WorldWideScience

Sample records for terpenoids

  1. Terpenoids and Their Biosynthesis in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bagmi Pattanaik

    2015-01-01

    Full Text Available Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids.

  2. Terpenoids and Their Biosynthesis in Cyanobacteria

    Science.gov (United States)

    Pattanaik, Bagmi; Lindberg, Pia

    2015-01-01

    Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610

  3. Terpenoids for medicine

    NARCIS (Netherlands)

    Fischedick, Justin

    2013-01-01

    This thesis is concerns research on monoterpenoids, sesquiterpenoids, and diterpenoids with medicinal properties. Terpenoids from commond herbs as well as Cannabis sativa, Inula britannica, Tanacetum parthenium, and Salvia officinalis were investigated

  4. Natural product terpenoids in Eocene and Miocene conifer fossils.

    Science.gov (United States)

    Otto, Angelika; White, James D; Simoneit, Bernd R T

    2002-08-30

    Numerous saturated and aromatic hydrocarbons, but not polar compounds, originating from plants and microorganisms (biomarkers) have been reported in sediments, coals, and petroleum. Here we describe natural product terpenoids found in two fossil conifers, Taxodium balticum (Eocene) and Glyptostrobus oregonensis (Miocene). A similar terpenoid pattern is also observed in extant Taxodium distichum. The preservation of characteristic terpenoids (unaltered natural products) in the fossil conifers supports their systematic assignment to the Cypress family (Cupressaceae sensu lato). The results also show that fossil conifers can contain polar terpenoids, which are valuable markers for (paleo)chemosystematics and phylogeny.

  5. Metabolic engineering for improved heterologous terpenoid biosynthesis

    NARCIS (Netherlands)

    Ryden, A.; Melillo, E.; Czepnik, M.; Kayser, O.

    Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood

  6. Volatile science? Metabolic engineering of terpenoids in plants

    NARCIS (Netherlands)

    Aharoni, A.; Jongsma, M.A.; Bouwmeester, H.J.

    2005-01-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has

  7. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.

    Science.gov (United States)

    Schempp, Florence M; Drummond, Laura; Buchhaupt, Markus; Schrader, Jens

    2018-03-14

    Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C 5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C 5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.

  8. Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation.

    Science.gov (United States)

    Wriessnegger, Tamara; Pichler, Harald

    2013-07-01

    Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering.

    Science.gov (United States)

    Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping

    2017-11-01

    Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.

  10. Characterization of terpenoid volatiles from cultivars of eastern hemlock (Tsuga canadensis).

    Science.gov (United States)

    Lagalante, Anthony F; Montgomery, Michael E; Calvosa, Frank C; Mirzabeigi, Michael N

    2007-12-26

    The volatile terpenoid fraction from needles in 13 cultivars of Tsuga canadensis L. (Carriere) was analyzed by gas chromatography with mass spectrometry (GC-MS). The results of this study are considered along with previously reported results for foliar terpenoid levels of the Asian (T. sieboldii, T. chinensis, T. diversifolia), western North American (T. mertensiana, T. heterophylla), and eastern North American species (T. canadensis, T. caroliniana) of hemlock to draw conclusions about the potential of cultivar host resistance to the hemlock woolly adelgid (Adelges tsugae Annand). It is suggested that hemlocks in eastern North America have adapted their terpenoid chemistry for protection against endemic defoliators and that this has made them vulnerable to non-native, sucking pests such as adelgids and scales. Some cultivars of T. canadensis have a terpenoid profile that resembles that of the resistant noneastern North American species and are candidates for biological screening for resistance. Among the cultivars, the variation in terpenoid chemistry did not absolutely correspond with the considerable differences in morphological characters observed, indicating that the terpenoid chemistry is not definitively coupled with hemlock morphology.

  11. Terpenoids from the Octocoral Sinularia gaweli

    Directory of Open Access Journals (Sweden)

    Wun-Jie Lin

    2015-08-01

    Full Text Available Two eudesmane sesquiterpenoids, verticillatol (1 and 5α-acetoxy-4(14-eudesmene-1β-ol (2 and two cembrane diterpenoids, (–-leptodiol acetate (3 and sinulacembranolide A (4 were isolated from the octocoral Sinularia gaweli and compounds 2–4 are new isolates. The structures of new terpenoids 2–4 were elucidated by spectroscopic methods and by comparison the spectral data with those of known analogues. Terpenoid 4 was found to inhibit the accumulation of the pro-inflammatory inducible nitric oxide synthase (iNOS protein of the lipopolysaccharide (LPS-stimulated RAW264.7 marcophage cells.

  12. Terpenoid antifeedants against insects : a behavioural and sensory study

    NARCIS (Netherlands)

    Messchendorp, L.

    1998-01-01

    This thesis describes a study on the behavioural and sensory effects of terpenoid antifeedants on several insect species. The main aim was to elucidate the mechanisms of action of terpenoid antifeedants. From a fundamental point of view, this will yield insight in the role of these

  13. Terpenoids in Buddleja: relevance to chemosystematics, chemical ecology and biological activity.

    Science.gov (United States)

    Houghton, Peter J; Mensah, Abraham Y; Iessa, Noha; Hong, Liao Yong

    2003-09-01

    The terpenoids reported from Buddleja species are described. The antifungal activity of chloroform extracts of B. cordata and B. davidii stembark against the soil fungi Fusarium culmorum and Sordari fimicola is reported, with buddledin A shown to be the major compound responsible. The terpenoids present support the view that the Buddlejaceae should be classified in a taxon with Scrophulariaceae rather than Loganiaceae. Ecological aspects of the terpenoids are considered in relation to insects and soil fungi and the role of terpenoids in the chemical basis of the use of Buddleja in traditional medicine is also discussed, especially with regard to their anti-inflammatory properties.

  14. Development of a Terpenoid-Production Platform in Streptomyces reveromyceticus SN-593.

    Science.gov (United States)

    Khalid, Ammara; Takagi, Hiroshi; Panthee, Suresh; Muroi, Makoto; Chappell, Joe; Osada, Hiroyuki; Takahashi, Shunji

    2017-12-15

    Terpenoids represent the largest class of natural products, some of which are resources for pharmaceuticals, fragrances, and fuels. Generally, mass production of valuable terpenoid compounds is hampered by their low production levels in organisms and difficulty of chemical synthesis. Therefore, the development of microbial biosynthetic platforms represents an alternative approach. Although microbial terpenoid-production platforms have been established in Escherichia coli and yeast, an optimal platform has not been developed for Streptomyces species, despite the large capacity to produce secondary metabolites, such as polyketide compounds. To explore this potential, we constructed a terpenoid-biosynthetic platform in Streptomyces reveromyceticus SN-593. This strain is unique in that it harbors the mevalonate gene cluster enabling the production of furaquinocin, which can be controlled by the pathway specific regulator Fur22. We simultaneously expressed the mevalonate gene cluster and subsequent terpenoid-biosynthetic genes under the control of Fur22. To achieve improved fur22 gene expression, we screened promoters from S. reveromyceticus SN-593. Our results showed that the promoter associated with rvr2030 gene enabled production of 212 ± 20 mg/L botryococcene to levels comparable to those previously reported for other microbial hosts. Given that the rvr2030 gene encodes for an enzyme involved in the primary metabolism, these results suggest that optimized expression of terpenoid-biosynthetic genes with primary and secondary metabolism might be as important for high yields of terpenoid compounds as is the absolute expression level of a target gene(s).

  15. Terpenoid composition and class of Tertiary resins from India

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa; Mathews, Runcie Paul [Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Bertram, Norbert [LTA-Labor fuer Toxikologie und Analytik, Friedrichshoeher Str. 28, D-53639 Koenigswinter (Germany); Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemitry Centres (M090), The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009 (Australia); WA - Organic and Isotope Geochemistry Centre, Curtin University of Technology, Kent St., Bentley 6102 (Australia)

    2009-10-01

    The terpenoid composition and class of Tertiary resins preserved within lignites of Cambay, Kutch and Cauvery Basins of India have been characterized using Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) and Fourier Transform Infrared (FTIR) Spectroscopy. Major pyrolysis products include cadalene-based C{sub 15}-bicyclic sesquiterpenoids with some C{sub 30} and C{sub 31} bicadinanes and bicadinenes typical of Class II or dammar resin. The occurrence of these terpenoids in Early Eocene sediments may extend the first appearance of Dipterocarpaceae angiosperms, the predominant source of this resin class, back to the Early Eocene epoch in India. The same terpenoid biomarkers have been detected in many SE Asian oils reflecting a close source relationship with these resins. Strong CH{sub 3} (1377 cm{sup -} {sup 1}) and other CH{sub x} (3000-2800 and 1460-1450 cm{sup -} {sup 1}) aliphatic absorptions of much larger intensity than the aromatic C = C (1560-1650 cm{sup -} {sup 1}) absorption were detected in the Indian resins by FTIR Spectroscopy, confirming the quantitative significance of the terpenoid pyrolysates. (author)

  16. Microbial production strategies and applications of lycopene and other terpenoids.

    Science.gov (United States)

    Ma, Tian; Deng, Zixin; Liu, Tiangang

    2016-01-01

    Terpenoids are a large class of compounds that have far-reaching applications and economic value, particularly those most commonly found in plants; however, the extraction and synthesis of these compounds is often expensive and technically challenging. Recent advances in microbial metabolic engineering comprise a breakthrough that may enable the efficient, cost-effective production of these limited natural resources. Via the engineering of safe, industrial microorganisms that encode product-specific enzymes, and even entire metabolic pathways of interest, microbial-derived semisynthetic terpenoids may soon replace plant-derived terpenoids as the primary source of these valuable compounds. Indeed, the recent metabolic engineering of an Escherichia coli strain that produces the precursor to lycopene, a commercially and medically important compound, with higher yields than those in tomato plants serves as a successful example. Here, we review the recent developments in the metabolic engineering of microbes for the production of certain terpenoid compounds, particularly lycopene, which has been increasingly used in pharmaceuticals, nutritional supplements, and cosmetics. Furthermore, we summarize the metabolic engineering strategies used to achieve successful microbial production of some similar compounds. Based on this overview, there is a reason to believe that metabolic engineering comprises an optimal approach for increasing the production of lycopene and other terpenoids.

