WorldWideScience

Sample records for terrain vehicle systems

  1. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  2. Autonomous terrain characterization and modelling for dynamic control of unmanned vehicles

    Science.gov (United States)

    Talukder, A.; Manduchi, R.; Castano, R.; Owens, K.; Matthies, L.; Castano, A.; Hogg, R.

    2002-01-01

    This end-to-end obstacle negotiation system is envisioned to be useful in optimized path planning and vehicle navigation in terrain conditions cluttered with vegetation, bushes, rocks, etc. Results on natural terrain with various natural materials are presented.

  3. Dirt bikes and all terrain vehicles: the real threat to pediatric kidneys.

    Science.gov (United States)

    Wu, Hsi-Yang; Gaines, Barbara A

    2007-10-01

    Recent reviews show that bicycles are the major cause of significant renal injury with few injuries occurring during contact sports. All-terrain vehicles are also responsible for significant pediatric renal trauma. We determined whether dirt bikes and all-terrain vehicles cause more significant renal injuries than contact sports. A retrospective review of our pediatric trauma database revealed 115 consecutive patients treated for renal trauma from 2000 to 2005. A total of 20 bicycle injuries occurred, including 6 on dirt bikes. A total of 13 all-terrain vehicle injuries occurred, including 4 involving rollovers. A total of 12 contact sport injuries occurred, including 2 during pick-up games. The mean grade of renal injury was compared among the mechanisms, with grades III-V considered high grade. In descending order of renal injury the mechanisms were dirt bike (2.8), all-terrain vehicle rollover (2.8), bicycle (2.3), all-terrain vehicle (2.1), contact sports (1.8) and organized contact sports (1.4). Dirt bikes and all-terrain vehicle rollovers caused significantly greater renal trauma than organized contact sports (2.8 vs 1.4, p = 0.007 and 0.02, respectively), whereas overall bicycle and all-terrain vehicle accidents resulted in similar renal trauma grades compared to those of all contact sports. The 2 high grade renal injuries during contact sports occurred during pick-up football games without protective gear. Physician advice regarding children with a solitary kidney should include avoiding dirt bikes and all-terrain vehicles. Efforts to limit all-terrain vehicle use in children younger than 16 years would decrease the risk of significant renal injury in this population more effectively than limiting contact sports participation.

  4. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    Science.gov (United States)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  5. Platform for Testing Robotic Vehicles on Simulated Terrain

    Science.gov (United States)

    Lindemann, Randel

    2006-01-01

    The variable terrain tilt platform (VTTP) is a means of providing simulated terrain for mobility testing of engineering models of the Mars Exploration Rovers. The VTTP could also be used for testing the ability of other robotic land vehicles (and small vehicles in general) to move across terrain under diverse conditions of slope and surface texture, and in the presence of obstacles of various sizes and shapes. The VTTP consists mostly of a 16-ft-(4.88-m)-square tilt table. The tilt can be adjusted to any angle between 0 (horizontal) and 25 . The test surface of the table can be left bare; can be covered with hard, high-friction material; or can be covered with sand, gravel, and/or other ground-simulating material or combination of materials to a thickness of as much as 6 in. (approx. 15 cm). Models of rocks, trenches, and other obstacles can be placed on the simulated terrain. For example, for one of the Mars- Rover tests, a high-friction mat was attached to the platform, then a 6-in.- ( 15 cm) deep layer of dry, loose beach sand was deposited on the mat. The choice of these two driving surface materials was meant to bound the range of variability of terrain that the rover was expected to encounter on the Martian surface. At each of the different angles at which tests were performed, for some of the tests, rocklike concrete obstacles ranging in height from 10 to 25 cm were placed in the path of the rover (see figure). The development of the VTTP was accompanied by development of a methodology of testing to characterize the performance and modes of failure of a vehicle under test. In addition to variations in slope, ground material, and obstacles, testing typically includes driving up-slope, down-slope, cross-slope, and at intermediate angles relative to slope. Testing includes recording of drive-motor currents, wheel speeds, articulation of suspension mechanisms, and the actual path of the vehicle over the simulated terrain. The collected data can be used to

  6. What Influences Youth to Operate All-Terrain Vehicles Safely?

    Science.gov (United States)

    Grummon, A. H.; Heaney, C. A.; Dellinger, W. A.; Wilkins, J. R., III

    2014-01-01

    The operation of all-terrain vehicles (ATVs) by youth has contributed to the incidence of serious and fatal injuries among children. This study explored factors related to the frequency with which youth wore a helmet and refrained from engaging in three risky driving behaviors (driving at risky speeds, on paved roads and on unfamiliar terrain)…

  7. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    International Nuclear Information System (INIS)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-01-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10–50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains. (paper)

  8. Lunar All-Terrain Utility Vehicle for EVA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("Lunar ATV") to assist extra-vehicular activities...

  9. Lunar All-Terrain Utility Vehicle for EVA, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("LATUV") to assist extra-vehicular activities in...

  10. A method for separation of the terrain and non-terrain from Vehicle-borne Laser Scanning Data

    International Nuclear Information System (INIS)

    Wei, Jiangxia; Zhong, Ruofei

    2014-01-01

    Half the points from vehicle-borne laser scanning data are terrain data. If you want to extract features such as trees, street lights and buildings, terrain points must be removed. Nowadays, either airborne or vehicle-borne laser data, are mostly used to set an elevation threshold based on the scanning line or POS data to determine whether the point is a terrain point or not, but the disadvantage is part of low buildings or other feature objects will be lost. If the study area has high differences in the horizontal or the forward direction, this method is not applicable. This paper investigates a new methodology to extract the terrain points, which has great significance for data reduction and classification. The procedure includes the following steps: 1)Pre-processing: to remove discrete points and abnormal points. 2) Divided all the points into grid, calculating the average value of the XY and the minimum value of the Z of all the points in the same grid as the central point of the grid.3) Choose nearest six points which are close to the centre point to fitting the quadratic surface.4)Compare the normal vector of the fitting surface of the grid to the normal vector of the 8-neighborhood, if the difference is too big, it will be smoothed.5) Determine whether the point in the grid is on the surface, if the point belongs to the surface, it will be classified as terrain point. The results and evaluation have shown the effectiveness of the method and its potential in separation of the terrain of various areas

  11. Path Planning Software and Graphics Interface for an Autonomous Vehicle, Accounting for Terrain Features

    National Research Council Canada - National Science Library

    Hurezeanu, Vlad

    2000-01-01

    .... This vehicle performs tasks to include surveying fields, laying mines, and teleoperation. The capability of the vehicle will be increased if its supporting software plans paths that take into account the terrain features...

  12. Self-Supervised Learning of Terrain Traversability from Proprioceptive Sensors

    Science.gov (United States)

    Bajracharya, Max; Howard, Andrew B.; Matthies, Larry H.

    2009-01-01

    Robust and reliable autonomous navigation in unstructured, off-road terrain is a critical element in making unmanned ground vehicles a reality. Existing approaches tend to rely on evaluating the traversability of terrain based on fixed parameters obtained via testing in specific environments. This results in a system that handles the terrain well that it trained in, but is unable to process terrain outside its test parameters. An adaptive system does not take the place of training, but supplements it. Whereas training imprints certain environments, an adaptive system would imprint terrain elements and the interactions amongst them, and allow the vehicle to build a map of local elements using proprioceptive sensors. Such sensors can include velocity, wheel slippage, bumper hits, and accelerometers. Data obtained by the sensors can be compared to observations from ranging sensors such as cameras and LADAR (laser detection and ranging) in order to adapt to any kind of terrain. In this way, it could sample its surroundings not only to create a map of clear space, but also of what kind of space it is and its composition. By having a set of building blocks consisting of terrain features, a vehicle can adapt to terrain that it has never seen before, and thus be robust to a changing environment. New observations could be added to its library, enabling it to infer terrain types that it wasn't trained on. This would be very useful in alien environments, where many of the physical features are known, but some are not. For example, a seemingly flat, hard plain could actually be soft sand, and the vehicle would sense the sand and avoid it automatically.

  13. Performance of a Battery Electric Vehicle in the Cold Climate and Hilly Terrain of Vermont

    Science.gov (United States)

    2008-12-23

    The goal of this research project was to determine the performance of a battery electric vehicle (BEV) in the cold climate and hilly terrain of Vermont. For this study, a 2005 Toyota Echo was converted from an internal combustion engine (ICE) vehicle...

  14. Four-Wheel Vehicle Suspension System

    Science.gov (United States)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  15. Cross-Coupled Control for All-Terrain Rovers

    Directory of Open Access Journals (Sweden)

    Giulio Reina

    2013-01-01

    Full Text Available Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors’ control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors.

  16. All-terrain vehicle, trampoline and scooter injuries and their prevention in children.

    Science.gov (United States)

    Levine, Deborah

    2006-06-01

    Childhood injuries are the leading cause of death in children and result in significant healthcare utilization. Injuries specifically related to all terrain vehicles, trampolines and scooter usage can be devastating and are often preventable. Our understanding of how and why these injuries occur can aid in preventing morbidity and mortality. The popularity of all-terrain vehicles, nonmotorized scooters and trampolines has soared over recent years. This increased usage has led to a tremendous rise in injuries in children utilizing these recreational activities. Many of the injuries occur in younger children who may not possess the motor and cognitive skills necessary to safely engage in these activities. These activities lead to a number of head and extremity injuries, most of which can be attenuated by the use of protective gear such as helmets and protective padding. Understanding the nature of these injuries can lead to advocacy and hopefully legislation to prevent further injuries from occurring.

  17. All-terrain vehicle dealership point-of-sale child safety compliance in Illinois.

    Science.gov (United States)

    Hafner, John W; Getz, Marjorie A; Begley, Brandon

    2012-08-01

    In 2008, an estimated 37,700 children younger than 16 were treated in US emergency departments for nonfatal all-terrain vehicle (ATV) injuries. This study identifies safety guidelines and recommendations dealers convey to consumers at the point of sale. A telephone survey of all 2004 licensed motorcycle dealers in Illinois was conducted. Trained investigators, using aliases and posing as a parent of a 13-year-old teenager, spoke with dealership personnel. Investigators indicated they wished to purchase an ATV with the dealership, but had no knowledge of ATV use or safety issues. The telephone call's true purpose was concealed during the survey. Specific responses from the salesperson, models and brands of ATVs, price quotes, engine sizes, and safety information/recommendations were recorded in a written survey instrument. One hundred twenty-seven ATV dealers completed the survey. A salesperson most often fielded the telephone interview (124/127). Telephone interviews by male investigators were longer than those by female interviewers (5 minutes 37 seconds vs 3 minutes 51 seconds; P = 0.001). Dealers recommended Consumer Product Safety Commission-based child-size ATVs (vehicles as "safe." Most dealers (83.5%) recommended some form of rider training, with half (49.6%) offered point-of-purchase training. All-terrain vehicle dealers in Illinois recommend child-size vehicles, safety training, and helmet use for the majority of telephone inquiries. Injury prevention efforts targeting ATV dealers may be less needed than those using other populations.

  18. Dynamic Modeling and Vibration Analysis for the Vehicles with Rigid Wheels Based on Wheel-Terrain Interaction Mechanics

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2015-01-01

    Full Text Available The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain’s influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance.

  19. Colour based off-road environment and terrain type classification

    NARCIS (Netherlands)

    Jansen, P.; Mark, W. van der; Heuvel, J.C. van den; Groen, F.C.A.

    2005-01-01

    Terrain classification is an important problem that still remains to be solved for off-road autonomous robot vehicle guidance. Often, obstacle detection systems are used which cannot distinguish between solid obstacles such as rocks or soft obstacles such as tall patches of grass. Terrain

  20. Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations

    Science.gov (United States)

    2013-04-16

    N.Y. [20] Wulfsohn, D., and Upadhyaya, S. K., 1992, "Prediction of traction and soil compaction using three-dimensional soil- tyre contact profile," Journal of Terramechanics, 29(6), pp. 541-564. ...the relative speedup of utilizing GPUs for computational acceleration. INTRODUCTION In order to enable off- road vehicle dynamics analysis...ANSI Std Z39-18 Page 2 of 8 Figure 2. Tire geometry used to determine collision points with the terrain In the context of off- road vehicle

  1. What influences youth to operate all-terrain vehicles safely?

    Science.gov (United States)

    Grummon, A. H.; Heaney, C. A.; Dellinger, W. A.; Wilkins, J. R.

    2014-01-01

    The operation of all-terrain vehicles (ATVs) by youth has contributed to the incidence of serious and fatal injuries among children. This study explored factors related to the frequency with which youth wore a helmet and refrained from engaging in three risky driving behaviors (driving at risky speeds, on paved roads and on unfamiliar terrain) while operating an ATV. Youth (n = 248) aged 9–14 from central Ohio and one of their parents completed self-report measures of ATV safety behaviors, youth general propensity for risk taking, protection motivation and parental behaviors to facilitate youth safety. Data from two focus groups provided insight on quantitative results. Analyses revealed considerable variation in the frequency with which youth performed the safety behaviors, with 13- and 14-year-olds reporting less frequent safe behavior than 9- to 12-year-olds. Multiple regression analyses suggested that parental behaviors, such as providing reminders to wear a helmet, were associated with more frequent helmet use but were not associated with risky driving behaviors. Youth’s general propensity toward risk taking was not associated with helmet use and only associated with riskydriving behaviors among the 13- and 14-year-olds. Self-efficacy was an important predictor across both age groups and behaviors. Implications for injury prevention are discussed. PMID:24740837

  2. A Tire Model for Off-Highway Vehicle Simulation on Short Wave Irregular Terrain

    DEFF Research Database (Denmark)

    Langer, Thomas Heegaard; Kristensen, Lars B; Mouritsen, Ole Ø.

    2010-01-01

    Manufacturers of construction machinery are challenged in several ways concerning dynamic loads. Considering off-highway dump trucks that travel through high amplitude short wave irregular terrain with considerable speed two aspects concerning dynamics are important. The first is the legal...... between simulated data and experimental data obtained from full vehicle testing. The experimental work is carried out by letting a dump truck pass a set of well defined obstacles. Based on the obtained agreement between simulated and measured results the tire model is considered suitable for describing...... joints, spring-damper elements and the welded structures it is crucial to have information on the time history of the loads. For trucks carrying payloads the most important load contribution is undoubtedly the reaction forces between terrain and tires. By use of virtual prototypes it is possible...

  3. Online Aerial Terrain Mapping for Ground Robot Navigation

    Directory of Open Access Journals (Sweden)

    John Peterson

    2018-02-01

    Full Text Available This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  4. Design and analysis of magneto rheological fluid brake for an all terrain vehicle

    Science.gov (United States)

    George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.

    2018-02-01

    This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.

  5. Prognostic framing of stakeholders' subjectivities: A case of all-terrain vehicle management on state public lands

    Science.gov (United States)

    Stanley T. Asah; David N. Bengston; Keith Wendt; Leif. DeVaney

    2012-01-01

    Management of all-terrain vehicle (ATV) use on Minnesota state forest lands has a contentious history and land managers are caught between ATV riders, nonmotorized recreationists, private landowners, and environmental advocates. In this paper, we demonstrate the usefulness of framing distinct perspectives about ATV management on Minnesota state public forests,...

  6. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    Science.gov (United States)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  7. Intelligent Terrain Analysis and Tactical Support System (ITATSS) for Unmanned Ground Vehicles

    National Research Council Canada - National Science Library

    Jones, Randolph M; Arkin, Ron; Sidki, Nahid

    2005-01-01

    ...). The system enable unmanned combat and support vehicles to achieve significant new levels of autonomy, mobility, rapid response, coordination and effectiveness, while simultaneously enriching human...

  8. AERIAL TERRAIN MAPPING USING UNMANNED AERIAL VEHICLE APPROACH

    Directory of Open Access Journals (Sweden)

    K. N. Tahar

    2012-08-01

    Full Text Available This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root

  9. Generating color terrain images in an emergency response system

    International Nuclear Information System (INIS)

    Belles, R.D.

    1985-08-01

    The Atmospheric Release Advisory Capability (ARAC) provides real-time assessments of the consequences resulting from an atmospheric release of radioactive material. In support of this operation, a system has been created which integrates numerical models, data acquisition systems, data analysis techniques, and professional staff. Of particular importance is the rapid generation of graphical images of the terrain surface in the vicinity of the accident site. A terrain data base and an associated acquisition system have been developed that provide the required terrain data. This data is then used as input to a collection of graphics programs which create and display realistic color images of the terrain. The graphics system currently has the capability of generating color shaded relief images from both overhead and perspective viewpoints within minutes. These images serve to quickly familiarize ARAC assessors with the terrain near the release location, and thus permit them to make better informed decisions in modeling the behavior of the released material. 7 refs., 8 figs

  10. Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots

    Science.gov (United States)

    Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth

    2007-01-01

    A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.

  11. Object Georeferencing in UAV-Based SAR Terrain Images

    Directory of Open Access Journals (Sweden)

    Łabowski Michał

    2016-12-01

    Full Text Available Synthetic aperture radars (SAR allow to obtain high resolution terrain images comparable with the resolution of optical methods. Radar imaging is independent on the weather conditions and the daylight. The process of analysis of the SAR images consists primarily of identifying of interesting objects. The ability to determine their geographical coordinates can increase usability of the solution from a user point of view. The paper presents a georeferencing method of the radar terrain images. The presented images were obtained from the SAR system installed on board an Unmanned Aerial Vehicle (UAV. The system was developed within a project under acronym WATSAR realized by the Military University of Technology and WB Electronics S.A. The source of the navigation data was an INS/GNSS system integrated by the Kalman filter with a feed-backward correction loop. The paper presents the terrain images obtained during flight tests and results of selected objects georeferencing with an assessment of the accuracy of the method.

  12. ATRAN Terrain Sensing Guidance-The Grand-Daddy System

    Science.gov (United States)

    Koch, Richard F.; Evans, Donald C.

    1980-12-01

    ATRAN was the pioneer terrain sensing guidance system developed in the 1950 era and deployed in Europe on the Air Force's mobile, ground launched TM-76A MACE cruise missile in the late 1950's and early 1960's. The background, principles and technology are described for this system which was the forerunner of todays modern autonomous standoff terrain sensing guided weapons.

  13. A GPS inspired Terrain Referenced Navigation algorithm

    NARCIS (Netherlands)

    Vaman, D.

    2014-01-01

    Terrain Referenced Navigation (TRN) refers to a form of localization in which measurements of distances to the terrain surface are matched with a digital elevation map allowing a vehicle to estimate its own position within the map. The main goal of this dissertation is to improve TRN performance

  14. Estimation of Road Loads and Vibration Transmissibility of Torsion Bar Suspension System in a Tracked Vehicle

    Science.gov (United States)

    Gagneza, G. P. S.; Chandramohan, Sujatha

    2018-05-01

    Designing the suspension system of a tracked combat vehicle (CV) is really challenging as it has to satisfy conflicting requirements of good ride comfort, vehicle handling and stability characteristics. Many studies in this field have been reported in literature and it has been found that torsion bars satisfy the designer's conflicting requirements of good ride and handling and thus have reserved a place for themselves as the most widely used suspension system for military track vehicles. Therefore, it is imperative to evaluate the effectiveness of the torsion bar under dynamic conditions of undulating terrain and validating the same by correlating it with computer simulation results. Thus in the present work, the dynamic simulation of a 2N + 4 degrees of freedom (DOF) mathematical model has been carried out using MATLAB Simulink and the vibration levels were also measured experimentally on a 12 wheel stationed high mobility military tracked infantry combat vehicle (ICV BMP-II) traversing different terrain, that is, Aberdeen proving ground (APG) and Sinusoidal, at a constant vehicle speed. The dynamic force transmitted to the hull CG through the 12 torsion bar suspension systems was computed to be around 26,700 N and found to match the measured values. The vibration isolation of the torsion bar in bounce was found to be effective, with a transmissibility from the road wheel to the hull of about 0.6.

  15. Periodic spring–mass running over uneven terrain through feedforward control of landing conditions

    International Nuclear Information System (INIS)

    III, Luther R Palmer; Eaton, Caitrin E

    2014-01-01

    This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles. The algorithm is shown here implemented on a spring-loaded inverted pendulum model in simulation, and can be configured to approach fixed running height over uneven terrain or self-stable terrain following. Offline search identifies unique landing conditions that achieve a desired apex height with a constant stride period over varying ground levels. Because the time between the apex and touchdown events is directly related to ground height, the landing conditions can be computed in real time as continuous functions of this falling time. Enforcing a constant stride period reduces the need for inertial sensing of the apex event, which is nontrivial for physical systems, and allows for clocked feedfoward control of the swing leg. (paper)

  16. Periodic spring-mass running over uneven terrain through feedforward control of landing conditions.

    Science.gov (United States)

    Palmer, Luther R; Eaton, Caitrin E

    2014-09-01

    This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles. The algorithm is shown here implemented on a spring-loaded inverted pendulum model in simulation, and can be configured to approach fixed running height over uneven terrain or self-stable terrain following. Offline search identifies unique landing conditions that achieve a desired apex height with a constant stride period over varying ground levels. Because the time between the apex and touchdown events is directly related to ground height, the landing conditions can be computed in real time as continuous functions of this falling time. Enforcing a constant stride period reduces the need for inertial sensing of the apex event, which is nontrivial for physical systems, and allows for clocked feedfoward control of the swing leg.

  17. Are all-terrain vehicle riders willing to pay trail user fees to ride on public lands in the USA?

    Science.gov (United States)

    Stephanie A. Snyder; Robert A. Smail

    2009-01-01

    Some public lands in the USA offer opportunities for all-terrain vehicle (ATV) riding, but few charge trail use fees. In a case study in the US state of Wisconsin, the contingent valuation method was used to examine riders' willingness to pay (WTP) to ride on public lands. Information on riders' habits, preferences and responses to a dichotomous choice WTP...

  18. An image-based method to measure all-terrain vehicle dimensions for engineering safety purposes.

    Science.gov (United States)

    Jennissen, Charles A; Miller, Nathan S; Tang, Kaiyang; Denning, Gerene M

    2014-04-01

    All-terrain vehicle (ATV) crashes are a serious public health and safety concern. Engineering approaches that address ATV injury prevention are critically needed. Avenues to pursue include evidence-based seat design that decreases risky behaviours, such as carrying passengers and operation of adult-size vehicles by children. The goal of this study was to create and validate an image-based method to measure ATV seat length and placement. Publicly available ATV images were downloaded. Adobe Photoshop was then used to generate a vertical grid through the centre of the vehicle, to define the grid scale using the manufacturer's reported wheelbase, and to determine seat length and placement relative to the front and rear axles using this scale. Images that yielded a difference greater than 5% between the calculated and the manufacturer's reported ATV lengths were excluded from further analysis. For the 77 images that met inclusion criteria, the mean±SD for the difference in calculated versus reported vehicle length was 1.8%±1.2%. The Pearson correlation coefficient for comparing image-based seat lengths determined by two independent measurers (20 models) and image-based lengths versus lengths measured at dealerships (12 models) were 0.95 and 0.96, respectively. The image-based method provides accurate and reproducible results for determining ATV measurements, including seat length and placement. This method greatly expands the number of ATV models that can be studied, and may be generalisable to other motor vehicle types. These measurements can be used to guide engineering approaches that improve ATV safety design.

  19. Constraint Embedding for Vehicle Suspension Dynamics

    OpenAIRE

    Jain Abhinandan; Kuo Calvin; Jayakumar Paramsothy; Cameron Jonathan

    2016-01-01

    The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV) for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with ...

  20. Construction Method of the Topographical Features Model for Underwater Terrain Navigation

    Directory of Open Access Journals (Sweden)

    Wang Lihui

    2015-09-01

    Full Text Available Terrain database is the reference basic for autonomous underwater vehicle (AUV to implement underwater terrain navigation (UTN functions, and is the important part of building topographical features model for UTN. To investigate the feasibility and correlation of a variety of terrain parameters as terrain navigation information metrics, this paper described and analyzed the underwater terrain features and topography parameters calculation method. Proposing a comprehensive evaluation method for terrain navigation information, and constructing an underwater navigation information analysis model, which is associated with topographic features. Simulation results show that the underwater terrain features, are associated with UTN information directly or indirectly, also affect the terrain matching capture probability and the positioning accuracy directly.

  1. Machine-Vision Systems Selection for Agricultural Vehicles: A Guide

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares

    2016-11-01

    Full Text Available Machine vision systems are becoming increasingly common onboard agricultural vehicles (autonomous and non-autonomous for different tasks. This paper provides guidelines for selecting machine-vision systems for optimum performance, considering the adverse conditions on these outdoor environments with high variability on the illumination, irregular terrain conditions or different plant growth states, among others. In this regard, three main topics have been conveniently addressed for the best selection: (a spectral bands (visible and infrared; (b imaging sensors and optical systems (including intrinsic parameters and (c geometric visual system arrangement (considering extrinsic parameters and stereovision systems. A general overview, with detailed description and technical support, is provided for each topic with illustrative examples focused on specific applications in agriculture, although they could be applied in different contexts other than agricultural. A case study is provided as a result of research in the RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management project for effective weed control in maize fields (wide-rows crops, funded by the European Union, where the machine vision system onboard the autonomous vehicles was the most important part of the full perception system, where machine vision was the most relevant. Details and results about crop row detection, weed patches identification, autonomous vehicle guidance and obstacle detection are provided together with a review of methods and approaches on these topics.

  2. Stereo-vision-based terrain mapping for off-road autonomous navigation

    Science.gov (United States)

    Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.

    2009-05-01

    Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as nogo regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.

  3. Experimental Semiautonomous Vehicle

    Science.gov (United States)

    Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.; hide

    1993-01-01

    Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.

  4. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    Science.gov (United States)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  5. Semi-Empiric Algorithm for Assessment of the Vehicle Mobility

    Directory of Open Access Journals (Sweden)

    Ticusor CIOBOTARU

    2009-12-01

    Full Text Available The mobility of military vehicles plays a key role in operation. The ability to reach the desired area in war theatre represents the most important condition for a successful accomplishment of the mission for military vehicles. The off-road vehicles face a broad spectrum of terrains to cross. These terrains differ by geometry and the soil characteristics.NATO References Mobility Model (NRMM software is based on empirical relationship between the terrain characteristics, running conditions and vehicles design. The paper presents the main results of a comparative mobility analysis for M1 and HMMWV vehicles obtained using NRMM.

  6. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Kuo-Lung Huang

    2015-07-01

    Full Text Available The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  7. All-terrain vehicles (ATVs) on the road: a serious traffic safety and public health concern.

    Science.gov (United States)

    Denning, Gerene; Jennissen, Charles; Harland, Karisa; Ellis, David; Buresh, Christopher

    2013-01-01

    On-road all-terrain vehicle (ATV) crashes are frequent occurrences that disproportionately impact rural communities. These crashes occur despite most states having laws restricting on-road ATV use. A number of overall risk factors for ATV-related injuries have been identified (e.g., lack of helmet, carrying passengers). However, few studies have determined the relative contribution of these and other factors to on-road crashes and injuries. The objective of our study was to determine whether there were differences between on- and off-road ATV crashes in their demographics and/or mechanisms and outcomes of injuries. Data were derived from our statewide ATV injury surveillance database (2002-2009). Crash location and crash and injury mechanisms were coded using a modification of the Department of Transportation (DOT) coding system. Descriptive analyses and statistical comparisons (chi-square test) of variables were performed. Multivariate logistic regression analysis was used to determine relative risk. 976 records were included in the final analysis, with 38 percent of the injured individuals from on-road crashes. Demographics were similar for crashes at each location, with approximately 80 percent males, 30 percent under the age of 16, and 15 percent passengers. However, females and youths under 16 were over 4 times more likely to be passengers (P ≤ 0.0001), regardless of crash location. Compared to those off-road, on-road crash victims were approximately 10 times more likely to be involved in a vehicle-vehicle collision (P road crashes were also twice as likely to test positive for alcohol as those off-road (P road victims were only half as likely to be helmeted (P road crashes involved a collision with another vehicle, suggesting that ATVs on the road represent a potential traffic safety concern. Of note, helmets were associated with reduced risk for the number and severity of brain injuries, providing further support for the importance of helmet use. Finally

  8. New high-fidelity terrain modeling method constrained by terrain semanteme.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    Full Text Available Production of higher-fidelity digital elevation models is important; as such models are indispensable components of space data infrastructure. However, loss of terrain features is a constant problem for grid digital elevation models, although these models have already been defined in such a way that their distinct usage as data sources in terrain modeling processing is prohibited. Therefore, in this study, the novel concept-terrain semanteme is proposed to define local space terrain features, and a new process for generating grid digital elevation models based on this new concept is designed. A prototype system is programmed to test the proposed approach; the results indicate that terrain semanteme can be applied in the process of grid digital elevation model generation, and that usage of this new concept improves the digital elevation model fidelity. Moreover, the terrain semanteme technique can be applied for recovery of distorted digital elevation model regions containing terrain semantemes, with good recovery efficiency indicated by experiments.

  9. Cardiac Injury After All-Terrain Vehicle Accidents in 2 Children and a Review of the Literature.

    Science.gov (United States)

    Ngo, Kimberly D; Pian, Phillip; Hanfland, Robert; Nichols, Christopher S; Merritt, Glenn R; Campbell, David; Ing, Richard J

    2016-07-01

    All-terrain vehicle (ATV) accidents leading to severe morbidity and mortality are common. At our institution, 2 children presented within weeks of each other after ATV accidents. Both children required cardiac valve surgery. The surgical management of these 2 children is discussed, and the literature is reviewed. On initial patient presentation, the diagnosis of a ruptured cardiac valve or ventricular septal defect (VSD) associated with these types of accidents is often delayed. We propose that patients presenting with evidence of high-energy blunt thoracic trauma after an ATV accident should undergo an electrocardiogram, cardiac enzyme assessment, and cardiac echocardiogram as part of the initial work-up to rule out significant myocardial injury.

  10. The characteristics and use patterns of all-terrain vehicle drivers in the United States.

    Science.gov (United States)

    Rodgers, G B

    1999-07-01

    The consent decrees between the US Consumer Product Safety Commission and the major distributors of all-terrain vehicles (ATV), which were designed to address ATV-related injuries and deaths, expired in April, 1998. While national estimates of nonfatal and fatal injuries involving ATVs declined after the consent decrees went into effect 10 years ago, the injury estimates have stabilized in recent years. To gain a better understanding of current ATV use patterns, the CPSC sponsored a national probability survey of ATV drivers in the fall of 1997. The survey was designed to collect information about the characteristics and use patterns of ATV drivers and to quantify the numbers and types of ATVs in use. It employed a single stage list-assisted random-digit-dial sample design. This article describes the results of the survey, and discusses long term ATV usage trends.

  11. Sensor Fault Diagnosis Observer for an Electric Vehicle Modeled as a Takagi-Sugeno System

    Directory of Open Access Journals (Sweden)

    S. Gómez-Peñate

    2018-01-01

    Full Text Available A sensor fault diagnosis of an electric vehicle (EV modeled as a Takagi-Sugeno (TS system is proposed. The proposed TS model considers the nonlinearity of the longitudinal velocity of the vehicle and parametric variation induced by the slope of the road; these considerations allow to obtain a mathematical model that represents the vehicle for a wide range of speeds and different terrain conditions. First, a virtual sensor represented by a TS state observer is developed. Sufficient conditions are given by a set of linear matrix inequalities (LMIs that guarantee asymptotic convergence of the TS observer. Second, the work is extended to perform fault detection and isolation based on a generalized observer scheme (GOS. Numerical simulations are presented to show the performance and applicability of the proposed method.

  12. Etiologies of pediatric craniofacial injuries: a comparison of injuries involving all-terrain vehicles and golf carts.

    Science.gov (United States)

    White, Lauren C; McKinnon, Brian J; Hughes, C Anthony

    2013-03-01

    To determine incidence and etiologies of craniofacial injuries in the pediatric population through comparison of injuries caused by all-terrain vehicles and golf cart trauma. Case series with chart review. Level 1 trauma center. Retrospective review of pediatric traumas at a tertiary academic medical center from 2003 to 2012 identified 196 patients whose injuries resulted from accidents involving either all-terrain vehicles or golf carts. Data was collected and variables such as age, gender, driver vs. passenger, location of accident, Glasgow coma scale, Injury severity scale, Abbreviated injury scale, and presence or absence of helmet use were examined. 196 pediatric patients were identified: 68 patients had injuries resulting from golf cart accidents, and 128 patients from ATV accidents. 66.4% of ATV-related traumas were male, compared to 52.9% of golf cart-related traumas. Ages of injured patients were similar between the two modalities with average age of ATV traumas 10.8 (±4.0) years and golf cart traumas 10.0 (±4.6) years. Caucasians were most commonly involved in both ATV (79.7%) and golf cart traumas (85.3%). 58.6% of all ATV related trauma and 69.1% of all golf cart trauma resulted in craniofacial injuries. The most common craniofacial injury was a closed head injury with brief loss of consciousness, occurring in 46.1% of the ATV traumas and 54.4% of the golf cart traumas. Temporal bone fractures were the second most common type of craniofacial injury, occurring in 5.5% of ATV accidents and 7.4% of the golf cart traumas. Length of hospital stay and, cases requiring surgery and severity scores were similar between both populations. Intensive care admissions and injury severity scores approached but not reach statistical significance (0.096 and 0.083, respectively). The only statistically significant differences between the two modalities were helmet use (P=0.00018%) and days requiring ventilator assistance (P=0.025). ATVs and golf carts are often exempt

  13. Off-road vehicle dynamics analysis, modelling and optimization

    CERN Document Server

    Taghavifar, Hamid

    2017-01-01

    This book deals with the analysis of off-road vehicle dynamics from kinetics and kinematics perspectives and the performance of vehicle traversing over rough and irregular terrain. The authors consider the wheel performance, soil-tire interactions and their interface, tractive performance of the vehicle, ride comfort, stability over maneuvering, transient and steady state conditions of the vehicle traversing, modeling the aforementioned aspects and optimization from energetic and vehicle mobility perspectives. This book brings novel figures for the transient dynamics and original wheel terrain dynamics at on-the-go condition.

  14. Imaging findings in 512 children following all-terrain vehicle injuries

    International Nuclear Information System (INIS)

    Shah, Chetan C.; Greenberg, Bruce S.; Ramakrishnaiah, Raghu H.; Bhutta, Sadaf T.; Parnell-Beasley, Donna N.

    2009-01-01

    Injuries related to all-terrain vehicle (ATV) use by children have increased in recent years, and the pattern of these injuries is not well known among radiologists. Our purpose was to identify different radiologically diagnosed injuries in children suffering ATV-related trauma and determine associations among various injuries as well as between injuries and outcome. The study included 512 consecutive children suffering from ATV injuries treated at a tertiary care pediatric hospital. All imaging studies were reviewed and correlated with injury frequency and outcome using multivariate analysis. Head injuries occurred in 244 children (48%) and in five of six deaths. Calvarial skull fractures occurred in 104 children and were associated with brain, subdural and epidural injuries. Brain and orbit injuries were associated with long-term disability. A total of 227 extremity fractures were present in 172 children (34%). The femur was the most commonly fractured bone. Nine children had partial foot amputations. Multiorgan injuries occurred in nearly half of the 97 children with torso injuries. Determinants for long-term disability or death were head injuries (odds ratio 3.4) and extremity fractures (odds ratio 3.3). Head and extremity injuries are the two most common injuries in children suffering ATV injuries and are associated with long-term disability. ATV use by children is dangerous and is a significant threat to child safety. (orig.)

