrain using CFD based software

    International Nuclear Information System (INIS)

    Petrov, Peter; Terziev, Angel; Genovski, Ivan

    2009-01-01

    Velocity distribution recognition over definite place (terrain) is very important because due to that the zones with high energy potential could be defined (the fields with high velocities). This is a precondition for optimal wind turbine generators micro-sitting. In current work a simulation of the open flow over the flat terrain using the CFD based software is reviewed. The simulations are made of a real fluid flow in order to be defined the velocity fields over the terrain

  10. Local curvature entropy-based 3D terrain representation using a comprehensive Quadtree

    Science.gov (United States)

    Chen, Qiyu; Liu, Gang; Ma, Xiaogang; Mariethoz, Gregoire; He, Zhenwen; Tian, Yiping; Weng, Zhengping

    2018-05-01

    Large scale 3D digital terrain modeling is a crucial part of many real-time applications in geoinformatics. In recent years, the improved speed and precision in spatial data collection make the original terrain data more complex and bigger, which poses challenges for data management, visualization and analysis. In this work, we presented an effective and comprehensive 3D terrain representation based on local curvature entropy and a dynamic Quadtree. The Level-of-detail (LOD) models of significant terrain features were employed to generate hierarchical terrain surfaces. In order to reduce the radical changes of grid density between adjacent LODs, local entropy of terrain curvature was regarded as a measure of subdividing terrain grid cells. Then, an efficient approach was presented to eliminate the cracks among the different LODs by directly updating the Quadtree due to an edge-based structure proposed in this work. Furthermore, we utilized a threshold of local entropy stored in each parent node of this Quadtree to flexibly control the depth of the Quadtree and dynamically schedule large-scale LOD terrain. Several experiments were implemented to test the performance of the proposed method. The results demonstrate that our method can be applied to construct LOD 3D terrain models with good performance in terms of computational cost and the maintenance of terrain features. Our method has already been deployed in a geographic information system (GIS) for practical uses, and it is able to support the real-time dynamic scheduling of large scale terrain models more easily and efficiently.

  11. Planning for Planetary Science Mission Including Resource Prospecting, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in computer-aided mission planning can enhance mission operations and science return for surface missions to Mars, the Moon, and beyond. While the...

  12. Realistic terrain visualization based on 3D virtual world technology

    Science.gov (United States)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  13. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    Science.gov (United States)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  14. Department of Energy mission plan for the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Shaw, G.H.

    1988-01-01

    Volume I is the Mission Plan itself, Volume II is a 700+-page collection of public comments on the Draft Mission Plan, and Volume III contains DOE responses to the public comments. Taken as a whole, the document illustrates the development of an agency approach to solving a problem, and the extent to which public input may or may not influence that approach. The Mission Plan itself is DOE's clear statement of how it proposes to go about selecting a permanent site for the disposal of high-level nuclear waste: spent fuel from civilian nuclear power plants and high-level waste produced in reprocessing both civilian and military nuclear materials. Since this program is focused upon site selection based to a large extent upon geologic factors important in inhibiting the release of radionuclides for a long interval of time, it is of considerable interest to see how DOE has organized the necessary geologic investigations, and to what extent it proposes to concentrate on the geologic aspects. A key element in the high-level waste disposal program is public confidence in the process. If the public perceives that DOE is continuing investigations at one or more sites when substantial evidence shows that the site(s) are not geologically favorable, then public confidence in the program will disappear. It remains to be seen whether this Mission Plan will be considered the planning document for a successful, carefully organized program of geological input to public policy or merely an element in a record of bureaucratic failure

  15. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  16. Rapid Automated Mission Planning System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an automated UAS mission planning system that will rapidly identify emergency (contingency) landing sites, manage contingency routing, and...

  17. Terrain assessment guidelines : CAGC best practice. Version 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This terrain classification assessment guideline discussed the steps required for personnel to understand terrain hazards present during seismic operations. Maps and other sources must be used to classify terrain steepness and surface conditions using geographical information systems (GIS), LIDAR, or satellite photographs. The impact of managing steep terrain within projects must also be considered when class 3, 4, 5, or 6 terrain has been identified. Terrains must also be classified according to colours. Secondary terrain assessments must be conducted when class 3, 4, 5, or 6 terrain has been identified. Terrain management plans should included methods of keeping untrained workers out of areas with classes greater than 3. Methods of entering and exiting steep terrain must be identified. Workers must be trained to work in areas with steep terrains. Methods of rescue and evacuation must also be established. Procedures were outlined for all terrain classes. Footwear, head protection and general safety requirements were outlined. 14 figs.

  18. Formulation of consumables management models: Mission planning processor payload interface definition

    Science.gov (United States)

    Torian, J. G.

    1977-01-01

    Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.

  19. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.

  20. Enabling Persistent Autonomy for Underwater Gliders with Ocean Model Predictions and Terrain Based Navigation

    Directory of Open Access Journals (Sweden)

    Andrew eStuntz

    2016-04-01

    Full Text Available Effective study of ocean processes requires sampling over the duration of long (weeks to months oscillation patterns. Such sampling requires persistent, autonomous underwater vehicles, that have a similarly long deployment duration. The spatiotemporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. In this paper, we consider the combination of two methods for reducing navigation and localization error; a predictive approach based on ocean model predictions and a prior information approach derived from terrain-based navigation. The motivation for this work is not only for real-time state estimation, but also for accurately reconstructing the actual path that the vehicle traversed to contextualize the gathered data, with respect to the science question at hand. We present an application for the practical use of priors and predictions for large-scale ocean sampling. This combined approach builds upon previous works by the authors, and accurately localizes the traversed path of an underwater glider over long-duration, ocean deployments. The proposed method takes advantage of the reliable, short-term predictions of an ocean model, and the utility of priors used in terrain-based navigation over areas of significant bathymetric relief to bound uncertainty error in dead-reckoning navigation. This method improves upon our previously published works by 1 demonstrating the utility of our terrain-based navigation method with multiple field trials, and 2 presenting a hybrid algorithm that combines both approaches to bound navigational error and uncertainty for long-term deployments of underwater vehicles. We demonstrate the approach by examining data from actual field trials with autonomous underwater gliders, and demonstrate an ability to estimate geographical location of an underwater glider to 2

  1. Joint operations planning for space surveillance missions on the MSX satellite

    Science.gov (United States)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  2. New high-fidelity terrain modeling method constrained by terrain semanteme.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    Full Text Available Production of higher-fidelity digital elevation models is important; as such models are indispensable components of space data infrastructure. However, loss of terrain features is a constant problem for grid digital elevation models, although these models have already been defined in such a way that their distinct usage as data sources in terrain modeling processing is prohibited. Therefore, in this study, the novel concept-terrain semanteme is proposed to define local space terrain features, and a new process for generating grid digital elevation models based on this new concept is designed. A prototype system is programmed to test the proposed approach; the results indicate that terrain semanteme can be applied in the process of grid digital elevation model generation, and that usage of this new concept improves the digital elevation model fidelity. Moreover, the terrain semanteme technique can be applied for recovery of distorted digital elevation model regions containing terrain semantemes, with good recovery efficiency indicated by experiments.

  3. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-01-01

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  4. Draft 1988 mission plan amendment

    International Nuclear Information System (INIS)

    1988-06-01

    This draft 1988 amendment to the Mission Plan for the Civilian Radioactive Waste Management Program has been prepared by the US Department of Energy (DOE). The purpose is to inform the Congress of the DOE's plans for implementing the provisions of the Nuclear Waste Policy Amendments Act of 1987 (P.L. 100-203) for the Civilian Radioactive Waste Management Program. This document is being submitted in draft form to Federal agencies, states, previously affected Indian Tribes, affected units of local government, and the public. After the consideration of comments, this amendment will be revised as appropriate and submitted to the Congress. 39 refs., 7 figs., 4 tabs

  5. Mission Operations of the Mars Exploration Rovers

    Science.gov (United States)

    Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel

    2007-01-01

    A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.

  6. ATON (Autonomous Terrain-based Optical Navigation) for exploration missions: recent flight test results

    Science.gov (United States)

    Theil, S.; Ammann, N.; Andert, F.; Franz, T.; Krüger, H.; Lehner, H.; Lingenauber, M.; Lüdtke, D.; Maass, B.; Paproth, C.; Wohlfeil, J.

    2018-03-01

    Since 2010 the German Aerospace Center is working on the project Autonomous Terrain-based Optical Navigation (ATON). Its objective is the development of technologies which allow autonomous navigation of spacecraft in orbit around and during landing on celestial bodies like the Moon, planets, asteroids and comets. The project developed different image processing techniques and optical navigation methods as well as sensor data fusion. The setup—which is applicable to many exploration missions—consists of an inertial measurement unit, a laser altimeter, a star tracker and one or multiple navigation cameras. In the past years, several milestones have been achieved. It started with the setup of a simulation environment including the detailed simulation of camera images. This was continued by hardware-in-the-loop tests in the Testbed for Robotic Optical Navigation (TRON) where images were generated by real cameras in a simulated downscaled lunar landing scene. Data were recorded in helicopter flight tests and post-processed in real-time to increase maturity of the algorithms and to optimize the software. Recently, two more milestones have been achieved. In late 2016, the whole navigation system setup was flying on an unmanned helicopter while processing all sensor information onboard in real time. For the latest milestone the navigation system was tested in closed-loop on the unmanned helicopter. For that purpose the ATON navigation system provided the navigation state for the guidance and control of the unmanned helicopter replacing the GPS-based standard navigation system. The paper will give an introduction to the ATON project and its concept. The methods and algorithms of ATON are briefly described. The flight test results of the latest two milestones are presented and discussed.

  7. UAS applications in high alpine, snow-covered terrain

    Science.gov (United States)

    Bühler, Y.; Stoffel, A.; Ginzler, C.

    2017-12-01

    Access to snow-covered, alpine terrain is often difficult and dangerous. Hence parameters such as snow depth or snow avalanche release and deposition zones are hard to map in situ with adequate spatial and temporal resolution and with spatial continuous coverage. These parameters are currently operationally measured at automated weather stations and by observer networks. However such isolated point measurements are not able to capture the information spatial continuous and to describe the high spatial variability present in complex mountain topography. Unmanned Aerial Systems (UAS) have the potential to fill this gap by frequently covering selected high alpine areas with high spatial resolution down to ground resolutions of even few millimeters. At the WSL Institute for Snow and Avalanche Research SLF we test different photogrammetric UAS with visual and near infrared bands. During the last three years we were able to gather experience in more than 100 flight missions in extreme terrain. By processing the imagery applying state-of-the-art structure from motion (SfM) software, we were able to accurately document several avalanche events and to photogrammetrically map snow depth with accuracies from 1 to 20 cm (dependent on the flight height above ground) compare to manual snow probe measurements. This was even possible on homogenous snow surfaces with very little texture. A key issue in alpine terrain is flight planning. We need to cover regions at high elevations with large altitude differences (up to 1 km) with high wind speeds (up to 20 m/s) and cold temperatures (down to - 25°C). Only a few UAS are able to cope with these environmental conditions. We will give an overview on our applications of UAS in high alpine terrain that demonstrate the big potential of such systems to acquire frequent, accurate and high spatial resolution geodata in high alpine, snow covered terrain that could be essential to answer longstanding questions in avalanche and snow hydrology

  8. Evaluation of Crew-Centric Onboard Mission Operations Planning and Execution Tool: Year 2

    Science.gov (United States)

    Hillenius, S.; Marquez, J.; Korth, D.; Rosenbaum, M.; Deliz, Ivy; Kanefsky, Bob; Zheng, Jimin

    2018-01-01

    Currently, mission planning for the International Space Station (ISS) is largely affected by ground operators in mission control. The task of creating a week-long mission plan for ISS crew takes dozens of people multiple days to complete, and is often created far in advance of its execution. As such, re-planning or adapting to changing real-time constraints or emergent issues is similarly taxing. As we design for future mission operations concepts to other planets or areas with limited connectivity to Earth, more of these ground-based tasks will need to be handled autonomously by the crew onboard.There is a need for a highly usable (including low training time) tool that enables efficient self-scheduling and execution within a single package. The ISS Program has identified Playbook as a potential option. It already has high crew acceptance as a plan viewer from previous analogs and can now support a crew self-scheduling assessment on ISS or on another mission. The goals of this work, a collaboration between the Human Research Program and the ISS Program, are to inform the design of systems for more autonomous crew operations and provide a platform for research on crew autonomy for future deep space missions. Our second year of the research effort have included new insights on the crew self-scheduling sessions performed by the crew through use on the HERA (Human Exploration Research Analog) and NEEMO (NASA Extreme Environment Mission Operations) analogs. Use on the NEEMO analog involved two self-scheduling strategies where the crew planned and executed two days of EVAs (Extra-Vehicular Activities). On HERA year two represented the first HERA campaign where we were able to perform research tasks. This involved selected flexible activities that the crew could schedule, mock timelines where the crew completed more complex planning exercises, usability evaluation of the crew self-scheduling features, and more insights into the limit of plan complexity that the crew

  9. Programmatic Environmental Assessment for Base General Plan Development, Schriever Air Force Base, Colorado

    Science.gov (United States)

    2012-06-01

    and is dominated by blue grama (Bouteloua gracilis), buffalo grass (Buchloe dactyloides), three-awned grass (Aristida purpurea), dropseed (Sporobolus...General Plan are to achieve optimal land use planning, protect the natural and human environment, and plan for future mission growth . The Proposed Action...future mission growth , and to improve environmental quality, recreation opportunities, and the safety and medical functions on Base. According to space

  10. On-line task scheduling and trajectory planning techniques for reconnaissance missions with multiple unmanned aerial vehicles supervised by a single human operator

    Science.gov (United States)

    Ortiz Rubiano, Andres Eduardo

    The problem of a single human operator monitoring multiple UAVs in reconnaissance missions is addressed in this work. In such missions, the operator inspects and classifies targets as they appear on video feeds from the various UAVs. In parallel, the aircraft autonomously execute a flight plan and transmit real-time video of an unknown terrain. The main contribution of this work is the development of a system that autonomously schedules the display of video feeds such that the human operator is able to inspect each target in real time (i.e., no video data is recorded and queued for later inspection). The construction of this non-overlapping schedule is made possible by commanding changes to the flight plan of the UAVs. These changes are constructed such that the impact on the mission time is minimized. The development of this system is addressed in the context of both fixed and arbitrary target inspection times. Under the assumption that the inspection time is constant, a Linear Program (LP) formulation is used to optimally solve the display scheduling problem in the time domain. The LP solution is implemented in the space domain via velocity and trajectory modifications to the flight plan of the UAVs. An online algorithm is proposed to resolve scheduling conflicts between multiple video feeds as targets are discovered by the UAVs. Properties of this algorithm are studied to develop conflict resolution strategies that ensure correctness regardless of the target placement. The effect of such strategies on the mission time is evaluated via numerical simulations. In the context of arbitrary inspection time, the human operator indicates the end of target inspection in real time. A set of maneuvers is devised that enable the operator to inspect each target uninterruptedly and indefinitely. In addition, a cuing mechanism is proposed to increase the situational awareness of the operator and potentially reduce the inspection times. The benefits of operator cuing on mission

  11. Digital terrain data base - new possibilities of 3D terrain modeling

    Directory of Open Access Journals (Sweden)

    Mateja Rihtaršič

    1992-12-01

    Full Text Available GISs has brought new dimensions in the field of digital terrain modelling, too. Modem DTMs must be real (relational databases with high degree of "intelligence". This paper presents some of the demands, ivhich have to be solved in modern digital terrain databases, together with main steps of their's generation. Problems, connected to regional level, multi-pur pose use, new possibilities and direct integration into GIS are presented. The practical model was created across smaller test area, so few lines with practical experiences can be droped, too.

  12. Planned Environmental Microbiology Aspects of Future Lunar and Mars Missions

    Science.gov (United States)

    Ott, C. Mark; Castro, Victoria A.; Pierson, Duane L.

    2006-01-01

    With the establishment of the Constellation Program, NASA has initiated efforts designed similar to the Apollo Program to return to the moon and subsequently travel to Mars. Early lunar sorties will take 4 crewmembers to the moon for 4 to 7 days. Later missions will increase in duration up to 6 months as a lunar habitat is constructed. These missions and vehicle designs are the forerunners of further missions destined for human exploration of Mars. Throughout the planning and design process, lessons learned from the International Space Station (ISS) and past programs will be implemented toward future exploration goals. The standards and requirements for these missions will vary depending on life support systems, mission duration, crew activities, and payloads. From a microbiological perspective, preventative measures will remain the primary techniques to mitigate microbial risk. Thus, most of the effort will focus on stringent preflight monitoring requirements and engineering controls designed into the vehicle, such as HEPA air filters. Due to volume constraints in the CEV, in-flight monitoring will be limited for short-duration missions to the measurement of biocide concentration for water potability. Once long-duration habitation begins on the lunar surface, a more extensive environmental monitoring plan will be initiated. However, limited in-flight volume constraints and the inability to return samples to Earth will increase the need for crew capabilities in determining the nature of contamination problems and method of remediation. In addition, limited shelf life of current monitoring hardware consumables and limited capabilities to dispose of biohazardous trash will drive flight hardware toward non-culture based methodologies, such as hardware that rapidly distinguishes biotic versus abiotic surface contamination. As missions progress to Mars, environmental systems will depend heavily on regeneration of air and water and biological waste remediation and

  13. Planning Coverage Campaigns for Mission Design and Analysis: CLASP for DESDynl

    Science.gov (United States)

    Knight, Russell L.; McLaren, David A.; Hu, Steven

    2013-01-01

    Mission design and analysis presents challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, automated planning tools are used that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations, while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. This approach was applied to the DESDynl mission design using the CLASP planning system, but since this adaptation, many techniques have changed under the hood for CLASP, and the DESDynl mission concept has undergone drastic changes. The software produces mission evaluation products, such as memory highwater marks, coverage percentages, given a mission design in the form of coverage targets, concept of operations, spacecraft parameters, and orbital parameters. It tries to overcome the lack of fidelity and timeliness of mission requirements coverage analysis during mission design. Previous techniques primarily use Excel in ad hoc fashion to approximate key factors in mission performance, often falling victim to overgeneralizations necessary in such an adaptation. The new program allows designers to faithfully represent their mission designs quickly, and get more accurate results just as quickly.

  14. Tank waste remediation system retrieval and disposal mission infrastructure plan

    International Nuclear Information System (INIS)

    Root, R.W.

    1998-01-01

    This system plan presents the objectives, organization, and management and technical approaches for the Infrastructure Program. This Infrastructure Plan focuses on the Tank Waste Remediation System (TWRS) Project's Retrieval and Disposal Mission

  15. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions.

    Science.gov (United States)

    Ramos, A G; García-Garrido, V J; Mancho, A M; Wiggins, S; Coca, J; Glenn, S; Schofield, O; Kohut, J; Aragon, D; Kerfoot, J; Haskins, T; Miles, T; Haldeman, C; Strandskov, N; Allsup, B; Jones, C; Shapiro, J

    2018-03-15

    Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0-1000 meters) and low energy consumption without a CO 2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0-1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.

  16. Global multi-resolution terrain elevation data 2010 (GMTED2010)

    Science.gov (United States)

    Danielson, Jeffrey J.; Gesch, Dean B.

    2011-01-01

    In 1996, the U.S. Geological Survey (USGS) developed a global topographic elevation model designated as GTOPO30 at a horizontal resolution of 30 arc-seconds for the entire Earth. Because no single source of topographic information covered the entire land surface, GTOPO30 was derived from eight raster and vector sources that included a substantial amount of U.S. Defense Mapping Agency data. The quality of the elevation data in GTOPO30 varies widely; there are no spatially-referenced metadata, and the major topographic features such as ridgelines and valleys are not well represented. Despite its coarse resolution and limited attributes, GTOPO30 has been widely used for a variety of hydrological, climatological, and geomorphological applications as well as military applications, where a regional, continental, or global scale topographic model is required. These applications have ranged from delineating drainage networks and watersheds to using digital elevation data for the extraction of topographic structure and three-dimensional (3D) visualization exercises (Jenson and Domingue, 1988; Verdin and Greenlee, 1996; Lehner and others, 2008). Many of the fundamental geophysical processes active at the Earth's surface are controlled or strongly influenced by topography, thus the critical need for high-quality terrain data (Gesch, 1994). U.S. Department of Defense requirements for mission planning, geographic registration of remotely sensed imagery, terrain visualization, and map production are similarly dependent on global topographic data. Since the time GTOPO30 was completed, the availability of higher-quality elevation data over large geographic areas has improved markedly. New data sources include global Digital Terrain Elevation Data (DTEDRegistered) from the Shuttle Radar Topography Mission (SRTM), Canadian elevation data, and data from the Ice, Cloud, and land Elevation Satellite (ICESat). Given the widespread use of GTOPO30 and the equivalent 30-arc

  17. Peer-to-Peer Planning for Space Mission Control

    Science.gov (United States)

    Barreiro, Javier; Jones, Grailing, Jr.; Schaffer, Steve

    2009-01-01

    Planning and scheduling for space operations entails the development of applications that embed intimate domain knowledge of distinct areas of mission control, while allowing for significant collaboration among them. The separation is useful because of differences in the planning problem, solution methods, and frequencies of replanning that arise in the different disciplines. For example, planning the activities of human spaceflight crews requires some reasoning about all spacecraft resources at timescales of minutes or seconds, and is subject to considerable volatility. Detailed power planning requires managing the complex interplay of power consumption and production, involves very different classes of constraints and preferences, but once plans are generated they are relatively stable.

  18. Study plan for the sensitivity analysis of the Terrain-Responsive Atmospheric Code (TRAC)

    International Nuclear Information System (INIS)

    Restrepo, L.F.; Deitesfeld, C.A.

    1987-01-01

    Rocky Flats Plant, Golden, Colorado is presently developing a computer code to model the dispersion of potential or actual releases of radioactive or toxic materials to the environment, along with the public consequences from these releases. The model, the Terrain-Responsive Atmospheric Code (TRAC), considers several complex features which could affect the overall dispersion and consequences. To help validate TRAC, a sensitivity analysis is being planned to determine how sensitive the model's solutions are to input variables. This report contains a brief description of the code, along with a list of tasks and resources needed to complete the sensitivity analysis

  19. The Lunar Reconnaissance Orbiter, a Planning Tool for Missions to the Moon

    Science.gov (United States)

    Keller, J. W.; Petro, N. E.

    2017-12-01

    The Lunar Reconnaissance Orbiter Mission was conceived as a one year exploration mission to pave the way for a return to the lunar surface, both robotically and by humans. After a year in orbit LRO transitioned to a science mission but has operated in a duel role of science and exploration ever since. Over the years LRO has compiled a wealth of data that can and is being used for planning future missions to the Moon by NASA, other national agencies and by private enterprises. While collecting this unique and unprecedented data set, LRO's science investigations have uncovered new questions that motivate new missions and targets. Examples include: when did volcanism on the Moon cease, motivating a sample return mission from an irregular mare patch such as Ina-D; or, is there significant water ice sequestered near the poles outside of the permanently shaded regions? In this presentation we will review the data products, tools and maps that are available for mission planning, discuss how the operating LRO mission can further enhance future missions, and suggest new targets motivated by LRO's scientific investigations.

  20. Risk-Aware Planetary Rover Operation: Autonomous Terrain Classification and Path Planning

    Science.gov (United States)

    Ono, Masahiro; Fuchs, Thoams J.; Steffy, Amanda; Maimone, Mark; Yen, Jeng

    2015-01-01

    Identifying and avoiding terrain hazards (e.g., soft soil and pointy embedded rocks) are crucial for the safety of planetary rovers. This paper presents a newly developed groundbased Mars rover operation tool that mitigates risks from terrain by automatically identifying hazards on the terrain, evaluating their risks, and suggesting operators safe paths options that avoids potential risks while achieving specified goals. The tool will bring benefits to rover operations by reducing operation cost, by reducing cognitive load of rover operators, by preventing human errors, and most importantly, by significantly reducing the risk of the loss of rovers.

  1. An independent assessment of the technical feasibility of the Mars One mission plan - Updated analysis

    Science.gov (United States)

    Do, Sydney; Owens, Andrew; Ho, Koki; Schreiner, Samuel; de Weck, Olivier

    2016-03-01

    In recent years, the Mars One program has gained significant publicity for its plans to colonize the red planet. Beginning in 2025, the program plans to land four people on Mars every 26 months via a series of one-way missions, using exclusively existing technology. This one-way approach has frequently been cited as a key enabler of accelerating the first crewed landing on Mars. While the Mars One program has received considerable attention, little has been published in the technical literature regarding the formulation of its mission architecture. In light of this, we perform an independent analysis of the technical feasibility of the Mars One mission plan, focusing on the architecture of the life support and in-situ resource utilization (ISRU) systems, and their impact on sparing and space logistics. To perform this analysis, we adopt an iterative analysis approach in which we model and simulate the mission architecture, assess its feasibility, implement any applicable modifications while attempting to remain within the constraints set forth by Mars One, and then resimulate and reanalyze the revised version of the mission architecture. Where required information regarding the Mars One mission architecture is not available, we assume numerical values derived from standard spaceflight design handbooks and documents. Through four iterations of this process, our analysis finds that the Mars One mission plan, as publicly described, is not feasible. This conclusion is obtained from analyses based on mission assumptions derived from and constrained by statements made by Mars One, and is the result of the following findings: (1) several technologies including ISRU, life support, and entry, descent, and landing (EDL) are not currently "existing, validated and available" as claimed by Mars One; (2) the crop growth area described by Mars One is insufficient to feed their crew; (3) increasing the crop growth area to provide sufficient food for the crew leads to atmospheric

  2. An improved method of continuous LOD based on fractal theory in terrain rendering

    Science.gov (United States)

    Lin, Lan; Li, Lijun

    2007-11-01

    With the improvement of computer graphic hardware capability, the algorithm of 3D terrain rendering is going into the hot topic of real-time visualization. In order to solve conflict between the rendering speed and reality of rendering, this paper gives an improved method of terrain rendering which improves the traditional continuous level of detail technique based on fractal theory. This method proposes that the program needn't to operate the memory repeatedly to obtain different resolution terrain model, instead, obtains the fractal characteristic parameters of different region according to the movement of the viewpoint. Experimental results show that the method guarantees the authenticity of landscape, and increases the real-time 3D terrain rendering speed.

  3. Draft Strategic Laboratory Missions Plan. Volume II

    International Nuclear Information System (INIS)

    1996-03-01

    This volume described in detail the Department's research and technology development activities and their funding at the Department's laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B ampersand R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department's appropriation to a specific activity description and to specific R ampersand D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R ampersand D performers chosen to execute the Department's missions

  4. Draft Strategic Laboratory Missions Plan. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

  5. Tools of the Future: How Decision Tree Analysis Will Impact Mission Planning

    Science.gov (United States)

    Otterstatter, Matthew R.

    2005-01-01

    The universe is infinitely complex; however, the human mind has a finite capacity. The multitude of possible variables, metrics, and procedures in mission planning are far too many to address exhaustively. This is unfortunate because, in general, considering more possibilities leads to more accurate and more powerful results. To compensate, we can get more insightful results by employing our greatest tool, the computer. The power of the computer will be utilized through a technology that considers every possibility, decision tree analysis. Although decision trees have been used in many other fields, this is innovative for space mission planning. Because this is a new strategy, no existing software is able to completely accommodate all of the requirements. This was determined through extensive research and testing of current technologies. It was necessary to create original software, for which a short-term model was finished this summer. The model was built into Microsoft Excel to take advantage of the familiar graphical interface for user input, computation, and viewing output. Macros were written to automate the process of tree construction, optimization, and presentation. The results are useful and promising. If this tool is successfully implemented in mission planning, our reliance on old-fashioned heuristics, an error-prone shortcut for handling complexity, will be reduced. The computer algorithms involved in decision trees will revolutionize mission planning. The planning will be faster and smarter, leading to optimized missions with the potential for more valuable data.

  6. Potential Astrophysics Science Missions Enabled by NASA's Planned Ares V

    Science.gov (United States)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stepheni; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12- meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  7. LeatherNet: an evaluation as a mission planning and briefing tool

    OpenAIRE

    Hague, Tracy R.

    1996-01-01

    Information Technology Management The author evaluates LeatherNet, a Distributed Interactive Simulation compliant, virtual simulation system being developed by the Advanced Research Projects Agency to demonstrate Modeling and Simulation(M&S) technologies and to partially fulfill the U. S. Marine Corps M&S goals. The research focuses on evaluation of LeatherNet as a mission planning and briefing tool for Marine infantry company commanders, staff, and subordinate leaders. Evaluation is based...

  8. Constellation Mission Operation Working Group: ESMO Maneuver Planning Process Review

    Science.gov (United States)

    Moyer, Eric

    2015-01-01

    The Earth Science Mission Operation (ESMO) Project created an Independent Review Board to review our Conjunction Risk evaluation process and Maneuver Planning Process to identify improvements that safely manages mission conjunction risks, maintains ground track science requirements, and minimizes overall hours expended on High Interest Events (HIE). The Review Board is evaluating the current maneuver process which requires support by multiple groups. In the past year, there have been several changes to the processes although many prior and new concerns exist. This presentation will discuss maneuver process reviews and Board comments, ESMO assessment and path foward, ESMO future plans, recent changes and concerns.

  9. Using Organizational Philosophy to Create a Self-Sustaining Compensation Plan Without Harming Academic Missions.

    Science.gov (United States)

    Leverence, Robert; Nuttall, Richard; Palmer, Rachel; Segal, Mark; Wood, Alicia; Yancey, Fay; Shuster, Jonathon; Brantly, Mark; Hromas, Robert

    2017-08-01

    Academic physician reimbursement has moved to productivity-based compensation plans. To be sustainable, such plans must be self-funding. Additionally, unless research and education are appropriately valued, faculty involved in these efforts will become disillusioned, yet revenue generation in these activities is less robust than for clinical care activities. Faculty at the Department of Medicine, University of Florida Health, elected a committee of junior and senior faculty and division chiefs to restructure the compensation plan in fiscal year (FY) 2011. This committee was charged with designing a new compensation plan based on seven principles of organizational philosophy: equity, compensation coupled to productivity, authority aligned with responsibility, respect for all academic missions, transparency, professionalism, and self-funding in each academic mission. The new compensation plan was implemented in FY2013. A survey administered at the end of FY2015 showed that 61% (76/125) of faculty were more satisfied with this plan than the previous plan. Since the year before implementation, clinical relative value units per faculty increased 7% (from 3,458 in FY2012 to 3,704 in FY2015, P < .002), incentives paid per faculty increased 250% (from $3,191 in FY2012 to $11,153 in FY2015, P ≤ .001), and publications per faculty increased 15% (from 2.6 in FY2012 to 3.0 in FY2015, P < .001). Grant submissions, external funding, and teaching hours also increased per faculty but did not reach statistical significance. An important next step will be to incorporate quality metrics into the compensation plan, without affecting costs or throughput.

  10. Training Revising Based Traversability Analysis of Complex Terrains for Mobile Robot

    Directory of Open Access Journals (Sweden)

    Rui Song

    2014-05-01

    Full Text Available Traversability analysis is one of the core issues in the autonomous navigation for mobile robots to identify the accessible area by the information of sensors on mobile robots. This paper proposed a model to analyze the traversability of complex terrains based on rough sets and training revising. The model described the traversability for mobile robots by traversability cost. Through the experiment, the paper gets the conclusion that traversability analysis model based on rough sets and training revising can be used where terrain features are rich and complex, can effectively handle the unstructured environment, and can provide reliable and effective decision rules in the autonomous navigation for mobile robots.

  11. STS-61 mission director's post-mission report

    Science.gov (United States)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  12. Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction using a Dynamic Vision Sensor

    Directory of Open Access Journals (Sweden)

    Christian eBrandli

    2014-01-01

    Full Text Available Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500Hz were achieved using a line laser of 3mW at a distance of 45cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2mm.

  13. Cross-Coupled Control for All-Terrain Rovers

    Directory of Open Access Journals (Sweden)

    Giulio Reina

    2013-01-01

    Full Text Available Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors’ control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors.

  14. GIS-based terrain analysis of linear infrastructure corridors in the Mackenzie River Valley, NWT

    International Nuclear Information System (INIS)

    Ednie, M.; Wright, J.F.; Duchesne, C.

