Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.
1981-01-01
The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.
International Nuclear Information System (INIS)
Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito; Numata, Kunio
2009-01-01
A numerical simulation method for predicting atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings has been developed. The turbulence closure technique using a modified k-ε-type model without a hydrostatic approximation was used for flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by trajectories of released particles. The developed numerical model was applied to a virtual terrain and building conditions in this study prior to the applications of a numerical model for real terrain and building conditions. The height of the additional building (H a ), located about 200 m leeward from the stack, was varied (i.e., H a =0, 20, 30 and 50 m), and its effects on airflow and the concentration of stack gas at a released height of 75 m were calculated. Furthermore, effective stack height, which was used in the safety analysis of atmospheric diffusion for nuclear facilities in Japan, was evaluated from the calculated ground-level concentration of stack gas. The cavity region behind the additional building was calculated, and turbulence near the cavity was observed to decrease when the additional building was present. According to these flow variations with the additional building, tracer gas tended to diffuse to the ground surface rapidly with the additional building at the leeward position of the cavity, and the ground-level stack gas concentration along the plume axis also increased with the height of the additional building. However, the variations in effective stack height with the height of the additional building were relatively small and ranged within several m in this study. (author)
Automatic terrain modeling using transfinite element analysis
Collier, Nathan; Calo, Victor M.
2010-01-01
An automatic procedure for modeling terrain is developed based on L2 projection-based interpolation of discrete terrain data onto transfinite function spaces. The function space is refined automatically by the use of image processing techniques
Declarative Terrain Modeling for Military Training Games
Directory of Open Access Journals (Sweden)
Ruben M. Smelik
2010-01-01
Full Text Available Military training instructors increasingly often employ computer games to train soldiers in all sorts of skills and tactics. One of the difficulties instructors face when using games as a training tool is the creation of suitable content, including scenarios, entities, and corresponding terrain models. Terrain plays a key role in many military training games, as for example, in our case game Tactical Air Defense. However, current manual terrain editors are both too complex and too time-consuming to be useful for instructors; automatic terrain generation methods show a lot of potential, but still lack user control and intuitive editing capabilities. We present a novel way for instructors to model terrain for their training games: instead of constructing a terrain model using complex modeling tools, instructors can declare the required properties of their terrain using an advanced sketching interface. Our framework integrates terrain generation methods and manages dependencies between terrain features in order to automatically create a complete 3D terrain model that matches the sketch. With our framework, instructors can easily design a large variety of terrain models that meet their training requirements.
Automatic terrain modeling using transfinite element analysis
Collier, Nathan
2010-05-31
An automatic procedure for modeling terrain is developed based on L2 projection-based interpolation of discrete terrain data onto transfinite function spaces. The function space is refined automatically by the use of image processing techniques to detect regions of high error and the flexibility of the transfinite interpolation to add degrees of freedom to these areas. Examples are shown of a section of the Palo Duro Canyon in northern Texas.
New high-fidelity terrain modeling method constrained by terrain semanteme.
Directory of Open Access Journals (Sweden)
Bo Zhou
Full Text Available Production of higher-fidelity digital elevation models is important; as such models are indispensable components of space data infrastructure. However, loss of terrain features is a constant problem for grid digital elevation models, although these models have already been defined in such a way that their distinct usage as data sources in terrain modeling processing is prohibited. Therefore, in this study, the novel concept-terrain semanteme is proposed to define local space terrain features, and a new process for generating grid digital elevation models based on this new concept is designed. A prototype system is programmed to test the proposed approach; the results indicate that terrain semanteme can be applied in the process of grid digital elevation model generation, and that usage of this new concept improves the digital elevation model fidelity. Moreover, the terrain semanteme technique can be applied for recovery of distorted digital elevation model regions containing terrain semantemes, with good recovery efficiency indicated by experiments.
Terrain Simplification Research in Augmented Scene Modeling
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
environment. As one of the most important tasks in augmented scene modeling, terrain simplification research has gained more and more attention. In this paper, we mainly focus on point selection problem in terrain simplification using triangulated irregular network. Based on the analysis and comparison of traditional importance measures for each input point, we put forward a new importance measure based on local entropy. The results demonstrate that the local entropy criterion has a better performance than any traditional methods. In addition, it can effectively conquer the "short-sight" problem associated with the traditional methods.
EARTHWORK VOLUME CALCULATION FROM DIGITAL TERRAIN MODELS
Directory of Open Access Journals (Sweden)
JANIĆ Milorad
2015-06-01
Full Text Available Accurate calculation of cut and fill volume has an essential importance in many fields. This article shows a new method, which has no approximation, based on Digital Terrain Models. A relatively new mathematical model is developed for that purpose, which is implemented in the software solution. Both of them has been tested and verified in the praxis on several large opencast mines. This application is developed in AutoLISP programming language and works in AutoCAD environment.
Application of Digital Terrain Model to volcanology
Directory of Open Access Journals (Sweden)
V. Achilli
2006-06-01
Full Text Available Three-dimensional reconstruction of the ground surface (Digital Terrain Model, DTM, derived by airborne GPS photogrammetric surveys, is a powerful tool for implementing morphological analysis in remote areas. High accurate 3D models, with submeter elevation accuracy, can be obtained by images acquired at photo scales between 1:5000-1:20000. Multitemporal DTMs acquired periodically over volcanic area allow the monitoring of areas interested by crustal deformations and the evaluation of mass balance when large instability phenomena or lava flows have occurred. The work described the results obtained from the analysis of photogrammetric data collected over the Vulcano Island from 1971 to 2001. The data, processed by means of the Digital Photogrammetry Workstation DPW 770, provided DTM with accuracy ranging between few centimeters to few decimeters depending on the geometric image resolution, terrain configuration and quality of photographs.
Morphological modeling of terrains and volume data
Comic, Lidija; Magillo, Paola; Iuricich, Federico
2014-01-01
This book describes the mathematical background behind discrete approaches to morphological analysis of scalar fields, with a focus on Morse theory and on the discrete theories due to Banchoff and Forman. The algorithms and data structures presented are used for terrain modeling and analysis, molecular shape analysis, and for analysis or visualization of sensor and simulation 3D data sets. It covers a variety of application domains including geography, geology, environmental sciences, medicine and biology. The authors classify the different approaches to morphological analysis which are all ba
Functional Decomposition of Modeling and Simulation Terrain Database Generation Process
National Research Council Canada - National Science Library
Yakich, Valerie R; Lashlee, J. D
2008-01-01
.... This report documents the conceptual procedure as implemented by Lockheed Martin Simulation, Training, and Support and decomposes terrain database construction using the Integration Definition for Function Modeling (IDEF...
Risk terrain modeling predicts child maltreatment.
Daley, Dyann; Bachmann, Michael; Bachmann, Brittany A; Pedigo, Christian; Bui, Minh-Thuy; Coffman, Jamye
2016-12-01
As indicated by research on the long-term effects of adverse childhood experiences (ACEs), maltreatment has far-reaching consequences for affected children. Effective prevention measures have been elusive, partly due to difficulty in identifying vulnerable children before they are harmed. This study employs Risk Terrain Modeling (RTM), an analysis of the cumulative effect of environmental factors thought to be conducive for child maltreatment, to create a highly accurate prediction model for future substantiated child maltreatment cases in the City of Fort Worth, Texas. The model is superior to commonly used hotspot predictions and more beneficial in aiding prevention efforts in a number of ways: 1) it identifies the highest risk areas for future instances of child maltreatment with improved precision and accuracy; 2) it aids the prioritization of risk-mitigating efforts by informing about the relative importance of the most significant contributing risk factors; 3) since predictions are modeled as a function of easily obtainable data, practitioners do not have to undergo the difficult process of obtaining official child maltreatment data to apply it; 4) the inclusion of a multitude of environmental risk factors creates a more robust model with higher predictive validity; and, 5) the model does not rely on a retrospective examination of past instances of child maltreatment, but adapts predictions to changing environmental conditions. The present study introduces and examines the predictive power of this new tool to aid prevention efforts seeking to improve the safety, health, and wellbeing of vulnerable children. Copyright Â© 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Digital terrain data base - new possibilities of 3D terrain modeling
Directory of Open Access Journals (Sweden)
Mateja Rihtaršič
1992-12-01
Full Text Available GISs has brought new dimensions in the field of digital terrain modelling, too. Modem DTMs must be real (relational databases with high degree of "intelligence". This paper presents some of the demands, ivhich have to be solved in modern digital terrain databases, together with main steps of their's generation. Problems, connected to regional level, multi-pur pose use, new possibilities and direct integration into GIS are presented. The practical model was created across smaller test area, so few lines with practical experiences can be droped, too.
Some simple improvements to an emergency response model for use in complex coastal terrain
International Nuclear Information System (INIS)
Miller, N.L.
1992-06-01
The MACHWIND model (Meyers 1989) is one of a group of models used to compute regional wind fields from tower wind data and/or vertical wind profiles. The wind fields are in turn used to calculate atmospheric diffusion, to guide emergency responses. MACHWIND has performed acceptably in uniform terrain under steady, well mixed conditions. However, extension of the model to more complex situations is problematic. In coastal, hilly terrain like that near Vandenberg Air Force Base (VAFB) in southern California, calculations of the wind field can be enhanced significantly by several modifications to the original code. This report highlights the structure of MACHWIND and details the enhancements that were implemented
International Nuclear Information System (INIS)
Hu Erbang
1988-01-01
A series (22) of atmospheric tracer experiments with 100m release height have been performed at the kernforschungszentrum karlsruhe (KfK) of West Germany over a terrain of major roughness (Z 0 = 1.5 m). The concentration data of the tracers are statistically analysed in which 5 methods of stability classification are used. The results show that the normalized diffusion factors predicted by Gaussian plume dispersion model is in good agreement with the observed ones for elevated releases over a terrain of major roughness. Differnent sets of dispersion parameters could be obtained for the same series of atmospheric tracer experiments if different methods of classification are applied. The same method of stability classification should be used for the application of these dispersion parameters to evaluate the environment impact
Declarative terrain modeling for military training games
Smelik, R.M.; Tutenel, T.; Kraker, J.K.. de; Bidarra, R.
2010-01-01
Military training instructors increasingly often employ computer games to train soldiers in all sorts of skills and tactics. One of the difficulties instructors face when using games as a training tool is the creation of suitable content, including scenarios, entities, and corresponding terrain
Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain
Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.
2010-09-01
A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.
Modeling Air-Quality in Complex Terrain Using Mesoscale and ...
African Journals Online (AJOL)
Air-quality in a complex terrain (Colorado-River-Valley/Grand-Canyon Area, Southwest U.S.) is modeled using a higher-order closure mesoscale model and a higher-order closure dispersion model. Non-reactive tracers have been released in the Colorado-River valley, during winter and summer 1992, to study the ...
Modelling of Innovation Diffusion
Directory of Open Access Journals (Sweden)
Arkadiusz Kijek
2010-01-01
Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract
Landsat analysis of tropical forest succession employing a terrain model
Barringer, T. H.; Robinson, V. B.; Coiner, J. C.; Bruce, R. C.
1980-01-01
Landsat multispectral scanner (MSS) data have yielded a dual classification of rain forest and shadow in an analysis of a semi-deciduous forest on Mindonoro Island, Philippines. Both a spatial terrain model, using a fifth side polynomial trend surface analysis for quantitatively estimating the general spatial variation in the data set, and a spectral terrain model, based on the MSS data, have been set up. A discriminant analysis, using both sets of data, has suggested that shadowing effects may be due primarily to local variations in the spectral regions and can therefore be compensated for through the decomposition of the spatial variation in both elevation and MSS data.
Estimation of potential solar radiation using 50m grid digital terrain model
International Nuclear Information System (INIS)
Kurose, Y.; Nagata, K.; Ohba, K.; Maruyama, A.
1999-01-01
To clarify the spatial distribution of solar radiation, a model to estimate the potential incoming solar radiation with 50m grid size was developed. The model is based on individual calculation of direct and diffuse solar radiation accounting for the effect of topographic shading. Using the elevation data in the area with radius 25km, which was offered by the Digital Map 50m Grid, the effect of topographic shading is estimated as angle of elevation for surrounding configuration to 72 directions. The estimated sunshine duration under clear sky conditions agreed well with observed values at AMeDAS points of Kyushu and Shikoku region. Similarly, there is a significant agreement between estimated and observed variation of solar radiation for monthly mean conditions over complex terrain. These suggest that the potential incoming solar radiation can be estimated well over complex terrain using the model. Locations of large fields over complex terrain agreed well with the area of the abundant insolation condition, which is defined by the model. The model is available for the investigation of agrometeorological resources over complex terrain. (author)
Method for Measuring the Information Content of Terrain from Digital Elevation Models
Directory of Open Access Journals (Sweden)
Lujin Hu
2015-10-01
Full Text Available As digital terrain models are indispensable for visualizing and modeling geographic processes, terrain information content is useful for terrain generalization and representation. For terrain generalization, if the terrain information is considered, the generalized terrain may be of higher fidelity. In other words, the richer the terrain information at the terrain surface, the smaller the degree of terrain simplification. Terrain information content is also important for evaluating the quality of the rendered terrain, e.g., the rendered web terrain tile service in Google Maps (Google Inc., Mountain View, CA, USA. However, a unified definition and measures for terrain information content have not been established. Therefore, in this paper, a definition and measures for terrain information content from Digital Elevation Model (DEM, i.e., a digital model or 3D representation of a terrain’s surface data are proposed and are based on the theory of map information content, remote sensing image information content and other geospatial information content. The information entropy was taken as the information measuring method for the terrain information content. Two experiments were carried out to verify the measurement methods of the terrain information content. One is the analysis of terrain information content in different geomorphic types, and the results showed that the more complex the geomorphic type, the richer the terrain information content. The other is the analysis of terrain information content with different resolutions, and the results showed that the finer the resolution, the richer the terrain information. Both experiments verified the reliability of the measurements of the terrain information content proposed in this paper.
Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.
Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric
2018-05-01
Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.
Thermophysical modeling for high-resolution digital terrain models
Pelivan, I.
2018-04-01
A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavorable illumination conditions such as little to no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disk-integrated and disk-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.
Wind field and dispersion modelling in complex terrain
International Nuclear Information System (INIS)
Bartzis, J.G.; Varvayanni, M.; Catsaros, N.; Konte, K.; Amanatidis, G.
1991-01-01
Dispersion of airborne radioactive material can have an important environmental impact. Its prediction remains a difficult problem, especially over complex and inhomogeneous terrain, or under complicated atmospheric conditions. The ADREA-I code, a three-dimensional transport code especially designed for terrains of high complexity can be considered as contribution to the solution of the above problem. The code development has been initiated within the present CEC Radiation Program. New features are introduced into the code to describe the anomalous topography, the turbulent diffusion and numerical solution procedures. In this work besides a brief presentation of the main features of the code, a number of applications will be presented with the aim on one hand to illustrate the capability and reliability of the code and on the other hand to clarify the effects on windfield and dispersion in special cases of interest. Within the framework of ADREA-I verification studies, a I-D simulation of the experimental Wangara Day-33 mean boundary layer was attempted, reproducing the daytime wind speeds, temperatures, specific humidities and mixing depths. In order to address the effect of surface irregularities and inhomogeneities on contamination patterns, the flow field and dispersion were analyzed over a 2-D, 1000m high mountain range, surrounded by sea, with a point source assumed 40km offshore from one coastline. This terrain was studied as representing a greater Athens area idealization. The effects of a 2-D, 1000m high mountain range of Gaussian shape on long range transport has also been studied in terms of influence area, wind and concentration profile distortions and dry deposition patterns
Construction Method of the Topographical Features Model for Underwater Terrain Navigation
Directory of Open Access Journals (Sweden)
Wang Lihui
2015-09-01
Full Text Available Terrain database is the reference basic for autonomous underwater vehicle (AUV to implement underwater terrain navigation (UTN functions, and is the important part of building topographical features model for UTN. To investigate the feasibility and correlation of a variety of terrain parameters as terrain navigation information metrics, this paper described and analyzed the underwater terrain features and topography parameters calculation method. Proposing a comprehensive evaluation method for terrain navigation information, and constructing an underwater navigation information analysis model, which is associated with topographic features. Simulation results show that the underwater terrain features, are associated with UTN information directly or indirectly, also affect the terrain matching capture probability and the positioning accuracy directly.
Selection of key terrain attributes for SOC model
DEFF Research Database (Denmark)
Greve, Mogens Humlekrog; Adhikari, Kabindra; Chellasamy, Menaka
As an important component of the global carbon pool, soil organic carbon (SOC) plays an important role in the global carbon cycle. SOC pool is the basic information to carry out global warming research, and needs to sustainable use of land resources. Digital terrain attributes are often use...... was selected, total 2,514,820 data mining models were constructed by 71 differences grid from 12m to 2304m and 22 attributes, 21 attributes derived by DTM and the original elevation. Relative importance and usage of each attributes in every model were calculated. Comprehensive impact rates of each attribute...
Directory of Open Access Journals (Sweden)
Denizar Blitzkow
2009-12-01
Full Text Available The main objectives of this paper are to compare digital terrain models, to show the generated models for South America and to present two applications. Shuttle Radar Topography Mission (SRTM produced the most important and updated height information in the world. This paper addresses the attention to comparisons of the following models: SRTM3, DTM2002, GLOBE, GTOPO30, ETOPO2 and ETOPO5, at the common points of the grid. The comparisons are limited by latitudes 60º S and 25 º N and longitudes 100 º W and 25 º W. All these data, after some analysis, have been used to create three models for South America: SAM_1mv1, SAM_1mv2 (both of 1' grid spacing and SAM_30s (30" grid spacing. Besides this effort, the three models as well as STRM were evaluated using Bench Marks (BM in Brazil and Argentina. This paper also shows two important geodesy and geophysics applications using the SAM_1mv1: terrain correction (one of the reductions applied to the gravity acceleration and indirect effect (a consequence of the reduction of the external mass to the geoid. These are important at Andes for a precise geoid computation.Los objetivos principales de este documento son comparar modelos digitales del continente; enseñar los modelos generados para Sudamérica y presentar dos aplicaciones. Shuttle Radar Topography Mission (SRTM produjo la información más importante y más actualizada de las altitudes del mundo. Este trabajo centra su atención en las comparaciones de los modelos siguientes: SRTM3, DTM2002, GLOBO, GTOPO30, ETOPO2 y ETOPO5, en los puntos comunes de la rejilla. Las comparaciones son limitadas por las latitudes 60º S y 25 º N y longitudes 100 º W y 25 º W. Todos estos datos, después de los análisis, se han utilizado para crear tres modelos para Sudamérica: SAM_1mv1, SAM_1mv2 (1' de espaciamiento de la rejilla y SAM_30s (30" de espaciamiento de la rejilla. Los tres modelos bien como el STRM fueron evaluados usando puntos de referencia de
Large eddy simulation modeling of particle-laden flows in complex terrain
Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.
2017-12-01
The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.
Parallel algorithms for interactive manipulation of digital terrain models
Davis, E. W.; Mcallister, D. F.; Nagaraj, V.
1988-01-01
Interactive three-dimensional graphics applications, such as terrain data representation and manipulation, require extensive arithmetic processing. Massively parallel machines are attractive for this application since they offer high computational rates, and grid connected architectures provide a natural mapping for grid based terrain models. Presented here are algorithms for data movement on the massive parallel processor (MPP) in support of pan and zoom functions over large data grids. It is an extension of earlier work that demonstrated real-time performance of graphics functions on grids that were equal in size to the physical dimensions of the MPP. When the dimensions of a data grid exceed the processing array size, data is packed in the array memory. Windows of the total data grid are interactively selected for processing. Movement of packed data is needed to distribute items across the array for efficient parallel processing. Execution time for data movement was found to exceed that for arithmetic aspects of graphics functions. Performance figures are given for routines written in MPP Pascal.
Integrating remote sensing and terrain data in forest fire modeling
Medler, Michael Johns
Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy
A real-time PUFF-model for accidental releases in complex terrain
International Nuclear Information System (INIS)
Thykier-Nielsen, S.; Mikkelsen, T.; Larsen, S.E.; Troen, I.; Baas, A.F. de; Kamada, R.; Skupniewicz, C.; Schacher, G.
1990-01-01
LINCOM-RIMPUFF, a combined flow/puff model, was developed at Riso National Laboratory for the Vandenberg AFB Meteorology and Plume Dispersion Handbook and is suitable as is for real time response to emergency spills and vents of gases and radionuclides. LINCOM is a linear, diagnostic, spectral, potential flow model which extends the Jackson-Hunt theory of non-hydrostatic, adiabatic wind flow over hills to the mesoscale domain. It is embedded in a weighted objective analysis (WOA) of real-time Vandenberg tower winds and may be used in ultra-high speed lookup table mode. The mesoscale dispersion model RIMPUFF is a flexible Gaussian puff model equipped with computer-time effective features for terrain and stability-dependent dispersion parameterization, plume rise formulas, inversion and ground-level reflection capabilities and wet/dry (source) depletion. It can treat plume bifurcation in complex terrain by using a puff-splitting scheme. It allows the flow-model to compute the larger scale wind field, reserving turbulent diffusion calculations for the sub-grid scale. In diagnostic mode toxic exposure are well assessed via the release of a single initial puff. With optimization, processing time for RIMPUFF should be on the order of 2 CPU minutes or less on a PC-system. In prognostic mode with shifting winds, multiple puff releases may become necessary, thereby lengthening processing time
Directory of Open Access Journals (Sweden)
P. Tarolli
2006-01-01
Full Text Available This paper introduces a new approach for determining the most likely initiation points for landslides from potential instability mapped using a terrain stability model. This approach identifies the location with critical stability index from a terrain stability model on each downslope path from ridge to valley. Any measure of terrain stability may be used with this approach, which here is illustrated using results from SINMAP, and from simply taking slope as an index of potential instability. The relative density of most likely landslide initiation points within and outside mapped landslide scars provides a way to evaluate the effectiveness of a terrain stability measure, even when mapped landslide scars include run out zones, rather than just initiation locations. This relative density was used to evaluate the utility of high resolution terrain data derived from airborne laser altimetry (LIDAR for a small basin located in the Northeastern Region of Italy. Digital Terrain Models were derived from the LIDAR data for a range of grid cell sizes (from 2 to 50 m. We found appreciable differences between the density of most likely landslide initiation points within and outside mapped landslides with ratios as large as three or more with the highest ratios for a digital terrain model grid cell size of 10 m. This leads to two conclusions: (1 The relative density from a most likely landslide initiation point approach is useful for quantifying the effectiveness of a terrain stability map when mapped landslides do not or can not differentiate between initiation, runout, and depositional areas; and (2 in this study area, where landslides occurred in complexes that were sometimes more than 100 m wide, a digital terrain model scale of 10 m is optimal. Digital terrain model scales larger than 10 m result in loss of resolution that degrades the results, while for digital terrain model scales smaller than 10 m the physical processes responsible for triggering
On Diffusive Climatological Models.
Griffel, D. H.; Drazin, P. G.
1981-11-01
A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.
Unified Geomorphological Analysis Workflows with Benthic Terrain Modeler
Directory of Open Access Journals (Sweden)
Shaun Walbridge
2018-03-01
Full Text Available High resolution remotely sensed bathymetric data is rapidly increasing in volume, but analyzing this data requires a mastery of a complex toolchain of disparate software, including computing derived measurements of the environment. Bathymetric gradients play a fundamental role in energy transport through the seascape. Benthic Terrain Modeler (BTM uses bathymetric data to enable simple characterization of benthic biotic communities and geologic types, and produces a collection of key geomorphological variables known to affect marine ecosystems and processes. BTM has received continual improvements since its 2008 release; here we describe the tools and morphometrics BTM can produce, the research context which this enables, and we conclude with an example application using data from a protected reef in St. Croix, US Virgin Islands.
Atmospheric dispersion modelling over complex terrain at small scale
Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.
2014-03-01
Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.
DEFF Research Database (Denmark)
Cionco, R.M.; aufm Kampe, W.; Biltoft, C.
1999-01-01
The multination, high-resolution field study of Meteorology And Diffusion Over Non-Uniform Areas (MADONA) was conducted by scientists from the United States, the United Kingdom, Germany, Denmark, Sweden, and the Netherlands at Porton Down, Salisbury, Wiltshire, United Kingdom, during September...... and October 1992. The host of the field study was the Chemical and Biological Defence Establishment (CBDE, now part of Defence Evaluation and Research Agency) at Porton Down. MADONA was designed and conducted for high-resolution meteorological data collection and diffusion experiments using smoke......, sulphurhexaflouride (SF6), and propylene gas during unstable, neutral, and stable atmospheric conditions in an effort to obtain terrain-influenced meteorological fields, dispersion, and concentration fluctuation measurements using specialized sensors and tracer generators. Thirty-one days of meteorological data were...
Wind Tunnel Modeling Of Wind Flow Over Complex Terrain
Banks, D.; Cochran, B.
2010-12-01
This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation
Applications of complex terrain meteorological models to emergency response management
International Nuclear Information System (INIS)
Yamada, Tetsuji; Leone, J.M. Jr.; Rao, K.S.; Dickerson, M.H.; Bader, D.C.; Williams, M.D.
1989-01-01
The Office of Health and Environmental Research (OHER), US Department of Energy (DOE), has supported the development of mesoscale transport and diffusion and meteorological models for several decades. The model development activities are closely tied to the OHER field measurement program which has generated a large amount of meteorological and tracer gas data that have been used extensively to test and improve both meteorological and dispersion models. This paper briefly discusses the history of the model development activities associated with the OHER atmospheric science program. The discussion will then focus on how results from this program have made their way into the emergency response community in the past, and what activities are presently being pursued to improve real-time emergency response capabilities. Finally, fruitful areas of research for improving real-time emergency response modeling capabilities are suggested. 35 refs., 5 figs
Bathymetric terrain model of the Atlantic margin for marine geological investigations
Andrews, Brian D.; Chaytor, Jason D.; ten Brink, Uri S.; Brothers, Daniel S.; Gardner, James V.; Lobecker, Elizabeth A.; Calder, Brian R.
2016-01-01
A bathymetric terrain model of the Atlantic margin covering almost 725,000 square kilometers of seafloor from the New England Seamounts in the north to the Blake Basin in the south is compiled from existing multibeam bathymetric data for marine geological investigations. Although other terrain models of the same area are extant, they are produced from either satellite-derived bathymetry at coarse resolution (ETOPO1), or use older bathymetric data collected by using a combination of single beam and multibeam sonars (Coastal Relief Model). The new multibeam data used to produce this terrain model have been edited by using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined 100-meter resolution grid. The final grid provides the largest high-resolution, seamless terrain model of the Atlantic margin..
Models of diffuse solar radiation
Energy Technology Data Exchange (ETDEWEB)
Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)
2008-04-15
For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)
Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain
Directory of Open Access Journals (Sweden)
Alijafar Mousivand
2015-06-01
Full Text Available Topography affects the fraction of direct and diffuse radiation received on a pixel and changes the sun–target–sensor geometry, resulting in variations in the observed radiance. Retrieval of surface–atmosphere properties from top of atmosphere radiance may need to account for topographic effects. This study investigates how such effects can be taken into account for top of atmosphere radiance modeling. In this paper, a system for top of atmosphere radiance modeling over heterogeneous non-Lambertian rugged terrain through radiative transfer modeling is presented. The paper proposes an extension of “the four-stream radiative transfer theory” (Verhoef and Bach 2003, 2007 and 2012 mainly aimed at representing topography-induced contributions to the top of atmosphere radiance modeling. A detailed account for BRDF effects, adjacency effects and topography effects on the radiance modeling is given, in which sky-view factor and non-Lambertian reflected radiance from adjacent slopes are modeled precisely. The paper also provides a new formulation to derive the atmospheric coefficients from MODTRAN with only two model runs, to make it more computationally efficient and also avoiding the use of zero surface albedo as used in the four-stream radiative transfer theory. The modeling begins with four surface reflectance factors calculated by the Soil–Leaf–Canopy radiative transfer model SLC at the top of canopy and propagates them through the effects of the atmosphere, which is explained by six atmospheric coefficients, derived from MODTRAN radiative transfer code. The top of the atmosphere radiance is then convolved with the sensor characteristics to generate sensor-like radiance. Using a composite dataset, it has been shown that neglecting sky view factor and/or terrain reflected radiance can cause uncertainty in the forward TOA radiance modeling up to 5 (mW/m2·sr·nm. It has also been shown that this level of uncertainty can be translated
3D Fractal reconstruction of terrain profile data based on digital elevation model
International Nuclear Information System (INIS)
Huang, Y.M.; Chen, C.-J.
2009-01-01
Digital Elevation Model (DEM) often makes it difficult for terrain reconstruction and data storage due to the failure in acquisition of details with higher resolution. If original terrain of DEM can be simulated, resulting in geographical details can be represented precisely while reducing the data size, then an effective reconstruction scheme is essential. This paper adopts two sets of real-world 3D terrain profile data to proceed data reducing, i.e. data sampling randomly, then reconstruct them through 3D fractal reconstruction. Meanwhile, the quantitative and qualitative difference generated from different reduction rates were evaluated statistically. The research results show that, if 3D fractal interpolation method is applied to DEM reconstruction, the higher reduction rate can be obtained for DEM of larger data size with respect to that of smaller data size under the assumption that the entire terrain structure is still maintained.
International Nuclear Information System (INIS)
Wittek, P.
1985-09-01
Atmospheric dispersion models are reviewed with respect to their application to the consequence assessment within risk studies for nuclear power plants located in complex terrain. This review comprises: seven straight-line Gaussian models, which have been modified in order to take into account in a crude way terrain elevations, enhanced turbulence and some others effects; three trajectory/puff-models, which can handle wind direction changes and the resulting plume or puff trajectories; five three-dimensional wind field models, which calculate the wind field in complex terrain for the application in a grid model; three grid models; one Monte-Carlo-model. The main features of the computer codes are described, along with some informations on the necessary computer time and storage capacity. (orig.) [de
Digital terrain model generalization incorporating scale, semantic and cognitive constraints
Partsinevelos, Panagiotis; Papadogiorgaki, Maria
2014-05-01
Cartographic generalization is a well-known process accommodating spatial data compression, visualization and comprehension under various scales. In the last few years, there are several international attempts to construct tangible GIS systems, forming real 3D surfaces using a vast number of mechanical parts along a matrix formation (i.e., bars, pistons, vacuums). Usually, moving bars upon a structured grid push a stretching membrane resulting in a smooth visualization for a given surface. Most of these attempts suffer either in their cost, accuracy, resolution and/or speed. Under this perspective, the present study proposes a surface generalization process that incorporates intrinsic constrains of tangible GIS systems including robotic-motor movement and surface stretching limitations. The main objective is to provide optimized visualizations of 3D digital terrain models with minimum loss of information. That is, to minimize the number of pixels in a raster dataset used to define a DTM, while reserving the surface information. This neighborhood type of pixel relations adheres to the basics of Self Organizing Map (SOM) artificial neural networks, which are often used for information abstraction since they are indicative of intrinsic statistical features contained in the input patterns and provide concise and characteristic representations. Nevertheless, SOM remains more like a black box procedure not capable to cope with possible particularities and semantics of the application at hand. E.g. for coastal monitoring applications, the near - coast areas, surrounding mountains and lakes are more important than other features and generalization should be "biased"-stratified to fulfill this requirement. Moreover, according to the application objectives, we extend the SOM algorithm to incorporate special types of information generalization by differentiating the underlying strategy based on topologic information of the objects included in the application. The final
Parabolic Equation Modeling of Propagation over Terrain Using Digital Elevation Model
Directory of Open Access Journals (Sweden)
Xiao-Wei Guan
2018-01-01
Full Text Available The parabolic equation method based on digital elevation model (DEM is applied on propagation predictions over irregular terrains. Starting from a parabolic approximation to the Helmholtz equation, a wide-angle parabolic equation is deduced under the assumption of forward propagation and the split-step Fourier transform algorithm is used to solve it. The application of DEM is extended to the Cartesian coordinate system and expected to provide a precise representation of a three-dimensional surface with high efficiency. In order to validate the accuracy, a perfectly conducting Gaussian terrain profile is simulated and the results are compared with the shift map. As a consequence, a good agreement is observed. Besides, another example is given to provide a theoretical basis and reference for DEM selection. The simulation results demonstrate that the prediction errors will be obvious only when the resolution of the DEM used is much larger than the range step in the PE method.
TouchTerrain: A simple web-tool for creating 3D-printable topographic models
Hasiuk, Franciszek J.; Harding, Chris; Renner, Alex Raymond; Winer, Eliot
2017-12-01
An open-source web-application, TouchTerrain, was developed to simplify the production of 3D-printable terrain models. Direct Digital Manufacturing (DDM) using 3D Printers can change how geoscientists, students, and stakeholders interact with 3D data, with the potential to improve geoscience communication and environmental literacy. No other manufacturing technology can convert digital data into tangible objects quickly at relatively low cost; however, the expertise necessary to produce a 3D-printed terrain model can be a substantial burden: knowledge of geographical information systems, computer aided design (CAD) software, and 3D printers may all be required. Furthermore, printing models larger than the build volume of a 3D printer can pose further technical hurdles. The TouchTerrain web-application simplifies DDM for elevation data by generating digital 3D models customized for a specific 3D printer's capabilities. The only required user input is the selection of a region-of-interest using the provided web-application with a Google Maps-style interface. Publically available digital elevation data is processed via the Google Earth Engine API. To allow the manufacture of 3D terrain models larger than a 3D printer's build volume the selected area can be split into multiple tiles without third-party software. This application significantly reduces the time and effort required for a non-expert like an educator to obtain 3D terrain models for use in class. The web application is deployed at http://touchterrain.geol.iastate.edu/
THE DISTRIBUTION MODELING OF IMPURITIES IN THE ATMOSPHERE WITH TAKING INTO ACCOUNT OF TERRAIN
Directory of Open Access Journals (Sweden)
P. B. Mashyhina
2009-03-01
Full Text Available The 2D numerical model to simulate the pollutant dispersion over complex terrain was proposed. The model is based on the equation of potential flow and the equation of admixture transfer. Results of the numerical experiment are presented.
DEFF Research Database (Denmark)
Xu, Chang; Li, Chen Qi; Han, Xing Xing
2015-01-01
Study on the aerodynamic field in complex terrain is significant to wind farm micro-sitting and wind power prediction. This paper modeled the wind turbine through an actuator disk model, and solved the aerodynamic field by CFD to study the influence of meshing, boundary conditions and turbulence ...
LINCOM wind flow model: Application to complex terrain with thermal stratification
DEFF Research Database (Denmark)
Dunkerley, F.; Moreno, J.; Mikkelsen, T.
2001-01-01
LINCOM is a fast linearised and spectral wind flow model for use over hilly terrain. It is designed to rapidly generate mean wind field predictions which provide input to atmospheric dispersion models and wind engineering applications. The thermal module, LINCOM-T, has recently been improved to p...
Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di, Lorenzo E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; Levin, J.; McWilliams, J.C.; Miller, A.J.; Moore, A.M.; Powell, T.M.; Shchepetkin, A.F.; Sherwood, C.R.; Signell, R.P.; Warner, J.C.; Wilkin, J.
2008-01-01
Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers; redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoyancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations, enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less diffusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-purpose regional ocean prediction systems.
Directory of Open Access Journals (Sweden)
Zhang Bin Loo
2017-01-01
Full Text Available Current network simulators abstract out wireless propagation models due to the high computation requirements for realistic modeling. As such, there is still a large gap between the results obtained from simulators and real world scenario. In this paper, we present a framework for improved path loss simulation built on top of an existing network simulation software, NS-3. Different from the conventional disk model, the proposed simulation also considers the diffraction loss computed using Epstein and Peterson’s model through the use of actual terrain elevation data to give an accurate estimate of path loss between a transmitter and a receiver. The drawback of high computation requirements is relaxed by offloading the computationally intensive components onto an inexpensive off-the-shelf parallel coprocessor, which is a NVIDIA GPU. Experiments are performed using actual terrain elevation data provided from United States Geological Survey. As compared to the conventional CPU architecture, the experimental result shows that a speedup of 20x to 42x is achieved by exploiting the parallel processing of GPU to compute the path loss between two nodes using terrain elevation data. The result shows that the path losses between two nodes are greatly affected by the terrain profile between these two nodes. Besides this, the result also suggests that the common strategy to place the transmitter in the highest position may not always work.
Comparing mixing-length models of the diabatic wind profile over homogeneous terrain
DEFF Research Database (Denmark)
Pena Diaz, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay
2010-01-01
Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performe...
PHYSICAL MODELLING OF TERRAIN DIRECTLY FROM SURFER GRID AND ARC/INFO ASCII DATA FORMATS#
Directory of Open Access Journals (Sweden)
Y.K. Modi
2012-01-01
Full Text Available
ENGLISH ABSTRACT: Additive manufacturing technology is used to make physical models of terrain using GIS surface data. Attempts have been made to understand several other GIS file formats, such as the Surfer grid and the ARC/INFO ASCII grid. The surface of the terrain in these file formats has been converted into an STL file format that is suitable for additive manufacturing. The STL surface is converted into a 3D model by making the walls and the base. In this paper, the terrain modelling work has been extended to several other widely-used GIS file formats. Terrain models can be created in less time and at less cost, and intricate geometries of terrain can be created with ease and great accuracy.
AFRIKAANSE OPSOMMING: Laagvervaardigingstegnologie word gebruik om fisiese modelle van terreine vanaf GIS oppervlakdata te maak. Daar is gepoog om verskeie ander GIS lêerformate, soos die Surfer rooster en die ARC/INFO ASCII rooster, te verstaan. Die oppervlak van die terrein in hierdie lêerformate is omgeskakel in 'n STL lêerformaat wat geskik is vir laagvervaardiging. Verder is die STL oppervlak omgeskakel in 'n 3D model deur die kante en die basis te modelleer. In hierdie artikel is die terreinmodelleringswerk uitgebrei na verskeie ander algemeen gebruikte GIS lêerformate. Terreinmodelle kan so geskep word in korter tyd en teen laer koste, terwyl komplekse geometrieë van terreine met gemak en groot akkuraatheid geskep kan word.
Performance of a TV white space database with different terrain resolutions and propagation models
Directory of Open Access Journals (Sweden)
A. M. Fanan
2017-11-01
Full Text Available Cognitive Radio has now become a realistic option for the solution of the spectrum scarcity problem in wireless communication. TV channels (the primary user can be protected from secondary-user interference by accurate prediction of TV White Spaces (TVWS by using appropriate propagation modelling. In this paper we address two related aspects of channel occupancy prediction for cognitive radio. Firstly we investigate the best combination of empirical propagation model and spatial resolution of terrain data for predicting TVWS by examining the performance of three propagation models (Extended-Hata, Davidson-Hata and Egli in the TV band 470 to 790 MHz along with terrain data resolutions of 1000, 100 and 30 m, when compared with a comprehensive set of propagation measurements taken in randomly-selected locations around Hull, UK. Secondly we describe how such models can be integrated into a database-driven tool for cognitive radio channel selection within the TVWS environment.