  17. Flavonoids and terpenoids from Croton muscicarpa (Euphorbiaceae)

    International Nuclear Information System (INIS)

    Barreto, Milena B.; Gomes, Clêrton L.; Freitas, João Vito B. de; Pinto, Francisco das Chagas L.; Silveira, Edilberto R.; Gramosa, Nilce V.; Torres, Daniela S. Carneiro

    2013-01-01

    A new sesquiterpene and twelve known compounds comprising eight flavonoids and four terpenoids, were isolated from the leaves, stems, roots and exudate of Croton muscicarpa Müll.. Arg.. Their structures were identified as the terpenoids 6α-methoxy-cyperene, dammaradienol, squalene, acetyl aleuritolic acid and spathulenol, and as the flavonoids retusin, 3,7,4’-trimethoxy kaempferol, ombuine, pachipodol, kaempferol, casticin, 5-hydroxy-3,6,7,4’-tetramethoxyflavone and artemetin. All isolated compounds were characterized based on IR, MS, 1 H and 13 C NMR, including 2D analyses (COSY, HSQC, HMBC, NOESY) and comparison with data from the literature. (author)

  18. Flavonoids and terpenoids from Croton muscicarpa (Euphorbiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Milena B.; Gomes, Clerton L.; Freitas, Joao Vito B. de; Pinto, Francisco das Chagas L.; Silveira, Edilberto R.; Gramosa, Nilce V., E-mail: nilce@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Centro de Ciencias, Universidade Federal do Ceara, Fortaleza (Brazil); Torres, Daniela S. Carneiro [Departamento de Ciencias Biologicas Jequie, Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil)

    2013-09-01

    A new sesquiterpene and twelve known compounds comprising eight flavonoids and four terpenoids, were isolated from the leaves, stems, roots and exudate of Croton muscicarpa Muell.. Arg.. Their structures were identified as the terpenoids 6{alpha}-methoxy-cyperene, dammaradienol, squalene, acetyl aleuritolic acid and spathulenol, and as the flavonoids retusin, 3,7,4'-trimethoxy kaempferol, ombuine, pachipodol, kaempferol, casticin, 5-hydroxy-3,6,7,4'-tetramethoxyflavone and artemetin. All isolated compounds were characterized based on IR, MS, {sup 1}H and {sup 13}C NMR, including 2D analyses (COSY, HSQC, HMBC, NOESY) and comparison with data from the literature. (author)

  19. Flavonoides e terpenoides de Croton muscicarpa (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    Milena B. Barreto

    2013-01-01

    Full Text Available A new sesquiterpene and twelve known compounds comprising eight flavonoids and four terpenoids, were isolated from the leaves, stems, roots and exudate of Croton muscicarpa Müll. Arg.. Their structures were identified as the terpenoids 6α-methoxy-cyperene, dammaradienol, squalene, acetyl aleuritolic acid and spathulenol, and as the flavonoids retusin, 3,7,4'-trimethoxy kaempferol, ombuine, pachipodol, kaempferol, casticin, 5-hydroxy-3,6,7,4'-tetramethoxyflavone and artemetin. All isolated compounds were characterized based on IR, MS, ¹H and 13C NMR, including 2D analyses (COSY, HSQC, HMBC, NOESY and comparison with data from the literature.

  20. Flavonoids and terpenoids from Croton muscicarpa (Euphorbiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Milena B.; Gomes, Clerton L.; Freitas, Joao Vito B. de; Pinto, Francisco das Chagas L.; Silveira, Edilberto R.; Gramosa, Nilce V., E-mail: nilce@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Centro de Ciencias, Universidade Federal do Ceara, Fortaleza (Brazil); Torres, Daniela S. Carneiro [Departamento de Ciencias Biologicas Jequie, Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil)

    2013-09-01

    A new sesquiterpene and twelve known compounds comprising eight flavonoids and four terpenoids, were isolated from the leaves, stems, roots and exudate of Croton muscicarpa Muell.. Arg.. Their structures were identified as the terpenoids 6{alpha}-methoxy-cyperene, dammaradienol, squalene, acetyl aleuritolic acid and spathulenol, and as the flavonoids retusin, 3,7,4'-trimethoxy kaempferol, ombuine, pachipodol, kaempferol, casticin, 5-hydroxy-3,6,7,4'-tetramethoxyflavone and artemetin. All isolated compounds were characterized based on IR, MS, {sup 1}H and {sup 13}C NMR, including 2D analyses (COSY, HSQC, HMBC, NOESY) and comparison with data from the literature. (author)

  1. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    Science.gov (United States)

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles.

    Science.gov (United States)

    Mashwani, Zia-Ur-Rehman; Khan, Mubarak Ali; Khan, Tariq; Nadhman, Akhtar

    2016-08-01

    Green chemistry is the design of chemical products and processes that reduce or eliminate the generation of hazardous substances. Since the last few years, natural products especially plant secondary metabolites have been extensively explored for their potency to synthesize silver nanoparticles (AgNPs). The plant-based AgNPs are safer, energy efficient, eco-friendly, and less toxic than chemically synthesized counterparts. The secondary metabolites, ubiquitously found in plants especially the terpenoid-rich essential oils, have a significant role in AgNPs synthesis. Terpenoids belong to the largest family of natural products and are found in all kinds of organisms. Their involvement in the synthesis of plant-based AgNPs has got much attention in the recent years. The current article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present the pertinent role of plant terpenoids in the biosynthesis of AgNPs, as capping and reducing agents for development of uniform size and shape AgNPs. An emphasis on the important role of FTIR in the identification and elucidation of major functional groups in terpenoids for AgNPs synthesis has also been reviewed in this manuscript. It was found that no such article is available that has discussed the role of plant terpenoids in the green synthesis of AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Terpenoids in plant signaling, chemical ecology

    NARCIS (Netherlands)

    Kappers, I.F.; Dicke, M.; Bouwmeester, H.J.

    2008-01-01

    Terpenoids constitute the largest class of secondary metabolites in the plant kingdom. Because of their immense structural diversity and the resulting diversity in physiochemical properties, these molecules are particularly important for plant communication with other organisms. In this article, we

  4. Drought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance.

    Science.gov (United States)

    Kleiber, Anita; Duan, Qiuxiao; Jansen, Kirstin; Verena Junker, Laura; Kammerer, Bernd; Rennenberg, Heinz; Ensminger, Ingo; Gessler, Arthur; Kreuzwieser, Jürgen

    2017-12-01

    Douglas fir (Pseudotsuga menziesii) is a conifer species that stores large amounts of terpenoids, mainly monoterpenoids in resin ducts of various tissues. The effects of drought on stored leaf terpenoid concentrations in trees are scarcely studied and published data are partially controversial, since reduced, unaffected or elevated terpenoid contents due to drought have been reported. Even less is known on the effect of drought on root terpenoids. In the present work, we investigated the effect of reduced water availability on the terpenoid content in roots and needles of Douglas fir seedlings. Two contrasting Douglas fir provenances were studied: an interior provenance (var. glauca) with assumed higher drought resistance, and a coastal provenance (var. menziesii) with assumed lower drought resistance. We tested the hypothesis that both provenances show specific patterns of stored terpenoids and that the patterns will change in response to drought in both, needles and roots. We further expected stronger changes in the less drought tolerant coastal provenance. For this purpose, we performed an experiment under controlled conditions, in which the trees were exposed to moderate and severe drought stress. According to our expectations, the study revealed clear provenance-specific terpenoid patterns in needles. However, such patterns were not detected in the roots. Drought slightly increased the needle terpenoid contents of the coastal but not of the interior provenance. We also observed increased terpenoid abundance mainly in roots of the moderately stressed coastal provenance. Overall, from the observed provenance-specific reactions with increased terpenoid levels in trees of the coastal origin in response to drought, we conclude on functions of terpenoids for abiotic stress tolerance that might be fulfilled by other, constitutively expressed mechanisms in drought-adapted interior provenances. © The Author 2017. Published by Oxford University Press. All rights

  5. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects

    Science.gov (United States)

    Russo, Ethan B

    2011-01-01

    Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL−1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. LINKED ARTICLES

  6. In silico discovery of terpenoid metabolism in Cannabis sativa.

    Science.gov (United States)

    Massimino, Luca

    2017-01-01

    Due to their efficacy, cannabis based therapies are currently being prescribed for the treatment of many different medical conditions. Interestingly, treatments based on the use of cannabis flowers or their derivatives have been shown to be very effective, while therapies based on drugs containing THC alone lack therapeutic value and lead to increased side effects, likely resulting from the absence of other pivotal entourage compounds found in the Phyto-complex. Among these compounds are terpenoids, which are not produced exclusively by cannabis plants, so other plant species must share many of the enzymes involved in their metabolism. In the present work, 23,630 transcripts from the canSat3 reference transcriptome were scanned for evolutionarily conserved protein domains and annotated in accordance with their predicted molecular functions. A total of 215 evolutionarily conserved genes encoding enzymes presumably involved in terpenoid metabolism are described, together with their expression profiles in different cannabis plant tissues at different developmental stages. The resource presented here will aid future investigations on terpenoid metabolism in Cannabis sativa .

  7. Phytochemical studies on the terpenoids of medicinally important plant Aerva lanata L. using HPTLC

    Institute of Scientific and Technical Information of China (English)

    Yamunadevi M; Wesely EG; Johnson M

    2011-01-01

    Objective:To elucidate the terpenoids profile of Aerva lanata (A. lanata) using high performance thin layer chromatography (HPTLC). Methods: Preliminary phytochemical screening was done and HPTLC studies were carried out. The n-hexane:ethyl acetate (7.2: 2.8) was employed as mobile phase for terpenoids. Results: The desired aim was achieved using n-hexane-ethyl acetate (7.2: 2.8) as the mobile phase. The methanolic extract of stem, leaves, root, flower and seeds of A. lanata showed the presence of 27 different types of terpenoids with 27 different Rf values in the range of 0.06 to 0.97. The developed HPTLC method for terpenoid profile is simple, precise and accurate and can be used for the identification and commercial application. Conclusions:HPTLC profile of terpenoids has been chosen here to reveal the diversity existing at biochemical level in A. lanata. Such finger printing is useful in differentiating the species from the adulterant and act as a biochemical marker for this medicinally important plant in the pharmaceutical industry and plant systematic studies.

  8. Identification of Terpenoid Chemotypes Among High (-)-trans-Δ9- Tetrahydrocannabinol-Producing Cannabis sativa L. Cultivars.

    Science.gov (United States)

    Fischedick, Justin T

    2017-01-01

    Introduction: With laws changing around the world regarding the legal status of Cannabis sativa (cannabis) it is important to develop objective classification systems that help explain the chemical variation found among various cultivars. Currently cannabis cultivars are named using obscure and inconsistent nomenclature. Terpenoids, responsible for the aroma of cannabis, are a useful group of compounds for distinguishing cannabis cultivars with similar cannabinoid content. Methods: In this study we analyzed terpenoid content of cannabis samples obtained from a single medical cannabis dispensary in California over the course of a year. Terpenoids were quantified by gas chromatography with flame ionization detection and peak identification was confirmed with gas chromatography mass spectrometry. Quantitative data from 16 major terpenoids were analyzed using hierarchical clustering analysis (HCA), principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Results: A total of 233 samples representing 30 cultivars were used to develop a classification scheme based on quantitative data, HCA, PCA, and OPLS-DA. Initially cultivars were divided into five major groups, which were subdivided into 13 classes based on differences in terpenoid profile. Different classification models were compared with PLS-DA and found to perform best when many representative samples of a particular class were included. Conclusion: A hierarchy of terpenoid chemotypes was observed in the data set. Some cultivars fit into distinct chemotypes, whereas others seemed to represent a continuum of chemotypes. This study has demonstrated an approach to classifying cannabis cultivars based on terpenoid profile.

  9. Overexpression and RNA interference of TwDXR regulate the accumulation of terpenoid active ingredients in Tripterygium wilfordii.

    Science.gov (United States)

    Zhang, Yifeng; Zhao, Yujun; Wang, Jiadian; Hu, Tianyuan; Tong, Yuru; Zhou, Jiawei; Song, Yadi; Gao, Wei; Huang, Luqi

    2018-02-01

    To examine the putative regulatory role of TwDXR in terpenoid biosynthesis and terpenoid biosynthetic pathway-related gene expression, through overexpression and RNA interference with TwDXR. We obtained 1410 and 454 bp TwDXR-specific fragments to construct overexpression and RNAi vectors. qRT-PCR was used to detect the expression of TwDXR and terpenoid biosynthesis pathway-related genes. The overexpression of TwDXR led to a 285% upregulation and the TwDXR RNAi led to a reduction to 26% of the control (empty vector-transformed cells) levels. However, pathway-related genes displayed different trends. When TwDXR was overexpressed, TwDXS expression decreased by 31% but increased to 198% when TwDXR expression was inhibited. The accumulation of terpenoids was also assayed. In the overexpression group, differences were not significant whereas the contents of triptolide and celastrol in the TwDXR RNAi samples were diminished by 27.3 and 24.0%, respectively. The feedback regulation of gene transcription and the accumulation of terpenoids in terpenoid biosynthesis in Tripterygium wilfordii were verified by TwDXR overexpression and RNAi experiments.