    2007-01-01

    The impact of global warming on permafrost terrain was discussed with particular reference to the structural stability and performance reliability of the proposed pipelines and roads in the Mackenzie River Valley in the Northwest Territories. Engineers, regulators and decision makers responsible for the development of these networks must have access to information about current and future terrain conditions, both local and regional. The Geological Survey of Canada is developing an ArcGIS resident, multi-component terrain analysis methodology for evaluating permafrost terrain in terms of the probable geothermal and geomorphological responses to climate warming. A GIS-integrated finite-element transient ground thermal model (T-ONE) can predict local-regional permafrost conditions and future responses of permafrost to climate warming. The influences of surface and channel hydrology on local erosion potentials can be determined by analyzing the topographic and topologic characteristics of the terrain. A weights of evidence-based landscape-process model, currently under development, will consider multiple terrain factors for mapping terrain that is susceptible to slope failure, subsidence or erosion. This terrain analysis methodology is currently being applied to a 2 km buffer spanning the proposed Mackenzie Gas Pipeline right-of-way, and along winter and all-weather road networks in the Mackenzie River Valley. Initial ground thermal modeling has identified thermally sensitive terrain for which permafrost will either completely disappear or warm significantly to near isothermal conditions within the next 25 to 55 years

  15. Sample-Based Motion Planning in High-Dimensional and Differentially-Constrained Systems

    Science.gov (United States)

    2010-02-01

    path planning and motion primitives to enable crawling gaits on rough terrain e.g. [Rebula et al., 2007, Kolter et al., 2008,Pongas et al., 2007,Ratliff...demonstrating robust planning and locomotion over quite challenging terrain (e.g., [Rebula et al., 2007, Kolter et al., 2008, Pongas et al., 2007, Zucker, 2009...and Systems. [ Kolter et al., 2008] Kolter , J. Z., Rodgers, M. P., and Ng, A. Y. (2008). A control architecture for quadruped locomotion over rough

  16. Autonomous terrain characterization and modelling for dynamic control of unmanned vehicles

    Science.gov (United States)

    Talukder, A.; Manduchi, R.; Castano, R.; Owens, K.; Matthies, L.; Castano, A.; Hogg, R.

    2002-01-01

    This end-to-end obstacle negotiation system is envisioned to be useful in optimized path planning and vehicle navigation in terrain conditions cluttered with vegetation, bushes, rocks, etc. Results on natural terrain with various natural materials are presented.

  17. Long-range planning cost model for support of future space missions by the deep space network

    Science.gov (United States)

    Sherif, J. S.; Remer, D. S.; Buchanan, H. R.

    1990-01-01

    A simple model is suggested to do long-range planning cost estimates for Deep Space Network (DSP) support of future space missions. The model estimates total DSN preparation costs and the annual distribution of these costs for long-range budgetary planning. The cost model is based on actual DSN preparation costs from four space missions: Galileo, Voyager (Uranus), Voyager (Neptune), and Magellan. The model was tested against the four projects and gave cost estimates that range from 18 percent above the actual total preparation costs of the projects to 25 percent below. The model was also compared to two other independent projects: Viking and Mariner Jupiter/Saturn (MJS later became Voyager). The model gave cost estimates that range from 2 percent (for Viking) to 10 percent (for MJS) below the actual total preparation costs of these missions.

  18. Artificial intelligence techniques for scheduling Space Shuttle missions

    Science.gov (United States)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  19. Planning for Crew Exercise for Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, E. Cherice; Ryder, Jeff

    2015-01-01

    Exercise which is necessary for maintaining crew health on-orbit and preparing the crew for return to 1G can be challenging to incorporate into spaceflight vehicles. Deep space missions will require further understanding of the physiological response to microgravity, understanding appropriate mitigations, and designing the exercise systems to effectively provide mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  20. Geological terrain models

    Science.gov (United States)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  1. Preface: The Chang'e-3 lander and rover mission to the Moon

    Science.gov (United States)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  2. Generic procedure for designing and implementing plan management systems for space science missions operations

    Science.gov (United States)

    Chaizy, P. A.; Dimbylow, T. G.; Allan, P. M.; Hapgood, M. A.

    2011-09-01

    This paper is one of the components of a larger framework of activities whose purpose is to improve the performance and productivity of space mission systems, i.e. to increase both what can be achieved and the cost effectiveness of this achievement. Some of these activities introduced the concept of Functional Architecture Module (FAM); FAMs are basic blocks used to build the functional architecture of Plan Management Systems (PMS). They also highlighted the need to involve Science Operations Planning Expertise (SOPE) during the Mission Design Phase (MDP) in order to design and implement efficiently operation planning systems. We define SOPE as the expertise held by people who have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Using ESA's methodology for studying and selecting science missions we also define the MDP as the combination of the Mission Assessment and Mission Definition Phases. However, there is no generic procedure on how to use FAMs efficiently and systematically, for each new mission, in order to analyse the cost and feasibility of new missions as well as to optimise the functional design of new PMS; the purpose of such a procedure is to build more rapidly and cheaply such PMS as well as to make the latter more reliable and cheaper to run. This is why the purpose of this paper is to provide an embryo of such a generic procedure and to show that the latter needs to be applied by people with SOPE during the MDP. The procedure described here proposes some initial guidelines to identify both the various possible high level functional scenarii, for a given set of possible requirements, and the information that needs to be associated with each scenario. It also introduces the concept of catalogue of generic functional scenarii of PMS for space science missions. The information associated with each catalogued scenarii will have been identified by the above procedure and

  3. AN EXPERIMENTAL EVALUATION OF 3D TERRAIN MAPPING WITH AN AUTONOMOUS HELICOPTER

    Directory of Open Access Journals (Sweden)

    B. P. Hudzietz

    2012-09-01

    Full Text Available We demonstrate a method for unmanned aerial vehicle based structure from motion mapping and show it to be a viable option for large scale, high resolution terrain modeling. Current methods of large scale terrain modeling can be cost and time prohibitive. We present a method for integrating low cost cameras and unmanned aerial vehicles for the purpose of 3D terrain mapping. Using structure from motion, aerial images taken of the landscape can be reconstructed into 3D models of the terrain. This process is well suited for use on unmanned aerial vehicles due to the light weight and low cost of equipment. We discuss issues of flight path planning and propose an algorithm to assist in the generation of these paths. The structure from motion mapping process is experimentally evaluated in three distinct environments: ground based testing on man-made environments, ground based testing on natural environments, and airborne testing on natural environments. Ground based testing on natural environments was shown to be extremely useful for camera calibration, and the resulting models were found to have a maximum error of 4.26 cm and standard deviation of 1.50 cm. During airborne testing, several areas of approximately 30,000 m2 were mapped. These areas were mapped with acceptable accuracy and a resolution of 1.24 cm.

  4. LOD-based clustering techniques for efficient large-scale terrain storage and visualization

    Science.gov (United States)

    Bao, Xiaohong; Pajarola, Renato

    2003-05-01

    Large multi-resolution terrain data sets are usually stored out-of-core. To visualize terrain data at interactive frame rates, the data needs to be organized on disk, loaded into main memory part by part, then rendered efficiently. Many main-memory algorithms have been proposed for efficient vertex selection and mesh construction. Organization of terrain data on disk is quite difficult because the error, the triangulation dependency and the spatial location of each vertex all need to be considered. Previous terrain clustering algorithms did not consider the per-vertex approximation error of individual terrain data sets. Therefore, the vertex sequences on disk are exactly the same for any terrain. In this paper, we propose a novel clustering algorithm which introduces the level-of-detail (LOD) information to terrain data organization to map multi-resolution terrain data to external memory. In our approach the LOD parameters of the terrain elevation points are reflected during clustering. The experiments show that dynamic loading and paging of terrain data at varying LOD is very efficient and minimizes page faults. Additionally, the preprocessing of this algorithm is very fast and works from out-of-core.

  5. Information measures for terrain visualization

    Science.gov (United States)

    Bonaventura, Xavier; Sima, Aleksandra A.; Feixas, Miquel; Buckley, Simon J.; Sbert, Mateu; Howell, John A.

    2017-02-01

    Many quantitative and qualitative studies in geoscience research are based on digital elevation models (DEMs) and 3D surfaces to aid understanding of natural and anthropogenically-influenced topography. As well as their quantitative uses, the visual representation of DEMs can add valuable information for identifying and interpreting topographic features. However, choice of viewpoints and rendering styles may not always be intuitive, especially when terrain data are augmented with digital image texture. In this paper, an information-theoretic framework for object understanding is applied to terrain visualization and terrain view selection. From a visibility channel between a set of viewpoints and the component polygons of a 3D terrain model, we obtain three polygonal information measures. These measures are used to visualize the information associated with each polygon of the terrain model. In order to enhance the perception of the terrain's shape, we explore the effect of combining the calculated information measures with the supplementary digital image texture. From polygonal information, we also introduce a method to select a set of representative views of the terrain model. Finally, we evaluate the behaviour of the proposed techniques using example datasets. A publicly available framework for both the visualization and the view selection of a terrain has been created in order to provide the possibility to analyse any terrain model.

  6. Atmospheric processes over complex terrain

    Science.gov (United States)

    Banta, Robert M.; Berri, G.; Blumen, William; Carruthers, David J.; Dalu, G. A.; Durran, Dale R.; Egger, Joseph; Garratt, J. R.; Hanna, Steven R.; Hunt, J. C. R.

    1990-06-01

    A workshop on atmospheric processes over complex terrain, sponsored by the American Meteorological Society, was convened in Park City, Utah from 24 vto 28 October 1988. The overall objective of the workshop was one of interaction and synthesis--interaction among atmospheric scientists carrying out research on a variety of orographic flow problems, and a synthesis of their results and points of view into an assessment of the current status of topical research problems. The final day of the workshop was devoted to an open discussion on the research directions that could be anticipated in the next decade because of new and planned instrumentation and observational networks, the recent emphasis on development of mesoscale numerical models, and continual theoretical investigations of thermally forced flows, orographic waves, and stratified turbulence. This monograph represents an outgrowth of the Park City Workshop. The authors have contributed chapters based on their lecture material. Workshop discussions indicated interest in both the remote sensing and predictability of orographic flows. These chapters were solicited following the workshop in order to provide a more balanced view of current progress and future directions in research on atmospheric processes over complex terrain.

  7. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    International Nuclear Information System (INIS)

    Potter, R.D.

    1998-01-01

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project's Waste Retrieval and Disposal Mission

  8. Techniques for Automatic Creation of Terrain Databases for Training and Mission Preparation

    NARCIS (Netherlands)

    Kuijper, F.; Son, R. van; Meurs, F. van; Smelik, R.M.; Kraker, J.K. de

    2010-01-01

    In the support of defense agencies and civil authorities TNO runs a research program that strives after automatic generation of terrain databases for a variety of simulation applications. Earlier papers by TNO at the IMAGE conference have reported in-depth on specific projects within this program.

  9. Colour based off-road environment and terrain type classification

    NARCIS (Netherlands)

    Jansen, P.; Mark, W. van der; Heuvel, J.C. van den; Groen, F.C.A.

    2005-01-01

    Terrain classification is an important problem that still remains to be solved for off-road autonomous robot vehicle guidance. Often, obstacle detection systems are used which cannot distinguish between solid obstacles such as rocks or soft obstacles such as tall patches of grass. Terrain

  10. Landing site rationality scaling for subsurface sampling on Mars—Case study for ExoMars Rover-like missions

    Science.gov (United States)

    Kereszturi, Akos

    2012-11-01

    Subsurface sampling will be important in the robotic exploration of Mars in the future, and this activity requires a somewhat different approach in landing site selection than earlier, surface analysis focused missions. In this work theoretical argumentation for the selection of ideal sites is summarized, including various parameters that were defined as examples for the earlier four candidate landing sites of Mars Science Laboratory. The aim here was to compare interesting sites; the decision on the final site does not affect this work. Analyzing the theoretical background, to identify ideal locations for subsurface analysis, several factors could be identified by remote sensing, including the dust and dune coverage, the cap layer distribution as well as the location of probable important outcrops. Beyond the fact that image based information on the rock hardness on Mars is lacking, more work would be also useful to put the interesting sites into global context and to understand the role of secondary cratering in age estimation. More laboratory work would be also necessary to improve our knowledge on the extraction and preservation of organic materials under different conditions. Beyond the theoretical argumentation mentioned above, the size and accessibility of possible important shallow subsurface materials were analyzed at the four earlier candidate landing sites of Mars Science Laboratory. At the sample terrains, interesting but inaccessible, interesting and sideward accessible, and interesting and from above accessible outcrops were identified. Surveying these outcrop types at the sample terrains, the currently available datasets showed only 3-9% of exposed strata over the entire analyzed area is present at Eberswalde and Holden crater, and individual outcrops have an average diameter between 100 and 400 m there. For Gale crater and Mawrth Valles region, these parameters were 46-35% of exposed strata, with an average outcrop diameter of ˜300 m. In the case

  11. Automatic terrain modeling using transfinite element analysis

    KAUST Repository

    Collier, Nathan; Calo, Victor M.

    2010-01-01

    An automatic procedure for modeling terrain is developed based on L2 projection-based interpolation of discrete terrain data onto transfinite function spaces. The function space is refined automatically by the use of image processing techniques

  12. Leveraging Existing Mission Tools in a Re-Usable, Component-Based Software Environment

    Science.gov (United States)

    Greene, Kevin; Grenander, Sven; Kurien, James; z,s (fshir. z[orttr); z,scer; O'Reilly, Taifun

    2006-01-01

    integrate existing mission applications for sequence development, sequence validation, and high level activity planning, and other functions into a component-based environment. For each of these, we used a somewhat different technique based upon the structure and usage of the existing application.

  13. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  14. IUS/TUG orbital operations and mission support study. Volume 4: Project planning data

    Science.gov (United States)

    1975-01-01

    Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.

  15. Advancing mission in the marketplace. Integrated strategic planning and budgeting helps a system remain accountable.

    Science.gov (United States)

    Smessaert, A H

    1992-10-01

    In the late 1980s Holy Cross Health System (HCHS), South Bend, IN, began to implement a revised strategic planning and budgeting process to effectively link the system's mission with its day-to-day operations. Leaders wanted a process that would help system employees internalize and act on the four major elements articulated in the HCHS mission statement: fidelity, excellence, empowerment, and stewardship. Representatives from mission, strategic planning, and finance from the corporate office and subsidiaries examined planning and budgeting methods. From the beginning, HCHS leaders decided that the process should be implemented gradually, with each step focusing on refining methodology and improving mission integration. As the process evolved. HCHS developed a sequence in which planning preceded budgeting. The system also developed a variety of educational and collaborative initiatives to help system employees adapt to the organization's change of direction. One critical aspect of HCHS's ongoing education is an ethical reflection process that helps participants balance ethical considerations by viewing an issue from three perspectives: social vision, multiple responsibility, and self-interest.

  16. The SOLAR-C Mission: Plan B Payload Concept

    Science.gov (United States)

    Shimizu, T.; Sakao, T.; Katsukawa, Y.; Group, J. S. W.

    2012-08-01

    The telescope concepts for the SOLAR-C Plan B mission as of the time of the Hinode-3 meeting were briefly presented for having comments from the international solar physics community. The telescope candidates are 1) near IR-visible-UV telescope with 1.5m aperture and enhanced spectro-polarimetric capability, 2) UV/EUV high throughput spectrometer, and 3) next generation X-ray telescope.

  17. Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.

    Science.gov (United States)

    Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric

    2018-05-01

    Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.

  18. Dynamic modeling and mobility analysis of the transforming roving-rolling explorer (TRREx) as it Traverses Rugged Martian Terrain

    Science.gov (United States)

    Edwin, Lionel E.; Mazzoleni, Andre P.

    2016-03-01

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that the most scientifically interesting missions require exploration platforms with capabilities for navigating such types of rugged terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This work analyzes one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This paper investigates the mobility of the TRREx when it is in its rolling mode, i.e. when it is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. A mathematical model describing the dynamics of the rover in this spherical configuration is presented, and actuated rolling is demonstrated through computer simulation. Parametric analyzes that investigate the rover's mobility as a function of its design parameters are also presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future.

  19. Science Planning for the Solar Probe Plus NASA Mission

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Turner, F. S.; Vandegriff, J. D.

    2015-12-01

    With a planned launch in 2018, there are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus mission. The geometry of the celestial bodies and the spacecraft during some of the Solar Probe Plus mission orbits cause limited uplink and downlink opportunities. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. The aim is to write the instrument data to the spacecraft SSR for downlink before a set of data downlink opportunities large enough to get the data to the ground and before the start of another data collection cycle. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To add further complexity, two of the spacecraft payloads have the capability to write a large volumes of data to their internal payload SSR while sending a smaller "survey" portion of the data to the spacecraft SSR for downlink. The instrument scientists would then view the survey data on the ground, determine the most interesting data from their payload SSR, send commands to transfer that data from their payload SSR to the spacecraft SSR for downlink. The timing required for downlink and analysis of the survey data, identifying uplink opportunities for commanding data transfers, and downlink opportunities big enough for the selected data within the data collection period is critical. To solve these challenges, the Solar Probe Plus Science Working Group has designed a orbit-type optimized data file priority downlink scheme to downlink high priority survey data quickly. This file priority scheme would maximize the reaction time that the payload teams have to perform the survey and selected data method on orbits where the downlink and uplink availability will support using this method. An interactive display and analysis science planning tool is being designed for the SPT to use as an aid to planning. The

  20. Terrain Commander: Unattended Ground-Based Surveillance System

    National Research Council Canada - National Science Library

    Steadman, Bob

    2000-01-01

    .... Terrain Commander OASIS provides next generation target detection, classification, and tracking through smart sensor fusion of beamforming acoustic, seismic, passive infrared, and magnetic sensors...

  1. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  2. Object Georeferencing in UAV-Based SAR Terrain Images

    Directory of Open Access Journals (Sweden)

    Łabowski Michał

    2016-12-01

    Full Text Available Synthetic aperture radars (SAR allow to obtain high resolution terrain images comparable with the resolution of optical methods. Radar imaging is independent on the weather conditions and the daylight. The process of analysis of the SAR images consists primarily of identifying of interesting objects. The ability to determine their geographical coordinates can increase usability of the solution from a user point of view. The paper presents a georeferencing method of the radar terrain images. The presented images were obtained from the SAR system installed on board an Unmanned Aerial Vehicle (UAV. The system was developed within a project under acronym WATSAR realized by the Military University of Technology and WB Electronics S.A. The source of the navigation data was an INS/GNSS system integrated by the Kalman filter with a feed-backward correction loop. The paper presents the terrain images obtained during flight tests and results of selected objects georeferencing with an assessment of the accuracy of the method.

  3. Terrain reconstruction based on descent images for the Chang’e III landing area

    Directory of Open Access Journals (Sweden)

    Xu Xinchao

    2015-10-01

    Full Text Available A new method that combined image matching and shape from shading for terrain reconstruction was proposed to solve the lack of terrain in the landing area of Chang'e III. First, the reflection equation was established based on the Lommel– Seeliger reflection model. After edge extraction, the gradients of points on the edge were solved. The normal vectors of adjacent points were obtained using the smoothness constraint. Furthermore, the gradients of residual points in the image were determined through evolution. The inadequacy of the reflection equation was eliminated by considering the gradient as the constraint of the reflection equation. The normal vector of each point could be obtained by solving the reflection equation. The terrain without coordinate information was reconstructed by iterating the vector field. After using scaleinvariant feature transform to extract matching points in the descent images, the terrain was converted to a lander centroid coordinate system. Experiments were carried out with MATLAB-simulated images, laboratory images, and descent images of Chang'e III. Results show that the proposed method performs better than the classical SFS algorithm. The new method can provide reference for other deep space exploration activities.

  4. Preface: The Chang'e-3 lander and rover mission to the Moon

    International Nuclear Information System (INIS)

    Ip Wing-Huen; Yan Jun; Li Chun-Lai; Ouyang Zi-Yuan

    2014-01-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions

  5. Multiscale Feature Model for Terrain Data Based on Adaptive Spatial Neighborhood

    Directory of Open Access Journals (Sweden)

    Huijie Zhang

    2013-01-01

    Full Text Available Multiresolution hierarchy based on features (FMRH has been applied in the field of terrain modeling and obtained significant results in real engineering. However, it is difficult to schedule multiresolution data in FMRH from external memory. This paper proposed new multiscale feature model and related strategies to cluster spatial data blocks and solve the scheduling problems of FMRH using spatial neighborhood. In the model, the nodes with similar error in the different layers should be in one cluster. On this basis, a space index algorithm for each cluster guided by Hilbert curve is proposed. It ensures that multi-resolution terrain data can be loaded without traversing the whole FMRH; therefore, the efficiency of data scheduling is improved. Moreover, a spatial closeness theorem of cluster is put forward and is also proved. It guarantees that the union of data blocks composites a whole terrain without any data loss. Finally, experiments have been carried out on many different large scale data sets, and the results demonstrate that the schedule time is shortened and the efficiency of I/O operation is apparently improved, which is important in real engineering.

  6. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    Science.gov (United States)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  7. Stair Climbing Control for 4-DOF Tracked Vehicle Based on Internal Sensors

    Directory of Open Access Journals (Sweden)

    Daisuke Endo

    2017-01-01

    Full Text Available In search-and-rescue missions, multi-degrees-of-freedom (DOF tracked robots that are equipped with subtracks are commonly used. These types of robots have superior locomotion performance on rough terrain. However, in teleoperated missions, the performance of tracked robots depends largely on the operators’ ability to control every subtrack appropriately. Therefore, an autonomous traversal function can significantly help in the teleoperation of such robots. In this paper, we propose a planning and control method for 4-DOF tracked robots climbing up/down known stairs automatically based on internal sensors. Experimental results obtained using mockup stairs verify the effectiveness of the proposed method.

  8. Experiment S-5: Synoptic Terrain Photography

    Science.gov (United States)

    Lowman, Paul D., Jr.

    1966-01-01

    The Synoptic Terrain Photography Experiment (S-5) was successfully conducted during the Gemini V mission, the second of the Gemini flights on which it was carried. This report summarizes briefly the methods and results of the experiment. Interpretation of the many excellent pictures obtained is in progress, and a full report is not possible at this time; instead, representative pictures will be presented and described. The purpose of the experiment was to obtain a large number of high-quality color photographs of selected land areas from geologic and geographic study. Southern Mexico, eastern Africa, and Australia were given high priority, but it was stressed that good pictures of any cloud-free land area would be useful. The same camera (Hasselblad 500 C) and film (Ektachrome MS) used on the Gemini III and IV missions were carried on the Gemini V flight.

  9. MPGT - THE MISSION PLANNING GRAPHICAL TOOL

    Science.gov (United States)

    Jeletic, J. F.

    1994-01-01

    The Mission Planning Graphical Tool (MPGT) provides mission analysts with a mouse driven graphical representation of the spacecraft and environment data used in spaceflight planning. Developed by the Flight Dynamics Division at NASA's Goddard Space Flight Center, MPGT is designed to be a generic tool that can be configured to analyze any specified earth orbiting spacecraft mission. The data is presented as a series of overlays on top of a 2-dimensional or 3-dimensional projection of the earth. Up to six spacecraft orbit tracks can be drawn at one time. Position data can be obtained by either an analytical process or by use of ephemeris files. If the user chooses to propagate the spacecraft orbit using an ephemeris file, then Goddard Trajectory Determination System (GTDS) formatted ephemeris files must be supplied. The MPGT User's Guide provides a complete description of the GTDS ephemeris file format so that users can create their own. Other overlays included are ground station antenna masks, solar and lunar ephemeris, Tracking Data and Relay Satellite System (TDRSS) coverage, a field-of-view swath, and orbit number. From these graphical representations an analyst can determine such spacecraft-related constraints as communication coverage, interference zone infringement, sunlight availability, and instrument target visibility. The presentation of time and geometric data as graphical overlays on a world map makes possible quick analyses of trends and time-oriented parameters. For instance, MPGT can display the propagation of the position of the Sun and Moon over time, shadowing of sunrise/sunset terminators to indicate spacecraft and Earth day/night, and color coding of the spacecraft orbit tracks to indicate spacecraft day/night. With the 3-dimensional display, the user specifies a vector that represents the position in the universe from which the user wishes to view the earth. From these "viewpoint" parameters the user can zoom in on or rotate around the earth

  10. Setup of a testing environment for mission planning in mining

    NARCIS (Netherlands)

    Groenen, J.P.J.; Steinbuch, M.

    2013-01-01

    Mission planning algorithms for surface mining applications are difficult to test as a result of the large scale tasks. To validate these algorithms, a scaled setup is created where the mining excavator is mimicked by an industrial robot. This report discusses the development of a software

  11. Processing Terrain Point Cloud Data

    KAUST Repository

    DeVore, Ronald

    2013-01-10

    Terrain point cloud data are typically acquired through some form of Light Detection And Ranging sensing. They form a rich resource that is important in a variety of applications including navigation, line of sight, and terrain visualization. Processing terrain data has not received the attention of other forms of surface reconstruction or of image processing. The goal of terrain data processing is to convert the point cloud into a succinct representation system that is amenable to the various application demands. The present paper presents a platform for terrain processing built on the following principles: (i) measuring distortion in the Hausdorff metric, which we argue is a good match for the application demands, (ii) a multiscale representation based on tree approximation using local polynomial fitting. The basic elements held in the nodes of the tree can be efficiently encoded, transmitted, visualized, and utilized for the various target applications. Several challenges emerge because of the variable resolution of the data, missing data, occlusions, and noise. Techniques for identifying and handling these challenges are developed. © 2013 Society for Industrial and Applied Mathematics.

  12. The draft Mission Plan Amendment

    International Nuclear Information System (INIS)

    Gale, R.W.

    1987-01-01

    The draft Mission Plan Amendment provides an opportunity for States and Indian Tribes and other involved parties to participate in a process that no other nation affords its citizens. More than just a comment period on a Department of Energy document, the amendment that is to be submitted later this year will lay before Congress, the documentary basis on which to make decisions about the scope and timing of the high-level waste program in what Secretary Herrington has called a ''crossroads'' years. The Amendment will distill the view of the participants and also preset them to Congress as an integral part of the document. After four years of effort, the Nation is being afforded an opportunity to ask itself again whether the Act passed in 1982 is working and remains the best way to protect the public interest

  13. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  14. Terrain Mapping and Classification in Outdoor Environments Using Neural Networks

    OpenAIRE

    Alberto Yukinobu Hata; Denis Fernando Wolf; Gustavo Pessin; Fernando Osório

    2009-01-01

    This paper describes a three-dimensional terrain mapping and classification technique to allow the operation of mobile robots in outdoor environments using laser range finders. We propose the use of a multi-layer perceptron neural network to classify the terrain into navigable, partially navigable, and non-navigable. The maps generated by our approach can be used for path planning, navigation, and local obstacle avoidance. Experimental tests using an outdoor robot and a laser sensor demonstra...

  15. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  16. Network Operations Support Plan for the Spot 2 mission (revision 1)

    Science.gov (United States)

    Werbitzky, Victor

    1989-01-01

    The purpose of this Network Operations Support Plan (NOSP) is to indicate operational procedures and ground equipment configurations for the SPOT 2 mission. The provisions in this document take precedence over procedures or configurations in other documents.

  17. Latest Results from and Plans for the New Horizons Pluto-Kuiper Belt Mission

    Science.gov (United States)

    Weaver, Harold; Stern, Alan

    2016-07-01

    On 2015 July 14 NASA's New Horizons spacecraft flew 12,500 km above the surface of Pluto revealing a world of remarkable complexity and diversity. A giant basin filled with nitrogen ice dominated the encounter hemisphere and is the site of vigorous ongoing solid state convection that generates glacier-like transport along the surface. Giant mountains of water ice appear to be floating in the nitrogen ice. The periphery of the basin has a wide variety of landforms, including ice flow channels and chaotically arranged blocks of water ice. Extensive sublimation pitting is observed within the nitrogen ice sheet, testifying to active volatile transport. Peculiar bladed terrain to the east of the nitrogen ice sheet appears to be coated by methane ice. Pluto's equatorial region is dominated by an ancient dark red belt of material, probably tholins created either by irradiation of surface ices or by haze precipitation from the atmosphere. Pluto sports a wide variety of surface craters with some terrains dating back approximately 4 billion years while some terrains are geologically young. New Horizons discovered trace hydrocarbons in Pluto's atmosphere, multiple global haze layers, and a surface pressure near 10 microbars. Charon, Pluto's largest moon, displays tectonics, evidence for a heterogeneous crustal composition, and a puzzling giant hood of dark material covering its North Pole. Crater density statistics for Charon's surface give a crater retention age of 4-4.5 Ga, indicating that Charon's geological evolution largely ceased early in its history. All of Pluto's four small moons (Styx, Nix, Kerberos, and Hydra) have high albedos, highly elongated shapes, and are rotating much faster then synchronous with their orbital periods, with rotational poles clustered near the Pluto-Charon orbital plane. The surfaces of Nix and Hydra are coated with nearly pristine crystalline water ice, despite having crater retention ages greater than 4 billion years. The New Horizons

  18. International solar-terrestrial physics program: a plan for the core spaceflight missions

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This brochure has been prepared to describe the scope of the science problems to be investigated and the mission plan for the core International Solar-Terrestrial Physics (ISTP) Program. This information is intended to stimulate discussions and plans for the comprehensive worldwide ISTP Program. The plan for the study of the solar - terrestrial system is included. The Sun, geospace, and Sun-Earth interaction is discussed as is solar dynamics and the origins of solar winds.

  19. Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach.

    Science.gov (United States)

    Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto

    2015-12-26

    This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called A η , is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that So

  20. Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach

    Directory of Open Access Journals (Sweden)

    Gabriele Ferri

    2015-12-01

    Full Text Available This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality, used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called A η , is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support. The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided

  1. Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach

    Science.gov (United States)

    Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto

    2015-01-01

    This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called Aη, is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that So

  2. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.

    2009-08-15

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  3. Recommendation of a More Effective Alternative to the NASA Launch Services Program Mission Integration Reporting System (MIRS) and Implementation of Updates to the Mission Plan

    Science.gov (United States)

    Dunn, Michael R.

    2014-01-01

    Over the course of my internship in the Flight Projects Office of NASA's Launch Services Program (LSP), I worked on two major projects, both of which dealt with updating current systems to make them more accurate and to allow them to operate more efficiently. The first project dealt with the Mission Integration Reporting System (MIRS), a web-accessible database application used to manage and provide mission status reporting for the LSP portfolio of awarded missions. MIRS had not gone through any major updates since its implementation in 2005, and it was my job to formulate a recommendation for the improvement of the system. The second project I worked on dealt with the Mission Plan, a document that contains an overview of the general life cycle that is followed by every LSP mission. My job on this project was to update the information currently in the mission plan and to add certain features in order to increase the accuracy and thoroughness of the document. The outcomes of these projects have implications in the orderly and efficient operation of the Flight Projects Office, and the process of Mission Management in the Launch Services Program as a whole.

  4. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  5. Orbital Express Mission Operations Planning and Resource Management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Danny

    2008-01-01

    The Orbital Express satellite servicing demonstrator program is a DARPA program aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consists of: a) the Autonomous Space Transport Robotic Operations (ASTRO) vehicle, under development by Boeing Integrated Defense Systems, and b) a prototype modular next-generation serviceable satellite, NEXTSat, being developed by Ball Aerospace. Flexibility of ASPEN: a) Accommodate changes to procedures; b) Accommodate changes to daily losses and gains; c) Responsive re-planning; and d) Critical to success of mission planning Auto-Generation of activity models: a) Created plans quickly; b) Repetition/Re-use of models each day; and c) Guarantees the AML syntax. One SRP per day vs. Tactical team

  6. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    Science.gov (United States)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-09-01

    The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG) is a subgroup of the Project Science Group that has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this report we cover one element of the SOWG planning activities, the development of a plan that maximizes the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is -very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site

  7. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    Science.gov (United States)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG) is a subgroup of the Project Science Group that has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this report we cover one element of the SOWG planning activities, the development of a plan that maximizes the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is -very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site

  8. Implications of Wind-Assisted Aerial Navigation for Titan Mission Planning and Science Exploration

    Science.gov (United States)

    Elfes, A.; Reh, K.; Beauchamp, P.; Fathpour, N.; Blackmore, L.; Newman, C.; Kuwata, Y.; Wolf, M.; Assad, C.

    2010-01-01

    The recent Titan Saturn System Mission (TSSM) proposal incorporates a montgolfiere (hot air balloon) as part of its architecture. Standard montgolfiere balloons generate lift through heating of the atmospheric gases inside the envelope, and use a vent valve for altitude control. A Titan aerobot (robotic aerial vehicle) would have to use radioisotope thermoelectric generators (RTGs) for electric power, and the excess heat generated can be used to provide thermal lift for a montgolfiere. A hybrid montgolfiere design could have propellers mounted on the gondola to generate horizontal thrust; in spite of the unfavorable aerodynamic drag caused by the shape of the balloon, a limited amount of lateral controllability could be achieved. In planning an aerial mission at Titan, it is extremely important to assess how the moon-wide wind field can be used to extend the navigation capabilities of an aerobot and thereby enhance the scientific return of the mission. In this paper we explore what guidance, navigation and control capabilities can be achieved by a vehicle that uses the Titan wind field. The control planning approach is based on passive wind field riding. The aerobot would use vertical control to select wind layers that would lead it towards a predefined science target, adding horizontal propulsion if available. The work presented in this paper is based on aerodynamic models that characterize balloon performance at Titan, and on TitanWRF (Weather Research and Forecasting), a model that incorporates heat convection, circulation, radiation, Titan haze properties, Saturn's tidal forcing, and other planetary phenomena. Our results show that a simple unpropelled montgolfiere without horizontal actuation will be able to reach a broad array of science targets within the constraints of the wind field. The study also indicates that even a small amount of horizontal thrust allows the balloon to reach any area of interest on Titan, and to do so in a fraction of the time needed

  9. Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2013-02-01

    Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would be that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.