  15. AN EXPERIMENTAL EVALUATION OF 3D TERRAIN MAPPING WITH AN AUTONOMOUS HELICOPTER

    Directory of Open Access Journals (Sweden)

    B. P. Hudzietz

    2012-09-01

    Full Text Available We demonstrate a method for unmanned aerial vehicle based structure from motion mapping and show it to be a viable option for large scale, high resolution terrain modeling. Current methods of large scale terrain modeling can be cost and time prohibitive. We present a method for integrating low cost cameras and unmanned aerial vehicles for the purpose of 3D terrain mapping. Using structure from motion, aerial images taken of the landscape can be reconstructed into 3D models of the terrain. This process is well suited for use on unmanned aerial vehicles due to the light weight and low cost of equipment. We discuss issues of flight path planning and propose an algorithm to assist in the generation of these paths. The structure from motion mapping process is experimentally evaluated in three distinct environments: ground based testing on man-made environments, ground based testing on natural environments, and airborne testing on natural environments. Ground based testing on natural environments was shown to be extremely useful for camera calibration, and the resulting models were found to have a maximum error of 4.26 cm and standard deviation of 1.50 cm. During airborne testing, several areas of approximately 30,000 m2 were mapped. These areas were mapped with acceptable accuracy and a resolution of 1.24 cm.

  16. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  17. Design, Fabrication and Testing of Carbon Fiber Reinforced Epoxy Drive Shaft for All Terrain Vehicle using Filament Winding

    Directory of Open Access Journals (Sweden)

    Yeshwant Nayak Suhas

    2018-01-01

    Full Text Available Filament winding is a composite material fabrication technique that is used to manufacture concentric hollow components. In this study Carbon/Epoxy composite drive shafts were fabricated using filament winding process with a fiber orientation of [852/±452/252]s. Carbon in the form of multifilament fibers of Tairyfil TC-33 having 3000 filaments/strand was used as reinforcement with low viscosity epoxy resin as the matrix material. The driveshaft is designed to be used in SAE Baja All Terrain Vehicle (ATV that makes use of a fully floating axle in its rear wheel drive system. The torsional strength of the shaft was tested and compared to that of an OEM steel shaft that was previously used in the ATV. Results show that the composite shaft had 8.5% higher torsional strength in comparison to the OEM steel shaft and was also lighter by 60%. Scanning electron microscopy (SEM micrographs were studied to investigate the probable failure mechanism. Delamination, matrix agglomeration, fiber pull-out and matrix cracking were the prominent failure mechanisms identified.

  18. Cooperative control of a squad of mobile vehicles

    International Nuclear Information System (INIS)

    Lewis, C.; Feddema, J.; Klarer, P.

    1998-01-01

    Tasks such as the localization of chemical sources, demining, perimeter control, surveillance and search and rescue missions are usually performed by teams of people. At least conceptually, large groups of relatively cheap mobile vehicles outfitted with sensors should be able to automatically accomplish some of these tasks. Sandia National Labs is currently developing a swarm of semi-autonomous all terrain vehicles for remote cooperative sensing applications. This paper will describe the capabilities of this system and outline some of its possible applications. Cooperative control and sensing strategies will also be described. Eight Roving All Terrain Lunar Explorer Rovers (RATLERs) have been built at Sandia as a test platform for cooperative control and sensing applications. This paper will first describe the hardware capabilities of the RATLER system. Then it will describe the basic control algorithm for GPS based navigation and obstacle avoidance. A higher level cooperative control task will then be described

  19. Constraint Embedding for Vehicle Suspension Dynamics

    Directory of Open Access Journals (Sweden)

    Jain Abhinandan

    2016-06-01

    Full Text Available The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

  20. Youths operating all-terrain vehicles--implications for safety education.

    Science.gov (United States)

    Burgus, Shari K; Madsen, Murray D; Sanderson, Wayne T; Rautiainen, Risto H

    2009-01-01

    All-terrain vehicle (ATV) use has increased in recent years. ATV injuries and deaths have also increased, particularly among youth. The authors administered a survey at a National FFA convention to identify safety-related behaviors, injuries, and effects of ATV safety training. There were 624 participants aged 12 to 20 with a median age of 16; 56% were male and 69% lived on a farm. The median age for first riding an ATV was 9. ATV size recommendations were rarely observed; nearly all ATVs operated by youth less than 16 years of age were over 90 cc. Safety-related behaviors were reported as follows: always wearing a helmet (24%), never taking passengers (12%), never riding as a passenger (16%), and never riding on paved road (19%). A small percentage (22%) had participated in ATV safety training; 41% were willing, but 46% said such training was not available. ATV training was positively associated with always wearing a helmet (odds ratio [OR]: 1.72, 95% confidence interval [CI]: 1.12-2.63), never taking passengers (OR: 2.31, 95% CI: 1.36-3.91), never riding as a passenger (OR: 3.02, 95% CI: 1.90-4.79), and never riding on paved road (OR: 1.57, 95% CI: 0.99-2.50). However, training was also associated with an increase in injuries (OR: 1.96, 95% CI: 1.31-2.94), although this effect was not found in multivariable models. It was not known if the injuries occurred before or after the training and no exposure time data were available. Gender differences were found in behaviors and injury rates (males 37%, females 20%). The results suggest ATV safety training improved behaviors. Gender differences in operation, behaviors, and injuries should be considered in training.

  1. Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    Science.gov (United States)

    2016-08-02

    Mechergui, Srinivas Sanikommu UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28138) Outline • Motivation ...Distribution Statement A. Approved for public release; distribution is unlimited. (#28138) Motivation /NRMM • Mobility measures include: – Speed-made...Index (CI). – Terrain uphill grade. • Rest of the terrain parameters will be considered in future work. 4 Terrain map (22 km x 22 km) colored by

  2. Development of the Tri-ATHLETE Lunar Vehicle Prototype

    Science.gov (United States)

    Heverly, Matt; Matthews, Jaret; Frost, Matt; Quin, Chris

    2010-01-01

    The Tri-ATHLETE (All Terrain Hex Limed Extra Terrestrial Explorer) vehicle is the second generation of a wheel-on-limb vehicle being developed to support the return of humans to the lunar surface. This paper describes the design, assembly, and test of the Tri-ATHLETE robotic system with a specific emphasis on the limb joint actuators. The design and implementation of the structural components is discussed, and a novel and low cost approach to approximating flight-like cabling is also presented. The paper concludes with a discussion of the "second system effect" and other lessons learned as well as results from a three week long field trial of the vehicle in the Arizona desert.

  3. Terrain-Toolkit

    DEFF Research Database (Denmark)

    Wang, Qi; Kaul, Manohar; Long, Cheng

    2014-01-01

    , as will be shown, is used heavily for query processing in spatial databases; and (3) they do not provide the surface distance operator which is fundamental for many applications based on terrain data. Motivated by this, we developed a tool called Terrain-Toolkit for terrain data which accepts a comprehensive set......Terrain data is becoming increasingly popular both in industry and in academia. Many tools have been developed for visualizing terrain data. However, we find that (1) they usually accept very few data formats of terrain data only; (2) they do not support terrain simplification well which...

  4. Geological terrain models

    Science.gov (United States)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  5. 14 CFR 91.223 - Terrain awareness and warning system.

    Science.gov (United States)

    2010-01-01

    ... to the terrain awareness and warning system audio and visual warnings. (d) Exceptions. Paragraphs (a... after March 29, 2002. Except as provided in paragraph (d) of this section, no person may operate a... minimum meets the requirements for Class B equipment in Technical Standard Order (TSO)-C151. (b) Airplanes...

  6. Vehicle Tracking System, Vehicle Infrastructure Provided with Vehicle Tracking System and Method for Tracking

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A vehicle tracking system is described comprising - a plurality of sensor nodes (10) that each provide a message (D) indicative for an occupancy status of a detection area of an vehicle infrastructure monitored by said sensor node, said sensor nodes (10) being arranged in the vehicle infrastructure

  7. Walking Robots Dynamic Control Systems on an Uneven Terrain

    Directory of Open Access Journals (Sweden)

    MUNTEANU, M. S.

    2010-05-01

    Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.

  8. ARAC terrain data base

    International Nuclear Information System (INIS)

    Walker, H.

    1982-11-01

    A terrain data base covering the continental United States at 500-meter resolution has been generated. Its function is to provide terrain data for input to mesoscale atmospheric models that are used as part of the Atmospheric Release Advisory Capability at Lawrence Livermore Laboratory (LLNL). The structure of the data base as it exists on the LLNL computer system is described. The data base has been written to tapes for transfer to other systems and the format of these tapes is also described

  9. A Hybrid Soft Soil Tire Model (HSSTM) For Vehicle Mobility And Deterministic Performance Analysis In Terramechanics Applications

    OpenAIRE

    Taheri, Shahyar

    2015-01-01

    Accurate and efficient tire models for deformable terrain operations are essential for performing vehicle simulations. Assessment of the forces and moments that occur at the tire-terrain interface, and the effect of the tire motion on properties of the terrain are crucial in understanding the performance of a vehicle. In order to model the dynamic behavior of the tire on different terrains, a lumped mass discretized tire model using Kelvin-Voigt elements is developed. To optimize the computat...

  10. 77 FR 5616 - Proposed Technical Standard Order (TSO)-C151c, Terrain Awareness and Warning System (TAWS)

    Science.gov (United States)

    2012-02-03

    ... (TSO)-C151c, Terrain Awareness and Warning System (TAWS) ACTION: Notice of availability and request for... second draft of Technical Standard Order (TSO)- C151c, Terrain Awareness and Warning System. Comments.... b. Addition of Localizer Performance with Vertical guidance (LPV) and Global Navigation Satellite...

  11. Development of an Autonomous Navigation Technology Test Vehicle

    National Research Council Canada - National Science Library

    Tobler, Chad K

    2004-01-01

    .... In order to continue these research activities at CIMAR, a new Kawasaki Mule All-Terrain Vehicle was chosen to be automated as a test-bed for the purpose of developing and testing autonomous vehicle technologies...

  12. Terrain assessment guidelines : CAGC best practice. Version 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This terrain classification assessment guideline discussed the steps required for personnel to understand terrain hazards present during seismic operations. Maps and other sources must be used to classify terrain steepness and surface conditions using geographical information systems (GIS), LIDAR, or satellite photographs. The impact of managing steep terrain within projects must also be considered when class 3, 4, 5, or 6 terrain has been identified. Terrains must also be classified according to colours. Secondary terrain assessments must be conducted when class 3, 4, 5, or 6 terrain has been identified. Terrain management plans should included methods of keeping untrained workers out of areas with classes greater than 3. Methods of entering and exiting steep terrain must be identified. Workers must be trained to work in areas with steep terrains. Methods of rescue and evacuation must also be established. Procedures were outlined for all terrain classes. Footwear, head protection and general safety requirements were outlined. 14 figs.

  13. Online 3D terrain visualisation using Unity 3D game engine: A comparison of different contour intervals terrain data draped with UAV images

    Science.gov (United States)

    Hafiz Mahayudin, Mohd; Che Mat, Ruzinoor

    2016-06-01

    The main objective of this paper is to discuss on the effectiveness of visualising terrain draped with Unmanned Aerial Vehicle (UAV) images generated from different contour intervals using Unity 3D game engine in online environment. The study area that was tested in this project was oil palm plantation at Sintok, Kedah. The contour data used for this study are divided into three different intervals which are 1m, 3m and 5m. ArcGIS software were used to clip the contour data and also UAV images data to be similar size for the overlaying process. The Unity 3D game engine was used as the main platform for developing the system due to its capabilities which can be launch in different platform. The clipped contour data and UAV images data were process and exported into the web format using Unity 3D. Then process continue by publishing it into the web server for comparing the effectiveness of different 3D terrain data (contour data) draped with UAV images. The effectiveness is compared based on the data size, loading time (office and out-of-office hours), response time, visualisation quality, and frame per second (fps). The results were suggest which contour interval is better for developing an effective online 3D terrain visualisation draped with UAV images using Unity 3D game engine. It therefore benefits decision maker and planner related to this field decide on which contour is applicable for their task.

  14. Terrain Perception in a Shape Shifting Rolling-Crawling Robot

    Directory of Open Access Journals (Sweden)

    Fuchida Masataka

    2016-09-01

    Full Text Available Terrain perception greatly enhances the performance of robots, providing them with essential information on the nature of terrain being traversed. Several living beings in nature offer interesting inspirations which adopt different gait patterns according to nature of terrain. In this paper, we present a novel terrain perception system for our bioinspired robot, Scorpio, to classify the terrain based on visual features and autonomously choose appropriate locomotion mode. Our Scorpio robot is capable of crawling and rolling locomotion modes, mimicking Cebrenus Rechenburgi, a member of the huntsman spider family. Our terrain perception system uses Speeded Up Robust Feature (SURF description method along with color information. Feature extraction is followed by Bag of Word method (BoW and Support Vector Machine (SVM for terrain classification. Experiments were conducted with our Scorpio robot to establish the efficacy and validity of the proposed approach. In our experiments, we achieved a recognition accuracy of over 90% across four terrain types namely grass, gravel, wooden deck, and concrete.

  15. Synthesis of the adaptive continuous system for the multi-axle wheeled vehicle body oscillation damping

    Science.gov (United States)

    Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.

    2018-02-01

    In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.

  16. Autonomous underwater vehicle for research and rescue operations

    CSIR Research Space (South Africa)

    Holtzhausen S

    2008-11-01

    Full Text Available Autonomous under water vehicles are ideal platforms for search and rescue operations. They can also be used for inspection of underwater terrains. These vehicles need to be autonomous and robust to cope with unpredictable current and high pressures...

  17. Enterprise Terrain Data Standards for Joint Training

    Science.gov (United States)

    2017-10-03

    e.g., bombs /shells, vehicles, etc.) or environmental factors (e.g., weather). • Riverine and ocean surface and bathymetry. o Wave/swell generation...Attachment 2 Terrain Generation Capability St an da rd iz ed S ch em a & At tr ib ut es...F or m at Pl at fo rm In de pe nd en t O pe ra tin g Sy st em In de pe nd en t Geospatial Source & Industry Formats Utilized by the Specification

  18. Dose rate calculations for a reconnaissance vehicle

    International Nuclear Information System (INIS)

    Grindrod, L.; Mackey, J.; Salmon, M.; Smith, C.; Wall, S.

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios. (authors)

  19. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  20. Estimating Soil Displacement from Timber Extraction Trails in Steep Terrain: Application of an Unmanned Aircraft for 3D Modelling

    Directory of Open Access Journals (Sweden)

    Marek Pierzchała

    2014-06-01

    Full Text Available Skid trails constructed for timber extraction in steep terrain constitute a serious environmental concern if not well planned, executed and ameliorated. Carrying out post-harvest surveys in monitoring constructed trails in such terrain is an onerous task for forest administrators, as hundreds of meters need to be surveyed per site, and the quantification of parameters and volumes is largely based on assumptions of trail symmetry and terrain uniformity. In this study, aerial imagery captured from a multi-rotor Unmanned Aerial Vehicle was used in generating a detailed post-harvest terrain model which included all skid trails. This was then compared with an Airborne Laser Scanning derived pre-harvest terrain model and the dimensions, slopes and cut-and-fill volumes associated with the skid trails were determined. The overall skid trail length was 954 m, or 381 m·ha−1 with segments varying from 40–60 m, inclinations from 3.9% to 9.6%, and cut volumes, from 1.7 to 3.7 m3 per running meter. The methods used in this work can be used in rapidly assessing the extent of disturbance and erosion risk on a wide range of sites. The multi-rotor Unmanned Aerial Vehicle (UAV was found to be highly suited to the task, given the relatively small size of harvested stands, their shape and their location in the mountainous terrain.

  1. Vehicle barriers: emphasis on natural features

    International Nuclear Information System (INIS)

    Adams, K.G.; Roscoe, B.J.

    1985-07-01

    The recent increase in the use of car and truck bombs by terrorist organizations has led NRC to evaluate the adequacy of licensee security against such threats. As part of this evaluation, one of the factors is the effectiveness of terrain and vegetation in providing barriers against the vehicle entry. The effectiveness of natural features is presented in two contexts. First, certain natural features are presented. Second, the effectiveness of combinations of features is presented. In addition to the discussion of natural features, this report provides a discussion of methods to slow vehicles. Also included is an overview of man-made barrier systems, with particular attention to ditches. 17 refs., 49 figs

  2. CONTEXT-BASED URBAN TERRAIN RECONSTRUCTION FROM UAV-VIDEOS FOR GEOINFORMATION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. Bulatov

    2012-09-01

    Full Text Available Urban terrain reconstruction has many applications in areas of civil engineering, urban planning, surveillance and defense research. Therefore the needs of covering ad-hoc demand and performing a close-range urban terrain reconstruction with miniaturized and relatively inexpensive sensor platforms are constantly growing. Using (miniaturized unmanned aerial vehicles, (MUAVs, represents one of the most attractive alternatives to conventional large-scale aerial imagery. We cover in this paper a four-step procedure of obtaining georeferenced 3D urban models from video sequences. The four steps of the procedure – orientation, dense reconstruction, urban terrain modeling and geo-referencing – are robust, straight-forward, and nearly fully-automatic. The two last steps – namely, urban terrain modeling from almost-nadir videos and co-registration of models 6ndash; represent the main contribution of this work and will therefore be covered with more detail. The essential substeps of the third step include digital terrain model (DTM extraction, segregation of buildings from vegetation, as well as instantiation of building and tree models. The last step is subdivided into quasi- intrasensorial registration of Euclidean reconstructions and intersensorial registration with a geo-referenced orthophoto. Finally, we present reconstruction results from a real data-set and outline ideas for future work.

  3. A web-mapping system for real-time visualization of the global terrain

    Science.gov (United States)

    Zhang, Liqiang; Yang, Chongjun; Liu, Donglin; Ren, Yingchao; Rui, Xiaoping

    2005-04-01

    In this paper, we mainly present a web-based 3D global terrain visualization application that provides more powerful transmission and visualization of global multiresolution data sets across networks. A client/server architecture is put forward. The paper also reports various relevant research work, such as efficient data compression methods to reduce the physical size of these data sets and accelerate network delivery, streaming transmission for progressively downloading data, and real-time multiresolution terrain surface visualization with a high visual quality by M-band wavelet transforms and a hierarchical triangulation technique. Finally, an experiment is performed using different levels of detailed data to verify that the system works appropriately.

  4. Terrain Commander: Unattended Ground-Based Surveillance System

    National Research Council Canada - National Science Library

    Steadman, Bob

    2000-01-01

    .... Terrain Commander OASIS provides next generation target detection, classification, and tracking through smart sensor fusion of beamforming acoustic, seismic, passive infrared, and magnetic sensors...

  5. Distributed Control in Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Paul A. Avery

    2013-12-01

    Full Text Available The Southwest Research Institute (SwRI Mobile Autonomous Robotics Technology Initiative (MARTI program has enabled the development of fully-autonomous passenger-sized commercial vehicles and military tactical vehicles, as well as the development of cooperative vehicle behaviors, such as cooperative sensor sharing and cooperative convoy operations. The program has also developed behaviors to interface intelligent vehicles with intelligent road-side devices. The development of intelligent vehicle behaviors cannot be approached as stand-alone phenomena; rather, they must be understood within a context of the broader traffic system dynamics. The study of other complex systems has shown that system-level behaviors emerge as a result of the spatio-temporal dynamics within a system's constituent parts. The design of such systems must therefore account for both the system-level emergent behavior, as well as behaviors of individuals within the system. It has also become clear over the past several years, for both of these domains, that human trust in the behavior of individual vehicles is paramount to broader technology adoption. This paper examines the interplay between individual vehicle capabilities, vehicle connectivity, and emergent system behaviors, and presents some considerations for a distributed control paradigm in a multi-vehicle system.

  6. Processing Terrain Point Cloud Data

    KAUST Repository

    DeVore, Ronald

    2013-01-10

    Terrain point cloud data are typically acquired through some form of Light Detection And Ranging sensing. They form a rich resource that is important in a variety of applications including navigation, line of sight, and terrain visualization. Processing terrain data has not received the attention of other forms of surface reconstruction or of image processing. The goal of terrain data processing is to convert the point cloud into a succinct representation system that is amenable to the various application demands. The present paper presents a platform for terrain processing built on the following principles: (i) measuring distortion in the Hausdorff metric, which we argue is a good match for the application demands, (ii) a multiscale representation based on tree approximation using local polynomial fitting. The basic elements held in the nodes of the tree can be efficiently encoded, transmitted, visualized, and utilized for the various target applications. Several challenges emerge because of the variable resolution of the data, missing data, occlusions, and noise. Techniques for identifying and handling these challenges are developed. © 2013 Society for Industrial and Applied Mathematics.

  7. Electric vehicle data acquisition system

    DEFF Research Database (Denmark)

    Svendsen, Mathias; Winther-Jensen, Mads; Pedersen, Anders Bro

    2014-01-01

    and industrial applications, e.g. research in electric vehicle driving patterns, vehicle substitutability analysis and fleet management. The platform is based on a embedded computer running Linux, and features a high level of modularity and flexibility. The system operates independently of the make of the car......, by using the On-board Diagnostic port to identify car model and adapt its software accordingly. By utilizing on-board Global Navigation Satellite System, General Packet Radio Service, accelerometer, gyroscope and magnetometer, the system not only provides valuable data for research in the field of electric......A data acquisition system for electric vehicles is presented. The system connects to the On-board Diagnostic port of newer vehicles, and utilizes the in-vehicle sensor network, as well as auxiliary sensors, to gather data. Data is transmitted continuously to a central database for academic...

  8. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  9. Vehicle usage verification system

    NARCIS (Netherlands)

    Scanlon, W.G.; McQuiston, Jonathan; Cotton, Simon L.

    2012-01-01

    EN)A computer-implemented system for verifying vehicle usage comprising a server capable of communication with a plurality of clients across a communications network. Each client is provided in a respective vehicle and with a respective global positioning system (GPS) by which the client can

  10. Systems Challenges for Hypersonic Vehicles

    Science.gov (United States)

    Hunt, James L.; Laruelle, Gerard; Wagner, Alain

    1997-01-01

    This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.

  11. Stereoscopic Machine-Vision System Using Projected Circles

    Science.gov (United States)

    Mackey, Jeffrey R.

    2010-01-01

    A machine-vision system capable of detecting obstacles large enough to damage or trap a robotic vehicle is undergoing development. The system includes (1) a pattern generator that projects concentric circles of laser light forward onto the terrain, (2) a stereoscopic pair of cameras that are aimed forward to acquire images of the circles, (3) a frame grabber and digitizer for acquiring image data from the cameras, and (4) a single-board computer that processes the data. The system is being developed as a prototype of machine- vision systems to enable robotic vehicles ( rovers ) on remote planets to avoid craters, large rocks, and other terrain features that could capture or damage the vehicles. Potential terrestrial applications of systems like this one could include terrain mapping, collision avoidance, navigation of robotic vehicles, mining, and robotic rescue. This system is based partly on the same principles as those of a prior stereoscopic machine-vision system in which the cameras acquire images of a single stripe of laser light that is swept forward across the terrain. However, this system is designed to afford improvements over some of the undesirable features of the prior system, including the need for a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe. In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism: the pattern of concentric circles is projected steadily in the forward direction. The system calibrates itself by use of data acquired during projection of the concentric-circle pattern onto a known target representing flat ground. The calibration- target image data are stored in the computer memory for use as a

  12. Usability Analysis of Collision Avoidance System in Vehicle-to-Vehicle Communication Environment

    Directory of Open Access Journals (Sweden)

    Hong Cho

    2014-01-01

    Full Text Available Conventional intelligent vehicles have performance limitations owing to the short road and obstacle detection range of the installed sensors. In this study, to overcome this limitation, we tested the usability of a new conceptual autonomous emergency braking (AEB system that employs vehicle-to-vehicle (V2V communication technology in the existing AEB system. To this end, a radar sensor and a driving and communication environment constituting the AEB system were simulated; the simulation was then linked by applying vehicle dynamics and control logic. The simulation results show that the collision avoidance relaxation rate of V2V communication-based AEB system was reduced compared with that of existing vehicle-mounted-sensor-based system. Thus, a method that can lower the collision risk of the existing AEB system, which uses only a sensor cluster installed on the vehicle, is realized.

  13. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  14. Design And Analysis Of Doppler Radar-Based Vehicle Speed Detection

    Directory of Open Access Journals (Sweden)

    Su Myat Paing

    2015-08-01

    Full Text Available The most unwanted thing to happen to a road user is road accident. Most of the fatal accidents occur due to over speeding. Faster vehicles are more prone to accident than the slower one. Among the various methods for detecting speed of the vehicle object detection systems based on Radar have been replaced for about a century for various purposes like detection of aircrafts spacecraft ships navigation reading weather formations and terrain mapping. The essential feature in adaptive vehicle activated sign systems is the accurate measurement of a vehicles velocity. The velocities of the vehicles are acquired from a continuous wave Doppler radar. A very low amount of power is consumed in this system and only batteries can use to operate. The system works on the principle of Doppler Effect by detecting the Doppler shift in microwaves reflected from a moving object. Since the output of the sensor is sinusoidal wave with very small amplitude and needs to be amplified with the help of the amplifier before further processing. The purpose to calculate and display the speed on LCD is performed by the microcontroller.

  15. Spine Trauma Associated with Off-Road Vehicles.

    Science.gov (United States)

    Reid, David C.; And Others

    1988-01-01

    A seven-year review of 1,447 cases of spine trauma showed that 53 cases were associated with the use of off-road vehicles, such as all-terrain vehicles, snowmobiles, and motorized dirt bikes. The development of safe riding areas, legislation governing safe operation, and public safety education are advised to curb this trend. (Author/JL)

  16. Survivor shielding. Part C. Improvements in terrain shielding

    International Nuclear Information System (INIS)

    Egbert, Stephen D.; Kaul, Dean C.; Roberts, James A.; Kerr, George D.

    2005-01-01

    A number of atomic-bomb survivors were affected by shielding provided by terrain features. These terrain features can be a small hill, affecting one or two houses, or a high mountain that shields large neighborhoods. In the survivor dosimetry system, terrain shielding can be described by a transmission factor (TF), which is the ratio between the dose with and without the terrain present. The terrain TF typically ranges between 0.1 and 1.0. After DS86 was implemented at RERF, the terrain shielding categories were examined and found to either have a bias or an excessive uncertainty that could readily be removed. In 1989, an improvement in the terrain model was implemented at RERF in the revised DS86 code, but the documentation was not published. It is now presented in this section. The solution to the terrain shielding in front of a house is described in this section. The problem of terrain shielding of survivors behind Hijiyama mountain at Hiroshima and Konpirasan mountain at Nagasaki has also been recognized, and a solution to this problem has been included in DS02. (author)

  17. Dynamics of vehicle-road coupled system

    CERN Document Server

    Yang, Shaopu; Li, Shaohua

    2015-01-01

    Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...

  18. Vehicle Test Facilities at Aberdeen Proving Ground

    Science.gov (United States)

    1981-07-06

    warehouse and rough terrain forklifts. Two 5-ton-capacity manual chain hoists at the rear of the table regulate its slope from 0 to 40 percent. The overall...Capacity at 24-Inch Load Center. 5. TOP/ HTP 2-2-608, Braking, Wheeled Vehicles, 15 Jav.&ry 1971. 6. TOP 2-2-603, Vehicle Fuel Consumption, 1 November 1977. A-1 r -. ’,’

  19. ATHLETE: Trading Complexity for Mass in Roving Vehicles

    Science.gov (United States)

    Wilcox, Brian H.

    2013-01-01

    This paper describes a scaling analysis of ATHLETE for exploration of the moon, Mars and Near-Earth Asteroids (NEAs) in comparison to a more conventional vehicle configuration. Recently, the focus of human exploration beyond LEO has been on NEAs. A low gravity testbed has been constructed in the ATHLETE lab, with six computer-controlled winches able to lift ATHLETE and payloads so as to simulate the motion of the system in the vicinity of a NEA or to simulate ATHLETE on extreme terrain in lunar or Mars gravity. Test results from this system are described.

  20. Emergency vehicle traffic signal preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  1. ISOSTATICALLY DISTURBED TERRAIN OF NORTHWESTERN ANDES MOUNTAINS FROM SPECTRALLY CORRELATED FREE-AIR AND GRAVITY TERRAIN DATA

    Directory of Open Access Journals (Sweden)

    Hernández P Orlando

    2006-12-01

    Full Text Available Recently revised models on global tectonics describe the convergence of the North Andes, Nazca, Caribbean and South American Plates and their seismicity, volcanism, active faulting and extreme
    topography. The current plate boundaries of the area are mainly interpreted from volcanic and seismic datasets with variable confidence levels. New insights on the isostatic state and plate boundaries of
    the northwestern Andes Mountains can be obtained from the spectral analysis of recently available gravity and topography data.
    Isostatically disturbed terrain produces free-air anomalies that are highly correlated with the gravity effects of the terrain. The terrain gravity effects (TGE and free air gravity anomalies (FAGA of the
    Andes mountains spectral correlation data confirms that these mountains are isostatically disturbed. Strong negative terrain-correlated FAGA along western South America and the Greater and Lesser Antilles are consistent with anomalously deepened mantle displaced by subducting oceanic plates.

    Inversion of the compensated terrain gravity effects (CTGE reveals plate subduction systems with alternating shallower and steeper subduction angles. The gravity modeling highlights crustal
    deformation from plate collision and subduction and other constraints on the tectonism of the plate boundary zones for the region.

  2. Vehicle systems and payload requirements evaluation. [computer programs for identifying launch vehicle system requirements

    Science.gov (United States)

    Rea, F. G.; Pittenger, J. L.; Conlon, R. J.; Allen, J. D.

    1975-01-01

    Techniques developed for identifying launch vehicle system requirements for NASA automated space missions are discussed. Emphasis is placed on development of computer programs and investigation of astrionics for OSS missions and Scout. The Earth Orbit Mission Program - 1 which performs linear error analysis of launch vehicle dispersions for both vehicle and navigation system factors is described along with the Interactive Graphic Orbit Selection program which allows the user to select orbits which satisfy mission requirements and to evaluate the necessary injection accuracy.

  3. Pediatric anthropometrics are inconsistent with current guidelines for assessing rider fit on all-terrain vehicles.

    Science.gov (United States)

    Bernard, Andrew C; Mullineaux, David R; Auxier, James T; Forman, Jennifer L; Shapiro, Robert; Pienkowski, David

    2010-07-01

    This study sought to establish objective anthropometric measures of fit or misfit for young riders on adult and youth-sized all-terrain vehicles and use these metrics to test the unproved historical reasoning that age alone is a sufficient measure of rider-ATV fit. Male children (6-11 years, n=8; and 12-15 years, n=11) were selected by convenience sampling. Rider-ATV fit was quantified by five measures adapted from published recommendations: (1) standing-seat clearance, (2) hand size, (3) foot vs. foot-brake position, (4) elbow angle, and (5) handlebar-to-knee distance. Youths aged 12-15 years fit the adult-sized ATV better than the ATV Safety Institute recommended age-appropriate youth model (63% of subjects fit all 5 measures on adult-sized ATV vs. 20% on youth-sized ATV). Youths aged 6-11 years fit poorly on ATVs of both sizes (0% fit all 5 parameters on the adult-sized ATV vs 12% on the youth-sized ATV). The ATV Safety Institute recommends rider-ATV fit according to age and engine displacement, but no objective data linking age or anthropometrics with ATV engine or frame size has been previously published. Age alone is a poor predictor of rider-ATV fit; the five metrics used offer an improvement compared to current recommendations. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Lane-Level Vehicle Trajectory Reckoning for Cooperative Vehicle-Infrastructure System

    Directory of Open Access Journals (Sweden)

    Yinsong Wang

    2012-01-01

    Full Text Available This paper presents a lane-level positioning method by trajectory reckoning without Global Positioning System (GPS equipment in the environment of Cooperative Vehicle-Infrastructure System (CVIS. Firstly, the accuracy requirements of vehicle position in CVIS applications and the applicability of GPS positioning methods were analyzed. Then, a trajectory reckoning method based on speed and steering data from vehicle’s Control Area Network (CAN and roadside calibration facilities was proposed, which consists of three critical models, including real-time estimation of steering angle and vehicle direction, vehicle movement reckoning, and wireless calibration. Finally, the proposed method was validated through simulation and field tests under a variety of traffic conditions. Results show that the accuracy of the reckoned vehicle position can reach the lane level and match the requirements of common CVIS applications.

  5. Comparison of Different Measurement Techniques and a CFD Simulation in Complex Terrain

    International Nuclear Information System (INIS)

    Schulz, Christoph; Lutz, Thorsten; Hofsäß, Martin; Anger, Jan; Wen Cheng, Po; Rautenberg, Alexander; Bange, Jens

    2016-01-01

    This paper deals with a comparison of data collected by measurements and a simulation for a complex terrain test site in southern Germany. Lidar, met mast, unmanned aerial vehicle (UAV) measurements of wind speed and direction and Computational Fluid Dynamics (CFD) data are compared to each other. The site is characterised regarding its flow features and the suitability for a wind turbine test field. A Delayed-Detached-Eddy- Simulation (DES) was employed using measurement data to generate generic turbulent inflow. A good agreement of the wind profiles between the different approaches was reached. The terrain slope leads to a speed-up, a change of turbulence intensity as well as to flow angle variations. (paper)

  6. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  7. All-terrain vehicle fatalities on paved roads, unpaved roads, and off-road: Evidence for informed roadway safety warnings and legislation.

    Science.gov (United States)

    Denning, Gerene M; Jennissen, Charles A

    2016-05-18

    All-terrain vehicles (ATVs) are designed for off-highway use only, and many of their features create increased risk with roadway travel. Over half of all ATV-related fatalities occur on roadways, and nonfatal roadway crashes result in more serious injuries than those off the road. A number of jurisdictions have passed or have considered legislation allowing ATVs on public roadways, sometimes limiting them to those unpaved, arguing that they are safe for ATVs. However, no studies have determined the epidemiology of ATV-related fatalities on different road surface types. The objective of the study was to compare ATV-related deaths on paved versus unpaved roads and to contrast them with off-road fatalities. Retrospective descriptive and multivariable analyses were performed using U.S. Consumer Product Safety Commission fatality data from 1982 through 2012. After 1998, ATV-related deaths increased at twice the rate on paved versus unpaved roads. Still, 42% of all roadway deaths during the study period occurred on unpaved surfaces. States varied considerably, ranging from 18% to 79% of their ATV-related roadway deaths occurring on unpaved roads. Paved road crashes were more likely than those on unpaved surfaces to involve males, adolescents and younger adults, passengers, and collisions with other vehicles. Both the pattern of other vehicles involved in collisions and which vehicle hit the other were different for the 2 road types. Alcohol use was higher, helmet use was lower, and head injuries were more likely in paved versus unpaved roadway crashes. However, head injuries still occurred in 76% of fatalities on unpaved roads. Helmets were associated with lower proportions of head injuries among riders, regardless of road surface type. Relative to off-road crashes, both paved and unpaved roads were more likely to involve collisions with another vehicle. The vast majority of roadway crashes, however, did not involve a traffic collision on either paved or unpaved roads

  8. Introducing Dual Suspension System in Road Vehicles

    OpenAIRE

    Imtiaz Hussain; Jawaid Daudpoto; Ali Asghar Memon

    2013-01-01

    The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability...