  10. Proteomic Insights on the Metabolism of Penicillium janczewskii during the Biotransformation of the Plant Terpenoid Labdanolic Acid

    Directory of Open Access Journals (Sweden)

    Isabel Martins

    2017-07-01

    Full Text Available Plant terpenoids compose a natural source of chemodiversity of exceptional value. Many of these compounds own biological/pharmacological activity, others are regarded as unique chemical skeletons for the synthesis of derivatives with improved properties. Functional chemical modification of terpenoids through biotransformation frequently relies on the use of Ascomycota strains, but information on major cellular responses is still largely lacking. Penicillium janczewskii mediates a stereo-selective hydroxylation of labdanolic acid (LA—terpenoid found abundantly in Cistus ladanifer—producing 3β-hydroxy-labdanolic acid with yields >90%. Herein, combined analyses of mycelial and extracellular differential proteomes demonstrated that the plant terpenoid increased stress responses, especially against oxidative stress (e.g., accumulation of superoxide dismutase and apparently altered mitochondria functioning. One putative cytochrome P450 monooxygenase differentially accumulated in the secretome and the terpenoid bioconversion was inhibited in vivo in the presence of a P450 inhibitor. The stereo-selective hydroxylation of the plant terpenoid is likely mediated by P450 enzymes, yet its unequivocal identity remains unclear. To the best of our knowledge, this is the first time that proteomics was used to investigate how a plant terpenoid impacts the metabolism of a filamentous fungus during its efficiently biotransformation. Our findings may encourage the development of new strategies for the valorization of plant natural resources through biotechnology.

  11. Methods and materials for production of terpenoids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provide novel methods for production of terpenoids. The methods take advantage of combinations of enzymes, which are not present in nature. Thus the methods involves use of host organisms expressing a diTPS of class II, diTPS of class I, and one or more CYPs....

  12. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.

    Science.gov (United States)

    Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C

    2009-12-01

    To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.

  13. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels

    DEFF Research Database (Denmark)

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-01-01

    of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce...

  14. Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and ...

    African Journals Online (AJOL)

    Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and Cell Cycle Arrest in ... of linalool on cell morphology and apoptotic body formation in DU145 cells ... It was observed that 4.36, 11.54, 21.88 and 15.54 % of the cells underwent ...

  15. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids

    Directory of Open Access Journals (Sweden)

    Johnson Christopher B

    2011-01-01

    Full Text Available Abstract Background Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. Results S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330 in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1 also improved production levels, pointing to an additional means to improve production. Conclusions Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.

  16. Identification of novel anticancer terpenoids from Prosopis juliflora ...

    African Journals Online (AJOL)

    Purpose: To identify a novel source of terpenoid anticancer compounds from P. juliflora (Sw.) DC. (Leguminosae) pods as a medicinal substitute for cancer medicines. Methods: The pods were collected, dried and pulverized. The ethanol extract was prepared by maceration. Various phyto-constituents were detected in the ...

  17. Expression of MEP Pathway Genes and Non-volatile Sequestration Are Associated with Circadian Rhythm of Dominant Terpenoids Emission in Osmanthus fragrans Lour. Flowers

    Directory of Open Access Journals (Sweden)

    Riru Zheng

    2017-10-01

    Full Text Available Osmanthus fragrans Lour. is one of the top 10 traditional ornamental flowers in China famous for its unique fragrance. Preliminary study proved that the terpenoids including ionone, linalool, and ocimene and their derivatives are the dominant aroma-active compounds that contribute greatly to the scent bouquet. Pollination observation implies the emission of aromatic terpenoids may follow a circadian rhythm. In this study, we investigated the variation of volatile terpenoids and its potential regulators. The results showed that both volatile and non-volatile terpenoids presented circadian oscillation with high emission or accumulation during the day and low emission or accumulation during the night. The volatile terpenoids always increased to reach their maximum values at 12:00 h, while free and glycosylated compounds continued increasing throughout the day. The depletion of non-volatile pool might provide the substrates for volatile emission at 0:00–6:00, suggesting the sequestration of non-volatile compounds acted like a buffer regulating emission of terpenoids. Further detection of MEP pathway genes demonstrated that their expressions increased significantly in parallel with the evident increase of both volatile and non-volatile terpenoids during the day, indicating that the gene expressions were also closely associated with terpenoid formation. Thus, the expression of MEP pathway genes and internal sequestration both played crucial roles in modulating circadian rhythm of terpenoid emission in O. fragrans.

  18. Iodine, a Mild Reagent for the Aromatization of Terpenoids.

    Science.gov (United States)

    Domingo, Victoriano; Prieto, Consuelo; Silva, Lucia; Rodilla, Jesús M L; Quílez del Moral, José F; Barrero, Alejandro F

    2016-04-22

    Efficient procedures based on the use of iodine for the aromatization of a series of terpenoids possessing diene and homoallylic or allylic alcohol functionalities are described. Different examples are reported as a proof-of-concept study. Furthermore, iodine also proved to mediate the dehydrogenation of testosterone.

  19. A Novel Terpenoid from Elephantopus Scaber – Antibacterial Activity on Staphylococcus Aureus: A Substantiate Computational Approach

    Science.gov (United States)

    Daisy, P.; Mathew, Salu; Suveena, S.; Rayan, Nirmala A.

    2008-01-01

    Staphylococcus aureus has gained much attention in the last decade as it is a major cause of the Urinary Tract Infection in Diabetic patients. The Extended Spectrum β-Lactamases (ESβL) producers are highly resistant to several conventional antibiotics. This limits the therapeutic options.Hence efforts are now taken to screen few medicinal plants, which are both economic and less toxic. Among the several plants screened, we have chosen the acetone extract of Elephantopus scaber from which we purified a new terpenoid for our study. Its structure was generated using CHEMSKETCH software and the activity prediction was done using PASS PREDICTION software. We have confirmed the mechanism of anti-bacterial effect of terpenoid using Computer – Aided Drug Design (CADD) with computational methods to simulate drug – receptor interactions. The Protein-Ligand interaction plays a significant role in the structural based drug designing. In this present study we have taken the Autolysin, the bacteriolytic enzyme, that digest the cell wall peptidoglycon. The autolysin and terpenoid were docked using HEX docking software and the docking score with minimum energy value of -209.54 was calculated. It infers that the terpenoid can inhibit the activity of autolysin by forming a strong atomic interaction with the active site residues. Hence the terpenoid can act as a drug for bacterial infections. Further investigations can be carried out to predict the activity of terpeniod on other targets. PMID:23675090

  20. Oligo-carrageenan kappa-induced reducing redox status and increase in TRR/TRX activities promote activation and reprogramming of terpenoid metabolism in Eucalyptus trees.

    Science.gov (United States)

    González, Alberto; Gutiérrez-Cutiño, Marlen; Moenne, Alejandra

    2014-06-05

    In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR)/thioredoxin(TRX) system induced by oligo-carrageenan (OC) kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(P)H, ascorbate (ASC) and (GSH) synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO) and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%), α-pinene (7.4%), aromadendrene (3.6%), silvestrene (2.8%), sabinene (2%) and α-terpineol (0.9%). Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65%) and sabinene (0.8%) and an increase in aromadendrene (5%), silvestrene (7.8%) and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  1. Oligo-Carrageenan Kappa-Induced Reducing Redox Status and Increase in TRR/TRX Activities Promote Activation and Reprogramming of Terpenoid Metabolism in Eucalyptus Trees

    Directory of Open Access Journals (Sweden)

    Alberto González

    2014-06-01

    Full Text Available In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR/thioredoxin(TRX system induced by oligo-carrageenan (OC kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(PH, ascorbate (ASC and (GSH synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%, α-pinene (7.4%, aromadendrene (3.6%, silvestrene (2.8%, sabinene (2% and α-terpineol (0.9%. Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65% and sabinene (0.8% and an increase in aromadendrene (5%, silvestrene (7.8% and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  2. Terpenoids and norlignans from Metasequoia glyptostroboides.

    Science.gov (United States)

    Dong, Liao-Bin; He, Juan; Wang, Yuan-Yuan; Wu, Xing-De; Deng, Xu; Pan, Zheng-Hong; Xu, Gang; Peng, Li-Yan; Zhao, Yu; Li, Yan; Gong, Xun; Zhao, Qin-Shi

    2011-02-25

    Four new terpenoids, metaseglyptorin A (1), metasequoic acid C (2), 12α-hydroxy-8,15-isopimaradien-18-oic acid (3), and (-)-acora-2,4(14),8-trien-15-oic acid (4), and three new norlignans, metasequirins D-F (5-7), were isolated from Metasequoia glyptostroboides, together with 15 known compounds. Structures of the new compounds were determined by analysis of their spectroscopic data, and the absolute configuration of 7 was established by the modified Mosher method. All of the compounds were evaluated for cytotoxicity against five human tumor cell lines.

  3. Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harman-Ware, Anne E., E-mail: anne.ware@nrel.gov; Sykes, Robert [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Peter, Gary F. [School of Forest Resources and Conservation, University of Florida, Gainesville, FL (United States); Davis, Mark [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States)

    2016-01-25

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.

  4. Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis

    International Nuclear Information System (INIS)

    Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.; Davis, Mark

    2016-01-01

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.

  5. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens.

    Science.gov (United States)

    Keeling, Christopher I; Bohlmann, Jörg

    2006-01-01

    Insects select their hosts, but trees cannot select which herbivores will feed upon them. Thus, as long-lived stationary organisms, conifers must resist the onslaught of varying and multiple attackers over their lifetime. Arguably, the greatest threats to conifers are herbivorous insects and their associated pathogens. Insects such as bark beetles, stem- and wood-boring insects, shoot-feeding weevils, and foliage-feeding budworms and sawflies are among the most devastating pests of conifer forests. Conifer trees produce a great diversity of compounds, such as an enormous array of terpenoids and phenolics, that may impart resistance to a variety of herbivores and microorganisms. Insects have evolved to specialize in resistance to these chemicals -- choosing, feeding upon, and colonizing hosts they perceive to be best suited to reproduction. This review focuses on the plant-insect interactions mediated by conifer-produced terpenoids. To understand the role of terpenoids in conifer-insect interactions, we must understand how conifers produce the wide diversity of terpenoids, as well as understand how these specific compounds affect insect behaviour and physiology. This review examines what chemicals are produced, the genes and proteins involved in their biosynthesis, how they work, and how they are regulated. It also examines how insects and their associated pathogens interact with, elicit, and are affected by conifer-produced terpenoids.

  6. Spatiotemporal variability of biogenic terpenoid emissions in Pearl River Delta, China, with high-resolution land-cover and meteorological data

    Science.gov (United States)

    Wang, Xuemei; Situ, Shuping; Guenther, Alex; Chen, Fei; Wu, Zhiyong; Xia, Beicheng; Wang, Tijian

    2011-04-01

    This study intended to provide 4-km gridded, hourly, year-long, regional estimates of terpenoid emissions in the Pearl River Delta (PRD), China. It combined Thematic Mapper images and local-survey data to characterize plant functional types, and used observed emission potential of biogenic volatile organic compounds (BVOC) from local plant species and high-resolution meteorological outputs from the MM5 model to constrain the MEGAN BVOC-emission model. The estimated annual emissions for isoprene, monoterpene and sesquiterpene are 95.55 × 106 kg C, 117.35 × 106 kg C and 9.77 × 106 kg C, respectively. The results show strong variabilities of terpenoid emissions spanning diurnal and seasonal time scales, which are mainly distributed in the remote areas (with more vegetation and less economic development) in PRD. Using MODIS PFTs data reduced terpenoid emissions by 27% in remote areas. Using MEGAN-model default emission factors led to a 24% increase in BVOC emission. The model errors of temperature and radiation in MM5 output were used to assess impacts of uncertainties in meteorological forcing on emissions: increasing (decreasing) temperature and downward shortwave radiation produces more (less) terpenoid emissions for July and January. Strong temporal variability of terpenoid emissions leads to enhanced ozone formation during midday in rural areas where the anthropogenic VOC emissions are limited.