  10. Application of State Analysis and Goal-based Operations to a MER Mission Scenario

    Science.gov (United States)

    Morris, John Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the system behavior in terms of state variables and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper first describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  11. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    Science.gov (United States)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  12. Model Checking Artificial Intelligence Based Planners: Even the Best Laid Plans Must Be Verified

    Science.gov (United States)

    Smith, Margaret H.; Holzmann, Gerard J.; Cucullu, Gordon C., III; Smith, Benjamin D.

    2005-01-01

    Automated planning systems (APS) are gaining acceptance for use on NASA missions as evidenced by APS flown On missions such as Orbiter and Deep Space 1 both of which were commanded by onboard planning systems. The planning system takes high level goals and expands them onboard into a detailed of action fiat the spacecraft executes. The system must be verified to ensure that the automatically generated plans achieve the goals as expected and do not generate actions that would harm the spacecraft or mission. These systems are typically tested using empirical methods. Formal methods, such as model checking, offer exhaustive or measurable test coverage which leads to much greater confidence in correctness. This paper describes a formal method based on the SPIN model checker. This method guarantees that possible plans meet certain desirable properties. We express the input model in Promela, the language of SPIN and express the properties of desirable plans formally.

  13. Terrain Perception in a Shape Shifting Rolling-Crawling Robot

    Directory of Open Access Journals (Sweden)

    Fuchida Masataka

    2016-09-01

    Full Text Available Terrain perception greatly enhances the performance of robots, providing them with essential information on the nature of terrain being traversed. Several living beings in nature offer interesting inspirations which adopt different gait patterns according to nature of terrain. In this paper, we present a novel terrain perception system for our bioinspired robot, Scorpio, to classify the terrain based on visual features and autonomously choose appropriate locomotion mode. Our Scorpio robot is capable of crawling and rolling locomotion modes, mimicking Cebrenus Rechenburgi, a member of the huntsman spider family. Our terrain perception system uses Speeded Up Robust Feature (SURF description method along with color information. Feature extraction is followed by Bag of Word method (BoW and Support Vector Machine (SVM for terrain classification. Experiments were conducted with our Scorpio robot to establish the efficacy and validity of the proposed approach. In our experiments, we achieved a recognition accuracy of over 90% across four terrain types namely grass, gravel, wooden deck, and concrete.

  14. Dynamic Modeling and Vibration Analysis for the Vehicles with Rigid Wheels Based on Wheel-Terrain Interaction Mechanics

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2015-01-01

    Full Text Available The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain’s influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance.

  15. Automatic terrain modeling using transfinite element analysis

    KAUST Repository

    Collier, Nathan

    2010-05-31

    An automatic procedure for modeling terrain is developed based on L2 projection-based interpolation of discrete terrain data onto transfinite function spaces. The function space is refined automatically by the use of image processing techniques to detect regions of high error and the flexibility of the transfinite interpolation to add degrees of freedom to these areas. Examples are shown of a section of the Palo Duro Canyon in northern Texas.

  16. ADJUSTMENT OF MORPHOMETRIC PARAMETERS OF WATER BASINS BASED ON DIGITAL TERRAIN MODELS

    Directory of Open Access Journals (Sweden)

    Krasil'nikov Vitaliy Mikhaylovich

    2012-10-01

    Full Text Available The authors argue that effective use of water resources requires accurate morphometric characteristics of water basins. Accurate parameters are needed to analyze their condition, and to assure their appropriate control and operation. Today multiple water basins need their morphometric characteristics to be adjusted and properly stored. The procedure employed so far is based on plane geometric horizontals depicted onto topographic maps. It is described in the procedural guidelines issued in respect of the «Application of water resource regulations governing the operation of waterworks facilities of power plants». The technology described there is obsolete due to the availability of specialized software. The computer technique is based on a digital terrain model. The authors provide an overview of the technique implemented at Rybinsk and Gorkiy water basins in this article. Thus, the digital terrain model generated on the basis of the field data is used at Gorkiy water basin, while the model based on maps and charts is applied at Rybinsk water basin. The authors believe that the software technique can be applied to any other water basin on the basis of the analysis and comparison of morphometric characteristics of the two water basins.

  17. GIS TECHNOLOGY AND TERRAIN ORTHOPHOTOMAP MAKING FOR MILITARY APPLICATION

    Directory of Open Access Journals (Sweden)

    Elshan Hashimov

    2017-11-01

    Full Text Available In this paper, it is shown that GIS and photogrammetry technologiyes, determination of searching target coordinates for the operational desicion making are very important for the military application, for the combat control. With aim of orthophotomap making of the terrain and identification of terrain supervision there has been constructed 3D model for choosen mountainous terrain of Azerbaijan Republic using GIS technology. Based on this model there has been obtained a terrain profile and carried out mapping. Using ArcGis software there has been investigated possibility remain control on obserbvable and unobservable parties of terrain on supervision line from supervision point to target point.

  18. GN and C Subsystem Concept for Safe Precision Landing of the Proposed Lunar MARE Robotic Science Mission

    Science.gov (United States)

    Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.; hide

    2016-01-01

    The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.

  19. Online stochastic UAV mission planning with time windows and time-sensitive targets

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.; Wagelmans, A.

    2014-01-01

    In this paper we simultaneously consider three extensions to the standard Orienteering Problem (OP) to model characteristics that are of practical relevance in planning reconnaissance missions of Unmanned Aerial Vehicles (UAVs). First, travel and recording times are uncertain. Secondly, the

  20. Draft Mission Plan Amendment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-01

    The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

  1. Draft Mission Plan Amendment

    International Nuclear Information System (INIS)

    1991-09-01

    The Department of Energy's Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation's spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs

  2. An Efficient Energy Constraint Based UAV Path Planning for Search and Coverage

    Directory of Open Access Journals (Sweden)

    German Gramajo

    2017-01-01

    Full Text Available A path planning strategy for a search and coverage mission for a small UAV that maximizes the area covered based on stored energy and maneuverability constraints is presented. The proposed formulation has a high level of autonomy, without requiring an exact choice of optimization parameters, and is appropriate for real-time implementation. The computed trajectory maximizes spatial coverage while closely satisfying terminal constraints on the position of the vehicle and minimizing the time of flight. Comparisons of this formulation to a path planning algorithm based on those with time constraint show equivalent coverage performance but improvement in prediction of overall mission duration and accuracy of the terminal position of the vehicle.

  3. Forest operations planning by using RTK-GPS based digital elevation model

    Directory of Open Access Journals (Sweden)

    Neşe Gülci

    2015-07-01

    Full Text Available Having large proportion of forests in mountainous terrain in Turkey, the logging methods that not only minimize operational costs but also minimize environmental damages should be determined in forest operations planning. In a case where necessary logging equipment and machines are available, ground slope is the most important factor in determining the logging method. For this reason, accurate, up to date, and precise ground slope data is very crucial in the success of forest operations planning. In recent years, high-resolution Digital Elevation Models (DEM can be generated for forested areas by using Real Time Kinematic (RTK GPS method and these DEMs can be used to develop precise slope maps. In this study, high-resolution DEM was developed by RTK-GPS method to generate precise slope map in a sample area. Then, the slope map was classified into slope classes specified by IUFRO in order to assist forest operations planning. According to the results, logging methods that are suitable for very steep and steep terrain conditions (i.e. skyline logging, cable pulling, and chute systems should be preferred in 48.1% of the study area. It was also found that logging methods that are suitable for terrain with medium slope (i.e. skidding and cable pulling and gentle slope (i.e. skidding and mobile winch should be preferred in 34.1% and 17.8% of the study area, respectively.

  4. Multi-year strategic plan for the Atmospheric Studies in Complex Terrain: ASCOT program

    International Nuclear Information System (INIS)

    1992-06-01

    The Atmospheric Studies in Complex Terrain (ASCOT) program was developed by the Office of Health and Environmental Research of the Office of Energy Research in the Department of Energy (DOE). The program was originally designed to study atmospheric process in regions of complex terrain and the impact of energy sources on air quality in those regions. The ASCOT program has been the principal atmospheric boundary layer research program of DOE. This document contains a description of the ASCOT program's objectives over the next five years and beyond, placing them in the context of current and anticipated needs of DOE and initiatives described in the National Energy Strategy

  5. Measuring distance “as the horse runs”: Cross-scale comparison of terrain-based metrics

    Science.gov (United States)

    Buttenfield, Barbara P.; Ghandehari, M; Leyk, S; Stanislawski, Larry V.; Brantley, M E; Qiang, Yi

    2016-01-01

    Distance metrics play significant roles in spatial modeling tasks, such as flood inundation (Tucker and Hancock 2010), stream extraction (Stanislawski et al. 2015), power line routing (Kiessling et al. 2003) and analysis of surface pollutants such as nitrogen (Harms et al. 2009). Avalanche risk is based on slope, aspect, and curvature, all directly computed from distance metrics (Gutiérrez 2012). Distance metrics anchor variogram analysis, kernel estimation, and spatial interpolation (Cressie 1993). Several approaches are employed to measure distance. Planar metrics measure straight line distance between two points (“as the crow flies”) and are simple and intuitive, but suffer from uncertainties. Planar metrics assume that Digital Elevation Model (DEM) pixels are rigid and flat, as tiny facets of ceramic tile approximating a continuous terrain surface. In truth, terrain can bend, twist and undulate within each pixel.Work with Light Detection and Ranging (lidar) data or High Resolution Topography to achieve precise measurements present challenges, as filtering can eliminate or distort significant features (Passalacqua et al. 2015). The current availability of lidar data is far from comprehensive in developed nations, and non-existent in many rural and undeveloped regions. Notwithstanding computational advances, distance estimation on DEMs has never been systematically assessed, due to assumptions that improvements are so small that surface adjustment is unwarranted. For individual pixels inaccuracies may be small, but additive effects can propagate dramatically, especially in regional models (e.g., disaster evacuation) or global models (e.g., sea level rise) where pixels span dozens to hundreds of kilometers (Usery et al 2003). Such models are increasingly common, lending compelling reasons to understand shortcomings in the use of planar distance metrics. Researchers have studied curvature-based terrain modeling. Jenny et al. (2011) use curvature to generate

  6. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  7. Physics-Based Robot Motion Planning in Dynamic Multi-Body Environments

    Science.gov (United States)

    2010-05-10

    until they’re not. Jean-Luc Picard (Star Trek : The Next Generation) viii Contents 1 Introduction 1 1.1 Approach...Planning in very rough terrain. In NASA Science Technology Conference 2007 (NSTC 2007), 2007. 10.2 [68] D.J. Montana. The kinematics of contact and grasp

  8. Contingency plans for the ISEE-3 libration-point mission

    Science.gov (United States)

    Dunham, D. W.

    1979-01-01

    During the planning stage of the International Sun-Earth Explorer-3 (ISEE-3) mission, a recovery strategy was developed in case the Delta rocket underperformed during the launch phase. If a large underburn had occurred, the ISEE-3 spacecraft would have been allowed to complete one revolution of its highly elliptical earth orbit. The recovery plan called for a maneuver near perigee to increase the energy of the off-nominal orbit; a relatively small second maneuver would then insert the spacecraft into a new transfer trajectory toward the desired halo orbit target, and a third maneuver would place the spacecraft in the halo orbit. Results of the study showed that a large range of underburns could be corrected for a total nominal velocity deviation cost within the ISEE-3 fuel budget.

  9. Payload operations management of a planned European SL-Mission employing establishments of ESA and national agencies

    Science.gov (United States)

    Joensson, Rolf; Mueller, Karl L.

    1994-01-01

    Spacelab (SL)-missions with Payload Operations (P/L OPS) from Europe involve numerous space agencies, various ground infrastructure systems and national user organizations. An effective management structure must bring together different entities, facilities and people, but at the same time keep interfaces, costs and schedule under strict control. This paper outlines the management concept for P/L OPS of a planned European SL-mission. The proposal draws on the relevant experience in Europe, which was acquired via the ESA/NASA mission SL-1, by the execution of two German SL-missions and by the involvement in, or the support of, several NASA-missions.

  10. A large-eddy simulation based power estimation capability for wind farms over complex terrain

    Science.gov (United States)

    Senocak, I.; Sandusky, M.; Deleon, R.

    2017-12-01

    There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.

  11. Toward efficient task assignment and motion planning for large-scale underwater missions

    Directory of Open Access Journals (Sweden)

    Somaiyeh MahmoudZadeh

    2016-10-01

    Full Text Available An autonomous underwater vehicle needs to possess a certain degree of autonomy for any particular underwater mission to fulfil the mission objectives successfully and ensure its safety in all stages of the mission in a large-scale operating field. In this article, a novel combinatorial conflict-free task assignment strategy, consisting of an interactive engagement of a local path planner and an adaptive global route planner, is introduced. The method takes advantage of the heuristic search potency of the particle swarm optimization algorithm to address the discrete nature of routing-task assignment approach and the complexity of nondeterministic polynomial-time-hard path planning problem. The proposed hybrid method is highly efficient as a consequence of its reactive guidance framework that guarantees successful completion of missions particularly in cluttered environments. To examine the performance of the method in a context of mission productivity, mission time management, and vehicle safety, a series of simulation studies are undertaken. The results of simulations declare that the proposed method is reliable and robust, particularly in dealing with uncertainties, and it can significantly enhance the level of a vehicle’s autonomy by relying on its reactive nature and capability of providing fast feasible solutions.

  12. Development of an End-to-End Active Debris Removal (ADR) Mission Strategic Plan

    Data.gov (United States)

    National Aeronautics and Space Administration — The original proposal was to develop an ADR mission strategic plan. However, the task was picked up by the OCT. Subsequently the award was de-scoped to $30K to...

  13. Stardust Entry: Landing and Population Hazards in Mission Planning and Operations

    Science.gov (United States)

    Desai, P.; Wawrzyniak, G.

    2006-01-01

    The 385 kg Stardust mission was launched on Feb 7, 1999 on a mission to collect samples from the tail of comet Wild 2 and from interplanetary space. Stardust returned to Earth in the early morning of January 15, 2006. The sample return capsule landed in the Utah Test and Training Range (UTTR) southwest of Salt Lake City. Because Stardust was landing on Earth, hazard analysis was required by the National Aeronautics and Space Administration, UTTR, and the Stardust Project to ensure the safe return of the landing capsule along with the safety of people, ground assets, and aircraft. This paper focuses on the requirements affecting safe return of the capsule and safety of people on the ground by investigating parameters such as probability of impacting on UTTR, casualty expectation, and probability of casualty. This paper introduces the methods for the calculation of these requirements and shows how they affected mission planning, site selection, and mission operations. By analyzing these requirements before and during entry it allowed for the selection of a robust landing point that met all of the requirements during the actual landing event.

  14. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain.

    Science.gov (United States)

    Deng, Yajun; Hu, Hongbing; Yu, Bo; Sun, Dongliang; Hou, Lei; Liang, Yongtu

    2018-01-15

    The rupture of a high-pressure natural gas pipeline can pose a serious threat to human life and environment. In this research, a method has been proposed to simulate the release of natural gas from the rupture of high-pressure pipelines in any terrain. The process of gas releases from the rupture of a high-pressure pipeline is divided into three stages, namely the discharge, jet, and dispersion stages. Firstly, a discharge model is established to calculate the release rate of the orifice. Secondly, an improved jet model is proposed to obtain the parameters of the pseudo source. Thirdly, a fast-modeling method applicable to any terrain is introduced. Finally, based upon these three steps, a dispersion model, which can take any terrain into account, is established. Then, the dispersion scenarios of released gas in four different terrains are studied. Moreover, the effects of pipeline pressure, pipeline diameter, wind speed and concentration of hydrogen sulfide on the dispersion scenario in real terrain are systematically analyzed. The results provide significant guidance for risk assessment and contingency planning of a ruptured natural gas pipeline. Copyright © 2017. Published by Elsevier B.V.

  15. Designing and Implementing a Distributed System Architecture for the Mars Rover Mission Planning Software (Maestro)

    Science.gov (United States)

    Goldgof, Gregory M.

    2005-01-01

    Distributed systems allow scientists from around the world to plan missions concurrently, while being updated on the revisions of their colleagues in real time. However, permitting multiple clients to simultaneously modify a single data repository can quickly lead to data corruption or inconsistent states between users. Since our message broker, the Java Message Service, does not ensure that messages will be received in the order they were published, we must implement our own numbering scheme to guarantee that changes to mission plans are performed in the correct sequence. Furthermore, distributed architectures must ensure that as new users connect to the system, they synchronize with the database without missing any messages or falling into an inconsistent state. Robust systems must also guarantee that all clients will remain synchronized with the database even in the case of multiple client failure, which can occur at any time due to lost network connections or a user's own system instability. The final design for the distributed system behind the Mars rover mission planning software fulfills all of these requirements and upon completion will be deployed to MER at the end of 2005 as well as Phoenix (2007) and MSL (2009).

  16. Irregular Morphing for Real-Time Rendering of Large Terrain

    Directory of Open Access Journals (Sweden)

    S. Kalem

    2016-06-01

    Full Text Available The following paper proposes an alternative approach to the real-time adaptive triangulation problem. A new region-based multi-resolution approach for terrain rendering is described which improves on-the-fly the distribution of the density of triangles inside the tile after selecting appropriate Level-Of-Detail by an adaptive sampling. This proposed approach organizes the heightmap into a QuadTree of tiles that are processed independently. This technique combines the benefits of both Triangular Irregular Network approach and region-based multi-resolution approach by improving the distribution of the density of triangles inside the tile. Our technique morphs the initial regular grid of the tile to deformed grid in order to minimize approximation error. The proposed technique strives to combine large tile size and real-time processing while guaranteeing an upper bound on the screen space error. Thus, this approach adapts terrain rendering process to local surface characteristics and enables on-the-fly handling of large amount of terrain data. Morphing is based-on the multi-resolution wavelet analysis. The use of the D2WT multi-resolution analysis of the terrain height-map speeds up processing and permits to satisfy an interactive terrain rendering. Tests and experiments demonstrate that Haar B-Spline wavelet, well known for its properties of localization and its compact support, is suitable for fast and accurate redistribution. Such technique could be exploited in client-server architecture for supporting interactive high-quality remote visualization of very large terrain.

  17. Planning the FUSE Mission Using the SOVA Algorithm

    Science.gov (United States)

    Lanzi, James; Heatwole, Scott; Ward, Philip R.; Civeit, Thomas; Calvani, Humberto; Kruk, Jeffrey W.; Suchkov, Anatoly

    2011-01-01

    Three documents discuss the Sustainable Objective Valuation and Attainability (SOVA) algorithm and software as used to plan tasks (principally, scientific observations and associated maneuvers) for the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. SOVA is a means of managing risk in a complex system, based on a concept of computing the expected return value of a candidate ordered set of tasks as a product of pre-assigned task values and assessments of attainability made against qualitatively defined strategic objectives. For the FUSE mission, SOVA autonomously assembles a week-long schedule of target observations and associated maneuvers so as to maximize the expected scientific return value while keeping the satellite stable, managing the angular momentum of spacecraft attitude- control reaction wheels, and striving for other strategic objectives. A six-degree-of-freedom model of the spacecraft is used in simulating the tasks, and the attainability of a task is calculated at each step by use of strategic objectives as defined by use of fuzzy inference systems. SOVA utilizes a variant of a graph-search algorithm known as the A* search algorithm to assemble the tasks into a week-long target schedule, using the expected scientific return value to guide the search.

  18. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    International Nuclear Information System (INIS)

    Dunford, Gary; Williams, David; Smith, Rick

    2013-01-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  19. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  20. Payload/orbiter contamination control requirement study: Preliminary contamination mission support plan. [a management analysis of project planning of spacecraft sterilization

    Science.gov (United States)

    Bareiss, L. E.; Hooper, V. W.; Ress, E. B.

    1976-01-01

    Progress is reported on the mission support plan and those support activities envisioned to be applicable and necessary during premission and postmission phases of the Spacelab program. The purpose, role, and requirements of the contamination control operations for the first two missions of the Spacelab equipped Space Transportation System are discussed. The organization of the contamination control operation and its relationship to and interfaces with other mission support functions is also discussed. Some specific areas of contamination to be investigated are treated. They are: (1) windows and viewports, (2) experiment equipment, (3) thermal control surfaces, (4) the contaminant induced atmosphere (as differentiated from the normal ambient atmosphere at the orbit altitude), and (5) optical navigation instruments.

  1. A method for separation of the terrain and non-terrain from Vehicle-borne Laser Scanning Data

    International Nuclear Information System (INIS)

    Wei, Jiangxia; Zhong, Ruofei

    2014-01-01

    Half the points from vehicle-borne laser scanning data are terrain data. If you want to extract features such as trees, street lights and buildings, terrain points must be removed. Nowadays, either airborne or vehicle-borne laser data, are mostly used to set an elevation threshold based on the scanning line or POS data to determine whether the point is a terrain point or not, but the disadvantage is part of low buildings or other feature objects will be lost. If the study area has high differences in the horizontal or the forward direction, this method is not applicable. This paper investigates a new methodology to extract the terrain points, which has great significance for data reduction and classification. The procedure includes the following steps: 1)Pre-processing: to remove discrete points and abnormal points. 2) Divided all the points into grid, calculating the average value of the XY and the minimum value of the Z of all the points in the same grid as the central point of the grid.3) Choose nearest six points which are close to the centre point to fitting the quadratic surface.4)Compare the normal vector of the fitting surface of the grid to the normal vector of the 8-neighborhood, if the difference is too big, it will be smoothed.5) Determine whether the point in the grid is on the surface, if the point belongs to the surface, it will be classified as terrain point. The results and evaluation have shown the effectiveness of the method and its potential in separation of the terrain of various areas

  2. Terrain Simplification Research in Augmented Scene Modeling

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    environment. As one of the most important tasks in augmented scene modeling, terrain simplification research has gained more and more attention. In this paper, we mainly focus on point selection problem in terrain simplification using triangulated irregular network. Based on the analysis and comparison of traditional importance measures for each input point, we put forward a new importance measure based on local entropy. The results demonstrate that the local entropy criterion has a better performance than any traditional methods. In addition, it can effectively conquer the "short-sight" problem associated with the traditional methods.

  3. Gravity Terrain Effect of the Seafloor Topography in Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong Tai-Rong Guo

    2007-01-01

    Full Text Available Gravity terrain correction is used to compensate for the gravitational effects of the topography residual to the Bouguer plate. The seafloor topography off the eastern offshore of Taiwan is extremely rugged, and the depth of the sea bottom could be greater than 5000 m. In order to evaluate the terrain effect caused by the seafloor topography, a modern computer algorithm is used to calculate the terrain correction based on the digital elevation model (DEM.

  4. Exploring Ocean-World Habitability within the Planned Europa Clipper Mission

    Science.gov (United States)

    Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.

    2017-12-01

    A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of

  5. Method for Measuring the Information Content of Terrain from Digital Elevation Models

    Directory of Open Access Journals (Sweden)

    Lujin Hu

    2015-10-01

    Full Text Available As digital terrain models are indispensable for visualizing and modeling geographic processes, terrain information content is useful for terrain generalization and representation. For terrain generalization, if the terrain information is considered, the generalized terrain may be of higher fidelity. In other words, the richer the terrain information at the terrain surface, the smaller the degree of terrain simplification. Terrain information content is also important for evaluating the quality of the rendered terrain, e.g., the rendered web terrain tile service in Google Maps (Google Inc., Mountain View, CA, USA. However, a unified definition and measures for terrain information content have not been established. Therefore, in this paper, a definition and measures for terrain information content from Digital Elevation Model (DEM, i.e., a digital model or 3D representation of a terrain’s surface data are proposed and are based on the theory of map information content, remote sensing image information content and other geospatial information content. The information entropy was taken as the information measuring method for the terrain information content. Two experiments were carried out to verify the measurement methods of the terrain information content. One is the analysis of terrain information content in different geomorphic types, and the results showed that the more complex the geomorphic type, the richer the terrain information content. The other is the analysis of terrain information content with different resolutions, and the results showed that the finer the resolution, the richer the terrain information. Both experiments verified the reliability of the measurements of the terrain information content proposed in this paper.

  6. Estimating Soil Displacement from Timber Extraction Trails in Steep Terrain: Application of an Unmanned Aircraft for 3D Modelling

    Directory of Open Access Journals (Sweden)

    Marek Pierzchała

    2014-06-01

    Full Text Available Skid trails constructed for timber extraction in steep terrain constitute a serious environmental concern if not well planned, executed and ameliorated. Carrying out post-harvest surveys in monitoring constructed trails in such terrain is an onerous task for forest administrators, as hundreds of meters need to be surveyed per site, and the quantification of parameters and volumes is largely based on assumptions of trail symmetry and terrain uniformity. In this study, aerial imagery captured from a multi-rotor Unmanned Aerial Vehicle was used in generating a detailed post-harvest terrain model which included all skid trails. This was then compared with an Airborne Laser Scanning derived pre-harvest terrain model and the dimensions, slopes and cut-and-fill volumes associated with the skid trails were determined. The overall skid trail length was 954 m, or 381 m·ha−1 with segments varying from 40–60 m, inclinations from 3.9% to 9.6%, and cut volumes, from 1.7 to 3.7 m3 per running meter. The methods used in this work can be used in rapidly assessing the extent of disturbance and erosion risk on a wide range of sites. The multi-rotor Unmanned Aerial Vehicle (UAV was found to be highly suited to the task, given the relatively small size of harvested stands, their shape and their location in the mountainous terrain.

  7. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    OpenAIRE

    J. Dong; Z. Sun; W. Rao; Y. Jia; L. Meng; C. Wang; B. Chen

    2017-01-01

    An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achiev...

  8. Photometric diversity of terrains on Triton

    Science.gov (United States)

    Hillier, J.; Veverka, J.; Helfenstein, P.; Lee, P.

    1994-01-01

    Voyager disk-resolved images of Triton in the violet (0.41 micrometers) and green (0.56 micrometer wavelengths have been analyzed to derive the photometric characteristics of terrains on Triton. Similar conclusions are found using two distinct but related definitions of photometric units, one based on color ratio and albedo properties (A. S. McEwen, 1990), the other on albedo and brightness ratios at different phase angles (P. Lee et al., 1992). A significant diversity of photometric behavior, much broader than that discovered so far on any other icy satellite, occurs among Triton's terrains. Remarkably, differences in photometric behavior do not correlate well with geologic terrain boundaries defined on the basis of surface morphology. This suggests that in most cases photometric properties on Triton are controlled by thin deposits superposed on underlying geologic units. Single scattering albedos are 0.98 or higher and asymmetry factors range from -0.35 to -0.45 for most units. The most distinct scattering behavior is exhibited by the reddish northern units already identified as the Anomalously Scattering Region (ASR), which scatters light almost isotropically with g = -0.04. In part due to the effects of Triton's clouds and haze, it is difficult to constrain the value of bar-theta, Hapke's macroscopic roughness parameter, precisely for Triton or to map differences in bar-theta among the different photometric terrains. However, our study shows that Triton must be relatively smooth, with bar-theta less than 15-20 degs and suggests that a value of 14 degs is appropriate. The differences in photometric characteristics lead to significantly different phase angle behavior for the various terrains. For example, a terrain (e.g., the ASR) that appears dark relative to another at low phase angles will reverse its contrast (become relatively brighter) at larger phase angles. The photometric parameters have been used to calculate hemispherical albedos for the units and to

  9. On characterizing terrain visibility graphs

    Directory of Open Access Journals (Sweden)

    William Evans

    2015-06-01

    Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.

  10. 3D Fractal reconstruction of terrain profile data based on digital elevation model

    International Nuclear Information System (INIS)

    Huang, Y.M.; Chen, C.-J.

    2009-01-01

    Digital Elevation Model (DEM) often makes it difficult for terrain reconstruction and data storage due to the failure in acquisition of details with higher resolution. If original terrain of DEM can be simulated, resulting in geographical details can be represented precisely while reducing the data size, then an effective reconstruction scheme is essential. This paper adopts two sets of real-world 3D terrain profile data to proceed data reducing, i.e. data sampling randomly, then reconstruct them through 3D fractal reconstruction. Meanwhile, the quantitative and qualitative difference generated from different reduction rates were evaluated statistically. The research results show that, if 3D fractal interpolation method is applied to DEM reconstruction, the higher reduction rate can be obtained for DEM of larger data size with respect to that of smaller data size under the assumption that the entire terrain structure is still maintained.

  11. Estimating Slopes In Images Of Terrain By Use Of BRDF

    Science.gov (United States)

    Scholl, Marija S.

    1995-01-01

    Proposed method of estimating slopes of terrain features based on use of bidirectional reflectivity distribution function (BRDF) in analyzing aerial photographs, satellite video images, or other images produced by remote sensors. Estimated slopes integrated along horizontal coordinates to obtain estimated heights; generating three-dimensional terrain maps. Method does not require coregistration of terrain features in pairs of images acquired from slightly different perspectives nor requires Sun or other source of illumination to be low in sky over terrain of interest. On contrary, best when Sun is high. Works at almost all combinations of illumination and viewing angles.

  12. STS-52 Mission Specialist (MS) Jernigan during food planning session at JSC

    Science.gov (United States)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Tamara E. Jernigan sips a beverage from a plastic container using a straw. She appears to be pondering what beverages she would like to have on her 10-day flight this coming autumn. Other crewmembers joined Jernigan for this food planning session conducted by JSC's Man-Systems Division.

  13. Numerical simulation of flow over bariers in complex terrain

    Czech Academy of Sciences Publication Activity Database

    Bodnár, Tomáš; Beneš, L.; Kozel, Karel

    2008-01-01

    Roč. 31, 5-6 (2008), s. 619-632 ISSN 1124-1896 R&D Projects: GA AV ČR 1ET400760405 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary layer * complex terrain * finite difference Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.277, year: 2008 http://prometeo.sif.it:8080/papers/?pid=ncc9331

  14. The application of the right rectangular prism in the process determining the value of terrain correction

    Directory of Open Access Journals (Sweden)

    Odalović Oleg R.

    2015-01-01

    Full Text Available The effects of topographic masses on gravity were determined for the territory of Serbia by using the digital terrain model with resolution of 1 arch second in both directions. For the effect of distant masses, i.e. masses that are out of the territory of Serbia, a global digital model SRTM (Shuttle Radar Topography Mission was used. All the topography masses were divided by using a right rectangle prism and classic terrain corrections was applied. Special attention was dedicated to the curvatures of the Earth surface and singularity points, where equations for first partial derivatives of prism gravity potential are not defined.

  15. Automatic Computer Mapping of Terrain

    Science.gov (United States)

    Smedes, H. W.

    1971-01-01

    Computer processing of 17 wavelength bands of visible, reflective infrared, and thermal infrared scanner spectrometer data, and of three wavelength bands derived from color aerial film has resulted in successful automatic computer mapping of eight or more terrain classes in a Yellowstone National Park test site. The tests involved: (1) supervised and non-supervised computer programs; (2) special preprocessing of the scanner data to reduce computer processing time and cost, and improve the accuracy; and (3) studies of the effectiveness of the proposed Earth Resources Technology Satellite (ERTS) data channels in the automatic mapping of the same terrain, based on simulations, using the same set of scanner data. The following terrain classes have been mapped with greater than 80 percent accuracy in a 12-square-mile area with 1,800 feet of relief; (1) bedrock exposures, (2) vegetated rock rubble, (3) talus, (4) glacial kame meadow, (5) glacial till meadow, (6) forest, (7) bog, and (8) water. In addition, shadows of clouds and cliffs are depicted, but were greatly reduced by using preprocessing techniques.

  16. Fully automatic guidance and control for rotorcraft nap-of-the-Earth flight following planned profiles. Volume 1: Real-time piloted simulation

    Science.gov (United States)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  17. Prospects of the ICESat-2 Laser Altimetry Mission for Savanna Ecosystem Structural Studies Based on Airborne Simulation Data

    Science.gov (United States)

    Gwenzi, David; Lefsky, Michael A.; Suchdeo, Vijay P.; Harding, David J.

    2016-01-01

    The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics r(sub 2) and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices r(sub 2) ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the

  18. TWRS retrieval and storage mission. Immobilized low-activity waste disposal plan

    International Nuclear Information System (INIS)

    Shade, J.W.