  9. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Science.gov (United States)

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  10. Making the message meaningful: a qualitative assessment of media promoting all-terrain vehicle safety.

    Science.gov (United States)

    Brann, Maria; Mullins, Samantha Hope; Miller, Beverly K; Eoff, Shane; Graham, James; Aitken, Mary E

    2012-08-01

    Millions of all-terrain vehicles (ATV) are used around the world for recreation by both adults and youth. This increase in use has led to a substantial increase in the number of injuries and fatalities each year. Effective strategies for reducing this incidence are clearly needed; however, minimal research exists regarding effective educational interventions. This study was designed to assess rural ATV riders' preferences for and assessment of safety messages. 13 focus group discussions with youth and adult ATV riders were conducted. 88 formative research participants provided feedback on existing ATV safety materials, which was used to develop more useful ATV safety messages. 60 evaluative focus group participants critiqued the materials developed for this project. Existing ATV safety materials have limited effectiveness, in part because they may not address the content or design needs of the target population. ATV riders want educational and action-oriented safety messages that inform youth and adult riders about their responsibilities to learn, educate and implement safety behaviours (eg, appropriate-sized ATV, safety gear, solo riding, speed limits, riding locations). In addition, messages should be clear, realistic, visually appealing and easily accessible. Newly designed ATV safety materials using the acronym TRIPSS (training, ride off-road, impairment, plan ahead, safety gear, single rider) meet ATV riders' safety messaging needs. To reach a target population, it is crucial to include them in the development and assessment of safety messages. Germane to this particular study, ATV riders provided essential information for creating useful ATV safety materials.

  11. Coupling vibration research on Vehicle-bridge system

    Science.gov (United States)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  12. A Critical Review of the State-of-the-Art in Autonomous Land Vehicle Systems and Technology; TOPICAL

    International Nuclear Information System (INIS)

    DURRNAT-WHYTE, HUGH

    2001-01-01

    This report describes the current state-of-the-art in Autonomous Land Vehicle (ALV) systems and technology. Five functional technology areas are identified and addressed. For each a brief, subjective, preface is first provided which envisions the necessary technology for the deployment of an operational ALV system. Subsequently, a detailed literature review is provided to support and elaborate these views. It is further established how these five technology areas fit together as a functioning whole. The essential conclusion of this report is that the necessary sensors, algorithms and methods to develop and demonstrate an operationally viable all-terrain ALV already exist and could be readily deployed. A second conclusion is that the successful development of an operational ALV system will rely on an effective approach to systems engineering. In particular, a precise description of mission requirements and a clear definition of component functionality is essential

  13. VHF/UHF imagery and RCS measurements of ground targets in forested terrain

    Science.gov (United States)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Waldman, Jerry; Nixon, William E.

    2002-08-01

    The monostatic VV and HH-polarized radar signatures of several targets and trees have been measured at foliage penetration frequencies (VHF/UHF) by using 1/35th scale models and an indoor radar range operating at X-band. An array of high-fidelity scale model ground vehicles and test objects as well as scaled ground terrain and trees have been fabricated for the study. Radar measurement accuracy has been confirmed by comparing the signature of a test object with a method of moments radar cross section prediction code. In addition to acquiring signatures of targets located on a smooth, dielectric ground plane, data have also been acquired with targets located in simulated wooded terrain that included scaled tree trunks and tree branches. In order to assure the correct backscattering behavior, all dielectric properties of live tree wood and moist soil were scaled properly to match the complex dielectric constant of the full-scale materials. The impact of the surrounding tree clutter on the VHF/UHF radar signatures of ground vehicles was accessed. Data were processed into high-resolution, polar-formatted ISAR imagery and signature comparisons are made between targets in open-field and forested scenarios.

  14. 32 CFR 635.27 - Vehicle Registration System.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Vehicle Registration System. 635.27 Section 635.27 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Offense Reporting § 635.27 Vehicle Registration System. The Vehicle Registration System (VR...

  15. Introducing Dual Suspension System in Road Vehicles

    Directory of Open Access Journals (Sweden)

    Imtiaz Hussain

    2013-04-01

    Full Text Available The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability. The paper proposes the use of primary and secondary suspension to suppress the vibrations more effectively.

  16. DIGITAL TERRAIN MODELS FROM MOBILE LASER SCANNING DATA IN MORAVIAN KARST

    Directory of Open Access Journals (Sweden)

    N. Tyagur

    2016-06-01

    Full Text Available During the last ten years, mobile laser scanning (MLS systems have become a very popular and efficient technology for capturing reality in 3D. A 3D laser scanner mounted on the top of a moving vehicle (e.g. car allows the high precision capturing of the environment in a fast way. Mostly this technology is used in cities for capturing roads and buildings facades to create 3D city models. In our work, we used an MLS system in Moravian Karst, which is a protected nature reserve in the Eastern Part of the Czech Republic, with a steep rocky terrain covered by forests. For the 3D data collection, the Riegl VMX 450, mounted on a car, was used with integrated IMU/GNSS equipment, which provides low noise, rich and very dense 3D point clouds. The aim of this work is to create a digital terrain model (DTM from several MLS data sets acquired in the neighbourhood of a road. The total length of two covered areas is 3.9 and 6.1 km respectively, with an average width of 100 m. For the DTM generation, a fully automatic, robust, hierarchic approach was applied. The derivation of the DTM is based on combinations of hierarchical interpolation and robust filtering for different resolution levels. For the generation of the final DTMs, different interpolation algorithms are applied to the classified terrain points. The used parameters were determined by explorative analysis. All MLS data sets were processed with one parameter set. As a result, a high precise DTM was derived with high spatial resolution of 0.25 x 0.25 m. The quality of the DTMs was checked by geodetic measurements and visual comparison with raw point clouds. The high quality of the derived DTM can be used for analysing terrain changes and morphological structures. Finally, the derived DTM was compared with the DTM of the Czech Republic (DMR 4G with a resolution of 5 x 5 m, which was created from airborne laser scanning data. The vertical accuracy of the derived DTMs is around 0.10 m.

  17. Logistic Vehicle System Replacement Cost Estimate

    National Research Council Canada - National Science Library

    Stinson, Margaret

    1998-01-01

    The Logistics Vehicle System (LVS) was originally fielded from 1985-1989. Most of the LVS fleet will reach end-of-service life in 2005, therefore the goal of the Logistics Vehicle System Replacement (LVSR...

  18. The Bekker Model Analysis for Small Robotic Vehicles

    National Research Council Canada - National Science Library

    Gerhart, Grant R

    2004-01-01

    .... This formalism consists of two fundamental equations. The first uses the Coulomb-Mohr law and a linear, one degree of freedom spring/mass/damper model to predict terrain shear rates from maximum vehicle tractive effort...

  19. Vehicle systems: coupled and interactive dynamics analysis

    Science.gov (United States)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  20. FY2015 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-31

    The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  1. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    Science.gov (United States)

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  2. Vehicle recovery and towing guideline

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    This guideline was developed to provide light and medium duty vehicles operators in the oil and gas industry with a set of best practices for avoiding injury and damage during the recovery of stuck vehicles. The aim of the guideline was to increase awareness of safety issues and promote the safe usage of the vehicles by personnel throughout the petroleum industry and to establish minimum standards of practice for vehicle recovery. The guideline included a step-by-step guide for pulling out a vehicle with a recovery strap as well as vehicle-mounted winch procedures. Pre-job checklists for both procedures were provided. Issues related to the strength rating of vehicle tow hooks and hitch receivers were discussed, as well as some of the hazards associated with steep terrains and heavy mud. The guideline also included recommendations for a vehicle recovery kit with instructions on vehicle recovery, a recovery strap, a recovery hitch and shackle, a collapsible shovel, traffic cones and reflector flares, and a heavy blanket and gloves. 7 refs., 2 tabs., 13 figs.

  3. The Bekker Model Analysis for Small Robotic Vehicles

    National Research Council Canada - National Science Library

    Gerhart, Grant R

    2004-01-01

    .... This formalism consists or two fundamental equations. The ii ret uses the Coulomb-Mohr law and a linear, one degree or freedom spring/mass/damper model to predict terrain shear rates from maximum vehicle tractive effort...

  4. Stratigraphy of the layered terrain in Valles Marineris, Mars

    Science.gov (United States)

    Komatsu, G.; Strom, Roger G.

    1991-01-01

    The layered terrain in Valles Marineris provides information about its origin and the geologic history of this canyon system. Whether the terrain is sedimentary material deposited in a dry or lacustrine environment, or volcanic material related to the tectonics of the canyon is still controversial. However, recent studies of Gangis Layered Terrain suggests a cyclic sequence of deposition and erosion under episodic lacustrine conditions. The stratigraphic studies are extended to four other occurrences of layered terrains in Valles Marineris in an attempt to correlate and distinguish between depositional environments. The Juvantae Chasma, Hebes Chasma, Ophir and Candor Chasmata, Melas Chasma, and Gangis Layered Terrain were examined. Although there are broad similarities among the layered terrains, no two deposits are exactly alike. This suggests that there was no synchronized regional depositional processes to form all the layered deposits. However, the similar erosional style of the lower massive weakly bedded unit in Hebes, Gangis, and Ophir-Candor suggests it may have been deposited under similar circumstances.

  5. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  6. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  7. DESIGN OF A REAL TIME REMOTE VEHICLE LOCATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ahmet Emir DİRİK

    2004-02-01

    Full Text Available In this study, a low-cost, real-time vehicle location system is developed. The vehicle location system includes three main modules, i.e. positioning, wireless communication and digital map modules. The positioning module used in location systems computes position of the mobile vehicle. These vehicle location data are transmitted through a wireless communication system to host. The host has a capability to monitor a fleet of vehicles by analyzing data collected from wireless communication system. In this project, mobile vehicle location positions can be computed in a range of 10m position error and by using these position data, its possible to monitor the fleet of mobile vehicles on a digital map in the observation and control center. In this study, vehicle analog mobile radios are used to establish wireless communication system. Thus, there is no need to use satellite or GSM systems for communication and a low-cost and high-performance vehicle location system is realized.

  8. Control of Multiple Robotic Sentry Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  9. Vehicle/Guideway Interaction in Maglev Systems

    Science.gov (United States)

    1992-03-01

    Technology Division Materials and Components in Maglev Systems Technology Division Materials and Components Technology Division byY. Cai, S. S. Chen, and D. M...Transportation Systems Reports (UC-330, Vehicle/Guideway Interaction in Maglev Systems by Y. Cai and S. S. Chen Materials and Components Technology Division D. M...Surface Irregularities ...................................... 32 4 Vehicle/Guideway Interaction in Transrapid Maglev System .................. 34 4.1

  10. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  11. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  12. Smart mobile in-vehicle systems next generation advancements

    CERN Document Server

    Abut, Huseyin; Takeda, Kazuya; Hansen, John

    2014-01-01

    This is an edited collection by world-class experts, from diverse fields, focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. The book presents developments on road safety, in-vehicle technologies and state-of-the art systems. Includes coverage of DSP technologies in adaptive automobiles, algorithms and evaluation of in-car communication systems, driver-status monitoring and stress detection, in-vehicle dialogue systems and human-machine interfaces, challenges in video and audio processing for in-vehicle products, multi-sensor fusion for driver identification and vehicle to infrastructure wireless technologies.

  13. An Efficient Method to Create Digital Terrain Models from Point Clouds Collected by Mobile LiDAR Systems

    Science.gov (United States)

    Gézero, L.; Antunes, C.

    2017-05-01

    The digital terrain models (DTM) assume an essential role in all types of road maintenance, water supply and sanitation projects. The demand of such information is more significant in developing countries, where the lack of infrastructures is higher. In recent years, the use of Mobile LiDAR Systems (MLS) proved to be a very efficient technique in the acquisition of precise and dense point clouds. These point clouds can be a solution to obtain the data for the production of DTM in remote areas, due mainly to the safety, precision, speed of acquisition and the detail of the information gathered. However, the point clouds filtering and algorithms to separate "terrain points" from "no terrain points", quickly and consistently, remain a challenge that has caught the interest of researchers. This work presents a method to create the DTM from point clouds collected by MLS. The method is based in two interactive steps. The first step of the process allows reducing the cloud point to a set of points that represent the terrain's shape, being the distance between points inversely proportional to the terrain variation. The second step is based on the Delaunay triangulation of the points resulting from the first step. The achieved results encourage a wider use of this technology as a solution for large scale DTM production in remote areas.

  14. Information measures for terrain visualization

    Science.gov (United States)

    Bonaventura, Xavier; Sima, Aleksandra A.; Feixas, Miquel; Buckley, Simon J.; Sbert, Mateu; Howell, John A.

    2017-02-01

    Many quantitative and qualitative studies in geoscience research are based on digital elevation models (DEMs) and 3D surfaces to aid understanding of natural and anthropogenically-influenced topography. As well as their quantitative uses, the visual representation of DEMs can add valuable information for identifying and interpreting topographic features. However, choice of viewpoints and rendering styles may not always be intuitive, especially when terrain data are augmented with digital image texture. In this paper, an information-theoretic framework for object understanding is applied to terrain visualization and terrain view selection. From a visibility channel between a set of viewpoints and the component polygons of a 3D terrain model, we obtain three polygonal information measures. These measures are used to visualize the information associated with each polygon of the terrain model. In order to enhance the perception of the terrain's shape, we explore the effect of combining the calculated information measures with the supplementary digital image texture. From polygonal information, we also introduce a method to select a set of representative views of the terrain model. Finally, we evaluate the behaviour of the proposed techniques using example datasets. A publicly available framework for both the visualization and the view selection of a terrain has been created in order to provide the possibility to analyse any terrain model.

  15. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Science.gov (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  16. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  17. Design and Implementation of an Emergency Vehicle Signal Preemption System Based on Cooperative Vehicle-Infrastructure Technology

    OpenAIRE

    Yinsong Wang; Zhizhou Wu; Xiaoguang Yang; Luoyi Huang

    2013-01-01

    Emergency vehicle is an important part of traffic flow. The efficiency, reliability, and safety of emergency vehicle operations dropped due to increasing traffic congestion. With the advancement of the wireless communication technologies and the development of the vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) systems, called Cooperative Vehicle-Infrastructure System (CVIS), there is an opportunity to provide appropriate traffic signal preemption for emergency vehicle based on r...

  18. Evaluating terrain based criteria for snow avalanche exposure ratings using GIS

    Science.gov (United States)

    Delparte, Donna; Jamieson, Bruce; Waters, Nigel

    2010-05-01

    Snow avalanche terrain in backcountry regions of Canada is increasingly being assessed based upon the Avalanche Terrain Exposure Scale (ATES). ATES is a terrain based classification introduced in 2004 by Parks Canada to identify "simple", "challenging" and "complex" backcountry areas. The ATES rating system has been applied to well over 200 backcountry routes, has been used in guidebooks, trailhead signs and maps and is part of the trip planning component of the AVALUATOR™, a simple decision-support tool for backcountry users. Geographic Information Systems (GIS) offers a means to model and visualize terrain based criteria through the use of digital elevation model (DEM) and land cover data. Primary topographic variables such as slope, aspect and curvature are easily derived from a DEM and are compatible with the equivalent evaluation criteria in ATES. Other components of the ATES classification are difficult to extract from a DEM as they are not strictly terrain based. An overview is provided of the terrain variables that can be generated from DEM and land cover data; criteria from ATES which are not clearly terrain based are identified for further study or revision. The second component of this investigation was the development of an algorithm for inputting suitable ATES criteria into a GIS, thereby mimicking the process avalanche experts use when applying the ATES classification to snow avalanche terrain. GIS based classifications were compared to existing expert assessments for validity. The advantage of automating the ATES classification process through GIS is to assist avalanche experts with categorizing and mapping remote backcountry terrain.

  19. Vehicle Systems Analysis Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Vehicle Systems Analysis Technical Team (VSATT) is to evaluate the performance and interactions of proposed advanced automotive powertrain components and subsystems, in a vehicle systems context, to inform ongoing research and development activities and maximize the potential for fuel efficiency improvements and emission reduction.

  20. On characterizing terrain visibility graphs

    Directory of Open Access Journals (Sweden)

    William Evans

    2015-06-01

    Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.

  1. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  2. Cooperative Path-Planning for Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Qichen Wang

    2014-11-01

    Full Text Available In this paper, we propose a collision avoidance algorithm for multi-vehicle systems, which is a common problem in many areas, including navigation and robotics. In dynamic environments, vehicles may become involved in potential collisions with each other, particularly when the vehicle density is high and the direction of travel is unrestricted. Cooperatively planning vehicle movement can effectively reduce and fairly distribute the detour inconvenience before subsequently returning vehicles to their intended paths. We present a novel method of cooperative path planning for multi-vehicle systems based on reinforcement learning to address this problem as a decision process. A dynamic system is described as a multi-dimensional space formed by vectors as states to represent all participating vehicles’ position and orientation, whilst considering the kinematic constraints of the vehicles. Actions are defined for the system to transit from one state to another. In order to select appropriate actions whilst satisfying the constraints of path smoothness, constant speed and complying with a minimum distance between vehicles, an approximate value function is iteratively developed to indicate the desirability of every state-action pair from the continuous state space and action space. The proposed scheme comprises two phases. The convergence of the value function takes place in the former learning phase, and it is then used as a path planning guideline in the subsequent action phase. This paper summarizes the concept and methodologies used to implement this online cooperative collision avoidance algorithm and presents results and analysis regarding how this cooperative scheme improves upon two baseline schemes where vehicles make movement decisions independently.

  3. Light armoured reconnaissance vehicle system S-LOV-CBRN

    International Nuclear Information System (INIS)

    Tomek, M.; Kare, J.; Cuda, P.; Fisera, O.; Res, B

    2014-01-01

    Light armoured reconnaissance vehicle system S-LOV-CBRN is intended mainly for CBRN reconnaissance and CBRN monitoring of areas of interest. The vehicle is designed to fulfil the missions according to military CBRN scenarios and to support effectively the first responders' teams during their response to the extent CBRN incident.The vehicle is equipped with a chemical (C) and a biological (B) detection system, as well as with a radiation and nuclear (RN) detection system consisting of the control unit with an internal dosimetric probe and of two external ones which are mounted on the right and left side of the vehicle. In this abstract the vehicle system S-LOV-CBRN is shortly described. (authors)

  4. NET in-vessel vehicle system

    International Nuclear Information System (INIS)

    Jones, H.

    1991-02-01

    The CFFTP/Spar In-vessel Vehicle System concept for in-vessel remote maintenance of the NET/ITER machine is described. It comprises a curved deployable boom, a vehicle which can travel on the boom and an end effector or work unit mounted on the vehicle. The stowed boom, vehicle, and work unit are inserted via the equatorial access port of the torus. Following insertion the boom is deployed and locked in place. The vehicle may then travel along the boom to transport the work unit to any desired location. A novel feature of the concept is the deployable boom. When fully deployed, it closely resembles a conventional curved truss structure in configuration and characteristics. However, the joints of the truss structure are hinged so that it can fold into a compact package, of less than 20% of deployed volume for storage, transportation and insertion into the torus. A full-scale 2-metre long section of this boom was produced for demonstration purposes. As part of the concept definition the work unit for divertor handling was studied to demonstrate that large payloads could be manipulated within the confines of the torus using the in-vessel vehicle system. Principal advantages of the IVVS are its high load capacity and rigidity, low weight and stowed volume, simplicity of control and operation, and its relatively high speed of transportation

  5. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  6. Development of the heavy manipulator vehicle system

    International Nuclear Information System (INIS)

    Herbst, C.; Paustian, P.; Kruger, W.

    1993-01-01

    After the severe reactor accident of Tschernobyl in 1986 MaK System started to develop a Heavy Manipulator Vehicle System under contract from German nuclear technology assistance company ''KHG'' (Kerntechnische Hilfsdienst GmbH). The system comprises a remote controlled manipulator vehicle, a mobile mission control stand as well as a transport/service unit. In order to fulfill the high demands of this complex system a couple of new developments had to be started. The paper describes some of these developments and gives an overview about the main features of the Heavy Manipulator Vehicle System (HMV). (author)

  7. Vehicle brake testing system

    Science.gov (United States)

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  8. Study on turning performance of four-track steering vehicles. Effect of traction force and track speed distribution control; Sodashiki sokisha no senkai seino ni kansuru kenkyu. Kudoryoku haibun to sokudo haibun no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, M; Watanabe, K; Kitano, M [National Defense Academy, Kanagawa (Japan)

    1997-10-01

    The four-track steering vehicles (4TS) is a new type of off-road vehicle which can replace four wheels with track units to improve the mobility on soft terrains. In this paper, the numerical simulations, under the various types of differential and track velocity control systems, are conducted to predict the turning performance and steer ability of the 4TS vehicles. The results of the numerical analysis demonstrate that the differential systems with realistic combined distribution control systems of the track speed is efficient at a small turning radius. 4 refs., 13 figs.

  9. 3D Finite Element Analysis of PWA-Oil Sand Terrain System Interaction

    Directory of Open Access Journals (Sweden)

    Y. Li

    2012-01-01

    Full Text Available A simulator for analyzing the interaction between the oil sand terrain and a pipe wagon articulating (PWA system has been developed in this paper. An elastic-plastic oil sand model was built based on the finite element analysis (FEA method and von Mises yield criterion using the Algor mechanical event simulation (MES software. The three-dimensional (3D distribution of the stress, strain, nodal displacement, and deformed shape of the oil sands was animated at an environmental temperature of 25°C. The 3D behavior of the oil sand terrain was investigated with different loading conditions. The effect of the load and contact area on the stress and nodal displacement was analyzed, respectively. The results indicate that both the max stress and max nodal displacement increase with the load varying from 0 to 3.6+7 N and decrease with the contact area varying from 2 to 10 m2. The method presented in this paper forms the basis for evaluating the bearing capacity of oil sand ground.

  10. Digital Signal Processing for In-Vehicle Systems and Safety

    CERN Document Server

    Boyraz, Pinar; Takeda, Kazuya; Abut, Hüseyin

    2012-01-01

    Compiled from papers of the 4th Biennial Workshop on DSP (Digital Signal Processing) for In-Vehicle Systems and Safety this edited collection features world-class experts from diverse fields focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. Digital Signal Processing for In-Vehicle Systems and Safety presents new approaches on how to reduce driver inattention and prevent road accidents. The material addresses DSP technologies in adaptive automobiles, in-vehicle dialogue systems, human machine interfaces, video and audio processing, and in-vehicle speech systems. The volume also features: Recent advances in Smart-Car technology – vehicles that take into account and conform to the driver Driver-vehicle interfaces that take into account the driving task and cognitive load of the driver Best practices for In-Vehicle Corpus Development and distribution Information on multi-sensor analysis and fusion techniques for robust driver monitoring and driver recognition ...

  11. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  12. Safety problems in vehicles with adaptive cruise control system

    Directory of Open Access Journals (Sweden)

    Yadav Arun K.

    2017-06-01

    Full Text Available In today’s world automotive industries are still putting efforts towards more autonomous vehicles (AVs. The main concern of introducing the autonomous technology is safety of driver. According to a survey 90% of accidents happen due to mistake of driver. The adaptive cruise control system (ACC is a system which combines cruise control with a collision avoidance system. The ACC system is based on laser and radar technologies. This system is capable of controlling the velocity of vehicle automatically to match the velocity of car, bus or truck in front of vehicle. If the lead vehicle gets slow down or accelerate, than ACC system automatically matches that velocity. The proposed paper is focusing on more accurate methods of detecting the preceding vehicle by using a radar and lidar sensors by considering the vehicle side slip and by controlling the distance between two vehicles. By using this approach i.e. logic for calculation of former vehicle distance and controlling the throttle valve of ACC equipped vehicle, an improvement in driving stability was achieved. The own contribution results with fuel efficient driving and with more safer and reliable driving system, but still some improvements are going on to make it more safe and reliable.

  13. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  14. Virtual terrain: a security-based representation of a computer network

    Science.gov (United States)

    Holsopple, Jared; Yang, Shanchieh; Argauer, Brian

    2008-03-01

    Much research has been put forth towards detection, correlating, and prediction of cyber attacks in recent years. As this set of research progresses, there is an increasing need for contextual information of a computer network to provide an accurate situational assessment. Typical approaches adopt contextual information as needed; yet such ad hoc effort may lead to unnecessary or even conflicting features. The concept of virtual terrain is, therefore, developed and investigated in this work. Virtual terrain is a common representation of crucial information about network vulnerabilities, accessibilities, and criticalities. A virtual terrain model encompasses operating systems, firewall rules, running services, missions, user accounts, and network connectivity. It is defined as connected graphs with arc attributes defining dynamic relationships among vertices modeling network entities, such as services, users, and machines. The virtual terrain representation is designed to allow feasible development and maintenance of the model, as well as efficacy in terms of the use of the model. This paper will describe the considerations in developing the virtual terrain schema, exemplary virtual terrain models, and algorithms utilizing the virtual terrain model for situation and threat assessment.

  15. Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing Simulation Capability

    Science.gov (United States)

    Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco

    2012-01-01

    This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

  16. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  17. 36 CFR 1192.173 - Automated guideway transit vehicles and systems.

    Science.gov (United States)

    2010-07-01

    .... Vertical alignment may be accomplished by vehicle air suspension or other suitable means of meeting the... vehicles and systems. 1192.173 Section 1192.173 Parks, Forests, and Public Property ARCHITECTURAL AND... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.173 Automated guideway transit vehicles and systems. (a...

  18. Reliability analysis of high-speed tracked vehicles in the polish army

    Directory of Open Access Journals (Sweden)

    Kończak Jarosław

    2017-06-01

    Full Text Available The Polish Armed Forces use tracked vehicles that serve as a core element of the ground combat forces. These vehicles are capable of fighting in all kinds of terrain conditions, in any season of the year. Combat missions are often fought in areas where even no dirt roads are available. The present paper assesses the reliability of tracked vehicles in the context of their irregular operation, as well as service- and maintenance-related vulnerability.

  19. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  20. Enhancing fuzzy robot navigation systems by mimicking human visual perception of natural terrain traversibility

    Science.gov (United States)

    Tunstel, E.; Howard, A.; Edwards, D.; Carlson, A.

    2001-01-01

    This paper presents a technique for learning to assess terrain traversability for outdoor mobile robot navigation using human-embedded logic and real-time perception of terrain features extracted from image data.

  1. Tasking and control of a squad of robotic vehicles

    Science.gov (United States)

    Lewis, Christopher L.; Feddema, John T.; Klarer, Paul

    2001-09-01

    Sandia National Laboratories have developed a squad of robotic vehicles as a test-bed for investigating cooperative control strategies. The squad consists of eight RATLER vehicles and a command station. The RATLERs are medium-sized all-electric vehicles containing a PC104 stack for computation, control, and sensing. Three separate RF channels are used for communications; one for video, one for command and control, and one for differential GPS corrections. Using DGPS and IR proximity sensors, the vehicles are capable of autonomously traversing fairly rough terrain. The control station is a PC running Windows NT. A GUI has been developed that allows a single operator to task and monitor all eight vehicles. To date, the following mission capabilities have been demonstrated: 1. Way-Point Navigation, 2. Formation Following, 3. Perimeter Surveillance, 4. Surround and Diversion, and 5. DGPS Leap Frog. This paper describes the system and briefly outlines each mission capability. The DGPS Leap Frog capability is discussed in more detail. This capability is unique in that it demonstrates how cooperation allows the vehicles to accurately navigate beyond the RF communication range. One vehicle stops and uses its corrected GPS position to re-initialize its receiver to become the DGPS correction station for the other vehicles. Error in position accumulates each time a new vehicle takes over the DGPS duties. The accumulation in error is accurately modeled as a random walk phenomenon. This paper demonstrates how useful accuracy can be maintained beyond the vehicle's range.

  2. Enabling Persistent Autonomy for Underwater Gliders with Ocean Model Predictions and Terrain Based Navigation

    Directory of Open Access Journals (Sweden)

    Andrew eStuntz

    2016-04-01

    Full Text Available Effective study of ocean processes requires sampling over the duration of long (weeks to months oscillation patterns. Such sampling requires persistent, autonomous underwater vehicles, that have a similarly long deployment duration. The spatiotemporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. In this paper, we consider the combination of two methods for reducing navigation and localization error; a predictive approach based on ocean model predictions and a prior information approach derived from terrain-based navigation. The motivation for this work is not only for real-time state estimation, but also for accurately reconstructing the actual path that the vehicle traversed to contextualize the gathered data, with respect to the science question at hand. We present an application for the practical use of priors and predictions for large-scale ocean sampling. This combined approach builds upon previous works by the authors, and accurately localizes the traversed path of an underwater glider over long-duration, ocean deployments. The proposed method takes advantage of the reliable, short-term predictions of an ocean model, and the utility of priors used in terrain-based navigation over areas of significant bathymetric relief to bound uncertainty error in dead-reckoning navigation. This method improves upon our previously published works by 1 demonstrating the utility of our terrain-based navigation method with multiple field trials, and 2 presenting a hybrid algorithm that combines both approaches to bound navigational error and uncertainty for long-term deployments of underwater vehicles. We demonstrate the approach by examining data from actual field trials with autonomous underwater gliders, and demonstrate an ability to estimate geographical location of an underwater glider to 2

  3. Probing the Terrain

    DEFF Research Database (Denmark)

    Johannessen, Runa

    2016-01-01

    Whether manifest in built structures or invisible infrastructures, architectures of control in the occupied Palestinian West Bank is structurally defined by endemic uncertainty. Shifting lines and frontiers are recorded on the terrain, creating elastic zones of uncertainty necessitating navigatio...... to the territory through its lines and laws, and how the very structure of the occupation has changed over the years, I seek to make visible the ways in which architectures of uncertainty compensate for the fleeting terrain that HH is probing.......Whether manifest in built structures or invisible infrastructures, architectures of control in the occupied Palestinian West Bank is structurally defined by endemic uncertainty. Shifting lines and frontiers are recorded on the terrain, creating elastic zones of uncertainty necessitating...

  4. Declarative Terrain Modeling for Military Training Games

    Directory of Open Access Journals (Sweden)

    Ruben M. Smelik

    2010-01-01

    Full Text Available Military training instructors increasingly often employ computer games to train soldiers in all sorts of skills and tactics. One of the difficulties instructors face when using games as a training tool is the creation of suitable content, including scenarios, entities, and corresponding terrain models. Terrain plays a key role in many military training games, as for example, in our case game Tactical Air Defense. However, current manual terrain editors are both too complex and too time-consuming to be useful for instructors; automatic terrain generation methods show a lot of potential, but still lack user control and intuitive editing capabilities. We present a novel way for instructors to model terrain for their training games: instead of constructing a terrain model using complex modeling tools, instructors can declare the required properties of their terrain using an advanced sketching interface. Our framework integrates terrain generation methods and manages dependencies between terrain features in order to automatically create a complete 3D terrain model that matches the sketch. With our framework, instructors can easily design a large variety of terrain models that meet their training requirements.

  5. Open tube guideway for high speed air cushioned vehicles

    Science.gov (United States)

    Goering, R. S. (Inventor)

    1974-01-01

    This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.

  6. Vehicle System Management Modeling in UML for Ares I

    Science.gov (United States)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  7. A COOPERATIVE ASSISTANCE SYSTEM BETWEEN VEHICLES FOR ELDERLY DRIVERS

    Directory of Open Access Journals (Sweden)

    Naohisa HASHIMOTO

    2009-01-01

    Full Text Available This paper proposes a new concept of elderly driver assistance systems, which performs the assistance by cooperative driving between two vehicles, and describes some experiments with elderly drivers. The assistance consists of one vehicle driven by an elderly driver called a guest vehicle and the other driven by a assisting driver called a host vehicle, and the host vehicle assists or escorts the guest vehicle through the inter-vehicle communications. The functions of the systems installed on a single-seat electric vehicle are highly evaluated by subjects of elderly drivers in virtual streets on a test track.

  8. Vehicle Remote Health Monitoring and Prognostic Maintenance System

    Directory of Open Access Journals (Sweden)

    Uferah Shafi

    2018-01-01

    Full Text Available In many industries inclusive of automotive vehicle industry, predictive maintenance has become more important. It is hard to diagnose failure in advance in the vehicle industry because of the limited availability of sensors and some of the designing exertions. However with the great development in automotive industry, it looks feasible today to analyze sensor’s data along with machine learning techniques for failure prediction. In this article, an approach is presented for fault prediction of four main subsystems of vehicle, fuel system, ignition system, exhaust system, and cooling system. Sensor is collected when vehicle is on the move, both in faulty condition (when any failure in specific system has occurred and in normal condition. The data is transmitted to the server which analyzes the data. Interesting patterns are learned using four classifiers, Decision Tree, Support Vector Machine, K Nearest Neighbor, and Random Forest. These patterns are later used to detect future failures in other vehicles which show the similar behavior. The approach is produced with the end goal of expanding vehicle up-time and was demonstrated on 70 vehicles of Toyota Corolla type. Accuracy comparison of all classifiers is performed on the basis of Receiver Operating Characteristics (ROC curves.

  9. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  10. Characterization Test Procedures for Intersection Collision Avoidance Systems Based on Vehicle-to-Vehicle Communications

    Science.gov (United States)

    2015-12-01

    Characterization test procedures have been developed to quantify the performance of intersection collision avoidance (ICA) systems based on vehicle-to-vehicle communications. These systems warn the driver of an imminent crossing-path collision at a r...

  11. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  12. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  13. Automated Vehicle Monitoring System

    OpenAIRE

    Wibowo, Agustinus Deddy Arief; Heriansyah, Rudi

    2014-01-01

    An automated vehicle monitoring system is proposed in this paper. The surveillance system is based on image processing techniques such as background subtraction, colour balancing, chain code based shape detection, and blob. The proposed system will detect any human's head as appeared at the side mirrors. The detected head will be tracked and recorded for further action.

  14. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  15. Treinta y Tres stratigraphic terrain: ex Cuchilla Dionisio terrain. Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.

    2010-01-01

    From 1998 we are discussing if the eastern area of ZCSB is an allochtonous block named TCD or if it belongs to Dom Feliciano belt with an age of 500 - 700 Ma. This crustal block is difficult to study because Laguna Merin Graben cut it in two around 4000 k m2 crustal fragments distant s more de 100 km between them. Southern block which was named T PE by Masquelín (2006) was demonstrated as allochtonous by Bossi and Gaucher (2004) destroying the Cdf model but seriously complicating the stratigraphic terminology. It is proposed to do some changes in order to profit the general agreement about allochtomy. The CDT with change by Treinta y Tres terrane; T PE become sub - terrain Punta del Este; sub - terrain Cuchilla Dionisio for the septetrional block. From 1998 we are discussing if the eastern area of ZCSB is an allochtonous block named TCD or if it belongs to Dom Feliciano belt with an age of 500 - 700 Ma. This crustal block is difficult to study because Laguna Merín Graben cut it in two around 4000 k m2 crustal fragments distant s more de 100 km between them. Southern block which was named T PE by Masquelín (2006) was demonstrated as allochtonous by Bossi and Gaucher (2004) destroying the CDF model but seriously complicating the stratigraphic terminology. It is proposed to do some changes in order to profit the general agreement about allochtomy. The CDT with change by Treinta y Tres terrain; TPE become sub - terrain Punta del Este; sub - terrain Cuchilla Dionisio for the septetrional block

  16. Vehicle health management for guidance, navigation and control systems

    Science.gov (United States)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  17. Addressing terrain masking in orbital reconnaissance

    Science.gov (United States)

    Mehta, Sharad; Cico, Luke

    2012-06-01

    During aerial orbital reconnaissance, a sensor system is mounted on an airborne platform for imaging a region on the ground. The latency between the image acquisition and delivery of information to the end-user is critical and must be minimized. Due to fine ground pixel resolution and a large field-of-view for wide-area surveillance applications, a massive volume of data is gathered and imagery products are formed using a real-time multi-processor system. The images are taken at oblique angles, stabilized and ortho-rectified. The line-of-sight of the sensor to the ground is often interrupted by terrain features such as mountains or tall structures as depicted in Figure1. The ortho-rectification process renders the areas hidden from the line-of sight of the sensor with spurious information. This paper discusses an approach for addressing terrain masking in size, weight, and power (SWaP) and memory-restricted onboard processing systems.