  7. A new method for microwave assisted ethanolic extraction of Mentha rotundifolia bioactive terpenoids.

    Science.gov (United States)

    García-Sarrió, María Jesús; Sanz, María Luz; Sanz, Jesús; González-Coloma, Azucena; Cristina Soria, Ana

    2018-04-14

    A new microwave-assisted extraction (MAE) method using ethanol as solvent has been optimized by means of a Box-Behnken experimental design for the enhanced extraction of bioactive terpenoids from Mentha rotundifolia leaves; 100°C, 5 min, 1.125 g dry sample: 10 mL solvent and a single extraction cycle were selected as optimal conditions. Improved performance of MAE method in terms of extraction yield and/or reproducibility over conventional solid-liquid extraction and ultrasound assisted extraction was also previously assessed. A comprehensive characterization of MAE extracts was carried out by GC-MS. A total of 46 compounds, mostly terpenoids, were identified; piperitenone oxide and piperitenone were the major compounds determined. Several neophytadiene isomers were also detected for the first time in MAE extracts. Different procedures (solid-phase extraction and activated charcoal (AC) treatment) were also evaluated for clean-up of MAE extracts, with AC providing the highest enrichment in bioactive terpenoids. Finally, the MAE method here developed is shown as a green, fast, efficient and reproducible liquid extraction methodology to obtain M. rotundifolia bioactive extracts for further application, among others, as food preservatives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum).

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2016-12-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions.

  9. Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method

    Science.gov (United States)

    Mochizuki, Tomoki; Tani, Akira; Takahashi, Yoshiyuki; Saigusa, Nobuko; Ueyama, Masahito

    2014-02-01

    Terpenoids emitted from forests contribute to the formation of secondary organic aerosols and affect the carbon budgets of forest ecosystems. To investigate seasonal variation in terpenoid flux involved in the aerosol formation and carbon budget, we measured the terpenoid flux of a Larix kaempferi forest between May 2011 and May 2012 by using a relaxed eddy accumulation method. Isoprene was emitted from a fern plant species Dryopteris crassirhizoma on the forest floor and monoterpenes from the L. kaempferi. α-Pinene was the dominant compound, but seasonal variation of the monoterpene composition was observed. High isoprene and monoterpene fluxes were observed in July and August. The total monoterpene flux was dependent on temperature, but several unusual high positive fluxes were observed after rain fall events. We found a good correlation between total monoterpene flux and volumetric soil water content (r = 0.88), and used this correlation to estimate monoterpene flux after rain events and calculate annual terpenoid emissions. Annual carbon emission in the form of total monoterpenes plus isoprene was determined to be 0.93% of the net ecosystem exchange. If we do not consider the effect of rain fall, carbon emissions may be underestimated by about 50%. Our results suggest that moisture conditions in the forest soil is a key factor controlling the monoterpene emissions from the forest ecosystem.

  10. Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus.

    Science.gov (United States)

    Chen, Juan; Zeng, Xu; Yang, Yan Long; Xing, Yong Mei; Zhang, Qi; Li, Jia Mei; Ma, Ke; Liu, Hong Wei; Guo, Shun Xing

    2017-08-31

    The lion's mane mushroom Hericium erinaceus is a famous traditional medicinal fungus credited with anti-dementia activity and a producer of cyathane diterpenoid natural products (erinacines) useful against nervous system diseases. To date, few studies have explored the biosynthesis of these compounds, although their chemical synthesis is known. Here, we report the first genome and tanscriptome sequence of the medicinal fungus H. erinaceus. The size of the genome is 39.35 Mb, containing 9895 gene models. The genome of H. erinaceus reveals diverse enzymes and a large family of cytochrome P450 (CYP) proteins involved in the biosynthesis of terpenoid backbones, diterpenoids, sesquiterpenes and polyketides. Three gene clusters related to terpene biosynthesis and one gene cluster for polyketides biosynthesis (PKS) were predicted. Genes involved in terpenoid biosynthesis were generally upregulated in mycelia, while the PKS gene was upregulated in the fruiting body. Comparative genome analysis of 42 fungal species of Basidiomycota revealed that most edible and medicinal mushroom show many more gene clusters involved in terpenoid and polyketide biosynthesis compared to the pathogenic fungi. None of the gene clusters for terpenoid or polyketide biosynthesis were predicted in the poisonous mushroom Amanita muscaria. Our findings may facilitate future discovery and biosynthesis of bioactive secondary metabolites from H. erinaceus and provide fundamental information for exploring the secondary metabolites in other Basidiomycetes.

  11. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum)

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2018-01-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions. PMID:29367803

  12. Volatile terpenoids as potential drug leads in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Wojtunik-Kulesza Karolina A.

    2017-12-01

    Full Text Available Alzheimer’s disease (AD is by far the most prevalent of all known forms of dementia. Despite wide-spread research, the main causes of emergence and development of AD have not been fully recognized. Natural, low-molecular, lipophilic terpenoids constitute an interesting group of secondary plant metabolites, that exert biological activities of possible use in the prevention and treatment of AD. In order to identify secondary metabolites possessing both antioxidant activity and the potential to increase the level of acetylcholine, selected terpenoids have been screened for possible acetylcholinesterase inhibitory activity by use of two methods, namely Marston (chromatographic assay and Ellman (spectrophotometric assay. In order to describe the interaction between terpenes and AChE active gorge, molecular docking simulations were performed. Additionally, all analyzed terpenes were also evaluated for their cytotoxic properties against two normal cell lines using MTT assay. The obtained results show that: carvone (6, pulegone (8 and γ-terpinene (7 possess desirable AChE inhibitory activity. MTT assay revealed low or lack of cytotoxicity of these metabolites. Thus, among the investigated terpenes, carvone (6, pulegone (8 and y-terpinene (7 can be recognized as compounds with most promising activities in the development of multi-target directed ligands.

  13. Terpenoids Isolated From the Shoot of Plectranthus hadiensis Induces Apoptosis in Human Colon Cancer Cells Via the Mitochondria-Dependent Pathway.

    Science.gov (United States)

    Menon, Darsan B; Gopalakrishnan, V K

    2015-01-01

    The plant Plectranthus hadiensis is a rich source of many bioactive phytochemicals, especially terpenoids. The terpenoid fraction was isolated and phytochemical characterization was done using GC-MS. The aim of the present study was to find out the antiproliferative activity and the mechanism of cell death induction by the terpenoid fraction on human colon cancer cells (HCT-15). MTT assay was performed with different concentrations of the fraction (10, 20, and 50 µg/mL) to obtain IC50 value for 24 h to induce cell death. The induction of apoptosis were studied by Hoechst staining, acridine orange/ethidium bromide staining, Comet assay, DNA fragmentation, and caspase-3 activity assays. The mechanism of apoptosis induction was studied by expression analysis of antiapoptotic Bcl-2 and proapoptotic Bax using RT-PCR and also by Western blot analysis of proteins involved in the apoptotic pathway. The terpenoid fraction induced significant morphological changes and DNA fragmentation in the cells. Positive Hoechst staining and acridine orange/ethidium bromide staining indicated apoptosis induction by the fraction. DNA fragmentation, which is a characteristic feature of apoptosis, was also observed. Upregulation of caspase-3 activity and proapoptotic Bax, and the downregulation of antiapoptotic Bcl-2 and COX-2 confirmed that the apoptosis induction was via the mitochondria-dependent pathway.

  14. Absolute Configurations and NO Inhibitory Activities of Terpenoids from Curcuma longa.

    Science.gov (United States)

    Xu, Jing; Ji, Feifei; Kang, Jing; Wang, Hao; Li, Shen; Jin, Da-Qing; Zhang, Qiang; Sun, Hongwei; Guo, Yuanqiang

    2015-06-24

    Curcuma longa L., belonging to the Zingiberaceae family, is a perennial herb and has been used as a spice and a pigment in the food industry. In the ongoing search for inhibitory reagents of NO production and survey of the chemical composition of natural vegetable foods, the chemical constituents of C. longa used as spice were investigated. This investigation resulted in the isolation of 2 new terpenoids and 14 known analogues. Their structures were established on the basis of the extensive analyses of 1D and 2D NMR spectroscopic data, and the absolute configurations of 1-4 were elucidated by comparison of the calculated and experimental ECD spectra. Among them, compound 1 is a rare norditerpene with an ent-labdane skeleton, and 2 is a skeletally novel sesquiterpene having an eight-membered ring. All of the compounds were found to possess NO inhibitory activities in murine microglial BV-2 cells. The discovery of two new compounds in this chemical investigation further disclosed the chemical composition of C. longa used a food spice, and the bioassay implied that the natural food spice C. longa, containing terpenoids with NO inhibitory activities, may be potentially promotive to human health.

  15. Terpenoid emissions from fully grown east Siberian Larix cajanderi trees

    Directory of Open Access Journals (Sweden)

    M. K. Kajos

    2013-07-01

    Full Text Available While emissions of many biogenic volatile organic compounds (BVOCs, such as terpenoids, have been studied quite intensively in North American and Scandinavian boreal forests, the vast Siberian boreal forests have remained largely unexplored by experimental emission studies. In this study the shoot-scale terpenoid emission rates from two mature Larix cajanderi trees growing in their natural habitat in eastern Siberia were measured at the Spasskaya Pad flux measurement site (62°15´18.4" N, 129°37´07.9" E located on the western bank of the Lena river. The measurements were conducted during three campaigns: 3–24 June, 8–26 July, and 14–30 August, in the summer of 2009. A dynamic flow-through enclosure technique was applied for adsorbent sampling, and the samples were analysed offline with a gas chromatograph. Between 29 and 45 samples were taken from each shoot during all three campaigns. Seven different monoterpenes, six different sesquiterpenes, linalool isoprene, and 2-methyl-3-buten-2-ol (MBO were identified. The monthly median value of the total terpenoid emissions varied between 0.006 and 10.6 μg gdw−1 h−1. The emissions were dominated by monoterpenes, which constituted between 61 and 92% of the total emissions. About half of the monoterpene emissions were comprised of Δ 3-carene; α- and β-pinene had significant emissions as well. Linalool emissions were also substantial, comprising 3–37% of the total emissions, especially in June. Sesquiterpenes accounted for less than 3% and isoprene less than 1% of the total emissions. Based on the measured emission rates, the relative atmospheric concentration of each compound was estimated. Monoterpenes were the species with the highest relative concentration, while linalool and sesquiterpenes had a notably smaller contribution to the estimated atmospheric concentration than to the emission rates. A temperature-dependent pool algorithm with a constant β (0.09 °C−1 for monoterpenes

  16. In silico discovery of terpenoid metabolism in Cannabis sativa [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Luca Massimino

    2017-02-01

    Full Text Available Due to their efficacy, cannabis based therapies are currently being prescribed for the treatment of many different medical conditions. Interestingly, treatments based on the use of cannabis flowers or their derivatives have been shown to be very effective, while therapies based on drugs containing THC alone lack therapeutic value and lead to increased side effects, likely resulting from the absence of other pivotal entourage compounds found in the Phyto-complex. Among these compounds are terpenoids, which are not produced exclusively by cannabis plants, so other plant species must share many of the enzymes involved in their metabolism. In the present work, 23,630 transcripts from the canSat3 reference transcriptome were scanned for evolutionarily conserved protein domains and annotated in accordance with their predicted molecular functions. A total of 215 evolutionarily conserved genes encoding enzymes presumably involved in terpenoid metabolism are described, together with their expression profiles in different cannabis plant tissues at different developmental stages. The resource presented here will aid future investigations on terpenoid metabolism in Cannabis sativa.