    1998-01-01

    The TWRS mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the encapsulated cesium and strontium) in a safe, environmentally sound, and cost-effective manner (TWRS JMN Justification for mission need). The mission includes retrieval, pretreatment, immobilization, interim storage and disposal, and tank closure. As part of this mission, DOE has established the TWRS Office to manage all Hanford Site tank waste activities. The TWRS program has identified the need to store, treat, immobilize, and dispose of the highly radioactive Hanford Site tank waste and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost-effective manner. To support environmental remediation and restoration at the Hanford Site a two-phase approach to using private contractors to treat and immobilize the low-activity and high-level waste currently stored in underground tanks is planned. The request for proposals (RFP) for the first phase of waste treatment and immobilization was issued in February 1996 (Wagoner 1996) and initial contracts for two private contractor teams led by British Nuclear Fuels Ltd. and Lockheed-Martin Advanced Environmental Services were signed in September 1996. Phase 1 is a proof-of-concept and commercial demonstration effort to demonstrate the technical and business feasibility of using private facilities to treat Hanford Site waste, maintain radiological, nuclear, process, and occupational safety; and maintain environmental protection and compliance while reducing lifecycle costs and waste treatment times. Phase 1 production of ILAW is planned to begin in June 2002 and could treat up to about 13 percent of the waste. Phase 1 production is expected to be completed in 2007 for minimum order quantities or 2011 for maximum order quantities. Phase 2 is a full-scale production effort that will begin after Phase 1 and treat and immobilize most of the waste. Phase 2 production is

  19. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  20. Generating color terrain images in an emergency response system

    International Nuclear Information System (INIS)

    Belles, R.D.

    1985-08-01

    The Atmospheric Release Advisory Capability (ARAC) provides real-time assessments of the consequences resulting from an atmospheric release of radioactive material. In support of this operation, a system has been created which integrates numerical models, data acquisition systems, data analysis techniques, and professional staff. Of particular importance is the rapid generation of graphical images of the terrain surface in the vicinity of the accident site. A terrain data base and an associated acquisition system have been developed that provide the required terrain data. This data is then used as input to a collection of graphics programs which create and display realistic color images of the terrain. The graphics system currently has the capability of generating color shaded relief images from both overhead and perspective viewpoints within minutes. These images serve to quickly familiarize ARAC assessors with the terrain near the release location, and thus permit them to make better informed decisions in modeling the behavior of the released material. 7 refs., 8 figs

  1. Are Titan's radial Labyrinth terrains surface expressions of large laccoliths?

    Science.gov (United States)

    Schurmeier, L.; Dombard, A. J.; Malaska, M.; Radebaugh, J.

    2017-12-01

    The Labyrinth terrain unit may be the one of the best examples of the surface expression of Titan's complicated history. They are characterized as highly eroded, dissected, and elevated plateaus and remnant ridges, with an assumed composition that is likely organic-rich based on radar emissivity. How these features accumulated organic-rich sediments and formed topographic highs by either locally uplifting or surviving pervasive regional deflation or erosion is an important question for understanding the history of Titan. There are several subsets of Labyrinth terrains, presumably with differing evolutionary histories and formation processes. We aim to explain the formation of a subset of Labyrinth terrain units informally referred to as "radial Labyrinth terrains." They are elevated and appear dome-like, circular in planform, have a strong radial dissection pattern, are bordered by Undifferentiated Plains units, and are found in the mid-latitudes. Based on their shape, clustering, and dimensions, we suggest that they may be the surface expression of large subsurface laccoliths. A recent study by Manga and Michaut (Icarus, 2017) explained Europa's lenticulae (pits, domes, spots) with the formation of saucer-shaped sills that form laccoliths around the brittle-ductile transition depth within the ice shell (1-5 km). Here, we apply the same scaling relationships and find that the larger size of radial labyrinth terrains with Titan's higher gravity implies deeper intrusion depths of around 20-40 km. This intrusion depth matches the expected brittle-ductile transition on Titan based on our finite element simulations and yield strength envelope analyses. We hypothesize that Titan's radial labyrinth terrains formed as cryovolcanic (water) intrusions that rose to the brittle-ductile transition within the ice shell where they spread horizontally, and uplifted the overlying ice. The organic-rich sedimentary cover also uplifted, becoming more susceptible to pluvial and fluvial

  2. An Analysis of the Mission and Vision Statements on the Strategic Plans of Higher Education Institutions

    Science.gov (United States)

    Ozdem, Guven

    2011-01-01

    This study aimed to analyze the mission and vision statements on the strategic plans of higher education institutions. The sample of the study consisted of 72 public universities. Strategic plans of the universities were accessed over the internet, and the data collected were analyzed using content analysis. The findings show that statements on…

  3. Probing the Terrain

    DEFF Research Database (Denmark)

    Johannessen, Runa

    2016-01-01

    Whether manifest in built structures or invisible infrastructures, architectures of control in the occupied Palestinian West Bank is structurally defined by endemic uncertainty. Shifting lines and frontiers are recorded on the terrain, creating elastic zones of uncertainty necessitating navigatio...... to the territory through its lines and laws, and how the very structure of the occupation has changed over the years, I seek to make visible the ways in which architectures of uncertainty compensate for the fleeting terrain that HH is probing.......Whether manifest in built structures or invisible infrastructures, architectures of control in the occupied Palestinian West Bank is structurally defined by endemic uncertainty. Shifting lines and frontiers are recorded on the terrain, creating elastic zones of uncertainty necessitating...

  4. Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    Science.gov (United States)

    2016-08-02

    Mechergui, Srinivas Sanikommu UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28138) Outline • Motivation ...Distribution Statement A. Approved for public release; distribution is unlimited. (#28138) Motivation /NRMM • Mobility measures include: – Speed-made...Index (CI). – Terrain uphill grade. • Rest of the terrain parameters will be considered in future work. 4 Terrain map (22 km x 22 km) colored by

  5. Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model

    Science.gov (United States)

    Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.

    2017-12-01

    Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and

  6. Self-Supervised Learning of Terrain Traversability from Proprioceptive Sensors

    Science.gov (United States)

    Bajracharya, Max; Howard, Andrew B.; Matthies, Larry H.

    2009-01-01

    Robust and reliable autonomous navigation in unstructured, off-road terrain is a critical element in making unmanned ground vehicles a reality. Existing approaches tend to rely on evaluating the traversability of terrain based on fixed parameters obtained via testing in specific environments. This results in a system that handles the terrain well that it trained in, but is unable to process terrain outside its test parameters. An adaptive system does not take the place of training, but supplements it. Whereas training imprints certain environments, an adaptive system would imprint terrain elements and the interactions amongst them, and allow the vehicle to build a map of local elements using proprioceptive sensors. Such sensors can include velocity, wheel slippage, bumper hits, and accelerometers. Data obtained by the sensors can be compared to observations from ranging sensors such as cameras and LADAR (laser detection and ranging) in order to adapt to any kind of terrain. In this way, it could sample its surroundings not only to create a map of clear space, but also of what kind of space it is and its composition. By having a set of building blocks consisting of terrain features, a vehicle can adapt to terrain that it has never seen before, and thus be robust to a changing environment. New observations could be added to its library, enabling it to infer terrain types that it wasn't trained on. This would be very useful in alien environments, where many of the physical features are known, but some are not. For example, a seemingly flat, hard plain could actually be soft sand, and the vehicle would sense the sand and avoid it automatically.

  7. Declarative Terrain Modeling for Military Training Games

    Directory of Open Access Journals (Sweden)

    Ruben M. Smelik

    2010-01-01

    Full Text Available Military training instructors increasingly often employ computer games to train soldiers in all sorts of skills and tactics. One of the difficulties instructors face when using games as a training tool is the creation of suitable content, including scenarios, entities, and corresponding terrain models. Terrain plays a key role in many military training games, as for example, in our case game Tactical Air Defense. However, current manual terrain editors are both too complex and too time-consuming to be useful for instructors; automatic terrain generation methods show a lot of potential, but still lack user control and intuitive editing capabilities. We present a novel way for instructors to model terrain for their training games: instead of constructing a terrain model using complex modeling tools, instructors can declare the required properties of their terrain using an advanced sketching interface. Our framework integrates terrain generation methods and manages dependencies between terrain features in order to automatically create a complete 3D terrain model that matches the sketch. With our framework, instructors can easily design a large variety of terrain models that meet their training requirements.

  8. Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning

    Science.gov (United States)

    Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.

    2001-07-01

    This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.

  9. Environmental impacts of forest road construction on mountainous terrain.

    Science.gov (United States)

    Caliskan, Erhan

    2013-03-15

    Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.

  10. Environmental Impacts of Forest Road Construction on Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Erhan Caliskan

    2013-03-01

    Full Text Available Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2 and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient and very steep terrain (51-80% gradient. Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.

  11. Flight mission control for multiple spacecraft

    Science.gov (United States)

    Ryan, Robert E.

    1990-10-01

    A plan developed by the Jet Propulsion Laboratory for mission control of unmanned spacecraft is outlined. A technical matrix organization from which, in the past, project teams were formed to uniquely support a mission is replaced in this new plan. A cost effective approach was needed to make best use of limited resources. Mission control is a focal point operations and a good place to start a multimission concept. Co-location and sharing common functions are the keys to obtaining efficiencies at minimum additional risk. For the projects, the major changes are sharing a common operations area and having indirect control of personnel. The plan identifies the still direct link for the mission control functions. Training is a major element in this plan. Personnel are qualified for a position and certified for a mission. This concept is more easily accepted by new missions than the ongoing missions.

  12. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors.

    Science.gov (United States)

    Besada, Juan A; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; López-Araquistain, Jaime; Bernardos, Ana M; Casar, José R

    2018-04-11

    This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control.

  13. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    Science.gov (United States)

    Leitold, Veronika; Keller, Michael; Morton, Douglas C; Cook, Bruce D; Shimabukuro, Yosio E

    2015-12-01

    Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m -2 ) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m -2 , 4 m -2 , 2 m -2 and 1 m -2 ) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m -2 , the bias in height estimates translated into errors of 80-125 Mg ha -1 in predicted aboveground biomass. Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

  14. Treinta y Tres stratigraphic terrain: ex Cuchilla Dionisio terrain. Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.

    2010-01-01

    From 1998 we are discussing if the eastern area of ZCSB is an allochtonous block named TCD or if it belongs to Dom Feliciano belt with an age of 500 - 700 Ma. This crustal block is difficult to study because Laguna Merin Graben cut it in two around 4000 k m2 crustal fragments distant s more de 100 km between them. Southern block which was named T PE by Masquelín (2006) was demonstrated as allochtonous by Bossi and Gaucher (2004) destroying the Cdf model but seriously complicating the stratigraphic terminology. It is proposed to do some changes in order to profit the general agreement about allochtomy. The CDT with change by Treinta y Tres terrane; T PE become sub - terrain Punta del Este; sub - terrain Cuchilla Dionisio for the septetrional block. From 1998 we are discussing if the eastern area of ZCSB is an allochtonous block named TCD or if it belongs to Dom Feliciano belt with an age of 500 - 700 Ma. This crustal block is difficult to study because Laguna Merín Graben cut it in two around 4000 k m2 crustal fragments distant s more de 100 km between them. Southern block which was named T PE by Masquelín (2006) was demonstrated as allochtonous by Bossi and Gaucher (2004) destroying the CDF model but seriously complicating the stratigraphic terminology. It is proposed to do some changes in order to profit the general agreement about allochtomy. The CDT with change by Treinta y Tres terrain; TPE become sub - terrain Punta del Este; sub - terrain Cuchilla Dionisio for the septetrional block

  15. The Chang'e 3 Mission Overview

    Science.gov (United States)

    Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan

    2015-07-01

    The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.

  16. Cooperative Robot Teams Applied to the Site Preparation Task

    International Nuclear Information System (INIS)

    Parker, LE

    2001-01-01

    Prior to human missions to Mars, infrastructures on Mars that support human survival must be prepared. robotic teams can assist in these advance preparations in a number of ways. This paper addresses one of these advance robotic team tasks--the site preparation task--by proposing a control structure that allows robot teams to cooperatively solve this aspect of infrastructure preparation. A key question in this context is determining how robots should make decisions on which aspect of the site preparation t6ask to address throughout the mission, especially while operating in rough terrains. This paper describes a control approach to solving this problem that is based upon the ALLIANCE architecture, combined with performance-based rough terrain navigation that addresses path planning and control of mobile robots in rough terrain environments. They present the site preparation task and the proposed cooperative control approach, followed by some of the results of the initial testing of various aspects of the system

  17. Passivity-based model predictive control for mobile vehicle motion planning

    CERN Document Server

    Tahirovic, Adnan

    2013-01-01

    Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and  • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimi...

  18. Bomber Deterrence Missions: Criteria To Evaluate Mission Effectiveness

    Science.gov (United States)

    2016-02-16

    international security, the practice of general deterrence usually occurs when nations feel insecure , suspicious or even hostility towards them but...both a deterrence and assurance mission even though it was not planned or advertised as such. Since the intent of this mission was partly perceived

  19. Interactive Editing of GigaSample Terrain Fields

    KAUST Repository

    Treib, Marc

    2012-05-01

    Previous terrain rendering approaches have addressed the aspect of data compression and fast decoding for rendering, but applications where the terrain is repeatedly modified and needs to be buffered on disk have not been considered so far. Such applications require both decoding and encoding to be faster than disk transfer. We present a novel approach for editing gigasample terrain fields at interactive rates and high quality. To achieve high decoding and encoding throughput, we employ a compression scheme for height and pixel maps based on a sparse wavelet representation. On recent GPUs it can encode and decode up to 270 and 730 MPix/s of color data, respectively, at compression rates and quality superior to JPEG, and it achieves more than twice these rates for lossless height field compression. The construction and rendering of a height field triangulation is avoided by using GPU ray-casting directly on the regular grid underlying the compression scheme. We show the efficiency of our method for interactive editing and continuous level-of-detail rendering of terrain fields comprised of several hundreds of gigasamples. © 2012 The Author(s).

  20. Sample Handling Considerations for a Europa Sample Return Mission: An Overview

    Science.gov (United States)

    Fries, M. D.; Calaway, M. L.; Evans, C. A.; McCubbin, F. M.

    2015-01-01

    The intent of this abstract is to provide a basic overview of mission requirements for a generic Europan plume sample return mission, based on NASA Curation experience in NASA sample return missions ranging from Apollo to OSIRIS-REx. This should be useful for mission conception and early stage planning. We will break the mission down into Outbound and Return legs and discuss them separately.

  1. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, Virginia; Cercy, Michael [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Hall, Irin [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)

    2013-07-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  2. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    International Nuclear Information System (INIS)

    Magoulas, Virginia; Cercy, Michael; Hall, Irin

    2013-01-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  3. NPSNET: Dynamic Terrain and Cultured Feature Depiction

    Science.gov (United States)

    1992-09-01

    defaults. bridge(terrain *ptr, vertex pos, bridge mattype bmat ); This constructor takes only the pointer to the underlying terrain, a placement, and a...material to use for construction. bridge(terrain *ptr, vertex pos, bridge-mattype bmat , float dir); This constructor takes a terrain pointer, a...placement position, a material to use, and a direction to run. bridge(terrain *ptr, vertex pos, bridge-mattype bmat , float dir, float width, float height

  4. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2014-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  5. Robust UAV mission planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissance

  6. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  7. Robust UAV Mission Planning

    NARCIS (Netherlands)

    L. Evers (Lanah); T.A.B. Dollevoet (Twan); A.I. Barros (Ana); H. Monsuur (Herman)

    2011-01-01

    textabstractUnmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  8. Pre-analysis techniques applied to area-based correlation aiming Digital Terrain Model generation

    Directory of Open Access Journals (Sweden)

    Maurício Galo

    2005-12-01

    Full Text Available Area-based matching is an useful procedure in some photogrammetric processes and its results are of crucial importance in applications such as relative orientation, phototriangulation and Digital Terrain Model generation. The successful determination of correspondence depends on radiometric and geometric factors. Considering these aspects, the use of procedures that previously estimate the quality of the parameters to be computed is a relevant issue. This paper describes these procedures and it is shown that the quality prediction can be computed before performing matching by correlation, trough the analysis of the reference window. This procedure can be incorporated in the correspondence process for Digital Terrain Model generation and Phototriangulation. The proposed approach comprises the estimation of the variance matrix of the translations from the gray levels in the reference window and the reduction of the search space using the knowledge of the epipolar geometry. As a consequence, the correlation process becomes more reliable, avoiding the application of matching procedures in doubtful areas. Some experiments with simulated and real data are presented, evidencing the efficiency of the studied strategy.

  9. Local-scale stratigraphy of grooved terrain on Ganymede

    Science.gov (United States)

    Murchie, Scott L.; Head, James W.; Helfenstein, Paul; Plescia, Jeffrey B.

    1987-01-01

    The surface of the Jovian satellite, Ganymede, is divided into two main units, dark terrain cut by arcuate and subradial furrows, and light terrain consisting largely of areas with pervasive U-shaped grooves. The grooved terrain may be subdivided on the basis of pervasive morphology of groove domains into four terrain types: (1) elongate bands of parallel grooves (groove lanes); (2) polygonal domains of parallel grooves (grooved polygons); (3) polygonal domains of two orthogonal groove sets (reticulate terrain); and (4) polygons having two to several complexly cross-cutting groove sets (complex grooved terrain). Reticulate terrain is frequently dark and not extensively resurfaced, and grades to a more hummocky terrain type. The other three grooved terrain types have almost universally been resurfaced by light material during their emplacement. The sequence of events during grooved terrain emplacement has been investigated. An attempt is made to integrate observed geologic and tectonic patterns to better constrain the relative ages and styles of emplacement of grooved terrain types. A revised model of grooved terrain emplacement is proposed and is tested using detailed geologic mapping and measurement of crater density.

  10. Flying Fast and High: Operational Flight Planning for Maximum Data Return for Airborne Snow Observatory Mountain Surveys

    Science.gov (United States)

    Berisford, D. F.; Painter, T. H.; Richardson, M.; Wallach, A.; Deems, J. S.; Bormann, K. J.

    2017-12-01

    The Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) uses an airborne laser scanner to map snow depth, and imaging spectroscopy to map snow albedo in order to estimate snow water equivalent and melt rate over mountainous, hydrologic basin-scale areas. Optimization of planned flight lines requires the balancing of many competing factors, including flying altitude and speed, bank angle limitation, laser pulse rate and power level, flightline orientation relative to terrain, surface optical properties, and data output requirements. These variables generally distill down to cost vs. higher resolution data. The large terrain elevation variation encountered in mountainous terrain introduces the challenge of narrow swath widths over the ridgetops, which drive tight flightline spacing and possible dropouts over the valleys due to maximum laser range. Many of the basins flown by ASO exceed 3,000m of elevation relief, exacerbating this problem. Additionally, sun angle may drive flightline orientations for higher-quality spectrometer data, which may change depending on time of day. Here we present data from several ASO missions, both operational and experimental, showing the lidar performance and accuracy limitations for a variety of operating parameters. We also discuss flightline planning strategies to maximize data density return per dollar, and a brief analysis on the effect of short turn times/steep bank angles on GPS position accuracy.

  11. Exception detection and handling in mission control for mobile robots

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Andersen, Nils Axel; Ravn, Ole

    2013-01-01

    This paper introduces a method for robust, rule-based mission control for mobile robots in a modular framework. Due to the modularity of the framework, it is possible to use both hierarchical control and reactive behavior seamlessly to find solutions to both planned and unplanned event in the mis......This paper introduces a method for robust, rule-based mission control for mobile robots in a modular framework. Due to the modularity of the framework, it is possible to use both hierarchical control and reactive behavior seamlessly to find solutions to both planned and unplanned event...

  12. VTAC: virtual terrain assisted impact assessment for cyber attacks

    Science.gov (United States)

    Argauer, Brian J.; Yang, Shanchieh J.

    2008-03-01

    Overwhelming intrusion alerts have made timely response to network security breaches a difficult task. Correlating alerts to produce a higher level view of intrusion state of a network, thus, becomes an essential element in network defense. This work proposes to analyze correlated or grouped alerts and determine their 'impact' to services and users of the network. A network is modeled as 'virtual terrain' where cyber attacks maneuver. Overlaying correlated attack tracks on virtual terrain exhibits the vulnerabilities exploited by each track and the relationships between them and different network entities. The proposed impact assessment algorithm utilizes the graph-based virtual terrain model and combines assessments of damages caused by the attacks. The combined impact scores allow to identify severely damaged network services and affected users. Several scenarios are examined to demonstrate the uses of the proposed Virtual Terrain Assisted Impact Assessment for Cyber Attacks (VTAC).

  13. OCRWM [Office of Civilian Radioactive Waste Management] mission plan amendment with comments on the draft amendment and responses to the comments

    International Nuclear Information System (INIS)

    1987-06-01

    The US Department of Energy (DOE) published in June 1985 the Mission Plan for the Civilian Radioactive Waste Management Program. That document was to provide an informational basis sufficient to permit informed decisions to be made in carrying out the program. DOE recognized that the Mission Plan would be revised. The first such revision is this amendment, which has been prepared to apprise the Congress of significant recent achievements in the waste-management program, the revised schedule for the first repository, and the intent to postpone site-specific work for the second repository and plans for continuing the technology-development program for the second repository. Included are the DOE's submittal to the Congress of a proposal for the construction of a facility for monitored retrievable storage (MRS) as an integral part of the waste-management system and aspects of the consultation-and-cooperation interactions between the DOE and affected states and Indian tribes. The amendment presents the DOE's considered and informed judgments, based on its actual experience in administering these programs, of the preferred courses and schedules for the national program. 104 refs., 7 tabs

  14. Site scientific mission plan for the southern great plains CART site January-June 2000.; TOPICAL

    International Nuclear Information System (INIS)

    Peppler, R. A.; Sisterson, D. L.; Lamb, P.

    2001-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 2000, and looks forward in less detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team[DSIT], Operations Team, and Instrument Team[IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding. With this issue, many aspects of earlier Site Scientific Mission Plan reports have been moved to ARM sites on the World Wide Web. This report and all previous reports are available on the SGP CART web site

  15. Planning and execution of knowledge management assist missions for nuclear organizations

    International Nuclear Information System (INIS)

    2008-05-01

    problems. The IAEA is implementing a special subprogram on Nuclear Knowledge Management with a focus on the development of guidance for KM, on networking nuclear education and training and on the preservation of nuclear knowledge. Knowledge management consists of three fundamental components: people, processes and technology. Knowledge management focuses on people and organizational culture to stimulate and nurture the sharing and use of knowledge; on processes or methods to find, create, capture and share knowledge; and on technology to store and make knowledge accessible which will allow people to work together without being located together. People are the most important component. Managing knowledge depends upon people's willingness to share and reuse knowledge. In 2005, the IAEA introduced the concept of KM missions. The missions were established to: Facilitate the transfer of pragmatic KM methodologies and tools; Assist Member States considering implementation of nuclear power programmes to integrate KM in their management system from the very beginning; Provide specific consultancy services to address emergent problems and long term issues related to KM and associated issues; Assist organizations formulate detailed requirements and action plans related to KM; Help organizations identify, by self-assessment, their own KM maturity levels against a set of pre-defined criteria. This document is written to provide a common framework for KM missions and to provide general guidance for all mission participants. This document has been prepared to provide a basic structure and common reference for KM missions. As such, it is addressed, principally, to the team members of KM missions and also to the Counterpart requesting a mission. Although not mandatory, the guidelines provided in this document should be used as the basis for all future KM missions

  16. Are institutional missions aligned with journal-based or document-based disciplinary structures?

    Energy Technology Data Exchange (ETDEWEB)

    Klavans, R.; Boyack, K.W.

    2016-07-01

    Missions represent the underlying purpose of an institution. These missions can be focused (finding a cure for cancer) or diverse (providing all health services to a local population). They might be aimed at basic research (finding new sub-atomic particles) or very applied (forecasting tomorrow’s weather). Missions can be extremely practical (building i-phones) or abstract (creating maps of scientific inquiry). Our primary focus is on those institutions that are also contributing to society’s knowledge about scientific and technical phenomena. The publications of these institutions are, to some degree, an implicit statement of their mission. Institutions focusing on a cure for cancer will publish articles associated with cancer, while hospitals will publish in a diverse set of medical specialties. Institutions focused on subatomic particles publish in specialized physics journals. While the publication profile of an institution is obviously not the same as an institution’s mission, it is typically consistent with its mission. In this study we analyze the publication profiles of over 4400 institutions using Scopus data to determine if their institutional missions are best explained using a journal-based classification system or a document-based classification system. The structure of this article is as follows. The background section places this work in the context of two streams of research – the accuracies of different document classification systems, and the effect of different national contexts (specifically wealth, health and democracy) on science systems and their impact. We then describe our data and methods before addressing two questions: Do the missions of certain types of institutions align with journal-based or article-based disciplines, and does this vary with national context (wealth, health and democracy). We conclude with a discussion of limitations and possible areas for further investigation. (Author)

  17. Analysis of terrains suitable for tourism and recreation by using geographic information system (GIS).

    Science.gov (United States)

    Aklıbaşında, Meliha; Bulut, Yahya

    2014-09-01

    The use and utilization areas of geographic information system (GIS) increase every day due to both enabling easiness in storing, updating, grouping, analyzing, correlating, and mapping of data about evaluation factors in planning studies and having quite low error margin depending on the accuracy of data stored. In fact, GIS is also used both in visualization and in various analyses in planning tourism terrains. In this study, the effectiveness of GIS on holistic evaluation of natural and cultural resources in planning tourism terrains was analyzed. Natural and cultural resources in Kayseri Yahyalı were quantified by using ArcGIS 9.3 software from GIS software; data were analyzed and potential tourism and recreation terrains, level of suitability, and rate of coverage were determined. As a result of the analyses, it was determined that 11.847 ha area (6,53%) was quite suitable for such kind of activities, 103.010 ha (56,77%) was suitable, 39.278 ha (21,65%) was less suitable, and 27.314 ha area (15,05%) was not suitable. In the next stage, landscape properties which are suitable for tourism and recreation were evaluated and landscape types were classified in the sense of their tourist attraction. It was determined that the water resources and valley landscapes were the basic sources of the tourism and recreation activities of Yahyalı, and it was determined that the landscape of the forest and mountain was important for variety of the tourism and recreation activities of Yahyalı.

  18. Deep Space 2: The Mars Microprobe Mission

    Science.gov (United States)

    Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana

    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.

  19. Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoduo Pan

    2017-09-01

    Full Text Available Individually, ground-based, in situ observations, remote sensing, and regional climate modeling cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrains. Data assimilation techniques can be used to bridge the gap between observations and models by assimilating ground observations and remote sensing products into models to improve precipitation simulation and forecasting. However, only a small portion of satellite-retrieved precipitation products assimilation research has been implemented over complex terrains in an arid region. Here, we used the weather research and forecasting (WRF model to assimilate two satellite precipitation products (The Tropical Rainfall Measuring Mission: TRMM 3B42 and Fengyun-2D: FY-2D using the 4D-Var data assimilation method for a typical inland river basin in northwest China’s arid region, the Heihe River Basin, where terrains are very complex. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly over regions with complex terrains.

  20. Combustion-based power source for Venus surface missions

    Science.gov (United States)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  1. Identifying opportune landing sites in degraded visual environments with terrain and cultural databases

    Science.gov (United States)

    Moody, Marc; Fisher, Robert; Little, J. Kristin

    2014-06-01

    Boeing has developed a degraded visual environment navigational aid that is flying on the Boeing AH-6 light attack helicopter. The navigational aid is a two dimensional software digital map underlay generated by the Boeing™ Geospatial Embedded Mapping Software (GEMS) and fully integrated with the operational flight program. The page format on the aircraft's multi function displays (MFD) is termed the Approach page. The existing work utilizes Digital Terrain Elevation Data (DTED) and OpenGL ES 2.0 graphics capabilities to compute the pertinent graphics underlay entirely on the graphics processor unit (GPU) within the AH-6 mission computer. The next release will incorporate cultural databases containing Digital Vertical Obstructions (DVO) to warn the crew of towers, buildings, and power lines when choosing an opportune landing site. Future IRAD will include Light Detection and Ranging (LIDAR) point cloud generating sensors to provide 2D and 3D synthetic vision on the final approach to the landing zone. Collision detection with respect to terrain, cultural, and point cloud datasets may be used to further augment the crew warning system. The techniques for creating the digital map underlay leverage the GPU almost entirely, making this solution viable on most embedded mission computing systems with an OpenGL ES 2.0 capable GPU. This paper focuses on the AH-6 crew interface process for determining a landing zone and flying the aircraft to it.

  2. Aircraft path planning for optimal imaging using dynamic cost functions

    Science.gov (United States)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  3. Advanced software development workstation: Object-oriented methodologies and applications for flight planning and mission operations

    Science.gov (United States)

    Izygon, Michel

    1993-01-01

    The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.

  4. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  5. Processing Terrain Point Cloud Data

    KAUST Repository

    DeVore, Ronald; Petrova, Guergana; Hielsberg, Matthew; Owens, Luke; Clack, Billy; Sood, Alok

    2013-01-01

    Terrain point cloud data are typically acquired through some form of Light Detection And Ranging sensing. They form a rich resource that is important in a variety of applications including navigation, line of sight, and terrain visualization

  6. Productivity and cost estimators for conventional ground-based skidding on steep terrain using preplanned skid roads

    Science.gov (United States)

    Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux

    1991-01-01

    Continuous time and motion study techniques were used to develop productivity and cost estimators for the skidding component of ground-based logging systems, operating on steep terrain using preplanned skid roads. Comparisons of productivity and costs were analyzed for an overland random access skidding method, verses a skidding method utilizing a network of preplanned...

  7. Optimal path planning for single and multiple aircraft using a reduced order formulation

    Science.gov (United States)

    Twigg, Shannon S.

    High-flying unmanned reconnaissance and surveillance systems are now being used extensively in the United States military. Current development programs are producing demonstrations of next-generation unmanned flight systems that are designed to perform combat missions. Their use in first-strike combat operations will dictate operations in densely cluttered environments that include unknown obstacles and threats, and will require the use of terrain for masking. The demand for autonomy of operations in such environments dictates the need for advanced trajectory optimization capabilities. In addition, the ability to coordinate the movements of more than one aircraft in the same area is an emerging challenge. This thesis examines using an analytical reduced order formulation for trajectory generation for minimum time and terrain masking cases. First, pseudo-3D constant velocity equations of motion are used for path planning for a single vehicle. In addition, the inclusion of winds, moving targets and moving threats is considered. Then, this formulation is increased to using 3D equations of motion, both with a constant velocity and with a simplified varying velocity model. Next, the constant velocity equations of motion are expanded to include the simultaneous path planning of an unspecified number of vehicles, for both aircraft avoidance situations and formation flight cases.

  8. Selection method of terrain matching area for TERCOM algorithm

    Science.gov (United States)

    Zhang, Qieqie; Zhao, Long

    2017-10-01

    The performance of terrain aided navigation is closely related to the selection of terrain matching area. The different matching algorithms have different adaptability to terrain. This paper mainly studies the adaptability to terrain of TERCOM algorithm, analyze the relation between terrain feature and terrain characteristic parameters by qualitative and quantitative methods, and then research the relation between matching probability and terrain characteristic parameters by the Monte Carlo method. After that, we propose a selection method of terrain matching area for TERCOM algorithm, and verify the method correctness with real terrain data by simulation experiment. Experimental results show that the matching area obtained by the method in this paper has the good navigation performance and the matching probability of TERCOM algorithm is great than 90%

  9. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    Science.gov (United States)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  10. A Vision for the Future: Site-Based Strategic Planning.

    Science.gov (United States)

    Herman, Jerry J.

    1989-01-01

    Presents a model to help principals with strategic planning. Success hinges on involving stakeholders, scanning for relevant data, identifying critical success factors, developing vision and mission statements, analyzing the site manager's supports and constraints, creating strategic goals and objectives, developing action plans, allocating…

  11. Site scientific mission plan for the Southern Great Plains CART site: July--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1997-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  12. Management Planning In Transport

    Directory of Open Access Journals (Sweden)

    Teodor Perić

    2004-07-01

    Full Text Available Management planning in traffic and other activities includesa choice of missions and goals, as well as actions undertakenfor their realisation. It requires decision-making, that is,a choice among alternative trends of future actions. Therefore,planning and control are closely related.There are several types of plans: purposes or missions,goals, strategies, policies, procedures, rules, programs and calculations.Once managers become aware of the opportunities, they rationallyplan the setting of the goals and assumptions about thecurrent and future environment, finding and evaluating alternativetrends, and selecting the one that is to be followed.Therefore, planning means looking ahead and controlmeans looking backwards. The concept of overall planning,thus including traffic planning, illustrates the approach to managementwhich is based on the achieved goals.

  13. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    Science.gov (United States)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  14. Mission management, planning, and cost: PULSE Attitude And Control Systems (AACS)

    Science.gov (United States)

    1990-01-01

    The Pluto unmanned long-range scientific explorer (PULSE) is a probe that will do a flyby of Pluto. It is a low weight, relatively low costing vehicle which utilizes mostly off-the-shelf hardware, but not materials or techniques that will be available after 1999. A design, fabrication, and cost analysis is presented. PULSE will be launched within the first decade of the twenty-first century. The topics include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion systems; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  15. Survivor shielding. Part C. Improvements in terrain shielding

    International Nuclear Information System (INIS)

    Egbert, Stephen D.; Kaul, Dean C.; Roberts, James A.; Kerr, George D.