  18. Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.S.V. [Oak Ridge National Lab., TN (US); Kareti, S.; Shi, Weimin [Old Dominion Univ., Norfolk, VA (US). Dept. of Computer Science; Iyengar, S.S. [Louisiana State Univ., Baton Rouge, LA (US). Dept. of Computer Science

    1993-07-01

    A formal framework for navigating a robot in a geometric terrain by an unknown set of obstacles is considered. Here the terrain model is not a priori known, but the robot is equipped with a sensor system (vision or touch) employed for the purpose of navigation. The focus is restricted to the non-heuristic algorithms which can be theoretically shown to be correct within a given framework of models for the robot, terrain and sensor system. These formulations, although abstract and simplified compared to real-life scenarios, provide foundations for practical systems by highlighting the underlying critical issues. First, the authors consider the algorithms that are shown to navigate correctly without much consideration given to the performance parameters such as distance traversed, etc. Second, they consider non-heuristic algorithms that guarantee bounds on the distance traversed or the ratio of the distance traversed to the shortest path length (computed if the terrain model is known). Then they consider the navigation of robots with very limited computational capabilities such as finite automata, etc.

  19. A System for Fast Navigation of Autonomous Vehicles

    Science.gov (United States)

    1991-09-01

    AD-A243 523 4, jj A System for Fast Navigation of Autonomous Vehicles Sanjiv Singh, Dai Feng, Paul Keller, Gary Shaffer, Wen Fan Shi, Dong Hun Shin...FUNDING NUMBERS A System for Fast Navigation of Autonomous Vehicles 6. AUTHOR(S) S. Singh, D. Feng, P. Keller, G. Shaffer, W.F. Shi, D.H. Shin, J. West...common in the control of autonomous vehicles to establish the necessary kinematic models but to ignore an explicit representation of the vehicle dynamics

  20. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  1. Fallout radiation protection provided by transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Burson, Z.G.

    1972-10-20

    Fallout radiation protection factors (PF's) were estimated for a variety of civilian transportation vehicles using measurements of the natural terrain radiation as a source. The PF values are below 2 in light vehicles, truck beds, or trailers; from 2.5 to 3 in the cabs of heavy trucks and in a railway guard car; and from 3.0 to 3.5 in the engineer's seat of heavy locomotives. This information can be useful in planning the possible movement of personnel from or through areas contaminated either by a wartime incident or a peacetime accident. The information may also be useful for studying the reduction of exposure to the natural terrestrial radiation environment provided by vehicles.

  2. NPSNET: Dynamic Terrain and Cultured Feature Depiction

    Science.gov (United States)

    1992-09-01

    defaults. bridge(terrain *ptr, vertex pos, bridge mattype bmat ); This constructor takes only the pointer to the underlying terrain, a placement, and a...material to use for construction. bridge(terrain *ptr, vertex pos, bridge-mattype bmat , float dir); This constructor takes a terrain pointer, a...placement position, a material to use, and a direction to run. bridge(terrain *ptr, vertex pos, bridge-mattype bmat , float dir, float width, float height

  3. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  4. FY2016 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    Vehicle Systems is concerned with advancing light-, medium-, and heavy-duty (HD) vehicle systems to support DOE’s goals of developing technologies for the U.S. transportation sector that enhance national energy security,increase U.S. competitiveness in the global economy, and support improvement of U.S. transportation and energy infrastructure.

  5. A stereo vision-based obstacle detection system in vehicles

    Science.gov (United States)

    Huh, Kunsoo; Park, Jaehak; Hwang, Junyeon; Hong, Daegun

    2008-02-01

    Obstacle detection is a crucial issue for driver assistance systems as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision with the front vehicle. The vision-based obstacle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an obstacle detection system using stereo vision sensors is developed. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the obstacles. The proposed system can detect a front obstacle, a leading vehicle and a vehicle cutting into the lane. Then, the position parameters of the obstacles and leading vehicles can be obtained. The proposed obstacle detection system is implemented on a passenger car and its performance is verified experimentally.

  6. A review of dynamic characteristics of magnetically levitated vehicle systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  7. Local-scale stratigraphy of grooved terrain on Ganymede

    Science.gov (United States)

    Murchie, Scott L.; Head, James W.; Helfenstein, Paul; Plescia, Jeffrey B.

    1987-01-01

    The surface of the Jovian satellite, Ganymede, is divided into two main units, dark terrain cut by arcuate and subradial furrows, and light terrain consisting largely of areas with pervasive U-shaped grooves. The grooved terrain may be subdivided on the basis of pervasive morphology of groove domains into four terrain types: (1) elongate bands of parallel grooves (groove lanes); (2) polygonal domains of parallel grooves (grooved polygons); (3) polygonal domains of two orthogonal groove sets (reticulate terrain); and (4) polygons having two to several complexly cross-cutting groove sets (complex grooved terrain). Reticulate terrain is frequently dark and not extensively resurfaced, and grades to a more hummocky terrain type. The other three grooved terrain types have almost universally been resurfaced by light material during their emplacement. The sequence of events during grooved terrain emplacement has been investigated. An attempt is made to integrate observed geologic and tectonic patterns to better constrain the relative ages and styles of emplacement of grooved terrain types. A revised model of grooved terrain emplacement is proposed and is tested using detailed geologic mapping and measurement of crater density.

  8. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  9. Robust Road Condition Detection System Using In-Vehicle Standard Sensors

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2015-12-01

    Full Text Available The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  10. Robust Road Condition Detection System Using In-Vehicle Standard Sensors.

    Science.gov (United States)

    Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique

    2015-12-19

    The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  11. AUTOMATED COMPUTER SYSTEM OF VEHICLE VOICE CONTROL

    Directory of Open Access Journals (Sweden)

    A. Kravchenko

    2009-01-01

    Full Text Available Domestic cars and foreign analogues are considered. Failings are marked related to absence of the auxiliary electronic system which serves for the increase of safety and comfort of vehicle management. Innovative development of the complex system of vocal management which provides reliability, comfort and simplicity of movement in a vehicle is offered.

  12. Vehicle rollover risk and electronic stability control systems.

    Science.gov (United States)

    MacLennan, P A; Marshall, T; Griffin, R; Purcell, M; McGwin, G; Rue, L W

    2008-06-01

    Electronic stability control (ESC) systems were developed to reduce motor vehicle collisions (MVCs) caused by loss of control. Introduced in Europe in 1995 and in the USA in 1996, ESC is designed to improve vehicle lateral stability by electronically detecting and automatically assisting drivers in unfavorable situations. To examine the relationship between vehicle rollover risk and presence of ESC using a large national database of MVCs. A retrospective cohort study for the period 1995 through 2006 was carried out using data obtained from the National Automotive Sampling System General Estimates System. All passenger cars and sport utility vehicles (SUVs)/vans of model year 1996 and later were eligible. Vehicle ESC (unavailable, optional, standard) was determined on the basis of make, model, and model year. Risk ratios (RRs) and 95% CIs were calculated to compare rollover risk by vehicle ESC group. For all crashes, vehicles equipped with standard ESC had decreased risk of rollover (RR = 0.62, 95% CI 0.50 to 0.77) compared with vehicles with ESC unavailable. The association was consistent for single-vehicle MVCs (RR = 0.61, 95% CI 0.46 to 0.82); passenger cars had decreased rollover risk (RR = 0.77, 95% CI 0.52 to 1.12), but SUVs/vans had a more dramatically decreased risk (RR = 0.40, 95% CI 0.26 to 0.61). This study supports previous results showing ESC to be effective in reducing the risk of rollover. ESC is more effective in SUVs/vans for rollovers related to single-vehicle MVCs.

  13. Analysis of terrains suitable for tourism and recreation by using geographic information system (GIS).

    Science.gov (United States)

    Aklıbaşında, Meliha; Bulut, Yahya

    2014-09-01

    The use and utilization areas of geographic information system (GIS) increase every day due to both enabling easiness in storing, updating, grouping, analyzing, correlating, and mapping of data about evaluation factors in planning studies and having quite low error margin depending on the accuracy of data stored. In fact, GIS is also used both in visualization and in various analyses in planning tourism terrains. In this study, the effectiveness of GIS on holistic evaluation of natural and cultural resources in planning tourism terrains was analyzed. Natural and cultural resources in Kayseri Yahyalı were quantified by using ArcGIS 9.3 software from GIS software; data were analyzed and potential tourism and recreation terrains, level of suitability, and rate of coverage were determined. As a result of the analyses, it was determined that 11.847 ha area (6,53%) was quite suitable for such kind of activities, 103.010 ha (56,77%) was suitable, 39.278 ha (21,65%) was less suitable, and 27.314 ha area (15,05%) was not suitable. In the next stage, landscape properties which are suitable for tourism and recreation were evaluated and landscape types were classified in the sense of their tourist attraction. It was determined that the water resources and valley landscapes were the basic sources of the tourism and recreation activities of Yahyalı, and it was determined that the landscape of the forest and mountain was important for variety of the tourism and recreation activities of Yahyalı.

  14. Integrated vehicle-based safety systems light-vehicle field operational test key findings report.

    Science.gov (United States)

    2011-01-01

    "This document presents key findings from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michigan Transportat...

  15. A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty

    Science.gov (United States)

    Kewlani, Gaurav; Crawford, Justin; Iagnemma, Karl

    2012-05-01

    The ability of ground vehicles to quickly and accurately analyse their dynamic response to a given input is critical to their safety and efficient autonomous operation. In field conditions, significant uncertainty is associated with terrain and/or vehicle parameter estimates, and this uncertainty must be considered in the analysis of vehicle motion dynamics. Here, polynomial chaos approaches that explicitly consider parametric uncertainty during modelling of vehicle dynamics are presented. They are shown to be computationally more efficient than the standard Monte Carlo scheme, and experimental results compared with the simulation results performed on ANVEL (a vehicle simulator) indicate that the method can be utilised for efficient and accurate prediction of vehicle motion in realistic scenarios.

  16. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  17. An Assessment Methodology for Emergency Vehicle Traffic Signal Priority Systems

    OpenAIRE

    McHale, Gene Michael

    2002-01-01

    Emergency vehicle traffic signal priority systems allow emergency vehicles such as fire and emergency medical vehicles to request and receive a green traffic signal indication when approaching an intersection. Such systems have been around for a number of years, however, there is little understanding of the costs and benefits of such systems once they are deployed. This research develops an improved method to assess the travel time impacts of emergency vehicle traffic signal priority system...

  18. Local curvature entropy-based 3D terrain representation using a comprehensive Quadtree

    Science.gov (United States)

    Chen, Qiyu; Liu, Gang; Ma, Xiaogang; Mariethoz, Gregoire; He, Zhenwen; Tian, Yiping; Weng, Zhengping

    2018-05-01

    Large scale 3D digital terrain modeling is a crucial part of many real-time applications in geoinformatics. In recent years, the improved speed and precision in spatial data collection make the original terrain data more complex and bigger, which poses challenges for data management, visualization and analysis. In this work, we presented an effective and comprehensive 3D terrain representation based on local curvature entropy and a dynamic Quadtree. The Level-of-detail (LOD) models of significant terrain features were employed to generate hierarchical terrain surfaces. In order to reduce the radical changes of grid density between adjacent LODs, local entropy of terrain curvature was regarded as a measure of subdividing terrain grid cells. Then, an efficient approach was presented to eliminate the cracks among the different LODs by directly updating the Quadtree due to an edge-based structure proposed in this work. Furthermore, we utilized a threshold of local entropy stored in each parent node of this Quadtree to flexibly control the depth of the Quadtree and dynamically schedule large-scale LOD terrain. Several experiments were implemented to test the performance of the proposed method. The results demonstrate that our method can be applied to construct LOD 3D terrain models with good performance in terms of computational cost and the maintenance of terrain features. Our method has already been deployed in a geographic information system (GIS) for practical uses, and it is able to support the real-time dynamic scheduling of large scale terrain models more easily and efficiently.

  19. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  20. 49 CFR 38.173 - Automated guideway transit vehicles and systems.

    Science.gov (United States)

    2010-10-01

    ... accomplished by vehicle air suspension or other suitable means of meeting the requirement. (c) In stations... 49 Transportation 1 2010-10-01 2010-10-01 false Automated guideway transit vehicles and systems... DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 38...

  1. Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration

    Science.gov (United States)

    Ferguson, Scott; Mazzoleni, Andre

    2016-01-01

    Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability.

  2. Integration of Vehicle-to-Grid in Western Danish Power System

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2011-01-01

    capabilities of large power plants in the future, demands for new balancing solutions like Vehicle-to-Grid systems. In this article, aggregated electric vehicle based battery storage representing a Vehicle-to-Grid system is modelled for the use in long term dynamic power system simulations. Further...... Transmission) control areas are significantly minimized by the faster up and down regulation characteristics of the electric vehicle battery storage....

  3. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  4. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  5. Vehicle speed guidance strategy at signalized intersection based on cooperative vehicle infrastructure system

    Directory of Open Access Journals (Sweden)

    Fengyuan JIA

    2017-10-01

    Full Text Available In order to reduce stopping time of vehicle at a signalized intersection, aiming at the difficulty, even the impossibility to obtain real-time queue length of intersection in third and fourth-tier cities in China sometimes, a speed guidance strategy based on cooperative vehicle infrastructure system is put forward and studied. For validating the strategy, the traffic signal timing data of the intersection at Hengshan Road and North Fengming Lake Road in Wuhu is collected by a vehicular traffic signal reminder system which is designed. The simulation experiments using the acquired data are done by software VISSIM. The simulation results demonstrate that the strategy under high and low traffic flow can effectively decrease the link travel-time, reducing average ratio is 9.2 % and 13.0 %, respectively, and the effect under low traffic flow is better than that under high traffic flow. The strategy improves efficiency of traffic at a signalized intersection and provides an idea for the application of vehicle speed guidance based on cooperative vehicle infrastructure system.

  6. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  7. Analysis of terrain map matching using multisensing techniques for applications to autonomous vehicle navigation

    Science.gov (United States)

    Page, Lance; Shen, C. N.

    1991-01-01

    This paper describes skyline-based terrain matching, a new method for locating the vantage point of laser range-finding measurements on a global map previously prepared by satellite or aerial mapping. Skylines can be extracted from the range-finding measurements and modelled from the global map, and are represented in parametric, cylindrical form with azimuth angle as the independent variable. The three translational parameters of the vantage point are determined with a three-dimensional matching of these two sets of skylines.

  8. Obstacle detection system for underground mining vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P.; Polotski, V.; Piotte, M.; Melamed, F. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada)

    1998-01-01

    A device for detecting obstacles by autonomous vehicles navigating in mine drifts is described. The device is based upon structured lighting and the extraction of relevant features from images of obstacles. The system uses image profile changes, ground and wall irregularities, disturbances of the vehicle`s trajectory, and impaired visibility to detect obstacles, rather than explicit three-dimensional scene reconstruction. 7 refs., 5 figs.

  9. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  10. Environmentally friendly traffic management system using integrated road-vehicle system

    NARCIS (Netherlands)

    Mahmod, M.M.; Arem, B. van

    2008-01-01

    Local habitability is coming under increasing pressure from harmful traffic emissions. This emission is strongly correlated to the characteristics and dynamics of traffic: type of vehicle, speed, acceleration and deceleration. This paper investigates the use of integrated road-vehicle systems for

  11. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  12. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System

    Science.gov (United States)

    Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di, Lorenzo E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; Levin, J.; McWilliams, J.C.; Miller, A.J.; Moore, A.M.; Powell, T.M.; Shchepetkin, A.F.; Sherwood, C.R.; Signell, R.P.; Warner, J.C.; Wilkin, J.

    2008-01-01

    Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers; redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoyancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations, enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less diffusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-purpose regional ocean prediction systems

  13. A Review Of Design And Control Of Automated Guided Vehicle Systems

    OpenAIRE

    Le-Anh, Tuan; Koster, René

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict resolution. We discuss and classify important models and results from key publications in literature on automated guided vehicle systems, including often-neglected areas, such as idle-vehicle positionin...

  14. System Architecture Design for Electric Vehicle (EV) Systems

    DEFF Research Database (Denmark)

    Xu, Zhao; Wu, Qiuwei; Nielsen, Arne Hejde

    2010-01-01

    The electric vehicle (EV) system should fulfill the energy needs of EVs to meet the EV users’ driving requirements and enable the system service from EVs to support the power system operation with high penetration of renewable energy resources (RES) by providing necessary infrastructures. In orde...

  15. Processing Terrain Point Cloud Data

    KAUST Repository

    DeVore, Ronald; Petrova, Guergana; Hielsberg, Matthew; Owens, Luke; Clack, Billy; Sood, Alok

    2013-01-01

    Terrain point cloud data are typically acquired through some form of Light Detection And Ranging sensing. They form a rich resource that is important in a variety of applications including navigation, line of sight, and terrain visualization

  16. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  17. Rapid Optimal Generation Algorithm for Terrain Following Trajectory Based on Optimal Control

    Institute of Scientific and Technical Information of China (English)

    杨剑影; 张海; 谢邦荣; 尹健

    2004-01-01

    Based on the optimal control theory, a 3-dimensionnal direct generation algorithm is proposed for anti-ground low altitude penetration tasks under complex terrain. By optimizing the terrain following(TF) objective function,terrain coordinate system, missile dynamic model and control vector, the TF issue is turning into the improved optimal control problem whose mathmatical model is simple and need not solve the second order terrain derivative. Simulation results prove that this method is reasonable and feasible. The TF precision is in the scope from 0.3 m to 3.0 m,and the planning time is less than 30 min. This method have the strongpionts such as rapidness, precision and has great application value.

  18. A Low-Cost Vehicle Anti-Theft System Using Obsolete Smartphone

    Directory of Open Access Journals (Sweden)

    Bang Liu

    2018-01-01

    Full Text Available In modern society, vehicle theft has become an increasing problem to the general public. Deploying onboard anti-theft systems could relieve this problem, but it often requires extra investment for vehicle owners. In this paper, we propose the idea of PhoneInside, which does not need a special device but leverages an obsolete smartphone to build a low-cost vehicle anti-theft system. After being fixed in the vehicle body with a car charger, the smartphone can detect vehicle movement and adaptively use GPS, cellular/WiFi localization, and dead reckoning to locate the vehicle during driving. Especially, a novel Velocity-Aware Dead Reckoning (VA-DR method is presented, which utilizes map knowledge and vehicle’s turns at road curves and intersections to estimate velocity for trajectory computation. Compared to traditional dead reckoning, it reduces accumulated errors and achieves great improvement in localization accuracy. Furthermore, based on the learning of the driving history, our system can establish individual mobility model for a vehicle and distinguish abnormal driving behaviors by a Long Short Term Memory (LSTM network. With the help of ad hoc authentication, the system can identify vehicle theft and send out timely alarming and tracking messages for rapid recovery. The realistic experiments running on Android smartphones prove that our system can detect vehicle theft effectively and locate a stolen vehicle accurately, with average errors less than the sight range.

  19. Posture estimation system for underground mine vehicles

    CSIR Research Space (South Africa)

    Hlophe, K

    2010-09-01

    Full Text Available Page 1 of 8 25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 13-16 July 2010, Pretoria, South Africa A POSTURE ESTIMATION SYSTEM FOR UNDERGROUND MINE VEHICLES Khonzumusa Hlophe1, Gideon Ferreira2... and the transmitter. The main difference between the three systems is their implementation. This paper describes an implementation of a posture estimation system for underground mine vehicles. The paper is organized as follows. In the next section, a brief...

  20. Exploration of Extreme Terrain Using a Polyhedral Rover

    Data.gov (United States)

    National Aeronautics and Space Administration — Exploring celestial bodies with extreme terrains in our solar system, like Mars, Europa, Enceladus, and asteroids, are of great importance to NASA because these...

  1. Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.

    Science.gov (United States)

    Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric

    2018-05-01

    Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.

  2. Selection method of terrain matching area for TERCOM algorithm

    Science.gov (United States)

    Zhang, Qieqie; Zhao, Long

    2017-10-01

    The performance of terrain aided navigation is closely related to the selection of terrain matching area. The different matching algorithms have different adaptability to terrain. This paper mainly studies the adaptability to terrain of TERCOM algorithm, analyze the relation between terrain feature and terrain characteristic parameters by qualitative and quantitative methods, and then research the relation between matching probability and terrain characteristic parameters by the Monte Carlo method. After that, we propose a selection method of terrain matching area for TERCOM algorithm, and verify the method correctness with real terrain data by simulation experiment. Experimental results show that the matching area obtained by the method in this paper has the good navigation performance and the matching probability of TERCOM algorithm is great than 90%

  3. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  4. Effect of an isolated elliptical terrain (Jeju Island on rainfall enhancement in a moist environment

    Directory of Open Access Journals (Sweden)

    Keun-OK Lee

    2014-03-01

    Full Text Available A series of idealised experiments using a cloud-resolving storm simulator (CReSS was performed to investigate the effects of the isolated elliptically shaped terrain of Jeju Island (oriented east–west, southern Korea, on the enhancement of pre-existing rainfall systems under the influence of prevailing southwesterly moist flows. Control parameters were the low-altitude wind speed (Froude numbers: 0.2, 0.4, 0.55 and the initial location of the elongated (oriented north–east rainfall system (off the northwestern or western shores of the island. Simulations were conducted for all combinations of initial location and wind regime. Overall, results indicate that weak southwesterlies flowing around the steep mountain on the island (height, 2 km generate two local convergences, on the northern lateral side and on the lee side of the island, both in regions of moist environments, thus producing conditions favourable for enhanced rainfall. As an eastward-moving rainfall system approaches the northwestern shore of the island, the southwesterlies at low altitudes accelerate between the system and the terrain, generating a local updraft region that causes rainfall enhancement onshore in advance of the system's arrival over the terrain. Thus, the prevailing southwesterlies at low altitudes that are parallel to the terrain are a crucial element for the enhancement. Relatively weak southwesterlies at low altitudes allow system enhancement on the lee side by generating a convergence of relatively weak go-around northwesterlies from the northern island and relatively strong moist southwesterlies from the southern island, thus producing a relatively long-lived rainfall system. As the southwesterlies strengthen, a dry descending air mass intensifies on the northeastern downwind side of the terrain, rapidly dissipating rainfall and resulting in a relatively short-lived rainfall system. A coexisting terrain-generated local convergence, combined with the absence

  5. Autonomous underwater vehicle motion tracking using a Kalman Filter for sensor fusion

    CSIR Research Space (South Africa)

    Holtzhausen, S

    2008-01-01

    Full Text Available AUVs are ideal platforms for search and rescue operations. They can also be used for inspection of underwater terrains. These vehicles need to be autonomous and robust to cope with unpredictable current and high pressures. In this paper...

  6. A PEMFC hybrid electric vehicle real time control system

    Science.gov (United States)

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  7. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  8. Landing Control of Foot with Springs for Walking Robots on Rough Terrain

    Directory of Open Access Journals (Sweden)

    Moyuru Yamada

    2009-09-01

    Full Text Available Landing control is one of the important issues for biped walking robot, because robots are expected to walk on not only known flat surfaces but also unknown and uneven terrain for working at various fields. This paper presents a new controller design for a robotic foot to land on unknown terrain. The robotic foot considered in this study equips springs to reduce the impact force at the foot landing. There are two objectives in the landing control; achieving the desired ground reaction force and positioning the foot on unknown terrain. To achieve these two objectives simultaneously by adjusting the foot position, we propose a PI force controller with a desired foot position, which guarantees the robust stability of control system with respect to terrain variance, and exact positioning of the foot to unknown terrain. Simulation results using the Open Dynamics Engine demonstrate the effectiveness of the proposed controller.

  9. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  10. Anticipatory vehicle routing using delegate multi-agent systems

    OpenAIRE

    Weyns, Danny; Holvoet, Tom; Helleboogh, Alexander

    2007-01-01

    This paper presents an agent-based approach, called delegate multi-agent systems, for anticipatory vehicle routing to avoid traffic congestion. In this approach, individual vehicles are represented by agents, which themselves issue light-weight agents that explore alternative routes in the environment on behalf of the vehicles. Based on the evaluation of the alternatives, the vehicles then issue light-weight agents for allocating road segments, spreading the vehicles’ intentions and coordi...

  11. Integrated vehicle-based safety systems light-vehicle field operational test, methodology and results report.

    Science.gov (United States)

    2010-12-01

    "This document presents the methodology and results from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michi...

  12. A Low-Cost Vehicle Anti-Theft System Using Obsolete Smartphone

    OpenAIRE

    Liu, Bang; Liu, Nianbo; Chen, Guihai; Dai, Xili; Liu, Ming

    2018-01-01

    In modern society, vehicle theft has become an increasing problem to the general public. Deploying onboard anti-theft systems could relieve this problem, but it often requires extra investment for vehicle owners. In this paper, we propose the idea of PhoneInside, which does not need a special device but leverages an obsolete smartphone to build a low-cost vehicle anti-theft system. After being fixed in the vehicle body with a car charger, the smartphone can detect vehicle movement and adaptiv...

  13. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.

    2009-08-15

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  14. Automatic vehicle counting system for traffic monitoring

    Science.gov (United States)

    Crouzil, Alain; Khoudour, Louahdi; Valiere, Paul; Truong Cong, Dung Nghy

    2016-09-01

    The article is dedicated to the presentation of a vision-based system for road vehicle counting and classification. The system is able to achieve counting with a very good accuracy even in difficult scenarios linked to occlusions and/or presence of shadows. The principle of the system is to use already installed cameras in road networks without any additional calibration procedure. We propose a robust segmentation algorithm that detects foreground pixels corresponding to moving vehicles. First, the approach models each pixel of the background with an adaptive Gaussian distribution. This model is coupled with a motion detection procedure, which allows correctly location of moving vehicles in space and time. The nature of trials carried out, including peak periods and various vehicle types, leads to an increase of occlusions between cars and between cars and trucks. A specific method for severe occlusion detection, based on the notion of solidity, has been carried out and tested. Furthermore, the method developed in this work is capable of managing shadows with high resolution. The related algorithm has been tested and compared to a classical method. Experimental results based on four large datasets show that our method can count and classify vehicles in real time with a high level of performance (>98%) under different environmental situations, thus performing better than the conventional inductive loop detectors.

  15. 'H-Bahn' - Dortmund demonstration system. Automatic vehicle protection system

    Energy Technology Data Exchange (ETDEWEB)

    Rosenkranz

    1984-01-01

    The automatic vehicle protection system of the H-Bahn at the Universtiy of Dortmund is responsible for fail-safe operating of the automatic vehicles. Its functions are protection of vehicle operation and protection of passengers boarding and leaving the vehicles. These functions are managed decentrally by two fail-safe operating controllers. Besides the well-known relay-techniques of railway-fail-safe systems, electronics are applied which are based on safe operating URTL-microcontrollers. These are controlled by software stored in EPROMs. A connection link using glass-fibres serves for safe data-exchange between the two fail-safe operating controllers. The experts' favourable reports on 'train protection and safety during passenger processing' were completed in March 84; thus, transportation of passengers could start in April 84.

  16. Intelligent Emergency Response System for Police Vehicles in India

    DEFF Research Database (Denmark)

    Ganeshan, Ishan; Memon, Nasrullah

    2015-01-01

    time by the police vehicles. In the proposed system, the administrator can view the performance of all the police vehicles at any time through a web portal. The system used traditional data mining algorithms in order to analyze crimes in different areas of a city and at different times of the day....... Based on this crime mapping, the administrator assigns patrol schedules for different police vehicles throughout the day. The proposed system would make it very easy for people to call for the help, and the police authorities to know the locations of the callers and identify crime hot spots...... and the administrator to keep track of the performance of each police vehicle....

  17. Multi-actuators vehicle collision avoidance system - Experimental validation

    Science.gov (United States)

    Hamid, Umar Zakir Abdul; Zakuan, Fakhrul Razi Ahmad; Akmal Zulkepli, Khairul; Zulfaqar Azmi, Muhammad; Zamzuri, Hairi; Rahman, Mohd Azizi Abdul; Aizzat Zakaria, Muhammad

    2018-04-01

    The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future.

  18. Routing the asteroid surface vehicle with detailed mechanics

    Science.gov (United States)

    Yu, Yang; Baoyin, He-Xi

    2014-06-01

    The motion of a surface vehicle on/above an irregular object is investigated for a potential interest in the insitu explorations to asteroids of the solar system. A global valid numeric method, including detailed gravity and geomorphology, is developed to mimic the behaviors of the test particles governed by the orbital equations and surface coupling effects. A general discussion on the surface mechanical environment of a specified asteroid, 1620 Geographos, is presented to make a global evaluation of the surface vehicle's working conditions. We show the connections between the natural trajectories near the ground and differential features of the asteroid surface, which describes both the good and bad of typical terrains from the viewpoint of vehicles' dynamic performances. Monte Carlo simulations are performed to take a further look at the trajectories of particles initializing near the surface. The simulations reveal consistent conclusions with the analysis, i.e., the open-field flat ground and slightly concave basins/valleys are the best choices for the vehicles' dynamical security. The dependence of decending trajectories on the releasing height is studied as an application; the results show that the pole direction (where the centrifugal force is zero) is the most stable direction in which the shift of a natural trajectory will be well limited after landing. We present this work as an example for pre-analysis that provides guidance to engineering design of the exploration site and routing the surface vehicles.

  19. Spectra of Velocity components over Complex Terrain

    DEFF Research Database (Denmark)

    Panofsky, H. A.; Larko, D.; Lipschut, R.

    1982-01-01

    : When air moves over terrain with changed characteristics, then (1) for wavelengths very short relative to the fetch over the new terrain, the spectral densities are in equilibrium with the new terrain. (1) for wavelengths long compared to this fetch, spectral densities remain unchanged if the ground...

  20. Thermoelectrics as elements of hybrid-electric vehicle thermal energy systems

    Science.gov (United States)

    Headings, Leon; Washington, Gregory; Jaworski, Christopher M.

    2008-03-01

    Despite vast technological improvements, the traditional internal combustion powered vehicle still achieves only 25- 30% efficiency, with the remainder lost primarily as heat. While the load leveling offered by hybrid-electric vehicle technology helps to improve this overall efficiency, part of the efficiency gains are achieved by making new systems such as regenerative braking viable. In a similar fashion, thermoelectric (TE) energy recovery has long been considered for traditional vehicles with mixed results, but little has been done to consider thermoelectrics in the framework of the unique energy systems of hybrid vehicles. Systems that may not have been viable or even possible with traditional vehicles may offer improvements to system efficiency as well as emissions, vehicle durability, passenger comfort, and cost. This research describes a simulation developed for evaluating and optimizing thermoelectric energy recovery systems and results for four different system configurations. Two novel system configurations are presented which offer the potential for additional benefits such as emissions reduction that will soon be quantified. In addition, a test setup is presented which was constructed for the testing and validation of various thermoelectric recovery systems. Actual test performance was near the expected theoretical performance and supported the conclusions reached from the computer simulations.

  1. In-vehicle signing functions and systems concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, D.R.; Spelt, P.F.; Knee, H.E.

    1996-03-01

    This paper describes functional requirements and system concepts for an In-Vehicle Signing (IVS) system, which will bring information from roadway signs, signals, and pavement markings into the vehicle for presentation to the driver. Information filter functions will assure that the only messages displayed are those which are important to the driver and which apply. Display functions will optimize the presentation of the message to ambient conditions, driver preferences, the number of simultaneous messages, and the urgency of the message. Timing functions will display a sign as soon as it is needed, for the entire time that it applies, and only while it applies. IVS is one of the core components of an integrated In-Vehicle Information System, which will manage and fuse all driving-related information. Two different IVS system concepts have been investigated: one based on a map database, the other on beacon technology. This work is being conducted by the Oak Ridge National Laboratory for the US Federal Highway Administration as part of the Intelligent Transportation System Program.

  2. Autonomous system for launch vehicle range safety

    Science.gov (United States)

    Ferrell, Bob; Haley, Sam

    2001-02-01

    The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .

  3. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  4. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  5. Systemic Approach to Elevation Data Acquisition for Geophysical Survey Alignments in Hilly Terrains Using UAVs

    Science.gov (United States)

    Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.

    2018-04-01

    This study is about systematic approach to photogrammetric survey that is applicable in the extraction of elevation data for geophysical surveys in hilly terrains using Unmanned Aerial Vehicles (UAVs). The outcome will be to acquire high-quality geophysical data from areas where elevations vary by locating the best survey lines. The study area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. Seismic refraction surveys were carried out for the modelling of the subsurface for detailed site investigations. Study were carried out to identify the accuracy of the digital elevation model (DEM) produced from an UAV. At 100 m altitude (flying height), over 135 overlapping images were acquired using a DJI Phantom 3 quadcopter. All acquired images were processed for automatic 3D photo-reconstruction using Agisoft PhotoScan digital photogrammetric software, which was applied to all photogrammetric stages. The products generated included a 3D model, dense point cloud, mesh surface, digital orthophoto, and DEM. In validating the accuracy of the produced DEM, the coordinates of the selected ground control point (GCP) of the survey line in the imaging area were extracted from the generated DEM with the aid of Global Mapper software. These coordinates were compared with the GCPs obtained using a real-time kinematic global positioning system. The maximum percentage of difference between GCP’s and photogrammetry survey is 13.3 %. UAVs are suitable for acquiring elevation data for geophysical surveys which can save time and cost.

  6. UAS applications in high alpine, snow-covered terrain

    Science.gov (United States)

    Bühler, Y.; Stoffel, A.; Ginzler, C.

    2017-12-01

    Access to snow-covered, alpine terrain is often difficult and dangerous. Hence parameters such as snow depth or snow avalanche release and deposition zones are hard to map in situ with adequate spatial and temporal resolution and with spatial continuous coverage. These parameters are currently operationally measured at automated weather stations and by observer networks. However such isolated point measurements are not able to capture the information spatial continuous and to describe the high spatial variability present in complex mountain topography. Unmanned Aerial Systems (UAS) have the potential to fill this gap by frequently covering selected high alpine areas with high spatial resolution down to ground resolutions of even few millimeters. At the WSL Institute for Snow and Avalanche Research SLF we test different photogrammetric UAS with visual and near infrared bands. During the last three years we were able to gather experience in more than 100 flight missions in extreme terrain. By processing the imagery applying state-of-the-art structure from motion (SfM) software, we were able to accurately document several avalanche events and to photogrammetrically map snow depth with accuracies from 1 to 20 cm (dependent on the flight height above ground) compare to manual snow probe measurements. This was even possible on homogenous snow surfaces with very little texture. A key issue in alpine terrain is flight planning. We need to cover regions at high elevations with large altitude differences (up to 1 km) with high wind speeds (up to 20 m/s) and cold temperatures (down to - 25°C). Only a few UAS are able to cope with these environmental conditions. We will give an overview on our applications of UAS in high alpine terrain that demonstrate the big potential of such systems to acquire frequent, accurate and high spatial resolution geodata in high alpine, snow covered terrain that could be essential to answer longstanding questions in avalanche and snow hydrology

  7. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  8. Design of vehicle intelligent anti-collision warning system

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.