Modeling the diffusion of scientific publications
D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)
2005-01-01
textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and
Physical modelling of flow and dispersion over complex terrain
Cermak, J. E.
1984-09-01
Atmospheric motion and dispersion over topography characterized by irregular (or regular) hill-valley or mountain-valley distributions are strongly dependent upon three general sets of variables. These are variables that describe topographic geometry, synoptic-scale winds and surface-air temperature distributions. In addition, pollutant concentration distributions also depend upon location and physical characteristics of the pollutant source. Overall fluid-flow complexity and variability from site to site have stimulated the development and use of physical modelling for determination of flow and dispersion in many wind-engineering applications. Models with length scales as small as 1:12,000 have been placed in boundary-layer wind tunnels to study flows in which forced convection by synoptic winds is of primary significance. Flows driven primarily by forces arising from temperature differences (gravitational or free convection) have been investigated by small-scale physical models placed in an isolated space (gravitational convection chamber). Similarity criteria and facilities for both forced and gravitational-convection flow studies are discussed. Forced-convection modelling is illustrated by application to dispersion of air pollutants by unstable flow near a paper mill in the state of Maryland and by stable flow over Point Arguello, California. Gravitational-convection modelling is demonstrated by a study of drainage flow and pollutant transport from a proposed mining operation in the Rocky Mountains of Colorado. Other studies in which field data are available for comparison with model data are reviewed.
Modeling the flow of glaciers in steep terrains
DEFF Research Database (Denmark)
Egholm, D.L.; Knudsen, Mads Faurschou; Clark, Chris D.
2011-01-01
sliding, and to the interaction with topography through glacial erosion. Standard models capable of simulating mountain range–scale glaciations build on the so-called shallow ice approximation, which, among other parameters, neglects the longitudinal and transverse stress gradients, and therefore fails...... to capture the full effects of the rugged topography and related feedbacks between erosion by glacial sliding and the extent and style of glaciation. Here we present and test a new depth-integrated model framework which, on the one hand, takes into account the “higher-order” effects related to steep......The rugged topography of mountain ranges represents a special challenge to computational ice sheet models simulating past or present glaciations. In mountainous regions, the topography steers glaciers through relatively narrow and steep valleys, and as a consequence hereof, the flow rate of alpine...
Model of diffusers / permeators for hydrogen processing
International Nuclear Information System (INIS)
Jacobs, W. D.; Hang, T.
2008-01-01
Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper. (authors)
Wind field near complex terrain using numerical weather prediction model
Chim, Kin-Sang
The PennState/NCAR MM5 model was modified to simulate an idealized flow pass through a 3D obstacle in the Micro- Alpha Scale domain. The obstacle used were the idealized Gaussian obstacle and the real topography of Lantau Island of Hong Kong. The Froude number under study is ranged from 0.22 to 1.5. Regime diagrams for both the idealized Gaussian obstacle and Lantau island were constructed. This work is divided into five parts. The first part is the problem definition and the literature review of the related publications. The second part briefly discuss as the PennState/NCAR MM5 model and a case study of long- range transport is included. The third part is devoted to the modification and the verification of the PennState/NCAR MM5 model on the Micro-Alpha Scale domain. The implementation of the Orlanski (1976) open boundary condition is included with the method of single sounding initialization of the model. Moreover, an upper dissipative layer, Klemp and Lilly (1978), is implemented on the model. The simulated result is verified by the Automatic Weather Station (AWS) data and the Wind Profiler data. Four different types of Planetary Boundary Layer (PBL) parameterization schemes have been investigated in order to find out the most suitable one for Micro-Alpha Scale domain in terms of both accuracy and efficiency. Bulk Aerodynamic type of PBL parameterization scheme is found to be the most suitable PBL parameterization scheme. Investigation of the free- slip lower boundary condition is performed and the simulated result is compared with that with friction. The fourth part is the use of the modified PennState/NCAR MM5 model for an idealized flow simulation. The idealized uniform flow used is nonhydrostatic and has constant Froude number. Sensitivity test is performed by varying the Froude number and the regime diagram is constructed. Moreover, nondimensional drag is found to be useful for regime identification. The model result is also compared with the analytic
Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program
2017-05-09
Professor Chad Higgins , Oregon State University. Corvallis. Oregon (Host: University of Utah) Or. Stefano Serafin, University of Vienna. Austria... Chris Hocul, ARL White Sands Missile Range). • NCAR 4DWX model output has been analyzed by the University of Virginia group, which has been... Higgins , and H., Parlange, M.B., 2013: Similarity scaling over a steep alpine slope, Boundary-Layer Meteor., 147(3), 401-419. Pu, Z., H. Zhang, and J. A
A linear model for flow over complex terrain
Energy Technology Data Exchange (ETDEWEB)
Frank, H P [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1999-03-01
A linear flow model similar to WA{sup s}P or LINCOM has been developed. Major differences are an isentropic temperature equation which allows internal gravity waves, and vertical advection of the shear of the mean flow. The importance of these effects are illustrated by examples. Resource maps are calculated from a distribution of geostrophic winds and stratification for Pyhaetunturi Fell in northern Finland and Acqua Spruzza in Italy. Stratification becomes important if the inverse Froude number formulated with the width of the hill becomes of order one or greater. (au) EU-JOULE-3. 16 refs.
Pike, Richard J.
2002-01-01
Terrain modeling, the practice of ground-surface quantification, is an amalgam of Earth science, mathematics, engineering, and computer science. The discipline is known variously as geomorphometry (or simply morphometry), terrain analysis, and quantitative geomorphology. It continues to grow through myriad applications to hydrology, geohazards mapping, tectonics, sea-floor and planetary exploration, and other fields. Dating nominally to the co-founders of academic geography, Alexander von Humboldt (1808, 1817) and Carl Ritter (1826, 1828), the field was revolutionized late in the 20th Century by the computer manipulation of spatial arrays of terrain heights, or digital elevation models (DEMs), which can quantify and portray ground-surface form over large areas (Maune, 2001). Morphometric procedures are implemented routinely by commercial geographic information systems (GIS) as well as specialized software (Harvey and Eash, 1996; Köthe and others, 1996; ESRI, 1997; Drzewiecki et al., 1999; Dikau and Saurer, 1999; Djokic and Maidment, 2000; Wilson and Gallant, 2000; Breuer, 2001; Guth, 2001; Eastman, 2002). The new Earth Surface edition of the Journal of Geophysical Research, specializing in surficial processes, is the latest of many publication venues for terrain modeling. This is the fourth update of a bibliography and introduction to terrain modeling (Pike, 1993, 1995, 1996, 1999) designed to collect the diverse, scattered literature on surface measurement as a resource for the research community. The use of DEMs in science and technology continues to accelerate and diversify (Pike, 2000a). New work appears so frequently that a sampling must suffice to represent the vast literature. This report adds 1636 entries to the 4374 in the four earlier publications1. Forty-eight additional entries correct dead Internet links and other errors found in the prior listings. Chronicling the history of terrain modeling, many entries in this report predate the 1999 supplement
Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model
Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.
2017-12-01
Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and
Multiscale Feature Model for Terrain Data Based on Adaptive Spatial Neighborhood
Directory of Open Access Journals (Sweden)
Huijie Zhang
2013-01-01
Full Text Available Multiresolution hierarchy based on features (FMRH has been applied in the field of terrain modeling and obtained significant results in real engineering. However, it is difficult to schedule multiresolution data in FMRH from external memory. This paper proposed new multiscale feature model and related strategies to cluster spatial data blocks and solve the scheduling problems of FMRH using spatial neighborhood. In the model, the nodes with similar error in the different layers should be in one cluster. On this basis, a space index algorithm for each cluster guided by Hilbert curve is proposed. It ensures that multi-resolution terrain data can be loaded without traversing the whole FMRH; therefore, the efficiency of data scheduling is improved. Moreover, a spatial closeness theorem of cluster is put forward and is also proved. It guarantees that the union of data blocks composites a whole terrain without any data loss. Finally, experiments have been carried out on many different large scale data sets, and the results demonstrate that the schedule time is shortened and the efficiency of I/O operation is apparently improved, which is important in real engineering.
A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis
Rulli, M.; Menduni, G.; Rosso, R.
2003-12-01
A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.
Lagrangian-similarity diffusion-deposition model
International Nuclear Information System (INIS)
Horst, T.W.
1979-01-01
A Lagrangian-similarity diffusion model has been incorporated into the surface-depletion deposition model. This model predicts vertical concentration profiles far downwind of the source that agree with those of a one-dimensional gradient-transfer model
A Tire Model for Off-Highway Vehicle Simulation on Short Wave Irregular Terrain
DEFF Research Database (Denmark)
Langer, Thomas Heegaard; Kristensen, Lars B; Mouritsen, Ole Ø.
2010-01-01
Manufacturers of construction machinery are challenged in several ways concerning dynamic loads. Considering off-highway dump trucks that travel through high amplitude short wave irregular terrain with considerable speed two aspects concerning dynamics are important. The first is the legal...... between simulated data and experimental data obtained from full vehicle testing. The experimental work is carried out by letting a dump truck pass a set of well defined obstacles. Based on the obtained agreement between simulated and measured results the tire model is considered suitable for describing...... joints, spring-damper elements and the welded structures it is crucial to have information on the time history of the loads. For trucks carrying payloads the most important load contribution is undoubtedly the reaction forces between terrain and tires. By use of virtual prototypes it is possible...
MHD diffuser model test program
Energy Technology Data Exchange (ETDEWEB)
Idzorek, J J
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.
MHD diffuser model test program
International Nuclear Information System (INIS)
Idzorek, J.J.
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment
Directory of Open Access Journals (Sweden)
Omowunmi Isafiade
2013-09-01
Full Text Available This work investigates robots' perception in underground terrains (mines and tunnels using statistical region merging (SRM and the entropy models. A probabilistic approach based on the local entropy is employed. The entropy is measured within a fixed window on a stream of mine and tunnel frames to compute features used in the segmentation process, while SRM reconstructs the main structural components of an imagery by a simple but effective statistical analysis. An investigation is conducted on different regions of the mine, such as the shaft, stope and gallery, using publicly available mine frames, with a stream of locally captured mine images. Furthermore, an investigation is also conducted on a stream of dynamic underground tunnel image frames, using the XBOX Kinect 3D sensors. The Kinect sensors produce streams of red, green and blue (RGB and depth images of 640 × 480 resolution at 30 frames per second. Integrating the depth information into drivability gives a strong cue to the analysis, which detects 3D results augmenting drivable and non-drivable regions in 2D. The results of the 2D and 3D experiment with different terrains, mines and tunnels, together with the qualitative and quantitative evaluations, reveal that a good drivable region can be detected in dynamic underground terrains.
Homogenization of neutronic diffusion models
International Nuclear Information System (INIS)
Capdebosq, Y.
1999-09-01
In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)
Autonomous terrain characterization and modelling for dynamic control of unmanned vehicles
Talukder, A.; Manduchi, R.; Castano, R.; Owens, K.; Matthies, L.; Castano, A.; Hogg, R.
2002-01-01
This end-to-end obstacle negotiation system is envisioned to be useful in optimized path planning and vehicle navigation in terrain conditions cluttered with vegetation, bushes, rocks, etc. Results on natural terrain with various natural materials are presented.
Effect on tracer concentrations of ABL depth models in complex terrain
Energy Technology Data Exchange (ETDEWEB)
Galmarini, S.; Salin, P. [Joint Research Center Ispra (Italy); Anfossi, D.; Trini-Castelli, S. [CNR-ICGF, Turin (Italy); Schayes, G. [Univ. Louvain-la-Neuve, Louvain (Belgium)
1997-10-01
In the present preliminary study we use different ABL (atmospheric boundary layer) depth formulations to study atmospheric dispersion in complex-terrain conditions. The flow in an Alpine valley during the tracer experiment TRANSALP is simulated by means of a mesoscale model and a tracer dispersion is reproduced using a Lagrangian particle model. The ABL dept enters as key parameter in particle model turbulent-dispersion formulation. The preliminary results reveal that the ABL depth parameter can influence the dispersion process but that in the case of a dispersion in a valley-daytime flow the results depend much more strongly on the model horizontal and vertical resolution. A relatively coarse horizontal resolution implies a considerable smoothing of the topography that largely affects the dispersion characteristics. The vertical resolution does not allow on to resolve with sufficient details the rapid and large variation of the flow characteristic as the terrain feature vary. Two of the methods used to determine the ABL depth depend strongly on the resolution. The method that instead depends only on surface parameters like heat flux and surface based stability allowed us to obtain results to be considered satisfactory for what concerns the dispersion process, quite consistent with the flow model results, less numeric dependent and more physically sound. (LN)
Turbulent diffusion modelling for windflow and dispersion analysis
International Nuclear Information System (INIS)
Bartzis, J.G.
1988-01-01
The need for simple but reliable models for turbulent diffusion for windflow and atmospheric dispersion analysis is a necessity today if one takes into consideration the relatively high demand in computer time and costs for such an analysis, arising mainly from the often large solution domains needed, the terrain complexity and the transient nature of the phenomena. In the accident consequence assessment often there is a need for a relatively large number of cases to be analysed increasing further the computer time and costs. Within the framework of searching for relatively simple and universal eddy viscosity/diffusivity models, a new three dimensional non isotropic model is proposed applicable to any domain complexity and any atmospheric stability conditions. The model utilizes the transport equation for turbulent kinetic energy but introduces a new approach in effective length scale estimation based on the flow global characteristics and local atmospheric stability. The model is discussed in detail and predictions are given for flow field and boundary layer thickness. The results are compared with experimental data with satisfactory results
Using the power balance model to simulate cross-country skiing on varying terrain.
Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell
2014-01-01
The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier's locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier's position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.
Using the power balance model to simulate cross-country skiing on varying terrain
Directory of Open Access Journals (Sweden)
Moxnes JF
2014-05-01
Full Text Available John F Moxnes,1 Øyvind Sandbakk,2 Kjell Hausken31Department for Protection, Norwegian Defence Research Establishment, Kjeller, Norway; 2Center for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; 3Faculty of Social Sciences, University of Stavanger, Stavanger, NorwayAbstract: The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier’s locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier’s position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.Keywords: air drag, efficiency, friction coefficient, speed, locomotive power
A neural network model for estimating soil phosphorus using terrain analysis
Directory of Open Access Journals (Sweden)
Ali Keshavarzi
2015-12-01
Full Text Available Artificial neural network (ANN model was developed and tested for estimating soil phosphorus (P in Kouhin watershed area (1000 ha, Qazvin province, Iran using terrain analysis. Based on the soil distribution correlation, vegetation growth pattern across the topographically heterogeneous landscape, the topographic and vegetation attributes were used in addition to pedologic information for the development of ANN model in area for estimating of soil phosphorus. Totally, 85 samples were collected and tested for phosphorus contents and corresponding attributes were estimated by the digital elevation model (DEM. In order to develop the pedo-transfer functions, data linearity was checked, correlated and 80% was used for modeling and ANN was tested using 20% of collected data. Results indicate that 68% of the variation in soil phosphorus could be explained by elevation and Band 1 data and significant correlation was observed between input variables and phosphorus contents. There was a significant correlation between soil P and terrain attributes which can be used to derive the pedo-transfer function for soil P estimation to manage nutrient deficiency. Results showed that P values can be calculated more accurately with the ANN-based pedo-transfer function with the input topographic variables along with the Band 1.
Directory of Open Access Journals (Sweden)
Marek Pierzchała
2014-06-01
Full Text Available Skid trails constructed for timber extraction in steep terrain constitute a serious environmental concern if not well planned, executed and ameliorated. Carrying out post-harvest surveys in monitoring constructed trails in such terrain is an onerous task for forest administrators, as hundreds of meters need to be surveyed per site, and the quantification of parameters and volumes is largely based on assumptions of trail symmetry and terrain uniformity. In this study, aerial imagery captured from a multi-rotor Unmanned Aerial Vehicle was used in generating a detailed post-harvest terrain model which included all skid trails. This was then compared with an Airborne Laser Scanning derived pre-harvest terrain model and the dimensions, slopes and cut-and-fill volumes associated with the skid trails were determined. The overall skid trail length was 954 m, or 381 m·ha−1 with segments varying from 40–60 m, inclinations from 3.9% to 9.6%, and cut volumes, from 1.7 to 3.7 m3 per running meter. The methods used in this work can be used in rapidly assessing the extent of disturbance and erosion risk on a wide range of sites. The multi-rotor Unmanned Aerial Vehicle (UAV was found to be highly suited to the task, given the relatively small size of harvested stands, their shape and their location in the mountainous terrain.
Directory of Open Access Journals (Sweden)
Andrew eStuntz
2016-04-01
Full Text Available Effective study of ocean processes requires sampling over the duration of long (weeks to months oscillation patterns. Such sampling requires persistent, autonomous underwater vehicles, that have a similarly long deployment duration. The spatiotemporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. In this paper, we consider the combination of two methods for reducing navigation and localization error; a predictive approach based on ocean model predictions and a prior information approach derived from terrain-based navigation. The motivation for this work is not only for real-time state estimation, but also for accurately reconstructing the actual path that the vehicle traversed to contextualize the gathered data, with respect to the science question at hand. We present an application for the practical use of priors and predictions for large-scale ocean sampling. This combined approach builds upon previous works by the authors, and accurately localizes the traversed path of an underwater glider over long-duration, ocean deployments. The proposed method takes advantage of the reliable, short-term predictions of an ocean model, and the utility of priors used in terrain-based navigation over areas of significant bathymetric relief to bound uncertainty error in dead-reckoning navigation. This method improves upon our previously published works by 1 demonstrating the utility of our terrain-based navigation method with multiple field trials, and 2 presenting a hybrid algorithm that combines both approaches to bound navigational error and uncertainty for long-term deployments of underwater vehicles. We demonstrate the approach by examining data from actual field trials with autonomous underwater gliders, and demonstrate an ability to estimate geographical location of an underwater glider to 2
ADJUSTMENT OF MORPHOMETRIC PARAMETERS OF WATER BASINS BASED ON DIGITAL TERRAIN MODELS
Directory of Open Access Journals (Sweden)
Krasil'nikov Vitaliy Mikhaylovich
2012-10-01
Full Text Available The authors argue that effective use of water resources requires accurate morphometric characteristics of water basins. Accurate parameters are needed to analyze their condition, and to assure their appropriate control and operation. Today multiple water basins need their morphometric characteristics to be adjusted and properly stored. The procedure employed so far is based on plane geometric horizontals depicted onto topographic maps. It is described in the procedural guidelines issued in respect of the «Application of water resource regulations governing the operation of waterworks facilities of power plants». The technology described there is obsolete due to the availability of specialized software. The computer technique is based on a digital terrain model. The authors provide an overview of the technique implemented at Rybinsk and Gorkiy water basins in this article. Thus, the digital terrain model generated on the basis of the field data is used at Gorkiy water basin, while the model based on maps and charts is applied at Rybinsk water basin. The authors believe that the software technique can be applied to any other water basin on the basis of the analysis and comparison of morphometric characteristics of the two water basins.
Diffusion in condensed matter methods, materials, models
Kärger, Jörg
2005-01-01
Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.
DIGITAL TERRAIN MODELS FROM MOBILE LASER SCANNING DATA IN MORAVIAN KARST
Directory of Open Access Journals (Sweden)
N. Tyagur
2016-06-01
Full Text Available During the last ten years, mobile laser scanning (MLS systems have become a very popular and efficient technology for capturing reality in 3D. A 3D laser scanner mounted on the top of a moving vehicle (e.g. car allows the high precision capturing of the environment in a fast way. Mostly this technology is used in cities for capturing roads and buildings facades to create 3D city models. In our work, we used an MLS system in Moravian Karst, which is a protected nature reserve in the Eastern Part of the Czech Republic, with a steep rocky terrain covered by forests. For the 3D data collection, the Riegl VMX 450, mounted on a car, was used with integrated IMU/GNSS equipment, which provides low noise, rich and very dense 3D point clouds. The aim of this work is to create a digital terrain model (DTM from several MLS data sets acquired in the neighbourhood of a road. The total length of two covered areas is 3.9 and 6.1 km respectively, with an average width of 100 m. For the DTM generation, a fully automatic, robust, hierarchic approach was applied. The derivation of the DTM is based on combinations of hierarchical interpolation and robust filtering for different resolution levels. For the generation of the final DTMs, different interpolation algorithms are applied to the classified terrain points. The used parameters were determined by explorative analysis. All MLS data sets were processed with one parameter set. As a result, a high precise DTM was derived with high spatial resolution of 0.25 x 0.25 m. The quality of the DTMs was checked by geodetic measurements and visual comparison with raw point clouds. The high quality of the derived DTM can be used for analysing terrain changes and morphological structures. Finally, the derived DTM was compared with the DTM of the Czech Republic (DMR 4G with a resolution of 5 x 5 m, which was created from airborne laser scanning data. The vertical accuracy of the derived DTMs is around 0.10 m.
Arrighi, Chiara; Campo, Lorenzo
2017-04-01
In last years, the concern about the economical and lives loss due to urban floods has grown hand in hand with the numerical skills in simulating such events. The large amount of computational power needed in order to address the problem (simulating a flood in a complex terrain such as a medium-large city) is only one of the issues. Among them it is possible to consider the general lack of exhaustive observations during the event (exact extension, dynamic, water level reached in different parts of the involved area), needed for calibration and validation of the model, the need of considering the sewers effects, and the availability of a correct and precise description of the geometry of the problem. In large cities the topographic surveys are in general available with a number of points, but a complete hydraulic simulation needs a detailed description of the terrain on the whole computational domain. LIDAR surveys can achieve this goal, providing a comprehensive description of the terrain, although they often lack precision. In this work an optimal merging of these two sources of geometrical information, measured elevation points and LIDAR survey, is proposed, by taking into account the error variance of both. The procedure is applied to a flood-prone city over an area of 35 square km approximately starting with a DTM from LIDAR with a spatial resolution of 1 m, and 13000 measured points. The spatial pattern of the error (LIDAR vs points) is analysed, and the merging method is tested with a series of Jackknife procedures that take into account different densities of the available points. A discussion of the results is provided.
Solution to the spectral filter problem of residual terrain modelling (RTM)
Rexer, Moritz; Hirt, Christian; Bucha, Blažej; Holmes, Simon
2018-06-01
In physical geodesy, the residual terrain modelling (RTM) technique is frequently used for high-frequency gravity forward modelling. In the RTM technique, a detailed elevation model is high-pass-filtered in the topography domain, which is not equivalent to filtering in the gravity domain. This in-equivalence, denoted as spectral filter problem of the RTM technique, gives rise to two imperfections (errors). The first imperfection is unwanted low-frequency (LF) gravity signals, and the second imperfection is missing high-frequency (HF) signals in the forward-modelled RTM gravity signal. This paper presents new solutions to the RTM spectral filter problem. Our solutions are based on explicit modelling of the two imperfections via corrections. The HF correction is computed using spectral domain gravity forward modelling that delivers the HF gravity signal generated by the long-wavelength RTM reference topography. The LF correction is obtained from pre-computed global RTM gravity grids that are low-pass-filtered using surface or solid spherical harmonics. A numerical case study reveals maximum absolute signal strengths of ˜ 44 mGal (0.5 mGal RMS) for the HF correction and ˜ 33 mGal (0.6 mGal RMS) for the LF correction w.r.t. a degree-2160 reference topography within the data coverage of the SRTM topography model (56°S ≤ φ ≤ 60°N). Application of the LF and HF corrections to pre-computed global gravity models (here the GGMplus gravity maps) demonstrates the efficiency of the new corrections over topographically rugged terrain. Over Switzerland, consideration of the HF and LF corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 4.41 to 3.27 mGal, which translates into ˜ 26% improvement. Over a second test area (Canada), our corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 5.65 to 5.30 mGal (˜ 6% improvement). Particularly over Switzerland, geophysical signals (associated, e.g. with
Smoke plume trajectory from in-situ burning of crude oil: complex terrain modeling
International Nuclear Information System (INIS)
McGrattan, K.
1997-01-01
Numerical models have been used to predict the concentration of particulate matter or other combustion products downwind from a proposed in- situ burning of an oil spill. One of the models used was the National Institute of Standards and Technology (NIST) model, ALOFT (A Large Outdoor Fire plume Trajectory), which is based on the conservation equations that govern the introduction of hot gases and particulate matter into the atmosphere. By using a model based on fundamental equations, it becomes a relatively simple matter to simulate smoke dispersal flow patterns, and to compute the solution to the equations of motion that govern the transport of pollutants in the lower atmosphere at a resolution that is comparable to that of the underlying terrain data. 9 refs., 2 tabs., 5 figs
Tsao, Thomas R.; Tsao, Doris
1997-04-01
In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.
Pre-analysis techniques applied to area-based correlation aiming Digital Terrain Model generation
Directory of Open Access Journals (Sweden)
Maurício Galo
2005-12-01
Full Text Available Area-based matching is an useful procedure in some photogrammetric processes and its results are of crucial importance in applications such as relative orientation, phototriangulation and Digital Terrain Model generation. The successful determination of correspondence depends on radiometric and geometric factors. Considering these aspects, the use of procedures that previously estimate the quality of the parameters to be computed is a relevant issue. This paper describes these procedures and it is shown that the quality prediction can be computed before performing matching by correlation, trough the analysis of the reference window. This procedure can be incorporated in the correspondence process for Digital Terrain Model generation and Phototriangulation. The proposed approach comprises the estimation of the variance matrix of the translations from the gray levels in the reference window and the reduction of the search space using the knowledge of the epipolar geometry. As a consequence, the correlation process becomes more reliable, avoiding the application of matching procedures in doubtful areas. Some experiments with simulated and real data are presented, evidencing the efficiency of the studied strategy.
Experimental and Numerical Modelling of Flow over Complex Terrain: The Bolund Hill
Conan, Boris; Chaudhari, Ashvinkumar; Aubrun, Sandrine; van Beeck, Jeroen; Hämäläinen, Jari; Hellsten, Antti
2016-02-01
In the wind-energy sector, wind-power forecasting, turbine siting, and turbine-design selection are all highly dependent on a precise evaluation of atmospheric wind conditions. On-site measurements provide reliable data; however, in complex terrain and at the scale of a wind farm, local measurements may be insufficient for a detailed site description. On highly variable terrain, numerical models are commonly used but still constitute a challenge regarding simulation and interpretation. We propose a joint state-of-the-art study of two approaches to modelling atmospheric flow over the Bolund hill: a wind-tunnel test and a large-eddy simulation (LES). The approach has the particularity of describing both methods in parallel in order to highlight their similarities and differences. The work provides a first detailed comparison between field measurements, wind-tunnel experiments and numerical simulations. The systematic and quantitative approach used for the comparison contributes to a better understanding of the strengths and weaknesses of each model and, therefore, to their enhancement. Despite fundamental modelling differences, both techniques result in only a 5 % difference in the mean wind speed and 15 % in the turbulent kinetic energy (TKE). The joint comparison makes it possible to identify the most difficult features to model: the near-ground flow and the wake of the hill. When compared to field data, both models reach 11 % error for the mean wind speed, which is close to the best performance reported in the literature. For the TKE, a great improvement is found using the LES model compared to previous studies (20 % error). Wind-tunnel results are in the low range of error when compared to experiments reported previously (40 % error). This comparison highlights the potential of such approaches and gives directions for the improvement of complex flow modelling.
Symmetries and modelling functions for diffusion processes
International Nuclear Information System (INIS)
Nikitin, A G; Spichak, S V; Vedula, Yu S; Naumovets, A G
2009-01-01
A constructive approach to the theory of diffusion processes is proposed, which is based on application of both symmetry analysis and the method of modelling functions. An algorithm for construction of the modelling functions is suggested. This algorithm is based on the error function expansion (ERFEX) of experimental concentration profiles. The high-accuracy analytical description of the profiles provided by ERFEX approximation allows a convenient extraction of the concentration dependence of diffusivity from experimental data and prediction of the diffusion process. Our analysis is exemplified by its employment in experimental results obtained for surface diffusion of lithium on the molybdenum (1 1 2) surface precovered with dysprosium. The ERFEX approximation can be directly extended to many other diffusion systems.
Stauffer, Reto; Mayr, Georg J; Messner, Jakob W; Umlauf, Nikolaus; Zeileis, Achim
2017-06-15
Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily time scale as the observations involve large fractions of zero observations and are limited to non-negative values. We develop a novel spatio-temporal model to estimate the full climatological distribution of precipitation on a daily time scale over complex terrain using a left-censored normal distribution. The results demonstrate that the new method is able to account for the non-normal distribution and the large fraction of zero observations. The new climatology provides the full climatological distribution on a very high spatial and temporal resolution, and is competitive with, or even outperforms existing methods, even for arbitrary locations.
Foore, Larry; Ida, Nathan
2007-01-01
This study introduces the use of a modified Longley-Rice irregular terrain model and digital elevation data representative of an analogue lunar site for the prediction of RF path loss over the lunar surface. The results are validated by theoretical models and past Apollo studies. The model is used to approximate the path loss deviation from theoretical attenuation over a reflecting sphere. Analysis of the simulation results provides statistics on the fade depths for frequencies of interest, and correspondingly a method for determining the maximum range of communications for various coverage confidence intervals. Communication system engineers and mission planners are provided a link margin and path loss policy for communication frequencies of interest.
Brasington, James; James, Joe; Cook, Simon; Cox, Simon; Lotsari, Eliisa; McColl, Sam; Lehane, Niall; Williams, Richard; Vericat, Damia
2016-04-01
In recent years, 3D terrain reconstructions based on Structure-from-Motion photogrammetry have dramatically democratized the availability of high quality topographic data. This approach involves the use of a non-linear bundle adjustment to estimate simultaneously camera position, pose, distortion and 3D model coordinates. In contrast to traditional aerial photogrammetry, the bundle adjustment is typically solved without external constraints and instead ground control is used a posteriori to transform the modelled coordinates to an established datum using a similarity transformation. The limited data requirements, coupled with the ability to self-calibrate compact cameras, has led to a burgeoning of applications using low-cost imagery acquired terrestrially or from low-altitude platforms. To date, most applications have focused on relatively small spatial scales (0.1-5 Ha), where relaxed logistics permit the use of dense ground control networks and high resolution, close-range photography. It is less clear whether this low-cost approach can be successfully upscaled to tackle larger, watershed-scale projects extending over 102-3 km2 where it could offer a competitive alternative to established landscape modelling with airborne lidar. At such scales, compromises over the density of ground control, the speed and height of sensor platform and related image properties are inevitable. In this presentation we provide a systematic assessment of the quality of large-scale SfM terrain products derived for over 80 km2 of the braided Dart River and its catchment in the Southern Alps of NZ. Reference data in the form of airborne and terrestrial lidar are used to quantify the quality of 3D reconstructions derived from helicopter photography and used to establish baseline uncertainty models for geomorphic change detection. Results indicate that camera network design is a key determinant of model quality, and that standard aerial photogrammetric networks based on strips of nadir
Double diffusivity model under stochastic forcing
Chattopadhyay, Amit K.; Aifantis, Elias C.
2017-05-01
The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into
Mondal, N. C.; Adike, S.; Singh, V. S.; Ahmed, S.; Jayakumar, K. V.
2017-08-01
Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been cross-verified with hydrochemical signatures such as total dissolved solids (TDS), Cl-, HCO3-, SO4^{2-} and Cl-/HCO3- molar ratios. The results show four zones of aquifer vulnerability (i.e., negligible, low, moderate and high) based on the variation of DRASTIC Vulnerability Index (DVI) between 39 and 132. About 57% area in the central part is found moderately and highly contaminated due to the 80 functional tannery disposals and is more prone to groundwater aquifer vulnerability. The high range values of TDS (2304-39,100 mg/l); Na+(239- 6,046 mg/l) and Cl- (532-13,652 mg/l) are well correlated with the observed high vulnerable zones. The values of Cl-/HCO3- (molar ratios: 1.4-106.8) in the high vulnerable zone obviously indicate deterioration of the aquifer due to contamination. Further cumulative probability distributions of these parameters indicate several threshold values which are able to demarcate the diverse vulnerability zones in granitic terrain.
Saxton, Michael J
2007-01-01
Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.
A tracer diffusion model derived from microstructure
International Nuclear Information System (INIS)
Lehikoinen, Jarmo; Muurinen, Arto; Olin, Markus
2012-01-01
Document available in extended abstract form only. Full text of publication follows: Numerous attempts have been made to explain the tracer diffusion of various solutes in compacted clays. These attempts have commonly suffered from an inability to describe the diffusion of uncharged and charged solutes with a single unified model. Here, an internally consistent approach to describing the diffusion of solutes in a heterogeneous porous medium, such as compacted bentonite, in terms of its microstructure is presented. The microstructure is taken to be represented by a succession of unit cells, which consist of two consecutive regions (Do, 1996). In the first region, the diffusion is viewed to occur in two parallel paths: one through microcrystalline units (micropores) and the other through meso-pores between the microcrystalline units. Solutes exiting these two paths are then joined together to continue diffusing through the second, disordered, region, connecting the two adjacent microcrystalline units. Adsorption (incl. co-ion exclusion) is thought to occur in the micropores, whereas meso-pores and the disordered region accommodate free species alone. Co-ions are also assumed to experience transfer resistance into and out of the micropores, which is characterized in the model by a transmission coefficient. Although the model is not new per se, its application to compacted clays has never been attempted before. It is shown that in the limit of strong adsorption, the effective diffusivity is limited from above only by the microstructural parameters of the model porous medium. As intuitive and logical as this result may appear, it has not been proven before. In the limit of vanishing disordered region, the effective diffusivity is no longer explicitly constrained by any of the model parameters. The tortuosity of the diffusion path, i.e. the quotient of the actual diffusion path length in the porous-medium coordinates and the characteristic length of the laboratory frame
Jorge, Marco G.; Brennand, Tracy A.
2017-07-01
Relict drumlin and mega-scale glacial lineation (positive relief, longitudinal subglacial bedforms - LSBs) morphometry has been used as a proxy for paleo ice-sheet dynamics. LSB morphometric inventories have relied on manual mapping, which is slow and subjective and thus potentially difficult to reproduce. Automated methods are faster and reproducible, but previous methods for LSB semi-automated mapping have not been highly successful. Here, two new object-based methods for the semi-automated extraction of LSBs (footprints) from digital terrain models are compared in a test area in the Puget Lowland, Washington, USA. As segmentation procedures to create LSB-candidate objects, the normalized closed contour method relies on the contouring of a normalized local relief model addressing LSBs on slopes, and the landform elements mask method relies on the classification of landform elements derived from the digital terrain model. For identifying which LSB-candidate objects correspond to LSBs, both methods use the same LSB operational definition: a ruleset encapsulating expert knowledge, published morphometric data, and the morphometric range of LSBs in the study area. The normalized closed contour method was separately applied to four different local relief models, two computed in moving windows and two hydrology-based. Overall, the normalized closed contour method outperformed the landform elements mask method. The normalized closed contour method performed on a hydrological relief model from a multiple direction flow routing algorithm performed best. For an assessment of its transferability, the normalized closed contour method was evaluated on a second area, the Chautauqua drumlin field, Pennsylvania and New York, USA where it performed better than in the Puget Lowland. A broad comparison to previous methods suggests that the normalized relief closed contour method may be the most capable method to date, but more development is required.
What model resolution is required in climatological downscaling over complex terrain?
El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem
2018-05-01
This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited quantitative measure of the potential errors for various hydrometeorological variables.
Digital terrain modelling development and applications in a policy support environment
Peckham, Robert Joseph
2007-01-01
This publication is the first book on the development and application of digital terrain modelling for regional planning and policy support. It is a compilation of research results by international research groups at the European Commission's Joint Research Centre providing scientific support to the development and implementation of EU environmental policy. Applications include the pan-European River and Catchment Database, European Flood Alert System, European Digital Soil Database and alternative solar energy resources, all discussed in a GIS framework in the context of the INfrastructure for SPatial InfoRmation in Europe (INSPIRE). This practice-oriented book is recommended to practicing environmental modellers and GIS experts working on regional planning and policy support applications.
Stochastic models for surface diffusion of molecules
Energy Technology Data Exchange (ETDEWEB)
Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)
2014-07-28
We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.
Aerial thermography from low-cost UAV for the generation of thermographic digital terrain models
Lagüela, S.; Díaz-Vilariño, L.; Roca, D.; Lorenzo, H.
2015-03-01
Aerial thermography is performed from a low-cost aerial vehicle, copter type, for the acquisition of data of medium-size areas, such as neighbourhoods, districts or small villages. Thermographic images are registered in a mosaic subsequently used for the generation of a thermographic digital terrain model (DTM). The thermographic DTM can be used with several purposes, from classification of land uses according to their thermal response to the evaluation of the building prints as a function of their energy performance, land and water management. In the particular case of buildings, apart from their individual evaluation and roof inspection, the availability of thermographic information on a DTM allows for the spatial contextualization of the buildings themselves and the general study of the surrounding area for the detection of global effects such as heat islands.
Filling Terrorism Gaps: VEOs, Evaluating Databases, and Applying Risk Terrain Modeling to Terrorism
Energy Technology Data Exchange (ETDEWEB)
Hagan, Ross F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-08-29
This paper aims to address three issues: the lack of literature differentiating terrorism and violent extremist organizations (VEOs), terrorism incident databases, and the applicability of Risk Terrain Modeling (RTM) to terrorism. Current open source literature and publicly available government sources do not differentiate between terrorism and VEOs; furthermore, they fail to define them. Addressing the lack of a comprehensive comparison of existing terrorism data sources, a matrix comparing a dozen terrorism databases is constructed, providing insight toward the array of data available. RTM, a method for spatial risk analysis at a micro level, has some applicability to terrorism research, particularly for studies looking at risk indicators of terrorism. Leveraging attack data from multiple databases, combined with RTM, offers one avenue for closing existing research gaps in terrorism literature.
MELSAR: a mesoscale air quality model for complex terrain. Volume 2. Appendices
Energy Technology Data Exchange (ETDEWEB)
Allwine, K.J.; Whiteman, C.D.