  17. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; King, Brian Christopher; Zhan, Xin

    2014-01-01

    Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure, such as stre...

  18. Alpha-glucosidase inhibitory and antiplasmodial properties of terpenoids from the leaves of Buddleja saligna Willd

    Czech Academy of Sciences Publication Activity Database

    Chukwujekwu, J. C.; Rengasamy, K.R.R.; de Kock, C. A.; Smith, P. J.; Poštová Slavětínská, Lenka; van Staden, J.

    2016-01-01

    Roč. 31, č. 1 (2016), s. 63-66 ISSN 1475-6366 Institutional support: RVO:61388963 Keywords : alpha-glucosidase * antidiabetic * antiplasmodial * Buddleja saligna * terpenoids Subject RIV: CC - Organic Chemistry Impact factor: 4.293, year: 2016

  19. High-throughput testing of terpenoid biosynthesis candidate genes using transient expression in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; Bassard, Jean-Étienne André; Andersen-Ranberg, Johan

    2014-01-01

    To respond to the rapidly growing number of genes putatively involved in terpenoid metabolism, a robust high-throughput platform for functional testing is needed. An in planta expression system offers several advantages such as the capacity to produce correctly folded and active enzymes localized...

  20. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus – conversion of selected spirocyclic terpenoids and computational analysis

    Directory of Open Access Journals (Sweden)

    Verena Weidmann

    2013-10-01

    Full Text Available Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ‘’mushroom catalysis’’ is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site.

  1. Liquid chromatographic separation of terpenoid pigments in foods and food products.

    Science.gov (United States)

    Cserháti, T; Forgács, E

    2001-11-30

    The newest achievements in the use of various liquid chromatographic techniques such as adsorption and reversed-phase thin-layer chromatography and HPLC employed for the separation and quantitative determination of terpenoid-based color substances in foods and food products are reviewed. The techniques applied for the analysis of individual pigments and pigments classes are surveyed and critically evaluated. Future trends in the separation and identification of pigments in foods and food products are delineated.

  2. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis.

    Science.gov (United States)

    Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi

    2018-04-11

    Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

  3. Expression of Terpenoid Biosynthetic Genes and Accumulation of Chemical Constituents in Valeriana fauriei

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2016-05-01

    Full Text Available Valeriana fauriei (V. fauriei, which emits a characteristic and unpleasant odor, is important in traditional medicine. In this study, the expression of terpenoid biosynthetic genes was investigated in different organs that were also screened for volatile compounds including valerenic acid and its derivatives. Specific expression patterns from different parts of V. fauriei were observed using quantitative real-time PCR (qRT-PCR. The highest transcript levels of biosynthetic genes involved in mevalonic acid (MVA and methylerythritol phosphate (MEP production were found in the stem. Although the amounts of volatile compounds were varied by organ, most of the volatile terpenoids were accumulated in the root. Gas chromatography mass spectrometry (GC-MS analysis identified 128 volatile compounds, which represented 65.33% to 95.66% of total volatiles. Certain compounds were only found in specific organs. For example, isovalerenic acid and valerenic acid and its derivatives were restricted to the root. Organs with high transcript levels did not necessarily have high levels of the corresponding chemical constituents. According to these results, we hypothesize that translocation may occur between different organs in V. fauriei.

  4. Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids.

    Science.gov (United States)

    Mehrotra, Shakti; Goel, Manoj K; Srivastava, Vikas; Rahman, Laiq Ur

    2015-02-01

    Hairy root cultures of Rauwolfia serpentina induced by Agrobacterium rhizogenes have been investigated extensively for the production of terpenoid indole alkaloids. Various biotechnological developments, such as scaling up in bioreactors, pathway engineering etc., have been explored to improve their metabolite production potential. These hairy roots are competent for regenerating into complete plants and show survival and unaltered biosynthetic potential during storage at low temperature. This review provides a comprehensive account of the hairy root cultures of R. serpentina, their biosynthetic potential and various biotechnological methods used to explore the production of pharmaceutically important terpenoid indole alkaloids. The review also indicates how biotechnological endeavors might improve the future progress of research for production of alkaloids using Rauwolfia hairy roots.

  5. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  6. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    Science.gov (United States)

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  7. [Diversity of Plants Belonging to the Genus Ligularia (Asteraceae) Based on Terpenoids and Synthetic Studies on Some Terpenoids].

    Science.gov (United States)

    Tori, Motoo

    2016-01-01

    The terpenoid constituents of Ligularia virgaurea (30 samples), Ligularia pleurocaulis (8 samples), Ligularia dictyoneura (8 samples), Ligularia brassicoides (5 samples), Ligularia lingiana (1 sample), and Ligularia liatroides (1 sample)(all belonging to section Senecillis of Ligularia, Asteraceae and collected in Yunnan, Sichuan, Qinghai, and Gansu provinces, China), from which 220 compounds were isolated, including 113 novel ones, are reviewed. Five chemotypes were identified in L. virgaurea based on their chemical constituents, while three clades were detected from the base sequences. Although intra-specific diversity was found in L. virgaurea, more samples were needed of other species in order to reach a definite conclusion. Inter-specific diversity was also examined in section Senecillis but was restricted due to the scarcity of samples. Synthetic studies on chiral natural products to determine their absolute configurations, especially those of riccardiphenols A and B as well as crispatanolide, which were all isolated from the liverwort, are briefly reviewed.

  8. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis.

    Science.gov (United States)

    Fan, Rongyan; Li, Yuanjun; Li, Changfu; Zhang, Yansheng

    2015-01-01

    The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs) are a class of 21-24 nucleotide (nt) non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined with target gene prediction, was performed to discover novel and conserved miRNAs with potential roles in regulating terpenoid biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miRNAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miRNAs being differentially expressed between the two tissue sources. Based on the X. strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA transcripts were identified as putative targets of the differentially expressed miRNAs. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis suggested that some of the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study provides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis for further understanding of miRNA-based regulation on terpenoid biosynthesis.

  9. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rongyan Fan

    Full Text Available The medicinal plant Xanthium strumarium L. (X. strumarium is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs are a class of 21-24 nucleotide (nt non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined with target gene prediction, was performed to discover novel and conserved miRNAs with potential roles in regulating terpenoid biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miRNAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miRNAs being differentially expressed between the two tissue sources. Based on the X. strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA transcripts were identified as putative targets of the differentially expressed miRNAs. KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that some of the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study provides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis for further understanding of miRNA-based regulation on terpenoid biosynthesis.

  10. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway.

    Science.gov (United States)

    Guzman, Frank; Kulcheski, Franceli Rodrigues; Turchetto-Zolet, Andreia Carina; Margis, Rogerio

    2014-12-01

    Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Characterization of Terpenoids from the Root of Ceriops tagal with Antifouling Activity

    Science.gov (United States)

    Chen, Jun-De; Yi, Rui-Zao; Lin, Yi-Ming; Feng, Dan-Qing; Zhou, Hai-Chao; Wang, Zhan-Chang

    2011-01-01

    One new dimeric diterpenoid, 8(14)-enyl-pimar-2′(3′)-en-4′(18′)-en-15′(16′)-endolabr- 16,15,2′,3′-oxoan-16-one (1) and five known terpenoids: Tagalsin C (2), Tagalsin I (3), lup-20(29)-ene-3β,28-diol (4), 3-oxolup-20(29)-en-28-oic acid (5) and 28-hydroxylup- 20(29)-en-3-one (6) were isolated from the roots of the mangrove plant Ceriops tagal. Their structures and relative stereochemistry were elucidated by means of extensive NMR, IR and MS analysis. The antifouling activity against larval settlement of the barnacle Balanus albicostatus were evaluated using capsaicin as a positive control. All these terpenoids exhibited antifouling activity against cyprid larvae of the barnacle without significant toxicity. The structure-activity relationship results demonstrated that the order of antifouling activity was diterpenoid (Compound 2) > triterpenoid (Compounds 4, 5 and 6) > dimeric diterpenoid (Compounds 1 and 3). The functional groups on the C-28 position of lupane triterpenoid significantly affect the antifouling activity. The diterpenoid dimmer with two identical diterpenoid subunits might display more potent antifouling activity than one with two different diterpenoid subunits. The stability test showed that Compounds 2, 4, 5 and 6 remained stable over 2-month exposure under filtered seawater. PMID:22072902

  12. Ursolic Acid and Oleanolic Acid: Pentacyclic Terpenoids with Promising Anti-Inflammatory Activities.

    Science.gov (United States)

    Kashyap, Dharambir; Sharma, Ajay; Tuli, Hardeep S; Punia, Sandeep; Sharma, Anil K

    2016-01-01

    Plant derived products are not only served as dietary components but also used to treat and prevent the inflammatory associated diseases like cancer. Among the natural products pentacyclic terpenoids including ursolic acid and oleanolic acid are considered as the promising anti-inflammatory therapeutic agents. The current review extensively discusses the anti-inflammatory therapeutic potential of these pentacyclic moieties along with their proposed mechanisms of action. Furthermore, the relevant patents have also been listed to present the health benefits of these promising therapeutic agents to pin down the inflammatory diseases. Expert opinion: Pentacyclic terpenoids are known to negatively down-regulate a variety of extracellular and intracellular molecular targets associated with disease progression. The major anti-inflammatory effects of these molecules have been found to be mediated via inactivation of NFkB, STAT3/6, Akt/mTOR pathways. A number of patents on UA & OA based moieties have been reported between 2010 and 2016. Still there have been only a few compounds which meet the need of sufficient hydro solubility and bioavailability along with higher anti-inflammatory activities. Thus, it is essential to develop novel derivatives of terpenpoids which may not only overcome the solubility issues but also may improve their therapeutic effects. In addition, scientific community may utilize nanotechnology based drug delivery systems so as to increase the bio-availability, selectivity and dosages related problems.

  13. Fruit-Derived Polysaccharides and Terpenoids: Recent Update on the Gastroprotective Effects and Mechanisms

    Directory of Open Access Journals (Sweden)

    Mohammed Safwan Ali Khan

    2018-06-01

    Full Text Available Ulceration in the stomach develops in peptic ulcer disease when there is a loss of protective mucosal layers, particularly in Helicobacter pylori infection. Antibiotic therapy has failed to eradicate and impede the colonization of H. pylori. Despite given treatment, recurrent bleeding can occur and lead to death in the affected individual. The disease progression is also related to the non-steroidal inflammatory drug and stress. There are extensive research efforts to identify the gastroprotective property from various alkaloids, flavonoids, and tannins compounds from plants and marine. These natural products are believed to be safe for consumption. However, not much attention was given to summarize the carbohydrate and terpenoidal anti-ulcer compounds. Hence, this review will cover the possible mechanisms and information about acidic hydroxylans, arabinogalactan and rhamnogalacturon; and limonene, pinene, lupeol, citral, ursolic acid and nomilin to exemplify on the gastroprotective properties of polysaccharides and terpenoid, respectively, obtained from fruits. These compounds could act as a prebiotic to prevent the inhabitation of H. pylori, modulate the inflammation, suppress gastric cancer growth, and capable of stimulating the reparative mechanisms on the affected regions. Finally, this review provides the future research prospects of these natural compounds in an effort to develop new therapy for gastrointestinal tissue healing.