    2005-01-01

    A number of atomic-bomb survivors were affected by shielding provided by terrain features. These terrain features can be a small hill, affecting one or two houses, or a high mountain that shields large neighborhoods. In the survivor dosimetry system, terrain shielding can be described by a transmission factor (TF), which is the ratio between the dose with and without the terrain present. The terrain TF typically ranges between 0.1 and 1.0. After DS86 was implemented at RERF, the terrain shielding categories were examined and found to either have a bias or an excessive uncertainty that could readily be removed. In 1989, an improvement in the terrain model was implemented at RERF in the revised DS86 code, but the documentation was not published. It is now presented in this section. The solution to the terrain shielding in front of a house is described in this section. The problem of terrain shielding of survivors behind Hijiyama mountain at Hiroshima and Konpirasan mountain at Nagasaki has also been recognized, and a solution to this problem has been included in DS02. (author)

  16. Nano-FTIR Spectroscopy to Investigate the Silicate Mineralogy of Mercury Analogues: Supporting MERTIS Onboard BepiColombo Mission

    Science.gov (United States)

    Varatharajan, I.; Maturilli, A.; Helbert, J.; Ulrich, G.; Born, K.; Namur, O.; Kästner, B.; Hecht, L.; Charlier, B.; Hiesinger, H.

    2018-05-01

    Nano-FTIR Spectroscopy is used to investigate the silicate mineralogy of synthetic Mercury analogues produced under reduced conditions representing different Mercury terrains. The study will support MERTIS payload onboard BepiColombo mission.

  17. Searching for Terrain Softening near Mercury's North Pole

    Science.gov (United States)

    Cobian, P. S.; Vilas, F.; Lederer, S. M.; Barlow, N. G.

    2004-01-01

    In 1999, following the initial discovery of radar bright craters near both poles of Mercury measured the depth-todiameter (d/D) ratios of 170 impact craters in Mariner 10 images covering four different regions on Mercury s surface. Rapid softening of crater structure, indicated by lower d/D ratios, could indicate the possibility of subsurface water ice in Mercury's terrain originating from an internal source in the planet. Their study included 3 specific radar bright craters suggested to contain ice. They concluded that no terrain softening was apparent, and a rapidly emplaced exogenic water source was the most likely source for the proposed ice in these craters. Recent radar observations of the Mercurian North pole have pinpointed many additional radar bright areas with a resolution 10x better than previous radar measurements, and which correlate with craters imaged by Mariner 10. These craters are correlated with regions that are permanently shaded from direct sunlight, and are consistent with observations of clean water ice. We have expanded the initial study by Barlow et al. to include d/D measurements of 12 craters newly identified as radar bright at latitudes poleward of +80o. The radar reflectivity resemblances to Mars south polar cap and echoes from three icy Galilean satellites suggest that these craters too may have polar ice on Mercury. The effect of subsurface H20 on impact craters is a decrease in its d/D ratio, and softening of crater rims over a period of time. The study of Barlow et al., focused on determining the d/D ratios of 170 impact craters in the Borealis (north polar), Tolstoj (equatorial), Kuiper (equatorial), and Bach (south polar) quadrangles. This work focuses on the newly discovered radar bright craters, investigating their d/D ratios as an expansion of the earlier work..We compare our results to the statistical results from Barlow et al. here. With the upcoming Messenger spacecraft mission to Mercury, this is an especially timely study

  18. SOLON: An autonomous vehicle mission planner

    Science.gov (United States)

    Dudziak, M. J.

    1987-01-01

    The State-Operator Logic Machine (SOLON) Planner provides an architecture for effective real-time planning and replanning for an autonomous vehicle. The highlights of the system, which distinguish it from other AI-based planners that have been designed previously, are its hybrid application of state-driven control architecture and the use of both schematic representations and logic programming for the management of its knowledge base. SOLON is designed to provide multiple levels of planning for a single autonomous vehicle which is supplied with a skeletal, partially-specified mission plan at the outset of the vehicle's operations. This mission plan consists of a set of objectives, each of which will be decomposable by the planner into tasks. These tasks are themselves comparatively complex sets of actions which are executable by a conventional real-time control system which does not perform planning but which is capable of making adjustments or modifications to the provided tasks according to constraints and tolerances provided by the Planner. The current implementation of the SOLON is in the form of a real-time simulation of the Planner module of an Intelligent Vehicle Controller (IVC) on-board an autonomous underwater vehicle (AUV). The simulation is embedded within a larger simulator environment known as ICDS (Intelligent Controller Development System) operating on a Symbolics 3645/75 computer.

  19. Collaborative Mission Design at NASA Langley Research Center

    Science.gov (United States)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  20. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    Directory of Open Access Journals (Sweden)

    J. Dong

    2017-07-01

    Full Text Available An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achieve the scientific investigation of the terrain, soil characteristics, material composition, magnetic field, atmosphere, etc. The landing process is divided into three phases (entry phase, parachute descent phase and powered descent phase, which are full of risks. There exit lots of indefinite parameters and design constrain to affect the selection of the landing sites and phase switch (mortaring the parachute, separating the heat shield and cutting off the parachute. A number of new technologies (disk-gap-band parachute, guidance and navigation, etc. need to be developed. Mars and Earth have gravity and atmosphere conditions that are significantly different from one another. Meaningful environmental conditions cannot be recreated terrestrially on earth. A full-scale flight validation on earth is difficult. Therefore the end-to-end simulation and some critical subsystem test must be considered instead. The challenges above and the corresponding design solutions are introduced in this paper, which can provide reference for the Mars exploration mission.

  1. Spectra of Velocity components over Complex Terrain

    DEFF Research Database (Denmark)

    Panofsky, H. A.; Larko, D.; Lipschut, R.

    1982-01-01

    : When air moves over terrain with changed characteristics, then (1) for wavelengths very short relative to the fetch over the new terrain, the spectral densities are in equilibrium with the new terrain. (1) for wavelengths long compared to this fetch, spectral densities remain unchanged if the ground...

  2. Risk based decision tool for space exploration missions

    Science.gov (United States)

    Meshkat, Leila; Cornford, Steve; Moran, Terrence

    2003-01-01

    This paper presents an approach and corresponding tool to assess and analyze the risks involved in a mission during the pre-phase A design process. This approach is based on creating a risk template for each subsystem expert involved in the mission design process and defining appropriate interactions between the templates.

  3. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    Science.gov (United States)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  4. Communication of Science Plans in the Rosetta Mission

    Science.gov (United States)

    Schmidt, Albrecht; Grieger, Björn; Völk, Stefan

    2014-05-01

    Rosetta is a mission of the European Space Agency (ESA) to rendez-vous with comet Churyumov-Gerasimenko in mid-2014. The trajectories and their corresponding operations are both flexible and particularly complex. To make informed decisions among the many free parameters, novel ways to communicate operations to the community have been explored. To support science planning by communicating operational ideas and disseminating operational scenarios, the science ground segment makes use of Web-based visualisation technologies. To keep the threshold to analysing operations proposals as low as possible, various implementation techniques have been investigated. An important goal was to use the Web to make the content as accessible as possible. By adopting the recent standard WebGL and generating static pages of time-dependent three-dimensional views of the spacecraft as well as the corresponding field-of-views of instruments, directly from the operational and for-study files, users are given the opportunity to explore interactively in their Web browsers what is being proposed in addition to using the traditional file products and analysing them in detail. The scenes and animations can be viewed in any modern Web browser and be combined with other analyses. This is to facilitate verification and cross-validation of complex products, often done by comparing different independent analyses and studies. By providing different timesteps in animations, it is possible to focus on long-term planning or short-term planning without distracting the user from the essentials. This is particularly important since the information that can be displayed in a Web browser is somewhat related to data volume that can be transferred across the wire. In Web browsers, it is more challenging to do numerical calculations on demand. Since requests for additional data have to be passed through a Web server, they are more complex and also require a more complex infrastructure. The volume of data that

  5. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.; Shultz, Eric; Mattfeld, Bryan; Stromgren, Chel; Goodliff, Kandyce

    2015-01-01

    The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. NASA is currently investigating a number of potential human exploration missions, which will progressively increase the distance and duration that humans spend away from Earth. Missions include extended human exploration in cis-lunar space which, as conceived, would involve durations of around 60 days, and human missions to Mars, which are anticipated to be as long as 1000 days. The amount of logistics required to keep the crew alive and healthy for these missions is significant. It is therefore important that the design and planning for these missions include accurate estimates of logistics requirements. This paper provides a description of a process and calculations used to estimate mass and volume requirements for crew logistics, including consumables, such as food, personal items, gasses, and liquids. Determination of logistics requirements is based on crew size, mission duration, and the degree of closure of the environmental control life support system (ECLSS). Details are provided on the consumption rates for different types of logistics and how those rates were established. Results for potential mission scenarios are presented, including a breakdown of mass and volume drivers. Opportunities for mass and volume reduction are identified, along with potential threats that could possibly increase requirements.

  6. Mission Level Autonomy for USSV

    Science.gov (United States)

    Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert

    2011-01-01

    On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010

  7. ISOSTATICALLY DISTURBED TERRAIN OF NORTHWESTERN ANDES MOUNTAINS FROM SPECTRALLY CORRELATED FREE-AIR AND GRAVITY TERRAIN DATA

    Directory of Open Access Journals (Sweden)

    Hernández P Orlando

    2006-12-01

    Full Text Available Recently revised models on global tectonics describe the convergence of the North Andes, Nazca, Caribbean and South American Plates and their seismicity, volcanism, active faulting and extreme
    topography. The current plate boundaries of the area are mainly interpreted from volcanic and seismic datasets with variable confidence levels. New insights on the isostatic state and plate boundaries of
    the northwestern Andes Mountains can be obtained from the spectral analysis of recently available gravity and topography data.
    Isostatically disturbed terrain produces free-air anomalies that are highly correlated with the gravity effects of the terrain. The terrain gravity effects (TGE and free air gravity anomalies (FAGA of the
    Andes mountains spectral correlation data confirms that these mountains are isostatically disturbed. Strong negative terrain-correlated FAGA along western South America and the Greater and Lesser Antilles are consistent with anomalously deepened mantle displaced by subducting oceanic plates.

    Inversion of the compensated terrain gravity effects (CTGE reveals plate subduction systems with alternating shallower and steeper subduction angles. The gravity modeling highlights crustal
    deformation from plate collision and subduction and other constraints on the tectonism of the plate boundary zones for the region.

  8. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    International Nuclear Information System (INIS)

    Reed, Patrick M; Herman, Jonathan D; Chaney, Nathaniel W; Wood, Eric F; Ferringer, Matthew P

    2015-01-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks. (letter)

  9. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  10. Site scientific mission plan for the southern Great Plains CART site, January--June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1998-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. The primary purpose of this site scientific mission plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team, Operations Team, and Instrument Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the Site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  11. Enhancements and Evolution of the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.

    2008-12-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  12. Birds achieve high robustness in uneven terrain through active control of landing conditions.

    Science.gov (United States)

    Birn-Jeffery, Aleksandra V; Daley, Monica A

    2012-06-15

    We understand little about how animals adjust locomotor behaviour to negotiate uneven terrain. The mechanical demands and constraints of such behaviours likely differ from uniform terrain locomotion. Here we investigated how common pheasants negotiate visible obstacles with heights from 10 to 50% of leg length. Our goal was to determine the neuro-mechanical strategies used to achieve robust stability, and address whether strategies vary with obstacle height. We found that control of landing conditions was crucial for minimising fluctuations in stance leg loading and work in uneven terrain. Variation in touchdown leg angle (θ(TD)) was correlated with the orientation of ground force during stance, and the angle between the leg and body velocity vector at touchdown (β(TD)) was correlated with net limb work. Pheasants actively targeted obstacles to control body velocity and leg posture at touchdown to achieve nearly steady dynamics on the obstacle step. In the approach step to an obstacle, the birds produced net positive limb work to launch themselves upward. On the obstacle, body dynamics were similar to uniform terrain. Pheasants also increased swing leg retraction velocity during obstacle negotiation, which we suggest is an active strategy to minimise fluctuations in peak force and leg posture in uneven terrain. Thus, pheasants appear to achieve robustly stable locomotion through a combination of path planning using visual feedback and active adjustment of leg swing dynamics to control landing conditions. We suggest that strategies for robust stability are context specific, depending on the quality of sensory feedback available, especially visual input.

  13. Education and Public Outreach for MSFC's Ground-Based Observations in Support of the HESSI Mission

    Science.gov (United States)

    Adams, Mitzi L.; Hagyard, Mona J.; Newton, Elizabeth K.

    1999-01-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years'experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  14. UAV-based Natural Hazard Management in High-Alpine Terrain - Case Studies from Austria

    Science.gov (United States)

    Sotier, Bernadette; Adams, Marc; Lechner, Veronika

    2015-04-01

    Unmanned Aerial Vehicles (UAV) have become a standard tool for geodata collection, as they allow conducting on-demand mapping missions in a flexible, cost-effective manner at an unprecedented level of detail. Easy-to-use, high-performance image matching software make it possible to process the collected aerial images to orthophotos and 3D-terrain models. Such up-to-date geodata have proven to be an important asset in natural hazard management: Processes like debris flows, avalanches, landslides, fluvial erosion and rock-fall can be detected and quantified; damages can be documented and evaluated. In the Alps, these processes mostly originate in remote areas, which are difficult and hazardous to access, thus presenting a challenging task for RPAS data collection. In particular, the problems include finding suitable landing and piloting-places, dealing with bad or no GPS-signals and the installation of ground control points (GCP) for georeferencing. At the BFW, RPAS have been used since 2012 to aid natural hazard management of various processes, of which three case studies are presented below. The first case study deals with the results from an attempt to employ UAV-based multi-spectral remote sensing to monitor the state of natural hazard protection forests. Images in the visible and near-infrared (NIR) band were collected using modified low-cost cameras, combined with different optical filters. Several UAV-flights were performed in the 72 ha large study site in 2014, which lies in the Wattental, Tyrol (Austria) between 1700 and 2050 m a.s.l., where the main tree species are stone pine and mountain pine. The matched aerial images were analysed using different UAV-specific vitality indices, evaluating both single- and dual-camera UAV-missions. To calculate the mass balance of a debris flow in the Tyrolean Halltal (Austria), an RPAS flight was conducted in autumn 2012. The extreme alpine environment was challenging for both the mission and the evaluation of the aerial

  15. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    Science.gov (United States)

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.

  16. Improving the Terrain-Based Parameter for the Assessment of Snow Redistribution in the Col du Lac Blanc Area and Comparisons with TLS Snow Depth Data

    Science.gov (United States)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert

    2014-05-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter

  17. Merging a Terrain-Based Parameter and Snow Particle Counter Data for the Assessment of Snow Redistribution in the Col du Lac Blanc Area

    Science.gov (United States)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi

    2015-04-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development

  18. Mission to Mars: Plans and concepts for the first manned landing

    Science.gov (United States)

    Oberg, J. E.

    The manned exploration and settlement of Mars is discussed. The topics considered include: the rationale for a manned landing; spaceships and propulsion for getting to Mars; human factors such as psychological stress, the effects of prolonged weightlessness, and radiation dangers; the return from Mars; site selection and relevant criteria; scientific problems that can be studied by landing men on Mars. Also addressed are economic resources of air and water on Mars and their relevance for transportation and mission planning; the exploration and utilization of Phobos and Deimos; cost factors; the possibilities of the Russians' going to Mars; political and social issues; colonies on Mars; and manipulation of the Martian environment to make it more habitable.

  19. MISSION STATEMENTS IN HIGHER EDUCATION: CONTEXT ANALYSIS AND RESEARCH AGENDA

    OpenAIRE

    Gordan Camelia; Pop Marius Dorel

    2013-01-01

    The purpose of this paper is to discuss the main issues that deal with higher education institutionsâ€(tm) mission statements, from a marketing perspective. It has long been argued in the literature that missions represent the foundation upon which institutions build their strategic plans, and that they should be the first step any institution takes before designing its strategy. Based on a review of the most recent literature in the field, the paper explains why missions appear as a relevant...

  20. Liquid Effluents Program mission analysis

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1994-01-01

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ''capstone'' team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan

  1. Robotic Mission to Mars: Hands-on, minds-on, web-based learning

    Science.gov (United States)

    Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion

    2012-11-01

    Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages

  2. Application of Observing System Simulation Experiments (OSSEs) to determining science and user requirements for space-based missions

    Science.gov (United States)

    Atlas, R. M.

    2016-12-01

    Observing System Simulation Experiments (OSSEs) provide an effective method for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. As such, OSSEs can be an important tool for determining science and user requirements, and for incorporating these requirements into the planning for future missions. Detailed OSSEs have been conducted at NASA/ GSFC and NOAA/AOML in collaboration with Simpson Weather Associates and operational data assimilation centers over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this talk, the speaker will summarize the development of OSSE methodology, early and current applications of OSSEs and how OSSEs will evolve in order to enhance mission planning.

  3. Lunar terrain mapping and relative-roughness analysis

    Science.gov (United States)

    Rowan, Lawrence C.; McCauley, John F.; Holm, Esther A.

    1971-01-01

    Terrain maps of the equatorial zone (long 70° E.-70° W. and lat 10° N-10° S.) were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings as well as for Ranger and Lunar Orbiter photographs. The techniques that were developed as a result of this effort can be applied to future planetary exploration. By using the best available earth-based observational data and photographs 1:1,000,000-scale and U.S. Geological Survey lunar geologic maps and U.S. Air Force Aeronautical Chart and Information Center LAC charts, lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative-roughness characteristics. Approximately 150,000 east-west slope measurements made by a photometric technique (photoclinometry) in 51 sample areas indicate that algebraic slope-frequency distributions are Gaussian, and so arithmetic means and standard deviations accurately describe the distribution functions. The algebraic slope-component frequency distributions are particularly useful for rapidly determining relative roughness of terrain. The statistical parameters that best describe relative roughness are the absolute arithmetic mean, the algebraic standard deviation, and the percentage of slope reversal. Statistically derived relative-relief parameters are desirable supplementary measures of relative roughness in the terrae. Extrapolation of relative roughness for the maria was demonstrated using Ranger VII slope-component data and regional maria slope data, as well as the data reported here. It appears that, for some morphologically homogeneous

  4. Engineering sustainable ecosystems: using GIS-based habitat modeling for oil sands mine reclamation and closure planning

    International Nuclear Information System (INIS)

    Seel, K.

    1997-01-01

    A GIS model was built to predict the climax vegetation habitat types on reclaimed mine surfaces in the Fort McMurray region of the Mid-Boreal Mixedwood Ecoregion of northwestern Alberta. Regional vegetation habitat types were classified by digital remote sensing using Landsat Thematic Mapper satellite data. Terrain data was derived from a high-resolution digital elevation model. The validated model was applied to the GIS database of Syncrude Canada's Mildred Lake Mine to predict future vegetation patterns based on the final closure mine surface. The results were compared to revegetation and closure plans created by experts to analyze performance and sustainability of reclamation efforts

  5. The ground based plan

    International Nuclear Information System (INIS)

    1989-01-01

    The paper presents a report of ''The Ground Based Plan'' of the United Kingdom Science and Engineering Research Council. The ground based plan is a plan for research in astronomy and planetary science by ground based techniques. The contents of the report contains a description of:- the scientific objectives and technical requirements (the basis for the Plan), the present organisation and funding for the ground based programme, the Plan, the main scientific features and the further objectives of the Plan. (U.K.)

  6. Optimal mission planning of GEO on-orbit refueling in mixed strategy

    Science.gov (United States)

    Chen, Xiao-qian; Yu, Jing

    2017-04-01

    The mission planning of GEO on-orbit refueling (OOR) in Mixed strategy is studied in this paper. Specifically, one SSc will be launched to an orbital slot near the depot when multiple GEO satellites are reaching their end of lives. The SSc replenishes fuel from the depot and then extends the lifespan of the target satellites via refueling. In the mixed scenario, only some of the target satellites could be served by the SSc, and the remaining ones will be fueled by Pseudo SScs (the target satellite which has already been refueled by the SSc and now has sufficient fuel for its operation as well as the fuel to refuel other target satellites is called Pseudo SSc here). The mission sequences and fuel mass of the SSc and Pseudo SScs, the dry mass of the SSc are used as design variables, whereas the economic benefit of the whole mission is used as design objective. The economic cost and benefit models are stated first, and then a mathematical optimization model is proposed. A comprehensive solution method involving enumeration, particle swarm optimization and modification is developed. Numerical examples are carried out to demonstrate the effectiveness of the model and solution method. Economic efficiencies of different OOR strategies are compared and discussed. The mixed strategy would perform better than the other strategies only when the target satellites satisfy some conditions. This paper presents an available mixed strategy scheme for users and analyzes its advantages and disadvantages by comparing with some other OOR strategies, providing helpful references to decision makers. The best strategy in practical applications depends on the specific demands and user preference.

  7. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    Science.gov (United States)

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  8. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  9. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  10. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain

    Science.gov (United States)

    Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.

    2018-05-01

    This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.

  11. CEO Sites Mission Management System (SMMS)

    Science.gov (United States)

    Trenchard, Mike

    2014-01-01

    uses the SMMS for three general functions - database queries of content and status, individual site creation and updates, and mission planning. The CEO administrator of the science site database is able to create or modify the content of sites and activate or deactivate them based on the requirements of the sponsors. The administrator supports and implements ISS mission planning by assembling, reporting, and activating mission-specific site selections for management; deactivating sites as requirements are met; and creating new sites, such as International Charter sites for disasters, as circumstances warrant. In addition to the above CEO internal uses, when site planning for a specific ISS mission is complete and approved, the SMMS can produce and export those essential site database elements for the mission into XML format for use by onboard Earth-location systems, such as Worldmap. The design, development, and implementation of the SMMS resulted in a superior database management system for CEO science sites by focusing on the functions and applications of the database alone instead of integrating the database with the multipurpose configuration of the AMPS. Unlike the AMPS, it can function and be modified within the existing Windows 7 environment. The functions and applications of the SMMS were expanded to accommodate more database elements, report products, and a streamlined interface for data entry and review. A particularly elegant enhancement in data entry was the integration of the Google Earth application for the visual display and definition of site coordinates for site areas defined by multiple coordinates. Transfer between the SMMS and Google Earth is accomplished with a Keyhole Markup Language (KML) expression of geographic data (see figures 3 and 4). Site coordinates may be entered into the SMMS panel directly for display in Google Earth, or the coordinates may be defined on the Google Earth display as a mouse-controlled polygonal definition and

  12. Environmental control and life support system requirements and technology needs for advanced manned space missions

    Science.gov (United States)

    Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin

    1987-01-01

    NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.

  13. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  14. Low cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Bruckner, A. P.; Cinnamon, M.; Hamling, S.; Mahn, K.; Phillips, J.; Westmark, V.

    1993-01-01

    The paper describes a low-cost approach to the manned exploration of Mars (which involves an unmanned mission followed two years later by a manned mission) based on near-term technologies and in situ propellant production. Particular attention is given to the basic mission architecture and its major components, including the orbital analysis, the unmanned segment, the Earth Return Vehicle, the aerobrake design, life sciences, guidance, communications, power, propellant production, the surface rovers, and Mars science. Also discussed are the cost per mission over an assumed 8-yr initiative.

  15. Wind resource assessment in heterogeneous terrain

    Science.gov (United States)

    Vanderwel, C.; Placidi, M.; Ganapathisubramani, B.

    2017-03-01

    High-resolution particle image velocimetry data obtained in rough-wall boundary layer experiments are re-analysed to examine the influence of surface roughness heterogeneities on wind resource. Two different types of heterogeneities are examined: (i) surfaces with repeating roughness units of the order of the boundary layer thickness (Placidi & Ganapathisubramani. 2015 J. Fluid Mech. 782, 541-566. (doi:10.1017/jfm.2015.552)) and (ii) surfaces with streamwise-aligned elevated strips that mimic adjacent hills and valleys (Vanderwel & Ganapathisubramani. 2015 J. Fluid Mech. 774, 1-12. (doi:10.1017/jfm.2015.228)). For the first case, the data show that the power extraction potential is highly dependent on the surface morphology with a variation of up to 20% in the available wind resource across the different surfaces examined. A strong correlation is shown to exist between the frontal and plan solidities of the rough surfaces and the equivalent wind speed, and hence the wind resource potential. These differences are also found in profiles of graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM1"/> and graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM2"/> (where U is the streamwise velocity), which act as proxies for thrust and power output. For the second case, the secondary flows that cause low- and high-momentum pathways when the spacing between adjacent hills is beyond a critical value result in significant variations in wind resource availability. Contour maps of graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM3"/> and graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="RSTA20160109IM4"/> show a large difference in thrust and power potential (over 50%) between hills and valleys (at a fixed vertical height). These variations do not seem to be present when adjacent hills are close to each other (i.e. when the spacing is much less than the boundary layer thickness). The

  16. A new method for determination of most likely landslide initiation points and the evaluation of digital terrain model scale in terrain stability mapping

    Directory of Open Access Journals (Sweden)

    P. Tarolli

    2006-01-01

    Full Text Available This paper introduces a new approach for determining the most likely initiation points for landslides from potential instability mapped using a terrain stability model. This approach identifies the location with critical stability index from a terrain stability model on each downslope path from ridge to valley. Any measure of terrain stability may be used with this approach, which here is illustrated using results from SINMAP, and from simply taking slope as an index of potential instability. The relative density of most likely landslide initiation points within and outside mapped landslide scars provides a way to evaluate the effectiveness of a terrain stability measure, even when mapped landslide scars include run out zones, rather than just initiation locations. This relative density was used to evaluate the utility of high resolution terrain data derived from airborne laser altimetry (LIDAR for a small basin located in the Northeastern Region of Italy. Digital Terrain Models were derived from the LIDAR data for a range of grid cell sizes (from 2 to 50 m. We found appreciable differences between the density of most likely landslide initiation points within and outside mapped landslides with ratios as large as three or more with the highest ratios for a digital terrain model grid cell size of 10 m. This leads to two conclusions: (1 The relative density from a most likely landslide initiation point approach is useful for quantifying the effectiveness of a terrain stability map when mapped landslides do not or can not differentiate between initiation, runout, and depositional areas; and (2 in this study area, where landslides occurred in complexes that were sometimes more than 100 m wide, a digital terrain model scale of 10 m is optimal. Digital terrain model scales larger than 10 m result in loss of resolution that degrades the results, while for digital terrain model scales smaller than 10 m the physical processes responsible for triggering

  17. Helicopter trajectory planning using optimal control theory

    Science.gov (United States)

    Menon, P. K. A.; Cheng, V. H. L.; Kim, E.

    1988-01-01

    A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.

  18. Mission requirements for a manned earth observatory. Task 2: Reference mission definition and analyiss, volume 2

    Science.gov (United States)

    1973-01-01

    The mission requirements and conceptual design of manned earth observatory payloads for the 1980 time period are discussed. Projections of 1980 sensor technology and user data requirements were used to formulate typical basic criteria pertaining to experiments, sensor complements, and reference missions. The subjects discussed are: (1) mission selection and prioritization, (2) baseline mission analysis, (3) earth observation data handling and contingency plans, and (4) analysis of low cost mission definition and rationale.

  19. Human missions to Mars: issues and challenges

    Science.gov (United States)

    Race, M.; Kminek, G.

    Recent announcements of the planned future human exploration of Mars by both European and US space agencies have raised a host of questions and challenges that must be addressed in advance of long-duration human missions. While detailed mission planning is a long way off, numerous issues can already be identified in the broad context of planetary protection. In this session, a panel of experts will provide brief overviews of the types of challenges ahead, such as the protection of the martian environment; the integration of human and robotic mission elements and operations; precursor scientific information necessary to plan human missions; development and use of nuclear and other technologies for the protection and support of astronauts during the mission; protection of Earth upon return; and societal and ethical questions about human exploration. The session has been designed to encourage and incorporate audience participation in the discussion about the issues and challenges ahead.

  20. The estimation of future surface water bodies at Olkiluoto area based on statistical terrain and land uplift models

    Energy Technology Data Exchange (ETDEWEB)

    Pohjola, J.; Turunen, J.; Lipping, T. [Tampere Univ. of Technology (Finland); Ikonen, A.

    2014-03-15

    In this working report the modelling effort of future landscape development and surface water body formation at the modelling area in the vicinity of the Olkiluoto Island is presented. Estimation of the features of future surface water bodies is based on probabilistic terrain and land uplift models presented in previous working reports. The estimation is done using a GIS-based toolbox called UNTAMO. The future surface water bodies are estimated in 10 000 years' time span with 1000 years' intervals for the safety assessment of disposal of spent nuclear fuel at the Olkiluoto site. In the report a brief overview on the techniques used for probabilistic terrain modelling, land uplift modelling and hydrological modelling are presented first. The latter part of the report describes the results of the modelling effort. The main features of the future landscape - the four lakes forming in the vicinity of the Olkiluoto Island - are identified and the probabilistic model of the shoreline displacement is presented. The area and volume of the four lakes is modelled in a probabilistic manner. All the simulations have been performed for three scenarios two of which are based on 10 realizations of the probabilistic digital terrain model (DTM) and 10 realizations of the probabilistic land uplift model. These two scenarios differ from each other by the eustatic curve used in the land uplift model. The third scenario employs 50 realizations of the probabilistic DTM while a deterministic land uplift model, derived solely from the current land uplift rate, is used. The results indicate that the two scenarios based on the probabilistic land uplift model behave in a similar manner while the third model overestimates past and future land uplift rates. The main features of the landscape are nevertheless similar also for the third scenario. Prediction results for the volumes of the future lakes indicate that a couple of highly probably lake formation scenarios can be identified

  1. The estimation of future surface water bodies at Olkiluoto area based on statistical terrain and land uplift models

    International Nuclear Information System (INIS)

    Pohjola, J.; Turunen, J.; Lipping, T.; Ikonen, A.

    2014-03-01

    In this working report the modelling effort of future landscape development and surface water body formation at the modelling area in the vicinity of the Olkiluoto Island is presented. Estimation of the features of future surface water bodies is based on probabilistic terrain and land uplift models presented in previous working reports. The estimation is done using a GIS-based toolbox called UNTAMO. The future surface water bodies are estimated in 10 000 years' time span with 1000 years' intervals for the safety assessment of disposal of spent nuclear fuel at the Olkiluoto site. In the report a brief overview on the techniques used for probabilistic terrain modelling, land uplift modelling and hydrological modelling are presented first. The latter part of the report describes the results of the modelling effort. The main features of the future landscape - the four lakes forming in the vicinity of the Olkiluoto Island - are identified and the probabilistic model of the shoreline displacement is presented. The area and volume of the four lakes is modelled in a probabilistic manner. All the simulations have been performed for three scenarios two of which are based on 10 realizations of the probabilistic digital terrain model (DTM) and 10 realizations of the probabilistic land uplift model. These two scenarios differ from each other by the eustatic curve used in the land uplift model. The third scenario employs 50 realizations of the probabilistic DTM while a deterministic land uplift model, derived solely from the current land uplift rate, is used. The results indicate that the two scenarios based on the probabilistic land uplift model behave in a similar manner while the third model overestimates past and future land uplift rates. The main features of the landscape are nevertheless similar also for the third scenario. Prediction results for the volumes of the future lakes indicate that a couple of highly probably lake formation scenarios can be identified with other

  2. Wind farm design in complex terrain: the FarmOpt methodology

    DEFF Research Database (Denmark)

    Feng, Ju

    Designing wind farms in complex terrain is becoming more and more important, especially for countries like China, where a large portion of the territory is featured as complex terrain. Although potential richer wind resources could be expected at complex terrain sites (thanks to the terrain effec...

  3. An Efficient Energy Constraint Based UAV Path Planning for Search and Coverage

    OpenAIRE

    Gramajo, German; Shankar, Praveen

    2017-01-01

    A path planning strategy for a search and coverage mission for a small UAV that maximizes the area covered based on stored energy and maneuverability constraints is presented. The proposed formulation has a high level of autonomy, without requiring an exact choice of optimization parameters, and is appropriate for real-time implementation. The computed trajectory maximizes spatial coverage while closely satisfying terminal constraints on the position of the vehicle and minimizing the time of ...

  4. Digital terrain modelling development and applications in a policy support environment

    CERN Document Server

    Peckham, Robert Joseph

    2007-01-01

    This publication is the first book on the development and application of digital terrain modelling for regional planning and policy support. It is a compilation of research results by international research groups at the European Commission's Joint Research Centre providing scientific support to the development and implementation of EU environmental policy. Applications include the pan-European River and Catchment Database, European Flood Alert System, European Digital Soil Database and alternative solar energy resources, all discussed in a GIS framework in the context of the INfrastructure for SPatial InfoRmation in Europe (INSPIRE). This practice-oriented book is recommended to practicing environmental modellers and GIS experts working on regional planning and policy support applications.

  5. [A large-scale accident in Alpine terrain].

    Science.gov (United States)

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.