1985-04-01
This final report is submitted as part of the Green River Ambient Model Assessment (GRAMA) project conducted at the US Department of Energy's Pacific Northwest Laboratory for the US Environmental Protection Agency. The GRAMA Program has, as its ultimate goal, the development of validated air quality models that can be applied to the complex terrain of the Green River Formation of western Colorado, eastern Utah and southern Wyoming. The Green River Formation is a geologic formation containing large reserves of oil shale, coal, and other natural resources. Development of these resources may lead to a degradation of the air quality of the region. Air quality models are needed immediately for planning and regulatory purposes to assess the magnitude of these regional impacts. This report documents one of the models being developed for this purpose within GRAMA - specifically a model to predict short averaging time (less than or equal to 24 h) pollutant concentrations resulting from the mesoscale transport of pollutant releases from multiple sources. MELSAR has not undergone any rigorous operational testing, sensitivity analyses, or validation studies. Testing and evaluation of the model are needed to gain a measure of confidence in the model's performance. This report consists of two volumes. This volume contains the Appendices, which include listings of the FORTRAN code and Volume 1 contains the model overview, technical description, and user's guide. 13 figs., 10 tabs.
Necessity of using heterogeneous ellipsoidal Earth model with terrain to calculate co-seismic effect
Cheng, Huihong; Zhang, Bei; Zhang, Huai; Huang, Luyuan; Qu, Wulin; Shi, Yaolin
2016-04-01
-seismic displacement and strain are no longer symmetric with different latitudes in plane model while always theoretically symmetrical in spherical model. 2) The errors of co-seismic strain will be increased when using corresponding formulas in plane coordinate. When we set the strike-slip fault along the equator, the maximum relative error can reach to several tens of thousand times in high latitude while 30 times near the fault. 3) The style of strain changes are eight petals while the errors are four petals, and apparent distortion at high latitudes. Furthermore, the influence of the earth's ellipticity and heterogeneity and terrain were calculated respectively. Especially the effect of terrain, which induced huge differences, should not be overlooked during the co-seismic calculations. Finally, taking all those affecting factors into account, we calculated the co-seismic effect of the 2008 Wenchuan earthquake and its adjacent area and faults using the heterogeneous ellipsoidal Earth model with terrain.
Gézero, L.; Antunes, C.
2017-05-01
The digital terrain models (DTM) assume an essential role in all types of road maintenance, water supply and sanitation projects. The demand of such information is more significant in developing countries, where the lack of infrastructures is higher. In recent years, the use of Mobile LiDAR Systems (MLS) proved to be a very efficient technique in the acquisition of precise and dense point clouds. These point clouds can be a solution to obtain the data for the production of DTM in remote areas, due mainly to the safety, precision, speed of acquisition and the detail of the information gathered. However, the point clouds filtering and algorithms to separate "terrain points" from "no terrain points", quickly and consistently, remain a challenge that has caught the interest of researchers. This work presents a method to create the DTM from point clouds collected by MLS. The method is based in two interactive steps. The first step of the process allows reducing the cloud point to a set of points that represent the terrain's shape, being the distance between points inversely proportional to the terrain variation. The second step is based on the Delaunay triangulation of the points resulting from the first step. The achieved results encourage a wider use of this technology as a solution for large scale DTM production in remote areas.
Directory of Open Access Journals (Sweden)
Jianfeng Wang
2015-01-01
Full Text Available The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain’s influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance.
Assessment of terrain slope influence in SWAT modeling of Andean watersheds
Yacoub, C.; Pérez-Foguet, A.
2009-04-01
Hydrological processes in the Andean Region are difficult to model. Large range of altitudes involved (from over 4000 meters above sea level, masl, to zero) indicates the high variability of rainfall, temperature and other climate variables. Strong runoff and extreme events as landslides and floods are the consequence of high slopes of terrain, especially in the upper part of the basins. Strong seasonality of rain and complex ecosystems (vulnerable to climate changes and anthropogenic activities) helps these processes. Present study focuses in a particular watershed from Peruvian Andes, the Jequetepeque River. The distributed watershed simulation model, Soil and Water Assessment Tool (SWAT) is applied to model run-off and sediments transport through the basin with data from 1997 to 2006. Specifically, the study focuses in the assessment of the influence of considering terrain slope variation in the definition of Hydrographical Response Units within SWAT. The Jequetepeque watershed (4 372.5 km2) is located in the north part of Peru. River flows east to west, to the Pacific Ocean. Annual average precipitation ranges from 0 to 1100 mm and altitude from 0 to 4188 masl. The "Gallito Ciego" reservoir (400 masl) separates upper-middle part from lower part of the watershed. It stores water for supplying the people from the big cities on the coast and for extensive agriculture uses. Upper-middle part of the watershed covers 3564.8 km2. It ranges from 400 to 4188 masl in no more that 80 km, with slopes up to 20%. Main activities are agricultural and livestock and mining and about 80% of the population are rural. Annual mean temperature drops from 25.4 °C at the reservoir to less than 4 °C in the upper part. Also the highest rainfall variability is found in the upper-middle part of the watershed. Erosion produced by extreme events like 1997/98 "el Niño" Phenomenon is silting the reservoir faster than expected. Moreover, anthropogenic activities like agriculture and
Matthaios, Vasileios N.; Triantafyllou, Athanasios G.; Albanis, Triantafyllos A.; Sakkas, Vasileios; Garas, Stelios
2018-05-01
Atmospheric modeling is considered an important tool with several applications such as prediction of air pollution levels, air quality management, and environmental impact assessment studies. Therefore, evaluation studies must be continuously made, in order to improve the accuracy and the approaches of the air quality models. In the present work, an attempt is made to examine the air pollution model (TAPM) efficiency in simulating the surface meteorology, as well as the SO2 concentrations in a mountainous complex terrain industrial area. Three configurations under different circumstances, firstly with default datasets, secondly with data assimilation, and thirdly with updated land use, ran in order to investigate the surface meteorology for a 3-year period (2009-2011) and one configuration applied to predict SO2 concentration levels for the year of 2011.The modeled hourly averaged meteorological and SO2 concentration values were statistically compared with those from five monitoring stations across the domain to evaluate the model's performance. Statistical measures showed that the surface temperature and relative humidity are predicted well in all three simulations, with index of agreement (IOA) higher than 0.94 and 0.70 correspondingly, in all monitoring sites, while an overprediction of extreme low temperature values is noted, with mountain altitudes to have an important role. However, the results also showed that the model's performance is related to the configuration regarding the wind. TAPM default dataset predicted better the wind variables in the center of the simulation than in the boundaries, while improvement in the boundary horizontal winds implied the performance of TAPM with updated land use. TAPM assimilation predicted the wind variables fairly good in the whole domain with IOA higher than 0.83 for the wind speed and higher than 0.85 for the horizontal wind components. Finally, the SO2 concentrations were assessed by the model with IOA varied from 0
Agent-based modelling of cholera diffusion
Augustijn-Beckers, Petronella; Doldersum, Tom; Useya, Juliana; Augustijn, Dionysius C.M.
2016-01-01
This paper introduces a spatially explicit agent-based simulation model for micro-scale cholera diffusion. The model simulates both an environmental reservoir of naturally occurring V.cholerae bacteria and hyperinfectious V. cholerae. Objective of the research is to test if runoff from open refuse
Stochastic diffusion models for substitutable technological innovations
Wang, L.; Hu, B.; Yu, X.
2004-01-01
Based on the analysis of firms' stochastic adoption behaviour, this paper first points out the necessity to build more practical stochastic models. And then, stochastic evolutionary models are built for substitutable innovation diffusion system. Finally, through the computer simulation of the
Closed-loop EMG-informed model-based analysis of human musculoskeletal mechanics on rough terrains
Varotto, C.; Sawacha, Z.; Gizzi, L; Farina, D.; Sartori, M.
2017-01-01
This work aims at estimating the musculoskeletal forces acting in the human lower extremity during locomotion on rough terrains. We employ computational models of the human neuro-musculoskeletal system that are informed by multi-modal movement data including foot-ground reaction forces, 3D marker
Bag model with diffuse surface
International Nuclear Information System (INIS)
Phatak, S.C.
1986-01-01
The constraint of a sharp bag boundary in the bag model is relaxed in the present work. This has been achieved by replacing the square-well potential of the bag model by a smooth scalar potential and introducing a term similar to the bag pressure term. The constraint of the conservation of the energy-momentum tensor is used to obtain an expression for the added bag pressure term. The model is then used to determine the static properties of the nucleon. The calculation shows that the rms charge radius and the nucleon magnetic moment are larger than the corresponding bag model values. Also, the axial vector coupling constant and the πNN coupling constant are in better agreement with the experimental values
Stenzel, J.; Hudiburg, T. W.; Berardi, D.; McNellis, B.; Walsh, E.
2017-12-01
In forests vulnerable to drought and fire, there is critical need for in situ carbon and water balance measurements that can be integrated with earth system modeling to predict climate feedbacks. Model development can be improved by measurements that inform a mechanistic understanding of the component fluxes of net carbon uptake (i.e., NPP, autotrophic and heterotrophic respiration) and water use, with specific focus on responses to climate and disturbance. By integrating novel field-based instrumental technology, existing datasets, and state-of-the-art earth system modeling, we are attempting to 1) quantify the spatial and temporal impacts of forest thinning on regional biogeochemical cycling and climate 2) evaluate the impact of forest thinning on forest resilience to drought and disturbance in the Northern Rockies ecoregion. The combined model-experimental framework enables hypothesis testing that would otherwise be impossible because the use of new in situ high temporal resolution field technology allows for research in remote and mountainous terrains that have been excluded from eddy-covariance techniques. Our preliminary work has revealed some underlying difficulties with the new instrumentation that has led to new ideas and modified methods to correctly measure the component fluxes. Our observations of C balance following the thinning operations indicate that the recovery period (source to sink) is longer than hypothesized. Finally, we have incorporated a new plant functional type parameterization for Northern Rocky mixed-conifer into our simulation modeling using regional and site observations.
Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model
Energy Technology Data Exchange (ETDEWEB)
Heikkilae, U. [Bjerknes Centre for Climate Research, Uni Bjerknes Centre, Bergen (Norway); Sandvik, A. [Bjerknes Centre for Climate Research, Institute for Marine Research (IMR), Bergen (Norway); Sorteberg, A. [University of Bergen, Geophysical Institute, Bergen (Norway)
2011-10-15
Results from a first-time employment of the WRF regional climate model to climatological simulations in Europe are presented. The ERA-40 reanalysis (resolution 1 ) has been downscaled to a horizontal resolution of 30 and 10 km for the period of 1961-1990. This model setup includes the whole North Atlantic in the 30 km domain and spectral nudging is used to keep the large scales consistent with the driving ERA-40 reanalysis. The model results are compared against an extensive observational network of surface variables in complex terrain in Norway. The comparison shows that the WRF model is able to add significant detail to the representation of precipitation and 2-m temperature of the ERA-40 reanalysis. Especially the geographical distribution, wet day frequency and extreme values of precipitation are highly improved due to the better representation of the orography. Refining the resolution from 30 to 10 km further increases the skill of the model, especially in case of precipitation. Our results indicate that the use of 10-km resolution is advantageous for producing regional future climate projections. Use of a large domain and spectral nudging seems to be useful in reproducing the extreme precipitation events due to the better resolved synoptic scale features over the North Atlantic, and also helps to reduce the large regional temperature biases over Norway. This study presents a high-resolution, high-quality climatological data set useful for reference climate impact studies. (orig.)
Multiphase Microfluidics The Diffuse Interface Model
2012-01-01
Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.
Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin
2014-05-01
A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated
International Nuclear Information System (INIS)
Nagai, Haruyasu; Yamazawa, Hiromi
1994-11-01
A three-dimensional atmospheric dynamic model (PHYSIC) was improved and its performance was examined using the meteorological data observed at a coastal area with a complex terrain. To introduce synoptic meteorological conditions into the model, the initial and boundary conditions were improved. By this improvement, the model can predict the temporal change of wind field for more than 24 hours. Moreover, the model successfully simulates the land and sea breeze observed at Shimokita area in the summer of 1992. (author)
The Illumination Model of the Valley Based on the Diffuse Reflect of Forest
Directory of Open Access Journals (Sweden)
He Guoliang
2016-01-01
Full Text Available In this paper, models are build to evaluate the impact of the forest on the valley’s illumination. Based on the assumes that all the light reach the ground comes from the diffuse reflection which comes from the sun directly and from the diffuse reflection of other points, One model is build to consider the impact of time and latitude on the direction of the sunlight. So we can get the direction of the sunlight at different time and latitude through the model. Besides, this paper develops a illumination model to evaluate the intensity of illumination of the ground. Combining the models above, this paper get a complete model which can not only evaluate the overall light intensity of the valley but also convert the light intensity to the intensity of illumination. Simulation of the intensity illumination of some basic terrains and finally gives a comprehensive results which is practical and close to the common sense.
International Nuclear Information System (INIS)
Walker, H.
1982-11-01
A terrain data base covering the continental United States at 500-meter resolution has been generated. Its function is to provide terrain data for input to mesoscale atmospheric models that are used as part of the Atmospheric Release Advisory Capability at Lawrence Livermore Laboratory (LLNL). The structure of the data base as it exists on the LLNL computer system is described. The data base has been written to tapes for transfer to other systems and the format of these tapes is also described
Edwin, Lionel E.; Mazzoleni, Andre P.
2016-03-01
All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that the most scientifically interesting missions require exploration platforms with capabilities for navigating such types of rugged terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This work analyzes one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This paper investigates the mobility of the TRREx when it is in its rolling mode, i.e. when it is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. A mathematical model describing the dynamics of the rover in this spherical configuration is presented, and actuated rolling is demonstrated through computer simulation. Parametric analyzes that investigate the rover's mobility as a function of its design parameters are also presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future.
Parameter estimation in fractional diffusion models
Kubilius, Kęstutis; Ralchenko, Kostiantyn
2017-01-01
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...
VBMP Digital Terrain Models - 2006/2007 (VA State Plane South)
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that were used to create...
Fractional diffusion models of nonlocal transport
International Nuclear Information System (INIS)
Castillo-Negrete, D. del
2006-01-01
A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments
Technological diffusion in the Ramsey model
Czech Academy of Sciences Publication Activity Database
Duczynski, Petr
2002-01-01
Roč. 1, č. 3 (2002), s. 243-250 ISSN 1607-0704 Institutional research plan: CEZ:AV0Z7085904 Keywords : neoclassical growth model * technological diffusion Subject RIV: AH - Economics http://www.ijbe.org/table%20of%20content/pdf/vol1-3/06.pdf
DMR50 – the first digital terrain model of Slovakia in the GCCA SR sector
Directory of Open Access Journals (Sweden)
Matej Klobušiak
2005-06-01
Full Text Available The digital terrain model (DTM is a complex object of the Primary Database for The Geographic Information System (PD GIS. PD GIS is a component of the Automated Information System of Geodesy, Cartography and Cadastre. The EC initiative INSPIRE defines DTM as one basic element of the National Spatial Data Infrastructure (NSDI. The creation of NSDI is a task of the Action Plan of the Strategy of the Slovak Information Society. The range of the DTM vertical accuracy is described through the metadata. The metadata describes a product in a complex way. The GCCA SR will offer metadata and the solo product of DTM through its organization, the Geodetic and Cartographic Institute in Bratislava (GCI, via the Internet. For this purpose the GCI meaningfuly build a webmap service, GCCA SR Geoportal, which is nearly related with the NSDI concept as well as with the projects of the Eurogeographics association. The paper describes the creation of DMR50, DTM of Slovakia, with the 50x50 meter grid. DMR50 was created by the data processing of the contour lines model from the Basic Map of the Slovak Republic 1:50 000. The testing of the DMR50 vertical accuracy was carried out by the set of geodetic points from the State Levelling Network. DMR50 is a suitable contribution of Slovakia to the creation of the EuroGeographics or INSPIRE–coordinated pan-European products.
Salleh, M. R. M.; Ismail, Z.; Rahman, M. Z. A.
2015-10-01
Airborne Light Detection and Ranging (LiDAR) technology has been widely used recent years especially in generating high accuracy of Digital Terrain Model (DTM). High density and good quality of airborne LiDAR data promises a high quality of DTM. This study focussing on the analysing the error associated with the density of vegetation cover (canopy cover) and terrain slope in a LiDAR derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation irregular network (ATIN) algorithm technique in producing ground points. Next, the ground control points (GCPs) used in generating the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 and 0.870) with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 0.924) obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy caver of study area.
Directory of Open Access Journals (Sweden)
M. R. M. Salleh
2015-10-01
Full Text Available Airborne Light Detection and Ranging (LiDAR technology has been widely used recent years especially in generating high accuracy of Digital Terrain Model (DTM. High density and good quality of airborne LiDAR data promises a high quality of DTM. This study focussing on the analysing the error associated with the density of vegetation cover (canopy cover and terrain slope in a LiDAR derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation irregular network (ATIN algorithm technique in producing ground points. Next, the ground control points (GCPs used in generating the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 and 0.870 with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 0.924 obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy caver of study area.
International Nuclear Information System (INIS)
Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi
2002-01-01
Because effluent gas is sometimes released from low positions, viz., near the ground surface and around buildings, the effects caused by buildings within the site area are not negligible for gas diffusion predictions. For these reasons, the effects caused by buildings for gas diffusion are considered under the terrain following calculation coordinate system in this report. Numerical calculation meshes on the ground surface are treated as the building with the adaptation of wall function techniques of turbulent quantities in the flow calculations using a turbulence closure model. The reflection conditions of released particles on building surfaces are taken into consideration in the diffusion calculation using the Lagrangian particle model. Obtained flow and diffusion calculation results are compared with those of wind tunnel experiments around the building. It was apparent that features observed in a wind tunnel, viz., the formation of cavity regions behind the building and the gas diffusion to the ground surface behind the building, are also obtained by numerical calculation. (author)
Gutierrez-Jurado, H. A.; Guan, H.; Wang, J.; Wang, H.; Bras, R. L.; Simmons, C. T.
2015-12-01
Quantification of evapotranspiration (ET) and its partition over regions of heterogeneous topography and canopy poses a challenge using traditional approaches. In this study, we report the results of a novel field experiment design guided by the Maximum Entropy Production model of ET (MEP-ET), formulated for estimating evaporation and transpiration from homogeneous soil and canopy. A catchment with complex terrain and patchy vegetation in South Australia was instrumented to measure temperature, humidity and net radiation at soil and canopy surfaces. Performance of the MEP-ET model to quantify transpiration and soil evaporation was evaluated during wet and dry conditions with independently and directly measured transpiration from sapflow and soil evaporation using the Bowen Ratio Energy Balance (BREB). MEP-ET transpiration shows remarkable agreement with that obtained through sapflow measurements during wet conditions, but consistently overestimates the flux during dry periods. However, an additional term introduced to the original MEP-ET model accounting for higher stomatal regulation during dry spells, based on differences between leaf and air vapor pressure deficits and temperatures, significantly improves the model performance. On the other hand, MEP-ET soil evaporation is in good agreement with that from BREB regardless of moisture conditions. The experimental design allows a plot and tree scale quantification of evaporation and transpiration respectively. This study confirms for the first time that the MEP-ET originally developed for homogeneous open bare soil and closed canopy can be used for modeling ET over heterogeneous land surfaces. Furthermore, we show that with the addition of an empirical function simulating the plants ability to regulate transpiration, and based on the same measurements of temperature and humidity, the method can produce reliable estimates of ET during both wet and dry conditions without compromising its parsimony.
International Nuclear Information System (INIS)
Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito
2009-01-01
A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion, considering the buildings and complex terrain located near and relatively far from a stack, respectively. The turbulence closure technique was used for flow calculation, some calculation grids on the ground near a stack were treated as buildings, and stack gas diffusion was predicted using the Lagrangian particle model. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments under actual terrain containing buildings. Effective stack height was estimated by comparing the surface concentration along the plume axis with those under a flat-plate condition, and it was apparent that the effective stack heights estimated by calculations were almost the same as those obtained by the wind tunnel experiment. Then, the effective dose and relative concentration of stack gas were calculated using the effective stack heights obtained by a numerical model. Almost the same effective dose and relative concentration were obtained when compared with those using the effective stack height obtained by wind tunnel experiment. (author)
ANALYSIS OF THE PIT REMOVAL METHODS IN DIGITAL TERRAIN MODELS OF VARIOUS RESOLUTIONS
Directory of Open Access Journals (Sweden)
S. Šamanović
2016-06-01
Full Text Available Digital terrain model (DTM is the base for calculation of the surface runoff under the influence of the gravity (gravity flow in hydrological analysis. It is important to produce hydrologically corrected DTM with the removed natural and artificial depressions to avoid numerical problems in algorithms of the gravity flow. The pit removal procedure changes geomorphometry of the DTM. GIS software packages use pit removal algorithm independently of geomorphmetric features of the analyzed area. In need of minimally modified DTM after the pit removal areas, the carving method (deepen drainage routes and the filling method (fill sink were analyzed on three different geomorphometric areas (bare mountain range, hilly wooded area and the plain area intersected with the network of the drainage canals. The recommendation is given for the choice of geomorphometric least changing DTM algorithm. The input data are raster data of elevation points created by stereoscopic photogrammetry method in 5x5 and 25x25 meter resolution. Differences have been noticed during the process of creating raster data. The recommendation is given for the choice of the most acceptable method for each type of area on the basis of comparison of the original elevation points with the elevation points in created DTM.
Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain
Directory of Open Access Journals (Sweden)
Yiwen Mei
2016-03-01
Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.
Forecasting Organized Crime Homicides: Risk Terrain Modeling of Camorra Violence in Naples, Italy.
Dugato, Marco; Calderoni, Francesco; Berlusconi, Giulia
2017-06-01
Mafia homicides are usually committed for retaliation, economic profit, or rivalry among groups. The variety of possible reasons suggests the inefficacy of a preventive approach. However, like most violent crimes, mafia homicides concentrate in space due to place-specific social and environmental features. Starting from the existing literature, this study applies the Risk Terrain Modeling approach to forecast the Camorra homicides in Naples, Italy. This approach is based on the identification and evaluation of the underlying risk factors able to affect the risk of a homicide. This information is then used to predict the most likely location of future events. The findings of this study demonstrate that past homicides, drug dealing, confiscated assets, and rivalries among groups make it possible to predict up to 85% of 2012 mafia homicides, identifying 11% of city areas at highest risk. By contrast, variables controlling for the socio-economic conditions of areas are not significantly related to the risk of homicide. Moreover, this study shows that, even in a restricted space, the same risk factors may combine in different ways, giving rise to areas of equal risk but requiring targeted remedies. These results provide an effective basis for short- and long-term targeted policing strategies against organized crime- and gang-related violence. A similar approach may also provide practitioners, policy makers, and local administrators in other countries with significant support in understanding and counteracting also other forms of violent behavior by gangs or organized crime groups.
Production of high-resolution digital terrain models in mountain regions to support risk assessment
Directory of Open Access Journals (Sweden)
Gianfranco Forlani
2015-07-01
Full Text Available Demand for high-accuracy digital terrain models (DTMs in the Alpine region has been steadily increasing in recent years in valleys as well as high mountains. In the former, the determination of the geo-mechanical parameters of rock masses is the main objective; global warming, which causes the retreat of glaciers and the reduction of permafrost, is the main drive of the latter. The consequence is the instability of rock masses in high mountains: new cost-effective monitoring techniques are required to deal with the peculiar characteristics of such environment, delivering results at short notice. After discussing the design and execution of photogrammetric surveys in such areas, with particular reference to block orientation and block control, the paper describes the production of DTMs of rock faces and glacier fronts with light instrumentation and data acquisition techniques, allowing highly automated data processing. To this aim, the PhotoGPS technique and structure from motion algorithms are used to speed up the orientation process, while dense matching area-based correlation techniques are used to generate the DTMs.
Information measures for terrain visualization
Bonaventura, Xavier; Sima, Aleksandra A.; Feixas, Miquel; Buckley, Simon J.; Sbert, Mateu; Howell, John A.
2017-02-01
Many quantitative and qualitative studies in geoscience research are based on digital elevation models (DEMs) and 3D surfaces to aid understanding of natural and anthropogenically-influenced topography. As well as their quantitative uses, the visual representation of DEMs can add valuable information for identifying and interpreting topographic features. However, choice of viewpoints and rendering styles may not always be intuitive, especially when terrain data are augmented with digital image texture. In this paper, an information-theoretic framework for object understanding is applied to terrain visualization and terrain view selection. From a visibility channel between a set of viewpoints and the component polygons of a 3D terrain model, we obtain three polygonal information measures. These measures are used to visualize the information associated with each polygon of the terrain model. In order to enhance the perception of the terrain's shape, we explore the effect of combining the calculated information measures with the supplementary digital image texture. From polygonal information, we also introduce a method to select a set of representative views of the terrain model. Finally, we evaluate the behaviour of the proposed techniques using example datasets. A publicly available framework for both the visualization and the view selection of a terrain has been created in order to provide the possibility to analyse any terrain model.
Modeling of Reaction Processes Controlled by Diffusion
International Nuclear Information System (INIS)
Revelli, Jorge
2003-01-01
Stochastic modeling is quite powerful in science and technology.The technics derived from this process have been used with great success in laser theory, biological systems and chemical reactions.Besides, they provide a theoretical framework for the analysis of experimental results on the field of particle's diffusion in ordered and disordered materials.In this work we analyze transport processes in one-dimensional fluctuating media, which are media that change their state in time.This fact induces changes in the movements of the particles giving rise to different phenomena and dynamics that will be described and analyzed in this work.We present some random walk models to describe these fluctuating media.These models include state transitions governed by different dynamical processes.We also analyze the trapping problem in a lattice by means of a simple model which predicts a resonance-like phenomenon.Also we study effective diffusion processes over surfaces due to random walks in the bulk.We consider different boundary conditions and transitions movements.We derive expressions that describe diffusion behaviors constrained to bulk restrictions and the dynamic of the particles.Finally it is important to mention that the theoretical results obtained from the models proposed in this work are compared with Monte Carlo simulations.We find, in general, excellent agreements between the theory and the simulations
Solar resources estimation combining digital terrain models and satellite images techniques
Energy Technology Data Exchange (ETDEWEB)
Bosch, J.L.; Batlles, F.J. [Universidad de Almeria, Departamento de Fisica Aplicada, Ctra. Sacramento s/n, 04120-Almeria (Spain); Zarzalejo, L.F. [CIEMAT, Departamento de Energia, Madrid (Spain); Lopez, G. [EPS-Universidad de Huelva, Departamento de Ingenieria Electrica y Termica, Huelva (Spain)
2010-12-15
One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured. (author)
Energy Technology Data Exchange (ETDEWEB)
Pohjola, J.; Turunen, J.; Lipping, T. [Tampere Univ. of Technology (Finland); Ikonen, A.
2014-03-15
In this working report the modelling effort of future landscape development and surface water body formation at the modelling area in the vicinity of the Olkiluoto Island is presented. Estimation of the features of future surface water bodies is based on probabilistic terrain and land uplift models presented in previous working reports. The estimation is done using a GIS-based toolbox called UNTAMO. The future surface water bodies are estimated in 10 000 years' time span with 1000 years' intervals for the safety assessment of disposal of spent nuclear fuel at the Olkiluoto site. In the report a brief overview on the techniques used for probabilistic terrain modelling, land uplift modelling and hydrological modelling are presented first. The latter part of the report describes the results of the modelling effort. The main features of the future landscape - the four lakes forming in the vicinity of the Olkiluoto Island - are identified and the probabilistic model of the shoreline displacement is presented. The area and volume of the four lakes is modelled in a probabilistic manner. All the simulations have been performed for three scenarios two of which are based on 10 realizations of the probabilistic digital terrain model (DTM) and 10 realizations of the probabilistic land uplift model. These two scenarios differ from each other by the eustatic curve used in the land uplift model. The third scenario employs 50 realizations of the probabilistic DTM while a deterministic land uplift model, derived solely from the current land uplift rate, is used. The results indicate that the two scenarios based on the probabilistic land uplift model behave in a similar manner while the third model overestimates past and future land uplift rates. The main features of the landscape are nevertheless similar also for the third scenario. Prediction results for the volumes of the future lakes indicate that a couple of highly probably lake formation scenarios can be identified
International Nuclear Information System (INIS)
Pohjola, J.; Turunen, J.; Lipping, T.; Ikonen, A.
2014-03-01
In this working report the modelling effort of future landscape development and surface water body formation at the modelling area in the vicinity of the Olkiluoto Island is presented. Estimation of the features of future surface water bodies is based on probabilistic terrain and land uplift models presented in previous working reports. The estimation is done using a GIS-based toolbox called UNTAMO. The future surface water bodies are estimated in 10 000 years' time span with 1000 years' intervals for the safety assessment of disposal of spent nuclear fuel at the Olkiluoto site. In the report a brief overview on the techniques used for probabilistic terrain modelling, land uplift modelling and hydrological modelling are presented first. The latter part of the report describes the results of the modelling effort. The main features of the future landscape - the four lakes forming in the vicinity of the Olkiluoto Island - are identified and the probabilistic model of the shoreline displacement is presented. The area and volume of the four lakes is modelled in a probabilistic manner. All the simulations have been performed for three scenarios two of which are based on 10 realizations of the probabilistic digital terrain model (DTM) and 10 realizations of the probabilistic land uplift model. These two scenarios differ from each other by the eustatic curve used in the land uplift model. The third scenario employs 50 realizations of the probabilistic DTM while a deterministic land uplift model, derived solely from the current land uplift rate, is used. The results indicate that the two scenarios based on the probabilistic land uplift model behave in a similar manner while the third model overestimates past and future land uplift rates. The main features of the landscape are nevertheless similar also for the third scenario. Prediction results for the volumes of the future lakes indicate that a couple of highly probably lake formation scenarios can be identified with other
Hui, Zhenyang; Wu, Beiping; Hu, Youjian; Ziggah, Yao Yevenyo
2017-12-01
Obtaining high-precision filtering results from airborne lidar point clouds in complex environments has always been a hot topic. Mathematical morphology was widely used for filtering, owing to its simplicity and high efficiency. However, the morphology-based algorithms are deficient in preserving terrain details. In order to obtain a better filtering effect, this paper proposed an improved progressive morphological filter based on hierarchical radial basis function interpolation (PMHR) to refine the classical progressive morphological filter. PMHR involved two main improvements, namely, automatic setting of self-adaptive thresholds and terrain details preservation, respectively. The performance of PMHR was evaluated using datasets provided by the International Society for Photogrammetry and Remote Sensing. Experimental results show that PMHR achieved good performance under variant terrain features with an average total error of 4.27% and average Kappa coefficient of 84.57%.
Symposium on turbulence, diffusion, and air pollution, 4th, Reno, NV, January 15-18, 1979, preprints
International Nuclear Information System (INIS)
Anon.
1978-01-01
Papers on turbulence, diffusion and air pollution are presented. Major topics include point-source air quality models, point-source air quality studies, geothermal energy and cooling tower studies, wind energy studies, complex terrain diffusion models, complex terrain diffusion studies, the effects of air pollution on visibility, chemical transformations of pollutants, regional air quality studies, urban air quality studies, boundary layer models and experiments, air pollution removal, air quality studies using remote sensing techniques, large-scale and lakeshore air quality studies, the effects of buildings and terrain features on diffusion, and general air quality and diffusion studies
Modeling the reemergence of information diffusion in social network
Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong
2018-01-01
Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.
Anomalous diffusion in a symbolic model
International Nuclear Information System (INIS)
Ribeiro, H V; Lenzi, E K; Mendes, R S; Santoro, P A
2011-01-01
In this work, we investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following the power-law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach reveals a rich diffusive scenario characterized by non-Gaussian distribution and, depending on the power-law exponent or the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare the analytic results with the numerical data, thereby finding good agreement. Because of its simplicity and flexibility, this model can be a candidate for describing real systems governed by power-law probability densities.
Experimental Modeling of the Effect of Terrain Slope on Marginal Burning
X. Zhou; S. Mahalingam; D. Weise
2005-01-01
A series of laboratory fire spread experiments were completed to analyze the effect of terrain slope on marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. We attempted to burn single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient conditions. Seventy-three (or 42...
Lucretia E. Olson; John R. Squires; Elizabeth K. Roberts; Aubrey D. Miller; Jacob S. Ivan; Mark Hebblewhite
2017-01-01
Winter recreation is a rapidly growing activity, and advances in technology make it possible for increasing numbers of people to access remote backcountry terrain. Increased winter recreation may lead to more frequent conflict between recreationists, as well as greater potential disturbance to wildlife. To better understand the environmental characteristics favored by...
Radiosity diffusion model in 3D
Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin
2001-11-01
We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.
Federal Emergency Management Agency, Department of Homeland Security — These files contain rectified digital vector terrain model data. The vector files are uncompressed complete with coordinate information. The VBMP project encompasses...
Recent advances in modelling diffuse radiation
Energy Technology Data Exchange (ETDEWEB)
Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, Univ. of South Australia, Mawson Lakes, SA (Australia)
2008-07-01
Boland et al (2001) developed a validated model for Australian conditions, using a logistic function instead of piecewise linear or simple nonlinear functions. Recently, Jacovides et al (2006) have verified that this model performs well for locations in Cyprus. Their analysis includes using moving average techniques to demonstrate the form of the relationship, which corresponds well to a logistic relationship. We have made significant advances in both the intuitive and theoretical justification of the use of the logistic function. In the theoretical development of the model utilising advanced non-parametric statistical methods. We have also constructed a method of identifying values that are likely to be erroneous. Using quadratic programming, we can eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. Additionally, this is a first step in identifying the means for developing a generic model for estimating diffuse from global and other predictors (see Boland and Ridley 2007). Our more recent investigations focus on examining the effects of adding additional explanatory variables to enhance the predictability of the model. Examples for Australian and other locations will be presented. (orig.)
Reaction-diffusion pulses: a combustion model
International Nuclear Information System (INIS)
Campos, Daniel; Llebot, Josep Enric; Fort, Joaquim
2004-01-01
We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations
Reaction-diffusion pulses: a combustion model
Energy Technology Data Exchange (ETDEWEB)
Campos, Daniel [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Llebot, Josep Enric [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Fort, Joaquim [Dept. de FIsica, Univ. de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)
2004-07-02
We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations.
International Nuclear Information System (INIS)
Premuda, F.
1983-01-01
Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated
Stochastic Modelling of the Diffusion Coefficient for Concrete
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
In the paper, a new stochastic modelling of the diffusion coefficient D is presented. The modelling is based on physical understanding of the diffusion process and on some recent experimental results. The diffusion coefficients D is strongly dependent on the w/c ratio and the temperature....
Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.
2010-01-01
Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.
Pandian, Suresh; Gokhale, Sharad; Ghoshal, Aloke Kumar
2011-02-15
A double-lane four-arm roundabout, where traffic movement is continuous in opposite directions and at different speeds, produces a zone responsible for recirculation of emissions within a road section creating canyon-type effect. In this zone, an effect of thermally induced turbulence together with vehicle wake dominates over wind driven turbulence causing pollutant emission to flow within, resulting into more or less equal amount of pollutants upwind and downwind particularly during low winds. Beyond this region, however, the effect of winds becomes stronger, causing downwind movement of pollutants. Pollutant dispersion caused by such phenomenon cannot be described accurately by open-terrain line source model alone. This is demonstrated by estimating one-minute average carbon monoxide concentration by coupling an open-terrain line source model with a street canyon model which captures the combine effect to describe the dispersion at non-signalized roundabout. The results of the modeling matched well with the measurements compared with the line source model alone and the prediction error reduced by about 50%. The study further demonstrated this with traffic emissions calculated by field and semi-empirical methods. Copyright © 2010 Elsevier B.V. All rights reserved.
A simulation of cross-country skiing on varying terrain by using a mathematical power balance model.
Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell
2013-01-01
The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%-4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing.
Guo, Zhikui; Chen, Chao; Tao, Chunhui
2016-04-01
Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model
Recommendation based on trust diffusion model.
Yuan, Jinfeng; Li, Li
2014-01-01
Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure.
DEFF Research Database (Denmark)
Politis, E.S.; Prospathopoulos, J.; Cabezon, D.
2012-01-01
turbulence closures, are used. The wind turbines are modeled as momentum absorbers by means of their thrust coefficient through the actuator disk approach. Alternative methods for estimating the reference wind speed in the calculation of the thrust are tested. The work presented in this paper is part......Computational fluid dynamic (CFD) methods are used in this paper to predict the power production from entire wind farms in complex terrain and to shed some light into the wake flow patterns. Two full three-dimensional Navier–Stokes solvers for incompressible fluid flow, employing k - ε and k - ω...
CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL
CARRILLO, JOSÉ ANTONIO; HITTMEIR, SABINE; JÜ NGEL, ANSGAR
2012-01-01
A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy
A spatial structural derivative model for ultraslow diffusion
Directory of Open Access Journals (Sweden)
Xu Wei
2017-01-01
Full Text Available This study investigates the ultraslow diffusion by a spatial structural derivative, in which the exponential function ex is selected as the structural function to construct the local structural derivative diffusion equation model. The analytical solution of the diffusion equation is a form of Biexponential distribution. Its corresponding mean squared displacement is numerically calculated, and increases more slowly than the logarithmic function of time. The local structural derivative diffusion equation with the structural function ex in space is an alternative physical and mathematical modeling model to characterize a kind of ultraslow diffusion.
Observational Constraints for Modeling Diffuse Molecular Clouds
Federman, S. R.
2014-02-01
Ground-based and space-borne observations of diffuse molecular clouds suggest a number of areas where further improvements to modeling efforts is warranted. I will highlight those that have the widest applicability. The range in CO fractionation caused by selective isotope photodissociation, in particular the large 12C16O/13C16O ratios observed toward stars in Ophiuchus, is not reproduced well by current models. Our ongoing laboratory measurements of oscillator strengths and predissociation rates for Rydberg transitions in CO isotopologues may help clarify the situtation. The CH+ abundance continues to draw attention. Small scale structure seen toward ζ Per may provide additional constraints on the possible synthesis routes. The connection between results from optical transitions and those from radio and sub-millimeter wave transitions requires further effort. A study of OH+ and OH toward background stars reveals that these species favor different environments. This brings to focus the need to model each cloud along the line of sight separately, and to allow the physical conditions to vary within an individual cloud, in order to gain further insight into the chemistry. Now that an extensive set of data on molecular excitation is available, the models should seek to reproduce these data to place further constraints on the modeling results.
Wenrich, M. L.; Christensen, P. R.