  14. Volatile Composition and Enantioselective Analysis of Chiral Terpenoids of Nine Fruit and Vegetable Fibres Resulting from Juice Industry By-Products

    Directory of Open Access Journals (Sweden)

    Alexis Marsol-Vall

    2017-01-01

    Full Text Available Fruit and vegetable fibres resulting as by-products of the fruit juice industry have won popularity because they can be valorised as food ingredients. In this regard, bioactive compounds have already been studied but little attention has been paid to their remaining volatiles. Considering all the samples, 57 volatiles were identified. Composition greatly differed between citrus and noncitrus fibres. The former presented over 90% of terpenoids, with limonene being the most abundant and ranging from 52.7% in lemon to 94.0% in tangerine flesh. Noncitrus fibres showed more variable compositions, with the predominant classes being aldehydes in apple (57.5% and peach (69.7%, esters (54.0% in pear, and terpenoids (35.3% in carrot fibres. In addition, enantioselective analysis of some of the chiral terpenoids present in the fibre revealed that the enantiomeric ratio for selected compounds was similar to the corresponding volatile composition of raw fruits and vegetables and some derivatives, with the exception of terpinen-4-ol and α-terpineol, which showed variation, probably due to the drying process. The processing to which fruit residues were submitted produced fibres with low volatile content for noncitrus products. Otherwise, citrus fibres analysed still presented a high volatile composition when compared with noncitrus ones.

  15. Analysis of several irdoid and indole precursors of terpenoid indole alkaloids with a single HPLC run

    DEFF Research Database (Denmark)

    Dagnino, Denise; Schripsema, Jan; Verpoorte, Robert

    1996-01-01

    An isocratic HPLC system is described which allows the separation of the iridoid and indole precursors of terpenoid indole alkaloids, which are present in a single crude extract. The system consists of a column of LiChrospher 60 RP select B 5 my, 250x4 mm (Merck) with an eluent of 1 % formic acid...

  16. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany

    Science.gov (United States)

    Otto, Angelika; Simoneit, Bernd R. T.

    2001-10-01

    The biomarker contents of three fossil conifer species (Athrotaxis couttsiae, Taxodium balticum, Pinus palaeostrobus) and the clay sediment from the Eocene Zeitz formation, Germany, have been analyzed by gas chromatography-mass spectrometry. Triterpenoids of the oleanane, ursane and lupane series and aliphatic wax lipids are the major compounds in the total extracts of the sediment indicating a major angiosperm input. In contrast, diterpenoids (abietanes, phenolic abietanes, pimaranes, isopimaranes, kauranes, phyllocladanes, totaranes) and lignin degradation products are predominant in the conifer fossil extracts. Polar diterpenoids (ferruginol and derivatives, dehydroabietic acid) are preserved as major compounds in the conifers, accompained by saturated and aromatic diterpenoid products. The extracts of the fossil conifer species show characteristic biomarker patterns and contain terpenoids of chemosystematic value. The terpenoid composition of the fossil conifers is similar to that of related modern species. Phenolic abietanes (ferruginol, 6,7-dehydroferruginol, hydroxyferruginols, sugiol) which are known from modern species of the Cupressaceae and Podocarpaceae are the major terpenoids in shoots of Athrotaxis couttsiae and a cone of Taxodium balticum (both Cupressaceae). Sesquiterpenoids characteristic for Cupressaceae (cuparene, α-cedrene) are also present in Athrotaxis. Abietane-type acids (dehydroabietic acid, abietic acid) and saturated abietanes [fichtelite, 13α(H)-fichtelite] predominate in the extracts of a Pinus palaeostrobus cone and phenolic abietanes are not detectable. A diagenetic pathway for the degradation of abietic acid is proposed based on the presence of abietane-type acids and a series of their presumed degradation products in the Pinus cone. The formation of diagenetic products from the phenolic abietanes is also discussed.

  17. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid.

    Science.gov (United States)

    Adnan, Mohd; Patel, Mitesh; Reddy, Mandadi Narsimha; Alshammari, Eyad

    2018-01-29

    In recent years, fungi have been shown to produce a plethora of new bioactive secondary metabolites of interest, as new lead structures for medicinal and other pharmacological applications. The present investigation was carried out to study the pharmacological properties of a potent and major bioactive compound: xylaranic acid, which was obtained from Xylaria primorskensis (X. primorskensis) terpenoids in terms of antibacterial activity, antioxidant potential against DPPH & H 2 O 2 radicals and anticancer activity against human lung cancer cells. Due to terpenoid nature, low water solubility and wretched bioavailability, its pharmacological use is limited. To overcome these drawbacks, a novel xylaranic acid silver nanoparticle system (AgNPs) is developed. In addition to improving its solubility and bioavailability, other advantageous pharmacological properties has been evaluated. Furthermore, enhanced anticancer activity of xylaranic acid and its AgNPs due to induced apoptosis were also confirmed by determining the expression levels of apoptosis regulatory genes p53, bcl-2 and caspase-3 via qRT PCR method. This is the first study developing the novel xylaranic acid silver nanoparticle system and enlightening its therapeutic significance with its improved physico-chemical properties and augmented bioactive potential.

  18. Tanker milk variability according to farm feeding practices: vitamins A and E, carotenoids, color, and terpenoids.

    Science.gov (United States)

    Agabriel, C; Cornu, A; Journal, C; Sibra, C; Grolier, P; Martin, B

    2007-10-01

    The aim of this work was to study the variability in the composition of bulk milk mixtures of fat-soluble compounds (vitamins A and E, carotenoids, and terpenoids) and assess the links with milk production conditions. Milk from 10 collection trips in the French department of the Haute-Loire (10 to 36 herds per trip) was sampled in the tanker twice during the winter period and 3 times during the grazing season. The collection trips differed in their altitude (440 to 1,150 m) and the forage system (grass or based on corn silage). Vitamins A and E, carotenoids, and terpenoids of the 50 tanker loads of milk were analyzed. Data of milk production conditions in the 204 farms made it possible to constitute indicators for the collection trip and to define 50 mean herds. The relationships between mean herd characteristics (breed, stage of lactation, and feed) and milk characteristics were investigated. The constituents of tanker loads of milk were comparable to those observed in milk produced by groups of animals receiving contrasting diets (rich in concentrate or corn silage vs. pasture). The characteristics of the milk differed according to the period; those produced at grazing were more yellow (1.02 +/- 0.4; mean of difference) and richer in beta-carotene, lutein, vitamin E (2.0 +/- 1.2, 0.23 +/- 0.12, and 6.1 +/- 5.0 mug/g of fat, respectively), and sesquiterpenes (2.7 +/- 2.5) than winter. The variations observed for beta-carotene, lutein, and vitamin E were linked to the proportion of grazed grass or grass silage in the forage (r = 0.66, 0.69, and 0.51, respectively), unlike the vitamin A content. During grazing, 20 of the 32 terpenoids identified were associated with the proportion of permanent grassland available for grazing or cut. These results show that feeding is an effective way to modify the quality of dairy products, even in the case of bulk tank milk mixtures. Dairy plants could market different milks, which would contain specific compositions.

  19. Needle terpenoid composition of Pinus halepensis (Mill.) Trees infested by the scale insect Marchalina hellenica (Genn.) in Greece

    Science.gov (United States)

    Athanassios Gallis; Carlos Arrabal; Aristotle C. Papageorgiou; Maria C. Garcia-Vallejo

    2012-01-01

    Needle terpenoid composition was determined by using GLC-MS in Pinus halepensis (Mill.) trees that were infested and not infested by the scale insect Marchalina hellenica. The study area was within the Forest National Park of the Cape Sounion, southern Attica region, Greece. A total of 43 compounds, 32 of which were identified...

  20. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.

    Science.gov (United States)

    Celedon, J M; Bohlmann, J

    2016-01-01

    Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols. © 2016 Elsevier Inc. All rights reserved.

  1. Development of a Matrix Solid-Phase Dispersion Extraction Combined with UPLC/Q-TOF-MS for Determination of Phenolics and Terpenoids from the Euphorbia fischeriana.

    Science.gov (United States)

    Li, Wenjing; Lin, Yu; Wang, Yuchun; Hong, Bo

    2017-09-11

    A method based on a simplified extraction by matrix solid phase dispersion (MSPD) followed by ultra-performance liquid chromatography coupled with the quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) determination is validated for analysis of two phenolics and three terpenoids in Euphorbia fischeriana . The optimized experimental parameters of MSPD including dispersing sorbent (silica gel), ratio of sample to dispersing sorbent (1:2), elution solvent (water-ethanol: 30-70) and volume of the elution solvent (10 mL) were examined and set down. The highest extraction yields of chromatogram information and the five compounds were obtained under the optimized conditions. A total of 25 constituents have been identified and five components have been quantified from Euphorbia fischeriana . A linear relationship (r² ≥ 0.9964) between the concentrations and the peak areas of the mixed standard substances were revealed. The average recovery was between 92.4% and 103.2% with RSD values less than 3.45% ( n = 5). The extraction yields of two phenolics and three terpenoids obtained by the MSPD were higher than those of traditional reflux and sonication extraction with reduced requirement on sample, solvent and time. In addition, the optimized method will be applied for analyzing terpenoids in other Chinese herbal medicine samples.

  2. Terpenoids from Zingiber officinale (Ginger induce apoptosis in endometrial cancer cells through the activation of p53.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Novel strategies are necessary to improve chemotherapy response in advanced and recurrent endometrial cancer. Here, we demonstrate that terpenoids present in the Steam Distilled Extract of Ginger (SDGE are potent inhibitors of proliferation of endometrial cancer cells. SDGE, isolated from six different batches of ginger rhizomes, consistently inhibited proliferation of the endometrial cancer cell lines Ishikawa and ECC-1 at IC(50 of 1.25 µg/ml. SDGE also enhanced the anti-proliferative effect of radiation and cisplatin. Decreased proliferation of Ishikawa and ECC-1 cells was a direct result of SDGE-induced apoptosis as demonstrated by FITC-Annexin V staining and expression of cleaved caspase 3. GC/MS analysis identified a total of 22 different terpenoid compounds in SDGE, with the isomers neral and geranial constituting 30-40%. Citral, a mixture of neral and geranial inhibited the proliferation of Ishikawa and ECC-1 cells at an IC(50 10 µM (2.3 µg/ml. Phenolic compounds such as gingerol and shogaol were not detected in SDGE and 6-gingerol was a weaker inhibitor of the proliferation of the endometrial cancer cells. SDGE was more effective in inducing cancer cell death than citral, suggesting that other terpenes present in SDGE were also contributing to endometrial cancer cell death. SDGE treatment resulted in a rapid and strong increase in intracellular calcium and a 20-40% decrease in the mitochondrial membrane potential. Ser-15 of p53 was phosphorylated after 15 min treatment of the cancer cells with SDGE. This increase in p53 was associated with 90% decrease in Bcl2 whereas no effect was observed on Bax. Inhibitor of p53, pifithrin-α, attenuated the anti-cancer effects of SDGE and apoptosis was also not observed in the p53(neg SKOV-3 cells. Our studies demonstrate that terpenoids from SDGE mediate apoptosis by activating p53 and should be therefore be investigated as agents for the treatment of endometrial cancer.

  3. Terpenoid composition and botanical affinity of Cretaceous resins from India and Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa [Department of Earth Sciences, Indian Institute of Technology-Bombay (India); Kumar, Kishor [Wadia Institute of Himalayan Geology, Uttarakhand (India); Mann, Ulrich [Forschungzentrum Juelich (Germany). Institut fuer Chemie und Dynamik der Geosphaere; Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemistry Centres (M090), University of Western Australia, Crawley (Australia)

    2011-01-01

    Fossil resins from the Cretaceous sediments of Meghalaya, India and Kachin, Myanmar (Burma) were analysed using Curie point pyrolysis-gas chromatography-mass spectrometry and thermochemolysis gas chromatography-mass spectrometry to help elucidate their botanical source. The major pyrolysis products and methyl-esterified thermochemolysis products of both the resins were abietane and labdane type diterpenoids with minor amount of sesquiterpenoids. The thermochemolysis products also included methyl-16,17-dinor callitrisate, methyl-16,17-dinor dehydroabietate and methyl-8-pimaren-18-oate - the latter two from just the Myanmarese resin. The exclusive presence of both labdane and abietane diterpenoids and the lack of phenolic terpenoids may suggest that the studied Cretaceous resins were derived from Pinaceae (pine family) conifers. (author)

  4. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae.