  9. A multitasking behavioral control system for the Robotic All-Terrain Lunar Exploration Rover (RATLER)

    Science.gov (United States)

    Klarer, Paul

    1993-01-01

    An approach for a robotic control system which implements so called 'behavioral' control within a realtime multitasking architecture is proposed. The proposed system would attempt to ameliorate some of the problems noted by some researchers when implementing subsumptive or behavioral control systems, particularly with regard to multiple processor systems and realtime operations. The architecture is designed to allow synchronous operations between various behavior modules by taking advantage of a realtime multitasking system's intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the field are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development and is briefly described.

  10. Integrated vehicle-based safety systems (IVBSS) : light vehicle platform field operational test data analysis plan.

    Science.gov (United States)

    2009-12-22

    This document presents the University of Michigan Transportation Research Institutes plan to : perform analysis of data collected from the light vehicle platform field operational test of the : Integrated Vehicle-Based Safety Systems (IVBSS) progr...

  11. Simulation Research on an Electric Vehicle Chassis System Based on a Collaborative Control System

    Directory of Open Access Journals (Sweden)

    Nenglian Feng

    2013-01-01

    Full Text Available This paper presents a collaborative control system for an electric vehicle chassis based on a centralized and hierarchical control architecture. The centralized controller was designed for the suspension and steering system, which is used for improving ride comfort and handling stability; the hierarchical controller was designed for the braking system, which is used for distributing the proportion of hydraulic braking and regenerative braking to improve braking performance. These two sub-controllers function at the same level of the vehicle chassis control system. In order to reduce the potential conflict between the two sub-controllers and realize a coordination optimization of electric vehicle performance, a collaborative controller was built, which serves as the upper controller to carry out an overall coordination analysis according to vehicle signals and revises the decisions of sub-controllers. A simulation experiment was carried out with the MATLAB/Simulink software. The simulation results show that the proposed collaborative control system can achieve an optimized vehicle handling stability and braking safety.

  12. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  13. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... initial speeds, vehicle manufacturers will need to develop unique or complicated braking systems to comply... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring...

  14. Knowledge-based fault diagnosis system for refuse collection vehicle

    International Nuclear Information System (INIS)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-01-01

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle

  15. Knowledge-based fault diagnosis system for refuse collection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y. [Centre of Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  16. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  17. Road Vehicle Monitoring System Based on Intelligent Visual Internet of Things

    Directory of Open Access Journals (Sweden)

    Qingwu Li

    2015-01-01

    Full Text Available In recent years, with the rapid development of video surveillance infrastructure, more and more intelligent surveillance systems have employed computer vision and pattern recognition techniques. In this paper, we present a novel intelligent surveillance system used for the management of road vehicles based on Intelligent Visual Internet of Things (IVIoT. The system has the ability to extract the vehicle visual tags on the urban roads; in other words, it can label any vehicle by means of computer vision and therefore can easily recognize vehicles with visual tags. The nodes designed in the system can be installed not only on the urban roads for providing basic information but also on the mobile sensing vehicles for providing mobility support and improving sensing coverage. Visual tags mentioned in this paper consist of license plate number, vehicle color, and vehicle type and have several additional properties, such as passing spot and passing moment. Moreover, we present a fast and efficient image haze removal method to deal with haze weather condition. The experiment results show that the designed road vehicle monitoring system achieves an average real-time tracking accuracy of 85.80% under different conditions.

  18. Accurate Localization of Communicant Vehicles using GPS and Vision Systems

    Directory of Open Access Journals (Sweden)

    Georges CHALLITA

    2009-07-01

    Full Text Available The new generation of ADAS systems based on cooperation between vehicles can offer serious perspectives to the road security. The inter-vehicle cooperation is made possible thanks to the revolution in the wireless mobile ad hoc network. In this paper, we will develop a system that will minimize the imprecision of the GPS used to car tracking, based on the data given by the GPS which means the coordinates and speed in addition to the use of the vision data that will be collected from the loading system in the vehicle (camera and processor. Localization information can be exchanged between the vehicles through a wireless communication device. The creation of the system must adopt the Monte Carlo Method or what we call a particle filter for the treatment of the GPS data and vision data. An experimental study of this system is performed on our fleet of experimental communicating vehicles.

  19. Onboard power line conditioning system for an electric or hybrid vehicle

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  20. Innovative control systems for tracked vehicle platforms

    CERN Document Server

    2014-01-01

     This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.

  1. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards; Air Brake Systems... final rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... between Bendix Commercial Vehicle Systems and Dana Corporation; and ArvinMeritor. The agency received four...

  2. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  3. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    Science.gov (United States)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  4. Digital terrain data base - new possibilities of 3D terrain modeling

    Directory of Open Access Journals (Sweden)

    Mateja Rihtaršič

    1992-12-01

    Full Text Available GISs has brought new dimensions in the field of digital terrain modelling, too. Modem DTMs must be real (relational databases with high degree of "intelligence". This paper presents some of the demands, ivhich have to be solved in modern digital terrain databases, together with main steps of their's generation. Problems, connected to regional level, multi-pur pose use, new possibilities and direct integration into GIS are presented. The practical model was created across smaller test area, so few lines with practical experiences can be droped, too.

  5. Wind turbine wake measurement in complex terrain

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Menke, Robert

    2016-01-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large dow...

  6. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  7. Blind spot monitoring in light vehicles -- system performance.

    Science.gov (United States)

    2014-07-01

    This report summarizes findings of a small population study of blind spot monitoring systems (BSM) installed by : original vehicle manufacturers on standard production vehicles. The primary goals of these tests were to simulate real-world driving sce...

  8. Realistic terrain visualization based on 3D virtual world technology

    Science.gov (United States)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  9. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NARCIS (Netherlands)

    Kraaijenbrink, P.D.A.; Immerzeel, W.W.; de Jong, S.M.; Shea, Joseph M.; Pellicciotti, Francesca; Meijer, Sander W.; Shresta, A.B.

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed

  10. Hydraulic regenerative system for a light vehicle

    OpenAIRE

    Orpella Aceret, Jordi; Guinart Trayter, Xavier

    2009-01-01

    The thesis is based in a constructed light vehicle that must be improved by adding a hydraulic energy recovery system. This vehicle named as TrecoLiTH, participated in the Formula Electric and Hybrid competition (Formula EHI) 2009 in Italy -Rome- and won several awards. This system consists in two hydraulic motors hub mounted which are used to store fluid at high pressure in an accumulator when braking. Through a valve the pressure will flow from the high pressure accumulator to the low press...

  11. In-vehicle signing functions of an in-vehicle information system

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, D.R.; Knee, H.E.; Spelt, P.F.

    1996-04-01

    The definition of In-Vehicle Signing (IVS) functions was guided by the principles of traffic engineering as they apply to the design and placement of roadway signs. Because of the dynamic and active nature of computing, communications, and display technology, IVS can fulfill the signing principles of traffic engineering in ways that have been impossible with conventional signage. Current signing technology represents a series of compromises of these principles, especially the data and equations contributing to the calculation of required sight distance. A number of conditions relevant to sight distance are quite variable, e.g.: vehicle speed, visibility, weather, and driver reaction time. However, conventional signing requires that there are fixed values of each variable for the determination of (e.g.) legibility distance. IVS, on the other hand, will be able to tailor the timing of sign presentation to the dynamically diverse variable values of all of these conditions. A clear, in-vehicle sign display, adaptive to ambient and driver conditions, will in fact obviate the entire issue of sign legibility. These capabilities, together with information filtering functions, will truly enhance the presentation of sign information to drivers. The development of IVS is a critical step in the development of an integrated In-Vehicle Information System (IVIS).

  12. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    Science.gov (United States)

    Klarer, P.

    1994-01-01

    An alternative methodology for designing an autonomous navigation and control system is discussed. This generalized hybrid system is based on a less sequential and less anthropomorphic approach than that used in the more traditional artificial intelligence (AI) technique. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules. This is accomplished by intertask communications channels which implement each behavior module and each interconnection node as a stand-alone task. The proposed design architecture allows for construction of hybrid systems which employ both subsumption and traditional AI techniques as well as providing for a teleoperator's interface. Implementation of the architecture is planned for the prototype Robotic All Terrain Lunar Explorer Rover (RATLER) which is described briefly.

  13. Cooperative Networked Control of Dynamical Peer-to-Peer Vehicle Systems

    National Research Council Canada - National Science Library

    Dullerud, Geir E; Bullo, Francesco; Feron, Eric; Frazzoli, Emilio; Kumar, P. R; Lall, Sanjay; Liberzon, Daniel; Lynch, Nancy A; Mitchell, John C; Mitter, Sanjoy K

    2007-01-01

    ... and semi-autonomous air vehicles. The research is specifically aimed at the critical reliability and performance issues facing autonomous vehicle systems which operate in highly uncertain environments, and enables the vehicles...

  14. A Concept of Operations for an Integrated Vehicle Health Assurance System

    Science.gov (United States)

    Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.

    2013-01-01

    This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.

  15. Impact of emerging clean vehicle system on water stress

    International Nuclear Information System (INIS)

    Cai, Hua; Hu, Xiaojun; Xu, Ming

    2013-01-01

    Graphical abstract: Display Omitted - Highlights: • Clean vehicles may increase US water consumption up to 2810 billion gallons/year. • Large-scale clean vehicle adoption could lead to severe regional water stress. • Fuel choice for clean vehicle is crucial in minimizing regional water stress. • Regional optimization illustrated the importance of regional consideration. - Abstract: While clean vehicles (i.e., vehicles powered by alternative fuels other than fossil fuels) offer great potential to reduce greenhouse gas emissions from gasoline-based vehicles, the associated impact on water resources has not yet been fully assessed. This research provides a systematic evaluation of the impact of a fully implemented clean vehicle system on national and state-level water demand and water stress. On the national level, based on existing policies, transitioning the current gasoline-based transportation into one with clean vehicles will increase national annual water consumption by 1950–2810 billion gallons of water, depending on the market penetration of electric vehicles. On the state level, variances of water efficiency in producing different fuels are significant. The fuel choice for clean vehicle development is especially crucial for minimizing water stress increase in states with already high water stress, high travel demands, and significant variations in water efficiency in producing different alternative fuels. Current development of clean vehicle infrastructure, however, has not reflected these state-level variations. This study takes an optimization approach to further evaluate impacts on state-level water stress from a fully implemented clean vehicle system and identified potential roles (fuel producer or consumer) states may play in real world clean vehicle development scenario. With an objective of minimizing overall water stress impact, our optimization model aims to provide an analytical framework to better assess impacts on state-level water

  16. A Review Of Design And Control Of Automated Guided Vehicle Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René)

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict

  17. Tracking of nuclear shipments with automatic vehicle location systems

    International Nuclear Information System (INIS)

    Colhoun, C.J.K.

    1989-01-01

    A complete Automatic Vehicle Location System (AVL) consists of three main elements: (1) the location sensor in the vehicle, this device constantly determines the coordinates of the vehicles position; (2) the radio link between vehicle and central base; (3) the data processing and display in the central base. For all three elements there are several solutions. The optimal combination of the different techniques depends on the requirements of the special application

  18. In-Vehicle Information Systems

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2012-10-01

    Full Text Available The work considers different information systems, includingthe infonnation ~ystems with autonomous units, whichcany all their intelligence around with them, and those withcommunicating units, which infonn the motorist about the currentsituation of the road system by radio or other means. Thesymbols of various messages have three main objectives: to provideinstruction, to warn of oncoming dange1~ or to give adviceregarding parking or looking for altemative routes. When notused for these pwposes, they are used to provide general informationabout the weathe1~ temperature or possible attractions.The in-vehicle information systems fly to assist the motorist indriving, and they are promoted as part of the comprehensive intelligenttransport system.

  19. Canadian high speed magnetically levitated vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ont.; Belanger, P R; Burke, P E; Dawson, G E; Eastham, A R; Hayes, W F; Ooi, B T; Silvester, P; Slemon, G R

    1978-04-01

    A technically feasible high speed (400 to 480 km/h) guided ground transportation system, based on the use of the vehicle-borne superconducting magnets for electrodynamic suspension and guidance and for linear synchronous motor propulsion was defined as a future modal option for Canadian application. Analysis and design proposals were validated by large-scale tests on a rotating wheel facility and by modelling system components and their interactions. Thirty ton vehicles carrying 100 passengers operate over a flat-topped elevated guideway, which minimizes system down-time due to ice and snow accumulation and facilitates the design of turn-outs. A clearance of up to 15 cm is produced by the electrodynamic interaction between the vehicle-borne superconducting magnets and aluminum guideway strips. Propulsion and automatic system control is provided by the superconducting linear synchronous motor which operates at good efficiency (0.74) and high power factor (0.95). The vehicle is guided primarily by the interaction between the LSM field magnet array and flat null-flux loops overlying the stator windings in the guideway. The linear synchronous motor, electrodynamic suspension as well as levitation strip joints, parasitic LSM winding losses and limitations to the use of ferromagnetic guideway reinforcement were investigated experimentally on the test wheel facility. The use of a secondary suspension assures adequate dynamic stability, and good ride quality is achieved by optimized passive components with respect to lateral modes and by an actively controlled secondary suspension with respect to vertical motion.

  20. Harmonic Analysis of Electric Vehicle Loadings on Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yijun A [University of Southern California, Department of Electrical Engineering; Xu, Yunshan [University of Southern California, Department of Electrical Engineering; Chen, Zimin [University of Southern California, Department of Electrical Engineering; Peng, Fei [University of Southern California, Department of Electrical Engineering; Beshir, Mohammed [University of Southern California, Department of Electrical Engineering

    2014-12-01

    With the increasing number of Electric Vehicles (EV) in this age, the power system is facing huge challenges of the high penetration rates of EVs charging stations. Therefore, a technical study of the impact of EVs charging on the distribution system is required. This paper is applied with PSCAD software and aimed to analyzing the Total Harmonic Distortion (THD) brought by Electric Vehicles charging stations in power systems. The paper starts with choosing IEEE34 node test feeder as the distribution system, building electric vehicle level two charging battery model and other four different testing scenarios: overhead transmission line and underground cable, industrial area, transformer and photovoltaic (PV) system. Then the statistic method is used to analyze different characteristics of THD in the plug-in transient, plug-out transient and steady-state charging conditions associated with these four scenarios are taken into the analysis. Finally, the factors influencing the THD in different scenarios are found. The analyzing results lead the conclusion of this paper to have constructive suggestions for both Electric Vehicle charging station construction and customers' charging habits.

  1. ADVANCED DRIVER SAFETY SUPPORT SYSTEMS FOR THE URBAN TYPE VEHICLE

    Directory of Open Access Journals (Sweden)

    Katarzyna JEZIERSKA-KRUPA

    2015-12-01

    Full Text Available Smart Power Team is currently working on the design of an urban electric vehicle designed to compete in the Shell Eco-marathon. One important aspect of this type of vehicle characteristics is it safety. The project of advanced driver assistance systems has included some proposals of such systems and the concept of their execution. The first concept, BLIS (Blind Spot Information System, is to build a system of informing a driver about vehicles appearing in the blind spot. The system constitutes a second concept, CDIS (Collision Detection and Information System, and it is designed to detect a vehicle collision and inform the team. Further systems are: DPMS (Dew Point Measurement System - a system which does not allow a situation, where the windows are fogged, OHRS (Overtaking Horn Reminder System - a system which checks overtaking and MSS (main supervision system - a supervisory system. These concepts are based on the assumption of the use of laser sensors, photoelectric, humidity and temperature, and other commercially available systems. The article presents a detailed description of driver assistance systems and virtual prototyping methodology for these systems, as well as the numerical results of the verification of one of the systems.

  2. Fiber optic gyroscopes for vehicle navigation systems

    Science.gov (United States)

    Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao

    1994-03-01

    Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.

  3. An anticipative escape system for vehicles in water crashes

    Science.gov (United States)

    Shen, Chuanliang; Wang, Jiawei; Yin, Qi; Zhu, Yantao; Yang, Jiawei; Liao, Mengdi; Yang, Liming

    2017-07-01

    In this article, it designs an escape system for vehicles in water crashes. The structure mainly contains sensors, control organs and actuating mechanism for both doors and windows. Sensors judge whether the vehicle falls into water or is in the falling process. The actuating mechanism accepts the signal delivered by the control organs, then open the electronic central lock on doors and meanwhile lower the window. The water escape system is able to anticipate drowning situations for vehicles and controls both doors and windows in such an emergency. Under the premise of doors staying in an undamaged state, it is for sure that people in the vehicle can open the door while drowning in the water and safely escape.

  4. FY2014 Vehicle and Systems Simulation and Testing Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  5. Small catchments DEM creation using Unmanned Aerial Vehicles

    Science.gov (United States)

    Gafurov, A. M.

    2018-01-01

    Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.

  6. Bus systems in motor vehicles; Bussysteme im Kfz

    Energy Technology Data Exchange (ETDEWEB)

    Schule, Roland

    2008-07-01

    There is hardly any modern vehicle without a bus system. This interactive learning software explains why electric and electronic systems in motor vehicles should be linked and uses various bus types to illustrate the various alternatives, bus structures, and data types. The physical side of bus systems is gone into, the data structure is explained, and the various bus typologies are outlined. From the fundamentals of bus systems, the software proceeds to present the most important bus systems and their main properties. Subjects: Diagnosis bus, LIN bus, CAN bus, MOST bus, Bluetooth. The bus systems EIA-485, LVDS, D{sup 2}B, byteflight, and Flexray are briefly characterised. (orig.)

  7. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  8. Evaluating the effectiveness of active vehicle safety systems.

    Science.gov (United States)

    Jeong, Eunbi; Oh, Cheol

    2017-03-01

    Advanced vehicle safety systems have been widely introduced in transportation systems and are expected to enhance traffic safety. However, these technologies mainly focus on assisting individual vehicles that are equipped with them, and less effort has been made to identify the effect of vehicular technologies on the traffic stream. This study proposed a methodology to assess the effectiveness of active vehicle safety systems (AVSSs), which represent a promising technology to prevent traffic crashes and mitigate injury severity. The proposed AVSS consists of longitudinal and lateral vehicle control systems, which corresponds to the Level 2 vehicle automation presented by the National Highway Safety Administration (NHTSA). The effectiveness evaluation for the proposed technology was conducted in terms of crash potential reduction and congestion mitigation. A microscopic traffic simulator, VISSIM, was used to simulate freeway traffic stream and collect vehicle-maneuvering data. In addition, an external application program interface, VISSIM's COM-interface, was used to implement the AVSS. A surrogate safety assessment model (SSAM) was used to derive indirect safety measures to evaluate the effectiveness of the AVSS. A 16.7-km freeway stretch between the Nakdong and Seonsan interchanges on Korean freeway 45 was selected for the simulation experiments to evaluate the effectiveness of AVSS. A total of five simulation runs for each evaluation scenario were conducted. For the non-incident conditions, the rear-end and lane-change conflicts were reduced by 78.8% and 17.3%, respectively, under the level of service (LOS) D traffic conditions. In addition, the average delay was reduced by 55.5%. However, the system's effectiveness was weakened in the LOS A-C categories. Under incident traffic conditions, the number of rear-end conflicts was reduced by approximately 9.7%. Vehicle delays were reduced by approximately 43.9% with 100% of market penetration rate (MPR). These results

  9. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  10. Sliding GAIT Algorithm for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)

    Science.gov (United States)

    Townsend, Julie; Biesiadecki, Jeffrey

    2012-01-01

    The design of a surface robotic system typically involves a trade between the traverse speed of a wheeled rover and the terrain-negotiating capabilities of a multi-legged walker. The ATHLETE mobility system, with both articulated limbs and wheels, is uniquely capable of both driving and walking, and has the flexibility to employ additional hybrid mobility modes. This paper introduces the Sliding Gait, an intermediate mobility algorithm faster than walking with better terrain-handling capabilities than wheeled mobility.

  11. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults......Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...

  12. 3D Photo Mosaicing of Tagiri Shallow Vent Field by an Autonomous Underwater Vehicle

    Science.gov (United States)

    Maki, Toshihiro; Kondo, Hayato; Ura, Tamaki; Sakamaki, Takashi; Mizushima, Hayato; Yanagisawa, Masao

    Although underwater visual observation is an ideal method for detailed survey of seafloors, it is currently a costly process that requires the use of Remotely Operated Vehicles (ROVs) or Human Occupied Vehicles (HOVs), and can cover only a limited area. This paper proposes an innovative method to navigate an autonomous underwater vehicle (AUV) to create both 2D and 3D photo mosaics of seafloors with high positioning accuracy without using any vision-based matching. The vehicle finds vertical pole-like acoustic reflectors to use as positioning landmarks using a profiling sonar based on a SLAM (Simultaneous Localization And Mapping) technique. These reflectors can be either artificial or natural objects, and so the method can be applied to shallow vent fields where conventional acoustic positioning is difficult, since bubble plumes can also be used as landmarks as well as artificial reflectors. Path-planning is performed in real-time based on the positions and types of landmarks so as to navigate safely and stably using landmarks of different types (artificial reflector or bubble plume) found at arbitrary times and locations. Terrain tracker switches control reference between depth and altitude from the seafloor based on a local map of hazardous area created in real-time using onboard perceptual sensors, in order to follow rugged terrains at an altitude of 1 to 2 meters, as this range is ideal for visual observation. The method was implemented in the AUV Tri-Dog 1 and experiments were carried out at Tagiri vent field, Kagoshima Bay in Japan. The AUV succeeded in fully autonomous observation for more than 160 minutes to create a photo mosaic with an area larger than 600 square meters, which revealed the spatial distribution of detailed features such as tube-worm colonies, bubble plumes and bacteria mats. A fine bathymetry of the same area was also created using a light-section ranging system mounted on the vehicle. Finally a 3 D representation of the environment was

  13. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  14. Ground Vehicle System Integration (GVSI) and Design Optimization Model

    National Research Council Canada - National Science Library

    Horton, William

    1996-01-01

    This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...

  15. 76 FR 55825 - Federal Motor Vehicle Safety Standards, Child Restraint Systems

    Science.gov (United States)

    2011-09-09

    ... [Docket No. NHTSA-2011-0139] RIN 2127-AJ44 Federal Motor Vehicle Safety Standards, Child Restraint Systems..., amends a provision in Federal Motor Vehicle Safety Standard No. 213, ``Child restraint systems,'' that... provision: When a motor vehicle safety standard is in effect under this chapter, a State or a political...

  16. Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles

    Science.gov (United States)

    2011-01-01

    ABSTRACT Title of dissertation: Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles Vincent Nguyen, Doctor of...relates to the dynamics of non-smooth vehicle systems, and in particular, supercavitating vehicles. These high-speed under- water vehicles are...Applications to Supercavitating Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK

  17. I/O-Efficient Algorithms for Problems on Grid-Based Terrains

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Toma, Laura; Vitter, Jeffrey Scott

    2001-01-01

    The potential and use of Geographic Information Systems is rapidly increasing due to the increasing availability of massive amounts of geospatial data from projects like NASA's Mission to Planet Earth. However, the use of these massive datasets also exposes scalability problems with existing GIS...... hydrologic attributes of a terrain. We present the results of an extensive set of experiments on real-life terrain datasets of different sizes and characteristics. Our experiments show that while our new algorithm scales nicely with dataset size, the previously known algorithm "breaks down" once the size...

  18. Monitoring system for gamma radiation of porch type for vehicles

    International Nuclear Information System (INIS)

    Vazquez C, R.M.; Molina, G.; Gutierrez O, E.; Ramirez J, F.J.; Garcia H, J.M.; Aguilar B, M.A.; Vilchis P, A.E.; Cruz E, P.; Torres B, M.A.

    2005-01-01

    A monitoring system of gamma radiation for vehicles of the porch type developed in the ININ is presented. This system carries out the radiological monitoring of the vehicles in continuous form, detecting the bottom radiological environment and the presence of nuclear material transported in vehicles. The vehicles are monitored while they pass to low speed through the porch. The detectors are plastic scintillators of great volume that allow high sensibility detection. The arrangement of detecting is interconnected in net, and the data are concentrated on a personal computer whose interface man-machine can be accessed from any personal computer connected to Internet. The system monitoring in real time with options of sampling times from 50 ms configurable up to 500 ms. (Author)

  19. Real-Time Vehicle Data Logging System Using GPS And GSM

    OpenAIRE

    Win Minn Thet; MyoMaung Maung; Hla Myo Tun

    2015-01-01

    Abstract This paper proposes and implements a low cost Vehicle Data Logging System using GPS and GSM. This system allows a user to trace the present and past positions recorded in SD card. This system also reads the current position of the vehicle using GPS the data is sent via GSM service from the GSM network. The vehicles position including the driving speed the UTC time and data are stored in the SD card for live and past tracking. All of that GPS data is sent to PIC 18F4520 by the Uni...

  20. Wireless IR Image Transfer System for Autonomous Vehicles

    Science.gov (United States)

    2003-12-01

    the camera can operate between 0 and 500 C; this uniquely suites it for employment on autonomous vehicles in rugged environments. The camera is...system is suitable for used on autonomous vehicles under varying antenna orientations. • The third is the use of MDS transceivers allows the received

  1. Method for Measuring the Information Content of Terrain from Digital Elevation Models

    Directory of Open Access Journals (Sweden)

    Lujin Hu

    2015-10-01

    Full Text Available As digital terrain models are indispensable for visualizing and modeling geographic processes, terrain information content is useful for terrain generalization and representation. For terrain generalization, if the terrain information is considered, the generalized terrain may be of higher fidelity. In other words, the richer the terrain information at the terrain surface, the smaller the degree of terrain simplification. Terrain information content is also important for evaluating the quality of the rendered terrain, e.g., the rendered web terrain tile service in Google Maps (Google Inc., Mountain View, CA, USA. However, a unified definition and measures for terrain information content have not been established. Therefore, in this paper, a definition and measures for terrain information content from Digital Elevation Model (DEM, i.e., a digital model or 3D representation of a terrain’s surface data are proposed and are based on the theory of map information content, remote sensing image information content and other geospatial information content. The information entropy was taken as the information measuring method for the terrain information content. Two experiments were carried out to verify the measurement methods of the terrain information content. One is the analysis of terrain information content in different geomorphic types, and the results showed that the more complex the geomorphic type, the richer the terrain information content. The other is the analysis of terrain information content with different resolutions, and the results showed that the finer the resolution, the richer the terrain information. Both experiments verified the reliability of the measurements of the terrain information content proposed in this paper.

  2. The Commercial Vehicle Information Systems and Network program, 2012.

    Science.gov (United States)

    2014-03-01

    The Commercial Vehicle Information Systems and : Networks (CVISN) program supports that safety : mission by providing grant funds to States for: : Improving safety and productivity of motor : carriers, commercial motor vehicles : (CMVs), and thei...

  3. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

    OpenAIRE

    THOMAS MATHEWS; NISHANTH D

    2013-01-01

    Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. ...

  4. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  5. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  6. Optimization and Control of Cyber-Physical Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Justin M. Bradley

    2015-09-01

    Full Text Available A cyber-physical system (CPS is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  7. Optimization and Control of Cyber-Physical Vehicle Systems.

    Science.gov (United States)

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  8. Vehicle-to-Grid for islanded power system operation in Bornholm

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    Vehicle-to-Grid (V2G) systems are an emerging concept of utilizing the battery storage of electric vehicles (EVs) for providing power system regulation services. This technology could be used to balance the variable electricity generated from various renewable energy sources. This article considers...... a model of an aggregated electric vehicle based battery storage to support an isolated power system operating with a large wind power penetration in the Danish island of Bornholm. From the simulation results, the EV battery storages represented by the V2G systems are able to integrate more fluctuating...... wind power. The islanded Bornholm power system operates satisfactory for the case of replacing most of the conventional generator reserves with V2G systems, which may represent a future operation scenario....

  9. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  10. Amphibious vehicles come of age

    Energy Technology Data Exchange (ETDEWEB)

    Mowers, J.

    2007-11-15

    This article highlighted the most popular amphibious vehicles used for oil patch applications. The Argo, designed and built by Ontario Drive and Gear Ltd. of New Hamburg, Ontario, was first introduced into the market in 1967. By 1994, it was commonly used by the oil patch when it was made more robust with a liquid-cooled engine. The all-season and all-terrain vehicle can carry up to 1,150 pounds and pull up to 1,800 pounds. More than 40,000 units have been sold for use in seismic, slashing, carrying in supplies for camps, pipeline and other facility maintenance. Its counterpart, the Centaur, has a bigger load capacity and more powerful liquid-cooled petrol or diesel engine that drives like a truck, with steering wheel and gas and brake pedals. It has certified rollover protection, can carry up to 1,500 pounds or pull 2,000 pounds and can travel at speeds of up to 28 miles per hour. The mammoth ARKTOS Craft was designed, engineered and built in British Columbia and can handle any terrain including thick mud, quicksand, muskeg, ice, water and snow. It is primarily used in the oil patch as an evacuation craft for offshore drilling in shallow waters. It has room for 52 passengers. With a 13-ton load capacity, the vehicle can manoeuvre through ice-water mixtures and can climb onto solid ice. Five units are being used as evacuation crafts on stand-by offshore drilling in shallow waters near Alaska, and 8 are being used for the same purpose for drilling beneath the Caspian Sea. It was also used in the Bohai Delta in China for a seismic survey. A modified craft is being developed for use in Fort McMurray's oil sand tailings ponds. This article also highlighted the prototype AmphibAlaska which has been under development for the past 25 years by an Alaskan entrepreneur. The utilitarian vehicle is being designed with a payload that can accommodate a crew of 5 and the gear needed for emergency response and fieldwork. It is designed to travel safely through hard ground

  11. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    Science.gov (United States)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  12. Vehicle-manipulator systems modeling for simulation, analysis, and control

    CERN Document Server

    From, Pal Johan; Pettersen, Kristin Ytterstad

    2014-01-01

    Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas.  The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain glob...

  13. A new method for determination of most likely landslide initiation points and the evaluation of digital terrain model scale in terrain stability mapping

    Directory of Open Access Journals (Sweden)

    P. Tarolli

    2006-01-01

    Full Text Available This paper introduces a new approach for determining the most likely initiation points for landslides from potential instability mapped using a terrain stability model. This approach identifies the location with critical stability index from a terrain stability model on each downslope path from ridge to valley. Any measure of terrain stability may be used with this approach, which here is illustrated using results from SINMAP, and from simply taking slope as an index of potential instability. The relative density of most likely landslide initiation points within and outside mapped landslide scars provides a way to evaluate the effectiveness of a terrain stability measure, even when mapped landslide scars include run out zones, rather than just initiation locations. This relative density was used to evaluate the utility of high resolution terrain data derived from airborne laser altimetry (LIDAR for a small basin located in the Northeastern Region of Italy. Digital Terrain Models were derived from the LIDAR data for a range of grid cell sizes (from 2 to 50 m. We found appreciable differences between the density of most likely landslide initiation points within and outside mapped landslides with ratios as large as three or more with the highest ratios for a digital terrain model grid cell size of 10 m. This leads to two conclusions: (1 The relative density from a most likely landslide initiation point approach is useful for quantifying the effectiveness of a terrain stability map when mapped landslides do not or can not differentiate between initiation, runout, and depositional areas; and (2 in this study area, where landslides occurred in complexes that were sometimes more than 100 m wide, a digital terrain model scale of 10 m is optimal. Digital terrain model scales larger than 10 m result in loss of resolution that degrades the results, while for digital terrain model scales smaller than 10 m the physical processes responsible for triggering

  14. In-vehicle information system functions

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, D.R.; Spelt, P.F.; Knee, H.E.

    1997-04-01

    This paper describes the functional requirement for an In-Vehicle Information System (IVIS), which will manage and display all driving-related information from many sources. There are numerous information systems currently being fielded or developed (e.g., routing and navigation, collision avoidance). However, without a logical integration of all of the possible on-board information, there is a potential for overwhelming the driver. The system described in this paper will filter and prioritize information across all sources, and present it to the driver in a timely manner, within a unified interface. To do this, IVIS will perform three general functions: (1) interact with other, on-board information subsystems and the vehicle; (2) manage the information by filtering, prioritizing, and integrating it; and (3) interact with the driver, both in terms of displaying information to the driver and allowing the driver to input requests, goals and preferences. The functional requirements described in this paper have either been derived from these three high-level functions or are directly mandated by the overriding requirements for modularity and flexibility. IVIS will have to be able to accommodate different types of information subsystems, of varying level of sophistication. The system will also have to meet the diverse needs of different types of drivers (private, commercial, transit), who may have very different levels of expertise in using information systems.

  15. Wind farm design in complex terrain: the FarmOpt methodology

    DEFF Research Database (Denmark)

    Feng, Ju

    Designing wind farms in complex terrain is becoming more and more important, especially for countries like China, where a large portion of the territory is featured as complex terrain. Although potential richer wind resources could be expected at complex terrain sites (thanks to the terrain effec...

  16. GIS TECHNOLOGY AND TERRAIN ORTHOPHOTOMAP MAKING FOR MILITARY APPLICATION

    Directory of Open Access Journals (Sweden)

    Elshan Hashimov

    2017-11-01

    Full Text Available In this paper, it is shown that GIS and photogrammetry technologiyes, determination of searching target coordinates for the operational desicion making are very important for the military application, for the combat control. With aim of orthophotomap making of the terrain and identification of terrain supervision there has been constructed 3D model for choosen mountainous terrain of Azerbaijan Republic using GIS technology. Based on this model there has been obtained a terrain profile and carried out mapping. Using ArcGis software there has been investigated possibility remain control on obserbvable and unobservable parties of terrain on supervision line from supervision point to target point.

  17. The vehicle data translator V3.0 system description.

    Science.gov (United States)

    2011-05-30

    With funding and support from the USDOT RITA and direction from the FHWA Road Weather Management Program, NCAR is developing a Vehicle Data Translator (VDT) software system that incorporates vehicle-based measurements of the road and surrounding atmo...

  18. The Efficacy of Using Synthetic Vision Terrain-Textured Images to Improve Pilot Situation Awareness

    Science.gov (United States)

    Uenking, Michael D.; Hughes, Monica F.

    2002-01-01

    The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study is being conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process. In this part of the experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during

  19. 76 FR 55859 - Federal Motor Vehicle Safety Standards No. 121; Air Brake Systems

    Science.gov (United States)

    2011-09-09

    ... during road tests for the braking system, a vehicle equipped with an interlocking axle system or a front... vehicle braking systems, tire characteristics related to lateral force and longitudinal force generation... stopping distance without activating the ABS system by braking the vehicle so that the brake pressure is...

  20. Automatic terrain modeling using transfinite element analysis

    KAUST Repository

    Collier, Nathan; Calo, Victor M.