1993-01-01
The mechanism for the genesis of the polygonal terrains in Acidalia and Utopia Planitia has long been sought: however, no completely satisfying model was put forth that characterizes the evolution of these complexly patterned terrains. The polygons are roughly hexagonal but some are not entirely enclosed by fractures. These polygonal features range in widths from approximately 5 to 20 km. Several origins were proposed that describe the polygon borders as desiccation cracks, columnar jointing in a cooled lava, or frost-wedge features. These tension-induced cracking hypotheses were addressed by Pechmann, who convincingly disputes these mechanisms of formation based on scale magnitude difficulties and morphology. Pechmann suggests instead that the cracks delineating the 5-20-km-wide polygons on the northern plains of Mars are graben resulting from deep-seated, uniform, horizontal tension. The difficulty with this hypothesis is that no analogous polygonal forms are known to have originated by tectonism on Earth. McGill and Hills propose that the polygonal terrains on Mars resulted from either rapid desiccation of sediments or cooling of volcanics coupled with differential compaction of the material over a buried irregular topographic surface. They suggest that fracturing was enhanced over the areas of positive relief and was suppressed above the topographic lows. McGill and Hills suggest that the spacing of the topographic highs primarily controls the size of the Martian polygons and the physics of the shrinkage process is a secondary concern. Ray et. al. conducted a terrestrial study of patterned ground in periglacial areas of the U.S. to determine the process responsible for polygonal ground formation. They developed a model for polygon formation in which convection of seasonal melt water above a permafrost layer, driven by an unstable density stratification, differentially melts the permafrost interface, causing it to become undulatory.
Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations
2013-04-16
N.Y. [20] Wulfsohn, D., and Upadhyaya, S. K., 1992, "Prediction of traction and soil compaction using three-dimensional soil- tyre contact profile," Journal of Terramechanics, 29(6), pp. 541-564. ...the relative speedup of utilizing GPUs for computational acceleration. INTRODUCTION In order to enable off- road vehicle dynamics analysis...ANSI Std Z39-18 Page 2 of 8 Figure 2. Tire geometry used to determine collision points with the terrain In the context of off- road vehicle
Modeling dendrite density from magnetic resonance diffusion measurements
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif
2007-01-01
in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.......e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides......Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal...
Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations
International Nuclear Information System (INIS)
Arkhincheev, V.E.
2001-04-01
To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)
Kavouri, Konstantina P.; Karatzas, George P.; Plagnes, Valérie
2017-08-01
A coupled groundwater-flow-modelling and vulnerability-mapping methodology for the management of karst aquifers with spatial variability is developed. The methodology takes into consideration the duality of flow and recharge in karst and introduces a simple method to integrate the effect of temporal storage in the unsaturated zone. In order to investigate the applicability of the developed methodology, simulation results are validated against available field measurement data. The criteria maps from the PaPRIKa vulnerability-mapping method are used to document the groundwater flow model. The FEFLOW model is employed for the simulation of the saturated zone of Palaikastro-Chochlakies karst aquifer, in the island of Crete, Greece, for the hydrological years 2010-2012. The simulated water table reproduces typical karst characteristics, such as steep slopes and preferred drain axes, and is in good agreement with field observations. Selected calculated error indicators—Nash-Sutcliffe efficiency (NSE), root mean squared error (RMSE) and model efficiency (E')—are within acceptable value ranges. Results indicate that different storage processes take place in different parts of the aquifer. The north-central part seems to be more sensitive to diffuse recharge, while the southern part is affected primarily by precipitation events. Sensitivity analysis is performed on the parameters of hydraulic conductivity and specific yield. The methodology is used to estimate the feasibility of artificial aquifer recharge (AAR) at the study area. Based on the developed methodology, guidelines were provided for the selection of the appropriate AAR scenario that has positive impact on the water table.
International Nuclear Information System (INIS)
Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping
2015-01-01
Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.
A new model of anomalous phosphorus diffusion in silicon
International Nuclear Information System (INIS)
Budil, M.; Poetzl, H.; Stingeder, G.; Grasserbauer, M.
1989-01-01
A model is presented to describe the 'kink and tail' diffusion of phosphorus. The diffusion behaviour of phosphorus is expplained by the motion of phosphorus-interstitial and phosphorus-vacancy pairs in different charge states. The model yields the enhancement of diffusion in the tail region depending on surface concentration. Furthermore it yields the same selfdiffusion coefficient for interstitials as the gold diffusion experiments. A transformation of the diffusion equation was found to reduce the number of simulation equations. (author) 7 refs., 5 figs
Semi-Global Filtering of Airborne LiDAR Data for Fast Extraction of Digital Terrain Models
Directory of Open Access Journals (Sweden)
Xiangyun Hu
2015-08-01
Full Text Available Automatic extraction of ground points, called filtering, is an essential step in producing Digital Terrain Models from airborne LiDAR data. Scene complexity and computational performance are two major problems that should be addressed in filtering, especially when processing large point cloud data with diverse scenes. This paper proposes a fast and intelligent algorithm called Semi-Global Filtering (SGF. The SGF models the filtering as a labeling problem in which the labels correspond to possible height levels. A novel energy function balanced by adaptive ground saliency is employed to adapt to steep slopes, discontinuous terrains, and complex objects. Semi-global optimization is used to determine labels that minimize the energy. These labels form an optimal classification surface based on which the points are classified as either ground or non-ground. The experimental results show that the SGF algorithm is very efficient and able to produce high classification accuracy. Given that the major procedure of semi-global optimization using dynamic programming is conducted independently along eight directions, SGF can also be paralleled and sped up via Graphic Processing Unit computing, which runs at a speed of approximately 3 million points per second.
International Nuclear Information System (INIS)
Kubaschewski, O.
1983-01-01
The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes
Structured inverse modeling in parabolic diffusion processess
Schulz, Volker; Siebenborn, Martin; Welker, Kathrin
2014-01-01
Often, the unknown diffusivity in diffusive processes is structured by piecewise constant patches. This paper is devoted to efficient methods for the determination of such structured diffusion parameters by exploiting shape calculus. A novel shape gradient is derived in parabolic processes. Furthermore quasi-Newton techniques are used in order to accelerate shape gradient based iterations in shape space. Numerical investigations support the theoretical results.
Matrix diffusion model. In situ tests using natural analogues
Energy Technology Data Exchange (ETDEWEB)
Rasilainen, K. [VTT Energy, Espoo (Finland)
1997-11-01
Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories. 98 refs. The thesis includes also eight previous publications by author.
Matrix diffusion model. In situ tests using natural analogues
International Nuclear Information System (INIS)
Rasilainen, K.
1997-11-01
Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories
Modelling Bourdieu: An extension of the Axelrod cultural diffusion model
Trigg, Andrew B.; Bertie, Andrew J.; Himmelweit, Susan F.
2008-01-01
The contribution to the social theory of consumption of the late Pierre Bourdieu has been widely recognized, but not fully absorbed by the economics discipline. To address this lacuna, an agent-based model of Bourdieu's social theory is developed by extending Axelrod's cultural diffusion model. Bourdieu's theory is decomposed into two components: a capital effect on social interaction and an innovation effect. Whereas simulations of the capital effect are found to have a key role in the repro...
Li, Y.; Epifanio, C.
2017-12-01
In numerical prediction models, the interaction between the Earth's surface and the atmosphere is typically accounted for in terms of surface layer parameterizations, whose main job is to specify turbulent fluxes of heat, moisture and momentum across the lower boundary of the model domain. In the case of a domain with complex geometry, implementing the flux conditions (particularly the tensor stress condition) at the boundary can be somewhat subtle, and there has been a notable history of confusion in the CFD community over how to formulate and impose such conditions generally. In the atmospheric case, modelers have largely been able to avoid these complications, at least until recently, by assuming that the terrain resolved at typical model resolutions is fairly gentle, in the sense of having relatively shallow slopes. This in turn allows the flux conditions to be imposed as if the lower boundary were essentially flat. Unfortunately, while this flat-boundary assumption is acceptable for coarse resolutions, as grids become more refined and the geometry of the resolved terrain becomes more complex, the appproach is less justified. With this in mind, the goal of our present study is to explore the implementation and usage of the full, unapproximated version of the turbulent flux/stress conditions in atmospheric models, thus taking full account of the complex geometry of the resolved terrain. We propose to implement the conditions using a semi-idealized model developed by Epifanio (2007), in which the discretized boundary conditions are reduced to a large, sparse-matrix problem. The emphasis will be on fluxes of momentum, as the tensor nature of this flux makes the associated stress condition more difficult to impose, although the flux conditions for heat and moisture will be considered as well. With the resulotion of 90 meters, some of the results show that the typical differences between flat-boundary cases and full/stress cases are on the order of 10%, with extreme
Energy Technology Data Exchange (ETDEWEB)
Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S. [Univ. of Lethbridge, Dept. of Geography, Lethbridge, Alberta (Canada)
2008-06-15
Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter {mu} {+-} 1{sigma}), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha{sup -1}{center_dot}year{sup -1}. This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat
International Nuclear Information System (INIS)
Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S.
2008-01-01
Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter μ ± 1σ), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha -1 ·year -1 . This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat boreal forests, was shown to be
DEFF Research Database (Denmark)
Troen, Ib; Bechmann, Andreas; Kelly, Mark C.
2014-01-01
Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...
Study of a diffusion flamelet model, with preferential diffusion effects included
Delhaye, S.; Somers, L.M.T.; Bongers, H.; Oijen, van J.A.; Goey, de L.P.H.; Dias, V.
2005-01-01
The non-premixed flamelet model of Peters [1] (model1), which does not include preferential diffusion effects is investigated. Two similar models are presented, but without the assumption of unity Lewis numbers. One of these models was derived by Peters & Pitsch [2] (model2), while the other one was
Diffusion coefficient adaptive correction in Lagrangian puff model
International Nuclear Information System (INIS)
Tan Wenji; Wang Dezhong; Ma Yuanwei; Ji Zhilong
2014-01-01
Lagrangian puff model is widely used in the decision support system for nuclear emergency management. The diffusion coefficient is one of the key parameters impacting puff model. An adaptive method was proposed in this paper, which could correct the diffusion coefficient in Lagrangian puff model, and it aimed to improve the accuracy of calculating the nuclide concentration distribution. This method used detected concentration data, meteorological data and source release data to estimate the actual diffusion coefficient with least square method. The diffusion coefficient adaptive correction method was evaluated by Kincaid data in MVK, and was compared with traditional Pasquill-Gifford (P-G) diffusion scheme method. The results indicate that this diffusion coefficient adaptive correction method can improve the accuracy of Lagrangian puff model. (authors)
Diffusion models in metamorphic thermo chronology: philosophy and methods
International Nuclear Information System (INIS)
Munha, Jose Manuel; Tassinari, Colombo Celso Gaeta
1999-01-01
Understanding kinetics of diffusion is of major importance to the interpretation of isotopic ages in metamorphic rocks. This paper provides a review of concepts and methodologies involved on the various diffusion models that can be applied to radiogenic systems in cooling rocks. The central concept of closure temperature is critically discussed and quantitative estimates for the various diffusion models are evaluated, in order to illustrate the controlling factors and the limits of their practical application. (author)
Alpert, P.; Getenio, B.; Zak-Rosenthal, R.
1988-01-01
The Alpert and Getenio (1988) modification of the Mass and Dempsey (1985) one-level sigma-surface model was used to study four synoptic events that included two winter cases (a Cyprus low and a Siberian high) and two summer cases. Results of statistical verification showed that the model is not only capable of diagnosing many details of surface mesoscale flow, but might also be useful for various applications which require operative short-range prediction of the diurnal changes of high-resolution surface flow over complex terrain, for example, in locating wildland fires, determining the dispersion of air pollutants, and predicting changes in wind energy or of surface wind for low-level air flights.
Modelling Nanoparticle Diffusion into Cancer Tumors
Podduturi, Vishwa Priya; Derosa, Pedro
2011-03-01
Cancer is one of the major, potentially deadly diseases and has been for years. Non-specific delivery of the drug can damage healthy tissue seriously affecting in many cases the patient's living condition. Nanoparticles are being used for a targeted drug delivery thereby reducing the dose. In addition, metallic nanoparticles are being used in thermal treatment of cancer cells where nanoparticles help concentrate heat in the tumor and away from living tissue. We proposed a model that combines random walk with diffusion principles. The particle drift velocity is taken from the Hagen-Poiseuille equation and the velocity profile of the particle at the pores in the capillary wall is obtained using the Coventorware software. Pressure gradient and concentration gradient through the capillary wall are considered. Simulations are performed in Matlab using the Monte Carlo technique. Number of particles leaving the blood vessel through a pore is obtained as a function of blood pressure, the osmotic pressure, temperature, particle concentration, blood vessel radius, and pore size, and the relative effect of each of the parameters is discussed.
DEFF Research Database (Denmark)
Wang, Qi; Kaul, Manohar; Long, Cheng
2014-01-01
, as will be shown, is used heavily for query processing in spatial databases; and (3) they do not provide the surface distance operator which is fundamental for many applications based on terrain data. Motivated by this, we developed a tool called Terrain-Toolkit for terrain data which accepts a comprehensive set......Terrain data is becoming increasingly popular both in industry and in academia. Many tools have been developed for visualizing terrain data. However, we find that (1) they usually accept very few data formats of terrain data only; (2) they do not support terrain simplification well which...
A variable-order fractal derivative model for anomalous diffusion
Directory of Open Access Journals (Sweden)
Liu Xiaoting
2017-01-01
Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.
A consistent transported PDF model for treating differential molecular diffusion
Wang, Haifeng; Zhang, Pei
2016-11-01
Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.
Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range
International Nuclear Information System (INIS)
Gopinathan, K.K.; Soler, A.
1995-01-01
Several years of measured data on global and diffuse radiation and sunshine duration for 40 widely spread locations in the latitude range 36° S to 60° N are used to develop and test models for estimating monthly-mean, daily, diffuse radiation on horizontal surfaces. Applicability of the clearness-index (K) and sunshine fraction (SSO) models for diffuse estimation and the effect of combining several variables into a single multilinear equation are tested. Correlations connecting the diffuse to global fraction (HdH) with K and SSO predict Hd values more accurately than their separate use. Among clearness-index and sunshine-fraction models, SSO models are found to have better accuracy if correlations are developed for wide latitude ranges. By including a term for declinations in the correlation, the accuracy of the estimated data can be marginally improved. The addition of latitude to the equation does not help to improve the accuracy further. (author)
Directory of Open Access Journals (Sweden)
Bakuła Krzysztof
2014-12-01
Full Text Available The presented research concerns methods related to reduction of elevation data contained in digital terrain model (DTM from airborne laser scanning (ALS in hydraulic modelling. The reduction is necessary in the preparation of large datasets of geospatia l data describing terrain relief. Its course should not be associated with regular data filtering, which o ften occurs in practice. Such a method leads to a number of important forms important for hydraulic modeling being missed. One of the proposed solutions for the reduction of elevation data contained in DTM is to change the regular grid into the hybrid structure with regularly distributed points and irregularly located critical points. The purpose of this paper is to compare algorithms for extract ing these key points from DTM. They are used in hybrid model generation as a part of elevation data reduction process that retains DTM accuracy and reduces the size of output files. In experiments, the following algorithms were tested: Topographic Position Index (TPI, Very Important Points (VIP and Z - tolerance. Their effectiveness in reduction (maintaining the accuracy and reducing datasets was evaluated in respect to input DTM from ALS. The best results were obtained for the Z - tolerance algorithm, but t hey do not diminish the capabilities of the other two algorithms: VIP and TPI which can generalize DTM quite well. The results confirm the possibility of obtaining a high degr ee of reduction reaching only a few percent of the input data with a relatively l ow decrease of vertical DTM accuracy to a few centimetres. The presented paper was financed by the Foundation for Polish Science - research grant no. VENTURES/2012 - 9/1 from Innovative Economy program of the European Structural Funds.
Quantifying the spatial distribution of soil properties is essential for ecological and environmental modeling at the landscape scale. Terrain attributes are one of the primary covariates in soil-landscape models due to their control on energy and mass fluxes, which in turn contr...
Diffuse interface methods for multiphase flow modeling
International Nuclear Information System (INIS)
Jamet, D.
2004-01-01
Full text of publication follows:Nuclear reactor safety programs need to get a better description of some stages of identified incident or accident scenarios. For some of them, such as the reflooding of the core or the dryout of fuel rods, the heat, momentum and mass transfers taking place at the scale of droplets or bubbles are part of the key physical phenomena for which a better description is needed. Experiments are difficult to perform at these very small scales and direct numerical simulations is viewed as a promising way to give new insight into these complex two-phase flows. This type of simulations requires numerical methods that are accurate, efficient and easy to run in three space dimensions and on parallel computers. Despite many years of development, direct numerical simulation of two-phase flows is still very challenging, mostly because it requires solving moving boundary problems. To avoid this major difficulty, a new class of numerical methods is arising, called diffuse interface methods. These methods are based on physical theories dating back to van der Waals and mostly used in materials science. In these methods, interfaces separating two phases are modeled as continuous transitions zones instead of surfaces of discontinuity. Since all the physical variables encounter possibly strong but nevertheless always continuous variations across the interfacial zones, these methods virtually eliminate the difficult moving boundary problem. We show that these methods lead to a single-phase like system of equations, which makes it easier to code in 3D and to make parallel compared to more classical methods. The first method presented is dedicated to liquid-vapor flows with phase-change. It is based on the van der Waals' theory of capillarity. This method has been used to study nucleate boiling of a pure fluid and of dilute binary mixtures. We discuss the importance of the choice and the meaning of the order parameter, i.e. a scalar which discriminates one
Asymptotic solutions of diffusion models for risk reserves
Directory of Open Access Journals (Sweden)
S. Shao
2003-01-01
Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.
Lévy flight with absorption: A model for diffusing diffusivity with long tails
Jain, Rohit; Sebastian, K. L.
2017-03-01
We consider diffusion of a particle in rearranging environment, so that the diffusivity of the particle is a stochastic function of time. In our previous model of "diffusing diffusivity" [Jain and Sebastian, J. Phys. Chem. B 120, 3988 (2016), 10.1021/acs.jpcb.6b01527], it was shown that the mean square displacement of particle remains Fickian, i.e., ∝T at all times, but the probability distribution of particle displacement is not Gaussian at all times. It is exponential at short times and crosses over to become Gaussian only in a large time limit in the case where the distribution of D in that model has a steady state limit which is exponential, i.e., πe(D ) ˜e-D /D0 . In the present study, we model the diffusivity of a particle as a Lévy flight process so that D has a power-law tailed distribution, viz., πe(D ) ˜D-1 -α with 0 <α <1 . We find that in the short time limit, the width of displacement distribution is proportional to √{T }, implying that the diffusion is Fickian. But for long times, the width is proportional to T1 /2 α which is a characteristic of anomalous diffusion. The distribution function for the displacement of the particle is found to be a symmetric stable distribution with a stability index 2 α which preserves its shape at all times.
Evaluation of empirical atmospheric diffusion data
International Nuclear Information System (INIS)
Horst, T.W.; Doran, J.C.; Nickola, P.W.
1979-10-01
A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for groundlevel sources
Evaluation of empirical atmospheric diffusion data
Energy Technology Data Exchange (ETDEWEB)
Horst, T.W.; Doran, J.C.; Nickola, P.W.
1979-10-01
A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for ground-level sources.
DEFF Research Database (Denmark)
Rodrigo, Javier Sanz; Gancarski, Pawel; Arroyo, Roberto Chavez
2014-01-01
The IEA Task 31 Wakebench is setting up a framework for the evaluation of wind farm flow models operating at microscale level. The framework consists on a model evaluation protocol integrated on a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview...... of the building-block validation approach applied to flow-over-terrain models, including best practices for the benchmarking and data processing procedures for the analysis and qualification of validation datasets from wind resource assessment campaigns. A hierarchy of test cases has been proposed for flow...
Fractional diffusion models of transport in magnetically confined plasmas
International Nuclear Information System (INIS)
Castillo-Negrete, D. del; Carreras, B. A.; Lynch, V. E.
2005-01-01
Experimental and theoretical evidence suggests that transport in magnetically confined fusion plasmas deviates from the standard diffusion paradigm. Some examples include the confinement time scaling in L-mode plasmas, rapid pulse propagation phenomena, and inward transport in off-axis fueling experiments. The limitations of the diffusion paradigm can be traced back to the restrictive assumptions in which it is based. In particular, Fick's law, one of the cornerstones of diffusive transport, assumes that the fluxes only depend on local quantities, i. e. the spatial gradient of the field (s). another key issue is the Markovian assumption that neglects memory effects. Also, at a microscopic level, standard diffusion assumes and underlying Gaussian, uncorrelated stochastic process (i. e. a Brownian random walk) with well defined characteristic spatio-temporal scales. Motivated by the need to develop models of non-diffusive transport, we discuss here a class of transport models base on the use of fractional derivative operators. The models incorporates in a unified way non-Fickian transport, non-Markovian processes or memory effects, and non-diffusive scaling. At a microscopic level, the models describe an underlying stochastic process without characteristic spatio-temporal scales that generalizes the Brownian random walk. As a concrete case study to motivate and test the model, we consider transport of tracers in three-dimensional, pressure-gradient-driven turbulence. We show that in this system transport is non-diffusive and cannot be described in the context of the standard diffusion parading. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit super-diffusive scaling. there is quantitative agreement between the turbulence transport calculations and the proposed fractional diffusion model. In particular, the model
Świąder, Andrzej
2014-12-01
Digital Terrain Models (DTMs) produced from stereoscopic, submeter-resolution High Resolution Imaging Science Experiment (HiRISE) imagery provide a solid basis for all morphometric analyses of the surface of Mars. In view of the fact that a more effective use of DTMs is hindered by complicated and time-consuming manual handling, the automated process provided by specialists of the Ames Intelligent Robotics Group (NASA), Ames Stereo Pipeline, constitutes a good alternative. Four DTMs, covering the global dichotomy boundary between the southern highlands and northern lowlands along the line of the presumable Arabia shoreline, were produced and analysed. One of them included forms that are likely to be indicative of an oceanic basin that extended across the lowland northern hemisphere of Mars in the geological past. The high resolution DTMs obtained were used in the process of landscape visualisation.
Diffusion of hydrous species in model basaltic melt
Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei
2017-10-01
Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.
Lo Papa, Giuseppe; Novara, Agata; Santoro, Antonino; Gristina, Luciano
2014-05-01
Estimate changes in soil organic carbon (SOC) stock after Agro Environment Measures adoption are strategically for national and regional scale. Uncertainty in estimates also represents a very important parameter in terms of evaluation of the exact costs and agro environment payments to farmers. In this study we modeled the variation of SOC stock after 10-year cover crop adoption in a vine growing area of South-Eastern Sicily. A paired-site approach was chosen to study the difference in SOC stocks. A total 100 paired sites (i.e. two adjacent plots) were chosen and three soil samples (Ap soil horizons, circa 0-30 cm depth) were collected in each plot to obtain a mean value of organic carbon concentration for each plot. The variation of soil organic carbon (SOCv) for each plot was calculated by differences between concentrations of the plot subjected to cover crops (SOC10) and the relative plot subjected to traditional agronomic practices (SOC0). The feasibility of using artificial neural networks as a method to predict soil organic carbon stock variation and the contribution of digital terrain analysis to improve the prediction were tested. We randomly subdivided the experimental values of SOC-stock difference in 80 learning samples and 20 test samples for model validation. SOCv was strongly correlated to the SOC0 concentration. Model validation using only SOCv as unique covariate showed a training and test perfection of 0.724 and 0.871 respectively. We hypothesized that terrain-driven hydrological flow patterns, mass-movement and local micro-climatic factors could be responsible processes contributing for SOC redistributions, thus affecting soil carbon stock in time. Terrain attributes were derived by digital terrain analysis from the 10 m DEM of the study area. A total of 37 terrain attributes were calculated and submitted to statistical feature selection. The Chi-square ranking indicated only 4 significant covariates among the terrain attributes (slope height
Directory of Open Access Journals (Sweden)
Xiaoduo Pan
2017-09-01
Full Text Available Individually, ground-based, in situ observations, remote sensing, and regional climate modeling cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrains. Data assimilation techniques can be used to bridge the gap between observations and models by assimilating ground observations and remote sensing products into models to improve precipitation simulation and forecasting. However, only a small portion of satellite-retrieved precipitation products assimilation research has been implemented over complex terrains in an arid region. Here, we used the weather research and forecasting (WRF model to assimilate two satellite precipitation products (The Tropical Rainfall Measuring Mission: TRMM 3B42 and Fengyun-2D: FY-2D using the 4D-Var data assimilation method for a typical inland river basin in northwest China’s arid region, the Heihe River Basin, where terrains are very complex. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly over regions with complex terrains.
Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.
2014-03-01
In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.
Ritter, Mathias; Müller, Mathias D.; Tsai, Ming-Yi; Parlow, Eberhard
2013-10-01
The fully coupled chemistry module (WRF-Chem) within the Weather Research and Forecasting (WRF) model has been implemented over a Swiss domain for the years 2002 and 1991. The very complex terrain requires a high horizontal resolution (2 × 2 km2), which is achieved by nesting the Swiss domain into a coarser European one. The temporal and spatial distribution of O3, NO2 and PM10 as well as temperature and solar radiation are evaluated against ground-based measurements. The model performs well for the meteorological parameters with Pearson correlation coefficients of 0.92 for temperature and 0.88-0.89 for solar radiation. Temperature has root mean square errors (RMSE) of 3.30 K and 3.51 K for 2002 and 1991 and solar radiation has RMSEs of 122.92 and 116.35 for 2002 and 1991, respectively. For the modeled air pollutants, a multi-linear regression post-processing was used to eliminate systematic bias. Seasonal variations of post-processed air pollutants are represented correctly. However, short-term peaks of several days are not captured by the model. Averaged daily maximum and daily values of O3 achieved Pearson correlation coefficients of 0.69-0.77 whereas averaged NO2 and PM10 had the highest correlations for yearly average values (0.68-0.78). The spatial distribution reveals the importance of PM10 advection from the Po valley to southern Switzerland (Ticino). The absolute errors are ranging from - 10 to 15 μg/m3 for ozone, - 9 to 3 μg/m3 for NO2 and - 4 to 3 μg/m3 for PM10. However, larger errors occur along heavily trafficked roads, in street canyons or on mountains. We also compare yearly modeled results against a dedicated Swiss dispersion model for NO2 and PM10. The dedicated dispersion model has a slightly better statistical performance, but WRF-Chem is capable of computing the temporal evolution of three-dimensional data for a variety of air pollutants and meteorological parameters. Overall, WRF-Chem with the application of post-processing algorithms can
Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping
2015-12-15
Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Simple Brownian diffusion an introduction to the standard theoretical models
Gillespie, Daniel T
2013-01-01
Brownian diffusion, the motion of large molecules in a sea of very many much smaller molecules, is topical because it is one of the ways in which biologically important molecules move about inside living cells. This book presents the mathematical physics that underlies the four simplest models of Brownian diffusion.
Wind Power in Europe. A Simultaneous Innovation-Diffusion Model
International Nuclear Information System (INIS)
Soederholm, P.; Klaassen, G.
2007-01-01
The purpose of this paper is to provide a quantitative analysis of innovation and diffusion in the European wind power sector. We derive a simultaneous model of wind power innovation and diffusion, which combines a rational choice model of technological diffusion and a learning curve model of dynamic cost reductions. These models are estimated using pooled annual time series data for four European countries (Denmark, Germany, Spain and the United Kingdom) over the time period 1986-2000. The empirical results indicate that reductions in investment costs have been important determinants of increased diffusion of wind power, and these cost reductions can in turn be explained by learning activities and public R and D support. Feed-in tariffs also play an important role in the innovation and diffusion processes. The higher the feed-in price the higher, ceteris paribus, the rate of diffusion, and we present some preliminary empirical support for the notion that the impact on diffusion of a marginal increase in the feed-in tariff will differ depending on the support system used. High feed-in tariffs, though, also have a negative effect on cost reductions as they induce wind generators to choose high-cost sites and provide fewer incentives for cost cuts. This illustrates the importance of designing an efficient wind energy support system, which not only promotes diffusion but also provides continuous incentives for cost-reducing innovations
Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.
2013-06-01
In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.
Directory of Open Access Journals (Sweden)
J. E. Holloway
2017-06-01
Full Text Available Warming of the Arctic in recent years has led to changes in the active layer and uppermost permafrost. In particular, thick active layer formation results in more frequent thaw of the ice-rich transient layer. This addition of moisture, as well as infiltration from late season precipitation, results in high pore-water pressures (PWPs at the base of the active layer and can potentially result in landscape degradation. To predict areas that have the potential for subsurface pressurization, we use susceptibility maps generated using a generalized additive model (GAM. As model response variables, we used active layer detachments (ALDs and mud ejections (MEs, both formed by high PWP conditions at the Cape Bounty Arctic Watershed Observatory, Melville Island, Canada. As explanatory variables, we used the terrain characteristics elevation, slope, distance to water, topographic position index (TPI, potential incoming solar radiation (PISR, distance to water, normalized difference vegetation index (NDVI; ME model only, geology, and topographic wetness index (TWI. ALDs and MEs were accurately modelled in terms of susceptibility to disturbance across the study area. The susceptibility models demonstrate that ALDs are most probable on hill slopes with gradual to steep slopes and relatively low PISR, whereas MEs are associated with higher elevation areas, lower slope angles, and areas relatively far from water. Based on these results, this method identifies areas that may be sensitive to high PWPs and helps improve our understanding of geomorphic sensitivity to permafrost degradation.
Complex terrain and wind lidars
Energy Technology Data Exchange (ETDEWEB)
Bingoel, F.
2009-08-15
This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be
Modelling of diffuse solar fraction with multiple predictors
Energy Technology Data Exchange (ETDEWEB)
Ridley, Barbara; Boland, John [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Lauret, Philippe [Laboratoire de Physique du Batiment et des Systemes, University of La Reunion, Reunion (France)
2010-02-15
For some locations both global and diffuse solar radiation are measured. However, for many locations, only global radiation is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from direct on some other plane using trigonometry, we need to have diffuse radiation on the horizontal plane available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia. Boland et al. developed a validated model for Australian conditions. Boland et al. detailed our recent advances in developing the theoretical framework for the use of the logistic function instead of piecewise linear or simple nonlinear functions and was the first step in identifying the means for developing a generic model for estimating diffuse from global and other predictors. We have developed a multiple predictor model, which is much simpler than previous models, and uses hourly clearness index, daily clearness index, solar altitude, apparent solar time and a measure of persistence of global radiation level as predictors. This model performs marginally better than currently used models for locations in the Northern Hemisphere and substantially better for Southern Hemisphere locations. We suggest it can be used as a universal model. (author)
What Can the Diffusion Model Tell Us About Prospective Memory?
Horn, Sebastian S.; Bayen, Ute J.; Smith, Rebekah E.
2011-01-01
Cognitive process models, such as Ratcliff’s (1978) diffusion model, are useful tools for examining cost- or interference effects in event-based prospective memory (PM). The diffusion model includes several parameters that provide insight into how and why ongoing-task performance may be affected by a PM task and is ideally suited to analyze performance because both reaction time and accuracy are taken into account. Separate analyses of these measures can easily yield misleading interpretations in cases of speed-accuracy tradeoffs. The diffusion model allows us to measure possible criterion shifts and is thus an important methodological improvement over standard analyses. Performance in an ongoing lexical decision task (Smith, 2003) was analyzed with the diffusion model. The results suggest that criterion shifts play an important role when a PM task is added, but do not fully explain the cost effect on RT. PMID:21443332
CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL
CARRILLO, JOSÉ ANTONIO
2012-12-01
A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical concentration. For arbitrarily small cross-diffusion coefficients and for suitable exponents of the nonlinear diffusion terms, the global-in-time existence of weak solutions is proved, thus preventing finite-time blow up of the cell density. The global existence result also holds for linear and fast diffusion of the cell density in a certain parameter range in three dimensions. Furthermore, we show L∞ bounds for the solutions to the parabolic-elliptic system. Sufficient conditions leading to the asymptotic stability of the constant steady state are given for a particular choice of the nonlinear diffusion exponents. Numerical experiments in two and three space dimensions illustrate the theoretical results. © 2012 World Scientific Publishing Company.
Wieder, William R.; Knowles, John F.; Blanken, Peter D.; Swenson, Sean C.; Suding, Katharine N.
2017-04-01
Abiotic factors structure plant community composition and ecosystem function across many different spatial scales. Often, such variation is considered at regional or global scales, but here we ask whether ecosystem-scale simulations can be used to better understand landscape-level variation that might be particularly important in complex terrain, such as high-elevation mountains. We performed ecosystem-scale simulations by using the Community Land Model (CLM) version 4.5 to better understand how the increased length of growing seasons may impact carbon, water, and energy fluxes in an alpine tundra landscape. The model was forced with meteorological data and validated with observations from the Niwot Ridge Long Term Ecological Research Program site. Our results demonstrate that CLM is capable of reproducing the observed carbon, water, and energy fluxes for discrete vegetation patches across this heterogeneous ecosystem. We subsequently accelerated snowmelt and increased spring and summer air temperatures in order to simulate potential effects of climate change in this region. We found that vegetation communities that were characterized by different snow accumulation dynamics showed divergent biogeochemical responses to a longer growing season. Contrary to expectations, wet meadow ecosystems showed the strongest decreases in plant productivity under extended summer scenarios because of disruptions in hydrologic connectivity. These findings illustrate how Earth system models such as CLM can be used to generate testable hypotheses about the shifting nature of energy, water, and nutrient limitations across space and through time in heterogeneous landscapes; these hypotheses may ultimately guide further experimental work and model development.
Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx
Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.
2017-12-01
SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.
Pricing Participating Products under a Generalized Jump-Diffusion Model
Directory of Open Access Journals (Sweden)
Tak Kuen Siu
2008-01-01
Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.
WWER radial reflector modeling by diffusion codes
International Nuclear Information System (INIS)
Petkov, P. T.; Mittag, S.
2005-01-01
The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)
Dynamic Diffusion Estimation in Exponential Family Models
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Sečkárová, Vladimíra
2013-01-01
Roč. 20, č. 11 (2013), s. 1114-1117 ISSN 1070-9908 R&D Projects: GA MŠk 7D12004; GA ČR GA13-13502S Keywords : diffusion estimation * distributed estimation * paremeter estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.639, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0396518.pdf
Atmospheric dispersion experiments over complex terrain in a spanish valley site (Guardo-90)
International Nuclear Information System (INIS)
Ibarra, J.I.
1991-01-01
An intensive field experimental campaign was conducted in Spain to quantify atmospheric diffusion within a deep, steep-walled valley in rough, mountainous terrain. The program has been sponsored by the spanish companies of electricity and is intended to validate existing plume models and to provide the scientific basis for future model development. The atmospheric dispersion and transport processes in a 40x40 km domain were studied in order to evaluate SO 2 and SF 6 releases from an existing 185 m chimney and ground level sources in a complex terrain valley site. Emphasis was placed on the local mesoscale flows and light wind stable conditions. Although the measuring program was intensified during daytime for dual tracking of SO 2 /SF 6 from an elevated source, nighttime experiments were conducted for mountain-valley flows characterization. Two principle objectives were pursued: impaction of plumes upon elevated terrain, and diffusion of gases within the valley versus diffusion over flat, open terrain. Artificial smoke flows visualizations provided qualitative information: quantitative diffusion measurements were obtained using sulfur hexafluoride gas with analysis by highly sensitive electron capture gas chromatographs systems. Fourteen 2 hours gaseous tracer releases were conducted
Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.
2013-12-01
Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of
WRF modeling of PM2.5 remediation by SALSCS and its clean air flow over Beijing terrain.
Cao, Qingfeng; Shen, Lian; Chen, Sheng-Chieh; Pui, David Y H
2018-06-01
Atmospheric simulations were carried out over the terrain of entire Beijing, China, to investigate the effectiveness of an air-pollution cleaning system named Solar-Assisted Large-Scale Cleaning System (SALSCS) for PM 2.5 mitigation by using the Weather Research and Forecasting (WRF) model. SALSCS was proposed to utilize solar energy to generate airflow therefrom the airborne particulate pollution of atmosphere was separated by filtration elements. Our model used a derived tendency term in the potential temperature equation to simulate the buoyancy effect of SALSCS created with solar radiation on its nearby atmosphere. PM 2.5 pollutant and SALSCS clean air were simulated in the model domain by passive tracer scalars. Simulation conditions with two system flow rates of 2.64 × 10 5 m 3 /s and 3.80 × 10 5 m 3 /s were tested for seven air pollution episodes of Beijing during the winters of 2015-2017. The numerical results showed that with eight SALSCSs installed along the 6 th Ring Road of the city, 11.2% and 14.6% of PM 2.5 concentrations were reduced under the two flow-rate simulation conditions, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Weak diffusion limits of dynamic conditional correlation models
DEFF Research Database (Denmark)
Hafner, Christian M.; Laurent, Sebastien; Violante, Francesco
The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized...... by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a non-degenerate diffusion limit can be obtained. Alternative sets of conditions are considered...
International Nuclear Information System (INIS)
Fast, J.D.; O'Steen, B.L.
1994-01-01
The results of this study indicate that the current data assimilation technique can have a positive impact on the mesoscale flow fields; however, care must be taken in its application to grids of relatively fine horizontal resolution. Continuous FDDA is a useful tool in producing high-resolution mesoscale analysis fields that can be used to (1) create a better initial conditions for mesoscale atmospheric models and (2) drive transport models for dispersion studies. While RAMS is capable of predicting the qualitative flow during this evening, additional experiments need to be performed to improve the prognostic forecasts made by RAMS and refine the FDDA procedure so that the overall errors are reduced even further. Despite the fact that a great deal of computational time is necessary in executing RAMS and LPDM in the configuration employed in this study, recent advances in workstations is making applications such as this more practical. As the speed of these machines increase in the next few years, it will become feasible to employ prognostic, three-dimensional mesoscale/transport models to routinely predict atmospheric dispersion of pollutants, even to highly complex terrain. For example, the version of RAMS in this study could be run in a ''nowcasting'' model that would continually assimilate local and regional observations as soon as they become available. The atmospheric physics in the model would be used to determine the wind field where no observations are available. The three-dimensional flow fields could be used as dynamic initial conditions for a model forecast. The output from this type of modeling system will have to be compared to existing diagnostic, mass-consistent models to determine whether the wind field and dispersion forecasts are significantly improved
A simplified model exploration research of new anisotropic diffuse radiation model
International Nuclear Information System (INIS)
Yao, Wanxiang; Li, Zhengrong; Wang, Xiao; Zhao, Qun; Zhang, Zhigang; Lin, Lin
2016-01-01
Graphical abstract: The specific process of measured diffuse radiation data. - Highlights: • Simplified diffuse radiation model is extremely important for solar radiation simulation and energy simulation. • A new simplified anisotropic diffuse radiation model (NSADR model) is proposed. • The accuracy of existing models and NSADR model is compared based on the measured values. • The accuracy of the NSADR model is higher than that of the existing models, and suitable for calculating diffuse radiation. - Abstract: More accurate new anisotropic diffuse radiation model (NADR model) has been proposed, but the parameters and calculation process of NADR model used in the process are complex. So it is difficult to widely used in the simulation software and engineering calculation. Based on analysis of the diffuse radiation model and measured diffuse radiation data, this paper put forward three hypotheses: (1) diffuse radiation from sky horizontal region is concentrated in a very thin layer which is close to the line source; (2) diffuse radiation from circumsolar region is concentrated in the point of the sun; (3) diffuse radiation from orthogonal region is concentrated in the point located at 90 degree angles with the Sun. Based on these hypotheses, NADR model is simplified to a new simplified anisotropic diffuse radiation model (NSADR model). Then the accuracy of NADR model and its simplified model (NSADR model) are compared with existing models based on the measured values, and the result shows that Perez model and its simplified model are relatively accurate among existing models. However, the accuracy of these two models is lower than the NADR model and NSADR model due to neglect the influence of the orthogonal diffuse radiation. The accuracy of the NSADR model is higher than that of the existing models, meanwhile, another advantage is that the NSADR model simplifies the process of solution parameters and calculation. Therefore it is more suitable for
International Nuclear Information System (INIS)
Smirnova, E.S.; Chuvil'deev, V.N.