    Directory of Open Access Journals (Sweden)

    Paul E Kendra

    Full Text Available The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia and swampbay (P. palustris trees in the southeastern USA, threatens avocado (P. americana production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race, redbay, swampbay, silkbay (Persea humilis, California bay laurel (Umbellularia californica, sassafras (Sassafras albidum, northern spicebush (Lindera benzoin, camphor tree (Cinnamomum camphora, and lancewood (Nectandra coriacea. In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and

  5. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae).

    Science.gov (United States)

    Kendra, Paul E; Montgomery, Wayne S; Niogret, Jerome; Pruett, Grechen E; Mayfield, Albert E; MacKenzie, Martin; Deyrup, Mark A; Bauchan, Gary R; Ploetz, Randy C; Epsky, Nancy D

    2014-01-01

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were

  6. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff,William W.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.

  7. The evolution of plant secretory structures and emergence of terpenoid chemical diversity.

    Science.gov (United States)

    Lange, Bernd Markus

    2015-01-01

    Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.

  8. Analysis of iridoids content and expression studies of genes encoding early enzymes in the indol terpenoid biosynthesis pathway in Catharanthus roseus Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en Catharanthus roseus

    OpenAIRE

    Leech Mark; Palacios-Rojas Natalia

    2004-01-01

    Terpenoid indole alkaloids (TIA) are of pharmaceutical importance, however the industrial use of these compouds is very limited because its accumulation is very low in plant tissues. TIA are derived f rom the shikimate and terpenoid pathways, which supply secologanin and tryptamine, the indole and iridoid moieties, respectively. Secololganin is a terpenoid which is belived to be synthesised the MEP pathway rather than by the acetate/mevalonic acid pathway. Secologanin is thought to be a limit...

  9. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols.

    Science.gov (United States)

    Gutiérrez-Del-Río, Ignacio; Fernández, Javier; Lombó, Felipe

    2018-05-16

    Synthetic food additives generate a negative perception in consumers. Therefore, food manufacturers search for safer natural alternatives as those involving phytochemicals and plant essential oils. These bioactives have antimicrobial activities widely proved in in vitro tests. Foodborne diseases cause thousands of deaths and millions of infections every year, mainly due to pathogenic bacteria as Salmonella spp., Campylobacter spp., Escherichia coli, Bacillus cereus, Listeria monocytogenes or Staphylococcus aureus. This review summarizes industrially interesting antimicrobial bioactivities, as well as their mechanisms of action, for three main types of plant nutraceuticals, terpenoids (as carnosic acid), polyphenols (as quercetin) and thiols (as allicin), which are important constituents of plant essential oils with a broad range of antimicrobial effects. These phytochemicals are widely distributed in fruits and vegetables and are really useful in food preservation as they inhibit microbial growth. Copyright © 2018. Published by Elsevier B.V.

  10. Use of chemometric and quantum-mechanical methods in the analysis of bioactive terpenoids and phenylpropanoids against the Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Reginaldo Bezerra dos Santos

    2010-01-01

    Full Text Available Dengue fever is one of the main public health problems in the world. Many mosquitoes have developed resistance to the conventional insecticides used. Thus, the search for vegetable extracts and natural substances as alternative insecticides has increased. In this study, chemometric methods were employed to classify a group of terpenoid and phenylpropanoid compounds with biological activity against the larval of the A. aegypti mosquitoes. The AM1 (Austin Model 1 method was used to calculate a set of molecular descriptors (properties for the studied compounds. Then, the descriptors were analyzed using the following methods of pattern recognition: Principal Component Analysis (PCA and Hierarchical Clustering Analysis (HCA. The PCA and HCA methods have shown to be very effective for the classification of the study compounds in two groups (active and inactive. The electronic variables EHOMO-1, EHOMO-2, ELUMO, ELUMO+2, and the structural LogP were used to classify as active and inactive compounds. In most studied compounds, the variables responsible for separating active from inactive compounds were electronic descriptors. Thus, it can be concluded that electronic effects play a fundamental role in the interaction between biological receptor and terpenoid and phenylpropanoid compounds with activity against larval A. aegypti mosquitoes.

  11. De Novo Transcriptome Assembly (NGS) of Curcuma longa L. Rhizome Reveals Novel Transcripts Related to Anticancer and Antimalarial Terpenoids

    Science.gov (United States)

    Jayakumar, Vasanthan; Damodaran, Anand C.; Rao, Sudha Narayana; Katta, Mohan A. V. S. K.; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C.

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa. PMID:23468859

  12. De Novo transcriptome assembly (NGS of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Directory of Open Access Journals (Sweden)

    Ramasamy S Annadurai

    Full Text Available Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  13. De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Science.gov (United States)

    Annadurai, Ramasamy S; Neethiraj, Ramprasad; Jayakumar, Vasanthan; Damodaran, Anand C; Rao, Sudha Narayana; Katta, Mohan A V S K; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  14. Attractiveness of Host Plant Volatile Extracts to the Asian Citrus Psyllid, Diaphorina citri, is Reduced by Terpenoids from the Non-Host Cashew.

    Science.gov (United States)

    Fancelli, Marilene; Borges, Miguel; Laumann, Raul A; Pickett, John A; Birkett, Michael A; Blassioli-Moraes, Maria C

    2018-04-01

    Diaphorina citri is a vector of the bacterial causative agent of Huanglongbing (HLB = Citrus greening), a severe disease affecting citrus crops. As there is no known control for HLB, manipulating insect behaviour through deployment of semiochemicals offers a promising opportunity for protecting citrus crops. The behavioural responses of D. citri to plant volatiles, and the identity of these plant volatiles were investigated. Volatiles were collected from host plants Murraya paniculata, Citrus sinensis, C. reshni, C. limettioides, Poncirus trifoliata, and from non-host plants Psidium guajava, Mangifera indica, Anacardium occidentale. In behavioural assays, female D. citri spent more time in the arms containing volatiles from either M. paniculata or C. sinensis compared to the control arms. When D. citri was exposed to volatiles collected from A. occidentale, they preferred the control arm. Volatiles emitted from the other studied plants did not influence the foraging behaviour of D. citri. Chemical analyses of volatile extracts from C. sinensis, M. paniculata, and A. occidentale revealed the presence of the terpenoids (E)-4,8-dimethylnona-1,3,7-triene (DMNT) and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) in higher amounts in A. occidentale. In further behavioural bioassays, female D. citri spent less time in arms containing a synthetic blend of DMNT and TMTT compared to the control arms. Female D. citri also spent less time in arms containing the synthetic blend in combination with volatile extracts from either M. paniculata or C. sinensis compared to the control arms. Results suggest that higher release of the two terpenoids by A. occidentale make this species unattractive to D. citri, and that the terpenoids could be used in reducing colonisation of citrus plants and therefore HLB infection.

  15. Anti-proliferation activity of terpenoids isolated from Euphorbia kansui in human cancer cells and their structure-activity relationship.

    Science.gov (United States)

    Hou, Jin-Jun; Shen, Yao; Yang, Zhou; Fang, Lin; Cai, Lu-Ying; Yao, Shuai; Long, Hua-Li; Wu, Wan-Ying; Guo, De-An

    2017-10-01

    Euphorbia kansui is a commonly used traditional Chinese medicine for the treatment of edema, pleural effusion, and asthma, etc. According to the previous researches, terpenoids in E. kansui possess various biological activities, e.g., anti-virus, anti-allergy, antitumor effects. In this work, twenty five terpenoids were isolated from E. kansui, including thirteen ingenane- and eight jatrophane-type diterpenoids (with two new compounds, kansuinin P and Q) and four triterpenoids. Eighteen of them were analyzed by MTS assay for in vitro anticancer activity in five human cancer cell lines. Structure-activity relationship for 12 ingenane-type diterpenoids in colorectal cancer Colo205 cells were preliminary studied. Significant anti-proliferation activities were observed in human melanoma cells breast cancer MDA-MB-435 cells and Colo205 cells. More than half of the isolated ingenane-type diterpenoids showed inhibitory activities in MDA-MB-435 cells. Eight ingenane- and one jatrophane-type diterpenoids possessed much lower IC 50 values in MDA-MB-435 cells than positive control staurosporine. Preliminary structure-activity relationship analysis showed that substituent on position 20 was important for the activity of ingenane-type diterpenoids in Colo205 cells and substituent on position 3 contributed more significant biological activity of the compounds than that on position 5 in both MDA-MB-435 and Colo205 cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.

    Science.gov (United States)

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K

    2014-09-01

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physicochemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  17. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K.

    2014-07-12

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  18. Coregulation of terpenoid pathway genes and prediction of isoprene production in Bacillus subtilis using transcriptomics

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C.; Wiley, H. S.; Ahring, Birgitte K.; Linggi, Bryan E.

    2013-06-19

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding the system level regulation and control of the pathway. To address this limitation, we examined Bacillus subtilis grown under multiple conditions and then determined the relationship between altered isoprene production and the pattern of gene expression. We found that terpenoid genes appeared to fall into two distinct subsets with opposing correlations with respect to the amount of isoprene produced. The group whose expression levels positively correlated with isoprene production included dxs, the gene responsible for the commitment step in the pathway, as well as ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. This analysis showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model which accurately predicts production of this secondary metabolite across many simulated environmental conditions.

  19. Diversity of ABBA Prenyltransferases in Marine Streptomyces sp. CNQ-509: Promiscuous Enzymes for the Biosynthesis of Mixed Terpenoid Compounds.

    Directory of Open Access Journals (Sweden)

    Franziska Leipoldt

    Full Text Available Terpenoids are arguably the largest and most diverse family of natural products, featuring prominently in e.g. signalling, self-defence, UV-protection and electron transfer. Prenyltransferases are essential players in terpenoid and hybrid isoprenoid biosynthesis that install isoprene units on target molecules and thereby often modulate their bioactivity. In our search for new prenyltransferase biocatalysts we focused on the marine-derived Streptomyces sp. CNQ-509, a particularly rich source of meroterpenoid chemistry. Sequencing and analysis of the genome of Streptomyces sp. CNQ-509 revealed seven putative phenol/phenazine-specific ABBA prenyltransferases, and one putative indole-specific ABBA prenyltransferase. To elucidate the substrate specificity of the ABBA prenyltransferases and to learn about their role in secondary metabolism, CnqP1 -CnqP8 were produced in Escherichia coli and incubated with various aromatic and isoprenoid substrates. Five of the eight prenyltransferases displayed enzymatic activity. The efficient conversion of dihydroxynaphthalene derivatives by CnqP3 (encoded by AA958_24325 and the co-location of AA958_24325 with genes characteristic for the biosynthesis of THN (tetrahydroxynaphthalene-derived natural products indicates that the enzyme is involved in the formation of debromomarinone or other naphthoquinone-derived meroterpenoids. Moreover, CnqP3 showed high flexibility towards a range of aromatic and isoprenoid substrates and thus represents an interesting new tool for biocatalytic applications.

  20. Volatile composition and enantioselective analysis of chiral terpenoids of nine fruit and vegetable fibres resulting from juice industry by-products

    OpenAIRE

    Marsol i Vall, Alexis; Sgorbini, Barbara; Cagliero, Cecilia; Bicchi, Carlo; Eras i Joli, Jordi; Balcells Fluvià, Mercè

    2017-01-01

    Fruit and vegetable fibres resulting as by-products of the fruit juice industry have won popularity because they can be valorised as food ingredients. In this regard, bioactive compounds have already been studied but little attention has been paid to their remaining volatiles. Considering all the samples, 57 volatiles were identified. Composition greatly differed between citrus and noncitrus fibres. The former presented over 90% of terpenoids, with limonene being the most abundant and ranging...