    2010-01-01

    An automatic procedure for modeling terrain is developed based on L2 projection-based interpolation of discrete terrain data onto transfinite function spaces. The function space is refined automatically by the use of image processing techniques

  1. Hardware-in-loop simulation of electric vehicles automated mechanical transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Wu, Y.; Wang, L. [Chinese Academy of Sciences, Beijing (China). Inst. of Electrical Engineering

    2009-03-11

    Automated mechanical transmission (AMT) can be used to enhance the performance of hybrid electric vehicles. In this study, hardware-in-loop (HIL) simulations were used to develop an AMT control system. HIL was used to simulate the running and fault status of the system as well as to optimize its performance. HIL was combined with a commercial simulation tool and an automatic code generation technology in a real time environment tool to develop the AMT control system. A hybrid vehicle system dynamics model was generated and then simulated in various real time operating vehicle environments. Virtual instrument technology was used to develop real time monitoring, parameter matching calibration, data acquisition and offline analyses for the optimization of the control system. Results of the analyses demonstrated that the AMT control system can be used to optimize the performance of hybrid electric vehicles. 5 refs., 9 figs.

  2. Marine spark-ignition engine and off-road recreational vehicle emission regulations : discussion document

    International Nuclear Information System (INIS)

    2004-07-01

    In February 2001, the Minister of Environment Canada outlined a series of measures to reduce emissions from vehicles and engines, including off-road engines. This report describes proposed regulations to control emissions form outboard engines, personal watercraft engines, snowmobiles, off-highway motorcycles, all-terrain vehicles and utility vehicles. Since most marine engines and recreational vehicles sold in Canada are imported, the agenda includes the development of new regulations under Division 5 of the Canadian Environmental Protection Act (CEPA) to align Canada's emission standards for off-road vehicles with those of the United States Environmental Protection Agency. A harmonized approach on emissions standards is expected to result in fewer transition and implementation problems. This report describes which vehicles and engines will be subjected to the planned regulations along with those that will be exempted. Planned emission standard swill apply to vehicles and engines of the 2007 and later model years. Persons affected by the planned regulations were also identified. tabs., figs

  3. A Microcontroller Based Car-Safety System Implementing Drowsiness Detection And Vehicle-Vehicle Distance Detection In Parallel.

    Directory of Open Access Journals (Sweden)

    Pragyaditya Das.

    2015-08-01

    Full Text Available Abstract Accidents due to drowsiness can be controlled and prevented with the help of eye blink sensor using IR rays. It consists of IR transmitter and an IR receiver. The transmitter transmits IR rays into the eye. If the eye is shut then the output is high. If the eye is open then the output is low. This output is interfaced with an alarm inside and outside the vehicle. This module can be connected to the braking system of the vehicle and can be used to reduce the speed of the vehicle. The alarm inside the vehicle will go on for a period of time until the driver is back to his senses. If the driver is unable to take control of the vehicle after that stipulated amount of time then the alarm outside the vehicle will go on to warn and tell others to help the driver.

  4. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  5. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    Science.gov (United States)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  6. Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud

    Directory of Open Access Journals (Sweden)

    Seoungjae Cho

    2014-01-01

    Full Text Available A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.

  7. Systems analysis of decontamination options for civilian vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  8. Simulating Sand Behavior through Terrain Subdivision and Particle Refinement

    Science.gov (United States)

    Clothier, M.

    2013-12-01

    Advances in computer graphics, GPUs, and parallel processing hardware have provided researchers with new methods to visualize scientific data. In fact, these advances have spurred new research opportunities between computer graphics and other disciplines, such as Earth sciences. Through collaboration, Earth and planetary scientists have benefited by using these advances in hardware technology to process large amounts of data for visualization and analysis. At Oregon State University, we are collaborating with the Oregon Space Grant and IGERT Ecosystem Informatics programs to investigate techniques for simulating the behavior of sand. In addition, we have also been collaborating with the Jet Propulsion Laboratory's DARTS Lab to exchange ideas on our research. The DARTS Lab specializes in the simulation of planetary vehicles, such as the Mars rovers. One aspect of their work is testing these vehicles in a virtual "sand box" to test their performance in different environments. Our research builds upon this idea to create a sand simulation framework to allow for more complex and diverse environments. As a basis for our framework, we have focused on planetary environments, such as the harsh, sandy regions on Mars. To evaluate our framework, we have used simulated planetary vehicles, such as a rover, to gain insight into the performance and interaction between the surface sand and the vehicle. Unfortunately, simulating the vast number of individual sand particles and their interaction with each other has been a computationally complex problem in the past. However, through the use of high-performance computing, we have developed a technique to subdivide physically active terrain regions across a large landscape. To achieve this, we only subdivide terrain regions where sand particles are actively participating with another object or force, such as a rover wheel. This is similar to a Level of Detail (LOD) technique, except that the density of subdivisions are determined by

  9. 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User's Conference Proceedings (CD)

    International Nuclear Information System (INIS)

    Markel, T.

    2001-01-01

    The 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference provided an opportunity for engineers in the automotive industry and the research environment to share their experiences in vehicle systems modeling using ADVISOR and PSAT. ADVISOR and PSAT are vehicle systems modeling tools developed and supported by the National Renewable Energy Laboratory and Argonne National Laboratory respectively with the financial support of the US Department of Energy. During this conference peers presented the results of studies using the simulation tools and improvements that they have made or would like to see in the simulation tools. Focus areas of the presentations included Control Strategy, Model Validation, Optimization and Co-Simulation, Model Development, Applications, and Fuel Cell Vehicle Systems Analysis. Attendees were offered the opportunity to give feedback on future model development plans

  10. Fuzzy-Skyhook Control for Active Suspension Systems Applied to a Full Vehicle Model

    Directory of Open Access Journals (Sweden)

    Aref M.A. Soliman

    2012-04-01

    Full Text Available Nowadays, most modern vehicles are equipped with controlled suspension systems for improving the vehicle ride comfort. Therefore, this paper is concerned with a theoretical study for the ride comfort performance of the vehicle. The theoretical investigation includes a suggestion of an active suspension system controller using fuzzy-skyhook control theory, which offers new opportunities for the improvement of vehicle ride performance. The ride comfort of the active suspension system has been evaluated using a 7 degree of freedom full vehicle mathematical model. The simulation results are presented in the time and frequency domain, also in terms of RMS values, and it’s shown that the proposed active suspension system with fuzzy-skyhook control improved the vehicle ride quality in terms of body acceleration, suspension working space and dynamic tyre load in comparison with the passive and skyhook suspension systems.

  11. Tanadgusix Foundation Hydrogen / Plug In Electric Vehicle Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Martin [TDX Power Inc., Anchorage, AK (United States)

    2013-09-27

    TDX Foundation undertook this project in an effort to evaluate alternative transportation options and their application in the community of Saint Paul, Alaska an isolated island community in the Bering Sea. Both hydrogen and electric vehicle technology was evaluated for technical and economic feasibility. Hydrogen technology was found to be cost prohibitive. TDX demonstrated the implementation of various types of electric vehicles on St. Paul Island, including side-by-side all terrain vehicles, a Chevrolet Volt (sedan), and a Ford Transit Connect (small van). Results show that electric vehicles are a promising solution for transportation needs on St. Paul Island. Limited battery range and high charging time requirements result in decreased usability, even on a small, isolated island. These limitations were minimized by the installation of enhanced charging stations for the car and van. In collaboration with the University of Alaska Fairbanks (UAF), TDX was able to identify suitable technologies and demonstrate their applicability in the rural Alaskan environment. TDX and UAF partnered to engage and educate the entire community of Saint Paul – fom school children to elders – through presentation of research, findings, demonstrations, first hand operation of alternative fuel vehicles.

  12. Effectiveness of vehicle weight enforcement in a developing country using weigh-in-motion sorting system considering vehicle by-pass and enforcement capability

    Directory of Open Access Journals (Sweden)

    Mohamed Rehan Karim

    2014-03-01

    Full Text Available Vehicle overloading has been identified as one of the major contributors to road pavement damage in Malaysia. In this study, the weigh-in-motion (WIM system has been used to function as a vehicle weight sorting tool to complement the exsiting static weigh bridge enforcement station. Data collected from the developed system is used to explore the effectiveness of using WIM system in terms of generating more accurate data for enforcement purposes and at the same time improving safety and reducing the number of vehicle weight violations on the roads. This study specifically focus on the effect of vehicle by-pass and static weigh station enforcement capability on the overall effectiveness of vehicle weight enforcement system in a developing country. Results from this study suggest that the WIM system will significantly enhance the effectiveness and efficiency of the current vehicle weight enforcement, thus generating substantial revenue that would greatly off-set the current road maintenance budget that comes from tax payers money. If there is substantial reduction in overloaded vehicles, the public will still gain through reduction in road maintenance budget, less accident risks involving heavy trucks, and lesser greenhouse gases (GHGs emissions.

  13. An expert fault diagnosis system for vehicle air conditioning product development

    NARCIS (Netherlands)

    Tan, C.F.; Tee, B.T.; Khalil, S.N.; Chen, W.; Rauterberg, G.W.M.

    2015-01-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to

  14. Real-Time Vehicle Data Logging System Using GPS And GSM

    Directory of Open Access Journals (Sweden)

    Win Minn Thet

    2015-07-01

    Full Text Available Abstract This paper proposes and implements a low cost Vehicle Data Logging System using GPS and GSM. This system allows a user to trace the present and past positions recorded in SD card. This system also reads the current position of the vehicle using GPS the data is sent via GSM service from the GSM network. The vehicles position including the driving speed the UTC time and data are stored in the SD card for live and past tracking. All of that GPS data is sent to PIC 18F4520 by the Universal Asynchronous ReceiverTransmitter UART and also store in SD card. GSM also uses UART to transmit. To know the position of the vehicle the owner sends a request through a SMS. The SMS sends to the authorized person through the GSM network. The travel history of the vehicle are stored in a file on an SD card in FAT format.This system is very useful for car tracking for adolescent driver being checked by parent speed limit exceeding leaving a specific area. V The developed system is easy to use requires no additional hardware and permits the selection of the amount of data and the time intervals between the data recordings. In addition the collected data can easily be transferred to a computer via a connected serial port.

  15. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  16. Novel vehicle detection system based on stacked DoG kernel and AdaBoost

    Science.gov (United States)

    Kang, Hyun Ho; Lee, Seo Won; You, Sung Hyun

    2018-01-01

    This paper proposes a novel vehicle detection system that can overcome some limitations of typical vehicle detection systems using AdaBoost-based methods. The performance of the AdaBoost-based vehicle detection system is dependent on its training data. Thus, its performance decreases when the shape of a target differs from its training data, or the pattern of a preceding vehicle is not visible in the image due to the light conditions. A stacked Difference of Gaussian (DoG)–based feature extraction algorithm is proposed to address this issue by recognizing common characteristics, such as the shadow and rear wheels beneath vehicles—of vehicles under various conditions. The common characteristics of vehicles are extracted by applying the stacked DoG shaped kernel obtained from the 3D plot of an image through a convolution method and investigating only certain regions that have a similar patterns. A new vehicle detection system is constructed by combining the novel stacked DoG feature extraction algorithm with the AdaBoost method. Experiments are provided to demonstrate the effectiveness of the proposed vehicle detection system under different conditions. PMID:29513727

  17. Mobility potential of a robotic six-wheeled omnidirectional drive vehicle (ODV) with z-axis and tire inflation control

    Science.gov (United States)

    Witus, Gary

    2000-07-01

    Robot vehicle mobility is the product of the physical configuration, mechatronics (sensors, actuators, and control) and the motion programs for different obstacles, terrain conditions, and maneuver objectives. This paper examines the mobility potential of a robotic 6-by-6 wheeled omni-directional drive vehicle (ODV) with z-axis and tire inflation control. Ad ODV can steer and drive all wheels independently. The direction of motion is independent of the orientation of the body. Z- axis control refers to independent control of the suspension elevation at each wheel. Pneumatic tire inflation control provides the ability to inflate and deflate individual tires. The paper describes motion programs for various discrete obstacles and challenging terrain conditions. The paper illustrates how ODV control, z-axis control and tire inflation control interact to provide high mobility with respect to cornering, maneuvering on slopes, negotiating vertical step and horizontal gap obstacles, and braking/acceleration on soft soil and slick surfaces. The paper derives guidelines for the physical dimensions of the vehicle needed to achieve these capabilities.

  18. A Vehicle Steering Recognition System Based on Low-Cost Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2017-03-01

    Full Text Available Recognizing how a vehicle is steered and then alerting drivers in real time is of utmost importance to the vehicle and driver’s safety, since fatal accidents are often caused by dangerous vehicle maneuvers, such as rapid turns, fast lane-changes, etc. Existing solutions using video or in-vehicle sensors have been employed to identify dangerous vehicle maneuvers, but these methods are subject to the effects of the environmental elements or the hardware is very costly. In the mobile computing era, smartphones have become key tools to develop innovative mobile context-aware systems. In this paper, we present a recognition system for dangerous vehicle steering based on the low-cost sensors found in a smartphone: i.e., the gyroscope and the accelerometer. To identify vehicle steering maneuvers, we focus on the vehicle’s angular velocity, which is characterized by gyroscope data from a smartphone mounted in the vehicle. Three steering maneuvers including turns, lane-changes and U-turns are defined, and a vehicle angular velocity matching algorithm based on Fast Dynamic Time Warping (FastDTW is adopted to recognize the vehicle steering. The results of extensive experiments show that the average accuracy rate of the presented recognition reaches 95%, which implies that the proposed smartphone-based method is suitable for recognizing dangerous vehicle steering maneuvers.

  19. Vehicle systems design optimization study

    Science.gov (United States)

    Gilmour, J. L.

    1980-01-01

    The optimum vehicle configuration and component locations are determined for an electric drive vehicle based on using the basic structure of a current production subcompact vehicle. The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current internal combustion engine vehicles. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages, one at front under the hood and a second at the rear under the cargo area, in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passenger and cargo space for a given size vehicle.

  20. Vehicle fault diagnostics and management system

    Science.gov (United States)

    Gopal, Jagadeesh; Gowthamsachin

    2017-11-01

    This project is a kind of advanced automatic identification technology, and is more and more widely used in the fields of transportation and logistics. It looks over the main functions with like Vehicle management, Vehicle Speed limit and Control. This system starts with authentication process to keep itself secure. Here we connect sensors to the STM32 board which in turn is connected to the car through Ethernet cable, as Ethernet in capable of sending large amounts of data at high speeds. This technology involved clearly shows how a careful combination of software and hardware can produce an extremely cost-effective solution to a problem.

  1. Visual tracking strategies for intelligent vehicle highway systems

    Science.gov (United States)

    Smith, Christopher E.; Papanikolopoulos, Nikolaos P.; Brandt, Scott A.; Richards, Charles

    1995-01-01

    The complexity and congestion of current transportation systems often produce traffic situations that jeopardize the safety of the people involved. These situations vary from maintaining a safe distance behind a leading vehicle to safely allowing a pedestrian to cross a busy street. Environmental sensing plays a critical role in virtually all of these situations. Of the sensors available, vision sensors provide information that is richer and more complete than other sensors, making them a logical choice for a multisensor transportation system. In this paper we present robust techniques for intelligent vehicle-highway applications where computer vision plays a crucial role. In particular, we demonstrate that the controlled active vision framework can be utilized to provide a visual sensing modality to a traffic advisory system in order to increase the overall safety margin in a variety of common traffic situations. We have selected two application examples, vehicle tracking and pedestrian tracking, to demonstrate that the framework can provide precisely the type of information required to effectively manage the given situation.

  2. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  3. Potential air pollutant emission from private vehicles based on vehicle route

    Science.gov (United States)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  4. Physiological demands of off-road vehicle riding.

    Science.gov (United States)

    Burr, Jamie F; Jamnik, Veronica K; Shaw, Jim A; Gledhill, Norman

    2010-07-01

    The purpose of this study was to characterize the physiological demands of recreational off-road vehicle riding under typical riding conditions using habitual recreational off-road vehicle riders (n = 128). Comparisons of the physical demands of off-road vehicle riding were made between vehicle types (all-terrain vehicle (ATV) and off-road motorcycle (ORM)) to the demands of common recreational activities. Habitual riders (ATV = 56, ORM = 72) performed strength assessments before and after a representative trail ride (48 +/- 24.2 min), and ambulatory oxygen consumption was measured during one lap (24.2 +/- 11.8 min) of the ride. The mean VO2 requirement (mL x kg(-1) x min(-1)) while riding an off-road vehicle was 12.1 +/- 4.9 for ATV and 21.3 +/- 7.1 for ORM (P = 0.002), which is comparable to the VO2 required of many common recreational activities. Temporal analysis of activity intensity revealed approximately 14% of an ATV ride and 38% of an ORM ride are within the intensity range (940% VO2 reserve) required to achieve changes in aerobic fitness. Riding on a representative course also led to muscular fatigue, particularly in the upper body. On the basis of the measured metabolic demands, evidence of muscular strength requirements, and the associated caloric expenditures with off-road vehicle riding, this alternative form of activity conforms to the recommended physical activity guidelines and can be effective for achieving beneficial changes in health and fitness.

  5. Passivity-based model predictive control for mobile vehicle motion planning

    CERN Document Server

    Tahirovic, Adnan

    2013-01-01

    Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and  • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimi...

  6. Analyzing complex wake-terrain interactions and its implications on wind-farm performance.

    Science.gov (United States)

    Tabib, Mandar; Rasheed, Adil; Fuchs, Franz

    2016-09-01

    Rotating wind turbine blades generate complex wakes involving vortices (helical tip-vortex, root-vortex etc.).These wakes are regions of high velocity deficits and high turbulence intensities and they tend to degrade the performance of down-stream turbines. Hence, a conservative inter-turbine distance of up-to 10 times turbine diameter (10D) is sometimes used in wind-farm layout (particularly in cases of flat terrain). This ensures that wake-effects will not reduce the overall wind-farm performance, but this leads to larger land footprint for establishing a wind-farm. In-case of complex-terrain, within a short distance (say 10D) itself, the nearby terrain can rise in altitude and be high enough to influence the wake dynamics. This wake-terrain interaction can happen either (a) indirectly, through an interaction of wake (both near tip vortex and far wake large-scale vortex) with terrain induced turbulence (especially, smaller eddies generated by small ridges within the terrain) or (b) directly, by obstructing the wake-region partially or fully in its flow-path. Hence, enhanced understanding of wake- development due to wake-terrain interaction will help in wind farm design. To this end the current study involves: (1) understanding the numerics for successful simulation of vortices, (2) understanding fundamental vortex-terrain interaction mechanism through studies devoted to interaction of a single vortex with different terrains, (3) relating influence of vortex-terrain interactions to performance of a wind-farm by studying a multi-turbine wind-farm layout under different terrains. The results on interaction of terrain and vortex has shown a much faster decay of vortex for complex terrain compared to a flatter-terrain. The potential reasons identified explaining the observation are (a) formation of secondary vortices in flow and its interaction with the primary vortex and (b) enhanced vorticity diffusion due to increased terrain-induced turbulence. The implications of

  7. An operating system for future aerospace vehicle computer systems

    Science.gov (United States)

    Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.

    1984-01-01

    The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.

  8. Integrating land cover and terrain characteristics to explain plague ...

    African Journals Online (AJOL)

    Literature suggests that higher resolution remote sensing data integrated in Geographic Information System (GIS) can provide greater possibility to refine the analysis of land cover and terrain characteristics for explanation of abundance and distribution of plague hosts and vectors and hence of health risk hazards to ...

  9. Design, testing, and performance of a hybrid micro vehicle---The Hopping Rotochute

    Science.gov (United States)

    Beyer, Eric W.

    The Hopping Rotochute is a new hybrid micro vehicle that has been developed to robustly explore environments with rough terrain while minimizing energy consumption over long periods of time. The device consists of a small coaxial rotor system housed inside a lightweight cage. The vehicle traverses an area by intermittently powering a small electric motor which drives the rotor system, allowing the vehicle to hop over obstacles of various shapes and sizes. A movable internal mass controls the direction of travel while the egg-like exterior shape and low mass center allows the vehicle to passively reorient itself to an upright attitude when in contact with the ground. This dissertation presents the design, fabrication, and testing of a radio-controlled Hopping Rotochute prototype as well as an analytical study of the flight performance of the device. The conceptual design iterations are first outlined which were driven by the mission and system requirements assigned to the vehicle. The aerodynamic, mechanical, and electrical design of a prototype is then described, based on the final conceptual design, with particular emphasis on the fundamental trades that must be negotiated for this type of hopping vehicle. The fabrication and testing of this prototype is detailed as well as experimental results obtained from a motion capture system. Basic flight performance of the prototype are reported which demonstrates that the Hopping Rotochute satisfies all appointed system requirements. A dynamic model of the Hopping Rotochute is also developed in this thesis and employed to predict the flight performance of the vehicle. The dynamic model includes aerodynamic loads from the body and rotor system as well as a soft contact model to estimate the forces and moments during ground contact. The experimental methods used to estimate the dynamic model parameters are described while comparisons between measured and simulated motion are presented. Good correlation between these motions

  10. Photometric diversity of terrains on Triton

    Science.gov (United States)

    Hillier, J.; Veverka, J.; Helfenstein, P.; Lee, P.

    1994-01-01

    Voyager disk-resolved images of Triton in the violet (0.41 micrometers) and green (0.56 micrometer wavelengths have been analyzed to derive the photometric characteristics of terrains on Triton. Similar conclusions are found using two distinct but related definitions of photometric units, one based on color ratio and albedo properties (A. S. McEwen, 1990), the other on albedo and brightness ratios at different phase angles (P. Lee et al., 1992). A significant diversity of photometric behavior, much broader than that discovered so far on any other icy satellite, occurs among Triton's terrains. Remarkably, differences in photometric behavior do not correlate well with geologic terrain boundaries defined on the basis of surface morphology. This suggests that in most cases photometric properties on Triton are controlled by thin deposits superposed on underlying geologic units. Single scattering albedos are 0.98 or higher and asymmetry factors range from -0.35 to -0.45 for most units. The most distinct scattering behavior is exhibited by the reddish northern units already identified as the Anomalously Scattering Region (ASR), which scatters light almost isotropically with g = -0.04. In part due to the effects of Triton's clouds and haze, it is difficult to constrain the value of bar-theta, Hapke's macroscopic roughness parameter, precisely for Triton or to map differences in bar-theta among the different photometric terrains. However, our study shows that Triton must be relatively smooth, with bar-theta less than 15-20 degs and suggests that a value of 14 degs is appropriate. The differences in photometric characteristics lead to significantly different phase angle behavior for the various terrains. For example, a terrain (e.g., the ASR) that appears dark relative to another at low phase angles will reverse its contrast (become relatively brighter) at larger phase angles. The photometric parameters have been used to calculate hemispherical albedos for the units and to

  11. SMART VIDEO SURVEILLANCE SYSTEM FOR VEHICLE DETECTION AND TRAFFIC FLOW CONTROL

    Directory of Open Access Journals (Sweden)

    A. A. SHAFIE

    2011-08-01

    Full Text Available Traffic signal light can be optimized using vehicle flow statistics obtained by Smart Video Surveillance Software (SVSS. This research focuses on efficient traffic control system by detecting and counting the vehicle numbers at various times and locations. At present, one of the biggest problems in the main city in any country is the traffic jam during office hour and office break hour. Sometimes it can be seen that the traffic signal green light is still ON even though there is no vehicle coming. Similarly, it is also observed that long queues of vehicles are waiting even though the road is empty due to traffic signal light selection without proper investigation on vehicle flow. This can be handled by adjusting the vehicle passing time implementing by our developed SVSS. A number of experiment results of vehicle flows are discussed in this research graphically in order to test the feasibility of the developed system. Finally, adoptive background model is proposed in SVSS in order to successfully detect target objects such as motor bike, car, bus, etc.

  12. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-01

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  13. Wireless alerting system using vibration for vehicles dashboard

    Science.gov (United States)

    Raj, Sweta; Rai, Shweta; Magaramagara, Wilbert; Sivacoumar, R.

    2017-11-01

    This paper aims at improving the engine life of any vehicle through a continuous measurement and monitoring of vital engine operational parameters and providing an effective alerting to drivers for any abnormality. Vehicles currently are using audio and visible alerting signals through alarms and light as a warning to the driver but these are not effective in noisy environments and during daylight. Through the use of the sense of feeling a driver can be alerted effectively. The need to no other vehicle parameter needs to be aided through the mobile display (phone).Thus a system is designed and implements to measure engine temperature, RPM, Oil level and Coolant level using appropriate sensors and a wireless communication (Bluetooth) is established to actuate a portable vibration control device and to read the different vehicle sensor readings through an android application for display and diagnosis.

  14. Reliability prediction for the vehicles equipped with advanced driver assistance systems (ADAS and passive safety systems (PSS

    Directory of Open Access Journals (Sweden)

    Balbir S. Dhillon

    2012-10-01

    Full Text Available The human error has been reported as a major root cause in road accidents in today’s world. The human as a driver in road vehicles composed of human, mechanical and electrical components is constantly exposed to changing surroundings (e.g., road conditions, environmentwhich deteriorate the driver’s capacities leading to a potential accident. The auto industries and transportation authorities have realized that similar to other complex and safety sensitive transportation systems, the road vehicles need to rely on both advanced technologies (i.e., Advanced Driver Assistance Systems (ADAS and Passive Safety Systems (PSS (e.g.,, seatbelts, airbags in order to mitigate the risk of accidents and casualties. In this study, the advantages and disadvantages of ADAS as active safety systems as well as passive safety systems in road vehicles have been discussed. Also, this study proposes models that analyze the interactions between human as a driver and ADAS Warning and Crash Avoidance Systems and PSS in the design of vehicles. Thereafter, the mathematical models have been developed to make reliability prediction at any given time on the road transportation for vehicles equipped with ADAS and PSS. Finally, the implications of this study in the improvement of vehicle designs and prevention of casualties are discussed.

  15. Parallel Implementation of the Terrain Masking Algorithm

    Science.gov (United States)

    1994-03-01

    contains behavior rules which can define a computation or an algorithm. It can communicate with other process nodes, it can contain local data, and it can...terrain maskirg calculation is being performed. It is this algorithm that comsumes about seventy percent of the total terrain masking calculation time

  16. TouchTerrain: A simple web-tool for creating 3D-printable topographic models

    Science.gov (United States)

    Hasiuk, Franciszek J.; Harding, Chris; Renner, Alex Raymond; Winer, Eliot

    2017-12-01

    An open-source web-application, TouchTerrain, was developed to simplify the production of 3D-printable terrain models. Direct Digital Manufacturing (DDM) using 3D Printers can change how geoscientists, students, and stakeholders interact with 3D data, with the potential to improve geoscience communication and environmental literacy. No other manufacturing technology can convert digital data into tangible objects quickly at relatively low cost; however, the expertise necessary to produce a 3D-printed terrain model can be a substantial burden: knowledge of geographical information systems, computer aided design (CAD) software, and 3D printers may all be required. Furthermore, printing models larger than the build volume of a 3D printer can pose further technical hurdles. The TouchTerrain web-application simplifies DDM for elevation data by generating digital 3D models customized for a specific 3D printer's capabilities. The only required user input is the selection of a region-of-interest using the provided web-application with a Google Maps-style interface. Publically available digital elevation data is processed via the Google Earth Engine API. To allow the manufacture of 3D terrain models larger than a 3D printer's build volume the selected area can be split into multiple tiles without third-party software. This application significantly reduces the time and effort required for a non-expert like an educator to obtain 3D terrain models for use in class. The web application is deployed at http://touchterrain.geol.iastate.edu/

  17. Influences of braking system faults on the vehicle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Straky, H.; Kochem, M.; Schmitt, J.; Hild, R.; Isermann, R. [Technische Univ., Darmstadt (Germany). Inst. of Automatic Control

    2001-07-01

    From a safety point of view the braking system is, besides the driver, one of the key subsystems in a car. The driver, as an adaptive control system, might not notice small faults in the hydraulic part of the braking system and sooner or later critical braking situations, e.g. due to a brake-circuit failure, may occur. Most of the drivers are not capable to deal with such critical situations. Therefore this paper investigates the influence of faults in the braking system on the dynamic vehicle behavior and the steering inputs of the driver to keep the vehicle on the desired course. (orig.)

  18. Prioritization and selection of electrical vehicle systems to improve its performances: An AHP approach

    Energy Technology Data Exchange (ETDEWEB)

    Larrode, E.; Muerza, V.; Arroyo, J.B.

    2016-07-01

    In the study of the improvement of urban transport in terms of energy efficiency and environmental improvement, one of the best options is the use of electric vehicles for both passengers and freight distribution. Depending on the type of transport operation to be performed, it is necessary to select the most appropriate vehicle that meets the necessary requirements, so that the result is an improvement in energy efficiency and low environmental impact. It is therefore necessary to design architectures for electric vehicles, specially adapted to the different scenarios in which are to be used, and where they can optimize the transport operation in both reducing energy consumption and reducing emissions, maintaining a cost competitive with current vehicle operation. The electrical vehicles (EV) are composed of different systems. A typical EV structure involves five subsystems: (i) drive system, (ii) power system, (iii) control system, (iv) vehicle structure and (v) auxiliary systems. This paper focuses on the development of a multicriteria decision procedure based on the use of the Analytic Hierarchy Process (AHP), to prioritize among the five vehicle systems, in which the design efforts should be guided to improve the vehicle. (Author)

  19. Research of braking process of transport vehicle with hydraulic brake system parameters

    OpenAIRE

    Vladimirov, Oleg

    2005-01-01

    Emergency braking of a vehicle is bound with many factors, such as the behaviour of the driver, the drive of the vehicle braking system, the braking mechanisms, the condition of the tyres, and the properties of the pavement. This process involves all parameters of the system “the driver – the vehicle – the road”. In order to investigate the efficiency of braking process upon specific conditions, it is necessary to examine all physical processes that take place in the vehicle on pressing the b...

  20. Food Delivery System with the Utilization of Vehicle Using Geographical Information System (GIS) and A Star Algorithm

    Science.gov (United States)

    Siregar, B.; Gunawan, D.; Andayani, U.; Sari Lubis, Elita; Fahmi, F.

    2017-01-01

    Food delivery system is one kind of geographical information systems (GIS) that can be applied through digitation process. The main case in food delivery system is the way to determine the shortest path and food delivery vehicle movement tracking. Therefore, to make sure that the digitation process of food delivery system can be applied efficiently, it is needed to add shortest path determination facility and food delivery vehicle tracking. This research uses A Star (A*) algorithm for determining shortest path and location-based system (LBS) programming for moving food delivery vehicle object tracking. According to this research, it is generated the integrated system that can be used by food delivery driver, customer, and administrator in terms of simplifying the food delivery system. Through the application of shortest path and the tracking of moving vehicle, thus the application of food delivery system in the scope of geographical information system (GIS) can be executed.

  1. Environmental impacts of forest road construction on mountainous terrain.

    Science.gov (United States)

    Caliskan, Erhan

    2013-03-15

    Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.

  2. Environmental Impacts of Forest Road Construction on Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Erhan Caliskan

    2013-03-01

    Full Text Available Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2 and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient and very steep terrain (51-80% gradient. Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.

  3. The Optimal Steering Control System using Imperialist Competitive Algorithm on Vehicles with Steer-by-Wire System

    Directory of Open Access Journals (Sweden)

    F. Hunaini

    2015-03-01

    Full Text Available Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC and the Proportional, Integral and Derivative (PID control on the vehicle steering system using Imperialist Competitive Algorithm (ICA. The control systems are built in a cascade, FLC to suppress errors in the lateral motion and the PID control to minimize the error in the yaw motion of the vehicle. FLC is built has two inputs (error and delta error and single output. Each input and output consists of three Membership Function (MF in the form of a triangular for language term "zero" and two trapezoidal for language term "negative" and "positive". In order to work optimally, each MF optimized using ICA to get the position and width of the most appropriate. Likewise, in the PID control, the constant at each Proportional, Integral and Derivative control also optimized using ICA, so there are six parameters of the control system are simultaneously optimized by ICA. Simulations performed on vehicle models with 10 Degree Of Freedom (DOF, the plant input using the variables of steering that expressed in the desired trajectory, and the plant outputs are lateral and yaw motion. The simulation results showed that the FLC-PID control system optimized by using ICA can maintain the movement of vehicle according to the desired trajectory with lower error and higher speed limits than optimized with Particle Swarm Optimization (PSO.

  4. 4g-Based Specialty Vehicles Real-Time Monitoring System Design and Implementation

    Directory of Open Access Journals (Sweden)

    Zhuang Yu-Feng

    2017-01-01

    Full Text Available In the future development of natural gas transportation industry, emerging ITS technology will be applied more and more, aiming at integrating precise positioning technology, geographic information system technology, database technology, multimedia technology and modern communication technology, sensor network technology and video capture technology, so as to achieve the transport steam (oil vehicles in real time monitoring and management. The main research content of this paper is to design and research the monitoring and locating system of luck (oil vehicle based on 4G on Android System. Real-time monitoring and alarming by sensor module, real-time video recording and uploading through camera module, real-time position recording and uploading through GPS module, vehicle navigation module and quick alarm module, which is composed of five parts. The system is the application of new intelligent transport technology in the field of special vehicle transport. It apply electronic information technology and internet of things technology to the vehicle system, so we can monitor natural gas and other special dangerous goods anytime, anywhere.

  5. Computing visibility on terrains in external memory

    NARCIS (Netherlands)

    Haverkort, H.J.; Toma, L.; Zhuang, Yi

    2007-01-01

    We describe a novel application of the distribution sweeping technique to computing visibility on terrains. Given an arbitrary viewpoint v, the basic problem we address is computing the visibility map or viewshed of v, which is the set of points in the terrain that are visible from v. We give the

  6. 47 CFR 80.759 - Average terrain elevation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Average terrain elevation. 80.759 Section 80.759 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.759 Average terrain elevation. (a)(1) Draw radials...

  7. State-of-the-Art System Solutions for Unmanned Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    A. E. Yilmaz

    2009-12-01

    Full Text Available Unmanned Underwater Vehicles (UUVs have gained popularity for the last decades, especially for the purpose of not risking human life in dangerous operations. On the other hand, underwater environment introduces numerous challenges in navigation, control and communication of such vehicles. Certainly, this fact makes the development of these vehicles more interesting and engineering-wise more attractive. In this paper, we first revisit the existing technology and methodology for the solution of aforementioned problems, then we try to come up with a system solution of a generic unmanned underwater vehicles.

  8. System Interface for an Integrated Intelligent Safety System (ISS for Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2010-01-01

    Full Text Available This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS that includes an airbag deployment decision system (ADDS and a tire pressure monitoring system (TPMS. A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  9. Monitoring System for the Inspection of Vehicle Loads for Radioactivity

    International Nuclear Information System (INIS)

    Krishnamarchri, G.; Chaudhury, P.; Jain, A.; Kale, M. S.; Pradeepkumar, K. S.; Sharma, D. N.; Venkat Raj, V.