1998-01-01
The model is suggested which describes the influence of large-angle grain boundary migration on a diffusion controlled creep rate in polycrystalline materials (Coble creep). The model is based on the concept about changing the value of migrating boundary free volume when introducing dislocations distributed over the grain bulk into this boundary. Expressions are obtained to calculate the grain boundary diffusion coefficient under conditions of boundary migration and the parameter, which characterized the value of Coble creep acceleration. A comparison is made between calculated and experimental data for Cd, Co and Fe
Verification of atmospheric diffusion models with data of atmospheric diffusion experiments
International Nuclear Information System (INIS)
Hato, Shinji; Homma, Toshimitsu
2009-02-01
The atmospheric diffusion experiments were implemented by Japan Atomic Energy Research Institute (JAERI) around Mount Tsukuba in 1989 and 1990, and the tracer gas concentration were monitored. In this study, the Gauss Plume Model and RAMS/HYPACT that are meteorological forecast code and atmospheric diffusion code with detailed physical law are made a comparison between monitored concentration. In conclusion, the Gauss Plume Model is better than RAM/HYPACT even complex topography if the estimation is around tens of kilometer form release point and the change in weather is constant for short time. This reason is difference of wind between RAMS and observation. (author)
Smith, Rachel A; Kim, Youllee; Zhu, Xun; Doudou, Dimi Théodore; Sternberg, Eleanore D; Thomas, Matthew B
2018-01-01
This study documents an investigation into the adoption and diffusion of eave tubes, a novel mosquito vector control, during a large-scale scientific field trial in West Africa. The diffusion of innovations (DOI) and the integrated model of behavior (IMB) were integrated (i.e., innovation attributes with attitudes and social pressures with norms) to predict participants' (N = 329) diffusion intentions. The findings showed that positive attitudes about the innovation's attributes were a consistent positive predictor of diffusion intentions: adopting it, maintaining it, and talking with others about it. As expected by the DOI and the IMB, the social pressure created by a descriptive norm positively predicted intentions to adopt and maintain the innovation. Drawing upon sharing research, we argued that the descriptive norm may dampen future talk about the innovation, because it may no longer be seen as a novel, useful topic to discuss. As predicted, the results showed that as the descriptive norm increased, the intention to talk about the innovation decreased. These results provide broad support for integrating the DOI and the IMB to predict diffusion and for efforts to draw on other research to understand motivations for social diffusion.
Diffuse Scattering Model of Indoor Wideband Propagation
DEFF Research Database (Denmark)
Franek, Ondrej; Andersen, Jørgen Bach; Pedersen, Gert Frølund
2011-01-01
segments in total and approximately 2 min running time on average computer. Frequency independent power levels at the walls around the circumference of the room and at four receiver locations in the middle of the room are observed. It is demonstrated that after finite period of initial excitation the field...... radio coverage predictions.......This paper presents a discrete-time numerical algorithm for computing field distribution in indoor environment by diffuse scattering from walls. Calculations are performed for a rectangular room with semi-reflective walls. The walls are divided into 0.5 x 0.5 m segments, resulting in 2272 wall...
MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS
International Nuclear Information System (INIS)
BURRELL, K.H.
2003-01-01
OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal
Reflector modelization for neutronic diffusion and parameters identification
International Nuclear Information System (INIS)
Argaud, J.P.
1993-04-01
Physical parameters of neutronic diffusion equations can be adjusted to decrease calculations-measurements errors. The reflector being always difficult to modelize, we choose to elaborate a new reflector model and to use the parameters of this model as adjustment coefficients in the identification procedure. Using theoretical results, and also the physical behaviour of neutronic flux solutions, the reflector model consists then in its replacement by boundary conditions for the diffusion equations on the core only. This theoretical result of non-local operator relations leads then to some discrete approximations by taking into account the multiscaled behaviour, on the core-reflector interface, of neutronic diffusion solutions. The resulting model of this approach is then compared with previous reflector modelizations, and first results indicate that this new model gives the same representation of reflector for the core than previous. (author). 12 refs
Micheletti, Natan; Chandler, Jim; Lane, Stuart
2013-04-01
Whilst high-resolution topographic and terrain data is essential in many geoscience applications, its acquisition has traditionally required either specific expertise (e.g. applications of photogrammetry) or expensive equipment (e.g. ground-based laser altimetric systems). Recent work in geomorphology (e.g. James and Robson, 2012; Carbonneau et al., 2012) has demonstrated the potential of Structure-from-Motion photogrammetry as a low cost, low expertise alternative for Digital Elevation Model (DEM) generation. These methods have geomorphological appeal because the more sophisticated image matching approaches remove many of the geometrical constraints associated with image acquisition: traditionally, vertical and "normal" image pairs acquired with a metric camera. This increases both the number of potential applications and the efficacy of image acquisition in the field. It also allows for genuine 3D (where the same (x,y) can have multiple z values) rather than 2.5D (where each (x,y) must have a unique z value) representation of the terrain surface. In this paper, we progress this technology further, by testing what can be acquired using hand-held smartphone technology, where the acquired images can be uploaded in the field to Open Source technology freely available to the research community. This is achieved by evaluating the quality of DEMs generated with a fully automated, open-source, Structure-from-Motion package and a smartphone (Apple Iphone 4) integrated camera (5 megapixels) using terrestrial laser scanning (TLS) data as benchmark. To allow a more objective assessment, it is necessary to compare both device and package with traditional approaches. Accordingly, we compare the error in the smartphone DEMs with the errors associated with data derived using a 16.2 megapixel digital camera and processed using the more traditional, commercial, close-range and semi-automated software PhotoModeler. Results demonstrate that centimeter precision DTMs can be achieved
Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.
2013-01-01
Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805
Microscopic modeling of the Raman diffusion
International Nuclear Information System (INIS)
Benisti, D.; Morice, O.; Gremillet, L.; Strozzi, D.
2010-01-01
In the typical conditions of density and electronic temperature of the Laser Megajoule (LMJ), a quantitative assessment of the Raman reflectivity requires an accurate calculation of the non-linear movement of each electron submitted to the waves propagating in the plasma. The interaction of a laser beam with a plasma generates an electronic wave shifted in frequency (that can be back-scattered) and an electron plasma wave (OPE). The OPE can give to the electrons a strongly non-linear movement by trapping them in a potential well. This non-linearity of microscopic origin has an impact on the plasma electronic density. We have succeeded in computing this plasma electronic density in a very accurate way by combining the principles of a perturbative approach with those of an adiabatic theory. Results show that the Raman diffusion can grow on temperature and density ranges more important than expected. We have predicted the threshold and the behavior of the Raman diffusion above this threshold as accurately as we had done it with a Vlasov code but by being 10000 times more rapid. (A.C.)
Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André
2009-04-01
SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.
A strongly nonlinear reaction-diffusion model for a deterministic diffusive epidemic
International Nuclear Information System (INIS)
Kirane, M.; Kouachi, S.
1992-10-01
In the present paper the mathematical validity of a model on the spread of an infectious disease is proved. This model was proposed by Bailey. The mathematical validity is proved by means of a positivity, uniqueness and existence theorem. In spite of the apparent simplicity of the problem, the solution requires a delicate set of techniques. It seems very difficult to extend these techniques to a model in more than one dimension without imposing conditions on the diffusivities. (author). 7 refs
International Nuclear Information System (INIS)
Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu
2009-03-01
Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)
Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael
2017-04-01
The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state
Printing Space: Using 3D Printing of Digital Terrain Models in Geosciences Education and Research
Horowitz, Seth S.; Schultz, Peter H.
2014-01-01
Data visualization is a core component of every scientific project; however, generation of physical models previously depended on expensive or labor-intensive molding, sculpting, or laser sintering techniques. Physical models have the advantage of providing not only visual but also tactile modes of inspection, thereby allowing easier visual…
Discrete random walk models for space-time fractional diffusion
International Nuclear Information System (INIS)
Gorenflo, Rudolf; Mainardi, Francesco; Moretti, Daniele; Pagnini, Gianni; Paradisi, Paolo
2002-01-01
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α is part of (0,2] and skewness θ (moduleθ≤{α,2-α}), and the first-order time derivative with a Caputo derivative of order β is part of (0,1]. Such evolution equation implies for the flux a fractional Fick's law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation
Flux-limited diffusion models in radiation hydrodynamics
International Nuclear Information System (INIS)
Pomraning, G.C.; Szilard, R.H.
1993-01-01
The authors discuss certain flux-limited diffusion theories which approximately describe radiative transfer in the presence of steep spatial gradients. A new formulation is presented which generalizes a flux-limited description currently in widespread use for large radiation hydrodynamic calculations. This new formation allows more than one Case discrete mode to be described by a flux-limited diffusion equation. Such behavior is not extant in existing formulations. Numerical results predicted by these flux-limited diffusion models are presented for radiation penetration into an initially cold halfspace. 37 refs., 5 figs
Convergence of surface diffusion parameters with model crystal size
Cohen, Jennifer M.; Voter, Arthur F.
1994-07-01
A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.
Zouzias, Dimitrios; Miliaresis, George Ch.; Seymour, Karen St.
2011-03-01
To model the morphotectonic evolution of Nisyros stratovolcano in the Aegean Volcanic Arc (36° 35' N, 27° 10' E), a 30 m resolution ASTER GDEM was used. Nisyros is characterized by a relative pristine volcanic terrain. Elevation, slope and aspect images, the corresponding frequency distributions and rose diagrams enabled the geomorphometric analysis of Nisyros revealing the major geomorphological structures that are associated to both endogenetic and exogenetic processes acting on the island either new or previously reported in the literature. New elements include the number, loci of issue, relative age, ogive structures of the voluminous precalderan Nikia flows and their contact relationships with the Avlaki flows. The tectonic control, fine feature morphology and flow paths of lavas and smaller domes associated with the main postcalderan domes become visually apparent. Particularities of the hydrographic network accentuate and bring forward non-mapped radial faults. Intense landslide scarring and the volcanic stratigraphy of the intact units were revealed in the northeastern quadrant of Nisyros. Major, new volcano-tectonic features include the division of the island into three northwesterly trending sectors and the dipping of Nisyros towards the southeast as a result of segmentation by two major ring faults the Kos Ring Fault (KRF) and Perigussa Ring trapdoor Fault (PRF) which represent ring faults of the Kos sagging-caldera. The ASTER GDEM has provided suitable thematic information content in the geomorphometric analysis of Nisyros and therefore it offers a reconnaissance tool in the geomorphological analysis of a volcanic landscape.
VBMP Digital Terrain Models - 2006/2007 (VA State Plane South)
Federal Emergency Management Agency, Department of Homeland Security — These files contain Digital Elevation Model (DTM) file data for the Commonwealth of Virginia developed from imagery acquired in spring 2006 and 2007. In the spring...
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
Energy Technology Data Exchange (ETDEWEB)
Capdebosq, Y
1999-09-01
In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)
Statistical model of a gas diffusion electrode. III. Photomicrograph study
Energy Technology Data Exchange (ETDEWEB)
Winsel, A W
1965-12-01
A linear section through a gas diffusion electrode produces a certain distribution function of sinews with the pores. From this distribution function some qualities of the pore structure are derived, and an automatic device to determine the distribution function is described. With a statistical model of a gas diffusion electrode the behavior of a DSK electrode is discussed and compared with earlier measurements of the flow resistance of this material.
Energy Technology Data Exchange (ETDEWEB)
Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)
1999-03-01
The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.
Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy
2017-03-01
The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.
A BEM approach to validate a model for predicting sound propagation over non-flat terrain
DEFF Research Database (Denmark)
Quirósy Alpera, S.; Jacobsen, Finn; Juhl, P.M.
2003-01-01
to be discretised in the boundary element model. This Green's function is undefined for points below the impedance plane, and therefore valleys and hollows are taken into account by coupling the exterior domain above the ground with one or several interior domains below the ground, as suggested in a recent paper [J...
A geo-information theoretical approach to inductive erosion modelling based on terrain mapping units
Suryana, N.
1997-01-01
Three main aspects of the research, namely the concept of object orientation, the development of an Inductive Erosion Model (IEM) and the development of a framework for handling uncertainty in the data or information resulting from a GIS are interwoven in this thesis. The first and the second aspect
Atmospheric dispersion in complex terrain: Angra-1 nuclear power plant
International Nuclear Information System (INIS)
Lima e Silva Filho, P.P. de
1986-01-01
The Angra 1 plant is located in a very complex terrain, what makes the environmental impact assessment very difficult, regarding to the atmospheric transport problem as well as to the diffusion problem. Three main characteristics are responsible for that situation: the location at the shoreline, the complex topography and the high roughness of the terrain. Those characteristics generate specific phenomena and utilization of parameters from other sites are not convenient. Considering financial and technical viabilities, we must look for the local parameters, disregarding the easy, although risky, attitude of applying parameters and models incovenient to the Angra site. Some of those aspects are more important, and among them we will discuss the Plume Rise, the Critical Height, the Drainage Flow and the Atmospheric Dispersion Coefficients. (Author) [pt
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
LöWe, H.; Helbig, N.
2012-10-01
We provide a new quasi-analytical method to compute the subgrid topographic influences on the shortwave radiation fluxes and the effective albedo in complex terrain as required for large-scale meteorological, land surface, or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain-averaged fluxes of direct, diffuse, and terrain radiation and the sky view factor. Domain-averaged quantities can be related to a type of level-crossing probability of the random field, which is approximated by long-standing results developed for acoustic scattering at ocean boundaries. This allows us to express all nonlocal horizon effects in terms of a local terrain parameter, namely, the mean-square slope. Emerging integrals are computed numerically, and fit formulas are given for practical purposes. As an implication of our approach, we provide an expression for the effective albedo of complex terrain in terms of the Sun elevation angle, mean-square slope, the area-averaged surface albedo, and the ratio of atmospheric direct beam to diffuse radiation. For demonstration we compute the decrease of the effective albedo relative to the area-averaged albedo in Switzerland for idealized snow-covered and clear-sky conditions at noon in winter. We find an average decrease of 5.8% and spatial patterns which originate from characteristics of the underlying relief. Limitations and possible generalizations of the method are discussed.
MODELLING AND VALIDATION OF A TESTING TRAILER FOR ABS AND TYRE INTERACTION ON ROUGH TERRAIN
Žuraulis, Vidas; van der Merwe, Nico A.; Scholtz, Odette; Els, P. Schalk
2017-01-01
The main purpose of a vehicle anti-lock braking system (ABS) is to prevent the tyres from locking-up in order to brake efficiently whilst maintaining steering control and stability. Sport utility vehicles (SUV) are designed to drive on various roads under different driving conditions, making it challenging to identify optimal operating conditions for ABS algorithms to be implemented. This paper describes the development and modelling of a testing trailer that is designed to benefit the res...
Modelling and simulation of diffusive processes methods and applications
Basu, SK
2014-01-01
This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport
A model of non-Gaussian diffusion in heterogeneous media
Lanoiselée, Yann; Grebenkov, Denis S.
2018-04-01
Recent progress in single-particle tracking has shown evidence of the non-Gaussian distribution of displacements in living cells, both near the cellular membrane and inside the cytoskeleton. Similar behavior has also been observed in granular materials, turbulent flows, gels and colloidal suspensions, suggesting that this is a general feature of diffusion in complex media. A possible interpretation of this phenomenon is that a tracer explores a medium with spatio-temporal fluctuations which result in local changes of diffusivity. We propose and investigate an ergodic, easily interpretable model, which implements the concept of diffusing diffusivity. Depending on the parameters, the distribution of displacements can be either flat or peaked at small displacements with an exponential tail at large displacements. We show that the distribution converges slowly to a Gaussian one. We calculate statistical properties, derive the asymptotic behavior and discuss some implications and extensions.
Modelling of monovacancy diffusion in W over wide temperature range
International Nuclear Information System (INIS)
Bukonte, L.; Ahlgren, T.; Heinola, K.
2014-01-01
The diffusion of monovacancies in tungsten is studied computationally over a wide temperature range from 1300 K until the melting point of the material. Our modelling is based on Molecular Dynamics technique and Density Functional Theory. The monovacancy migration barriers are calculated using nudged elastic band method for nearest and next-nearest neighbour monovacancy jumps. The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three orders of magnitude higher than commonly used in computational studies, resulting in attempt frequency of the order 10 15 Hz. Multiple nearest neighbour jumps of monovacancy are found to play an important role in the contribution to the total diffusion coefficient, especially at temperatures above 2/3 of T m , resulting in an upward curvature of the Arrhenius diagram. The probabilities for different nearest neighbour jumps for monovacancy in W are calculated at different temperatures
International Nuclear Information System (INIS)
Killip, Ian Richmond
2002-01-01
This thesis investigates the range, distribution and causes of high radon levels in dwellings in the Brighton area of Southeast England. Indoor radon levels were measured in more than 1000 homes. The results show that high radon levels can arise in an area previously considered to offer low radon potential from local geological sources. Climate and building-related factors were found to affect significantly the radon levels in dwellings. Multiple regression was used to determine the influence of the various factors on indoor radon levels and an empirical model develop to predict indoor radon levels. The radon hazard, independent of building-related effects, was determined for each surveyed location by adjusting the radon measurement to that expected on the ground floor of a 'model' dwelling. This standardised set of radon levels was entered into a geographical information system (GIS) and related to surface geology. The geometric mean radon level for each lithological unit was plotted to produce a radon hazard map for the area. The highest radon levels were found to be associated with the youngest Chalk Formations, particularly where they meet overlying Tertiary deposits, and with Clay-with-Flints Quaternary deposits in the area. The results were also converted to the radon activity equivalent to that expected from the NRPB's standard dual-detector dwelling survey method and analysed by lognormal modelling to estimate the proportion of dwellings likely to exceed the UK Action Level of 200 Bq/m 3 for each lithological unit. The likely percentages of dwellings affected by radon thus obtained were mapped to lithological boundaries to produce a radon potential map. The radon hazard map and the empirical radon model facilitate the prediction of radon levels in dwellings of comparable construction and above similar geology and should further the understanding of the behaviour of radon gas in buildings to allow indoor radon concentrations to be controlled. The radon
The marine digital terrain model of the Panarea caldera (Aeolian Islands, Southern Italy
Directory of Open Access Journals (Sweden)
M. Anzidei
1998-06-01
Full Text Available A Marine Digital Elevation Model (MDEM of the still active volcanic area of Panarea caldera is presented in this paper. A fast and accurate survey was performed by means of the Differential Global Positioning System (DGPS geodetic technique coupled with an echo-sounding gear and a real time navigation software. The instrumentation was installed on board of a low draught boat in order to collect data starting from the bathymeter of one meter. Planar positions and depths were obtained with average accuracies of 30 cm and 10 cm respectively providing a 3D map of the seafloor useful for geomorphological, geophysical and volcanic hazard applications.
The parton model for the diffusion
International Nuclear Information System (INIS)
Ducati, M.B. Gay; Machado, M.V.T.
1999-01-01
We analyze the Buchmueller-Hebecker model for diffraction processes, point out its predictions to the diffractive structure function F D(3) 2 (x IP , β,Q 2 ). The break of factorization for the F D93) 2 present in recent H1 data is well described introducing an extra soft (reggeon) contribution as an extension to the model. (author)
Cheng, Xian; Chen, Liding; Sun, Ranhao; Jing, Yongcai
2018-05-15
To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports and identify sources of pollution. Precipitation and terrain have large impacts on the export and transport of NPS pollutants. We established an improved export coefficient model (IECM) to estimate the amount of agricultural and rural NPS total phosphorus (TP) exported from the Luanhe River Basin (LRB) in northern China. The TP concentrations of rivers from 35 selected catchments in the LRB were used to test the model's explanation capacity and accuracy. The simulation results showed that, in 2013, the average TP export was 57.20 t at the catchment scale. The mean TP export intensity in the LRB was 289.40 kg/km 2 , which was much higher than those of other basins in China. In the LRB topographic regions, the TP export intensity was the highest in the south Yanshan Mountains and was followed by the plain area, the north Yanshan Mountains, and the Bashang Plateau. Among the three pollution categories, the contribution ratios to TP export were, from high to low, the rural population (59.44%), livestock husbandry (22.24%), and land-use types (18.32%). Among all ten pollution sources, the contribution ratios from the rural population (59.44%), pigs (14.40%), and arable land (10.52%) ranked as the top three sources. This study provides information that decision makers and planners can use to develop sustainable measures for the prevention and control of NPS pollution in semi-arid regions.
International Nuclear Information System (INIS)
Vetter, M.
2013-01-01
point cloud. Because of the interaction of the laser signal at a specific wavelength and the water surface, the capability to identify areas containing water is very high. These water surface areas are used for land cover classification or generating proper geometry data for hydrodynamic-numerical models. The extent of the water surface is used to replace the water surface with river bed geometry or for hydraulic friction parameter allocation. Based on the water surface extent a river bed modeling method is presented in the next chapter. By combining the existing water surface with terrestrially measured cross section data, a river bed model is created, which is finally integrated into the existing DTM. The main aim of this chapter is to create a DTM of the watercourse, including the river bed model, which can be used as basis for hydrodynamic-numerical modeling and for change detection between two major flood events. The advantage of the DTM with an integrated river bed is that the relevant elevation data of the flood plains are used from the dense and accurate original DTM and the river bed is an interpolated DTM from cross sections. If the distance between the cross sections is large, the river bed model is of poor quality, because of the linear interpolation of the cross sections. In the final methodological part a point cloud based method for estimating hydraulic roughness coefficients is presented. Based on the geometry of the 3D point cloud, vertical structures of the vegetation are analyzed and classified into different land cover classes, which are transformed to Manning's n values. The advantages of the presented method are that the data analysis is fully automatic, reproducible and fast. Finally, the geometry used as elevation input for a 2D hydrodynamic-numerical model and the roughness parameters are measured at one single point in time and calculated from the same data source. Therefore, it is possible to create a hydrodynamic-numerical model exactly
A combinatorial model of malware diffusion via bluetooth connections.
Merler, Stefano; Jurman, Giuseppe
2013-01-01
We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.
A combinatorial model of malware diffusion via bluetooth connections.
Directory of Open Access Journals (Sweden)
Stefano Merler
Full Text Available We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy and closed form (more complex but efficiently computable expression.
Diffusion approximation for modeling of 3-D radiation distributions
International Nuclear Information System (INIS)
Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.
1985-01-01
A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs
Calibration of a geophysically based model using soil moisture measurements in mountainous terrains
Pellet, Cécile; Hilbich, Christin; Marmy, Antoine; Hauck, Christian
2016-04-01
The use of geophysical methods in the field of permafrost research is well established and crucial since it is the only way to infer the composition of the subsurface material. Since geophysical measurements are indirect, ambiguities in the interpretation of the results can arise, hence the simultaneous use of several methods (e.g. electrical resistivity tomography and refraction seismics) is often necessary. The so-called four-phase model, 4PM (Hauck et al., 2011) constitutes a further step towards clarification of interpretation from geophysical measurements. It uses two well-known petrophysical relationships, namely Archie's law and an extension of Timur's time-averaged equation for seismic P-wave velocities, to quantitatively estimate the different phase contents (air, water and ice) in the ground from tomographic electric and seismic measurements. In this study, soil moisture measurements were used to calibrate the 4PM in order to assess the spatial distribution of water, ice and air content in the ground at three high elevation sites with different ground properties and thermal regimes. The datasets used here were collected as part of the SNF-project SOMOMOUNT. Within the framework of this project a network of six entirely automated soil moisture stations was installed in Switzerland along an altitudinal gradient ranging from 1'200 m. a.s.l. to 3'400 m. a.s.l. The standard instrumentation of each station comprises the installation of Frequency Domain Reflectometry (FDR) and Time Domain Reflectometry (TDR) sensors for long term monitoring coupled with repeated Electrical Resistivity Tomography (ERT) and Refraction Seismic Tomography (RST) as well as spatial FDR (S-FDR) measurements. The use of spatially distributed soil moisture data significantly improved the 4PM calibration process and a semi-automatic calibration scheme was developed. This procedure was then tested at three different locations, yielding satisfactory two dimensional distributions of water
Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model
Energy Technology Data Exchange (ETDEWEB)
Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand); Fichtner, Horst; Walter, Dominik [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum (Germany)
2017-05-20
We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.
Analysis of Solar Potential of Roofs Based on Digital Terrain Model
Gorički, M.; Poslončec-Petrić, V.; Frangeš, S.; Bačić, Ž.
2017-09-01
One of the basic goals of the smart city concept is to create a high-quality environment that is long sustainable and economically justifiable. The priority and concrete goal today is to promote and provide sustainable sources of energy (SSE). Croatia is rich with sun energy and as one of the sunniest European countries, it has a huge insufficiently used solar potential at its disposal. The paper describes the procedure of analysing the solar potential of a pilot area Sveti Križ Začretje by means of digital surface model (DSM) and based on the data available in the Meteorological and Hydrological Service of the Republic of Croatia. Although a more detailed analysis would require some additional factors, it is clear that the installation of 19,6m2 of solar panels in each household could cover annual requirements of the household in the analysed area, the locality Sveti Križ Začretje.
Numerical modelling of swirling diffusive flames
Directory of Open Access Journals (Sweden)
Parra-Santos Teresa
2016-01-01
Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.
Diffuse solar radiation estimation models for Turkey's big cities
International Nuclear Information System (INIS)
Ulgen, Koray; Hepbasli, Arif
2009-01-01
A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the
Diffusion theory model for optimization calculations of cold neutron sources
International Nuclear Information System (INIS)
Azmy, Y.Y.
1987-01-01
Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations
Energy Technology Data Exchange (ETDEWEB)
Vetter, M.
2013-07-01
point cloud. Because of the interaction of the laser signal at a specific wavelength and the water surface, the capability to identify areas containing water is very high. These water surface areas are used for land cover classification or generating proper geometry data for hydrodynamic-numerical models. The extent of the water surface is used to replace the water surface with river bed geometry or for hydraulic friction parameter allocation. Based on the water surface extent a river bed modeling method is presented in the next chapter. By combining the existing water surface with terrestrially measured cross section data, a river bed model is created, which is finally integrated into the existing DTM. The main aim of this chapter is to create a DTM of the watercourse, including the river bed model, which can be used as basis for hydrodynamic-numerical modeling and for change detection between two major flood events. The advantage of the DTM with an integrated river bed is that the relevant elevation data of the flood plains are used from the dense and accurate original DTM and the river bed is an interpolated DTM from cross sections. If the distance between the cross sections is large, the river bed model is of poor quality, because of the linear interpolation of the cross sections. In the final methodological part a point cloud based method for estimating hydraulic roughness coefficients is presented. Based on the geometry of the 3D point cloud, vertical structures of the vegetation are analyzed and classified into different land cover classes, which are transformed to Manning's n values. The advantages of the presented method are that the data analysis is fully automatic, reproducible and fast. Finally, the geometry used as elevation input for a 2D hydrodynamic-numerical model and the roughness parameters are measured at one single point in time and calculated from the same data source. Therefore, it is possible to create a hydrodynamic-numerical model exactly from
International Nuclear Information System (INIS)
Mizia, R.E.; Clark, D.E.; Glazoff, M.V.; Lister, Tedd E.; Trowbridge, T.L.
2011-01-01
A research effort was made to evaluate the usefulness of modern thermodynamic and diffusion computational tools, Thermo-Calc(copyright) and Dictra(copyright), in optimizing the parameters for diffusion welding of Alloy 800H. This would achieve a substantial reduction in the overall number of experiments required to achieve optimal welding and post-weld heat treatment conditions. This problem is important because diffusion welded components of Alloy 800H are being evaluated for use in assembling compact, micro-channel heat exchangers that are being proposed in the design of a high temperature gas-cooled reactor by the US Department of Energy. The modeling was done in close contact with experimental work. The latter included using the Gleeble 3500 System(reg sign) for welding simulation, mechanical property measurement, and light optical and Scanning Electron Microscopy. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using a 15 μm Ni foil as a joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved, and model refinements to account for the complexity of actual alloy materials are suggested.
Radon diffusion through multilayer earthen covers: models and simulations
International Nuclear Information System (INIS)
Mayer, D.W.; Oster, C.A.; Nelson, R.W.; Gee, G.W.
1981-09-01
A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems has been investigated. The purpose of this study is to develop the theoretical basis for modeling radon diffusion and to develop an understanding of the fundamental interactions that influence radon diffusion. This study develops the theoretical basis for modeling radon diffusion in one, two and three dimensions. The theory has been incorporated into three computer models that are used to analyze several tailings and cover configurations. This report contains a discussion of the theoretical basis for modeling radon diffusion, a discussion of the computer models used to analyze uranium mill tailings and multilayered cover systems, and presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass
Valles Marineris, Mars: High-Resolution Digital Terrain Model on the basis of Mars-Express HRSC data
Dumke, A.; Spiegel, M.; van Gasselt, S.; Neukum, G.
2009-04-01
Introduction: Since December 2003, the European Space Agency's (ESA) Mars Express (MEX) orbiter has been investigating Mars. The High Resolution Stereo Camera (HRSC), one of the scientific experiments onboard MEX, is a pushbroom stereo color scanning instrument with nine line detectors, each equipped with 5176 CCD sensor elements. Five CCD lines operate with panchromatic filters and four lines with red, green, blue and infrared filters at different observation angles [1]. MEX has a highly elliptical near-polar orbit and reaches a distance of 270 km at periapsis. Ground resolution of image data predominantly varies with respect to spacecraft altitude and the chosen macro-pixel format. Usually, although not exclusively, the nadir channel provides full resolution of up to 10 m per pixel. Stereo-, photometry and color channels generally have a coarser resolution. One of the goals for MEX HRSC is to cover Mars globally in color and stereoscopically at high-resolution. So far, HRSC has covered almost half of the surface of Mars at a resolution better than 20 meters per pixel. Such data are utilized to derive high resolution digital terrain models (DTM), ortho-image mosaics and additionally higher-level 3D data products such as 3D views. Standardized high-resolution single-strip digital terrain models (using improved orientation data) have been derived at the German Aerospace Center (DLR) in Berlin-Adlershof [2]. Those datasets, i.e. high-resolution digital terrain models as well as ortho-image data, are distributed as Vicar image files (http://www-mipl.jpl.nasa.gov/external/vicar.html) via the HRSCview web-interface [3], accessible at http://hrscview.fu-berlin.de. A systematic processing workflow is described in detail in [4,5]. In consideration of the scientific interest, the processing of the Valles Marineris region will be discussed in this paper. The DTM mosaic was derived from 82 HRSC orbits at approximately -22° S to 1° N and 250° to 311° E. Methods: Apart from
Mars, High-Resolution Digital Terrain Model Quadrangles on the Basis of Mars-Express HRSC Data
Dumke, A.; Spiegel, M.; van Gasselt, S.; Neu, D.; Neukum, G.
2010-05-01
Introduction: Since December 2003, the European Space Agency's (ESA) Mars Express (MEX) orbiter has been investigating Mars. The High Resolution Stereo Camera (HRSC), one of the scientific experiments onboard MEX, is a pushbroom stereo color scanning instrument with nine line detectors, each equipped with 5176 CCD sensor elements [1,2]. One of the goals for MEX HRSC is to cover Mars globally in color and stereoscopically at high-resolution. So far, HRSC has covered half of the surface of Mars at a resolution better than 20 meters per pixel. HRSC data allows to derive high-resolution digital terrain models (DTM), color-orthoimage mosaics and additionally higher-level 3D data products. Past work concentrated on producing regional data mosaics for areas of scientific interest in a single strip and/or bundle block adjustment and deriving DTMs [3]. The next logical step, based on substantially the same procedure, is to systematically expand the derivation of DTMs and orthoimage data to the 140 map quadrangle scheme (Q-DTM). Methods: The division of the Mars surface into 140 quadrangles is briefly described in Greeley and Batson [4] and based upon the standard MC 30 (Mars Chart) system. The quadrangles are named by alpha-numerical labels. The workflow for the determination of new orientation data for the derivation of digital terrain models takes place in two steps. First, for each HRSC orbits covering a quadrangle, new exterior orientation parameters are determined [5,6]. The successfully classified exterior orientation parameters become the input for the next step in which the exterior orientation parameters are determined together in a bundle block adjustment. Only those orbit strips which have a sufficient overlap area and a certain number of tie points can be used in a common bundle block adjustment. For the automated determination of tie points, software provided by the Leibniz Universität Hannover [7] is used. Results: For the derivation of Q-DTMs and ortho
Modelling Ni diffusion in bentonite using different sorption models
International Nuclear Information System (INIS)
Pfingsten, W.; Baeyens, B.; Bradbury, M.
2010-01-01
Document available in extended abstract form only. An important component of the multi barrier disposal concept for a radioactive waste repository is the bentonite backfill surrounding the canisters containing vitrified high-level waste and spent fuel located in the tunnels deep within the chosen host rock. The effectiveness of the compacted bentonite barrier is such that calculations have indicated that many radionuclides have decayed to insignificant levels before having diffused through the thickness of bentonite. These calculations are performed using the simple Kd sorption concept in which the values are taken from batch type experiments performed on dispersed systems performed for a single metal at a time, usually at trace concentrations. However, in such complex systems many radionuclides, inactive metal contaminants/ground water components may be simultaneously present in the aqueous phase at a range of concentrations varying with time during the temporal evolution of the repository system. An important aspect influencing the sorption of any radioactive metal under a set of given geochemical conditions is its competition with other metals present, and how this may vary as a function of concentration. Competitive sorption effects are not currently included in safety assessments and are thus an issue which needs to be addressed. Here we provide some first estimates of the potential influence of competitive sorption effects on the migration of radioactive metals through compacted bentonite as a function of their concentration and the concentration of competing metals. Ni(II) and Fe(II) were chosen as possible competing cations since their concentration levels are expected to have values greater than trace levels and effects might be maximal and canister corrosion represents a permanent Fe source at the bentonite interface which could influence bivalent radionuclide diffusion. The modelling of the Ni(II) diffusion/sorption has been carried out using three
A diffuse radar scattering model from Martian surface rocks
Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.
1987-01-01
Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.
Diffusion approximation of neuronal models revisited
Czech Academy of Sciences Publication Activity Database
Čupera, Jakub
2014-01-01
Roč. 11, č. 1 (2014), s. 11-25 ISSN 1547-1063. [International Workshop on Neural Coding (NC) /10./. Praha, 02.09.2012-07.09.2012] R&D Projects: GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : stochastic model * neuronal activity * first-passage time Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.840, year: 2014
Diffusion in energy materials: Governing dynamics from atomistic modelling
Parfitt, D.; Kordatos, A.; Filippatos, P. P.; Chroneos, A.
2017-09-01
Understanding diffusion in energy materials is critical to optimising the performance of solid oxide fuel cells (SOFCs) and batteries both of which are of great technological interest as they offer high efficiency for cleaner energy conversion and storage. In the present review, we highlight the insights offered by atomistic modelling of the ionic diffusion mechanisms in SOFCs and batteries and how the growing predictive capability of high-throughput modelling, together with our new ability to control compositions and microstructures, will produce advanced materials that are designed rather than chosen for a given application. The first part of the review focuses on the oxygen diffusion mechanisms in cathode and electrolyte materials for SOFCs and in particular, doped ceria and perovskite-related phases with anisotropic structures. The second part focuses on disordered oxides and two-dimensional materials as these are very promising systems for battery applications.
Estimation and prediction under local volatility jump-diffusion model
Kim, Namhyoung; Lee, Younhee
2018-02-01
Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.
Asymmetric diffusion model for oblique-incidence reflectometry
Institute of Scientific and Technical Information of China (English)
Yaqin Chen; Liji Cao; Liqun Sun
2011-01-01
A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectom-etry. By fitting to this asymmetric diffusion model, the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp') away from the incident point; particularly, μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy. The method is verified by Monte Carlo simulations and experimentally tested on a phantom.%A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectometry.By fitting to this asymmetric diffusion model,the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10％ from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp')away from the incident point;particularly,μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10％ accuracy.The method is verified by Monte Carlo simulations and experimentally tested on a phantom.Knowledge about the optical properties,including the absorption coefficient (μa) and the reduced scattering coefficient (μ's =μs(1-g)),where μs is the scattering coefficient and g is the anisotropy factor of scattering,of biological tissues plays an important role for optical therapeutic and diagnostic techniques in medicine.
A fractional motion diffusion model for grading pediatric brain tumors.
Karaman, M Muge; Wang, He; Sui, Yi; Engelhard, Herbert H; Li, Yuhua; Zhou, Xiaohong Joe
2016-01-01
To demonstrate the feasibility of a novel fractional motion (FM) diffusion model for distinguishing low- versus high-grade pediatric brain tumors; and to investigate its possible advantage over apparent diffusion coefficient (ADC) and/or a previously reported continuous-time random-walk (CTRW) diffusion model. With approval from the institutional review board and written informed consents from the legal guardians of all participating patients, this study involved 70 children with histopathologically-proven brain tumors (30 low-grade and 40 high-grade). Multi- b -value diffusion images were acquired and analyzed using the FM, CTRW, and mono-exponential diffusion models. The FM parameters, D fm , φ , ψ (non-Gaussian diffusion statistical measures), and the CTRW parameters, D m , α , β (non-Gaussian temporal and spatial diffusion heterogeneity measures) were compared between the low- and high-grade tumor groups by using a Mann-Whitney-Wilcoxon U test. The performance of the FM model for differentiating between low- and high-grade tumors was evaluated and compared with that of the CTRW and the mono-exponential models using a receiver operating characteristic (ROC) analysis. The FM parameters were significantly lower ( p < 0.0001) in the high-grade ( D fm : 0.81 ± 0.26, φ : 1.40 ± 0.10, ψ : 0.42 ± 0.11) than in the low-grade ( D fm : 1.52 ± 0.52, φ : 1.64 ± 0.13, ψ : 0.67 ± 0.13) tumor groups. The ROC analysis showed that the FM parameters offered better specificity (88% versus 73%), sensitivity (90% versus 82%), accuracy (88% versus 78%), and area under the curve (AUC, 93% versus 80%) in discriminating tumor malignancy compared to the conventional ADC. The performance of the FM model was similar to that of the CTRW model. Similar to the CTRW model, the FM model can improve differentiation between low- and high-grade pediatric brain tumors over ADC.