  6. Evaluation of terrain geomorphometric characteristics for ground clearance charts production

    Directory of Open Access Journals (Sweden)

    Mirko A. Borisov

    2011-01-01

    Full Text Available Geomorphometric exploration applied in the military terrain analysis is based on the GIS methodology of spatial analyses and is related primarily to military terrain analyses. It includes relief assessment aiming at producing ground clearance charts for the analysis of terrain maneuverability and its deployment, cover and concealment possibilities. An evaluation analysis of geomorphological parameters was performed for the Avala test area using a few terrain parameters (visibility, terrain aspect and slope as well as some terrain qualitative categories (e.g. vegetation density. Terrain slope Slope and aspect are morphometric terrain parameters that can be derived directly from the DTM using some GIS operations. Slope is the first derivative of a surface and has both magnitude and direction. Slope is perhaps the most important aspect of the surface form, since surfaces are formed completely of slopes, and slope angles control the gravitational force available for geomorphic work. Mathematically, the tangent of the slope angle is the first derivative of altitude, and it is a tangent or percent slope as this surface parameter is generally referred to. Slope is defined at each point as the slope of a plane tangent to the surface at that point. In practice, however, slope is generally measured over a finite distance, especially when data are obtained from a contour map. Terrain aspect Aspect is also the first derivative of a surface and has both magnitude and direction. The term aspect is defined as the direction of the biggest slope vector on the tangent plane projected onto the horizontal plane. Aspect is the bearing (or azimuth of the slope direction, and its angle ranges from 0 to 360°. Analyses of terrain slope and ground clearance for military forces The analysis of land assessment of the Avala test area included the definition of relief categories in relation to cover and concealment purposes with the aim to include the geomorphological basis

  7. Construction Method of the Topographical Features Model for Underwater Terrain Navigation

    Directory of Open Access Journals (Sweden)

    Wang Lihui

    2015-09-01

    Full Text Available Terrain database is the reference basic for autonomous underwater vehicle (AUV to implement underwater terrain navigation (UTN functions, and is the important part of building topographical features model for UTN. To investigate the feasibility and correlation of a variety of terrain parameters as terrain navigation information metrics, this paper described and analyzed the underwater terrain features and topography parameters calculation method. Proposing a comprehensive evaluation method for terrain navigation information, and constructing an underwater navigation information analysis model, which is associated with topographic features. Simulation results show that the underwater terrain features, are associated with UTN information directly or indirectly, also affect the terrain matching capture probability and the positioning accuracy directly.

  8. Site scientific mission plan for the Southern Great Plains CART Site, January--June 1999

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Sisterson, D.L.; Lamb, P.

    1999-03-10

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 1999, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  9. Site scientific mission plan for the Southern Great Plains CART site: July--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1998-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on July 1, 1998, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  10. Site scientific mission plan for the southern Great Plain CART site July-December 1997.

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, P.J.; Peppler, R.A.; Sisterson, D.L.

    1997-08-28

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  11. Autonomous Mission Design in Extreme Orbit Environments

    Science.gov (United States)

    Surovik, David Allen

    An algorithm for autonomous online mission design at asteroids, comets, and small moons is developed to meet the novel challenges of their complex non-Keplerian orbit environments, which render traditional methods inapplicable. The core concept of abstract reachability analysis, in which a set of impulsive maneuvering options is mapped onto a space of high-level mission outcomes, is applied to enable goal-oriented decision-making with robustness to uncertainty. These nuanced analyses are efficiently computed by utilizing a heuristic-based adaptive sampling scheme that either maximizes an objective function for autonomous planning or resolves details of interest for preliminary analysis and general study. Illustrative examples reveal the chaotic nature of small body systems through the structure of various families of reachable orbits, such as those that facilitate close-range observation of targeted surface locations or achieve soft impact upon them. In order to fulfill extensive sets of observation tasks, the single-maneuver design method is implemented in a receding-horizon framework such that a complete mission is constructed on-the-fly one piece at a time. Long-term performance and convergence are assured by augmenting the objective function with a prospect heuristic, which approximates the likelihood that a reachable end-state will benefit the subsequent planning horizon. When state and model uncertainty produce larger trajectory deviations than were anticipated, the next control horizon is advanced to allow for corrective action -- a low-frequency form of feedback control. Through Monte Carlo analysis, the planning algorithm is ultimately demonstrated to produce mission profiles that vary drastically in their physical paths but nonetheless consistently complete all goals, suggesting a high degree of flexibility. It is further shown that the objective function can be tuned to preferentially minimize fuel cost or mission duration, as well as to optimize

  12. Mobility analysis tool based on the fundamental principle of conservation of energy.

    Energy Technology Data Exchange (ETDEWEB)

    Spletzer, Barry Louis; Nho, Hyuchul C.; Salton, Jonathan Robert

    2007-08-01

    In the past decade, a great deal of effort has been focused in research and development of versatile robotic ground vehicles without understanding their performance in a particular operating environment. As the usage of robotic ground vehicles for intelligence applications increases, understanding mobility of the vehicles becomes critical to increase the probability of their successful operations. This paper describes a framework based on conservation of energy to predict the maximum mobility of robotic ground vehicles over general terrain. The basis of the prediction is the difference between traction capability and energy loss at the vehicle-terrain interface. The mission success of a robotic ground vehicle is primarily a function of mobility. Mobility of a vehicle is defined as the overall capability of a vehicle to move from place to place while retaining its ability to perform its primary mission. A mobility analysis tool based on the fundamental principle of conservation of energy is described in this document. The tool is a graphical user interface application. The mobility analysis tool has been developed at Sandia National Laboratories, Albuquerque, NM. The tool is at an initial stage of development. In the future, the tool will be expanded to include all vehicles and terrain types.

  13. Ranging error analysis of single photon satellite laser altimetry under different terrain conditions

    Science.gov (United States)

    Huang, Jiapeng; Li, Guoyuan; Gao, Xiaoming; Wang, Jianmin; Fan, Wenfeng; Zhou, Shihong

    2018-02-01

    Single photon satellite laser altimeter is based on Geiger model, which has the characteristics of small spot, high repetition rate etc. In this paper, for the slope terrain, the distance of error's formula and numerical calculation are carried out. Monte Carlo method is used to simulate the experiment of different terrain measurements. The experimental results show that ranging accuracy is not affected by the spot size under the condition of the flat terrain, But the inclined terrain can influence the ranging error dramatically, when the satellite pointing angle is 0.001° and the terrain slope is about 12°, the ranging error can reach to 0.5m. While the accuracy can't meet the requirement when the slope is more than 70°. Monte Carlo simulation results show that single photon laser altimeter satellite with high repetition rate can improve the ranging accuracy under the condition of complex terrain. In order to ensure repeated observation of the same point for 25 times, according to the parameters of ICESat-2, we deduce the quantitative relation between the footprint size, footprint, and the frequency repetition. The related conclusions can provide reference for the design and demonstration of the domestic single photon laser altimetry satellite.

  14. Social Tagging of Mission Data

    Science.gov (United States)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; hide

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  15. An Approach to Stable Walking over Uneven Terrain Using a Reflex-Based Adaptive Gait

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2011-01-01

    Full Text Available This paper describes the implementation of an adaptive gait in a six-legged walking robot that is capable of generating reactive stepping actions with the same underlying control methodology as an insect for stable walking over uneven terrains. The proposed method of gait generation uses feedback data from onboard sensors to generate an adaptive gait in order to surmount obstacles, gaps and perform stable walking. The paper addresses its implementation through simulations in a visual dynamic simulation environment. Finally the paper draws conclusions about the significance and performance of the proposed gait in terms of tracking errors while navigating in difficult terrains.

  16. The Effect of Terrain Inclination on Performance and the Stability Region of Two-Wheeled Mobile Robots

    Directory of Open Access Journals (Sweden)

    Zareena Kausar

    2012-11-01

    Full Text Available Two-wheeled mobile robots (TWMRs have a capability of avoiding the tip-over problem on inclined terrain by adjusting the centre of mass position of the robot body. The effects of terrain inclination on the robot performance are studied to exploit this capability. Prior to the real-time implementation of position control, an estimation of the stability region of the TWMR is essential for safe operation. A numerical method to estimate the stability region is applied and the effects of inclined surfaces on the performance and stability region of the robot are investigated. The dynamics of a TWMR is modelled on a general uneven terrain and reduced for cases of inclined and horizontal flat terrain. A full state feedback (FSFB controller is designed based on optimal gains with speed tracking on a horizontal flat terrain. The performance and stability regions are simulated for the robot on a horizontal flat and inclined terrain with the same controller. The results endorse a variation in equilibrium points and a reduction in stability region for robot motion on inclined terrain.

  17. Ellipsoidal terrain correction based on multi-cylindrical equal-area map projection of the reference ellipsoid

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.

    2004-09-01

    An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {λ,ϕ,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10-8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10-4m2/s2. Since 1.5× 10-4 m2/s2 is equivalent to 1.5×10-5m in the vertical

  18. Improved progressive morphological filter for digital terrain model generation from airborne lidar data.

    Science.gov (United States)

    Hui, Zhenyang; Wu, Beiping; Hu, Youjian; Ziggah, Yao Yevenyo

    2017-12-01

    Obtaining high-precision filtering results from airborne lidar point clouds in complex environments has always been a hot topic. Mathematical morphology was widely used for filtering, owing to its simplicity and high efficiency. However, the morphology-based algorithms are deficient in preserving terrain details. In order to obtain a better filtering effect, this paper proposed an improved progressive morphological filter based on hierarchical radial basis function interpolation (PMHR) to refine the classical progressive morphological filter. PMHR involved two main improvements, namely, automatic setting of self-adaptive thresholds and terrain details preservation, respectively. The performance of PMHR was evaluated using datasets provided by the International Society for Photogrammetry and Remote Sensing. Experimental results show that PMHR achieved good performance under variant terrain features with an average total error of 4.27% and average Kappa coefficient of 84.57%.

  19. Stratigraphy of the layered terrain in Valles Marineris, Mars

    Science.gov (United States)

    Komatsu, G.; Strom, Roger G.

    1991-01-01

    The layered terrain in Valles Marineris provides information about its origin and the geologic history of this canyon system. Whether the terrain is sedimentary material deposited in a dry or lacustrine environment, or volcanic material related to the tectonics of the canyon is still controversial. However, recent studies of Gangis Layered Terrain suggests a cyclic sequence of deposition and erosion under episodic lacustrine conditions. The stratigraphic studies are extended to four other occurrences of layered terrains in Valles Marineris in an attempt to correlate and distinguish between depositional environments. The Juvantae Chasma, Hebes Chasma, Ophir and Candor Chasmata, Melas Chasma, and Gangis Layered Terrain were examined. Although there are broad similarities among the layered terrains, no two deposits are exactly alike. This suggests that there was no synchronized regional depositional processes to form all the layered deposits. However, the similar erosional style of the lower massive weakly bedded unit in Hebes, Gangis, and Ophir-Candor suggests it may have been deposited under similar circumstances.

  20. Simulation and Analysis of the Topographic Effects on Snow-Free Albedo over Rugged Terrain

    Directory of Open Access Journals (Sweden)

    Dalei Hao

    2018-02-01

    Full Text Available Topography complicates the modeling and retrieval of land surface albedo due to shadow effects and the redistribution of incident radiation. Neglecting topographic effects may lead to a significant bias when estimating land surface albedo over a single slope. However, for rugged terrain, a comprehensive and systematic investigation of topographic effects on land surface albedo is currently ongoing. Accurately estimating topographic effects on land surface albedo over a rugged terrain presents a challenge in remote sensing modeling and applications. In this paper, we focused on the development of a simplified estimation method for snow-free albedo over a rugged terrain at a 1-km scale based on a 30-m fine-scale digital elevation model (DEM. The proposed method was compared with the radiosity approach based on simulated and real DEMs. The results of the comparison showed that the proposed method provided adequate computational efficiency and satisfactory accuracy simultaneously. Then, the topographic effects on snow-free albedo were quantitatively investigated and interpreted by considering the mean slope, subpixel aspect distribution, solar zenith angle, and solar azimuth angle. The results showed that the more rugged the terrain and the larger the solar illumination angle, the more intense the topographic effects were on black-sky albedo (BSA. The maximum absolute deviation (MAD and the maximum relative deviation (MRD of the BSA over a rugged terrain reached 0.28 and 85%, respectively, when the SZA was 60° for different terrains. Topographic effects varied with the mean slope, subpixel aspect distribution, SZA and SAA, which should not be neglected when modeling albedo.

  1. Analysis of landing site attributes for future missions targeting the rim of the lunar South Pole Aitken basin

    Science.gov (United States)

    Koebel, David; Bonerba, Michele; Behrenwaldt, Daniel; Wieser, Matthias; Borowy, Carsten

    2012-11-01

    For the South polar lunar region between -85 and -90° Latitude an updated analyses of the solar illumination and ground station visibility conditions has been performed in the frame of a feasibility study for an ESA Lunar Lander mission. The analyses are based on the refined lunar digital elevation model provided by the Japanese Kaguya/Selene mission, originating from its LASER altimeter instrument. For the South polar region maps of integral solar illumination are presented for a mission epoch in 2016. The analysis modelling was validated with the help of a Kaguya High Definition video. The solar illumination is driving for the power subsystems of any robotic lander craft or manned lunar outpost, in case they rely on conventional photovoltaic power generation with battery buffering of shadowed periods. In addition the visibility of the terrain from a terrestrial ESA ground station was analysed. The results are presented as an integral ground contact duration map, being crucial for the operations of any lunar outpost. Considering these two quality criteria, several possible landing sites for a future lunar mission have been pre-selected. For these sites a detailed analysis of quasi-continuous illumination conditions is presented. This includes magnified maps of the pre-selected areas, showing any location's longest illumination intervals that are allowed to be interrupted by shadows with limited duration only. As a final quality criterion, the terrain topology has been analysed for its impact on the landing trajectory. From a trade-off between the three quality criteria the connecting ridge between the Shackleton and the de Gerlache was determined to provide the most favourable landing site quality. This site is located at 89°28' South, 136°40' West, and 1947 m altitude, and features and integral illumination of 85.7%. With battery energy to sustain shadows of 120 h, total mission duration of 9.37 sidereal months can be guaranteed.

  2. Virtual reality based surgical assistance and training system for long duration space missions.

    Science.gov (United States)

    Montgomery, K; Thonier, G; Stephanides, M; Schendel, S

    2001-01-01

    Access to medical care during long duration space missions is extremely important. Numerous unanticipated medical problems will need to be addressed promptly and efficiently. Although telemedicine provides a convenient tool for remote diagnosis and treatment, it is impractical due to the long delay between data transmission and reception to Earth. While a well-trained surgeon-internist-astronaut would be an essential addition to the crew, the vast number of potential medical problems necessitate instant access to computerized, skill-enhancing and diagnostic tools. A functional prototype of a virtual reality based surgical training and assistance tool was created at our center, using low-power, small, lightweight components that would be easy to transport on a space mission. The system consists of a tracked, head-mounted display, a computer system, and a number of tracked surgical instruments. The software provides a real-time surgical simulation system with integrated monitoring and information retrieval and a voice input/output subsystem. Initial medical content for the system has been created, comprising craniofacial, hand, inner ear, and general anatomy, as well as information on a number of surgical procedures and techniques. One surgical specialty in particular, microsurgery, was provided as a full simulation due to its long training requirements, significant impact on result due to experience, and likelihood for need. However, the system is easily adapted to realistically simulate a large number of other surgical procedures. By providing a general system for surgical simulation and assistance, the astronaut-surgeon can maintain their skills, acquire new specialty skills, and use tools for computer-based surgical planning and assistance to minimize overall crew and mission risk.

  3. An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns.

    NARCIS (Netherlands)

    Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Montávez, J.P.; Garcia-Bustamante, E.; Navarro, J.; Vilà-Guerau de Arellano, J.; Munoz-Roldán, A.

    2013-01-01

    [1] The performance of the Weather Research and Forecasting (WRF) model to reproduce the surface wind circulations over complex terrain is examined. The atmospheric evolution is simulated using two versions of the WRF model during an over 13¿year period (1992 to 2005) over a complex terrain region

  4. RGB–D terrain perception and dense mapping for legged robots

    Directory of Open Access Journals (Sweden)

    Belter Dominik

    2016-03-01

    Full Text Available This paper addresses the issues of unstructured terrain modeling for the purpose of navigation with legged robots. We present an improved elevation grid concept adopted to the specific requirements of a small legged robot with limited perceptual capabilities. We propose an extension of the elevation grid update mechanism by incorporating a formal treatment of the spatial uncertainty. Moreover, this paper presents uncertainty models for a structured light RGB-D sensor and a stereo vision camera used to produce a dense depth map. The model for the uncertainty of the stereo vision camera is based on uncertainty propagation from calibration, through undistortion and rectification algorithms, allowing calculation of the uncertainty of measured 3D point coordinates. The proposed uncertainty models were used for the construction of a terrain elevation map using the Videre Design STOC stereo vision camera and Kinect-like range sensors. We provide experimental verification of the proposed mapping method, and a comparison with another recently published terrain mapping method for walking robots.

  5. Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.M.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Inst. for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States). Environmental Research Div.

    1993-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  6. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    Science.gov (United States)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model

  7. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    Science.gov (United States)

    Klarer, P.

    1994-01-01

    An alternative methodology for designing an autonomous navigation and control system is discussed. This generalized hybrid system is based on a less sequential and less anthropomorphic approach than that used in the more traditional artificial intelligence (AI) technique. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules. This is accomplished by intertask communications channels which implement each behavior module and each interconnection node as a stand-alone task. The proposed design architecture allows for construction of hybrid systems which employ both subsumption and traditional AI techniques as well as providing for a teleoperator's interface. Implementation of the architecture is planned for the prototype Robotic All Terrain Lunar Explorer Rover (RATLER) which is described briefly.

  8. Mission-Based Serious Games for Cross-Cultural Communication Training

    Science.gov (United States)

    Schrider, Peter J.; Friedland, LeeEllen; Valente, Andre; Camacho, Joseph

    2011-01-01

    Appropriate cross-cultural communication requires a critical skill set that is increasingly being integrated into regular military training regimens. By enabling a higher order of communication skills, military personnel are able to interact more effectively in situations that involve local populations, host nation forces, and multinational partners. The Virtual Cultural Awareness Trainer (VCAT) is specifically designed to help address these needs. VCAT is deployed by Joint Forces Command (JFCOM) on Joint Knowledge Online (JKO) as a means to provide online, mission-based culture and language training to deploying and deployed troops. VCAT uses a mix of game-based learning, storytelling, tutoring, and remediation to assist in developing the component skills required for successful intercultural communication in mission-based settings.

  9. Assessing the importance of terrain parameters on glide avalanche release

    Science.gov (United States)

    Peitzsch, E.; Hendrikx, J.; Fagre, D. B.

    2013-12-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  10. Assessing the importance of terrain parameters on glide avalanche release

    Science.gov (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  11. GRACE Status at Mission End

    Science.gov (United States)

    Tapley, B. D.; Flechtner, F. M.; Watkins, M. M.; Bettadpur, S. V.

    2017-12-01

    The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for nearly 16 years. The mission objectives are to observe the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The mass changes observed are related to both the changes within the solid earth and the change within and between the Erath system components. A significant cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequence which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. The fifth reanalysis on the mission data set, the RL05 data, were released in mid-2013. With the planned launch of GRACE Follow-On in early 2018, plans are underway for a reanalysis that will be consistent with the GRACE FO processing standards. The mission is entering the final phases of its operation life with mission end expected to occur in early 2018. The current mission operations strategy emphasizes extending the mission lifetime to obtain an overlap with the GRACE FO. This presentation will review the mission status and the projections for mission lifetime, describe the current operations philosophy and its impact on the science data, discuss the issues related to achieving the GRACE and GRACE FO connection and discuss issues related to science data products during this phase of the mission period.

  12. Model-based system engineering approach for the Euclid mission to manage scientific and technical complexity

    Science.gov (United States)

    Lorenzo Alvarez, Jose; Metselaar, Harold; Amiaux, Jerome; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis M.; Salvignol, Jean-Christophe; Laureijs, René J.; Vavrek, Roland

    2016-08-01

    In the last years, the system engineering field is coming to terms with a paradigm change in the approach for complexity management. Different strategies have been proposed to cope with highly interrelated systems, system of systems and collaborative system engineering have been proposed and a significant effort is being invested into standardization and ontology definition. In particular, Model Based System Engineering (MBSE) intends to introduce methodologies for a systematic system definition, development, validation, deployment, operation and decommission, based on logical and visual relationship mapping, rather than traditional 'document based' information management. The practical implementation in real large-scale projects is not uniform across fields. In space science missions, the usage has been limited to subsystems or sample projects with modeling being performed 'a-posteriori' in many instances. The main hurdle for the introduction of MBSE practices in new projects is still the difficulty to demonstrate their added value to a project and whether their benefit is commensurate with the level of effort required to put them in place. In this paper we present the implemented Euclid system modeling activities, and an analysis of the benefits and limitations identified to support in particular requirement break-down and allocation, and verification planning at mission level.

  13. Geomorphology Classification of Shandong Province Based on Digital Elevation Model in the 1 Arc-second Format of Shuttle Radar Topography Mission Data

    Science.gov (United States)

    Fu, Jundong; Zhang, Guangcheng; Wang, Lei; Xia, Nuan

    2018-01-01

    Based on gigital elevation model in the 1 arc-second format of shuttle radar topography mission data, using the window analysis and mean change point analysis of geographic information system (GIS) technology, programmed with python modules this, automatically extracted and calculated geomorphic elements of Shandong province. The best access to quantitatively study area relief amplitude of statistical area. According to Chinese landscape classification standard, the landscape type in Shandong province was divided into 8 types: low altitude plain, medium altitude plain, low altitude platform, medium altitude platform, low altitude hills, medium altitude hills, low relief mountain, medium relief mountain and the percentages of Shandong province’s total area are as follows: 12.72%, 0.01%, 36.38%, 0.24%, 17.26%, 15.64%, 11.1%, 6.65%. The results of landforms are basically the same as the overall terrain of Shandong Province, Shandong province’s total area, and the study can quantitatively and scientifically provide reference for the classification of landforms in Shandong province.

  14. Analyzing complex wake-terrain interactions and its implications on wind-farm performance.

    Science.gov (United States)

    Tabib, Mandar; Rasheed, Adil; Fuchs, Franz

    2016-09-01

    Rotating wind turbine blades generate complex wakes involving vortices (helical tip-vortex, root-vortex etc.).These wakes are regions of high velocity deficits and high turbulence intensities and they tend to degrade the performance of down-stream turbines. Hence, a conservative inter-turbine distance of up-to 10 times turbine diameter (10D) is sometimes used in wind-farm layout (particularly in cases of flat terrain). This ensures that wake-effects will not reduce the overall wind-farm performance, but this leads to larger land footprint for establishing a wind-farm. In-case of complex-terrain, within a short distance (say 10D) itself, the nearby terrain can rise in altitude and be high enough to influence the wake dynamics. This wake-terrain interaction can happen either (a) indirectly, through an interaction of wake (both near tip vortex and far wake large-scale vortex) with terrain induced turbulence (especially, smaller eddies generated by small ridges within the terrain) or (b) directly, by obstructing the wake-region partially or fully in its flow-path. Hence, enhanced understanding of wake- development due to wake-terrain interaction will help in wind farm design. To this end the current study involves: (1) understanding the numerics for successful simulation of vortices, (2) understanding fundamental vortex-terrain interaction mechanism through studies devoted to interaction of a single vortex with different terrains, (3) relating influence of vortex-terrain interactions to performance of a wind-farm by studying a multi-turbine wind-farm layout under different terrains. The results on interaction of terrain and vortex has shown a much faster decay of vortex for complex terrain compared to a flatter-terrain. The potential reasons identified explaining the observation are (a) formation of secondary vortices in flow and its interaction with the primary vortex and (b) enhanced vorticity diffusion due to increased terrain-induced turbulence. The implications of

  15. Tetrahedral mesh generation of real terrain and topography effect on ERT image in Beishan region, Gansu province

    International Nuclear Information System (INIS)

    Lu Debao; Zhou Qiyou; Xiao Anlin; Song Zhen

    2014-01-01

    The paper starts from tetrahedral meshes generation of real terrain, a detailed way of tetradralization toward complicated terrain has been proposed based on comparing of advantage and disadvantage of several methods. DEM image has been used to help to generate tetrahedral mesh of research area. And then, forward soft Gmdata is used to calculate and analyze the topography effect on ERT Image with different kinds of terrain. Meanwhile, a quantitative way to define the topography effect was presented. Based on that, the method is used to eliminate the topography effect. The results show the method is effective and useful. (authors)

  16. Digital terrain model evaluation and computation of the terrain correction and indirect effect in South America

    Directory of Open Access Journals (Sweden)

    Denizar Blitzkow

    2009-12-01

    Full Text Available The main objectives of this paper are to compare digital terrain models, to show the generated models for South America and to present two applications. Shuttle Radar Topography Mission (SRTM produced the most important and updated height information in the world. This paper addresses the attention to comparisons of the following models: SRTM3, DTM2002, GLOBE, GTOPO30, ETOPO2 and ETOPO5, at the common points of the grid. The comparisons are limited by latitudes 60º S and 25 º N and longitudes 100 º W and 25 º W. All these data, after some analysis, have been used to create three models for South America: SAM_1mv1, SAM_1mv2 (both of 1' grid spacing and SAM_30s (30" grid spacing. Besides this effort, the three models as well as STRM were evaluated using Bench Marks (BM in Brazil and Argentina. This paper also shows two important geodesy and geophysics applications using the SAM_1mv1: terrain correction (one of the reductions applied to the gravity acceleration and indirect effect (a consequence of the reduction of the external mass to the geoid. These are important at Andes for a precise geoid computation.Los objetivos principales de este documento son comparar modelos digitales del continente; enseñar los modelos generados para Sudamérica y presentar dos aplicaciones. Shuttle Radar Topography Mission (SRTM produjo la información más importante y más actualizada de las altitudes del mundo. Este trabajo centra su atención en las comparaciones de los modelos siguientes: SRTM3, DTM2002, GLOBO, GTOPO30, ETOPO2 y ETOPO5, en los puntos comunes de la rejilla. Las comparaciones son limitadas por las latitudes 60º S y 25 º N y longitudes 100 º W y 25 º W. Todos estos datos, después de los análisis, se han utilizado para crear tres modelos para Sudamérica: SAM_1mv1, SAM_1mv2 (1' de espaciamiento de la rejilla y SAM_30s (30" de espaciamiento de la rejilla. Los tres modelos bien como el STRM fueron evaluados usando puntos de referencia de

  17. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  18. A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Xingwen Lin

    2018-01-01

    Full Text Available The issue for the validation of land surface remote sensing albedo products over rugged terrain is the scale effects between the reference albedo measurements and coarse scale albedo products, which is caused by the complex topography. This paper illustrates a multi-scale validation strategy specified for coarse scale albedo validation over rugged terrain. A Mountain-Radiation-Transfer-based (MRT-based albedo upscaling model was proposed in the process of multi-scale validation strategy for aggregating fine scale albedo to coarse scale. The simulated data of both the reference coarse scale albedo and fine scale albedo were used to assess the performance and uncertainties of the MRT-based albedo upscaling model. The results showed that the MRT-based model could reflect the albedo scale effects over rugged terrain and provided a robust solution for albedo upscaling from fine scale to coarse scale with different mean slopes and different solar zenith angles. The upscaled coarse scale albedos had the great agreements with the simulated coarse scale albedo with a Root-Mean-Square-Error (RMSE of 0.0029 and 0.0017 for black sky albedo (BSA and white sky albedo (WSA, respectively. Then the MRT-based model was preliminarily applied for the assessment of daily MODerate Resolution Imaging Spectroradiometer (MODIS Albedo Collection V006 products (MCD43A3 C6 over rugged terrain. Results showed that the MRT-based model was effective and suitable for conducting the validation of MODIS albedo products over rugged terrain. In this research area, it was shown that the MCD43A3 C6 products with full inversion algorithm, were generally in agreement with the aggregated coarse scale reference albedos over rugged terrain in the Heihe River Basin, with the BSA RMSE of 0.0305 and WSA RMSE of 0.0321, respectively, which were slightly higher than those over flat terrain.

  19. An IP-Based Software System for Real-time, Closed Loop, Multi-Spacecraft Mission Simulations

    Science.gov (United States)

    Cary, Everett; Davis, George; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    This viewgraph presentation provides information on the architecture of a computerized testbest for simulating Distributed Space Systems (DSS) for controlling spacecraft flying in formation. The presentation also discusses and diagrams the Distributed Synthesis Environment (DSE) for simulating and planning DSS missions.

  20. Estimation of potential solar radiation using 50m grid digital terrain model

    International Nuclear Information System (INIS)

    Kurose, Y.; Nagata, K.; Ohba, K.; Maruyama, A.

    1999-01-01

    To clarify the spatial distribution of solar radiation, a model to estimate the potential incoming solar radiation with 50m grid size was developed. The model is based on individual calculation of direct and diffuse solar radiation accounting for the effect of topographic shading. Using the elevation data in the area with radius 25km, which was offered by the Digital Map 50m Grid, the effect of topographic shading is estimated as angle of elevation for surrounding configuration to 72 directions. The estimated sunshine duration under clear sky conditions agreed well with observed values at AMeDAS points of Kyushu and Shikoku region. Similarly, there is a significant agreement between estimated and observed variation of solar radiation for monthly mean conditions over complex terrain. These suggest that the potential incoming solar radiation can be estimated well over complex terrain using the model. Locations of large fields over complex terrain agreed well with the area of the abundant insolation condition, which is defined by the model. The model is available for the investigation of agrometeorological resources over complex terrain. (author)

  1. Strategic Human Resource Planning in Academia

    Science.gov (United States)

    Ulferts, Gregory; Wirtz, Patrick; Peterson, Evan

    2009-01-01

    A strategic plan guides a college in successfully meeting its mission. Based on the strategic plan, a college can develop a human resource plan that will allow it to make management decisions in the present to support the future direction of the college. The overall purpose of human resource management is to: (1) ensure the organization has…

  2. Plan Critiquing and Look-Ahead Constraint Reasoning for Active Templates

    National Research Council Canada - National Science Library

    White, Christopher

    2004-01-01

    .... Second, we developed a template-based natural language user interface to allow mission planners to input mission plan details in a format that is understandable to both the machine and human operator...

  3. LANDFIRE - A national vegetation/fuels data base for use in fuels treatment, restoration, and suppression planning

    Science.gov (United States)

    Kevin C. Ryan; Tonja S. Opperman

    2013-01-01

    LANDFIRE is the working name given to the Landscape Fire and Resource Management Planning Tools Project (http://www.landfire.gov). The project was initiated in response to mega-fires and the need for managers to have consistent, wall-to-wall (i.e., all wildlands regardless of agency/ownership), geospatial data, on vegetation, fuels, and terrain to support use of fire...

  4. Definition phase of Grand Tour missions/radio science investigations study for outer planets missions

    Science.gov (United States)

    Tyler, G. L.

    1972-01-01

    Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.

  5. Bladed Terrain on Pluto: Possible origins and evolution

    Science.gov (United States)

    Moore, Jeffrey M.; Howard, Alan D.; Umurhan, Orkan M.; White, Oliver L.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Spencer, John R.; Singer, Kelsi N.; Grundy, William M.; Earle, Alissa M.; Schmitt, Bernard; Protopapa, Silvia; Nimmo, Francis; Cruikshank, Dale P.; Hinson, David P.; Young, Leslie A.; Stern, S. Alan; Weaver, Harold A.; Olkin, Cathy B.; Ennico, Kimberly; Collins, Geoffrey; Bertrand, Tanguy; Forget, François; Scipioni, Francesca; New Horizons Science Team

    2018-01-01

    Bladed Terrain on Pluto consists of deposits of massive CH4, which are observed to occur within latitudes 30° of the equator and are found almost exclusively at the highest elevations (> 2 km above the mean radius). Our analysis indicates that these deposits of CH4 preferentially precipitate at low latitudes where net annual solar energy input is lowest. CH4 and N2 will both precipitate at low elevations. However, since there is much more N2 in the atmosphere than CH4, the N2 ice will dominate at these low elevations. At high elevations the atmosphere is too warm for N2 to precipitate so only CH4 can do so. We conclude that following the time of massive CH4 emplacement; there have been sufficient excursions in Pluto's climate to partially erode these deposits via sublimation into the blades we see today. Blades composed of massive CH4 ice implies that the mechanical behavior of CH4 can support at least several hundred meters of relief at Pluto surface conditions. Bladed Terrain deposits may be widespread in the low latitudes of the poorly seen sub-Charon hemisphere, based on spectral observations. If these locations are indeed Bladed Terrain deposits, they may mark heretofore unrecognized regions of high elevation.