    2004-01-01

    From the nuclear facilities, inactive scrap may have to be sent periodically for disposal. The scrap is to be monitored to ensure that it is free from inadvertent mix up of contaminated material, which has got the potential of unwanted exposure to people as well as costly and time consuming clean up operations. Earlier the scrap carrying vehicles were monitored manually using portable radiation survey monitors by health physicists. A PC based monitoring system for the inspection of vehicle loads for radioactivity is developed and is in use which requires minimum manual interaction. The advantage of the system is that it can automatically screen all outgoing vehicles from the establishment. The PC based system consists of two detector boxes, each having three Plastic Scintillation detectors of 50 mm dia x 500 mm long. The processing unit is built around a PC addon card. Using the calibration factor (i.e., nGy/h per cps), the dose rate is computed and 'allow' / 'disallow' visual signal is generated in the PC located in a control room. The graphical user interface provides ON / OFF button for controlling the counting process and counting time interval can be set by the user as desired. All the six counters are synchronized for the process of counting. The acquired counts are displayed on the PC screen in the form of a count rate vs. time graph. At the completion of scanning of a vehicle, the counting is continued to acquire background radiation level till the next vehicle arrives. The processing unit estimates the radiation dose rate from these recorded counts by using already established calibration factor and displays the data on the monitor screen of the computer. If the determined dose rate exceeds the pre determined limit, an audio alarm is initiated and the alarm information is displayed on the monitor of the computer. The system has provision to enter information like vehicle registration number, type of the vehicle, origin of the load, destination etc. These

  10. Design and Implementation of Vehicle Navigation System in Urban Environments using Internet of Things (Iot)

    Science.gov (United States)

    Godavarthi, Bhavana; Nalajala, Paparao; Ganapuram, Vasavi

    2017-08-01

    Advanced vehicle monitoring and tracking system based on embedded Linux board and android application is designed and implemented for monitoring the school vehicle from any location A to location B at real time. The present system would make good use of new technology that based on embedded Linux namely Raspberry Pi and Smartphone android application. This system works on GPS/GPRS/GSM SIM900A. GPS finds the current location of the vehicle, GPRS sends the tracking information to the server and the GSM is used for sending alert message to vehicle’s owner mobile. This system is placed inside the vehicle whose position is to be determined on the web page and monitored at real time. There is a comparison between the current vehicle path already specified paths into the file system. Inside the raspberry pi’s file system taken from vehicle owners through android phone using android application. Means the selection of path from location A to B takes place from vehicle owner’s android application which gives more safety and secures traveling to the traveler. Hence the driver drives the vehicle only on the vehicle owner’s specified path. The driver drives the vehicle only on the vehicle owner’s specified path but if the driver drives in wrong path the message alert will be sent from this system to the vehicle owners mobile and also sent speakers alert to driver through audio jack. If the vehicles speed goes beyond the specified value of the speed, then warning message will be sent to owner mobile. This system also takes care of the traveler’s safety by using Gas leakage and Temperature sensors

  11. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  12. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  13. Use of MBS (ADAMS / CAR software in simulations of vehicle suspension systems

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2014-03-01

    Full Text Available The results of the examination of a vehicle suspension system in the plate position are presented in the paper. The model vehicle is a Fiat Seicento with front independent suspension, McPherson type, with the steering system and with the semi-trailing arm in the rear suspension. Identification of the model was made by comparing the simulation results with the results from the test stand. A multibody model of the vehicle will be used in studies of the impact of shock absorber technical conditions on the dynamics of automotive vehicles.

  14. Automatic Computer Mapping of Terrain

    Science.gov (United States)

    Smedes, H. W.

    1971-01-01

    Computer processing of 17 wavelength bands of visible, reflective infrared, and thermal infrared scanner spectrometer data, and of three wavelength bands derived from color aerial film has resulted in successful automatic computer mapping of eight or more terrain classes in a Yellowstone National Park test site. The tests involved: (1) supervised and non-supervised computer programs; (2) special preprocessing of the scanner data to reduce computer processing time and cost, and improve the accuracy; and (3) studies of the effectiveness of the proposed Earth Resources Technology Satellite (ERTS) data channels in the automatic mapping of the same terrain, based on simulations, using the same set of scanner data. The following terrain classes have been mapped with greater than 80 percent accuracy in a 12-square-mile area with 1,800 feet of relief; (1) bedrock exposures, (2) vegetated rock rubble, (3) talus, (4) glacial kame meadow, (5) glacial till meadow, (6) forest, (7) bog, and (8) water. In addition, shadows of clouds and cliffs are depicted, but were greatly reduced by using preprocessing techniques.

  15. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  16. Improved visibility computation on massive grid terrains

    NARCIS (Netherlands)

    Fishman, J.; Haverkort, H.J.; Toma, L.; Wolfson, O.; Agrawal, D.; Lu, C.-T.

    2009-01-01

    This paper describes the design and engineering of algorithms for computing visibility maps on massive grid terrains. Given a terrain T, specified by the elevations of points in a regular grid, and given a viewpoint v, the visibility map or viewshed of v is the set of grid points of T that are

  17. Terrain Classification of Norwegian Slab Avalanche Accidents

    Science.gov (United States)

    Hallandvik, Linda; Aadland, Eivind; Vikene, Odd Lennart

    2016-01-01

    It is difficult to rely on snow conditions, weather, and human factors when making judgments about avalanche risk because these variables are dynamic and complex; terrain, however, is more easily observed and interpreted. Therefore, this study aimed to investigate (1) the type of terrain in which historical fatal snow avalanche accidents in Norway…

  18. The design method and research status of vehicle detection system based on geomagnetic detection principle

    Science.gov (United States)

    Lin, Y. H.; Bai, R.; Qian, Z. H.

    2018-03-01

    Vehicle detection systems are applied to obtain real-time information of vehicles, realize traffic control and reduce traffic pressure. This paper reviews geomagnetic sensors as well as the research status of the vehicle detection system. Presented in the paper are also our work on the vehicle detection system, including detection algorithms and experimental results. It is found that the GMR based vehicle detection system has a detection accuracy up to 98% with a high potential for application in the road traffic control area.

  19. Optimal Electric Vehicle Scheduling: A Co-Optimized System and Customer Perspective

    Science.gov (United States)

    Maigha

    Electric vehicles provide a two pronged solution to the problems faced by the electricity and transportation sectors. They provide a green, highly efficient alternative to the internal combustion engine vehicles, thus reducing our dependence on fossil fuels. Secondly, they bear the potential of supporting the grid as energy storage devices while incentivising the customers through their participation in energy markets. Despite these advantages, widespread adoption of electric vehicles faces socio-technical and economic bottleneck. This dissertation seeks to provide solutions that balance system and customer objectives under present technological capabilities. The research uses electric vehicles as controllable loads and resources. The idea is to provide the customers with required tools to make an informed decision while considering the system conditions. First, a genetic algorithm based optimal charging strategy to reduce the impact of aggregated electric vehicle load has been presented. A Monte Carlo based solution strategy studies change in the solution under different objective functions. This day-ahead scheduling is then extended to real-time coordination using a moving-horizon approach. Further, battery degradation costs have been explored with vehicle-to-grid implementations, thus accounting for customer net-revenue and vehicle utility for grid support. A Pareto front, thus obtained, provides the nexus between customer and system desired operating points. Finally, we propose a transactive business model for a smart airport parking facility. This model identifies various revenue streams and satisfaction indices that benefit the parking lot owner and the customer, thus adding value to the electric vehicle.

  20. Embedded and real-time vehicle detection system for challenging on-road scenes

    Science.gov (United States)

    Gu, Qin; Yang, Jianyu; Kong, Lingjiang; Yan, Wei Qi; Klette, Reinhard

    2017-06-01

    Vehicle detection is an important topic for advanced driver-assistance systems. This paper proposes an adaptive approach for an embedded system by focusing on monocular vehicle detection in real time, also aiming at being accurate under challenging conditions. Scene classification is accomplished by using a simplified convolution neural network with hypothesis generation by SoftMax regression. The output is consequently taken into account to optimize detection parameters for hypothesis generation and testing. Thus, we offer a sample-reorganization mechanism to improve the performance of vehicle hypothesis verification. A hypothesis leap mechanism is in use to improve the operating efficiency of the on-board system. A practical on-road test is employed to verify vehicle detection (i.e., accuracy) and also the performance of the designed on-board system regarding speed.

  1. System and method for charging a plug-in electric vehicle

    Science.gov (United States)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.; Newhouse, Vernon L.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate the charging settings every time they charge the plug-in electric vehicle in a new location.

  2. Component Control System for a Vehicle

    Science.gov (United States)

    Fraser-Chanpong, Nathan (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Guo, Raymond (Inventor); Waligora, Thomas M. (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Reed, Ryan M. (Inventor)

    2016-01-01

    A vehicle includes a chassis, a modular component, and a central operating system. The modular component is supported by the chassis. The central operating system includes a component control system, a primary master controller, and a secondary master controller. The component control system is configured for controlling the modular component. The primary and secondary master controllers are in operative communication with the component control system. The primary and secondary master controllers are configured to simultaneously transmit commands to the component control system. The component control system is configured to accept commands from the secondary master controller only when a fault occurs in the primary master controller.

  3. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  4. LOD-based clustering techniques for efficient large-scale terrain storage and visualization

    Science.gov (United States)

    Bao, Xiaohong; Pajarola, Renato

    2003-05-01

    Large multi-resolution terrain data sets are usually stored out-of-core. To visualize terrain data at interactive frame rates, the data needs to be organized on disk, loaded into main memory part by part, then rendered efficiently. Many main-memory algorithms have been proposed for efficient vertex selection and mesh construction. Organization of terrain data on disk is quite difficult because the error, the triangulation dependency and the spatial location of each vertex all need to be considered. Previous terrain clustering algorithms did not consider the per-vertex approximation error of individual terrain data sets. Therefore, the vertex sequences on disk are exactly the same for any terrain. In this paper, we propose a novel clustering algorithm which introduces the level-of-detail (LOD) information to terrain data organization to map multi-resolution terrain data to external memory. In our approach the LOD parameters of the terrain elevation points are reflected during clustering. The experiments show that dynamic loading and paging of terrain data at varying LOD is very efficient and minimizes page faults. Additionally, the preprocessing of this algorithm is very fast and works from out-of-core.

  5. The Mysteries and Curiosities of Mars: A Tour of Unusual and Unexplained Terrains

    Science.gov (United States)

    Kerber, L.

    2017-12-01

    The large amount of data available from orbiting satellites around Mars has provided a wealth of information about the Martian surface and geological history. The published literature tends to focus on regions of Mars for which there are ready explanations; however, many regions of Mars remain mysterious. In this contribution, we present some of the strangest and least explained terrains on Mars: The Taffy Terrain: This complex terrain, consisting of swirling layers with variably sized bands, is present mostly at the bottom of Hellas Basin, but versions of it can also be found on the floor of Melas Chasma and in the Medusae Fossae Formation near Apollinaris Sulci. While little has been written about the taffy terrain, hypotheses include "glacial features" and salt domes. The taffy terrain bears some resemblance to submarine salt domes in the Gulf of Mexico, glacial deposits with mixed ash and ice in Iceland, or chalk formations in Egypt's White Desert. The Fishscale Terrain: At the northern edge of Lucus Planum, the friable Medusae Fossae Formation transitions into a chaos-like terrain with hundreds of mesas forming a pattern like the scales of a fish. While chaos terrains are mysterious in general, this morphologically fresh, near-equatorial chaos is especially unusual. Polygonal Ridges in Gordii Dorsum: Also a part of the Medusae Fossae Formation, the ridges in Gordii Dorsum represent a negative image of the fishscale terrain—a intricate lattice of slender black ridges. These are thought to form via the embayment of the fishscale terrain with lava and the subsequent erosion of the original mesas. Horseshoe Features: These geomorphological features look like inverted barchan dunes, but they are actually pits eroded into the surface of the Medusae Fossae Formation. Channels surrounding Elysium Mons: These channel systems are among the most complex on Mars, but they appear on a young Amazonian lava surface. The channels cut through topography, anastomose, and

  6. Optimization of Wind Farm Layout in Complex Terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Yang, Jianchuan; Li, Chenqi

    2013-01-01

    Microscopic site selection for wind farms in complex terrain is a technological difficulty in the development of onshore wind farms. This paper presented a method for optimizing wind farm layout in complex terrain. This method employed Lissaman and Jensen wake models, took wind velocity distribut......Microscopic site selection for wind farms in complex terrain is a technological difficulty in the development of onshore wind farms. This paper presented a method for optimizing wind farm layout in complex terrain. This method employed Lissaman and Jensen wake models, took wind velocity...... are subject to boundary conditions and minimum distance conditions. The improved genetic algorithm (GA) for real number coding was used to search the optimal result. Then the optimized result was compared to the result from the experienced layout method. Results show the advantages of the present method...

  7. Rough terrain motion planning for actively reconfigurable mobile robots

    International Nuclear Information System (INIS)

    Brunner, Michael

    2015-01-01

    In the aftermath of the Tohoku earthquake and the nuclear meltdown at the power plant of Fukushima Daiichi in 2011, reconfigurable robots like the iRobot Packbot were deployed. Instead of humans, the robots were used to investigate contaminated areas. Other incidents are the two major earthquakes in Northern Italy in May 2012. Besides many casualties, a large number of historical buildings was severely damaged. Due to the imminent danger of collapse, it was too dangerous for rescue personnel to enter many of the buildings. Therefore, the sites were inspected by reconfigurable robots, which are able to traverse the rubble and debris of the partially destroyed buildings. This thesis develops a navigation system enabling wheeled and tracked robots to safely traverse rough terrain and challenging structures. It consists of a planning mechanism and a controller. The focus of this thesis, however, is on the contribution to motion planning. The planning scheme employs a hierarchical approach to motion planning for actively reconfigurable robots in rough environments. Using a map of the environment the algorithm estimates the traversability under the consideration of uncertainties. Based on this analysis, an initial path search determines an approximate solution with respect to the robot's operating limits.Subsequently, a detailed planning step refines the initial path where it is required. The refinement step considers the robot's actuators and stability in addition to the quantities of the first search. Determining the robot-terrain interaction is very important in rough terrain. This thesis presents two path refinement approaches: a deterministic and a randomized approach. The experimental evaluation investigates the separate components of the planning scheme, the robot-terrain interaction for instance.In simulation as well as in real world experiments the evaluation demonstrates the necessity of such a planning algorithm in rough terrain and it provides

  8. Rough terrain motion planning for actively reconfigurable mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Michael

    2015-02-05

    In the aftermath of the Tohoku earthquake and the nuclear meltdown at the power plant of Fukushima Daiichi in 2011, reconfigurable robots like the iRobot Packbot were deployed. Instead of humans, the robots were used to investigate contaminated areas. Other incidents are the two major earthquakes in Northern Italy in May 2012. Besides many casualties, a large number of historical buildings was severely damaged. Due to the imminent danger of collapse, it was too dangerous for rescue personnel to enter many of the buildings. Therefore, the sites were inspected by reconfigurable robots, which are able to traverse the rubble and debris of the partially destroyed buildings. This thesis develops a navigation system enabling wheeled and tracked robots to safely traverse rough terrain and challenging structures. It consists of a planning mechanism and a controller. The focus of this thesis, however, is on the contribution to motion planning. The planning scheme employs a hierarchical approach to motion planning for actively reconfigurable robots in rough environments. Using a map of the environment the algorithm estimates the traversability under the consideration of uncertainties. Based on this analysis, an initial path search determines an approximate solution with respect to the robot's operating limits.Subsequently, a detailed planning step refines the initial path where it is required. The refinement step considers the robot's actuators and stability in addition to the quantities of the first search. Determining the robot-terrain interaction is very important in rough terrain. This thesis presents two path refinement approaches: a deterministic and a randomized approach. The experimental evaluation investigates the separate components of the planning scheme, the robot-terrain interaction for instance.In simulation as well as in real world experiments the evaluation demonstrates the necessity of such a planning algorithm in rough terrain and it provides

  9. Modal and Dynamic Analysis of a Vehicle with Kinetic Dynamic Suspension System

    Directory of Open Access Journals (Sweden)

    Bangji Zhang

    2016-01-01

    Full Text Available A novel kinetic dynamic suspension (KDS system is presented for the cooperative control of the roll and warp motion modes of off-road vehicles. The proposed KDS system consists of two hydraulic cylinders acting on the antiroll bars. Hence, the antiroll bars are not completely replaced by the hydraulic system, but both systems are installed. In this paper, the vibration analysis in terms of natural frequencies of different motion modes in frequency domain for an off-road vehicle equipped with different configurable suspension systems is studied by using the modal analysis method. The dynamic responses of the vehicle with different configurable suspension systems are investigated under different road excitations and maneuvers. The results of the modal and dynamic analysis prove that the KDS system can reduce the roll and articulation motions of the off-road vehicle without adding extra bounce stiffness and deteriorating the ride comfort. Furthermore, the roll stiffness is increased and the warp stiffness is decreased by the KDS system, which could significantly enhance handing performance and off-road capability.

  10. Exergy analysis of thermal management system for range-extended electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hamut, H. S.; Dincer, I.; Naterer, G. F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: Ibrahim.Dincer@uoit.ca

    2011-07-01

    In the last few decades, the energy crisis, increasing gas prices and concerns over environmental pollution have encouraged the development of electric vehicle (EV) and hybrid electric vehicle (HEV) technologies. In this paper, a thermal management system (TMS) installed in a range-extended electric vehicle is examined and is found to have a substantial impact on battery efficiency and vehicle performance. An exergy analysis was conducted on the refrigeration and coolant circuits and the Coefficient of Performance (COP) of the baseline system was determined to be 2.0 with a range of 1.8 to 2.4. The overall exergy was found to be 32% with a range of 26% to 39%. Ambient temperature had the largest impact on overall exergy efficiency but there is a need to further investigate temperature effects on battery efficiency, since the battery's performance has such a high impact on vehicle performance overall.

  11. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    Science.gov (United States)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  12. Inductively coupled power systems for electric vehicles: a fourth dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, J G

    1980-09-01

    There are three traditional methods of supplying energy to electric vehicles. The inductively coupled roadway power system is a fourth method that adds important new dimensions to electric-vehicle capabilities. It efficiently transfers power to moving vehicles without physical contact, freeing the electric vehicle from most of the applicational constraints imposed by the other three methods. The single power conductor in the roadway carries several hundred amperes of alternating current. The current causes a weak magnetic flux to circulate through the air above it when a vehicle's power pickup is not present. When a vehicle's pickup is suported over the inductor, a more intense flux circulates through the steel cores in the road and in the pickup. Applications, electrical safety, and present status of the technology are discussed in the paper presented at the St. Louis EXPO '80.

  13. Effects of electric vehicles on power systems in Northern Europe

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Ravn, Hans; Juul, Nina

    2012-01-01

    In this study, it is analysed how a large-scale implementation of plug-in hybrid electric vehicles and battery electric vehicles towards 2030 would influence the power systems of five Northern European countries, Denmark, Finland, Germany, Norway, and Sweden. Increasing shares of electric vehicles...... (EVs) are assumed; comprising 2.5%, 15%, 34%, and 53% of the private passenger vehicle fleet in 2015, 2020, 2025, and 2030, respectively. Results show that when charged/discharged intelligently, EVs can facilitate significantly increased wind power investments already at low vehicle fleet shares....... Moreover, due to vehicle-to-grid capability, EVs can reduce the need for new coal/natural gas power capacities. Wind power can be expected to provide a large share of the electricity for EVs in several of the countries. However, if EVs are not followed up by economic support for renewable energy...

  14. Running over unknown rough terrain with a one-legged planar robot

    International Nuclear Information System (INIS)

    Andrews, Ben; Miller, Bruce; Clark, Jonathan E; Schmitt, John

    2011-01-01

    The ability to traverse unknown, rough terrain is an advantage that legged locomoters have over their wheeled counterparts. However, due to the complexity of multi-legged systems, research in legged robotics has not yet been able to reproduce the agility found in the animal kingdom. In an effort to reduce the complexity of the problem, researchers have developed single-legged models to gain insight into the fundamental dynamics of legged running. Inspired by studies of animal locomotion, researchers have proposed numerous control strategies to achieve stable, one-legged running over unknown, rough terrain. One such control strategy incorporates energy variations into the system during the stance phase by changing the force-free leg length as a sinusoidal function of time. In this research, a one-legged planar robot capable of implementing this and other state-of-the-art control strategies was designed and built. Both simulated and experimental results were used to determine and compare the stability of the proposed controllers as the robot was subjected to unknown drop and raised step perturbations equal to 25% of the nominal leg length. This study illustrates the relative advantages of utilizing a minimal-sensing, active energy removal control scheme to stabilize running over rough terrain.

  15. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  16. Vehicle systems design optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  17. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    Science.gov (United States)

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second

  18. Design of a Tele-Control Electrical Vehicle System Using a Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    M. Boukhnifer

    2012-11-01

    Full Text Available This paper presents a fuzzy logic design of a tele-control electrical vehicle system. We showed that the application of fuzzy logic control allows the stability of tele-vehicle system in spite of communication delays between the operator and the vehicle. A robust bilateral controller design using fuzzy logic frameworks was proposed. This approach allows a convenient means to trade off robustness and stability for a pre-specified time-delay margin. Both the performance and robustness of the proposed method were demonstrated by simulation results for a constant time delay between the operator and the electrical vehicle system.

  19. Productive uncertainty. Notes on Terrain Vague

    Directory of Open Access Journals (Sweden)

    Francesco Marullo

    2014-12-01

    Full Text Available Terrain vague is usually synonym for a place exceeding the traditional categories of the city. Juxtaposing entropy to definite zones of containment, abandonment and emptiness to consolidated urban fabric, ceaseless transformation to historical stratification, informality and illegal activities to controlled jurisdictions, the terrain vague acts a sort of ruin, where the city is at the point of both being forgotten and disclosing its imminent future, eluding any of its regular uses and functioning mechanisms.

  20. TERRAIN, BERKS COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  1. TERRAIN, PIERCE, COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  2. TERRAIN, DARKE COUNTY, OH

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  3. TERRAIN, RICE COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  4. TERRAIN, JONES COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  5. TERRAIN, Norfolk County, Massachusetts

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  6. TERRAIN, JEFFERSON COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  7. TERRAIN, WRIGHT COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  8. TERRAIN, RANKIN COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  9. TERRAIN, Pierce County, WA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  10. TERRAIN, MITCHELL COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  11. TERRAIN, DAWSON COUNTY, NE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  12. TERRAIN, BARNSTABLE COUNTY, MASSACHUSETTS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  13. TERRAIN, FRANKLIN COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  14. TERRAIN, CLALLAM COUNTY, WASHINGTON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  15. TERRAIN, HOWARD COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  16. TERRAIN, NEWTON COUNTY, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographical data that were used to create...

  17. TERRAIN, PIKE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  18. TERRAIN, Lincoln County, AR

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  19. TERRAIN, KENDALL COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  20. TERRAIN, LEON COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  1. TERRAIN, SNOHOMISH COUNTY, WASHINGTON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  2. TERRAIN, TRAVIS COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  3. TERRAIN, Bennington County, Vermont

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  4. TERRAIN, Northampton COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...

  5. TERRAIN, POTTER COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...

  6. TERRAIN, UNION PARISH, LOUSIANA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  7. TERRAIN, KITSAP COUNTY, WASHINGTON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...

  8. TERRAIN, WAYNE COUNTY, TENNESSEE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  9. TERRAIN, TROUSDALE COUNTY, TENNESSEE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  10. Battery- and aging-aware embedded control systems for electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Probstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2014-01-01

    In this paper, for the first time, we propose a battery- and aging-aware optimization framework for embedded control systems design in electric vehicles (EVs). Performance and reliability of an EV are influenced by feedback control loops implemented into in-vehicle electrical/electronic (E/E)

  11. Multi-objective scheduling of electric vehicles in smart distribution system

    International Nuclear Information System (INIS)

    Zakariazadeh, Alireza; Jadid, Shahram; Siano, Pierluigi

    2014-01-01

    Highlights: • Environmental/economic operational scheduling of electric vehicles. • The Vehicle to Grid capability and the actual patterns of drivers are considered. • A novel conceptual model for an electric vehicle management system is proposed. - Abstract: When preparing for the widespread adoption of Electric Vehicles (EVs), an important issue is to use a proper EVs’ charging/discharging scheduling model that is able to simultaneously consider economic and environmental goals as well as technical constraints of distribution networks. This paper proposes a multi-objective operational scheduling method for charging/discharging of EVs in a smart distribution system. The proposed multi-objective framework, based on augmented ε-constraint method, aims at minimizing the total operational costs and emissions. The Vehicle to Grid (V2G) capability as well as the actual patterns of drivers are considered in order to generate the Pareto-optimal solutions. The Benders decomposition technique is used in order to solve the proposed optimization model and to convert the large scale mixed integer nonlinear problem into mixed-integer linear programming and nonlinear programming problems. The effectiveness of the proposed resources scheduling approach is tested on a 33-bus distribution test system over a 24-h period. The results show that the proposed EVs’ charging/discharging method can reduce both of operation cost and air pollutant emissions

  12. Context-aware system for pre-triggering irreversible vehicle safety actuators.

    Science.gov (United States)

    Böhmländer, Dennis; Dirndorfer, Tobias; Al-Bayatti, Ali H; Brandmeier, Thomas

    2017-06-01

    New vehicle safety systems have led to a steady improvement of road safety and a reduction in the risk of suffering a major injury in vehicle accidents. A huge leap forward in the development of new vehicle safety systems are actuators that have to be activated irreversibly shortly before a collision in order to mitigate accident consequences. The triggering decision has to be based on measurements of exteroceptive sensors currently used in driver assistance systems. This paper focuses on developing a novel context-aware system designed to detect potential collisions and to trigger safety actuators even before an accident occurs. In this context, the analysis examines the information that can be collected from exteroceptive sensors (pre-crash data) to predict a certain collision and its severity to decide whether a triggering is entitled or not. A five-layer context-aware architecture is presented, that is able to collect contextual information about the vehicle environment and the actual driving state using different sensors, to perform reasoning about potential collisions, and to trigger safety functions upon that information. Accident analysis is used in a data model to represent uncertain knowledge and to perform reasoning. A simulation concept based on real accident data is introduced to evaluate the presented system concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  14. Development of an automated vehicle stop system for cardiac emergencies

    Directory of Open Access Journals (Sweden)

    Tung T. Nguyen

    2017-06-01

    Full Text Available This paper describes the concept and configuration of a novel automated safety vehicle stop system, and a future prospect of the study. Intrinsic sudden death may cause traffic accident since such accidents sometimes involve not only the driver but also other traffic users such as passengers and pedestrians. Cardiovascular disease (CVD is considered as a serious driving risk factor. The pain and others effects of cardiac events degrade driver’s performance, and CVD causes ischemia brought by the CVD induces incapacity of driving. In the automated safety vehicle stop system, which our research group has developed, steer-sensors collects bio-signals and a camera captures the driver’s posture to monitor driver’s incapability. When the driver loses his or her driving capability, the system takes over the maneuver of the vehicle and automatically drives to a safety spot by observing the traffic environment. An emergency scenario was used to demonstrate the system verifying its potential.

  15. On-the-Fly Decompression and Rendering of Multiresolution Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, P; Cohen, J D

    2009-04-02

    We present a streaming geometry compression codec for multiresolution, uniformly-gridded, triangular terrain patches that supports very fast decompression. Our method is based on linear prediction and residual coding for lossless compression of the full-resolution data. As simplified patches on coarser levels in the hierarchy already incur some data loss, we optionally allow further quantization for more lossy compression. The quantization levels are adaptive on a per-patch basis, while still permitting seamless, adaptive tessellations of the terrain. Our geometry compression on such a hierarchy achieves compression ratios of 3:1 to 12:1. Our scheme is not only suitable for fast decompression on the CPU, but also for parallel decoding on the GPU with peak throughput over 2 billion triangles per second. Each terrain patch is independently decompressed on the fly from a variable-rate bitstream by a GPU geometry program with no branches or conditionals. Thus we can store the geometry compressed on the GPU, reducing storage and bandwidth requirements throughout the system. In our rendering approach, only compressed bitstreams and the decoded height values in the view-dependent 'cut' are explicitly stored on the GPU. Normal vectors are computed in a streaming fashion, and remaining geometry and texture coordinates, as well as mesh connectivity, are shared and re-used for all patches. We demonstrate and evaluate our algorithms on a small prototype system in which all compressed geometry fits in the GPU memory and decompression occurs on the fly every rendering frame without any cache maintenance.

  16. Vehicle Propulsion Systems Introduction to Modeling and Optimization

    CERN Document Server

    Guzzella, Lino

    2013-01-01

    This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.

  17. VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

    Directory of Open Access Journals (Sweden)

    Fabio Arnéz

    2014-01-01

    Full Text Available Intelligent Transport Systems (ITS are emerging technologies for building collaborative vehicular networks to increase road safety and to improve driver’s experience. Unfortunately these technologies require heavy infrastructure to be deployed inside and outside the vehicle that is difficult to extend. In this article we present VIRMS (Vehicle Information and Road Monitoring System, an ITS that is based on low-cost and small footprint client and server infrastructure that was designed to increase vehicular security and reduce accident rates along highways. The VIRMS remote client device is an on board vehicle electronic device that gathers data from sensors and processes the collected data that is sent to the VIRMS server in order to keep drivers informed with precise context information through the detection and identification of events (accidents, traffic jams, bad weather conditions, etc. along the roads. A prototype running tests on Bolivian highways show that VIRMS can give a technological answer to a real problem where road safety is one of the highest issues and cause of mortality.

  18. A brick-architecture-based mobile under-vehicle inspection system

    Science.gov (United States)

    Qian, Cheng; Page, David; Koschan, Andreas; Abidi, Mongi

    2005-05-01

    In this paper, a mobile scanning system for real-time under-vehicle inspection is presented, which is founded on a "Brick" architecture. In this "Brick" architecture, the inspection system is basically decomposed into bricks of three kinds: sensing, mobility, and computing. These bricks are physically and logically independent and communicate with each other by wireless communication. Each brick is mainly composed by five modules: data acquisition, data processing, data transmission, power, and self-management. These five modules can be further decomposed into submodules where the function and the interface are well-defined. Based on this architecture, the system is built by four bricks: two sensing bricks consisting of a range scanner and a line CCD, one mobility brick, and one computing brick. The sensing bricks capture geometric data and texture data of the under-vehicle scene, while the mobility brick provides positioning data along the motion path. Data of these three modalities are transmitted to the computing brick where they are fused and reconstruct a 3D under-vehicle model for visualization and danger inspection. This system has been successfully used in several military applications and proved to be an effective safer method for national security.

  19. System safety engineering in the development of advanced surface transportation vehicles

    Science.gov (United States)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  20. Electric vehicle equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett

    2013-08-13

    Methods, systems, and apparatus for interfacing an electric vehicle with an electric power grid are disclosed. An exemplary apparatus may include a station communication port for interfacing with electric vehicle station equipment (EVSE), a vehicle communication port for interfacing with a vehicle management system (VMS), and a processor coupled to the station communication port and the vehicle communication port to establish communication with the EVSE via the station communication port, receive EVSE attributes from the EVSE, and issue commands to the VMS to manage power flow between the electric vehicle and the EVSE based on the EVSE attributes. An electric vehicle may interface with the grid by establishing communication with the EVSE, receiving the EVSE attributes, and managing power flow between the EVE and the grid based on the EVSE attributes.

  1. Integration of Disaster Detection and Warning System for a Smart Vehicle

    Directory of Open Access Journals (Sweden)

    Chun-Chieh Wang

    2014-02-01

    Full Text Available For firefighters and rescuers, the disaster relief works are difficulty performed in the tunnels because of their constricted space. To reduce the losses of accident, the safety of tunnels and factories should be ordinarily kept under surveillance. Hence, a multisensor based smart tracked vehicle is designed for the application of autonomous detection and surveillance in this paper. Besides, multisensors, communication modules, wireless cameras, an electronic compass, and a GPS module are installed in the vehicle. The key feature is the integration of disaster detection and warning systems so that the vehicle can move autonomously. Furthermore, a LabVIEW graphical programming software is applied to design a human machine interface (HMI and integrate all systems such that the vehicle can be guided by High Speed Downlink Packet Access (HSHPA based remote control. Moreover, basic stamp microcontrollers are utilized as its control kernel such that the remote monitoring and control system (RMCS can be constructed successfully.

  2. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  3. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Science.gov (United States)

    2012-08-07

    ... Systems for Electric Vehicle Fueling AGENCY: National Institute of Standards and Technology, Commerce... electric vehicle fuel. There is no cost for participating in the Work Group. No proprietary information... and sell electricity dispensed as a vehicle fuel) and to ensure that the prescribed methodologies and...

  4. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Science.gov (United States)

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  5. FY2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization.

  6. Slip estimation methods for proprioceptive terrain classification using tracked mobile robots

    CSIR Research Space (South Africa)

    Masha, Ditebogo F

    2017-11-01

    Full Text Available Recent work has shown that proprioceptive measurements such as terrain slip can be used for terrain classification. This paper investigates the suitability of four simple slip estimation methods for differentiating between indoor and outdoor terrain...

  7. Basic Approaches of Complex Interaction DrumTerrain for Vibratory Compaction

    Directory of Open Access Journals (Sweden)

    Gigel Florin Capatana

    2013-09-01

    Full Text Available In this paper the author tries to use a new method to evaluate and analyze the interaction between roller and terrain. The analysis is rheological approached, with a predominantly dynamic behaviour, so as to reveal the compatibility of the working body performances with the characteristics of the terrain. The basic idea shows that it must be assured the energy transfer maximization in the interaction between the two components of the system. The model must have permanent and continuous adjustments of the material characteristics so it can be evaluated the technological capability. The fulfilling of these objectives will be provided by using a complex model with both distributed and concentrated elements which can have rheology of elastic, dissipative and plastic types. The first conclusions of the presented study goes to the idea that the harmonization of the basic parameters of the model with the experimental values can lead to structural and functional optimizations of the entire technological system.

  8. 75 FR 23306 - Establishment of Advisory Committee on the National Motor Vehicle Title Information System

    Science.gov (United States)

    2010-05-03

    ... Advisory Committee on the National Motor Vehicle Title Information System AGENCY: Office of Justice Programs (OJP), Justice. ACTION: Notice of establishment of the National Motor Vehicle Title Information System (NMVTIS) Advisory Board. SUMMARY: Pursuant to the National Motor Vehicle Title Information System...

  9. Interactive Editing of GigaSample Terrain Fields

    KAUST Repository

    Treib, Marc

    2012-05-01

    Previous terrain rendering approaches have addressed the aspect of data compression and fast decoding for rendering, but applications where the terrain is repeatedly modified and needs to be buffered on disk have not been considered so far. Such applications require both decoding and encoding to be faster than disk transfer. We present a novel approach for editing gigasample terrain fields at interactive rates and high quality. To achieve high decoding and encoding throughput, we employ a compression scheme for height and pixel maps based on a sparse wavelet representation. On recent GPUs it can encode and decode up to 270 and 730 MPix/s of color data, respectively, at compression rates and quality superior to JPEG, and it achieves more than twice these rates for lossless height field compression. The construction and rendering of a height field triangulation is avoided by using GPU ray-casting directly on the regular grid underlying the compression scheme. We show the efficiency of our method for interactive editing and continuous level-of-detail rendering of terrain fields comprised of several hundreds of gigasamples. © 2012 The Author(s).

  10. EVALUATION OF A CONCEPTUAL VEHICLE STEERING SYSTEM FOR INDEPENDENT WHEEL CONTROL

    Directory of Open Access Journals (Sweden)

    Ryszard BUCHALIK

    2017-03-01

    Full Text Available This paper presents a brief description of an unconventional steering system involving electronic stability control and its influence on vehicle motion. The proposed configuration enables individual changes in steering angle for each single wheel, in contrast to the mechanical linkage solution. An analysis of vehicle behaviour during emergency braking on a heterogeneous surface is conducted, especially with regard to the undesirable rotation of the vehicle body. The benefits of using this active steering system, implemented in the steer-by-wire mode, are characterized, while the problems for further consideration and the potential benefits of such a solution are described.