Treinta y Tres stratigraphic terrain: ex Cuchilla Dionisio terrain. Uruguay
International Nuclear Information System (INIS)
Bossi, J.
2010-01-01
From 1998 we are discussing if the eastern area of ZCSB is an allochtonous block named TCD or if it belongs to Dom Feliciano belt with an age of 500 - 700 Ma. This crustal block is difficult to study because Laguna Merin Graben cut it in two around 4000 k m2 crustal fragments distant s more de 100 km between them. Southern block which was named T PE by Masquelín (2006) was demonstrated as allochtonous by Bossi and Gaucher (2004) destroying the Cdf model but seriously complicating the stratigraphic terminology. It is proposed to do some changes in order to profit the general agreement about allochtomy. The CDT with change by Treinta y Tres terrane; T PE become sub - terrain Punta del Este; sub - terrain Cuchilla Dionisio for the septetrional block. From 1998 we are discussing if the eastern area of ZCSB is an allochtonous block named TCD or if it belongs to Dom Feliciano belt with an age of 500 - 700 Ma. This crustal block is difficult to study because Laguna Merín Graben cut it in two around 4000 k m2 crustal fragments distant s more de 100 km between them. Southern block which was named T PE by Masquelín (2006) was demonstrated as allochtonous by Bossi and Gaucher (2004) destroying the CDF model but seriously complicating the stratigraphic terminology. It is proposed to do some changes in order to profit the general agreement about allochtomy. The CDT with change by Treinta y Tres terrain; TPE become sub - terrain Punta del Este; sub - terrain Cuchilla Dionisio for the septetrional block
Evaluation of the Thermodynamic Models for the Thermal Diffusion Factor
DEFF Research Database (Denmark)
Gonzalez-Bagnoli, Mariana G.; Shapiro, Alexander; Stenby, Erling Halfdan
2003-01-01
Over the years, several thermodynamic models for the thermal diffusion factors for binary mixtures have been proposed. The goal of this paper is to test some of these models in combination with different equations of state. We tested the following models: those proposed by Rutherford and Drickamer...... we applied different thermodynamic models, such as the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The necessity to try different thermo-dynamic models is caused by the high sensitivity of the thermal diffusion factors to the values of the partial molar properties. Two different...... corrections for the determination of the partial molar volumes have been implemented; the Peneloux correction and the correction based on the principle of corresponding states....
Diffusion model of delayed hydride cracking in zirconium alloys
Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK
2004-01-01
We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack.
Three dimensional simulated modelling of diffusion capacitance of ...
African Journals Online (AJOL)
A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...
Analytically solvable models of reaction-diffusion systems
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E P; Kassner, K [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet, Universitaetsplatz 2, 39106 Magdeburg (Germany)
2004-05-01
We consider a class of analytically solvable models of reaction-diffusion systems. An analytical treatment is possible because the nonlinear reaction term is approximated by a piecewise linear function. As particular examples we choose front and pulse solutions to illustrate the matching procedure in the one-dimensional case.
An improved analytical model of diffusion through the RIST target
Bennett, J R J
2003-01-01
The diffusion and effusion through the RIST target is calculated using a more realistic model than previously. Extremely good fits to the data are obtained and new values of the time constants of effusion through the target and the ioniser are found.
Modeling intragranular diffusion in low-connectivity granular media
Ewing, Robert P.; Liu, Chongxuan; Hu, Qinhong
2012-03-01
Characterizing the diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase is still challenging despite decades of study. Many disparities between observation and theory could be attributed to low connectivity of the intragranular pores. The presence of low connectivity indicates that a useful conceptual framework is percolation theory. The present study was initiated to develop a percolation-based finite difference (FD) model, and to test it rigorously against both random walk (RW) simulations of diffusion starting from nonequilibrium, and data on Borden sand published by Ball and Roberts (1991a,b) and subsequently reanalyzed by Haggerty and Gorelick (1995) using a multirate mass transfer (MRMT) approach. The percolation-theoretical model is simple and readily incorporated into existing FD models. The FD model closely matches the RW results using only a single fitting parameter, across a wide range of pore connectivities. Simulation of the Borden sand experiment without pore connectivity effects reproduced the MRMT analysis, but including low pore connectivity effects improved the fit. Overall, the theory and simulation results show that low intragranular pore connectivity can produce diffusive behavior that appears as if the solute had undergone slow sorption, despite the absence of any sorption process, thereby explaining some hitherto confusing aspects of intragranular diffusion.
Jiménez-Esteve, B.; Udina, M.; Soler, M. R.; Pepin, N.; Miró, J. R.
2018-04-01
Different types of land use (LU) have different physical properties which can change local energy balance and hence vertical fluxes of moisture, heat and momentum. This in turn leads to changes in near-surface temperature and moisture fields. Simulating atmospheric flow over complex terrain requires accurate local-scale energy balance and therefore model grid spacing must be sufficient to represent both topography and land-use. In this study we use both the Corine Land Cover (CLC) and United States Geological Survey (USGS) land use databases for use with the Weather Research and Forecasting (WRF) model and evaluate the importance of both land-use classification and horizontal resolution in contributing to successful modelling of surface temperatures and humidities observed from a network of 39 sensors over a 9 day period in summer 2013. We examine case studies of the effects of thermal inertia and soil moisture availability at individual locations. The scale at which the LU classification is observed influences the success of the model in reproducing observed patterns of temperature and moisture. Statistical validation of model output demonstrates model sensitivity to both the choice of LU database used and the horizontal resolution. In general, results show that on average, by a) using CLC instead of USGS and/or b) increasing horizontal resolution, model performance is improved. We also show that the sensitivity to these changes in the model performance shows a daily cycle.
An alternative atmospheric diffusion model for control room habitability assessments
International Nuclear Information System (INIS)
Ramsdell, J.V. Jr.
1990-01-01
The US Nuclear Regulatory (NRC) staff uses procedures to evaluate control room designs for compliance with General Design Criterion 19 of the Code of Federal Regulations, Appendix A, 10 CRF Part 50. These procedures deal primarily with radiation protection. However, other hazardous materials, for example, chlorine, pose a potential threat to control room habitability. The NRC is considering changes in their current procedures to update methods and extend their applicability. Two changes to the current procedures are suggested: using a puff diffusion model to estimate concentrations at air intakes and using a new method to estimate diffusion coefficients
Turing and Non-Turing patterns in diffusive plankton model
Directory of Open Access Journals (Sweden)
N. K. Thakur
2015-03-01
Full Text Available In this paper, we investigate a Rosenzweig-McAurthur model and its variant for phytoplankton, zooplankton and fish population dynamics with Holling type II and III functional responses. We present the theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially distributed population with local diffusion. The choice of parameter values is important to study the effect of diffusion, also it depends more on the nonlinearity of the system. With the help of numerical simulations, we observe the formation of spatiotemporal patterns both inside and outside the Turing space.
On a Generalized Squared Gaussian Diffusion Model for Option Valuation
Directory of Open Access Journals (Sweden)
Edeki S.O.
2017-01-01
Full Text Available In financial mathematics, option pricing models are vital tools whose usefulness cannot be overemphasized. Modern approaches and modelling of financial derivatives are therefore required in option pricing and valuation settings. In this paper, we derive via the application of Ito lemma, a pricing model referred to as Generalized Squared Gaussian Diffusion Model (GSGDM for option pricing and valuation. Same approach can be considered via Stratonovich stochastic dynamics. We also show that the classical Black-Scholes, and the square root constant elasticity of variance models are special cases of the GSGDM. In addition, general solution of the GSGDM is obtained using modified variational iterative method (MVIM.
Macroscopic diffusion models for precipitation in crystalline gallium arsenide
Energy Technology Data Exchange (ETDEWEB)
Kimmerle, Sven-Joachim Wolfgang
2009-09-21
Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)
Leaky-box approximation to the fractional diffusion model
International Nuclear Information System (INIS)
Uchaikin, V V; Sibatov, R T; Saenko, V V
2013-01-01
Two models based on fractional differential equations for galactic cosmic ray diffusion are applied to the leaky-box approximation. One of them (Lagutin-Uchaikin, 2000) assumes a finite mean free path of cosmic ray particles, another one (Lagutin-Tyumentsev, 2004) uses distribution with infinite mean distance between collision with magnetic clouds, when the trajectories have form close to ballistic. Calculations demonstrate that involving boundary conditions is incompatible with spatial distributions given by the second model.
GIS TECHNOLOGY AND TERRAIN ORTHOPHOTOMAP MAKING FOR MILITARY APPLICATION
Directory of Open Access Journals (Sweden)
Elshan Hashimov
2017-11-01
Full Text Available In this paper, it is shown that GIS and photogrammetry technologiyes, determination of searching target coordinates for the operational desicion making are very important for the military application, for the combat control. With aim of orthophotomap making of the terrain and identification of terrain supervision there has been constructed 3D model for choosen mountainous terrain of Azerbaijan Republic using GIS technology. Based on this model there has been obtained a terrain profile and carried out mapping. Using ArcGis software there has been investigated possibility remain control on obserbvable and unobservable parties of terrain on supervision line from supervision point to target point.
Energy Technology Data Exchange (ETDEWEB)
Lai, Vincent; Khong, Pek Lan [University of Hong Kong, Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin [University of Hong Kong, Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Chan, Queenie [Philips Healthcare, Hong Kong, Shatin, New Territories (China)
2015-06-01
To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm{sup 2}). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10{sup -3} mm{sup 2}/s) for low stage group vs 0.794 ± 0.253 (x 10{sup -3} mm{sup 2}/s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10{sup -3} mm{sup 2}/s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)
International Nuclear Information System (INIS)
Lai, Vincent; Khong, Pek Lan; Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin; Chan, Queenie
2015-01-01
To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm 2 ). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10 -3 mm 2 /s) for low stage group vs 0.794 ± 0.253 (x 10 -3 mm 2 /s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10 -3 mm 2 /s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)
DOGWOOD RUN TERRAIN, YORK COUNTY, PA, USA
Federal Emergency Management Agency, Department of Homeland Security — Terrain data includes digital elevation models, LIDAR derived contours, LIDAR three-dimensional spot elevations and breaklines, field surveyed ground elevations and...
TERRAIN DATA CAPTURE STANDARDS, Bedford PA, USA
Federal Emergency Management Agency, Department of Homeland Security — Terrain data includes digital elevation models, LIDAR derived contours, LIDAR three-dimensional spot elevations and breaklines, field surveyed ground elevations and...
Robust and fast nonlinear optimization of diffusion MRI microstructure models.
Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A
2017-07-15
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of
Directory of Open Access Journals (Sweden)
D. M. Chernikhovsky
2017-06-01
Full Text Available In the article are shown results of assessment of relationships between quantitative and qualitative characteristics of forests and morphometric characteristics of relief on an example model plot in Nanayskoe forest district of Khabarovsk Territory. The relevance of the investigation is connected with need for improvement of the system of forest evaluation operations in the Russian Federation, including with use of the landscape approach. The tasks of the investigation were assessment of relationships between characteristics of relief and characteristics of forest vegetation cover on different levels of forest management; evaluation of morphometric characteristics of relief are important for structure and productivity of forests; comparison of the results obtained through the use of digital terrain models ASTER and SRTM. Geoinformatic projects were formed for a model plot on the basis of digital terrain models and data of forest mensuration and State (National Forest Inventory. On the basis of the developed method with use geoinformatic technologies were estimated morphometric characteristics of relief (average height, standard deviation of height, entropy, exposition and gradient of slopes, indexes of ruggedness and roughness, quantitative and qualitative characteristics of forests. The multifactor regression analysis, where characteristics of forests (as dependent variables and morphometric characteristics of relief (as independent variables were used, have been done. As a result of research, the set of morphometric characteristics of relief able to influence to variability of quantitative and qualitative characteristics of forests was identified. The set of linear regression equations able to explain 30–50 % of variability of dependent variables was obtained. The regression equations, obtained on base of digital terrain models ASTER and SRTM, comparable to each other in strength of relations (coefficients of determination, but includes the
Diffusion in higher dimensional SYK model with complex fermions
Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong
2018-01-01
We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.
Fractional Heat Conduction Models and Thermal Diffusivity Determination
Directory of Open Access Journals (Sweden)
Monika Žecová
2015-01-01
Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.
A Diffusion Model for Two-sided Service Systems
Homma, Koichi; Yano, Koujin; Funabashi, Motohisa
A diffusion model is proposed for two-sided service systems. ‘Two-sided’ refers to the existence of an economic network effect between two different and interrelated groups, e.g., card holders and merchants in an electronic money service. The service benefit for a member of one side depends on the number and quality of the members on the other side. A mathematical model by J. H. Rohlfs explains the network (or bandwagon) effect of communications services. In Rohlfs' model, only the users' group exists and the model is one-sided. This paper extends Rohlfs' model to a two-sided model. We propose, first, a micro model that explains individual behavior in regard to service subscription of both sides and a computational method that drives the proposed model. Second, we develop macro models with two diffusion-rate variables by simplifying the micro model. As a case study, we apply the models to an electronic money service and discuss the simulation results and actual statistics.
Characterization and modeling of thermal diffusion and aggregation in nanofluids.
Energy Technology Data Exchange (ETDEWEB)
Gharagozloo, Patricia E.; Goodson, Kenneth E. (Stanford University, Stanford, CA)
2010-05-01
Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.
Local-scale stratigraphy of grooved terrain on Ganymede
Murchie, Scott L.; Head, James W.; Helfenstein, Paul; Plescia, Jeffrey B.
1987-01-01
The surface of the Jovian satellite, Ganymede, is divided into two main units, dark terrain cut by arcuate and subradial furrows, and light terrain consisting largely of areas with pervasive U-shaped grooves. The grooved terrain may be subdivided on the basis of pervasive morphology of groove domains into four terrain types: (1) elongate bands of parallel grooves (groove lanes); (2) polygonal domains of parallel grooves (grooved polygons); (3) polygonal domains of two orthogonal groove sets (reticulate terrain); and (4) polygons having two to several complexly cross-cutting groove sets (complex grooved terrain). Reticulate terrain is frequently dark and not extensively resurfaced, and grades to a more hummocky terrain type. The other three grooved terrain types have almost universally been resurfaced by light material during their emplacement. The sequence of events during grooved terrain emplacement has been investigated. An attempt is made to integrate observed geologic and tectonic patterns to better constrain the relative ages and styles of emplacement of grooved terrain types. A revised model of grooved terrain emplacement is proposed and is tested using detailed geologic mapping and measurement of crater density.
Modeling information diffusion in time-varying community networks
Cui, Xuelian; Zhao, Narisa
2017-12-01
Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.
An innovation diffusion model for new mobile technologies acceptance
Directory of Open Access Journals (Sweden)
Barkoczia Nadi
2017-01-01
Full Text Available This paper aims to approach the diffusion model developed in 1960 by Frank Bass has been utilized to study the distribution of different types of new products and services. The Bass Model helps by describing the process in which new products are adopted in a market. This model is a useful tool for predicting the first purchase of an innovative product for which there are competing alternatives on the market. It also provides the innovator with information regarding the size of customers and the adoption time for the product. The second part of the paper is dedicated to a monographic study of specific conceptual correlations between the diffusion of technology and marketing management that emphasizes technological uncertainty and market uncertainty as major risks to innovative projects. In the final section, the results of empirical research conducted in Baia-Mare, Romania will be presented in a way that uses diffusion Bass model to estimate the adoption period for new mobile technologies.
TERRAIN, Norfolk County, Massachusetts
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, JEFFERSON COUNTY, USA
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describe the digital topographical data that were used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, KENDALL COUNTY, TEXAS
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, SNOHOMISH COUNTY, WASHINGTON
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, Bennington County, Vermont
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, CLALLAM COUNTY, WASHINGTON
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, BARNSTABLE COUNTY, MASSACHUSETTS
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, Northampton COUNTY, USA
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that were used to create...
TERRAIN, KITSAP COUNTY, WASHINGTON
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix M: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, WAYNE COUNTY, TENNESSEE
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, TROUSDALE COUNTY, TENNESSEE
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
TERRAIN, UNION PARISH, LOUSIANA
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Srinivasa Rao, Y.; Reddy, T. V. K.; Nayudu, P. T.
2000-09-01
In hard-rock terrain, due to the lack of primary porosity in the bedrock, joints, fault zones, and weathered zones are the sources for groundwater occurrence and movement. To study the groundwater potential in the hard-rock terrain and drought-prone area in the Niva River basin, southern Andhra Pradesh state, India, Landsat 5 photographic data were used to prepare an integrated hydrogeomorphology map. Larsson's integrated deformation model was applied to identify the various fracture systems, to pinpoint those younger tensile fracture sets that are the main groundwater reservoirs, and to understand the importance of fracture density in groundwater prospecting. N35°-55°E fractures were identified as tensile and N35°-55°W fractures as both tensile and shear in the study area. Apparently, these fractures are the youngest open fractures. Wherever N35°-55°E and N35°-55°W fracture densities are high, weathered-zone thickness is greater, water-table fluctuations are small, and well yields are high. Groundwater-potential zones were delineated and classified as very good, good to very good, moderate to good, and poor. Résumé. Dans les roches de socle, l'absence de porosité primaire dans la roche fait que les fractures, les zones de faille et les zones d'altération sont les sites où l'eau souterraine est présente et s'écoule. Pour étudier le potentiel en eau souterraine dans la région de socle sujette à la sécheresse du bassin de la rivière Niva (sud de l'État d'Andhra Pradesh, Inde), des données photographiques de Landsat 5 ont été utilisées pour préparer une carte hydro-géomorphologique. Le modèle intégré de déformation de Larssons a été mis en œuvre pour identifier les différents systèmes de fractures, pour mettre l'accent sur les ensembles de fractures en extension les plus jeunes qui constituent les principaux réservoirs d'eau souterraine, et pour comprendre l'importance de la densité de fractures pour la prospection de l
Social influence and perceptual decision making: a diffusion model analysis.
Germar, Markus; Schlemmer, Alexander; Krug, Kristine; Voss, Andreas; Mojzisch, Andreas
2014-02-01
Classic studies on social influence used simple perceptual decision-making tasks to examine how the opinions of others change individuals' judgments. Since then, one of the most fundamental questions in social psychology has been whether social influence can alter basic perceptual processes. To address this issue, we used a diffusion model analysis. Diffusion models provide a stochastic approach for separating the cognitive processes underlying speeded binary decisions. Following this approach, our study is the first to disentangle whether social influence on decision making is due to altering the uptake of available sensory information or due to shifting the decision criteria. In two experiments, we found consistent evidence for the idea that social influence alters the uptake of available sensory evidence. By contrast, participants did not adjust their decision criteria.
Modeling and Analysis of New Products Diffusion on Heterogeneous Networks
Directory of Open Access Journals (Sweden)
Shuping Li
2014-01-01
Full Text Available We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation diffusion is successful or not, or else it is proved that the network model has at least one positive equilibrium. For networks with the power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products propagation strategies for two classes of nodes in scale-free networks.
Modelling and control of a diffusion/LPCVD furnace
Dewaard, H.; Dekoning, W. L.
1988-12-01
Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.
Serafin, Stefano; De Wekker, Stephan F J; Knievel, Jason C
Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012-2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.
Statistical models of a gas diffusion electrode: II. Current resistent
Energy Technology Data Exchange (ETDEWEB)
Proksch, D B; Winsel, O W
1965-07-01
The authors describe an apparatus for measuring the flow resistance of gas diffusion electrodes which is a mechanical analog of the Wheatstone bridge for measuring electric resistance. The flow resistance of a circular DSK electrode sheet, consisting of two covering layers and a working layer between them, was measured as a function of the gas pressure. While the pressure first was increased and then decreased, a hysteresis occurred, which is discussed and explained by a statistical model of a porous electrode.
Analysis of a diffuse interface model of multispecies tumor growth
Czech Academy of Sciences Publication Activity Database
Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.
2017-01-01
Roč. 30, č. 4 (2017), s. 1639-1658 ISSN 0951-7715 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Cahn-Hilliard equation * Darcy law * diffuse interface model Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aa6063/meta
An epidemic model of rumor diffusion in online social networks
Cheng, Jun-Jun; Liu, Yun; Shen, Bo; Yuan, Wei-Guo
2013-01-01
So far, in some standard rumor spreading models, the transition probability from ignorants to spreaders is always treated as a constant. However, from a practical perspective, the case that individual whether or not be infected by the neighbor spreader greatly depends on the trustiness of ties between them. In order to solve this problem, we introduce a stochastic epidemic model of the rumor diffusion, in which the infectious probability is defined as a function of the strength of ties. Moreover, we investigate numerically the behavior of the model on a real scale-free social site with the exponent γ = 2.2. We verify that the strength of ties plays a critical role in the rumor diffusion process. Specially, selecting weak ties preferentially cannot make rumor spread faster and wider, but the efficiency of diffusion will be greatly affected after removing them. Another significant finding is that the maximum number of spreaders max( S) is very sensitive to the immune probability μ and the decay probability v. We show that a smaller μ or v leads to a larger spreading of the rumor, and their relationships can be described as the function ln(max( S)) = Av + B, in which the intercept B and the slope A can be fitted perfectly as power-law functions of μ. Our findings may offer some useful insights, helping guide the application in practice and reduce the damage brought by the rumor.
THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS
Energy Technology Data Exchange (ETDEWEB)
M. WILLIAMS [and others
1999-08-01
The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.
Yearly, seasonal and monthly daily average diffuse sky radiation models
International Nuclear Information System (INIS)
Kassem, A.S.; Mujahid, A.M.; Turner, D.W.
1993-01-01
A daily average diffuse sky radiation regression model based on daily global radiation was developed utilizing two year data taken near Blytheville, Arkansas (Lat. =35.9 0 N, Long. = 89.9 0 W), U.S.A. The model has a determination coefficient of 0.91 and 0.092 standard error of estimate. The data were also analyzed for a seasonal dependence and four seasonal average daily models were developed for the spring, summer, fall and winter seasons. The coefficient of determination is 0.93, 0.81, 0.94 and 0.93, whereas the standard error of estimate is 0.08, 0.102, 0.042 and 0.075 for spring, summer, fall and winter, respectively. A monthly average daily diffuse sky radiation model was also developed. The coefficient of determination is 0.92 and the standard error of estimate is 0.083. A seasonal monthly average model was also developed which has 0.91 coefficient of determination and 0.085 standard error of estimate. The developed monthly daily average and daily models compare well with a selected number of previously developed models. (author). 11 ref., figs., tabs
Diffusion Modeling: A Study of the Diffusion of “Jatropha Curcas ...
African Journals Online (AJOL)
Consequently, the study recommended the use of diffusion networks which integrate interpersonal networks, and multimedia strategies for the effective diffusion of innovation such as Jacodiesel in Adamawa State and other parts of the country. Keywords: Sustainability, Diffusion, Innovation, Communicative Influence, ...
Performance modeling of parallel algorithms for solving neutron diffusion problems
International Nuclear Information System (INIS)
Azmy, Y.Y.; Kirk, B.L.
1995-01-01
Neutron diffusion calculations are the most common computational methods used in the design, analysis, and operation of nuclear reactors and related activities. Here, mathematical performance models are developed for the parallel algorithm used to solve the neutron diffusion equation on message passing and shared memory multiprocessors represented by the Intel iPSC/860 and the Sequent Balance 8000, respectively. The performance models are validated through several test problems, and these models are used to estimate the performance of each of the two considered architectures in situations typical of practical applications, such as fine meshes and a large number of participating processors. While message passing computers are capable of producing speedup, the parallel efficiency deteriorates rapidly as the number of processors increases. Furthermore, the speedup fails to improve appreciably for massively parallel computers so that only small- to medium-sized message passing multiprocessors offer a reasonable platform for this algorithm. In contrast, the performance model for the shared memory architecture predicts very high efficiency over a wide range of number of processors reasonable for this architecture. Furthermore, the model efficiency of the Sequent remains superior to that of the hypercube if its model parameters are adjusted to make its processors as fast as those of the iPSC/860. It is concluded that shared memory computers are better suited for this parallel algorithm than message passing computers
Thermodynamic modelling of fast dopant diffusion in Si
Saltas, V.; Chroneos, A.; Vallianatos, F.
2018-04-01
In the present study, nickel and copper fast diffusion in silicon is investigated in the framework of the cBΩ thermodynamic model, which connects point defect parameters with the bulk elastic and expansion properties. All the calculated point defect thermodynamic properties (activation Gibbs free energy, activation enthalpy, activation entropy, and activation volume) exhibit temperature dependence due to the non-linear anharmonic behavior of the isothermal bulk modulus of Si. Calculated activation enthalpies (0.15-0.16 eV for Ni and 0.17-0.19 eV for Cu) are in agreement with the reported experimental results. Small values of calculated activation volumes for both dopants (˜4% of the mean atomic volume) are consistent with the interstitial diffusion of Ni and Cu in Si.
Computing diffusivities from particle models out of equilibrium
Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia
2018-04-01
A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.
Continuum modelling of silicon diffusion in indium gallium arsenide
Aldridge, Henry Lee, Jr.
A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point
Diffusion of innovations in Axelrod’s model
Tilles, Paulo F. C.; Fontanari, José F.
2015-11-01
Axelrod's model for the dissemination of culture contains two key factors required to model the process of diffusion of innovations, namely, social influence (i.e., individuals become more similar when they interact) and homophily (i.e., individuals interact preferentially with similar others). The strength of these social influences are controlled by two parameters: $F$, the number of features that characterizes the cultures and $q$, the common number of states each feature can assume. Here we assume that the innovation is a new state of a cultural feature of a single individual -- the innovator -- and study how the innovation spreads through the networks among the individuals. For infinite regular lattices in one (1D) and two dimensions (2D), we find that initially the successful innovation spreads linearly with the time $t$, but in the long-time limit it spreads diffusively ($\\sim t^{1/2}$) in 1D and sub-diffusively ($\\sim t/\\ln t$) in 2D. For finite lattices, the growth curves for the number of adopters are typically concave functions of $t$. For random graphs with a finite number of nodes $N$, we argue that the classical S-shaped growth curves result from a trade-off between the average connectivity $K$ of the graph and the per feature diversity $q$. A large $q$ is needed to reduce the pace of the initial spreading of the innovation and thus delimit the early-adopters stage, whereas a large $K$ is necessary to ensure the onset of the take-off stage at which the number of adopters grows superlinearly with $t$. In an infinite random graph we find that the number of adopters of a successful innovation scales with $t^\\gamma$ with $\\gamma =1$ for $K> 2$ and $1/2 < \\gamma < 1$ for $K=2$. We suggest that the exponent $\\gamma$ may be a useful index to characterize the process of diffusion of successful innovations in diverse scenarios.
A current induced diffusion model of gas sputtering
International Nuclear Information System (INIS)
Hotston, E.S.
1980-01-01
A model is proposed to explain the experimental results on deuteron trapping in stainless steel targets at low temperatures carried out at Garching and Culham. The model proposes that the ions are trapped in two kinds of sites: Deep sites with high activation energy and shallow sites of low activation energy. Trapped deuterons reach the surface of the target by being expelled from shallow sites by the action of the ion beam and migrate to nearby sites in a random way, thus moving by a bombardment induced diffusion. Ions diffusing to the target surface and being released are said to be sputtered from the target. It has been necessary to assume numerical values for sizes of some of the processes which occur. With a suitable choice of values the model successfully predicts the numbers of deuterons trapped per unit area of the target, the obserbed density profile of the trapped ions and the threshold at which sputtering starts. The model also successfully describes the replacement of the trapped deuterons by protons, when the deuteron beam is replaced by a proton beam. The collision cross-section for beam ions and ions trapped in shallow sites is too large, 4 x 10 -13 cm 2 , for a binary collision and it is tentatively suggested that the ions in the shallow sites may be in small voids in the target which may be connected with blister formation. Comparison of the present model with one being developed to describe the trapping of deuterons in carbon suggests that it may be possible to describe all gas sputtering experiments in terms of diffusion processes. (orig.)
A discrete model to study reaction-diffusion-mechanics systems.
Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V
2011-01-01
This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.
A discrete model to study reaction-diffusion-mechanics systems.
Directory of Open Access Journals (Sweden)
Louis D Weise
Full Text Available This article introduces a discrete reaction-diffusion-mechanics (dRDM model to study the effects of deformation on reaction-diffusion (RD processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material. Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.
International Nuclear Information System (INIS)
Marinak, M.
1990-02-01
The problem of deducing χ e from measurements of the propagation of a monopole heatpulse is considered. An extended diffusive model, which takes into account perturbed sources and sinks is extended to the case of a monopole heat input. χ e is expressed as a function of two observables, the heat pulse velocity and the radial damping rate. Two simple expressions valid for two different ranges of the radius of the poloidal waist of the beam power profile are given. The expressions are valid in the heat pulse measurement region, extending radially 0.05a beyond the beam power waist to near 0.6a. The inferred χ e is a local value, not an average value of the radial χ e profile. 7 refs., 6 figs., 1 tab
Complex Terrain and Wind Lidars
DEFF Research Database (Denmark)
Bingöl, Ferhat
software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow...... edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17º. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method...
Directory of Open Access Journals (Sweden)
Nico Augustin
2016-06-01
Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many
Sooting Characteristics and Modeling in Counterflow Diffusion Flames
Wang, Yu
2013-11-01
Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting
Application of the evolution theory in modelling of innovation diffusion
Directory of Open Access Journals (Sweden)
Krstić Milan
2016-01-01
Full Text Available The theory of evolution has found numerous analogies and applications in other scientific disciplines apart from biology. In that sense, today the so-called 'memetic-evolution' has been widely accepted. Memes represent a complex adaptable system, where one 'meme' represents an evolutional cultural element, i.e. the smallest unit of information which can be identified and used in order to explain the evolution process. Among others, the field of innovations has proved itself to be a suitable area where the theory of evolution can also be successfully applied. In this work the authors have started from the assumption that it is also possible to apply the theory of evolution in the modelling of the process of innovation diffusion. Based on the conducted theoretical research, the authors conclude that the process of innovation diffusion in the interpretation of a 'meme' is actually the process of imitation of the 'meme' of innovation. Since during the process of their replication certain 'memes' show a bigger success compared to others, that eventually leads to their natural selection. For the survival of innovation 'memes', their manifestations are of key importance in the sense of their longevity, fruitfulness and faithful replicating. The results of the conducted research have categorically confirmed the assumption of the possibility of application of the evolution theory with the innovation diffusion with the help of innovation 'memes', which opens up the perspectives for some new researches on the subject.
Different approach to the modeling of nonfree particle diffusion
Buhl, Niels
2018-03-01
A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.
Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)
1982-01-01
Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.
Dense-gas dispersion advection-diffusion model
International Nuclear Information System (INIS)
Ermak, D.L.
1992-07-01
A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments
Diffusion and reaction within porous packing media: a phenomenological model.
Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J
1993-04-25
A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.
Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media
Directory of Open Access Journals (Sweden)
Albinali Ali
2016-07-01
Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.
Subgrid models for mass and thermal diffusion in turbulent mixing
International Nuclear Information System (INIS)
Lim, H; Yu, Y; Glimm, J; Li, X-L; Sharp, D H
2010-01-01
We propose a new method for the large eddy simulation (LES) of turbulent mixing flows. The method yields convergent probability distribution functions (PDFs) for temperature and concentration and a chemical reaction rate when applied to reshocked Richtmyer-Meshkov (RM) unstable flows. Because such a mesh convergence is an unusual and perhaps original capability for LES of RM flows, we review previous validation studies of the principal components of the algorithm. The components are (i) a front tracking code, FronTier, to control numerical mass diffusion and (ii) dynamic subgrid scale (SGS) models to compensate for unresolved scales in the LES. We also review the relevant code comparison studies. We compare our results to a simple model based on 1D diffusion, taking place in the geometry defined statistically by the interface (the 50% isoconcentration surface between the two fluids). Several conclusions important to physics could be drawn from our study. We model chemical reactions with no closure approximations beyond those in the LES of the fluid variables itself, and as with dynamic SGS models, these closures contain no adjustable parameters. The chemical reaction rate is specified by the joint PDF for temperature and concentration. We observe a bimodal distribution for the PDF and we observe significant dependence on fluid transport parameters.
Compact Models for Defect Diffusivity in Semiconductor Alloys.
Energy Technology Data Exchange (ETDEWEB)
Wright, Alan F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Lee, Stephen R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Department; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Department
2017-09-01
Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers to optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE
Anomalous diffusion in neutral evolution of model proteins
Nelson, Erik D.; Grishin, Nick V.
2015-06-01
Protein evolution is frequently explored using minimalist polymer models, however, little attention has been given to the problem of structural drift, or diffusion. Here, we study neutral evolution of small protein motifs using an off-lattice heteropolymer model in which individual monomers interact as low-resolution amino acids. In contrast to most earlier models, both the length and folded structure of the polymers are permitted to change. To describe structural change, we compute the mean-square distance (MSD) between monomers in homologous folds separated by n neutral mutations. We find that structural change is episodic, and, averaged over lineages (for example, those extending from a single sequence), exhibits a power-law dependence on n . We show that this exponent depends on the alignment method used, and we analyze the distribution of waiting times between neutral mutations. The latter are more disperse than for models required to maintain a specific fold, but exhibit a similar power-law tail.
DEFF Research Database (Denmark)
Johannessen, Runa
2016-01-01
Whether manifest in built structures or invisible infrastructures, architectures of control in the occupied Palestinian West Bank is structurally defined by endemic uncertainty. Shifting lines and frontiers are recorded on the terrain, creating elastic zones of uncertainty necessitating navigatio...... to the territory through its lines and laws, and how the very structure of the occupation has changed over the years, I seek to make visible the ways in which architectures of uncertainty compensate for the fleeting terrain that HH is probing.......Whether manifest in built structures or invisible infrastructures, architectures of control in the occupied Palestinian West Bank is structurally defined by endemic uncertainty. Shifting lines and frontiers are recorded on the terrain, creating elastic zones of uncertainty necessitating...
Soltanzadeh, Iman; Bonnardot, Valérie; Sturman, Andrew; Quénol, Hervé; Zawar-Reza, Peyman
2017-08-01
Global warming has implications for thermal stress for grapevines during ripening, so that wine producers need to adapt their viticultural practices to ensure optimum physiological response to environmental conditions in order to maintain wine quality. The aim of this paper is to assess the ability of the Weather Research and Forecasting (WRF) model to accurately represent atmospheric processes at high resolution (500 m) during two events during the grapevine ripening period in the Stellenbosch Wine of Origin district of South Africa. Two case studies were selected to identify areas of potentially high daytime heat stress when grapevine photosynthesis and grape composition were expected to be affected. The results of high-resolution atmospheric model simulations were compared to observations obtained from an automatic weather station (AWS) network in the vineyard region. Statistical analysis was performed to assess the ability of the WRF model to reproduce spatial and temporal variations of meteorological parameters at 500-m resolution. The model represented the spatial and temporal variation of meteorological variables very well, with an average model air temperature bias of 0.1 °C, while that for relative humidity was -5.0 % and that for wind speed 0.6 m s-1. Variation in model performance varied between AWS and with time of day, as WRF was not always able to accurately represent effects of nocturnal cooling within the complex terrain. Variations in performance between the two case studies resulted from effects of atmospheric boundary layer processes in complex terrain under the influence of the different synoptic conditions prevailing during the two periods.
Residual sweeping errors in turbulent particle pair diffusion in a Lagrangian diffusion model.
Malik, Nadeem A
2017-01-01
Thomson, D. J. & Devenish, B. J. [J. Fluid Mech. 526, 277 (2005)] and others have suggested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS), Fung et al [Fung J. C. H., Hunt J. C. R., Malik N. A. & Perkins R. J. J. Fluid Mech. 236, 281 (1992)], unreliable. However, such a conclusion can only be drawn under the assumption of locality. The major aim here is to quantify the sweeping errors in KS without assuming locality. Through a novel analysis based upon analysing pairs of particle trajectories in a frame of reference moving with the large energy containing scales of motion it is shown that the normalized integrated error [Formula: see text] in the turbulent pair diffusivity (K) due to the sweeping effect decreases with increasing pair separation (σl), such that [Formula: see text] as σl/η → ∞; and [Formula: see text] as σl/η → 0. η is the Kolmogorov turbulence microscale. There is an intermediate range of separations 1 < σl/η < ∞ in which the error [Formula: see text] remains negligible. Simulations using KS shows that in the swept frame of reference, this intermediate range is large covering almost the entire inertial subrange simulated, 1 < σl/η < 105, implying that the deviation from locality observed in KS cannot be atributed to sweeping errors. This is important for pair diffusion theory and modeling. PACS numbers: 47.27.E?, 47.27.Gs, 47.27.jv, 47.27.Ak, 47.27.tb, 47.27.eb, 47.11.-j.
The brush model - a new approach to numerical modeling of matrix diffusion in fractured clay stone
International Nuclear Information System (INIS)
Lege, T.; Shao, H.
1998-01-01
A special approach for numerical modeling of contaminant transport in fractured clay stone is presented. The rock matrix and the fractures are simulated with individual formulations for FE grids and transport, coupled into a single model. The capacity of the rock matrix to take up contaminants is taken into consideration with a discrete simulation of matrix diffusion. Thus, the natural process of retardation due to matrix diffusion can be better simulated than by a standard introduction of an empirical parameter into the transport equation. Transport in groundwater in fractured clay stone can be simulated using a model called a 'brush model'. The 'brush handle' is discretized by 2-D finite elements. Advective-dispersive transport in groundwater in the fractures is assumed. The contaminant diffuses into 1D finite elements perpendicular to the fractures, i.e., the 'bristles of the brush'. The conclusion is drawn that matrix diffusion is an important property of fractured clay stone for contaminant retardation. (author)
Bayesian uncertainty quantification in linear models for diffusion MRI.
Sjölund, Jens; Eklund, Anders; Özarslan, Evren; Herberthson, Magnus; Bånkestad, Maria; Knutsson, Hans
2018-03-29
Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification. Copyright © 2018 Elsevier Inc. All rights reserved.
A chaotic model for advertising diffusion problem with competition
Ip, W. H.; Yung, K. L.; Wang, Dingwei
2012-08-01
In this article, the author extends Dawid and Feichtinger's chaotic advertising diffusion model into the duopoly case. A computer simulation system is used to test this enhanced model. Based on the analysis of simulation results, it is found that the best advertising strategy in duopoly is to increase the advertising investment to reach the best Win-Win situation where the oscillation of market portion will not occur. In order to effectively arrive at the best situation, we define a synthetic index and two thresholds. An estimation method for the parameters of the index and thresholds is proposed in this research. We can reach the Win-Win situation by simply selecting the control parameters to make the synthetic index close to the threshold of min-oscillation state. The numerical example and computational results indicated that the proposed chaotic model is useful to describe and analyse advertising diffusion process in duopoly, it is an efficient tool for the selection and optimisation of advertising strategy.