  6. A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots

    Science.gov (United States)

    Li, Yuankai; Ding, Liang; Zheng, Zhizhong; Yang, Qizhi; Zhao, Xingang; Liu, Guangjun

    2018-05-01

    For motion control of wheeled planetary rovers traversing on deformable terrain, real-time terrain parameter estimation is critical in modeling the wheel-terrain interaction and compensating the effect of wheel slipping. A multi-mode real-time estimation method is proposed in this paper to achieve accurate terrain parameter estimation. The proposed method is composed of an inner layer for real-time filtering and an outer layer for online update. In the inner layer, sinkage exponent and internal frictional angle, which have higher sensitivity than that of the other terrain parameters to wheel-terrain interaction forces, are estimated in real time by using an adaptive robust extended Kalman filter (AREKF), whereas the other parameters are fixed with nominal values. The inner layer result can help synthesize the current wheel-terrain contact forces with adequate precision, but has limited prediction capability for time-variable wheel slipping. To improve estimation accuracy of the result from the inner layer, an outer layer based on recursive Gauss-Newton (RGN) algorithm is introduced to refine the result of real-time filtering according to the innovation contained in the history data. With the two-layer structure, the proposed method can work in three fundamental estimation modes: EKF, REKF and RGN, making the method applicable for flat, rough and non-uniform terrains. Simulations have demonstrated the effectiveness of the proposed method under three terrain types, showing the advantages of introducing the two-layer structure.

  7. Parallel Implementation of the Terrain Masking Algorithm

    Science.gov (United States)

    1994-03-01

    contains behavior rules which can define a computation or an algorithm. It can communicate with other process nodes, it can contain local data, and it can...terrain maskirg calculation is being performed. It is this algorithm that comsumes about seventy percent of the total terrain masking calculation time

  8. A GPS inspired Terrain Referenced Navigation algorithm

    NARCIS (Netherlands)

    Vaman, D.

    2014-01-01

    Terrain Referenced Navigation (TRN) refers to a form of localization in which measurements of distances to the terrain surface are matched with a digital elevation map allowing a vehicle to estimate its own position within the map. The main goal of this dissertation is to improve TRN performance

  9. A Spreadsheet-based GIS tool for planning aerial photography

    Science.gov (United States)

    The U.S.EPA's Pacific Coastal Ecology Branch has developed a tool which facilitates planning aerial photography missions. This tool is an Excel spreadsheet which accepts various input parameters such as desired photo-scale and boundary coordinates of the study area and compiles ...

  10. Understanding NASA surface missions with the PDS Analyst's Notebook

    Science.gov (United States)

    Stein, T.

    2011-10-01

    Planetary data archives of surface missions contain data from numerous hosted instruments. Because of the nondeterministic nature of surface missions, it is not possible to assess the data without understanding the context in which they were collected. The PDS Analyst's Notebook (http://an.rsl.wustl.edu) provides access to Mars Exploration Rover (MER) [1] and Mars Phoenix Lander [2] data archives by integrating sequence information, engineering and science data, observation planning and targeting, and documentation into web-accessible pages to facilitate "mission replay." In addition, Lunar Apollo surface mission data archives and LCROSS mission data are available in the Analyst's Notebook concept, and a Notebook is planned for Mars Science Laboratory (MSL) mission.

  11. Site scientific mission plan for the Southern Great Plains CART site: January 1997--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Institute for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States)

    1997-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  12. Landsat analysis of tropical forest succession employing a terrain model

    Science.gov (United States)

    Barringer, T. H.; Robinson, V. B.; Coiner, J. C.; Bruce, R. C.

    1980-01-01

    Landsat multispectral scanner (MSS) data have yielded a dual classification of rain forest and shadow in an analysis of a semi-deciduous forest on Mindonoro Island, Philippines. Both a spatial terrain model, using a fifth side polynomial trend surface analysis for quantitatively estimating the general spatial variation in the data set, and a spectral terrain model, based on the MSS data, have been set up. A discriminant analysis, using both sets of data, has suggested that shadowing effects may be due primarily to local variations in the spectral regions and can therefore be compensated for through the decomposition of the spatial variation in both elevation and MSS data.

  13. Computing visibility on terrains in external memory

    NARCIS (Netherlands)

    Haverkort, H.J.; Toma, L.; Zhuang, Yi

    2007-01-01

    We describe a novel application of the distribution sweeping technique to computing visibility on terrains. Given an arbitrary viewpoint v, the basic problem we address is computing the visibility map or viewshed of v, which is the set of points in the terrain that are visible from v. We give the

  14. 47 CFR 80.759 - Average terrain elevation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Average terrain elevation. 80.759 Section 80.759 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.759 Average terrain elevation. (a)(1) Draw radials...

  15. A new extraction method of loess shoulder-line based on Marr-Hildreth operator and terrain mask.

    Directory of Open Access Journals (Sweden)

    Sheng Jiang

    Full Text Available Loess shoulder-lines are significant structural lines which divide the complicated loess landform into loess interfluves and gully-slope lands. Existing extraction algorithms for shoulder-lines mainly are based on local maximum of terrain features. These algorithms are sensitive to noise for complicated loess surface and the extraction parameters are difficult to be determined, making the extraction results usually inaccurate. This paper presents a new extraction approach for loess shoulder-lines, in which Marr-Hildreth edge operator is employed to construct initial shoulder-lines. Then the terrain mask for confining the boundary of shoulder-lines is proposed based on slope degree classification and morphology methods, avoiding interference from non-valley area and modify the initial loess shoulder-lines. A case study is conducted in Yijun located in the northern Shanxi Loess Plateau of China. The Digital Elevation Models with a grid size of 5 m is applied as original data. To obtain optimal scale parameters, the Euclidean Distance Offset Percentages between shoulder-lines is calculated by the Marr-Hildreth operator and the manual delineations. The experimental results show that the new method could achieve the highest extraction accuracy when σ = 5 in Gaussian smoothing. According to the accuracy assessment, the average extraction accuracy is about 88.5%, which indicates that the proposed method is applicable for the extraction of loess shoulder-lines in the loess hilly and gully areas.

  16. New formulation for interferometric synthetic aperture radar for terrain mapping

    Science.gov (United States)

    Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Eichel, Paul H.; Thompson, Paul A.

    1994-06-01

    The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can, at first glance, appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to 3D computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes 3D Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.

  17. Establishing Sustainable Nuclear Education: Education Capability Assessment and Planning (ECAP) Assist Mission

    International Nuclear Information System (INIS)

    Ugbor, U.; Peddicord, K.; Dies, J.; Philip, B.; Artisyuk, V.

    2016-01-01

    Full text: The development of nuclear education, science and technology programmes is affected by the national context including national needs and capacities. The role and expectations for nuclear education and training might be different in technically matured countries, from countries where the technology is emerging. In this regard, particularly in developing countries, there is a need to balance nuclear education and training between immediate critical issues of radiation safety or human health and longer-term priorities in agriculture or industry. These priorities may or may not include the nuclear energy option. This paper shows how the Education Capability Assessment and Planning (ECAP) Assist Mission can contribute towards establishing sustainable nuclear education, including highlighting the various activities of each phase of the ECAP Process. (author

  18. Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Michael; Hansen, Todd, editors

    2000-07-01

    The FY 2001-2005 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  19. Routine Radiological Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    Bechtel Nevada

    1998-01-01

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs

  20. Future Plans in US Flight Missions: Using Laser Remote Sensing for Climate Science Observations

    Science.gov (United States)

    Callahan, Lisa W.

    2010-01-01

    Laser Remote Sensing provides critical climate science observations necessary to better measure, understand, model and predict the Earth's water, carbon and energy cycles. Laser Remote Sensing applications for studying the Earth and other planets include three dimensional mapping of surface topography, canopy height and density, atmospheric measurement of aerosols and trace gases, plume and cloud profiles, and winds measurements. Beyond the science, data from these missions will produce new data products and applications for a multitude of end users including policy makers and urban planners on local, national and global levels. NASA Missions in formulation including Ice, Cloud, and land Elevation Satellite (ICESat 2) and the Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI), and future missions such as the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS), will incorporate the next generation of LIght Detection And Ranging (lidar) instruments to measure changes in the surface elevation of the ice, quantify ecosystem carbon storage due to biomass and its change, and provide critical data on CO 2 in the atmosphere. Goddard's plans for these instruments and potential uses for the resulting data are described below. For the ICESat 2 mission, GSFC is developing a micro-pulse multi-beam lidar. This instrument will provide improved ice elevation estimates over high slope and very rough areas and result in improved lead detection for sea ice estimates. Data about the sea ice and predictions related to sea levels will continue to help inform urban planners as the changes in the polar ice accelerate. DESDynI is planned to be launched in 2017 and includes both lidar and radar instruments. GSFC is responsible for the lidar portion of the DESDynI mission and is developing a scanning laser altimeter that will measure the Earth's topography, the structure of tree canopies, biomass, and surface roughness. The DESDynI lidar will also measure and

  1. Improved visibility computation on massive grid terrains

    NARCIS (Netherlands)

    Fishman, J.; Haverkort, H.J.; Toma, L.; Wolfson, O.; Agrawal, D.; Lu, C.-T.

    2009-01-01

    This paper describes the design and engineering of algorithms for computing visibility maps on massive grid terrains. Given a terrain T, specified by the elevations of points in a regular grid, and given a viewpoint v, the visibility map or viewshed of v is the set of grid points of T that are

  2. Terrain Classification of Norwegian Slab Avalanche Accidents

    Science.gov (United States)

    Hallandvik, Linda; Aadland, Eivind; Vikene, Odd Lennart

    2016-01-01

    It is difficult to rely on snow conditions, weather, and human factors when making judgments about avalanche risk because these variables are dynamic and complex; terrain, however, is more easily observed and interpreted. Therefore, this study aimed to investigate (1) the type of terrain in which historical fatal snow avalanche accidents in Norway…

  3. CALCULATION OF CHEMICAL ATMOSPHERE ESTIMATION GIVEN THE COMPLEX TERRAIN

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2010-06-01

    Full Text Available The 3D numerical model was used to simulate the toxic gas dispersion over a complex terrain after an accident spillage. The model is based on the K-gradient transport model and the model of potential flow. The results of numerical experiment are presented.

  4. Planning for Reform-Based Science: Case Studies of Two Urban Elementary Teachers

    Science.gov (United States)

    Mangiante, Elaine Silva

    2018-02-01

    The intent of national efforts to frame science education standards is to promote students' development of scientific practices and conceptual understanding for their future role as scientifically literate citizens (NRC 2012). A guiding principle of science education reform is that all students receive equitable opportunities to engage in rigorous science learning. Yet, implementation of science education reform depends on teachers' instructional decisions. In urban schools serving students primarily from poor, diverse communities, teachers typically face obstacles in providing reform-based science due to limited resources and accountability pressures, as well as a culture of teacher-directed pedagogy, and deficit views of students. The purpose of this qualitative research was to study two white, fourth grade teachers from high-poverty urban schools, who were identified as transforming their science teaching and to investigate how their beliefs, knowledge bases, and resources shaped their planning for reform-based science. Using the Shavelson and Stern's decision model for teacher planning to analyze evidence gathered from interviews, documents, planning meetings, and lesson observations, the findings indicated their planning for scientific practices was influenced by the type and extent of professional development each received, each teacher's beliefs about their students and their background, and the mission and learning environment each teacher envisioned for the reform to serve their students. The results provided specific insights into factors that impacted their planning in high-poverty urban schools and indicated considerations for those in similar contexts to promote teachers' planning for equitable science learning opportunities by all students.

  5. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    Science.gov (United States)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  6. An Analog Rover Exploration Mission for Education and Outreach

    Science.gov (United States)

    Moores, John; Campbell, Charissa L.; Smith, Christina L.; Cooper, Brittney A.

    2017-10-01

    This abstract describes an analog rover exploration mission designed as an outreach program for high school and undergraduate students. This program is used to teach them about basic mission control operations, how to manage a rover as if it were on another planetary body, and employing the rover remotely to complete mission objectives. One iteration of this program has been completed and another is underway. In both trials, participants were shown the different operation processes involved in a real-life mission. Modifications were made to these processes to decrease complexity and better simulate a mission control environment in a short time period (three 20-minute-long mission “days”). In the first run of the program, participants selected a landing site, what instruments would be on the rover - subject to cost, size, and weight limitations - and were randomly assigned one of six different mission operations roles, each with specific responsibilities. For example, a Science Planner/Integrator (SPI) would plan science activities whilst a Rover Engineer (RE) would keep on top of rover constraints. Planning consisted of a series of four meetings to develop and verify the current plan, pre-plan the next day's activities and uplink the activities to the “rover” (a human colleague). Participants were required to attend certain meetings depending upon their assigned role. To conclude the mission, students viewed the site to understand any differences between remote viewing and reality in relation to the rover. Another mission is currently in progress with revisions from the earlier run to improve the experience. This includes broader roles and meetings and pre-selecting the landing site and rover. The new roles are: Mission Lead, Rover Engineer and Science Planner. The SPI role was previously popular so most of the students were placed in this category. The meetings were reduced to three but extended in length. We are also planning to integrate this program

  7. FY 1996 annual work plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-30

    In April 1994, the Department of Energy (DOE) Strategic Plan was issued. This Plan presents the Department`s strategic outlook in response to a changing world. It discusses the Department`s unique capabilities; its mission, vision, and core values; and key customer and stakeholder considerations. The DOE Strategic Plan lists business strategies and critical success factors which are intended to aid the Department in accomplishing its mission and reaching its vision of itself in the future. The Office of Inspector General (OIG) has an important role in carrying out the goals and objectives of the Secretary`s Strategic Plan. The ultimate goal of the OIG is to facilitate positive change by assisting its customers, responsible Government officials, in taking actions to improve programs and operations. The Inspector General annually issues his own Strategic Plan that contains program guidance for the next fiscal year. As part of its responsibility in carrying out the OIG mission, the Office of the Deputy Inspector General for Audit Services (Office of Audit Services) publishes an Annual Work Plan that sets forth audits that are planned for the next fiscal year. Selection of these audits is based on the overall budget of the Department, analyses of trends in Departmental operations, guidance contained in the agency`s strategic plans, statutory requirements, and the expressed needs and audit suggestions of Departmental program managers and OIG managers and staff. This work plan includes audits that are carried over from FY 1995 and audits scheduled to start during FY 1996. Audits included in the plan will be performed by OIG staff.

  8. Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter

    Science.gov (United States)

    Ashman, Mike; Cardesin Moinelo, Alejandro; Frew, David; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Muñoz, Michela; Nespoli, Federico

    2018-05-01

    The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occultation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning

  9. Optimization of Wind Farm Layout in Complex Terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Yang, Jianchuan; Li, Chenqi

    2013-01-01

    Microscopic site selection for wind farms in complex terrain is a technological difficulty in the development of onshore wind farms. This paper presented a method for optimizing wind farm layout in complex terrain. This method employed Lissaman and Jensen wake models, took wind velocity distribut......Microscopic site selection for wind farms in complex terrain is a technological difficulty in the development of onshore wind farms. This paper presented a method for optimizing wind farm layout in complex terrain. This method employed Lissaman and Jensen wake models, took wind velocity...... are subject to boundary conditions and minimum distance conditions. The improved genetic algorithm (GA) for real number coding was used to search the optimal result. Then the optimized result was compared to the result from the experienced layout method. Results show the advantages of the present method...

  10. STS-26 MS Lounge in fixed based (FB) shuttle mission simulator (SMS)

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing comunications kit assembly headset and crouched on the aft flight deck, performs checklist inspection during training session. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  11. CHEOPS: A transit photometry mission for ESA's small mission programme

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2013-04-01

    Full Text Available Ground based radial velocity (RV searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes.

  12. Online Aerial Terrain Mapping for Ground Robot Navigation

    Directory of Open Access Journals (Sweden)

    John Peterson

    2018-02-01

    Full Text Available This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  13. Development and Field Testing of the FootFall Planning System for the ATHLETE Robots

    Science.gov (United States)

    SunSpiral, Vytas; Wheeler, D. W.; Chavez-Clementa, Daniel; Mittman, David

    2011-01-01

    The FootFall Planning System is a ground-based planning and decision support system designed to facilitate the control of walking activities for the ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) family of robots. ATHLETE was developed at NASA's Jet Propulsion Laboratory (JPL) and is a large six-legged robot designed to serve multiple roles during manned and unmanned missions to the Moon; its roles include transportation, construction and exploration. Over the four years from 2006 through 2010 the FootFall Planning System was developed and adapted to two generations of the ATHLETE robots and tested at two analog field sites (the Human Robotic Systems Project's Integrated Field Test at Moses Lake, Washington, June 2008, and the Desert Research and Technology Studies (D-RATS), held at Black Point Lava Flow in Arizona, September 2010). Having 42 degrees of kinematic freedom, standing to a maximum height of just over 4 meters, and having a payload capacity of 450 kg in Earth gravity, the current version of the ATHLETE robot is a uniquely complex system. A central challenge to this work was the compliance of the high-DOF (Degree Of Freedom) robot, especially the compliance of the wheels, which affected many aspects of statically-stable walking. This paper will review the history of the development of the FootFall system, sharing design decisions, field test experiences, and the lessons learned concerning compliance and self-awareness.

  14. Productive uncertainty. Notes on Terrain Vague

    Directory of Open Access Journals (Sweden)

    Francesco Marullo

    2014-12-01

    Full Text Available Terrain vague is usually synonym for a place exceeding the traditional categories of the city. Juxtaposing entropy to definite zones of containment, abandonment and emptiness to consolidated urban fabric, ceaseless transformation to historical stratification, informality and illegal activities to controlled jurisdictions, the terrain vague acts a sort of ruin, where the city is at the point of both being forgotten and disclosing its imminent future, eluding any of its regular uses and functioning mechanisms.

  15. TERRAIN, BERKS COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  16. TERRAIN, PIERCE, COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  17. TERRAIN, DARKE COUNTY, OH

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  18. TERRAIN, RICE COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. TERRAIN, JONES COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. TERRAIN, Norfolk County, Massachusetts

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  1. TERRAIN, JEFFERSON COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  2. TERRAIN, WRIGHT COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  3. TERRAIN, RANKIN COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  4. TERRAIN, Pierce County, WA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. TERRAIN, MITCHELL COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  6. TERRAIN, DAWSON COUNTY, NE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  7. TERRAIN, BARNSTABLE COUNTY, MASSACHUSETTS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  8. TERRAIN, FRANKLIN COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  9. TERRAIN, CLALLAM COUNTY, WASHINGTON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  10. TERRAIN, HOWARD COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  11. TERRAIN, NEWTON COUNTY, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographical data that were used to create...

  12. TERRAIN, PIKE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  13. TERRAIN, Lincoln County, AR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  14. TERRAIN, KENDALL COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  15. TERRAIN, LEON COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  16. TERRAIN, SNOHOMISH COUNTY, WASHINGTON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  17. TERRAIN, TRAVIS COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  18. TERRAIN, Bennington County, Vermont

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  19. TERRAIN, Northampton COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...

  20. TERRAIN, POTTER COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...

  1. TERRAIN, UNION PARISH, LOUSIANA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  2. TERRAIN, KITSAP COUNTY, WASHINGTON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  3. TERRAIN, WAYNE COUNTY, TENNESSEE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  4. TERRAIN, TROUSDALE COUNTY, TENNESSEE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    Science.gov (United States)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  6. EOS Aqua: Mission Status at Earth Science Constellation

    Science.gov (United States)

    Guit, Bill

    2016-01-01

    This is an EOS Aqua Mission Status presentation to be given at the MOWG meeting in Albuquerque NM. The topics to discus are: mission summary, spacecraft subsystems summary, recent and planned activities, inclination adjust maneuvers, propellant usage and lifetime estimate, and mission summary.

  7. Image-Based Method for Determining Better Walking Strategies for Hexapods

    Directory of Open Access Journals (Sweden)

    Kazi Mostafa

    2015-05-01

    Full Text Available An intelligent walking strategy is vital for multi-legged robots possessing no a priori information of an environment when traversing across discontinuous terrain. Six-legged robots outperform other multi-legged robots in static and dynamic stability. However, hexapods require careful planning to traverse across discontinuous terrain. A hexapod walking strategy can be accomplished using a vision-based navigation system to identify the surrounding environment. This paper presents an image-based technique to achieve better walking strategies for a hexapod walking on a special terrain containing irregular, restricted regions. The properties of the restricted regions were acquired beforehand by using reliable surveillance means. Moreover, simplified forward gaits, better rotational gaits, and adaptive gait selection strategies for walking on discontinuous terrain were proposed. The hexapod can effectively switch the gait sequences and types according to the environment involved. The boundary of standing zones can be successfully labelled by applying the greyscale erosion comprising a structuring element similar in shape and size to the foot tip of the hexapod. The experimental results demonstrated that the proposed image-based technique significantly improved the walking strategies of hexapods traversing on discontinuous terrain.

  8. A mission-based gifted and talented program

    Directory of Open Access Journals (Sweden)

    Yazdani Sh

    2004-07-01

    Full Text Available Background: Only in recent years has the concept of "Multiple intelligences" been acknowledged. Purpose: To develop a mission-based program to train gifted medical students on skills and sciences needed for sustainable development Methods: A two-armed program was developed for training medical students. The first arm of the program train students for management purposes. The second branch of the program educates medical students to enable them to contribute to scholar development in areas of health and medicine. Results: The Managerial pathway has been implemented since July 2003. More than 400 students from Shaheed Beheshti and elsewhere registered in the program as main members or guest members of the program. The level up exam was given on February 2004 with 13 students qualifying for C level. Conclusion: It may be to early to draw any conclusion in terms of fulfilment of the outcomes of the program but the dedication of the members to the program has been beyond imagination. Keywords: MISSION-BASED, PROGRAM, GIFTED, TALENTED STUDENTS, GIFTEDNESS IDENTIFICATION

  9. Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management

    Science.gov (United States)

    Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.

    2016-12-01

    Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.

  10. A method to harness global crowd-sourced data to understand travel behavior in avalanche terrain.

    Science.gov (United States)

    Hendrikx, J.; Johnson, J.

    2015-12-01

    To date, most studies of the human dimensions of decision making in avalanche terrain has focused on two areas - post-accident analysis using accident reports/interviews and, the development of tools as decision forcing aids. We present an alternate method using crowd-sourced citizen science, for understanding decision-making in avalanche terrain. Our project combines real-time GPS tracking via a smartphone application, with internet based surveys of winter backcountry users as a method to describe and quantify travel practices in concert with group decision-making dynamics, and demographic data of participants during excursions. Effectively, we use the recorded GPS track taken within the landscape as an expression of the decision making processes and terrain usage by the group. Preliminary data analysis shows that individual experience levels, gender, avalanche hazard, and group composition all influence the ways in which people travel in avalanche terrain. Our results provide the first analysis of coupled real-time GPS tracking of the crowd while moving in avalanche terrain combined with psychographic and demographic correlates. This research will lead to an improved understanding of real-time decision making in avalanche terrain. In this paper we will specifically focus on the presentation of the methods used to solicit, and then harness the crowd to obtain data in a unique and innovative application of citizen science where the movements within the terrain are the desired output data (Figure 1). Figure 1: Example GPS tracks sourced from backcountry winter users in the Teton Pass area (Wyoming), from the 2014-15 winter season, where tracks in red represent those recorded as self-assessed experts (as per our survey), and where tracks in blue represent those recorded as self-assessed intermediates. All tracks shown were obtained under similar avalanche conditions. Statistical analysis of terrain metrics showed that the experts used steeper terrain than the

  11. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-01

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  12. Behavior-based evacuation planning

    KAUST Repository

    Rodriguez, Samuel

    2010-05-01

    In this work, we present a formulation of an evacuation planning problem that is inspired by motion planning and describe an integrated behavioral agent-based and roadmap-based motion planning approach to solve it. Our formulation allows users to test the effect on evacuation of a number of different environmental factors. One of our main focuses is to provide a mechanism to investigate how the interaction between agents influences the resulting evacuation plans. Specifically, we explore how various types of control provided by a set of directing agents effects the overall evacuation planning strategies of the evacuating agents. ©2010 IEEE.

  13. Behavior-based evacuation planning

    KAUST Repository

    Rodriguez, Samuel; Amato, Nancy M

    2010-01-01

    In this work, we present a formulation of an evacuation planning problem that is inspired by motion planning and describe an integrated behavioral agent-based and roadmap-based motion planning approach to solve it. Our formulation allows users to test the effect on evacuation of a number of different environmental factors. One of our main focuses is to provide a mechanism to investigate how the interaction between agents influences the resulting evacuation plans. Specifically, we explore how various types of control provided by a set of directing agents effects the overall evacuation planning strategies of the evacuating agents. ©2010 IEEE.

  14. A review of Spacelab mission management approach

    Science.gov (United States)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  15. Candidate Mission from Planet Earth control and data delivery system architecture

    Science.gov (United States)

    Shapiro, Phillip; Weinstein, Frank C.; Hei, Donald J., Jr.; Todd, Jacqueline

    1992-01-01

    Using a structured, experienced-based approach, Goddard Space Flight Center (GSFC) has assessed the generic functional requirements for a lunar mission control and data delivery (CDD) system. This analysis was based on lunar mission requirements outlined in GSFC-developed user traffic models. The CDD system will facilitate data transportation among user elements, element operations, and user teams by providing functions such as data management, fault isolation, fault correction, and link acquisition. The CDD system for the lunar missions must not only satisfy lunar requirements but also facilitate and provide early development of data system technologies for Mars. Reuse and evolution of existing data systems can help to maximize system reliability and minimize cost. This paper presents a set of existing and currently planned NASA data systems that provide the basic functionality. Reuse of such systems can have an impact on mission design and significantly reduce CDD and other system development costs.

  16. Integrated Facilities and Infrastructure Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Reisz Westlund, Jennifer Jill

    2017-03-01

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continued to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.

  17. Improved Traceability of Mission Concept to Requirements Using Model Based Systems Engineering

    Science.gov (United States)

    Reil, Robin

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the traditional document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This thesis presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magics MagicDraw modeling tool. The model incorporates mission concept and requirement information from the missions original DBSE design efforts. Active dependency relationships are modeled to analyze the completeness and consistency of the requirements to the mission concept. Overall experience and methodology are presented for both the MBSE and original DBSE design efforts of SporeSat.

  18. Slip estimation methods for proprioceptive terrain classification using tracked mobile robots

    CSIR Research Space (South Africa)

    Masha, Ditebogo F

    2017-11-01

    Full Text Available Recent work has shown that proprioceptive measurements such as terrain slip can be used for terrain classification. This paper investigates the suitability of four simple slip estimation methods for differentiating between indoor and outdoor terrain...

  19. NASA Technology Demonstrations Missions Program Overview

    Science.gov (United States)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  20. Probability- and curve-based fractal reconstruction on 2D DEM terrain profile

    International Nuclear Information System (INIS)

    Lai, F.-J.; Huang, Y.M.

    2009-01-01

    Data compression and reconstruction has been playing important roles in information science and engineering. As part of them, image compression and reconstruction that mainly deal with image data set reduction for storage or transmission and data set restoration with least loss is still a topic deserved a great deal of works to focus on. In this paper we propose a new scheme in comparison with the well-known Improved Douglas-Peucker (IDP) method to extract characteristic or feature points of two-dimensional digital elevation model (2D DEM) terrain profile to compress data set. As for reconstruction in use of fractal interpolation, we propose a probability-based method to speed up the fractal interpolation execution to a rate as high as triple or even ninefold of the regular. In addition, a curve-based method is proposed in the study to determine the vertical scaling factor that much affects the generation of the interpolated data points to significantly improve the reconstruction performance. Finally, an evaluation is made to show the advantage of employing the proposed new method to extract characteristic points associated with our novel fractal interpolation scheme.

  1. Fission-Based Electric Propulsion for Interstellar Precursor Missions

    International Nuclear Information System (INIS)

    HOUTS, MICHAEL G.; LENARD, ROGER X.; LIPINSKI, RONALD J.; PATTON, BRUCE; POSTON, DAVID; WRIGHT, STEVEN A.

    1999-01-01

    This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total ΔV of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years

  2. Simulation-based planning for theater air warfare

    Science.gov (United States)

    Popken, Douglas A.; Cox, Louis A., Jr.

    2004-08-01

    Planning for Theatre Air Warfare can be represented as a hierarchy of decisions. At the top level, surviving airframes must be assigned to roles (e.g., Air Defense, Counter Air, Close Air Support, and AAF Suppression) in each time period in response to changing enemy air defense capabilities, remaining targets, and roles of opposing aircraft. At the middle level, aircraft are allocated to specific targets to support their assigned roles. At the lowest level, routing and engagement decisions are made for individual missions. The decisions at each level form a set of time-sequenced Courses of Action taken by opposing forces. This paper introduces a set of simulation-based optimization heuristics operating within this planning hierarchy to optimize allocations of aircraft. The algorithms estimate distributions for stochastic outcomes of the pairs of Red/Blue decisions. Rather than using traditional stochastic dynamic programming to determine optimal strategies, we use an innovative combination of heuristics, simulation-optimization, and mathematical programming. Blue decisions are guided by a stochastic hill-climbing search algorithm while Red decisions are found by optimizing over a continuous representation of the decision space. Stochastic outcomes are then provided by fast, Lanchester-type attrition simulations. This paper summarizes preliminary results from top and middle level models.

  3. Risk Classification and Risk-based Safety and Mission Assurance

    Science.gov (United States)

    Leitner, Jesse A.

    2014-01-01

    Recent activities to revamp and emphasize the need to streamline processes and activities for Class D missions across the agency have led to various interpretations of Class D, including the lumping of a variety of low-cost projects into Class D. Sometimes terms such as Class D minus are used. In this presentation, mission risk classifications will be traced to official requirements and definitions as a measure to ensure that projects and programs align with the guidance and requirements that are commensurate for their defined risk posture. As part of this, the full suite of risk classifications, formal and informal will be defined, followed by an introduction to the new GPR 8705.4 that is currently under review.GPR 8705.4 lays out guidance for the mission success activities performed at the Classes A-D for NPR 7120.5 projects as well as for projects not under NPR 7120.5. Furthermore, the trends in stepping from Class A into higher risk posture classifications will be discussed. The talk will conclude with a discussion about risk-based safety and mission assuranceat GSFC.

  4. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    International Nuclear Information System (INIS)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-01-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10–50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains. (paper)

  5. Deciphering groundwater potential zones in hard rock terrain using geospatial technology.

    Science.gov (United States)

    Dar, Imran A; Sankar, K; Dar, Mithas A

    2011-02-01

    Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m×23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.

  6. Terrain Safety Assessment in Support of the Mars Science Laboratory Mission

    Science.gov (United States)

    Kipp, Devin

    2012-01-01

    In August 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. The process to select the MSL landing site took over five years and began with over 50 initial candidate sites from which four finalist sites were chosen. The four finalist sites were examined in detail to assess overall science merit, EDL safety, and rover traversability on the surface. Ultimately, the engineering assessments demonstrated a high level of safety and robustness at all four finalist sites and differences in the assessment across those sites were small enough that neither EDL safety nor rover traversability considerations could significantly discriminate among the final four sites. Thus the MSL landing site at Gale Crater was selected from among the four finalists primarily on the basis of science considerations.

  7. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    Science.gov (United States)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption

  8. he third mission of Spanish Universities. Basic indicator for its evaluation

    International Nuclear Information System (INIS)

    Bueno Campos, E.; Casani Fernandez de Navarrete, F.

    2007-01-01

    During the last decade of the XXth century, a new revision movement on the mission of the university in this Knowledge Era has emerged. This movement incorporates to the traditional functions of the University of higher education and research, a third one based on the development of the third mission, organized around three main axes: entrepreneur ship, innovation and social commitment. The justificative analysis, the measurement and the plan to accomplish this new mission successfully is presented as a subject of high importance in the European Union, given the objectives of european universities towards 2020 for a Europe of Knowledge towards Growth. (Author) 49 refs

  9. Single-shell tank retrieval program mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  10. Single-shell tank retrieval program mission analysis report

    International Nuclear Information System (INIS)

    Stokes, W.J.

    1998-01-01

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997)

  11. Flight route Designing and mission planning Of power line inspecting system Based On multi-sensor UAV

    International Nuclear Information System (INIS)

    Xiaowei, Xie; Zhengjun, Liu; Zhiquan, Zuo

    2014-01-01

    In order to obtain various information of power facilities such as spatial location, geometry, images data and video information in the infrared and ultraviolet band and so on, Unmanned Aerial Vehicle (UAV) power line inspecting system needs to integrate a variety of sensors for data collection. Low altitude and side-looking imaging are required for UAV flight to ensure sensors to acquire high-quality data and device security. In this paper, UAV power line inspecting system is deferent from existing ones that used in Surveying and Mapping. According to characteristics of UAV for example equipped multiple sensor, side-looking imaging, working at low altitude, complex terrain conditions and corridor type flight, this paper puts forward a UAV power line inspecting scheme which comprehensively considered of the UAV performance, sensor parameters and task requirements. The scheme is finally tested in a region of Guangdong province, and the preliminary results show that the scheme is feasible

  12. Onboard Short Term Plan Viewer

    Science.gov (United States)

    Hall, Tim; LeBlanc, Troy; Ulman, Brian; McDonald, Aaron; Gramm, Paul; Chang, Li-Min; Keerthi, Suman; Kivlovitz, Dov; Hadlock, Jason

    2011-01-01

    Onboard Short Term Plan Viewer (OSTPV) is a computer program for electronic display of mission plans and timelines, both aboard the International Space Station (ISS) and in ISS ground control stations located in several countries. OSTPV was specifically designed both (1) for use within the limited ISS computing environment and (2) to be compatible with computers used in ground control stations. OSTPV supplants a prior system in which, aboard the ISS, timelines were printed on paper and incorporated into files that also contained other paper documents. Hence, the introduction of OSTPV has both reduced the consumption of resources and saved time in updating plans and timelines. OSTPV accepts, as input, the mission timeline output of a legacy, print-oriented, UNIX-based program called "Consolidated Planning System" and converts the timeline information for display in an interactive, dynamic, Windows Web-based graphical user interface that is used by both the ISS crew and ground control teams in real time. OSTPV enables the ISS crew to electronically indicate execution of timeline steps, launch electronic procedures, and efficiently report to ground control teams on the statuses of ISS activities, all by use of laptop computers aboard the ISS.