  11. Terrain classification and land hazard mapping in Kalsi-Chakrata area (Garhwal Himalaya), India

    Science.gov (United States)

    Choubey, Vishnu D.; Litoria, Pradeep K.

    Terrain classification and land system mapping of a part of the Garhwal Himalaya (India) have been used to provide a base map for land hazard evaluation, with special reference to landslides and other mass movements. The study was based on MSS images, aerial photographs and 1:50,000 scale maps, followed by detailed field-work. The area is composed of two groups of rocks: well exposed sedimentary Precambrian formations in the Himalayan Main Boundary Thrust Belt and the Tertiary molasse deposits of the Siwaliks. Major tectonic boundaries were taken as the natural boundaries of land systems. A physiographic terrain classification included slope category, forest cover, occurrence of landslides, seismicity and tectonic activity in the area.

  12. Gravity Terrain Effect of the Seafloor Topography in Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong Tai-Rong Guo

    2007-01-01

    Full Text Available Gravity terrain correction is used to compensate for the gravitational effects of the topography residual to the Bouguer plate. The seafloor topography off the eastern offshore of Taiwan is extremely rugged, and the depth of the sea bottom could be greater than 5000 m. In order to evaluate the terrain effect caused by the seafloor topography, a modern computer algorithm is used to calculate the terrain correction based on the digital elevation model (DEM.

  13. ISSUES AND RECENT TRENDS IN VEHICLE SAFETY COMMUNICATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sadayuki TSUGAWA

    2005-01-01

    Full Text Available This paper surveys the research on the applications of inter-vehicle communications, the issues of the deployment and technology, and the current status of inter-vehicle communications projects in Europe, the United States and Japan. The inter-vehicle communications, defined here as communications between on-board ITS computers, improve road traffic safety and efficiency by expanding the horizon of the drivers and on-board sensors. One of the earliest studies on inter-vehicle communications began in Japan in the early 1980s. The inter-vehicle communications play an essential role in automated platooning and cooperative driving systems developed since the 1990's by enabling vehicles to obtain data that would be difficult or impossible to measure with on-board sensors. During these years, interest in applications for inter-vehicle communications increased in the EU, the US and Japan, resulting in many national vehicle safety communications projects such as CarTALK2000 in the EU and VSCC in the US. The technological issues include protocol and communications media. Experiments employ various kinds of protocols and typically use infrared, microwave or millimeter wave media. The situation is ready for standardization. The deployment strategy is another issue. To be feasible, deployment should begin with multiple rather than single services that would work even at a low penetration rate of the communication equipment. In addition, non-technological, legal and institutional issues remained unsolved. Although inter-vehicle communications involve many issues, such applications should be promoted because they will lead to safer and more efficient automobile traffic.

  14. Design of Embedded System and Data Communication for an Agricultural Autonomous Vehicle

    DEFF Research Database (Denmark)

    Nielsen, Jens F. Dalsgaard; Nielsen, Kirsten Mølgaard; Bendtsen, Jan Dimon

    2005-01-01

    This paper describes an implemented design of an autonomous vehicle used in precision agriculture for weed and crop map construction with special focus on the onboard controlsystem, the embedded system and the datacommunication system. The vehicle is four wheel driven and four wheel steered (eight...

  15. Estimating Slopes In Images Of Terrain By Use Of BRDF

    Science.gov (United States)

    Scholl, Marija S.

    1995-01-01

    Proposed method of estimating slopes of terrain features based on use of bidirectional reflectivity distribution function (BRDF) in analyzing aerial photographs, satellite video images, or other images produced by remote sensors. Estimated slopes integrated along horizontal coordinates to obtain estimated heights; generating three-dimensional terrain maps. Method does not require coregistration of terrain features in pairs of images acquired from slightly different perspectives nor requires Sun or other source of illumination to be low in sky over terrain of interest. On contrary, best when Sun is high. Works at almost all combinations of illumination and viewing angles.

  16. Path Planning Software and Graphics Interface for an Autonomous Vehicle, Accounting for Terrain Features

    National Research Council Canada - National Science Library

    Hurezeanu, Vlad

    2000-01-01

    A Navigation Test Vehicle (NTV) is being developed at the Center for Intelligent Machines and Robots at the University of Florida under the sponsorship of the Air Force Research Laboratory at Tyndall Air Force Base...

  17. Distributed energy storage systems on the basis of electric-vehicle fleets

    Science.gov (United States)

    Zhuk, A. Z.; Buzoverov, E. A.; Sheindlin, A. E.

    2015-01-01

    Several power technologies directed to solving the problem of covering nonuniform loads in power systems are developed at the Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS). One direction of investigations is the use of storage batteries of electric vehicles to compensate load peaks in the power system (V2G—vehicle-to-grid technology). The efficiency of energy storage systems based on electric vehicles with traditional energy-saving technologies is compared in the article by means of performing computations. The comparison is performed by the minimum-cost criterion for the peak energy supply to the system. Computations show that the distributed storage systems based on fleets of electric cars are efficient economically with their usage regime to 1 h/day. In contrast to traditional methods, the prime cost of regulation of the loads in the power system based on V2G technology is independent of the duration of the load compensation period (the duration of the consumption peak).

  18. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  19. Load calculation and system evaluation for electric vehicle climate control

    International Nuclear Information System (INIS)

    Aceves-Saborio, S.; Comfort, W.J.

    1994-01-01

    Providing air conditioning for electric vehicles (EV's) represents an important challenge, because vapor-compression air conditioners, which are common in gasoline-powered vehicles, may consume a substantial part of the total energy stored in the EV battery. The authors' work has two major parts: a cooling and heating load calculation for EV's, and an evaluation of several systems that can be used to provide the desired cooling and heating in EV's. Four cases are studied: short-range and full-range EV's are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat-reflecting windows, to reduce hot soak. Results indicate that for the batteries currently available for EV propulsion, an ice storage system has the minimum weight of all the systems considered. Vapor-compression air conditioners have the minimum for battery storage capacities above 270 kJ/kg

  20. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.

    Science.gov (United States)

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-04-22

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.

  1. Terrain reconstruction based on descent images for the Chang’e III landing area

    Directory of Open Access Journals (Sweden)

    Xu Xinchao

    2015-10-01

    Full Text Available A new method that combined image matching and shape from shading for terrain reconstruction was proposed to solve the lack of terrain in the landing area of Chang'e III. First, the reflection equation was established based on the Lommel– Seeliger reflection model. After edge extraction, the gradients of points on the edge were solved. The normal vectors of adjacent points were obtained using the smoothness constraint. Furthermore, the gradients of residual points in the image were determined through evolution. The inadequacy of the reflection equation was eliminated by considering the gradient as the constraint of the reflection equation. The normal vector of each point could be obtained by solving the reflection equation. The terrain without coordinate information was reconstructed by iterating the vector field. After using scaleinvariant feature transform to extract matching points in the descent images, the terrain was converted to a lander centroid coordinate system. Experiments were carried out with MATLAB-simulated images, laboratory images, and descent images of Chang'e III. Results show that the proposed method performs better than the classical SFS algorithm. The new method can provide reference for other deep space exploration activities.

  2. Atmospheric dispersion experiments over complex terrain in a spanish valley site (Guardo-90)

    International Nuclear Information System (INIS)

    Ibarra, J.I.

    1991-01-01

    An intensive field experimental campaign was conducted in Spain to quantify atmospheric diffusion within a deep, steep-walled valley in rough, mountainous terrain. The program has been sponsored by the spanish companies of electricity and is intended to validate existing plume models and to provide the scientific basis for future model development. The atmospheric dispersion and transport processes in a 40x40 km domain were studied in order to evaluate SO 2 and SF 6 releases from an existing 185 m chimney and ground level sources in a complex terrain valley site. Emphasis was placed on the local mesoscale flows and light wind stable conditions. Although the measuring program was intensified during daytime for dual tracking of SO 2 /SF 6 from an elevated source, nighttime experiments were conducted for mountain-valley flows characterization. Two principle objectives were pursued: impaction of plumes upon elevated terrain, and diffusion of gases within the valley versus diffusion over flat, open terrain. Artificial smoke flows visualizations provided qualitative information: quantitative diffusion measurements were obtained using sulfur hexafluoride gas with analysis by highly sensitive electron capture gas chromatographs systems. Fourteen 2 hours gaseous tracer releases were conducted

  3. Long-term impacts of battery electric vehicles on the German electricity system

    Science.gov (United States)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  4. IMPROVEMENT OF TRAFFIC SAFETY BY ROAD-VEHICLE COOPERATIVE SMART CRUISE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Akio HOSAKA

    2000-01-01

    Full Text Available Hopes have been pinned on the development of intelligent systems for road traffic as a way of solving road traffic safety and other such issues. To be sure, work is moving ahead with the incorporation of intelligent systems into automobiles but, with automobiles alone, there are limits in areas such as environment recognition. Compensation for the limits imposed by automobiles can be provided by the support given to environment recognition and related areas of road infrastructure. This paper examines the special features of vehicles and road infrastructure, and describes what role is played by roads and what role is played by vehicles. On the basis of the observations made, road-vehicle cooperative support systems called “smart cruise systems”, which are currently being developed, will be introduced and the expected effects of these systems will be outlined.

  5. A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Seiber, Larry Eugene [ORNL; White, Cliff P [ORNL; Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL

    2016-01-01

    Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.

  6. 48 CFR 52.251-2 - Interagency Fleet Management System Vehicles and Related Services.

    Science.gov (United States)

    2010-10-01

    ... CLAUSES Text of Provisions and Clauses 52.251-2 Interagency Fleet Management System Vehicles and Related Services. As prescribed in 51.205, insert the following clause: Interagency Fleet Management System... to obtain interagency fleet management system vehicles and related services for use in the...

  7. Grid-connected vehicles as the core of future land-based transport systems

    International Nuclear Information System (INIS)

    Gilbert, Richard; Perl, Anthony

    2007-01-01

    Grid-connected vehicles (GCVs)-e.g., electric trains, metros, trams, and trolley buses-are propelled by electric motors directly connected to remote power sources. Their low at-vehicle energy consumption and ability to use a wide range of renewable energy sources make them strong contenders for urban and interurban transport systems in an era of energy constraints that favours use of renewable fuels, which may lie ahead. Needs for autonomous motorised mobility could be acceptably met in large measure by deployment of personal GCVs, also known as personal rapid transit (PRT). Alternatives, including fuel-cell vehicles and dual-drive vehicles fuelled with ethanol, will be less feasible. The 'car of the future' may not be an automobile so much as a PRT element of a comprehensive GCV-based system that offers at least as much utility and convenience as today's transport systems

  8. The MEDEA/JASON remotely operated vehicle system

    Science.gov (United States)

    Ballard, Robert D.

    1993-08-01

    The remotely operated vehicle (ROV) system MEDEA/JASON has been under development for the last decade. Adter a number of engineering test cruises, including the discovery of the R.M.S. Titanic and the German Battleship Bismarck, this ROV system is now being implemented in oceanographic investigations. This paper explains its development history and its unique ability to carry out a broad range of scientific research.

  9. 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User's Conference Proceedings (CD)

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.

    2001-08-01

    The 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference provided an opportunity for engineers in the automotive industry and the research environment to share their experiences in vehicle systems modeling using ADVISOR and PSAT. ADVISOR and PSAT are vehicle systems modeling tools developed and supported by the National Renewable Energy Laboratory and Argonne National Laboratory respectively with the financial support of the US Department of Energy. During this conference peers presented the results of studies using the simulation tools and improvements that they have made or would like to see in the simulation tools. Focus areas of the presentations included Control Strategy, Model Validation, Optimization and Co-Simulation, Model Development, Applications, and Fuel Cell Vehicle Systems Analysis. Attendees were offered the opportunity to give feedback on future model development plans.

  10. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    Science.gov (United States)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  11. A Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles

    Science.gov (United States)

    Alexander, Reginald; Stanley, Thomas Troy

    2001-01-01

    Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to all other systems, as is the case with SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA). In particular, the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results in high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately calculate the TPS mass of this type of vehicle several engineering disciplines and analytical tools must be used preferably in an environment that data is easily transferred and multiple iterations are easily facilitated.

  12. Vehicle engine sound design based on an active noise control system

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M. [Siemens VDO Automotive, Auburn Hills, MI (United States)

    2002-07-01

    A study has been carried out to identify the types of vehicle engine sounds that drivers prefer while driving at different locations and under different driving conditions. An active noise control system controlled the sound at the air intake orifice of a vehicle engine's first sixteen orders and half orders. The active noise control system was used to change the engine sound to quiet, harmonic, high harmonic, spectral shaped and growl. Videos were made of the roads traversed, binaural recording of vehicle interior sounds, and vibrations of the vehicle floor pan. Jury tapes were made up for day driving, nighttime driving and driving in the rain during the day for each of the sites. Jurors used paired comparisons to evaluate the vehicle interior sounds while sitting in a vehicle simulator developed by Siemens VDO that replicated videos of the road traversed, binaural recording of the vehicle interior sounds and vibrations of the floor pan and seat. (orig.) [German] Im Rahmen einer Studie wurden Typen von Motorgeraeuschen identifiziert, die von Fahrern unter verschiedenen Fahrbedingungen als angenehm empfunden werden. Ein System zur aktiven Geraeuschbeeinflussung am Ansauglufteinlass im Bereich des Luftfilters modifizierte den Klang des Motors bis zur 16,5ten Motorordnung, und zwar durch Bedaempfung, Verstaerkung und Filterung der Signalfrequenzen. Waehrend der Fahrt wurden Videoaufnahmen der befahrenen Strassen, Stereoaufnahmen der Fahrzeuginnengeraeusche und Aufnahmen der Vibrationsamplituden des Fahrzeugbodens erstellt; dies bei Tag- und Nachtfahrten und bei Tagfahrten im Regen. Zur Beurteilung der aufgezeichneten Geraeusche durch Versuchspersonen wurde ein Fahrzeug-Laborsimulator mit Fahrersitz, Bildschirm, Lautsprecher und mechanischer Erregung der Bodenplatte aufgebaut, um die aufgenommenen Signale moeglichst wirklichkeitsgetreu wiederzugeben. (orig.)

  13. Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Meibom, Peter

    2011-01-01

    The article estimates the costs of plug-in electric vehicles (EVs) in a future power system as well as the benefits from smart charging and discharging EVs (smart EVs). To arrive in a good estimate, a generation planning model was used to create power plant portfolios, which were operated in a more...... detailed unit commitment and dispatch model. In both models the charging and discharging of EVs is optimised together with the rest of the power system. Neither the system cost nor the market price of electricity for EVs turned out to be high (36–263 €/vehicle/year in the analysed scenarios). Most...

  14. Automatic terrain modeling using transfinite element analysis

    KAUST Repository

    Collier, Nathan

    2010-05-31

    An automatic procedure for modeling terrain is developed based on L2 projection-based interpolation of discrete terrain data onto transfinite function spaces. The function space is refined automatically by the use of image processing techniques to detect regions of high error and the flexibility of the transfinite interpolation to add degrees of freedom to these areas. Examples are shown of a section of the Palo Duro Canyon in northern Texas.

  15. Combined braking system for hybrid vehicle

    Science.gov (United States)

    Kulekina, A. V.; Bakholdin, P. A.; Shchurov, N. I.

    2017-10-01

    The paper presents an analysis of surface vehicle’s existing braking systems. The technical solution and brake-system design were developed for use of regenerative braking energy. A technical parameters comparison of energy storage devices of various types was made. Based on the comparative analysis, it was decided to use supercapacitor because of its applicability for an electric drive intermittent operation. The calculation methods of retarder key components were proposed. Therefrom, it was made a conclusion that rebuild gasoline-electric vehicles are more efficient than gasoline ones.

  16. An Intelligent Assistant for Construction of Terrain Databases

    OpenAIRE

    Rowe, Neil C.; Reed, Chris; Jackson, Leroy; Baer, Wolfgang

    1998-01-01

    1998 Command and Control Research and Technology Symposium, Monterey CA, June 1998, 481-486. We describe TELLUSPLAN, an intelligent assistant for the problem of bargaining between user goals and system resources in the integration of terrain databases from separate source databases. TELLUSPLAN uses nondeterministic methods from artificial intelligence and a detailed cost model to infer the most reasonable compromise with the user's needs. Supported by the Army Artificial Int...

  17. On-Road Driver Monitoring System Based on a Solar-Powered In-Vehicle Embedded Platform

    Directory of Open Access Journals (Sweden)

    Yen-Lin Chen

    2014-01-01

    Full Text Available This study presents an on-road driver monitoring system, which is implemented on a stand-alone in-vehicle embedded system and driven by effective solar cells. The driver monitoring function is performed by an efficient eye detection technique. Through the driver’s eye movements captured from the camera, the attention states of the driver can be determined and any fatigue states can be avoided. This driver monitoring technique is implemented on a low-power embedded in-vehicle platform. Besides, this study also proposed monitoring machinery that can detect the brightness around the car to effectively determine whether this in-vehicle system is driven by the solar cells or by the vehicle battery. On sunny days, the in-vehicle system can be powered by solar cell in places without the vehicle battery. While in the evenings or on rainy days, the ambient solar brightness is insufficient, and the system is powered by the vehicle battery. The proposed system was tested under the conditions that the solar irradiance is 10 to 113 W/m2 and solar energy and brightness at 10 to 170. From the testing results, when the outside solar radiation is high, the brightness of the inside of the car is increased, and the eye detection accuracy can also increase as well. Therefore, this solar powered driver monitoring system can be efficiently applied to electric cars to save energy consumption and promote the driving safety.

  18. A Research on Wind Farm Micro-sitting Optimization in Complex Terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Yang, Jianchuan; Li, Chenqi

    2013-01-01

    Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height...... that the CPSO method has a higher optimal value, and could be used to optimize the actual wind farm micro-sitting engineering projects.......Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height...... turbines’ park coordinates which subject to the boundary and minimum distance conditions between two wind turbines. A Cross Particle Swarm Optimization (CPSO) method is developed and applied to optimize the layout for a certain wind farm case. Compared with the uniform and experience method, results show...

  19. Vision-Based SLAM System for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-03-01

    Full Text Available The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs. The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i an orientation sensor (AHRS; (ii a position sensor (GPS; and (iii a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  20. Vision-Based SLAM System for Unmanned Aerial Vehicles.

    Science.gov (United States)

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-03-15

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  1. An automatic window opening system to prevent drowning in vehicles sinking in water

    KAUST Repository

    Giesbrecht, Gordon G.; Percher, Michael; Brunet, Pierre; Richard, Yanik; Alexander, Marion; Bellemare, Alixandra; Rawal, Yash; Amassian, Aram; Mcdonald, Gerren

    2017-01-01

    Objective: Every year about 400 people die in submersed vehicles in North America and this number increases to 2,000–5,000 in all industrialized nations. The best way to survive is to quickly exit through the windows. An Automatic Window Opening System (AWOS; patent protected) was designed to sense when a vehicle is in water and to open the electric windows, but only when the vehicle is upright. Methods: The AWOS consists of a Detection Module (DM), in the engine compartment, and a Power Window Control Module (PWCM) inside the driver’s door. The DM contains a Water Sensor, a Level Sensor and a Microcontroller Unit (MCU). The Level Sensor provides the angular orientation of the car using a 3-axis acceleration sensor and prevents automatic window opening if the car is outside the orientation range (±20° in the roll axis, ±30° in the pitch axis, with a 2 s delay). Systems were installed on two cars and one SUV. A crane lowered vehicles in water either straight down (static tests) or by swinging the vehicles to produce forward movement (dynamic tests). Results: In all tests, when the vehicles landed upright, windows opened immediately and effectively. When vehicles landed inverted, or at a very steep angle, the system did not engage until an upright and level position was attained. Conclusions: This system may help decrease drowning deaths in sinking vehicles. If occupants do not know, or forget, what to do, the open window could hopefully prompt them to exit safely through that window.

  2. An automatic window opening system to prevent drowning in vehicles sinking in water

    KAUST Repository

    Giesbrecht, Gordon G.

    2017-07-12

    Objective: Every year about 400 people die in submersed vehicles in North America and this number increases to 2,000–5,000 in all industrialized nations. The best way to survive is to quickly exit through the windows. An Automatic Window Opening System (AWOS; patent protected) was designed to sense when a vehicle is in water and to open the electric windows, but only when the vehicle is upright. Methods: The AWOS consists of a Detection Module (DM), in the engine compartment, and a Power Window Control Module (PWCM) inside the driver’s door. The DM contains a Water Sensor, a Level Sensor and a Microcontroller Unit (MCU). The Level Sensor provides the angular orientation of the car using a 3-axis acceleration sensor and prevents automatic window opening if the car is outside the orientation range (±20° in the roll axis, ±30° in the pitch axis, with a 2 s delay). Systems were installed on two cars and one SUV. A crane lowered vehicles in water either straight down (static tests) or by swinging the vehicles to produce forward movement (dynamic tests). Results: In all tests, when the vehicles landed upright, windows opened immediately and effectively. When vehicles landed inverted, or at a very steep angle, the system did not engage until an upright and level position was attained. Conclusions: This system may help decrease drowning deaths in sinking vehicles. If occupants do not know, or forget, what to do, the open window could hopefully prompt them to exit safely through that window.

  3. Detection of Water Hazards for Autonomous Robotic Vehicles

    Science.gov (United States)

    Matthes, Larry; Belluta, Paolo; McHenry, Michael

    2006-01-01

    Four methods of detection of bodies of water are under development as means to enable autonomous robotic ground vehicles to avoid water hazards when traversing off-road terrain. The methods involve processing of digitized outputs of optoelectronic sensors aboard the vehicles. It is planned to implement these methods in hardware and software that would operate in conjunction with the hardware and software for navigation and for avoidance of solid terrain obstacles and hazards. The first method, intended for use during the day, is based on the observation that, under most off-road conditions, reflections of sky from water are easily discriminated from the adjacent terrain by their color and brightness, regardless of the weather and of the state of surface waves on the water. Accordingly, this method involves collection of color imagery by a video camera and processing of the image data by an algorithm that classifies each pixel as soil, water, or vegetation according to its color and brightness values (see figure). Among the issues that arise is the fact that in the presence of reflections of objects on the opposite shore, it is difficult to distinguish water by color and brightness alone. Another issue is that once a body of water has been identified by means of color and brightness, its boundary must be mapped for use in navigation. Techniques for addressing these issues are under investigation. The second method, which is not limited by time of day, is based on the observation that ladar returns from bodies of water are usually too weak to be detected. In this method, ladar scans of the terrain are analyzed for returns and the absence thereof. In appropriate regions, the presence of water can be inferred from the absence of returns. Under some conditions in which reflections from the bottom are detectable, ladar returns could, in principle, be used to determine depth. The third method involves the recognition of bodies of water as dark areas in short

  4. Irregular Morphing for Real-Time Rendering of Large Terrain

    Directory of Open Access Journals (Sweden)

    S. Kalem

    2016-06-01

    Full Text Available The following paper proposes an alternative approach to the real-time adaptive triangulation problem. A new region-based multi-resolution approach for terrain rendering is described which improves on-the-fly the distribution of the density of triangles inside the tile after selecting appropriate Level-Of-Detail by an adaptive sampling. This proposed approach organizes the heightmap into a QuadTree of tiles that are processed independently. This technique combines the benefits of both Triangular Irregular Network approach and region-based multi-resolution approach by improving the distribution of the density of triangles inside the tile. Our technique morphs the initial regular grid of the tile to deformed grid in order to minimize approximation error. The proposed technique strives to combine large tile size and real-time processing while guaranteeing an upper bound on the screen space error. Thus, this approach adapts terrain rendering process to local surface characteristics and enables on-the-fly handling of large amount of terrain data. Morphing is based-on the multi-resolution wavelet analysis. The use of the D2WT multi-resolution analysis of the terrain height-map speeds up processing and permits to satisfy an interactive terrain rendering. Tests and experiments demonstrate that Haar B-Spline wavelet, well known for its properties of localization and its compact support, is suitable for fast and accurate redistribution. Such technique could be exploited in client-server architecture for supporting interactive high-quality remote visualization of very large terrain.

  5. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    OpenAIRE

    Ming Cheng; Le Sun; Giuseppe Buja; Lihua Song

    2015-01-01

    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator perm...

  6. ARV robotic technologies (ART): a risk reduction effort for future unmanned systems

    Science.gov (United States)

    Jaster, Jeffrey F.

    2006-05-01

    The Army's ARV (Armed Robotic Vehicle) Robotic Technologies (ART) program is working on the development of various technological thrusts for use in the robotic forces of the future. The ART program will develop, integrate and demonstrate the technology required to advance the maneuver technologies (i.e., perception, mobility, tactical behaviors) and increase the survivability of unmanned platforms for the future force while focusing on reducing the soldiers' burden by providing an increase in vehicle autonomy coinciding with a decrease in the total number user interventions required to control the unmanned assets. This program will advance the state of the art in perception technologies to provide the unmanned platform an increasingly accurate view of the terrain that surrounds it; while developing tactical/mission behavior technologies to provide the Unmanned Ground Vehicle (UGV) the capability to maneuver tactically, in conjunction with the manned systems in an autonomous mode. The ART testbed will be integrated with the advanced technology software and associated hardware developed under this effort, and incorporate appropriate mission modules (e.g. RSTA sensors, MILES, etc.) to support Warfighter experiments and evaluations (virtual and field) in a military significant environment (open/rolling and complex/urban terrain). The outcome of these experiments as well as other lessons learned through out the program life cycle will be used to reduce the current risks that are identified for the future UGV systems that will be developed under the Future Combat Systems (FCS) program, including the early integration of an FCS-like autonomous navigation system onto a tracked skid steer platform.

  7. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    Science.gov (United States)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  8. GIS-Based Terrain Analysis of Balakot Region after Occurred Landslide Disaster in October 2005

    Directory of Open Access Journals (Sweden)

    Abdul Salam Soomro

    2011-10-01

    Full Text Available The landslide susceptibility models require the appropriate and reliable terrain analytical based study of the landslides prone areas using SRTM (Shuttle Radar Topography Mission data, based on certain GIS (Geographical Information Systems and remote sensing techniques. This research paper focuses on the analysis of the terrain conditions of Balakot region. The analytical operations have been used in the different phases: (i Extracting the study area from the large data; (ii preparing it into grid format; (iii developing contour lines with certain contour intervals (iv Re-classification of it into required classes and (v preparation of digital terrain model with its different required various supplementary models for analyzing the terrain conditions of the study area located in Mansehra district, north part of Pakistan where the great earthquake induced landslide disaster occurred in October 2005. This analytical study has notified the different sensitive issues concerning to the critical slope angles, variation in the elevation and the surface of study area. The various distinctions in the terrain phenomenon validate the occurred and probable landslides because the topography of such study area can predict the various probable landslide hazards, vulnerability and risk threats in the region again. This analytical study can be useful for the decisive authorities by becoming pro-active to rebuild the region to mitigate the expected losses from the natural disaster.

  9. Concept of intellectual charging system for electrical and plug-in hybrid vehicles in Russian Federation

    Science.gov (United States)

    Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.

    2018-02-01

    Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.

  10. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  11. Track-to-track association for object matching in an inter-vehicle communication system

    Science.gov (United States)

    Yuan, Ting; Roth, Tobias; Chen, Qi; Breu, Jakob; Bogdanovic, Miro; Weiss, Christian A.

    2015-09-01

    Autonomous driving poses unique challenges for vehicle environment perception due to the complex driving environment the autonomous vehicle finds itself in and differentiates from remote vehicles. Due to inherent uncertainty of the traffic environments and incomplete knowledge due to sensor limitation, an autonomous driving system using only local onboard sensor information is generally not sufficiently enough for conducting a reliable intelligent driving with guaranteed safety. In order to overcome limitations of the local (host) vehicle sensing system and to increase the likelihood of correct detections and classifications, collaborative information from cooperative remote vehicles could substantially facilitate effectiveness of vehicle decision making process. Dedicated Short Range Communication (DSRC) system provides a powerful inter-vehicle wireless communication channel to enhance host vehicle environment perceiving capability with the aid of transmitted information from remote vehicles. However, there is a major challenge before one can fuse the DSRC-transmitted remote information and host vehicle Radar-observed information (in the present case): the remote DRSC data must be correctly associated with the corresponding onboard Radar data; namely, an object matching problem. Direct raw data association (i.e., measurement-to-measurement association - M2MA) is straightforward but error-prone, due to inherent uncertain nature of the observation data. The uncertainties could lead to serious difficulty in matching decision, especially, using non-stationary data. In this study, we present an object matching algorithm based on track-to-track association (T2TA) and evaluate the proposed approach with prototype vehicles in real traffic scenarios. To fully exploit potential of the DSRC system, only GPS position data from remote vehicle are used in fusion center (at host vehicle), i.e., we try to get what we need from the least amount of information; additional feature

  12. System for Detecting Vehicle Features from Low Quality Data

    Directory of Open Access Journals (Sweden)

    Marcin Dominik Bugdol

    2018-02-01

    Full Text Available The paper presents a system that recognizes the make, colour and type of the vehicle. The classification has been performed using low quality data from real-traffic measurement devices. For detecting vehicles’ specific features three methods have been developed. They employ several image and signal recognition techniques, e.g. Mamdani Fuzzy Inference System for colour recognition or Scale Invariant Features Transform for make identification. The obtained results are very promising, especially because only on-site equipment, not dedicated for such application, has been employed. In case of car type, the proposed system has better performance than commonly used inductive loops. Extensive information about the vehicle can be used in many fields of Intelligent Transport Systems, especially for traffic supervision.

  13. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    Science.gov (United States)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  14. Transrapid 06 test vehicle and its drive system

    Energy Technology Data Exchange (ETDEWEB)

    Eitlhuber, E

    1984-06-01

    To prove the practicability of a high-speed maglev transport system, a large-scale test facility is now under construction in Emsland with the backing of the Federal Ministry of Research and Technology. The TRANSRAPID 06 test vehicle is designed to carry 192 seated passengers at a maximum speed of 400 km/h. With running tests now in progress, the project has entered a decisive phase. The article describes the objectives, concept and design of the Tr 06 vehicle and its drive system. Upon conclusion of the main operational preparations by the construction consortium, the facility will be taken over and operated by the MVP, a joint subsidiary of the DB, Lufthansa German Airlines and the IABG. Following a successful changeover, the aim will be to ensure feedback of operating experience to the industry.

  15. Terrain Adaptive Reconfiguration of Mobility

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an algorithm (and software) to automatically adapt a reconfigurable robot to different types of terrains for improved mobility, that compared to SOA:...

  16. INERTIAL TECHNOLOGIES IN SYSTEMS FOR STABILIZATION OF GROUND VEHICLES EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2016-12-01

    Full Text Available Purpose: The vibratory inertial technology is a recent modern inertial technology. It represents the most perspective approach to design of inertial sensors, which can be used in stabilization and tracking systems operated on vehicles of the wide class. The purpose of the research is to consider advantages of this technology in comparison with laser and fiber-optic ones. Operation of the inertial sensors on the ground vehicles requires some improvement of the Coriolis vibratory gyroscope with the goal to simplify information processing, increase reliability, and compensate bias. Methods: Improvement of the Coriolis vibratory gyroscope includes introducing of the phase detector and additional excitation unit. The possibility to use the improved Coriolis vibratory gyroscope in the stabilization systems operated on the ground vehicles is shown by means of analysis of gyroscope output signal. To prove efficiency of the Coriolis vibratory gyroscope in stabilization system the simulation technique is used. Results: The scheme of the improved Coriolis vibratory gyroscope including the phase detector and additional excitation unit is developed and analyzed. The way to compensate bias is determined. Simulation of the stabilization system with the improved Coriolis vibratory gyroscope is carried out. Expressions for the output signals of the improved Coriolis vibratory gyroscope are derived. The error of the output signal is estimated and the possibility to use the modified Coriolis vibratory gyroscope in stabilization systems is proved. The results of stabilization system simulation are given. Their analysis is carried out. Conclusions: The represented results prove efficiency of the proposed technical decisions. They can be useful for design of stabilization platform with instrumental equipment operated on moving vehicles of the wide class.

  17. System and method of cylinder deactivation for optimal engine torque-speed map operation

    Science.gov (United States)

    Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min

    2014-11-11

    This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.

  18. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power

    OpenAIRE

    Yuefei Wang; Hao Hu; Li Zhang; Nan Zhang; Xuhui Sun

    2016-01-01

    As a result of severe environmental pressure and stringent government regulations, refined energy management for vehicles has become inevitable. To improve vehicle fuel economy, this paper presents a bus-based energy management system for the electrical system of internal combustion engine vehicles. Both the model of an intelligent alternator and the model of a lead-acid battery are discussed. According to these models, the energy management for a vehicular electrical system is formulated as ...

  19. X-33/RLV System Health Management/Vehicle Health Management

    Science.gov (United States)

    Mouyos, William; Wangu, Srimal

    1998-01-01

    To reduce operations costs, Reusable Launch Vehicles (RLVS) must include highly reliable robust subsystems which are designed for simple repair access with a simplified servicing infrastructure, and which incorporate expedited decision-making about faults and anomalies. A key component for the Single Stage To Orbit (SSTO) RLV system used to meet these objectives is System Health Management (SHM). SHM incorporates Vehicle Health Management (VHM), ground processing associated with the vehicle fleet (GVHM), and Ground Infrastructure Health Management (GIHM). The primary objective of SHM is to provide an automated and paperless health decision, maintenance, and logistics system. Sanders, a Lockheed Martin Company, is leading the design, development, and integration of the SHM system for RLV and for X-33 (a sub-scale, sub-orbit Advanced Technology Demonstrator). Many critical technologies are necessary to make SHM (and more specifically VHM) practical, reliable, and cost effective. This paper will present the X-33 SHM design which forms the baseline for the RLV SHM, and it will discuss applications of advanced technologies to future RLVs. In addition, this paper will describe a Virtual Design Environment (VDE) which is being developed for RLV. This VDE will allow for system design engineering, as well as program management teams, to accurately and efficiently evaluate system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions from older technologies to newer ones. The RLV SHM design methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.

  20. Classification Of Road Accidents From The Perspective Of Vehicle Safety Systems

    Directory of Open Access Journals (Sweden)

    Jirovský Václav

    2015-11-01

    Full Text Available Modern road accident investigation and database structures are focused on accident analysis and classification from the point of view of the accident itself. The presented article offers a new approach, which will describe the accident from the point of view of integrated safety vehicle systems. Seven main categories have been defined to specify the level of importance of automated system intervention. One of the proposed categories is a new approach to defining the collision probability of an ego-vehicle with another object. This approach focuses on determining a 2-D reaction space, which describes all possible positions of the vehicle or other moving object in the specified amount of time in the future. This is to be used for defining the probability of the vehicles interacting - when the intersection of two reaction spaces exists, an action has to be taken on the side of ego-vehicle. The currently used 1-D quantity of TTC (time-to-collision can be superseded by the new reaction space variable. Such new quantity, whose basic idea is described in the article, enables the option of counting not only with necessary braking time, but mitigation by changing direction is then easily feasible. Finally, transparent classification measures of a probable accident are proposed. Their application is highly effective not only during basic accident comparison, but also for an on-board safety system.