Modeling the Determinants Influencing the Diffusion of Mobile Internet
Alwahaishi, Saleh; Snášel, Václav
2013-04-01
Understanding individual acceptance and use of Information and Communication Technology (ICT) is one of the most mature streams of information systems research. In Information Technology and Information System research, numerous theories are used to understand users' adoption of new technologies. Various models were developed including the Innovation Diffusion Theory, Theory of Reasoned Action, Theory of Planned Behavior, Technology Acceptance Model, and recently, the Unified Theory of Acceptance and Use of Technology. This research composes a new hybrid theoretical framework to identify the factors affecting the acceptance and use of Mobile Internet -as an ICT application- in a consumer context. The proposed model incorporates eight constructs: Performance Expectancy (PE), Effort Expectancy (EE), Facilitating Conditions (FC), Social Influences (SI), Perceived Value (PV), Perceived Playfulness (PP), Attention Focus (AF), and Behavioral intention (BI). Individual differences-namely, age, gender, education, income, and experience are moderating the effects of these constructs on behavioral intention and technology use.
Cruz, C. B. M.; Barros, R. S.; Rabaco, L. M. L.
2012-07-01
characteristics may be evaluated to get an indication for other situations. As to the assessment of the altimetric accuracy, we are going to do more analysis with points obtained under the forest canopy in order to be able to assess the real accuracy of the DTM in areas with forest cover. Studies that focus the development of new methodologies for obtaining Digital Elevation Models (DEM) are very important, especially in large scales, seeking to generate data with cost-benefit's advantages. This way, topographic features can be obtained for wider areas of our country, meeting the needs of most studies and activities related to the representation of these kind of data.
Digital Repository Service at National Institute of Oceanography (India)
Jyothi, D.; Murty, T.V.R.; Sarma, V.V.; Rao, D.P.
conditions. As the pollutant load on the estuary increases, the. water quality may deteriorate rapidly and therefore the scientific interests are centered on the analysis of water quality. The pollutants will be subjected to a number of physical, chemical... study we have applied one-dimensional advection-diffusion model for the waters of Gauthami Godavari estuary to determine the axial diffusion coefficients and thereby to predict the impact assessment. The study area (Fig. 1) is the lower most 32 km...
Introducing serendipity in a social network model of knowledge diffusion
International Nuclear Information System (INIS)
Cremonini, Marco
2016-01-01
Highlights: • Serendipity as a control mechanism for knowledge diffusion in social network. • Local communication enhanced in the periphery of a network. • Prevalence of hub nodes in the network core mitigated. • Potential disruptive effect on network formation of uncontrolled serendipity. - Abstract: In this paper, we study serendipity as a possible strategy to control the behavior of an agent-based network model of knowledge diffusion. The idea of considering serendipity in a strategic way has been first explored in Network Learning and Information Seeking studies. After presenting the major contributions of serendipity studies to digital environments, we discuss the extension to our model: Agents are enriched with random topics for establishing new communication according to different strategies. The results show how important network properties could be influenced, like reducing the prevalence of hubs in the network’s core and increasing local communication in the periphery, similar to the effects of more traditional self-organization methods. Therefore, from this initial study, when serendipity is opportunistically directed, it appears to behave as an effective and applicable approach to social network control.
Zirconium - ab initio modelling of point defects diffusion
International Nuclear Information System (INIS)
Gasca, Petrica
2010-01-01
Zirconium is the main element of the cladding found in pressurized water reactors, under an alloy form. Under irradiation, the cladding elongate significantly, phenomena attributed to the vacancy dislocation loops growth in the basal planes of the hexagonal compact structure. The understanding of the atomic scale mechanisms originating this process motivated this work. Using the ab initio atomic modeling technique we studied the structure and mobility of point defects in Zirconium. This led us to find four interstitial point defects with formation energies in an interval of 0.11 eV. The migration paths study allowed the discovery of activation energies, used as entry parameters for a kinetic Monte Carlo code. This code was developed for calculating the diffusion coefficient of the interstitial point defect. Our results suggest a migration parallel to the basal plane twice as fast as one parallel to the c direction, with an activation energy of 0.08 eV, independent of the direction. The vacancy diffusion coefficient, estimated with a two-jump model, is also anisotropic, with a faster process in the basal planes than perpendicular to them. Hydrogen influence on the vacancy dislocation loops nucleation was also studied, due to recent experimental observations of cladding growth acceleration in the presence of this element [fr
International Nuclear Information System (INIS)
Wen, Zijuan; Fu, Shengmao
2016-01-01
This paper deals with a strongly coupled reaction-diffusion system modeling a competitor-competitor-mutualist three-species model with diffusion, self-diffusion and nonlinear cross-diffusion and subject to Neumann boundary conditions. First, we establish the persistence of a corresponding reaction-diffusion system without self- and cross-diffusion. Second, the global asymptotic stability of the unique positive equilibrium for weakly coupled PDE system is established by using a comparison method. Moreover, under certain conditions about the intra- and inter-species effects, we prove that the uniform positive steady state is linearly unstable for the cross-diffusion system when one of the cross-diffusions is large enough. The results indicate that Turing instability can be driven solely from strong diffusion effect of the first species (or the second species or the third species) due to the pressure of the second species (or the first species).
Modelling thermal radiation and soot formation in buoyant diffusion flames
International Nuclear Information System (INIS)
Demarco Bull, R.A.
2012-01-01
The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)
The development of radioactivity diffusion model in global ocean
International Nuclear Information System (INIS)
Nakano, M.; Watanabe, H.; Katagiri, H.
2000-01-01
The radioactivity diffusion model in global ocean has been developing in order to assess the long-term behavior of radioactive materials for discharge from nuclear facility. The model system consists of two parts. One is to calculate current velocity; and the other is for particle chasing. Both systems are executed by Macintosh personal computer. A lot of techniques to estimate ocean current velocity were investigated in geophysical field. The robust diagnosis model advocated by Sarmiento and Bryan was applied to build the numerical calculation system for getting the current velocity field in global scale. The latitudinal and longitudinal lattices were 2 degrees each and the number of vertical layer was 15. The movement of radioactive materials by current and diffusion were calculated using the particle chasing system. The above-mentioned current velocity field and the initial particle positions at will were read by the system. The movement of a particle was calculated using the interpolated current data step by step. The diffusion of a particle was calculated by random walk method. The model was verified by using the fallout data from atmospheric nuclear test. Yearly and latitudinal fallout data was adopted from UNSCEAR1977. The calculation result was compared with the observation data that includes total amount and vertical profile of Cs-137 and Pu-239,240 in the North Pacific Ocean. The result of the verification was agreed with the following general knowledge. Though the fallout amount between 40N and 50N was the biggest in the world, the amount in the seawater between 40N and 50N was smaller than that in south of 40N because of horizontal transportation, which carried water from north to south. As for vertical profile, Cs-137 could be accurately calculated except the surface layer. However the observation peak of Pu-239,240 existed deeper than the calculation peak. This model could calculate the vertical profile of Cs-137 because most of Cs exists as dissolved
Processing Terrain Point Cloud Data
DeVore, Ronald; Petrova, Guergana; Hielsberg, Matthew; Owens, Luke; Clack, Billy; Sood, Alok
2013-01-01
Terrain point cloud data are typically acquired through some form of Light Detection And Ranging sensing. They form a rich resource that is important in a variety of applications including navigation, line of sight, and terrain visualization
Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma
Directory of Open Access Journals (Sweden)
Oren J Becher
2015-07-01
Full Text Available Diffuse Intrinsic Pontine Glioma (DIPG is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of six and eight. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab, as well as to potentially treat them in the clinic. This review will detail the initial strides towards modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Lastly, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.
International Nuclear Information System (INIS)
Cardon, Clement
2016-01-01
This Ph.D. topic is focused on the modelling of stratification kinetics for an oxide-metal corium pool (U-O-Zr-steel system) in terms of multicomponent and multiphase diffusion. This work is part of a larger research effort for the development of a detailed corium pool modelling based on a CFD approach for thermal hydraulics. The overall goal is to improve the understanding of the involved phenomena and obtain closure laws for integral macroscopic models. The phase-field method coupled with an energy functional using the CALPHAD method appears to be relevant for this purpose. In a first part, we have developed a diffuse interface model in order to describe the diffusion process in the U-O system. This model has been coupled with a CALPHAD thermodynamic database and its parameterization has been developed with, in particular, an up-scaling procedure related to the interface thickness. Then, within the framework of a modelling for the U-O-Zr ternary system, we have proposed a generalization of the diffuse interface model through an assumption of local equilibrium for redox mechanisms. A particular attention was paid to the model analysis by 1D numerical simulations with a special focus on the steady state composition profiles. Finally we have applied this model to the U-O-Zr-Fe system. For that purpose, we have considered a configuration close to small-scale experimental tests of oxide-metal corium pool stratification. (author) [fr
A Jump Diffusion Model for Volatility and Duration
DEFF Research Database (Denmark)
Wei, Wei; Pelletier, Denis
by the market microstructure theory. Traditional measures of volatility do not utilize durations. I adopt a jump diffusion process to model the persistence of intraday volatility and conditional duration, and their interdependence. The jump component is disentangled from the continuous part of the price......, volatility and conditional duration process. I develop a MCMC algorithm for the inference of irregularly spaced multivariate process with jumps. The algorithm provides smoothed estimates of the latent variables such as spot volatility, jump times and jump sizes. I apply this model to IBM data and I find...... meaningful relationship between volatility and conditional duration. Also, jumps play an important role in the total variation, but the jump variation is smaller than traditional measures that use returns sampled at lower frequency....
A self-consistent spin-diffusion model for micromagnetics
Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Manchon, Aurelien; Praetorius, Dirk; Suess, Dieter
2016-01-01
We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.
A self-consistent spin-diffusion model for micromagnetics
Abert, Claas
2016-12-17
We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.
Decomposition in aluminium alloys: diffuse scattering and crystal modelling
International Nuclear Information System (INIS)
Aslam-Malik, A.
1995-01-01
In the present study the microstructure of metastable precipitates in Al-Ag and Al-Cu, so called pre-precipitates or Guinier-Preston (GP) zones, was investigated. In both systems important aspects of the microstructure are still controversially discussed. In Al-Ag two forms of GP zones are suggested; depending on the aging temperatures above or below about 443 K, ε- or η-zones should evolve. Differences between these two types of zones may be due to differences in internal order and/or composition. In Al-Cu the characterization of GP I zones is difficult because of the strong atomic displacements around the zones. The proper separation of short-range order and displacement scattering within a diffuse scattering experiment is still under discussion. The technique used to determine the short-range order in both alloys was diffuse scattering with neutrons and X-rays. To separate short-range order and displacement scattering, the methods of Georgopoulos-Cohen (X-ray scattering) and Borie-Sparks (neutron scattering) were used. Of main importance is the optimization of the scattering contrast and thus the scattering contribution due to short-range order. Short-range order scattering is rationalized in terms of pair correlations. Crystals may subsequently be modelled to visualize the microstructure. The Al-Ag system was investigated by diffuse X-ray wide-angle scattering and small-angle neutron scattering. The small-angle neutron scattering measurement was necessary since the GP zones in Al-Ag are almost spherical and the main scattering contribution is found close to the origin of reciprocal space. The small-angle scattering is not that important in the case of Al-Cu because the main scattering extends along (100) owing to the planar character of the GP I zones on (100) lattice planes. (author) 24 figs., 10 tabs., refs
Gravity Terrain Effect of the Seafloor Topography in Taiwan
Directory of Open Access Journals (Sweden)
Lun-Tao Tong Tai-Rong Guo
2007-01-01
Full Text Available Gravity terrain correction is used to compensate for the gravitational effects of the topography residual to the Bouguer plate. The seafloor topography off the eastern offshore of Taiwan is extremely rugged, and the depth of the sea bottom could be greater than 5000 m. In order to evaluate the terrain effect caused by the seafloor topography, a modern computer algorithm is used to calculate the terrain correction based on the digital elevation model (DEM.
Modeling Periodic Impulsive Effects on Online TV Series Diffusion.
Fu, Peihua; Zhu, Anding; Fang, Qiwen; Wang, Xi
Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public social communities
Modeling Periodic Impulsive Effects on Online TV Series Diffusion.
Directory of Open Access Journals (Sweden)
Peihua Fu
Full Text Available Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data.We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution.We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation.To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public
Modeling Periodic Impulsive Effects on Online TV Series Diffusion
Fang, Qiwen; Wang, Xi
2016-01-01
Background Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. Methods We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. Results We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. Conclusion To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount
Three-Dimensional TIN Algorithm for Digital Terrain Modeling%数字地形建模的真三维TIN算法研究
Institute of Scientific and Technical Information of China (English)
朱庆; 张叶廷; 李逢春
2008-01-01
The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is proposed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighboring triangle location method by making full use of the surface normal information. Experimental results prove that this algorithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automatically reconstructed surface has only small topological difference from the true surface. This algorithm has potential applications to virtual environments, computer vision, and so on.
Modelling of diffusion from equilibrium diffraction fluctuations in ordered phases
International Nuclear Information System (INIS)
Arapaki, E.; Argyrakis, P.; Tringides, M.C.
2008-01-01
Measurements of the collective diffusion coefficient D c at equilibrium are difficult because they are based on monitoring low amplitude concentration fluctuations generated spontaneously, that are difficult to measure experimentally. A new experimental method has been recently used to measure time-dependent correlation functions from the diffraction intensity fluctuations and was applied to measure thermal step fluctuations. The method has not been applied yet to measure superstructure intensity fluctuations in surface overlayers and to extract D c . With Monte Carlo simulations we study equilibrium fluctuations in Ising lattice gas models with nearest neighbor attractive and repulsive interactions. The extracted diffusion coefficients are compared to the ones obtained from equilibrium methods. The new results are in good agreement with the results from the other methods, i.e., D c decreases monotonically with coverage Θ for attractive interactions and increases monotonically with Θ for repulsive interactions. Even the absolute value of D c agrees well with the results obtained with the probe area method. These results confirm that this diffraction based method is a novel, reliable way to measure D c especially within the ordered region of the phase diagram when the superstructure spot has large intensity
Modeling of interstitial diffusion of ion-implanted boron
International Nuclear Information System (INIS)
Velichko, O.I.; Knyazheva, N.V.
2009-01-01
A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)
Analytical model of diffuse reflectance spectrum of skin tissue
Energy Technology Data Exchange (ETDEWEB)
Lisenko, S A; Kugeiko, M M; Firago, V A [Belarusian State University, Minsk (Belarus); Sobchuk, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)
2014-01-31
We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions. (biophotonics)
Nonequilibrium two-dimensional Ising model with stationary uphill diffusion
Colangeli, Matteo; Giardinà, Cristian; Giberti, Claudio; Vernia, Cecilia
2018-03-01
Usually, in a nonequilibrium setting, a current brings mass from the highest density regions to the lowest density ones. Although rare, the opposite phenomenon (known as "uphill diffusion") has also been observed in multicomponent systems, where it appears as an artificial effect of the interaction among components. We show here that uphill diffusion can be a substantial effect, i.e., it may occur even in single component systems as a consequence of some external work. To this aim we consider the two-dimensional ferromagnetic Ising model in contact with two reservoirs that fix, at the left and the right boundaries, magnetizations of the same magnitude but of opposite signs.We provide numerical evidence that a class of nonequilibrium steady states exists in which, by tuning the reservoir magnetizations, the current in the system changes from "downhill" to "uphill". Moreover, we also show that, in such nonequilibrium setup, the current vanishes when the reservoir magnetization attains a value approaching, in the large volume limit, the magnetization of the equilibrium dynamics, thus establishing a relation between equilibrium and nonequilibrium properties.
Study of superionic conductors dynamics by continued diffusion model
International Nuclear Information System (INIS)
Bennai, M.
1993-12-01
The superionic conductors form a special category of solids characterized by their remarkable transport properties and are in general, Simplified as being constituted by the superposition of two inter penetrable crystal lattices. The ions of the first one form a rigid structure through which the other ions of opposite charge diffuse in quasi-liquid way. Basing on experimental and theoretical arguments, it was proved necessary to adopt a model of N-body continued diffusion which the basic theory is that of brownian movement. This thesis deals with the study of the dynamic structure factor S (q,w) and its line half width by the method of development in continued fractions issued from the Mori theory. With regard to the analytical difficulty met at the time of the static correlations functions calculation, the homogeneous approximation was applied and the notion of effective strength was introduced. So, it was obtained general relationships which give the static correlation functions, only in term of the static structure factor of liquids and effective potential. 98 refs.; 22 figs. (F.M.)
NSGIC Education | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2001. DEM data are useful for terrain analysis and modeling including slope and aspect calculations. They may be...
Postural control model interpretation of stabilogram diffusion analysis
Peterka, R. J.
2000-01-01
Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.
Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N
2016-05-01
An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK
Mogaji, Kehinde Anthony; Omobude, Osayande Bright
2017-12-01
Modeling of groundwater potentiality zones is a vital scheme for effective management of groundwater resources. This study developed a new multi-criteria decision making algorithm for groundwater potentiality modeling through modifying the standard GOD model. The developed model christened as GODT model was applied to assess groundwater potential in a multi-faceted crystalline geologic terrain, southwestern, Nigeria using the derived four unify groundwater potential conditioning factors namely: Groundwater hydraulic confinement (G), aquifer Overlying strata resistivity (O), Depth to water table (D) and Thickness of aquifer (T) from the interpreted geophysical data acquired in the area. With the developed model algorithm, the GIS-based produced G, O, D and T maps were synthesized to estimate groundwater potential index (GWPI) values for the area. The estimated GWPI values were processed in GIS environment to produce groundwater potential prediction index (GPPI) map which demarcate the area into four potential zones. The produced GODT model-based GPPI map was validated through application of both correlation technique and spatial attribute comparative scheme (SACS). The performance of the GODT model was compared with that of the standard analytic hierarchy process (AHP) model. The correlation technique results established 89% regression coefficients for the GODT modeling algorithm compared with 84% for the AHP model. On the other hand, the SACS validation results for the GODT and AHP models are 72.5% and 65%, respectively. The overall results indicate that both models have good capability for predicting groundwater potential zones with the GIS-based GODT model as a good alternative. The GPPI maps produced in this study can form part of decision making model for environmental planning and groundwater management in the area.
Individual differences in emotion word processing: A diffusion model analysis.
Mueller, Christina J; Kuchinke, Lars
2016-06-01
The exploratory study investigated individual differences in implicit processing of emotional words in a lexical decision task. A processing advantage for positive words was observed, and differences between happy and fear-related words in response times were predicted by individual differences in specific variables of emotion processing: Whereas more pronounced goal-directed behavior was related to a specific slowdown in processing of fear-related words, the rate of spontaneous eye blinks (indexing brain dopamine levels) was associated with a processing advantage of happy words. Estimating diffusion model parameters revealed that the drift rate (rate of information accumulation) captures unique variance of processing differences between happy and fear-related words, with highest drift rates observed for happy words. Overall emotion recognition ability predicted individual differences in drift rates between happy and fear-related words. The findings emphasize that a significant amount of variance in emotion processing is explained by individual differences in behavioral data.
Reaction-diffusion modeling of hydrogen in beryllium
Energy Technology Data Exchange (ETDEWEB)
Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)
2016-07-01
Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.
Modeling of immision from power plants using stream-diffusion model
International Nuclear Information System (INIS)
Kanevce, Lj.; Kanevce, G.; Markoski, A.
1996-01-01
Analyses of simple empirical and integral immision models, comparing with complex three dimensional differential models is given. Complex differential models needs huge computer power, so they can't be useful for practical engineering calculations. In this paper immision modeling, using stream-diffusion approach is presented. Process of dispersion is divided into two parts. First part is called stream part, it's near the source of the pollutants, and it's presented with defected turbulent jet in wind field. This part finished when the velocity of stream (jet) becomes equal with wind speed. Boundary conditions in the end of the first part, are initial for the second, called diffusion part, which is modeling with tri dimensional diffusion equation. Gradient of temperature, wind speed profile and coefficient of diffusion in this model must not be constants, they can change with the height. Presented model is much simpler than the complete meteorological differential models which calculates whole fields of meteorological parameters. Also, it is more complex and gives more valuable results for dispersion of pollutants from widely used integral and empirical models
Modelling thermal radiation in buoyant turbulent diffusion flames
Consalvi, J. L.; Demarco, R.; Fuentes, A.
2012-10-01
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.
Results of atmospheric diffusion experiments, vol.3
International Nuclear Information System (INIS)
Kakuta, Michio; Hayashi, Takashi; Adachi, Takashi.
1988-02-01
An extensive study on 'Emergency monitoring and prediction code system' has been carried in JAERI since 1980. Six series of field experiments on atmospheric diffusion were conducted to develop and verify the prediction models for environmental concentration distribution following accidental release of radioactivity. Results of field experiments (Inland complex terrain, surface and elevated point sources) conducted in 15 - 19th October 1984 (TSUKUBA84) and in 6 - 10th November 1985 (TSUKUBA85) are contained in this volume. (author)
Agent-based Modeling Automated: Data-driven Generation of Innovation Diffusion Models
Jensen, T.; Chappin, E.J.L.
2016-01-01
Simulation modeling is useful to gain insights into driving mechanisms of diffusion of innovations. This study aims to introduce automation to make identification of such mechanisms with agent-based simulation modeling less costly in time and labor. We present a novel automation procedure in which
Technology diffusion in energy-economy models: The case of Danish vintage models
DEFF Research Database (Denmark)
Klinge Jacobsen, Henrik
2000-01-01
the costs of greenhouse gas mitigation. This paper examines the effect on aggregate energy efficiency of using technological vintage models to describe technology diffusion. The focus is on short- to medium-term issues. Three different models of Danish energy supply and demand are used to illustrate...
Modelling of a diffusion-sorption experiment on sandstone
International Nuclear Information System (INIS)
Smith, P.A.
1989-11-01
The results of a diffusion-sorption experiment on a sample of Darley Dale sandstone, using simulated groundwater spiked with a mixture of 125 I, 85 Sr and 137 Cs, are modelled by a one-dimensional porous medium approach in which sorption is described by Freundlich isotherms. The governing equations are solved analytically for the special case of a linear isotherm, and numerically using the computer code RANCHDIFF for non-linear isotherms. A set of time-dependent, ordinary differential equations is obtained using the Lagrange interpolation technique and integrated by Gear's variable order predictor-corrector method. It is shown that the sorption behaviour of 85 Sr can be modelled successfully by a linear isotherm, using a sorption parameter consistent with batch-sorption tests. The behaviour of 137 Cs may be modelled by a non-linear isotherm, but the amount of 137 Cs sorbed is less than that anticipated from batch-sorption tests. 125 I is assumed to be non-sorbing and is used to determine the porosity of the sandstone. (author) 10 figs., 4 tabs., 6 refs
The dynamics of multimodal integration: The averaging diffusion model.
Turner, Brandon M; Gao, Juan; Koenig, Scott; Palfy, Dylan; L McClelland, James
2017-12-01
We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.
An efficient method for model refinement in diffuse optical tomography
Zirak, A. R.; Khademi, M.
2007-11-01
Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.
The EZ diffusion model provides a powerful test of simple empirical effects.
van Ravenzwaaij, Don; Donkin, Chris; Vandekerckhove, Joachim
2017-04-01
Over the last four decades, sequential accumulation models for choice response times have spread through cognitive psychology like wildfire. The most popular style of accumulator model is the diffusion model (Ratcliff Psychological Review, 85, 59-108, 1978), which has been shown to account for data from a wide range of paradigms, including perceptual discrimination, letter identification, lexical decision, recognition memory, and signal detection. Since its original inception, the model has become increasingly complex in order to account for subtle, but reliable, data patterns. The additional complexity of the diffusion model renders it a tool that is only for experts. In response, Wagenmakers et al. (Psychonomic Bulletin & Review, 14, 3-22, 2007) proposed that researchers could use a more basic version of the diffusion model, the EZ diffusion. Here, we simulate experimental effects on data generated from the full diffusion model and compare the power of the full diffusion model and EZ diffusion to detect those effects. We show that the EZ diffusion model, by virtue of its relative simplicity, will be sometimes better able to detect experimental effects than the data-generating full diffusion model.
Preisach hysteresis model for non-linear 2D heat diffusion
International Nuclear Information System (INIS)
Jancskar, Ildiko; Ivanyi, Amalia
2006-01-01
This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way
Survivor shielding. Part C. Improvements in terrain shielding
International Nuclear Information System (INIS)
Egbert, Stephen D.; Kaul, Dean C.; Roberts, James A.; Kerr, George D.
2005-01-01
A number of atomic-bomb survivors were affected by shielding provided by terrain features. These terrain features can be a small hill, affecting one or two houses, or a high mountain that shields large neighborhoods. In the survivor dosimetry system, terrain shielding can be described by a transmission factor (TF), which is the ratio between the dose with and without the terrain present. The terrain TF typically ranges between 0.1 and 1.0. After DS86 was implemented at RERF, the terrain shielding categories were examined and found to either have a bias or an excessive uncertainty that could readily be removed. In 1989, an improvement in the terrain model was implemented at RERF in the revised DS86 code, but the documentation was not published. It is now presented in this section. The solution to the terrain shielding in front of a house is described in this section. The problem of terrain shielding of survivors behind Hijiyama mountain at Hiroshima and Konpirasan mountain at Nagasaki has also been recognized, and a solution to this problem has been included in DS02. (author)
Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames
Schlup, Jason; Blanquart, Guillaume
2018-03-01
The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.
Ochalek, M; Podhaisky, H; Ruettinger, H-H; Wohlrab, J; Neubert, R H H
2012-10-01
The barrier function of two quaternary stratum corneum (SC) lipid model membranes, which were previously characterized with regard to the lipid organization, was investigated based on diffusion studies of model drugs with varying lipophilicities. Diffusion experiments of a hydrophilic drug, urea, and more lipophilic drugs than urea (i.e. caffeine, diclofenac sodium) were conducted using Franz-type diffusion cells. The amount of permeated drug was analyzed using either HPLC or CE technique. The subjects of interest in the present study were the investigation of the influence of physicochemical properties of model drugs on their diffusion and permeation through SC lipid model membranes, as well as the study of the impact of the constituents of these artificial systems (particularly ceramide species) on their barrier properties. The diffusion through both SC lipid model membranes and the human SC of the most hydrophilic model drug, urea, was faster than the permeation of the more lipophilic drugs. The slowest rate of permeation through SC lipid systems occurred in the case of caffeine. The composition of SC lipid model membranes has a significant impact on their barrier function. Model drugs diffused and permeated faster through Membrane II (presence of Cer [EOS]). In terms of the barrier properties, Membrane II is much more similar to the human SC than Membrane I. Copyright © 2012 Elsevier B.V. All rights reserved.
Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.
Xiao, Perry; Imhof, Robert E
2012-10-01
Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.
Atmospheric processes over complex terrain
Banta, Robert M.; Berri, G.; Blumen, William; Carruthers, David J.; Dalu, G. A.; Durran, Dale R.; Egger, Joseph; Garratt, J. R.; Hanna, Steven R.; Hunt, J. C. R.
1990-06-01
A workshop on atmospheric processes over complex terrain, sponsored by the American Meteorological Society, was convened in Park City, Utah from 24 vto 28 October 1988. The overall objective of the workshop was one of interaction and synthesis--interaction among atmospheric scientists carrying out research on a variety of orographic flow problems, and a synthesis of their results and points of view into an assessment of the current status of topical research problems. The final day of the workshop was devoted to an open discussion on the research directions that could be anticipated in the next decade because of new and planned instrumentation and observational networks, the recent emphasis on development of mesoscale numerical models, and continual theoretical investigations of thermally forced flows, orographic waves, and stratified turbulence. This monograph represents an outgrowth of the Park City Workshop. The authors have contributed chapters based on their lecture material. Workshop discussions indicated interest in both the remote sensing and predictability of orographic flows. These chapters were solicited following the workshop in order to provide a more balanced view of current progress and future directions in research on atmospheric processes over complex terrain.
International Nuclear Information System (INIS)
Wu Rui; Zhu Xun; Liao Qiang; Wang Hong; Ding Yudong; Li Jun; Ye Dingding
2010-01-01
In proton exchange membrane fuel cell (PEMFC) models, oxygen effective diffusivity is the most important parameter to characterize the oxygen transport in the gas diffusion layer (GDL). However, its determination is a challenge due to its complex dependency on GDL structure. In the present study, a three-dimensional network consisting of spherical pores and cylindrical throats is developed and used to investigate the effects of GDL structural parameters on oxygen effective diffusivity under the condition with/without water invasion process. Oxygen transport in the throat is described by Fick's law and water invasion process in the network is simulated using the invasion percolation with trapping algorithm. The simulation results reveal that oxygen effective diffusivity is slightly affected by network size but increases with decreasing the network heterogeneity and with increasing the pore connectivity. Impacts of network anisotropy on oxygen transport are also investigated in this paper. The anisotropic network is constructed by constricting the throats in the through-plane direction with a constriction factor. It is found that water invasion has a more severe negative influence on oxygen transport in an anisotropic network. Finally, two new correlations are introduced to determine the oxygen effective diffusivity for the Toray carbon paper GDLs.
Vestergaard-Poulsen, Peter; Hansen, Brian; Ostergaard, Leif; Jakobsen, Rikke
2007-09-01
To understand the diffusion attenuated MR signal from normal and ischemic brain tissue in order to extract structural and physiological information using mathematical modeling, taking into account the transverse relaxation rates in gray matter. We fit our diffusion model to the diffusion-weighted MR signal obtained from cortical gray matter in healthy subjects. Our model includes variable volume fractions, intracellular restriction effects, and exchange between compartments in addition to individual diffusion coefficients and transverse relaxation rates for each compartment. A global optimum was found from a wide range of parameter permutations using cluster computing. We also present simulations of cell swelling and changes of exchange rate and intracellular diffusion as possible cellular mechanisms in ischemia. Our model estimates an extracellular volume fraction of 0.19 in accordance with the accepted value from histology. The absolute apparent diffusion coefficient obtained from the model was similar to that of experiments. The model and the experimental results indicate significant differences in diffusion and transverse relaxation between the tissue compartments and slow water exchange. Our model reproduces the signal changes observed in ischemia via physiologically credible mechanisms. Our modeling suggests that transverse relaxation has a profound influence on the diffusion attenuated MR signal. Our simulations indicate cell swelling as the primary cause of the diffusion changes seen in the acute phase of brain ischemia. (c) 2007 Wiley-Liss, Inc.
Nonlinear variational models for reaction and diffusion systems
International Nuclear Information System (INIS)
Tanyi, G.E.
1983-08-01
There exists a natural metric w.r.t. which the density dependent diffusion operator is harmonic in the sense of Eells and Sampson. A physical corollary of this statement is the property that any two regular points on the orbit of a reaction or diffusion operator can be connected by a path along which the reaction rate is constant. (author)
Diffusion in Liquids : Equilibrium Molecular Simulations and Predictive Engineering Models
Liu, X.
2013-01-01
The aim of this thesis is to study multicomponent diffusion in liquids using Molecular Dynamics (MD) simulations. Diffusion plays an important role in mass transport processes. In binary systems, mass transfer processes have been studied extensively using both experiments and molecular simulations.
Subgrid models for mass and thermal diffusion in turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Sharp, David H [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Li, Xiao - Lin [STONY BROOK UNIV; Gilmm, James G [STONY BROOK UNIV
2008-01-01
We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without
International Nuclear Information System (INIS)
2013-12-01
This report is one of the four supporting reports for the three main biosphere reports in the safety case for the disposal of spent nuclear fuel at Olkiluoto, 'TURVA-2012'. The focus of this report is to detail the scenario analysis of terrain and ecosystems development at the Olkiluoto repository site within a time frame of 10 000 years, whereas the input data to this modelling is detailed in the Data Basis report. The results are used further especially in the surface and near-surface hydrological modelling and in the biosphere radionuclide transport and dose modelling, both part of the biosphere assessment 'BSA-2012' feeding into the safety case. Based on the results of the 18 cases simulated in the scenario analysis, it can be outlined that the most significant differences in respect of the dose implications of the repository arise from the inputs and settings affecting the rate of coastline retreat (i.e. land uplift and sea level) and determining whether there are croplands or not in the area. (orig.)
Synchronized stability in a reaction–diffusion neural network model
Energy Technology Data Exchange (ETDEWEB)
Wang, Ling; Zhao, Hongyong, E-mail: hongyongz@126.com
2014-11-14
The reaction–diffusion neural network consisting of a pair of identical tri-neuron loops is considered. We present detailed discussions about the synchronized stability and Hopf bifurcation, deducing the non-trivial role that delay plays in different locations. The corresponding numerical simulations are used to illustrate the effectiveness of the obtained results. In addition, the numerical results about the effects of diffusion reveal that diffusion may speed up the tendency to synchronization and induce the synchronized equilibrium point to be stable. Furthermore, if the parameters are located in appropriate regions, multiple unstability and bistability or unstability and bistability may coexist. - Highlights: • Point to non-trivial role that τ plays in different positions. • Diffusion speeds up the tendency to synchronization. • Diffusion induces the synchronized equilibrium point to be stable. • The coexistence of multiple unstability and bistability or unstability and bistability.
Synchronized stability in a reaction–diffusion neural network model
International Nuclear Information System (INIS)
Wang, Ling; Zhao, Hongyong
2014-01-01
The reaction–diffusion neural network consisting of a pair of identical tri-neuron loops is considered. We present detailed discussions about the synchronized stability and Hopf bifurcation, deducing the non-trivial role that delay plays in different locations. The corresponding numerical simulations are used to illustrate the effectiveness of the obtained results. In addition, the numerical results about the effects of diffusion reveal that diffusion may speed up the tendency to synchronization and induce the synchronized equilibrium point to be stable. Furthermore, if the parameters are located in appropriate regions, multiple unstability and bistability or unstability and bistability may coexist. - Highlights: • Point to non-trivial role that τ plays in different positions. • Diffusion speeds up the tendency to synchronization. • Diffusion induces the synchronized equilibrium point to be stable. • The coexistence of multiple unstability and bistability or unstability and bistability
Bounds for perpetual American option prices in a jump diffusion model
Ekström, Erik
2006-01-01
We provide bounds for perpetual American option prices in a jump diffusion model in terms of American option prices in the standard Black-Scholes model. We also investigate the dependence of the bounds on different parameters of the model.
Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...
Numerical modelling of random walk one-dimensional diffusion
International Nuclear Information System (INIS)
Vamos, C.; Suciu, N.; Peculea, M.
1996-01-01
The evolution of a particle which moves on a discrete one-dimensional lattice, according to a random walk low, approximates better the diffusion process smaller the steps of the spatial lattice and time are. For a sufficiently large assembly of particles one can assume that their relative frequency at lattice knots approximates the distribution function of the diffusion process. This assumption has been tested by simulating on computer two analytical solutions of the diffusion equation: the Brownian motion and the steady state linear distribution. To evaluate quantitatively the similarity between the numerical and analytical solutions we have used a norm given by the absolute value of the difference of the two solutions. Also, a diffusion coefficient at any lattice knots and moment of time has been calculated, by using the numerical solution both from the diffusion equation and the particle flux given by Fick's low. The difference between diffusion coefficient of analytical solution and the spatial lattice mean coefficient of numerical solution constitutes another quantitative indication of the similarity of the two solutions. The results obtained show that the approximation depends first on the number of particles at each knot of the spatial lattice. In conclusion, the random walk is a microscopic process of the molecular dynamics type which permits simulations precision of the diffusion processes with given precision. The numerical method presented in this work may be useful both in the analysis of real experiments and for theoretical studies
Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong
2016-12-09
Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2 = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.
Liang, Yingjie; Chen, Wen
2018-03-01
Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.
Brooks, A. N.
2014-12-01
While developed countries have implemented engineering techniques and sanitation technologies to keep water resources clean from runoff and ground contamination, air pollution and its contribution of harmful contaminants to our water resources has yet to be fully understood and managed. Due to the large spatial and temporal extent and subsequent computational intensity required to understand atmospheric deposition as a pollutant source, a geographic information system (GIS) was utilized. This project developed a multi-step workflow to better define the placement of in situ sensors on Lake Perris in Southern California. Utilizing a variety of technologies including ArcGIS 10.1 with 3D and Spatial Analyst extensions and WindNinja, the impact of terrain on wind speed and direction was simulated and the spatial distribution of contaminant deposition across Lake Perris was calculated as flux. Specifically, the flux of particulate matter (PM10) at the air - water interface of a lake surface was quantified by season for the year of 2009. Integrated Surface Hourly (ISH) wind speed and direction data and ground station air quality measurements from the California Air Resources Board were processed and integrated for use within ModelBuilder. Results indicate that surface areas nearest Alessandro Island and the dam of Lake Perris should be avoided when placing in situ sensors. Furthermore, the location of sensor placement is dependent on seasonal fluctuations of PM10 which can be modeled using the techniques used in this study.
Numerical vs. turbulent diffusion in geophysical flow modelling
International Nuclear Information System (INIS)
D'Isidoro, M.; Maurizi, A.; Tampieri, F.
2008-01-01
Numerical advection schemes induce the spreading of passive tracers from localized sources. The effects of changing resolution and Courant number are investigated using the WAF advection scheme, which leads to a sub-diffusive process. The spreading rate from an instantaneous source is compared with the physical diffusion necessary to simulate unresolved turbulent motions. The time at which the physical diffusion process overpowers the numerical spreading is estimated, and is shown to reduce as the resolution increases, and to increase as the wind velocity increases.
Analyzing complex wake-terrain interactions and its implications on wind-farm performance.