  13. Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for Spacecraft Applications

    Science.gov (United States)

    Nasir, Ali

    Spacecraft operate in a harsh environment, are costly to launch, and experience unavoidable communication delay and bandwidth constraints. These factors motivate the need for effective onboard mission and fault management. This dissertation presents an integrated framework to optimize science goal achievement while identifying and managing encountered faults. Goal-related tasks are defined by pointing the spacecraft instrumentation toward distant targets of scientific interest. The relative value of science data collection is traded with risk of failures to determine an optimal policy for mission execution. Our major innovation in fault detection and reconfiguration is to incorporate fault information obtained from two types of spacecraft models: one based on the dynamics of the spacecraft and the second based on the internal composition of the spacecraft. For fault reconfiguration, we consider possible changes in both dynamics-based control law configuration and the composition-based switching configuration. We formulate our problem as a stochastic sequential decision problem or Markov Decision Process (MDP). To avoid the computational complexity involved in a fully-integrated MDP, we decompose our problem into multiple MDPs. These MDPs include planning MDPs for different fault scenarios, a fault detection MDP based on a logic-based model of spacecraft component and system functionality, an MDP for resolving conflicts between fault information from the logic-based model and the dynamics-based spacecraft models" and the reconfiguration MDP that generates a policy optimized over the relative importance of the mission objectives versus spacecraft safety. Approximate Dynamic Programming (ADP) methods for the decomposition of the planning and fault detection MDPs are applied. To show the performance of the MDP-based frameworks and ADP methods, a suite of spacecraft attitude planning case studies are described. These case studies are used to analyze the content and

  14. NASA's Lunar and Planetary Mapping and Modeling Program

    Science.gov (United States)

    Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.

  15. Realistic 3D Terrain Roaming and Real-Time Flight Simulation

    Science.gov (United States)

    Que, Xiang; Liu, Gang; He, Zhenwen; Qi, Guang

    2014-12-01

    This paper presents an integrate method, which can provide access to current status and the dynamic visible scanning topography, to enhance the interactive during the terrain roaming and real-time flight simulation. A digital elevation model and digital ortho-photo map data integrated algorithm is proposed as the base algorithm for our approach to build a realistic 3D terrain scene. A new technique with help of render to texture and head of display for generating the navigation pane is used. In the flight simulating, in order to eliminate flying "jump", we employs the multidimensional linear interpolation method to adjust the camera parameters dynamically and steadily. Meanwhile, based on the principle of scanning laser imaging, we draw pseudo color figures by scanning topography in different directions according to the real-time flying status. Simulation results demonstrate that the proposed algorithm is prospective for applications and the method can improve the effect and enhance dynamic interaction during the real-time flight.

  16. Energy Management of the Multi-Mission Space Exploration Vehicle Using a Goal-Oriented Control System

    Science.gov (United States)

    Braman, Julia M. B.; Wagner, David A.

    2010-01-01

    Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.

  17. Terrain classification and land hazard mapping in Kalsi-Chakrata area (Garhwal Himalaya), India

    Science.gov (United States)

    Choubey, Vishnu D.; Litoria, Pradeep K.

    Terrain classification and land system mapping of a part of the Garhwal Himalaya (India) have been used to provide a base map for land hazard evaluation, with special reference to landslides and other mass movements. The study was based on MSS images, aerial photographs and 1:50,000 scale maps, followed by detailed field-work. The area is composed of two groups of rocks: well exposed sedimentary Precambrian formations in the Himalayan Main Boundary Thrust Belt and the Tertiary molasse deposits of the Siwaliks. Major tectonic boundaries were taken as the natural boundaries of land systems. A physiographic terrain classification included slope category, forest cover, occurrence of landslides, seismicity and tectonic activity in the area.

  18. A Research on Wind Farm Micro-sitting Optimization in Complex Terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Yang, Jianchuan; Li, Chenqi

    2013-01-01

    Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height...... that the CPSO method has a higher optimal value, and could be used to optimize the actual wind farm micro-sitting engineering projects.......Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height...... turbines’ park coordinates which subject to the boundary and minimum distance conditions between two wind turbines. A Cross Particle Swarm Optimization (CPSO) method is developed and applied to optimize the layout for a certain wind farm case. Compared with the uniform and experience method, results show...

  19. The Efficacy of Using Synthetic Vision Terrain-Textured Images to Improve Pilot Situation Awareness

    Science.gov (United States)

    Uenking, Michael D.; Hughes, Monica F.

    2002-01-01

    The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study is being conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process. In this part of the experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during

  20. Next Generation Simulation Framework for Robotic and Human Space Missions

    Science.gov (United States)

    Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven

    2012-01-01

    The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.

  1. Complex Terrain and Wind Lidars

    DEFF Research Database (Denmark)

    Bingöl, Ferhat

    software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow...... edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17º. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method...

  2. Closed-loop EMG-informed model-based analysis of human musculoskeletal mechanics on rough terrains

    NARCIS (Netherlands)

    Varotto, C.; Sawacha, Z.; Gizzi, L; Farina, D.; Sartori, M.

    2017-01-01

    This work aims at estimating the musculoskeletal forces acting in the human lower extremity during locomotion on rough terrains. We employ computational models of the human neuro-musculoskeletal system that are informed by multi-modal movement data including foot-ground reaction forces, 3D marker

  3. STS-26 MS Hilmers on fixed based (FB) shuttle mission simulator (SMS) middeck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers prepares to ascend a ladder representing the interdeck access hatch from the shuttle middeck to the flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  4. Prediction of wind energy distribution in complex terrain using CFD

    DEFF Research Database (Denmark)

    Xu, Chang; Li, Chenqi; Yang, Jianchuan

    2013-01-01

    Based on linear models, WAsP software predicts wind energy distribution, with a good accuracy for flat terrain, but with a large error under complicated topography. In this paper, numerical simulations are carried out using the FLUENT software on a mesh generated by the GAMBIT and ARGIS software ...

  5. ESA's Multi-mission Sentinel-1 Toolbox

    Science.gov (United States)

    Veci, Luis; Lu, Jun; Foumelis, Michael; Engdahl, Marcus

    2017-04-01

    The Sentinel-1 Toolbox is a new open source software for scientific learning, research and exploitation of the large archives of Sentinel and heritage missions. The Toolbox is based on the proven BEAM/NEST architecture inheriting all current NEST functionality including multi-mission support for most civilian satellite SAR missions. The project is funded through ESA's Scientific Exploitation of Operational Missions (SEOM). The Sentinel-1 Toolbox will strive to serve the SEOM mandate by providing leading-edge software to the science and application users in support of ESA's operational SAR mission as well as by educating and growing a SAR user community. The Toolbox consists of a collection of processing tools, data product readers and writers and a display and analysis application. A common architecture for all Sentinel Toolboxes is being jointly developed by Brockmann Consult, Array Systems Computing and C-S called the Sentinel Application Platform (SNAP). The SNAP architecture is ideal for Earth Observation processing and analysis due the following technological innovations: Extensibility, Portability, Modular Rich Client Platform, Generic EO Data Abstraction, Tiled Memory Management, and a Graph Processing Framework. The project has developed new tools for working with Sentinel-1 data in particular for working with the new Interferometric TOPSAR mode. TOPSAR Complex Coregistration and a complete Interferometric processing chain has been implemented for Sentinel-1 TOPSAR data. To accomplish this, a coregistration following the Spectral Diversity[4] method has been developed as well as special azimuth handling in the coherence, interferogram and spectral filter operators. The Toolbox includes reading of L0, L1 and L2 products in SAFE format, calibration and de-noising, slice product assembling, TOPSAR deburst and sub-swath merging, terrain flattening radiometric normalization, and visualization for L2 OCN products. The Toolbox also provides several new tools for

  6. Development of community plans to enhance survivorship from colorectal cancer: community-based participatory research in rural communities.

    Science.gov (United States)

    Lengerich, Eugene J; Kluhsman, Brenda C; Bencivenga, Marcyann; Allen, Regina; Miele, Mary Beth; Farace, Elana

    2007-09-01

    In 2002, 10.4% of the 10 million persons alive who have ever been diagnosed with cancer had colorectal cancer (CRC). Barriers, such as distance, terrain, access to care and cultural differences, to CRC survivorship may be especially relevant in rural communities. We tested the hypothesis that teams from rural cancer coalitions and hospitals would develop a Community Plan (CP) to enhance CRC survivorship. We used community-based participatory research and the PRECEDE-PROCEED model to train teams from rural cancer coalitions and hospitals in Pennsylvania and New York. We measured knowledge at three points in time and tested the change with McNemar's test, corrected for multiple comparisons (p < 0.0167). We also conducted a qualitative review of the CP contents. Fourteen (93.3%) of the 15 coalitions or hospitals initially recruited to the study completed a CP. Knowledge in public health, sponsorship of A National Action Plan for Cancer Survivorship, and CRC survivorship and treatment increased. Teams identified perceived barriers and community assets. All teams planned to increase awareness of community assets and almost all planned to enhance treatment-related care and psychosocial care for the CRC survivor; 50% planned to enhance primary care and CRC screening. The study demonstrated the interest and ability of rural organizations to plan to enhance CRC survivorship, including linkage of CRC survivorship to primary care. Rural cancer coalitions and hospitals may be a vehicle to develop local action for A National Action Plan. Access to more comprehensive care for CRC cancer survivors in rural communities appears to be facilitated by the community-based initiative described and investigated in this study. Efforts such as these could be replicated in other rural communities and may impact the care and quality of life of survivors with many types of cancers. While access to health services may be increased through community-based initiatives, we still need to measure

  7. The effect of terrain slope on firefighter safety zone effectiveness

    Science.gov (United States)

    Bret Butler; J. Forthofer; K. Shannon; D. Jimenez; D. Frankman

    2010-01-01

    The current safety zone guidelines used in the US were developed based on the assumption that the fire and safety zone were located on flat terrain. The minimum safe distance for a firefighter to be from a flame was calculated as that corresponding to a radiant incident energy flux level of 7.0kW-m-2. Current firefighter safety guidelines are based on the assumption...

  8. Exploring Cognition Using Software Defined Radios for NASA Missions

    Science.gov (United States)

    Mortensen, Dale J.; Reinhart, Richard C.

    2016-01-01

    NASA missions typically operate using a communication infrastructure that requires significant schedule planning with limited flexibility when the needs of the mission change. Parameters such as modulation, coding scheme, frequency, and data rate are fixed for the life of the mission. This is due to antiquated hardware and software for both the space and ground assets and a very complex set of mission profiles. Automated techniques in place by commercial telecommunication companies are being explored by NASA to determine their usability by NASA to reduce cost and increase science return. Adding cognition the ability to learn from past decisions and adjust behavior is also being investigated. Software Defined Radios are an ideal way to implement cognitive concepts. Cognition can be considered in many different aspects of the communication system. Radio functions, such as frequency, modulation, data rate, coding and filters can be adjusted based on measurements of signal degradation. Data delivery mechanisms and route changes based on past successes and failures can be made to more efficiently deliver the data to the end user. Automated antenna pointing can be added to improve gain, coverage, or adjust the target. Scheduling improvements and automation to reduce the dependence on humans provide more flexible capabilities. The Cognitive Communications project, funded by the Space Communication and Navigation Program, is exploring these concepts and using the SCaN Testbed on board the International Space Station to implement them as they evolve. The SCaN Testbed contains three Software Defined Radios and a flight computer. These four computing platforms, along with a tracking antenna system and the supporting ground infrastructure, will be used to implement various concepts in a system similar to those used by missions. Multiple universities and SBIR companies are supporting this investigation. This paper will describe the cognitive system ideas under consideration and

  9. Mission Planning for Unmanned Aircraft with Genetic Algorithms

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær

    unmanned aircraft are used for aerial surveying of the crops. The farmer takes the role of the analyst above, who does not necessarily have any specific interest in remote controlled aircraft but needs the outcome of the survey. The recurring method in the study is the genetic algorithm; a flexible...... contributions are made in the area of the genetic algorithms. One is a method to decide on the right time to stop the computation of the plan, when the right balance is stricken between using the time planning and using the time flying. The other contribution is a characterization of the evolutionary operators...... used in the genetic algorithm. The result is a measure based on entropy to evaluate and control the diversity of the population of the genetic algorithm, which is an important factor its effectiveness....

  10. MISSIONS: The Mobile-Based Disaster Mitigation System in Indonesia

    Science.gov (United States)

    Passarella, Rossi; Putri Raflesia, Sarifah; Lestarini, Dinda; Rifai, Ahmad; Veny, Harumi

    2018-04-01

    Disaster mitigation is essential to minimize the effects of disasters. Indonesia is one of the disaster prone areas in Asia and the government explores the usage of Information technology (IT) to aid its mitigation efforts. Currently, there are Indonesian websites which hold information regarding the weather monitoring, climate conditions, and geophysics. But, there is no clear indicator of mitigation efforts or things to do during an emergency. Therefore, this research proposed MISSIONS, a disaster mitigation model using geo-fencing technique to detect the location of the users through their mobile devices. MISSIONS uses mobile-based disaster mitigation system as a way to disseminate critical information to victims during emergency when they are in disaster zones using virtual fences. It aims to help the government to reduce the effects of disaster and aid in the mitigation efforts. The implementation result shows that MISSIONS have a high accuracy in detecting user whereabouts.

  11. Artificial Intelligence techniques for mission planning for mobile robots

    International Nuclear Information System (INIS)

    Martinez, J.M.; Nomine, J.P.

    1990-01-01

    This work focuses on Spatial Modelization Techniques and on Control Software Architectures, in order to deal efficiently with the Navigation and Perception problems encountered in Mobile Autonomous Robotics. After a brief survey of the current various approaches for these techniques, we expose ongoing simulation works for a specific mission in robotics. Studies in progress used for Spatial Reasoning are based on new approaches combining Artificial Intelligence and Geometrical techniques. These methods deal with the problem of environment modelization using three types of models: geometrical topological and semantic models at different levels. The decision making processes of control are presented as the result of cooperation between a group of decentralized agents that communicate by sending messages. (author)

  12. Terrain Adaptive Reconfiguration of Mobility

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an algorithm (and software) to automatically adapt a reconfigurable robot to different types of terrains for improved mobility, that compared to SOA:...

  13. Nuclear reactor power as applied to a space-based radar mission

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  14. Hanford River Protection Project Enhanced Mission Planning Through Innovative Tools: Lifecycle Cost Modeling And Aqueous Thermodynamic Modeling - 12134

    International Nuclear Information System (INIS)

    Pierson, K.L.; Meinert, F.L.

    2012-01-01

    Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations of constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.

  15. (abstract) Telecommunications for Mars Rovers and Robotic Missions

    Science.gov (United States)

    Cesarone, Robert J.; Hastrup, Rolf C.; Horne, William; McOmber, Robert

    1997-01-01

    Telecommunications plays a key role in all rover and robotic missions to Mars both as a conduit for command information to the mission and for scientific data from the mission. Telecommunications to the Earth may be accomplished using direct-to-Earth links via the Deep Space Network (DSN) or by relay links supported by other missions at Mars. This paper reviews current plans for missions to Mars through the 2005 launch opportunity and their capabilities in support of rover and robotic telecommunications.

  16. Decentralized Planning for Autonomous Agents Cooperating in Complex Missions

    Science.gov (United States)

    2010-09-01

    is a " lawn mower " search path. The world is divided into N, rectangles, and each agent traverses its own rectangle by sweeping back and forth in a...mission. Furthermore, the random walk never found more than three targets for the 50 missions simulated, as seen in Figure 5-7. The lawn mower search...that both the random walk and the lawn mower search seem to find targets at a linear rate with respect to time, whereas the other four strategies are

  17. EARTHWORK VOLUME CALCULATION FROM DIGITAL TERRAIN MODELS

    Directory of Open Access Journals (Sweden)

    JANIĆ Milorad

    2015-06-01

    Full Text Available Accurate calculation of cut and fill volume has an essential importance in many fields. This article shows a new method, which has no approximation, based on Digital Terrain Models. A relatively new mathematical model is developed for that purpose, which is implemented in the software solution. Both of them has been tested and verified in the praxis on several large opencast mines. This application is developed in AutoLISP programming language and works in AutoCAD environment.

  18. Convective boundary layer heights over mountainous terrain - A review of concepts -

    Science.gov (United States)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  19. Path Loss Prediction Over the Lunar Surface Utilizing a Modified Longley-Rice Irregular Terrain Model

    Science.gov (United States)

    Foore, Larry; Ida, Nathan

    2007-01-01

    This study introduces the use of a modified Longley-Rice irregular terrain model and digital elevation data representative of an analogue lunar site for the prediction of RF path loss over the lunar surface. The results are validated by theoretical models and past Apollo studies. The model is used to approximate the path loss deviation from theoretical attenuation over a reflecting sphere. Analysis of the simulation results provides statistics on the fade depths for frequencies of interest, and correspondingly a method for determining the maximum range of communications for various coverage confidence intervals. Communication system engineers and mission planners are provided a link margin and path loss policy for communication frequencies of interest.

  20. An Efficient Method to Create Digital Terrain Models from Point Clouds Collected by Mobile LiDAR Systems

    Science.gov (United States)

    Gézero, L.; Antunes, C.

    2017-05-01

    The digital terrain models (DTM) assume an essential role in all types of road maintenance, water supply and sanitation projects. The demand of such information is more significant in developing countries, where the lack of infrastructures is higher. In recent years, the use of Mobile LiDAR Systems (MLS) proved to be a very efficient technique in the acquisition of precise and dense point clouds. These point clouds can be a solution to obtain the data for the production of DTM in remote areas, due mainly to the safety, precision, speed of acquisition and the detail of the information gathered. However, the point clouds filtering and algorithms to separate "terrain points" from "no terrain points", quickly and consistently, remain a challenge that has caught the interest of researchers. This work presents a method to create the DTM from point clouds collected by MLS. The method is based in two interactive steps. The first step of the process allows reducing the cloud point to a set of points that represent the terrain's shape, being the distance between points inversely proportional to the terrain variation. The second step is based on the Delaunay triangulation of the points resulting from the first step. The achieved results encourage a wider use of this technology as a solution for large scale DTM production in remote areas.

  1. Mitigating Adverse Effects of a Human Mission on Possible Martian Indigenous Ecosystems

    Science.gov (United States)

    Lupisella, M. L.

    2000-07-01

    Although human beings are, by most standards, the most capable agents to search for and detect extraterrestrial life, we are also potentially the most harmful. While there has been substantial work regarding forward contamination with respect to robotic missions, the issue of potential adverse effects on possible indigenous Martian ecosystems, such as biological contamination, due to a human mission has remained relatively unexplored and may require our attention now as this presentation will try to demonstrate by exploring some of the relevant scientific questions, mission planning challenges, and policy issues. An informal, high-level mission planning decision tree will be discussed and is included as the next page of this abstract. Some of the questions to be considered are: (1) To what extent could contamination due to a human presence compromise possible indigenous life forms? (2) To what extent can we control contamination? For example, will it be local or global? (3) What are the criteria for assessing the biological status of Mars, both regionally and globally? For example, can we adequately extrapolate from a few strategic missions such as sample return missions? (4) What should our policies be regarding our mission planning and possible interaction with what are likely to be microbial forms of extraterrestrial life? (5) Central to the science and mission planning issues is the role and applicability of terrestrial analogs, such as Lake Vostok for assessing drilling issues, and modeling techniques. Central to many of the policy aspects are scientific value, international law, public concern, and ethics. Exploring this overall issue responsibly requires an examination of all these aspects and how they interrelate. A chart is included, titled 'Mission Planning Decision Tree for Mitigating Adverse Effects to Possible Indigenous Martian Ecosystems due to a Human Mission'. It outlines what questions scientists should ask and answer before sending humans to Mars.

  2. Complex terrain influences ecosystem carbon responses to temperature and precipitation

    Science.gov (United States)

    Reyes, W. M.; Epstein, H. E.; Li, X.; McGlynn, B. L.; Riveros-Iregui, D. A.; Emanuel, R. E.

    2017-08-01

    Terrestrial ecosystem responses to temperature and precipitation have major implications for the global carbon cycle. Case studies demonstrate that complex terrain, which accounts for more than 50% of Earth's land surface, can affect ecological processes associated with land-atmosphere carbon fluxes. However, no studies have addressed the role of complex terrain in mediating ecophysiological responses of land-atmosphere carbon fluxes to climate variables. We synthesized data from AmeriFlux towers and found that for sites in complex terrain, responses of ecosystem CO2 fluxes to temperature and precipitation are organized according to terrain slope and drainage area, variables associated with water and energy availability. Specifically, we found that for tower sites in complex terrain, mean topographic slope and drainage area surrounding the tower explained between 51% and 78% of site-to-site variation in the response of CO2 fluxes to temperature and precipitation depending on the time scale. We found no such organization among sites in flat terrain, even though their flux responses exhibited similar ranges. These results challenge prevailing conceptual framework in terrestrial ecosystem modeling that assumes that CO2 fluxes derive from vertical soil-plant-climate interactions. We conclude that the terrain in which ecosystems are situated can also have important influences on CO2 responses to temperature and precipitation. This work has implications for about 14% of the total land area of the conterminous U.S. This area is considered topographically complex and contributes to approximately 15% of gross ecosystem carbon production in the conterminous U.S.

  3. Routine Radiological Environmental Monitoring Plan. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  4. Institutional plan FY 1998--FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Institutional Plan has been rearranged this year as a reflection of new Department of Energy (DOE) guidelines and to better illustrate the Laboratory`s mission-oriented focus. In Section 1 of this plan, the authors set forth their vision, mission, core competencies, strategic view, and related material. This section illustrates integration with the vision, mission, priorities, and core businesses of DOE. They define strategies, tactics, and guidelines and describe how they measure progress. In Section 2, they have elaborated on how they plan to address the Laboratory`s mission, describing programs and activities in the context of their role in this mission. Section 3 contains information on their approach to managing their business and operations. First they address the most critical issue safety. In this section, they confirm that Los Alamos is addressing the DOE critical success factors and describe the initiatives and plans that make their mission successful and leads them toward their vision. Section 4 contains details of their resources. 44 figs., 56 tabs.

  5. Hybrid RANS/LES applied to complex terrain

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.

    2011-01-01

    Large Eddy Simulation (LES) of the wind in complex terrain is limited by computational cost. The number of computational grid points required to resolve the near-ground turbulent structures (eddies) are very high. The traditional solution to the problem has been to apply a wall function...... aspect ratio in the RANS layer and thereby resolve the mean near-wall velocity profile. The method is applicable to complex terrain and the benefits of traditional LES are kept intact. Using the hybrid method, simulations of the wind over a natural complex terrain near Wellington in New Zealand...... that accounts for the whole near-wall region. Recently, a hybrid method was proposed in which the eddies close to the ground were modelled in a Reynolds-averaged sense (RANS) and the eddies above this region were simulated using LES. The advantage of the approach is the ability to use shallow cells of high...

  6. Mission,System Design and Payload Aspects of ESA's Mercury Cornerstone Mission

    Science.gov (United States)

    Ferri, A.; Anselmi, A.; Scoon, G. E. N.

    1999-09-01

    Aim of this paper is to summarise the 1-year study performed by Alenia Aerospazio in close co-operation with the European Space Agency, on the Mercury Cornerstone System and Technology Study, as a part of Horizon 2000+ Scientific Programme plan. ESA's definition study towards a mission to Mercury conceives the launch of a S/C in 2009, on a two to three years journey, plus a one-year scientific observations and data take. The mission's primary objectives are manyfolded, aiming at approaching basic scientific questions on the origin and evolution of Mercury: identify and map the chemical and mineral composition of the surface, measure the topography of surface landforms, define the gravitational field, investigate particles and magnetic fields. The mission is also intended to resolve the librational state of the planet, in a system experiment requiring high accuracy inertial attitude (arcsecond level) and orbit (m-level) reconstitution. This experiment will allow to infer whether Mercury has a molten core, which is crucial to theories of magnetic field generation, and theories of the thermal history of terrestrial type planets. A hard-lander is planned to perform in-situ surface geochemical analysis. The mission is expected to provide scientists with a global portrait of Mercury returning about 1200 Gbits of scientific data, during a 1-year observation phase. The crucial aspects of the spacecraft design have to do with the high-temperature and high-radiation environment. Thermal control is achieved by a combination of orbit selection, attitude law, and special design provisions for IR shielding and HT insulation. Ad-hoc design provisions are envisaged for power and antenna mechanisms. Though the conceptual objectives of this industrial study focused on system architectures and enabling technologies for a "Cornerstone" class mission, in this paper emphasis is given on the scientific payload aspects.

  7. STS-26 MS Nelson on fixed based (FB) shuttle mission simulator (SMS) middeck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains on the middeck of the fixed based (FB) shuttle mission simulator (SMS). Nelson, wearing communications assembly headset, adjusts camera mounting bracket.

  8. Derivation of Strike and Dip in Sedimentary Terrain Using 3D Image Interpretation Based on Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Chih-Hsiang Yeh

    2014-01-01

    Full Text Available Traditional geological mapping may be hindered by rough terrain and dense vegetation resulting in obscured geological details. The advent of airborne Light Detection and Ranging (LiDAR provides a very precise three-dimensional (3D digital terrain model (DTM. However, its full potential in complementing traditional geological mapping remains to be explored using 3D rendering techniques. This study uses two types of 3D images which differ in imaging principles to further explore the finer details of sedimentary terrain. Our purposes are to demonstrate detailed geological mapping with 3D rendering techniques, to generate LiDAR-derived 3D strata boundaries that are advantageous in generating 2D geological maps and cross sections, and to develop a new practice in deriving the strike and dip of bedding with LiDAR data using an example from the north bank of the Keelung River in northern Taiwan. We propose a geological mapping practice that improves efficiency and meets a high-precision mapping standard with up to 2 m resolution using airborne LiDAR data. Through field verification and assessment, LiDAR data manipulation with relevant 3D visualization is shown to be an effective approach in improving the details of existing geological maps, specifically in sedimentary terrain.

  9. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  10. A web-mapping system for real-time visualization of the global terrain

    Science.gov (United States)

    Zhang, Liqiang; Yang, Chongjun; Liu, Donglin; Ren, Yingchao; Rui, Xiaoping

    2005-04-01

    In this paper, we mainly present a web-based 3D global terrain visualization application that provides more powerful transmission and visualization of global multiresolution data sets across networks. A client/server architecture is put forward. The paper also reports various relevant research work, such as efficient data compression methods to reduce the physical size of these data sets and accelerate network delivery, streaming transmission for progressively downloading data, and real-time multiresolution terrain surface visualization with a high visual quality by M-band wavelet transforms and a hierarchical triangulation technique. Finally, an experiment is performed using different levels of detailed data to verify that the system works appropriately.

  11. Tank waste remediation system retrieval and disposal mission key enabling assumptions

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1998-01-01

    An overall systems approach has been applied to develop action plans to support the retrieval and immobilization waste disposal mission. The review concluded that the systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed. An analysis of the programmatic, management and technical activities necessary to declare Readiness to Proceed with execution of the mission demonstrates that the system, people, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and immobilized waste disposal mission requirements and evaluating the readiness of the TWRS contractor to supply waste feed to the private contractors in June 2002. The Phase 1 feed delivery requirements from the Private Contractor Request for Proposals were reviewed, transfer piping routes were mapped on it, existing systems were evaluated, and upgrade requirements were defined. Technical Basis Reviews were completed to define work scope in greater detail, cost estimates and associated year by year financial analyses were completed. Personnel training, qualifications, management systems and procedures were reviewed and shown to be in place and ready to support the Phase 1B mission. Key assumptions and risks that could negatively impact mission success were evaluated and appropriate mitigative actions plans were planned and scheduled

  12. Training in Innovative Technologies for Close-Range Sensing in Alpine Terrain

    Science.gov (United States)

    Rutzinger, M.; Bremer, M.; Höfle, B.; Hämmerle, M.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Scaioni, M.; Wujanz, D.; Zieher, T.

    2018-05-01

    The 2nd international summer school "Close-range sensing techniques in Alpine terrain" was held in July 2017 in Obergurgl, Austria. Participants were trained in selected close-range sensing methods, such as photogrammetry, laser scanning and thermography. The program included keynotes, lectures and hands-on assignments combining field project planning, data acquisition, processing, quality assessment and interpretation. Close-range sensing was applied for different research questions of environmental monitoring in high mountain environments, such as geomorphologic process quantification, natural hazard management and vegetation mapping. The participants completed an online questionnaire evaluating the summer school, its content and organisation, which helps to improve future summer schools.

  13. ATRAN Terrain Sensing Guidance-The Grand-Daddy System

    Science.gov (United States)

    Koch, Richard F.; Evans, Donald C.

    1980-12-01

    ATRAN was the pioneer terrain sensing guidance system developed in the 1950 era and deployed in Europe on the Air Force's mobile, ground launched TM-76A MACE cruise missile in the late 1950's and early 1960's. The background, principles and technology are described for this system which was the forerunner of todays modern autonomous standoff terrain sensing guided weapons.

  14. Guidance system operations plan for manned cm earth orbital and lunar missions using program Colossus 3. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1971-01-01

    The data links for use with the guidance system operations plan for manned command module earth orbital and lunar missions using program Colossus 3 are presented. The subjects discussed are: (1) digital uplink to CMC, (2) command module contiguous block update, (3) CMC retrofire external data update, (4) CMC digital downlink, and (5) CMC entry update.

  15. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    Science.gov (United States)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  16. Automated trajectory planning for multiple-flyby interplanetary missions

    Science.gov (United States)

    Englander, Jacob

    Many space mission planning problems may be formulated as hybrid optimal control problems (HOCP), i.e. problems that include both real-valued variables and categorical variables. In interplanetary trajectory design problems the categorical variables will typically specify the sequence of planets at which to perform flybys, and the real-valued variables will represent the launch date, ight times between planets, magnitudes and directions of thrust, flyby altitudes, etc. The contribution of this work is a framework for the autonomous optimization of multiple-flyby interplanetary trajectories. The trajectory design problem is converted into a HOCP with two nested loops: an "outer-loop" that finds the sequence of flybys and an "inner-loop" that optimizes the trajectory for each candidate yby sequence. The problem of choosing a sequence of flybys is posed as an integer programming problem and solved using a genetic algorithm (GA). This is an especially difficult problem to solve because GAs normally operate on a fixed-length set of decision variables. Since in interplanetary trajectory design the number of flyby maneuvers is not known a priori, it was necessary to devise a method of parameterizing the problem such that the GA can evolve a variable-length sequence of flybys. A novel "null gene" transcription was developed to meet this need. Then, for each candidate sequence of flybys, a trajectory must be found that visits each of the flyby targets and arrives at the final destination while optimizing some cost metric, such as minimizing ▵v or maximizing the final mass of the spacecraft. Three different classes of trajectory are described in this work, each of which requireda different physical model and optimization method. The choice of a trajectory model and optimization method is especially challenging because of the nature of the hybrid optimal control problem. Because the trajectory optimization problem is generated in real time by the outer-loop, the inner

  17. Conductivity mapping of underground flow channels and moisture anomalies in carbonate terrain using electromagnetic methods

    International Nuclear Information System (INIS)

    Pin, F.G.; Ketelle, R.H.

    1983-11-01

    Electromagnetic methods have been used to measure apparent terrain conductivity in the downstream portion of a watershed in which a waste disposal site is proposed. At that site, the pathways for waste migration in groundwater are controlled by subsurface channels. The identification and mapping of these subsurfaces channels constitutes an important contribution to the site characterization study. The channels are identified using isocurves of measured apparent conductivity. Two upstream channel branches are found to merge into a single downstream channel which constitutes the main drainage path out of the watershed. Electromagnetic terrain conductivity measurement methods are found to be inexpensive, rapid and efficient tools for subsurface investigations. Their contribution to site characterization studies and pathways analyses is particularly significant in planning of the monitoring program, the hydrogeological testing, and the modeling study. The results reported so far are very promising for use of the methods in several other applications related to the subgrade disposal of waste. 7 references, 5 figures

  18. TERRAIN, ALLENDALE COUNTY, SOUTH CAROLINA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. TERRAIN, WAKULLA COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. TERRAIN, BRADFORD COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...