Tabib, Mandar; Rasheed, Adil; Fuchs, Franz
2016-09-01
Rotating wind turbine blades generate complex wakes involving vortices (helical tip-vortex, root-vortex etc.).These wakes are regions of high velocity deficits and high turbulence intensities and they tend to degrade the performance of down-stream turbines. Hence, a conservative inter-turbine distance of up-to 10 times turbine diameter (10D) is sometimes used in wind-farm layout (particularly in cases of flat terrain). This ensures that wake-effects will not reduce the overall wind-farm performance, but this leads to larger land footprint for establishing a wind-farm. In-case of complex-terrain, within a short distance (say 10D) itself, the nearby terrain can rise in altitude and be high enough to influence the wake dynamics. This wake-terrain interaction can happen either (a) indirectly, through an interaction of wake (both near tip vortex and far wake large-scale vortex) with terrain induced turbulence (especially, smaller eddies generated by small ridges within the terrain) or (b) directly, by obstructing the wake-region partially or fully in its flow-path. Hence, enhanced understanding of wake- development due to wake-terrain interaction will help in wind farm design. To this end the current study involves: (1) understanding the numerics for successful simulation of vortices, (2) understanding fundamental vortex-terrain interaction mechanism through studies devoted to interaction of a single vortex with different terrains, (3) relating influence of vortex-terrain interactions to performance of a wind-farm by studying a multi-turbine wind-farm layout under different terrains. The results on interaction of terrain and vortex has shown a much faster decay of vortex for complex terrain compared to a flatter-terrain. The potential reasons identified explaining the observation are (a) formation of secondary vortices in flow and its interaction with the primary vortex and (b) enhanced vorticity diffusion due to increased terrain-induced turbulence. The implications of
Small-polaron model of light atom diffusion
International Nuclear Information System (INIS)
Emin, D.
1977-01-01
A number of researchers have treated the diffusion of light interstitials in metals in strict analogy with the theory for the hopping diffusion of electrons in low-mobility insulators. In other words, these authors view the diffusion of light atoms as simply being an example of small-polaron hopping motion. In this paper the motion of a small polaron is introduced, and the mechanism of its motion is described. The experimental results are then succinctly presented. Next the physical assumptions implicit in the theory are compared with the situation which is believed to characterize the existence and motion of light interstitial atoms in metals. Concomitantly, the modifications of the small-polaron theory required in applying it to light atom diffusion are ennumerated
A mathematical model in charactering chloride diffusivity in unsaturated cementitious material
Zhang, Y.; Ye, G.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.
2017-01-01
In this paper, a new analytic model for predicting chloride diffusivity in unsaturated cementitious materials is developed based on conductivity theory and Nernst-Einstein equation. The model specifies that chloride diffusivity in unsaturated cementitious materials can be mathematically described as
A critical discussion of the vacancy diffusion model of ion beam induced epitaxial crystallization
International Nuclear Information System (INIS)
Heera, V.
1989-01-01
A simple vacancy diffusion model of ion beam induced epitaxial crystallization of silicon including divacancy formation is developed. The model reproduces some of the experimental findings, as e.g. the dose rate dependence of the crystallization rate. However, the measured activation energy of the ion beam induced epitaxial crystallization cannot be accounted for by vacancy diffusion alone. (author)
Nuclear interaction potential in a folded-Yukawa model with diffuse densities
International Nuclear Information System (INIS)
Randrup, J.
1975-09-01
The folded-Yukawa model for the nuclear interaction potential is generalized to diffuse density distributions which are generated by folding a Yukawa function into sharp generating distributions. The effect of a finite density diffuseness or of a finite interaction range is studied. The Proximity Formula corresponding to the generalized model is derived and numerical comparison is made with the exact results. (8 figures)
Long, T.B.; Blok, V.; Poldner, Kim
2017-01-01
r, CSA technological innovation diffusion is subject to socio-economic barriers. The success of innovations is partly dependent on the business models that are used to diffuse them. Within the context of innovations for CSA, the role that innovation providers’ business models play in the successful
Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.
2011-01-01
This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint
Modeling Simple Driving Tasks with a One-Boundary Diffusion Model
Ratcliff, Roger; Strayer, David
2014-01-01
A one-boundary diffusion model was applied to the data from two experiments in which subjects were performing a simple simulated driving task. In the first experiment, the same subjects were tested on two driving tasks using a PC-based driving simulator and the psychomotor vigilance test (PVT). The diffusion model fit the response time (RT) distributions for each task and individual subject well. Model parameters were found to correlate across tasks which suggests common component processes were being tapped in the three tasks. The model was also fit to a distracted driving experiment of Cooper and Strayer (2008). Results showed that distraction altered performance by affecting the rate of evidence accumulation (drift rate) and/or increasing the boundary settings. This provides an interpretation of cognitive distraction whereby conversing on a cell phone diverts attention from the normal accumulation of information in the driving environment. PMID:24297620
Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model
Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin
2010-03-01
Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.
Huei-Jin Wang; Stephen Prisley; Philip Radtke; John Coulston
2012-01-01
Forest modeling applications that cover large geographic area can benefit from the use of widely-held knowledge about relationships between forest attributes and topographic variables. A noteworthy example involved the coupling of field survey data from the Forest Inventory Analysis (FIA) program of USDA Forest Service with digital elevation model (DEM) data in...
Directory of Open Access Journals (Sweden)
Salahudin Zahedi
2017-09-01
Full Text Available Soil depth is a major soil characteristic, which is commonly used in distributed hydrological modelling in order to present watershed subsurface attributes. This study aims at developing a statistical model for predicting the spatial pattern of soil depth over the mountainous watershed from environmental variables derived from a digital elevation model (DEM and remote sensing data. Among the explanatory variables used in the models, seven are derived from a 10 m resolution DEM, namely specific catchment area, wetness index, aspect, slope, plan curvature, elevation and sediment transport index. Three variables landuse, NDVI and pca1 are derived from Landsat8 imagery, and are used for predicting soil depth by the models. Soil attributes, soil moisture, topographic curvature, training samples for each landuse and major vegetation types are considered at 429 profiles within four subwatersheds. Random forests (RF, support vector machine (SVM and artificial neural network (ANN are used to predict soil depth using the explanatory variables. The models are run using 336 data points in the calibration dataset with all 31 explanatory variables, and soil depth as the response of the models. Mean decrease permutation accuracy is performed on Variable selection. Testing dataset is done with the model soil depth values at testing locations (93 points using different efficiency criteria. Prediction error is computed for both the calibration and testing datasets. Results show that the variables landuse, specific surface area, slope, pca1, NDVI and aspect are the most important explanatory variables in predicting soil depth. RF and SVM models are appropriate for the mountainous watershed areas that have been limited in the depth of the soil and ANN model is more suitable for watershed with the fields of agricultural and deep soil depth.
Diffusion-controlled reactions modeling in Geant4-DNA
Energy Technology Data Exchange (ETDEWEB)
Karamitros, M., E-mail: matkara@gmail.com [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Luan, S. [University of New Mexico, Department of Computer Science, Albuquerque, NM (United States); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Allison, J. [Geant4 Associates International Ltd (United Kingdom); Baldacchino, G. [CEA Saclay, IRAMIS, LIDYL, Radiation Physical Chemistry Group, F-91191 Gif sur Yvette Cedex (France); CNRS, UMR3299, SIS2M, F-91191 Gif sur Yvette Cedex (France); Davidkova, M. [Nuclear Physics Institute of the ASCR, Prague (Czech Republic); Francis, Z. [Saint Joseph University, Faculty of Sciences, Department of Physics, Mkalles, Beirut (Lebanon); Friedland, W. [Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstädter Landstr. 1, 85764 Neuherberg (Germany); Ivantchenko, V. [Ecoanalytica, 119899 Moscow (Russian Federation); Geant4 Associates International Ltd (United Kingdom); Ivantchenko, A. [Geant4 Associates International Ltd (United Kingdom); Mantero, A. [SwHaRD s.r.l., via Buccari 9, 16153 Genova (Italy); Nieminem, P.; Santin, G. [ESA-ESTEC, 2200 AG Noordwijk (Netherlands); Tran, H.N. [Division of Nuclear Physics and Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Stepan, V. [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Nuclear Physics Institute of the ASCR, Prague (Czech Republic); Incerti, S., E-mail: incerti@cenbg.in2p3.fr [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)
2014-10-01
Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k–d tree data structure for quickly locating, for a given molecule, its closest reactants. The
Diffusion of PAH in potato and carrot slices and application for a potato model
DEFF Research Database (Denmark)
Trapp, Stefan; Cammarano, A.; Capri, E.
2007-01-01
of water, potato tissue, and carrot tissue. Naphthalene, phenanthrene, anthracene, and fluoranthene served as model substances. Their transfer from source to sink disk was measured by HPLC to determine a velocity rate constant proportional to the diffusive conductivity. The diffusive flux through the plant...... of the chemical. The findings of this study provide a convenient method to estimate the diffusion of nonvolatile organic chemicals through various plant materials. The application to a radial diffusion model suggests that "growth dilution" renders the concentration of highly hydrophobic chemicals in potatoes...... below their equilibrium partitioning level. This is in agreement with field results for the bioconcentration of PAHs in potatoes....
Models for the estimation of diffuse solar radiation for typical cities in Turkey
International Nuclear Information System (INIS)
Bakirci, Kadir
2015-01-01
In solar energy applications, diffuse solar radiation component is required. Solar radiation data particularly in terms of diffuse component are not readily affordable, because of high price of measurements as well as difficulties in their maintenance and calibration. In this study, new empirical models for predicting the monthly mean diffuse solar radiation on a horizontal surface for typical cities in Turkey are established. Therefore, fifteen empirical models from studies in the literature are used. Also, eighteen diffuse solar radiation models are developed using long term sunshine duration and global solar radiation data. The accuracy of the developed models is evaluated in terms of different statistical indicators. It is found that the best performance is achieved for the third-order polynomial model based on sunshine duration and clearness index. - Highlights: • Diffuse radiation is given as a function of clearness index and sunshine fraction. • The diffuse radiation is an important parameter in solar energy applications. • The diffuse radiation measurement is for limited periods and it is very rare. • The new models can be used to estimate monthly average diffuse solar radiation. • The accuracy of the models is evaluated on the basis of statistical indicators
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
Free surface modelling with two-fluid model and reduced numerical diffusion of the interface
International Nuclear Information System (INIS)
Strubelj, Luka; Tiselj, Izrok
2008-01-01
Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening
Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture
Biggs, A. W.
1983-01-01
Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.
Mohammed, F.
2016-12-01
Landslide hazards such as fast-moving debris flows, slow-moving landslides, and other mass flows cause numerous fatalities, injuries, and damage. Landslide occurrences in fjords, bays, and lakes can additionally generate tsunamis with locally extremely high wave heights and runups. Two-dimensional depth-averaged models can successfully simulate the entire lifecycle of the three-dimensional landslide dynamics and tsunami propagation efficiently and accurately with the appropriate assumptions. Landslide rheology is defined using viscous fluids, visco-plastic fluids, and granular material to account for the possible landslide source materials. Saturated and unsaturated rheologies are further included to simulate debris flow, debris avalanches, mudflows, and rockslides respectively. The models are obtained by reducing the fully three-dimensional Navier-Stokes equations with the internal rheological definition of the landslide material, the water body, and appropriate scaling assumptions to obtain the depth-averaged two-dimensional models. The landslide and tsunami models are coupled to include the interaction between the landslide and the water body for tsunami generation. The reduced models are solved numerically with a fast semi-implicit finite-volume, shock-capturing based algorithm. The well-balanced, positivity preserving algorithm accurately accounts for wet-dry interface transition for the landslide runout, landslide-water body interface, and the tsunami wave flooding on land. The models are implemented as a General-Purpose computing on Graphics Processing Unit-based (GPGPU) suite of models, either coupled or run independently within the suite. The GPGPU implementation provides up to 1000 times speedup over a CPU-based serial computation. This enables simulations of multiple scenarios of hazard realizations that provides a basis for a probabilistic hazard assessment. The models have been successfully validated against experiments, past studies, and field data
Benedek, Judit; Papp, Gábor; Kalmár, János
2018-04-01
Beyond rectangular prism polyhedron, as a discrete volume element, can also be used to model the density distribution inside 3D geological structures. The calculation of the closed formulae given for the gravitational potential and its higher-order derivatives, however, needs twice more runtime than that of the rectangular prism computations. Although the more detailed the better principle is generally accepted it is basically true only for errorless data. As soon as errors are present any forward gravitational calculation from the model is only a possible realization of the true force field on the significance level determined by the errors. So if one really considers the reliability of input data used in the calculations then sometimes the "less" can be equivalent to the "more" in statistical sense. As a consequence the processing time of the related complex formulae can be significantly reduced by the optimization of the number of volume elements based on the accuracy estimates of the input data. New algorithms are proposed to minimize the number of model elements defined both in local and in global coordinate systems. Common gravity field modelling programs generate optimized models for every computation points ( dynamic approach), whereas the static approach provides only one optimized model for all. Based on the static approach two different algorithms were developed. The grid-based algorithm starts with the maximum resolution polyhedral model defined by 3-3 points of each grid cell and generates a new polyhedral surface defined by points selected from the grid. The other algorithm is more general; it works also for irregularly distributed data (scattered points) connected by triangulation. Beyond the description of the optimization schemes some applications of these algorithms in regional and local gravity field modelling are presented too. The efficiency of the static approaches may provide even more than 90% reduction in computation time in favourable
Simulation of tracer dispersion from elevated and surface releases in complex terrain
Hernández, J. F.; Cremades, L.; Baldasano, J. M.
A new version of an advanced mesoscale dispersion modeling system for simulating passive air pollutant dispersion in the real atmospheric planetary boundary layer (PBL), is presented. The system comprises a diagnostic mass-consistent meteorological model and a Lagrangian particle dispersion model (LADISMO). The former version of LADISMO, developed according to Zannetti (Air pollution modelling, 1990), was based on the Monte Carlo technique and included calculation of higher-order moments of vertical random forcing for convective conditions. Its ability to simulate complex flow dispersion has been stated in a previous paper (Hernández et al. 1995, Atmospheric Environment, 29A, 1331-1341). The new version follows Thomson's scheme (1984, Q. Jl Roy. Met. Soc.110, 1107-1120). It is also based on Langevin equation and follows the ideas given by Brusasca et al. (1992, Atmospheric Environment26A, 707-723) and Anfossi et al. (1992, Nuovo Cemento 15c, 139-158). The model is used to simulate the dispersion and predict the ground level concentration (g.l.c.) of a tracer (SF 6) released from both an elevated source ( case a) and a ground level source ( case b) in a highly complex mountainous terrain during neutral and synoptically dominated conditions ( case a) and light and apparently stable conditions ( case b). The last case is considered as being a specially difficult task to simulate. In fact, few works have reported situations with valley drainage flows in complex terrains and real stable atmospheric conditions with weak winds. The model assumes that nearly calm situations associated to strong stability and air stagnation, make the lowest layers of PBL poorly diffusive (Brusasca et al., 1992, Atmospheric Environment26A, 707-723). Model results are verified against experimental data from Guardo-90 tracer experiments, an intensive field campaign conducted in the Carrion river valley (Northern Spain) to study atmospheric diffusion within a steep walled valley in mountainous
Directory of Open Access Journals (Sweden)
G. Kraller
2012-07-01
Full Text Available The water balance in high Alpine regions is often characterized by significant variation of meteorological variables in space and time, a complex hydrogeological situation and steep gradients. The system is even more complex when the rock composition is dominated by soluble limestone, because unknown underground flow conditions and flow directions lead to unknown storage quantities. Reliable distributed modeling cannot be implemented by traditional approaches due to unknown storage processes at local and catchment scale. We present an artificial neural network extension of a distributed hydrological model (WaSiM-ETH that allows to account for subsurface water transfer in a karstic environment. The extension was developed for the Alpine catchment of the river "Berchtesgadener Ache" (Berchtesgaden Alps, Germany, which is characterized by extreme topography and calcareous rocks. The model assumes porous conditions and does not account for karstic environments, resulting in systematic mismatch of modeled and measured runoff in discharge curves at the outlet points of neighboring high alpine subbasins. Various precipitation interpolation methods did not allow to explain systematic mismatches, and unknown subsurface hydrological processes were concluded as the underlying reason. We introduce a new method that allows to describe the unknown subsurface boundary fluxes, and account for them in the hydrological model. This is achieved by an artificial neural network approach (ANN, where four input variables are taken to calculate the unknown subsurface storage conditions. This was first developed for the high Alpine subbasin Königsseer Ache to improve the monthly water balance. We explicitly derive the algebraic transfer function of an artificial neural net to calculate the missing boundary fluxes. The result of the ANN is then implemented in the groundwater module of the hydrological model as boundary flux, and considered during the consecutive model
Stalled-Flow and Head-Loss Model for Diffuser Pumps
Meng, S. Y.
1984-01-01
Modeling procedure approximates inlet transition zone (blade leading edge to blade throat) of diffuser pump as two-dimensional cascade, properties of which are well known. Model applied to stators as well as rotors. Procedure much faster than previous methods.
Quantum-corrected drift-diffusion models for transport in semiconductor devices
International Nuclear Information System (INIS)
De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo
2005-01-01
In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions
A model for self-diffusion of guanidinium-based ionic liquids: a molecular simulation study.
Klähn, Marco; Seduraman, Abirami; Wu, Ping
2008-11-06
We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes
Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model
Ni, Wenjie; Shi, Junping; Wang, Mingxin
2018-06-01
A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.
Energy Technology Data Exchange (ETDEWEB)
Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-06
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.
Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.
2018-02-01
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.
Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin
2010-05-01
This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.
Czech Academy of Sciences Publication Activity Database
Střižík, Michal; Zelinger, Z.; Nevrlý, Václav; Kubát, P.; Berger, P.; Černý, A.; Engst, P.; Bitala, Petr; Janečková, R.; Grigorová, Eva; Bestová, I.; Čadil, J.; Danihelka, P.; Kadeřábek, P.; Kozubková, M.; Drábková, S.; Hartman, D.; Bojko, M.; Zavila, O.
2014-01-01
Roč. 54, č. 1 (2014), s. 73-90 ISSN 0957-4352 R&D Projects: GA MV VG20132015108 Institutional support: RVO:61388998 Keywords : aerosol formation * computational fluid dynamic modeling * NH4NO3 aerosol * pollution dispersion * spatial distribution * turbulent environment Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.433, year: 2014
Turner, D.P.; Dodson, R.; Marks, D.
1996-01-01
Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the
On characterizing terrain visibility graphs
Directory of Open Access Journals (Sweden)
William Evans
2015-06-01
Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.
A microscopic model of ballistic-diffusive crossover
International Nuclear Information System (INIS)
Bagchi, Debarshee; Mohanty, P K
2014-01-01
Several low-dimensional systems show a crossover from diffusive to ballistic heat transport when system size is decreased. Although there is some phenomenological understanding of this crossover phenomenon at the coarse-grained level, a microscopic picture that consistently describes both the ballistic and the diffusive transport regimes has been lacking. In this work we derive a scaling form for the thermal current in a class of one dimensional systems attached to heat baths at boundaries and rigorously show that the crossover occurs when the characteristic length scale of the system competes with the system size. (paper)
A fractional Fokker-Planck model for anomalous diffusion
Energy Technology Data Exchange (ETDEWEB)
Anderson, Johan, E-mail: anderson.johan@gmail.com [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Kim, Eun-jin [Department of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Moradi, Sara [Ecole Polytechnique, CNRS UMR7648, LPP, F-91128 Palaiseau (France)
2014-12-15
In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Lévy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.
Physick, W. L.; Garratt, J. R.
1995-04-01
For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50 z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.
2017-07-28
risk assessment for “unsafe” scenarios. Recently, attention in the DoD has turned to Probabilistic Risk Assessment (PRA) models [5,6] as an...corresponding to the CRA undershoot boundary. The magenta- coloured line represents the portion of the C-RX(U) circle that would contribute to the...Tertiary Precaution Surface. Undershoot related laser firing restrictions within the green- coloured C-RX(U) can be ignored. Figure 34
International Nuclear Information System (INIS)
Bou Kheir, Rania; Greve, Mogens H.; Abdallah, Chadi; Dalgaard, Tommy
2010-01-01
Heavy metal contamination has been and continues to be a worldwide phenomenon that has attracted a great deal of attention from governments and regulatory bodies. In this context, our study proposes a regression-tree model to predict the concentration level of zinc in the soils of northern Lebanon (as a case study of Mediterranean landscapes) under a GIS environment. The developed tree-model explained 88% of variance in zinc concentration using pH (100% in relative importance), surroundings of waste areas (90%), proximity to roads (80%), nearness to cities (50%), distance to drainage line (25%), lithology (24%), land cover/use (14%), slope gradient (10%), conductivity (7%), soil type (7%), organic matter (5%), and soil depth (5%). The overall accuracy of the quantitative zinc map produced (at 1:50.000 scale) was estimated to be 78%. The proposed tree model is relatively simple and may also be applied to other areas. - GIS regression-tree analysis explained 88% of the variability in field/laboratory Zinc concentrations.
Energy Technology Data Exchange (ETDEWEB)
Bou Kheir, Rania, E-mail: rania.boukheir@agrsci.d [Lebanese University, Faculty of Letters and Human Sciences, Department of Geography, GIS Research Laboratory, P.O. Box 90-1065, Fanar (Lebanon); Department of Agroecology and Environment, Faculty of Agricultural Sciences (DJF), Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Greve, Mogens H. [Department of Agroecology and Environment, Faculty of Agricultural Sciences (DJF), Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Abdallah, Chadi [National Council for Scientific Research, Remote Sensing Center, P.O. Box 11-8281, Beirut (Lebanon); Dalgaard, Tommy [Department of Agroecology and Environment, Faculty of Agricultural Sciences (DJF), Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark)
2010-02-15
Heavy metal contamination has been and continues to be a worldwide phenomenon that has attracted a great deal of attention from governments and regulatory bodies. In this context, our study proposes a regression-tree model to predict the concentration level of zinc in the soils of northern Lebanon (as a case study of Mediterranean landscapes) under a GIS environment. The developed tree-model explained 88% of variance in zinc concentration using pH (100% in relative importance), surroundings of waste areas (90%), proximity to roads (80%), nearness to cities (50%), distance to drainage line (25%), lithology (24%), land cover/use (14%), slope gradient (10%), conductivity (7%), soil type (7%), organic matter (5%), and soil depth (5%). The overall accuracy of the quantitative zinc map produced (at 1:50.000 scale) was estimated to be 78%. The proposed tree model is relatively simple and may also be applied to other areas. - GIS regression-tree analysis explained 88% of the variability in field/laboratory Zinc concentrations.
Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.
2015-01-01
A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.
Kee, Kerk F; Sparks, Lisa; Struppa, Daniele C; Mannucci, Mirco A; Damiano, Alberto
2016-01-01
By integrating the simplicial model of social aggregation with existing research on opinion leadership and diffusion networks, this article introduces the constructs of simplicial diffusers (mathematically defined as nodes embedded in simplexes; a simplex is a socially bonded cluster) and simplicial diffusing sets (mathematically defined as minimal covers of a simplicial complex; a simplicial complex is a social aggregation in which socially bonded clusters are embedded) to propose a strategic approach for information diffusion of cancer screenings as a health intervention on Facebook for community cancer prevention and control. This approach is novel in its incorporation of interpersonally bonded clusters, culturally distinct subgroups, and different united social entities that coexist within a larger community into a computational simulation to select sets of simplicial diffusers with the highest degree of information diffusion for health intervention dissemination. The unique contributions of the article also include seven propositions and five algorithmic steps for computationally modeling the simplicial model with Facebook data.
Directory of Open Access Journals (Sweden)
Luisa Malaguti
2011-01-01
Full Text Available The paper deals with a degenerate reaction-diffusion equation, including aggregative movements and convective terms. The model also incorporates a real parameter causing the change from a purely diffusive to a diffusive-aggregative and to a purely aggregative regime. Existence and qualitative properties of traveling wave solutions are investigated, and estimates of their threshold speeds are furnished. Further, the continuous dependence of the threshold wave speed and of the wave profiles on a real parameter is studied, both when the process maintains its diffusion-aggregation nature and when it switches from it to another regime.
Characteristics and Diffusion Model of the Individual Knowledge in the WeChat Mode
Directory of Open Access Journals (Sweden)
Zhang Lingzhi
2017-12-01
Full Text Available [Purpose/significance] According to the model of the individual knowledge diffusion, we conduct a behavior research and analyze the characteristics of that based on WeChat which is the most popular communication platform in China.[Method/process] By analyzing the methods of the diffusion on WeChat, we analyzed the characteristics of the individual knowledge diffusion. [Result/conclusion]The characteristics of the individual knowledge diffusion include real-time, short-term, speciality, friendship and transmission.
Diffusion-controlled reactions modeling in Geant4-DNA
Czech Academy of Sciences Publication Activity Database
Karamitros, M.; Luan, S.; Bernal, M. A.; Allison, J.; Baldacchino, G.; Davídková, Marie; Francis, Z.; Friedland, W.; Ivanchenko, A.; Ivanchenko, V.; Mantero, A.; Nieminen, P.; Santin, G.; Tran, H. N.; Stepan, V.; Incerti, S.
2014-01-01
Roč. 274, OCT (2014), s. 841-882 ISSN 0021-9991 Institutional support: RVO:61389005 Keywords : chemical kinetics simulation * radiation chemistry * Fokker-Planck equation * Smoluchowski diffusion equation * Brownian bridge * dynamical time steps * k-d tree * radiolysis * radiobiology * Geant4-DNA * Brownian dynamics Subject RIV: BO - Biophysics Impact factor: 2.434, year: 2014
A model of modulated diffusion. I. Analytical results
International Nuclear Information System (INIS)
Bazzani, A.; Turcchetti, G.; Vaienti, S.
1994-01-01
We introduce an integrable isochronous system and perturb its frequency by an external-deterministic or purely random-noise. Under the perturbation the action variable evolves in time: the corresponding diffusion coefficient is exactly computed and its dependence on the magnitude of the perturbation is carefully investigated. Different behaviors are found and justified: the quasilinear approximation, the superlinear regime, and the ballistic motion
Comparison Of Diffuse Solar Radiation Models Using Data For ...
African Journals Online (AJOL)
Measurements of global solar radiation and sunshine duration data during the period from 1984 to 1999 were supplied by IITA (International Institute of Tropical Agriculture) at Onne. The data were used to establish empirical relationships that would connect the daily monthly average diffuse irradiation with both relative ...
Ionic diffusion in the double layer at model electrode/molten salt interfaces
International Nuclear Information System (INIS)
Tankeshwar, K.; Tosi, M.P.
1991-08-01
The anisotropic ionic diffusion coefficients in model electrochemical cells in the molten-salt regime for the electrolyte are evaluated from the ionic density profiles reported in simulation work of Grout and coworkers. A local description of the diffusion processes for counterions and coions in the electrical double layer is obtained from the data. (author). 10 refs, 1 fig., 1 tab
Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow
Gonzalez, M.
2018-04-01
The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.
Long, Thomas B.; Blok, Vincent; Poldner, Kim
2017-01-01
Technological innovations will play a prominent role in the transition to climate-smart agriculture (CSA). However, CSA technological innovation diffusion is subject to socio-economic barriers. The success of innovations is partly dependent on the business models that are used to diffuse them.
Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.
2016-10-01
Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the
International Nuclear Information System (INIS)
Maurin, D.
2001-02-01
Dark matter is present at numerous scale of the universe (galaxy, cluster of galaxies, universe in the whole). This matter plays an important role in cosmology and can not be totally explained by conventional physic. From a particle physic point of view, there exists an extension of the standard model - supersymmetry - which predicts under certain conditions the existence of new stable and massive particles, the latter interacting weakly with ordinary matter. Apart from direct detection in accelerators, various indirect astrophysical detection are possible. This thesis focuses on one particular signature: disintegration of these particles could give antiprotons which should be measurable in cosmic rays. The present study evaluates the background corresponding to this signal i. e. antiprotons produced in the interactions between these cosmic rays and interstellar matter. In particular, uncertainties of this background being correlated to the uncertainties of the diffusion parameter, major part of this thesis is devoted to nuclei propagation. The first third of the thesis introduces propagation of cosmic rays in our galaxy, emphasizing the nuclear reaction responsibles of the nuclei fragmentation. In the second third, different models are reviewed, and in particular links between the leaky box model and the diffusion model are recalled (re-acceleration and convection are also discussed). This leads to a qualitative discussion about information that one can infer from propagation of these nuclei. In the last third, we finally present detailed solutions of the bidimensional diffusion model, along with constrains obtained on the propagation parameters. The latter is applied on the antiprotons background signal and it concludes the work done in this thesis. The propagation code for nuclei and antiprotons used here has proven its ability in data analysis. It would probably be of interest for the analysis of the cosmic ray data which will be taken by the AMS experiment on
Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport.
Hendel, Nathan L; Thomson, Matthew; Marshall, Wallace F
2018-02-06
An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication between the base and the tip and possibly indicating that cells contain some mechanism for measuring flagellar length. Although it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback signals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length dependence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate that has been observed in quantitative imaging studies. Copyright © 2017 Biophysical
Two-state random walk model of lattice diffusion - 1. Self-correlation function
International Nuclear Information System (INIS)
Balakrishnan, V.; Venkataraman, G.
1981-01-01
Diffusion with interruptions (arising from localized oscillations, or traps, or mixing between jump diffusion and fluid-like diffusion, etc.) is a very general phenomenon. Its manifestations range from superionic conductance to the behaviour of hydrogen in metals. Based on a continuous-time random walk approach, we present a comprehensive two-state random walk model for the diffusion of a particle on a lattice, incorporating arbitrary holding-time distributions for both localized residence at the sites and inter-site flights, and also the correct first-waiting-time distributions. A synthesis is thus achieved of the two extremes of jump diffusion (zero flight time) and fluid-like diffusion (zero residence time). Various earlier models emerge as special cases of our theory. Among the noteworthy results obtained are: closed-form solutions (in d dimensions, and with arbitrary directional bias) for temporarily uncorrelated jump diffusion and for the fluid diffusion counterpart; a compact, general formula for the mean square displacement; the effects of a continuous spectrum of time scales in the holding-time distributions, etc. The dynamic mobility and the structure factor for 'oscillatory diffusion' are taken up in part 2. (author)
Directory of Open Access Journals (Sweden)
Juan Wang
2017-11-01
Full Text Available Understanding diffusion of intrinsically disordered proteins (IDPs under crowded environments is of ubiquitous importance to modelling related dynamics in biological systems. In the present work, we proposed a theoretical framework to study the diffusion behavior of IDPs in polymer solutions. IDP is modeled as an ensemble of particles with a wide range of gyration radius subject to Flory-Fisk distribution, where the collapse effect which leads to the shrink of IDP due to polymer crowding is included. The diffusion coefficient of IDP is calculated as the average, denoted by 〈D〉, over the values of the particle samples. By properly incorporating the scaling relations for diffusion coefficient of nanoparticle (NP in polymer solutions, we are able to evaluate 〈D〉 straightforwardly and reveal the disorder and collapse effects on IDP’s diffusion in an explicit manner. Particular attentions are paid on comparison between the diffusion coefficient of an IDP and that of a NP. Results demonstrate that both disorder and collapse can enhance IDP diffusion rate. Our analysis shows that the crossover behavior reported by experiments can be actually a general phenomenon, namely, while a NP with smaller size than that of an IDP diffuses faster in simple solutions, the IDP may become the faster one under crowded conditions. We apply our theory to analyze the diffusion of several types of IDP in a few different polymer solutions. Good agreements between the theoretical results and the experimental data are obtained.
International Nuclear Information System (INIS)
Bae, D.S.; Kim, C.S.; Koh, Y.K.; Kim, K.S.; Song, M.Y.
1997-01-01
The prediction of groundwater flow affecting the migration of radionuclides is an important component of the performance assessment of radioactive waste disposal. Groundwater flow in fractured rock mass is controlled by fracture networks, transmissivity and hydraulic gradient. Furthermore the scale-dependent and anisotropic properties of hydraulic parameters are resulted mainly from irregular patterns of fracture system, which are very complex to evaluate properly with the current techniques available. For the purpose of characterizing a groundwater flow in fractured rock mass, the discrete fracture network (DFN) concept is available on the basis of assumptions of groundwater flowing only along fractures and flowpaths in rock mass formed by interconnected fractures. To increase the reliability of assessment in groundwater flow phenomena, numerical groundwater flow model and isotopic techniques were applied. Fracture mapping, borehole acoustic scanning were performed to identify conductive fractures in gneissic terrane. Tracer techniques, using deuterium, oxygen-18 and tritium were applied to evaluate the recharge area and groundwater residence time
Diffusion Forecasting Model with Basis Functions from QR-Decomposition
Harlim, John; Yang, Haizhao
2017-12-01
The diffusion forecasting is a nonparametric approach that provably solves the Fokker-Planck PDE corresponding to Itô diffusion without knowing the underlying equation. The key idea of this method is to approximate the solution of the Fokker-Planck equation with a discrete representation of the shift (Koopman) operator on a set of basis functions generated via the diffusion maps algorithm. While the choice of these basis functions is provably optimal under appropriate conditions, computing these basis functions is quite expensive since it requires the eigendecomposition of an N× N diffusion matrix, where N denotes the data size and could be very large. For large-scale forecasting problems, only a few leading eigenvectors are computationally achievable. To overcome this computational bottleneck, a new set of basis functions constructed by orthonormalizing selected columns of the diffusion matrix and its leading eigenvectors is proposed. This computation can be carried out efficiently via the unpivoted Householder QR factorization. The efficiency and effectiveness of the proposed algorithm will be shown in both deterministically chaotic and stochastic dynamical systems; in the former case, the superiority of the proposed basis functions over purely eigenvectors is significant, while in the latter case forecasting accuracy is improved relative to using a purely small number of eigenvectors. Supporting arguments will be provided on three- and six-dimensional chaotic ODEs, a three-dimensional SDE that mimics turbulent systems, and also on the two spatial modes associated with the boreal winter Madden-Julian Oscillation obtained from applying the Nonlinear Laplacian Spectral Analysis on the measured Outgoing Longwave Radiation.
Laser altimetry and terrain analysis: A revolution in geomorphology
Anders, N.; Seijmonsbergen, H.
2008-01-01
Terrain analysis in geomorphology has undergone a serious quantitative revolution over recent decades. Lidar information has been efficiently used to automatically classify discrete landforms, map forest structures, and provide input for models simulating landscape development, e.g. channel incision
CITY OF RADFORD TERRAIN, CITY OF RADFORD, VA, USA
Federal Emergency Management Agency, Department of Homeland Security — Terrain data includes digital elevation models, LIDAR derived contours, LIDAR three-dimensional spot elevations and breaklines, field surveyed ground elevations and...
Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model.
Kotzakoulakis, Konstantinos; George, Simon C
2018-01-01
The majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate. The information required is the composition of the fluid from gas chromatography or alternatively the distillation data. If the density or a single viscosity measurement is available the accuracy of the predictions is higher. Environmental conditions such as water temperature, air pressure and wind velocity are taken into account. The model was tested with synthetic mixtures, petroleum fuels and crude oils with initial viscosities ranging from 2 to 13,000 cSt. The tested temperatures varied from 0 °C to 23.4 °C and wind velocities from 0.3 to 3.8 m/s. The average absolute deviation (AAD) of the diffusion-limited model ranged between 1.62% and 24.87%. In comparison, the AAD of a diffusion-agnostic model ranged between 2.34% and 136.62% against the same tested fluids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu
2018-04-01
Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.
Anomalous diffusion in a lattice-gas wind-tree model
International Nuclear Information System (INIS)
Kong, X.P.; Cohen, E.G.D.
1989-01-01
Two new strictly deterministic lattice-gas automata derived from Ehrenfest's wind-tree model are studied. While in one model normal diffusion occurs, the other model exhibits abnormal diffusion in that the distribution function of the displacements of the wind particle is non-Gaussian, but its second moment, the mean-square displacement, is proportional to the time, so that a diffusion coefficient can be defined. A connection with the percolation problem and a self-avoiding random walk for the case in which the lattice is completely covered with trees is discussed
Atomistic models of Cu diffusion in CuInSe2 under variations in composition
Sommer, David E.; Dunham, Scott T.
2018-03-01
We construct an analytic model for the composition dependence of the vacancy-mediated Cu diffusion coefficient in undoped CuInSe2 using parameters from density functional theory. The applicability of this model is supported numerically with kinetic lattice Monte Carlo and Onsager transport tensors. We discuss how this model relates to experimental measurements of Cu diffusion, arguing that our results can account for significant contributions to the bulk diffusion of Cu tracers in non-stoichiometric CuInSe2.
Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion
Directory of Open Access Journals (Sweden)
Xinze Lian
2013-01-01
Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.
Durner, George M.; Simac, Kristin S.; Amstrup, Steven C.
2013-01-01
The National Petroleum Reserve–Alaska (NPR-A) in northeastern Alaska provides winter maternal denning habitat for polar bears (Ursus maritimus) and also has high potential for recoverable hydrocarbons. Denning polar bears exposed to human activities may abandon their dens before their young are able to survive the severity of Arctic winter weather. To ensure that wintertime petroleum activities do not threaten polar bears, managers need to know the distribution of landscape features in which maternal dens are likely to occur. Here, we present a map of potential denning habitat within the NPR-A. We used a fine-grain digital elevation model derived from Interferometric Synthetic Aperture Radar (IfSAR) to generate a map of putative denning habitat. We then tested the map’s ability to identify polar bear denning habitat on the landscape. Our final map correctly identified 82% of denning habitat estimated to be within the NPR-A. Mapped denning habitat comprised 19.7 km2 (0.1% of the study area) and was widely dispersed. Though mapping denning habitat with IfSAR data was as effective as mapping with the photogrammetric methods used for other regions of the Alaskan Arctic coastal plain, the use of GIS to analyze IfSAR data allowed greater objectivity and flexibility with less manual labor. Analytical advantages and performance equivalent to that of manual cartographic methods suggest that the use of IfSAR data to identify polar bear maternal denning habitat is a better management tool in the NPR-A and wherever such data may be available.
Use of field experimental studies to evaluate emergency response models
International Nuclear Information System (INIS)
Gudiksen, P.H.; Lange, R.; Rodriguez, D.J.; Nasstrom, J.S.
1985-01-01
The three-dimensional diagnostic wind field model (MATHEW) and the particle-in-cell atmospheric transport and diffusion model (ADPIC) are used by the Atmospheric Release Advisory Capability to estimate the environmental consequences of accidental releases of radioactivity into the atmosphere. These models have undergone extensive evaluations against field experiments conducted in a variety of environmental settings ranging from relatively flat to very complex terrain areas. Simulations of tracer experiments conducted in a complex mountain valley setting revealed that 35 to 50% of the comparisons between calculated and measured tracer concentrations were within a factor of 5. This may be compared with a factor of 2 for 50% of the comparisons for relatively flat terrain. This degradation of results in complex terrain is due to a variety of factors such as the limited representativeness of measurements in complex terrain, the limited spatial resolution afforded by the models, and the turbulence parameterization based on sigma/sub theta/ measurements to evaluate the eddy diffusivities. Measurements of sigma/sub theta/ in complex terrain exceed those measured over flat terrain by a factor of 2 to 3 leading to eddy diffusivities that are unrealistically high. The results of model evaluations are very sensitive to the quality and the representativeness of the meteorological data. This is particularly true for measurements near the source. The capability of the models to simulate the dispersion of an instantaneously produced cloud of particulates was illustrated to be generally within a factor of 2 over flat terrain. 19 refs., 16 figs