  1. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway

    NARCIS (Netherlands)

    Ritala, A.; Dong, L.; Imseng, N.; Seppanen-Laakso, T.; Vasilev, N.; Krol, van der A.R.; Rischer, H.; Maaheimo, H.; Virkki, A.; Brandli, J.; Schillberg, S.; Eibl, R.; Bouwmeester, H.J.; Oksman-Caldentey, K.M.

    2014-01-01

    The terpenoid indole alkaloids are one of the major classes of plant-derived natural products and are well known for their many applications in the pharmaceutical, fragrance and cosmetics industries. Hairy root cultures are useful for the production of plant secondary metabolites because of their

  2. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent.

    Science.gov (United States)

    Parlinska-Wojtan, Magdalena; Kus-Liskiewicz, Małgorzata; Depciuch, Joanna; Sadik, Omowunmi

    2016-08-01

    Green synthesis method using camomile extract was applied to synthesize silver nanoparticles to tune their antibacterial properties merging the synergistic effect of camomile and Ag. Scanning transmission electron microscopy revealed that camomile extract (CE) consisted of porous globular nanometer sized structures, which were a perfect support for Ag nanoparticles. The Ag nanoparticles synthesized with the camomile extract (AgNPs/CE) of 7 nm average sizes, were uniformly distributed on the CE support, contrary to the pure Ag nanoparticles synthesized with glucose (AgNPs/G), which were over 50 nm in diameter and strongly agglomerated. The energy dispersive X-ray spectroscopy chemical analysis showed that camomile terpenoids act as a capping and reducing agent being adsorbed on the surface of AgNPs/CE enabling their reduction from Ag(+) and preventing them from agglomeration. Fourier transform infrared and ultraviolet-visible spectroscopy measurements confirmed these findings, as the spectra of AgNPs/CE, compared to pure CE, did not contain the 1109 cm(-1) band, corresponding to -C-O groups of terpenoids and the peaks at 280 and 320 nm, respectively. Antibacterial tests using four bacteria strains showed that the AgNPs/CE performed five times better compared to CE AgNPs/G samples, reducing totally all the bacteria in 2 h.

  3. Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells.

    Science.gov (United States)

    Zhou, Chang-Xin; Zhang, Li-Sha; Chen, Fei-Fei; Wu, Hao-Shu; Mo, Jian-Xia; Gan, Li-She

    2017-09-01

    Thirty four terpenoids, including two new cadinane-type sesquiterpenoids containing conjugated aromatic-ketone moieties, curcujinone A (1) and curcujinone B (2), were isolated from 95% ethanol extract of the root tubers of Curcuma wenyujin. Their structures were determined by spectroscopic methods, especially 2D NMR and HRMS techniques. The relative and absolute configurations of 1 and 2 were identified by quantum chemical DFT and TDDFT calculations of the 13 C NMR chemical shifts, ECD spectra, and specific optical rotations. All compounds and extracts were evaluated for their anti-diabetic activities with a glucose consumption model on HepG2 Cells. The petroleum fraction CWP (10μg/mL) and compounds curcumenol (4), 7α,11α-epoxy-5β-hydroxy-9-guaiaen-8-one (5), curdione (17), (1S, 4S, 5S 10S)-germacrone (18), zederone (20), a mixture of curcumanolide A (25) and curcumanolide B (26), gajutsulactone B (27), and wenyujinin C (30) showed promising activities with over 45% increasing of glucose consumption at 10μM. Copyright © 2017. Published by Elsevier B.V.

  4. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis

    OpenAIRE

    Fan, Rongyan; Li, Yuanjun; Li, Changfu; Zhang, Yansheng

    2015-01-01

    The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs) are a class of 21-24 nucleotide (nt) non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined w...

  5. Use of [2-14C]mevalonate and saponin-bound [14C]-3-hydroxy-3-methylglutaric acid for the biosynthesis of terpenoids in leaves of Dioscorea deltoidea

    International Nuclear Information System (INIS)

    Gurielidze, K.G.; Paseshnichenko, V.A.; Vasil'eva, I.S.

    1986-01-01

    After the introduction of [2- 14 C]acetate into leaves of Dioscorea deltoidea, a radioactive furonanalog of deltafolin - protodeltofolin, containing two-thirds of the label in the 3-hydroxy-3-methylglutaryl portion - was isolated from them. Radioactive β-careotene and sterols were isolated from cut young leaves of Dioscorea 24 h after the introduction of [ 14 C] protodeltofolin into them, using chromatography on a column of silica gel and precipitation of sterols in the form of digitonins for this purpose. The incorporation of radioactivity from [ 14 C]-3-hydroxy-3-methyl-glutaric acid, bound in the form of a saponin, and β-carotene came to 0.18-0.80%, while incorporation into sterols came to 0.07-2.86% of the radioactivity of the alcohol extract. Thereby it was shown that 3-hydroxyl-3-methylglutaric acid, bound in the form of the saponin, can be used to form terpenoids in Dioscorea leaves. It was suggested that the binding of hydroxymethylglutaric acid to saponin represents one of the mechanisms of regulation of the rate of terpenoid biosynthesis in Dioscorea leaves

  6. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokun [Univ. of Nevada, Reno, NV (United States); Li, Teng [Washington State Univ., Pullman, WA (United States); Tang, Kan [Washington State Univ., Pullman, WA (United States); Zhou, Xinpei [Univ. of Nevada, Reno, NV (United States); Lu, Mi [Univ. of Nevada, Reno, NV (United States); Ounkham, Whalmany L. [Univ. of Nevada, Reno, NV (United States); Spain, Stephen M. [Univ. of Nevada, Reno, NV (United States); Frost, Brian J. [Univ. of Nevada, Reno, NV (United States); Lin, Hongfei [Washington State Univ., Pullman, WA (United States)

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reaction mechanism is discussed.

  7. Effect of Cytokinin and Auxin Treatments on Morphogenesis, Terpenoid Biosynthesis, Photosystem Structural Organization, and Endogenous Isoprenoid Cytokinin Profile in Artemisia alba Turra In Vitro

    Czech Academy of Sciences Publication Activity Database

    Danova, K.; Motyka, Václav; Todorova, M.; Trendafilova, A.; Krumova, S.; Dobrev, Petre; Andreeva, T.; Oreshkova, T.; Taneva, S.; Evstatieva, L.

    2018-01-01

    Roč. 37, č. 2 (2018), s. 403-418 ISSN 0721-7595 R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:61389030 Keywords : Artemisia alba Turra in vitro * Cis- and trans-zeatin * Endogenous cytokinins * Photosystem II and thylakoid morphology * Plant growth regulators * Terpenoid profile of the essential oil Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.073, year: 2016

  8. Terpenoid Compositions and Botanical Origins of Late Cretaceous and Miocene Amber from China

    Science.gov (United States)

    Shi, Gongle; Dutta, Suryendu; Paul, Swagata; Wang, Bo; Jacques, Frédéric M. B.

    2014-01-01

    The terpenoid compositions of the Late Cretaceous Xixia amber from Central China and the middle Miocene Zhangpu amber from Southeast China were analyzed by gas chromatography-mass spectrometry (GC-MS) to elucidate their botanical origins. The Xixia amber is characterized by sesquiterpenoids, abietane and phyllocladane type diterpenoids, but lacks phenolic abietanes and labdane derivatives. The molecular compositions indicate that the Xixia amber is most likely contributed by the conifer family Araucariaceae, which is today distributed primarily in the Southern Hemisphere, but widely occurred in the Northern Hemisphere during the Mesozoic according to paleobotanical evidence. The middle Miocene Zhangpu amber is characterized by amyrin and amyrone-based triterpenoids and cadalene-based sesquiterpenoids. It is considered derived from the tropical angiosperm family Dipterocarpaceae based on these compounds and the co-occurring fossil winged fruits of the family in Zhangpu. This provides new evidence for the occurrence of a dipterocarp forest in the middle Miocene of Southeast China. It is the first detailed biomarker study for amber from East Asia. PMID:25354364

  9. A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco.

    Science.gov (United States)

    Shen, Jinchao; Shao, Xueguang

    2005-11-01

    The performance of accelerated solvent extraction in the analysis of terpenoids and sterols in tobacco samples was investigated and compared with those of Soxhlet extraction and ultrasonically assisted extraction with respect to yield, extraction time, reproducibility and solvent consumption. The results indicate that although the highest yield was achieved by Soxhlet extraction, ASE appears to be a promising alternative to classical methods since it is faster and uses less solvent, especially when applied to the investigation of large batch tobacco samples. However, Soxhlet extraction is still the preferred method for analyzing sterols since it gives a higher extraction efficiency than other methods.

  10. Cloning and expression analysis of JcAACT, jcMDC and JcFPS, involved in terpenoid biosynthesis in jatropha curcas l

    International Nuclear Information System (INIS)

    Huang, Y.; Wen, J.

    2018-01-01

    To better understand the functions of key genes involved in terpenoid biosynthesis in Jatropha curcas, we cloned and characterized three genes, namely acetyl CoA acyltransferase (JcAACT), diphosphate mevalonate decarboxylase (JcMDC) and farnesyl pyrophosphate synthase (JcFPS). The opening reading frames (ORFs) of JcAACT, JcMDC and JcFPS were 1239 bp,1248 bp and 1029 bp, respectively, encoding a 412-amino acid, 415-amino acid and 342-amino acid polypeptide, respectively. Results of homology analysis showed that JcAACT, JcMDC and JcFPS encoded proteins that all had the highest identity and closest relationship with the corresponding genes in Hevea brasiliensis, with identities of 89%, 92% and 93%, respectively. JcAACT, JcMDC and JcFPS were expressed in all organs tested of J. curcas; the highest expression level for each gene occurred in seeds. In the early growth stage of seeds, the expression level of each of these three genes increased with time, with JcAACT and JcMDC expression level reaching a peak at the late stage of seed development (50 d), while JcFPS expression level reached a peak at the mid-late stage (40 d). Following the peak, the expression of each gene then declined. The expression level of JcAACT was the highest of the three genes, regardless of the organ or the stage of seed growth, indicating its important role in J. curcas. This study lays the foundation for a better understanding of the important role of the JcAACT, JcMDC and JcFPS genes in the terpenoid biosynthesis pathway of J. curcas. (author)

  11. Alpha-glucosidase inhibitory and antiplasmodial properties of terpenoids from the leaves of Buddleja saligna Willd.

    Science.gov (United States)

    Chukwujekwu, Jude C; Rengasamy, Kannan R R; de Kock, Carmen A; Smith, Peter J; Slavětínská, Lenka Poštová; van Staden, Johannes

    2016-01-01

    In our continuing search for biologically active natural product(s) of plant origin, Buddleja saligna, a South African medicinal plant, was screened in line with its traditional use for antidiabetic (yeast alpha glucosidase inhibitory) and antiplasmodial (against a chloroquine sensitive strain of Plasmodium falciparum (NF54)) activities. The hexane fraction showed the most promising activity with regards to its antidiabetic (IC(50) = 260 ± 0.112 µg/ml) and antiplasmodial (IC(50) = 8.5 ± 1.6 µg/ml) activities. Using activity guided fractionation three known terpenoids (betulonic acid, betulone and spinasterol) were isolated from this species for the first time. The compounds displayed varying levels of biological activities (antidiabetic: 27.31 µg/ml ≥ IC(50) ≥ 5.6 µg/ml; antiplasmodial: 14 µg/ml ≥ IC(50) ≥ 2 µg/ml) with very minimal toxicity.

  12. Transcriptional regulation of genes involved in terpenoid índole alkaloid production in Catharanthus roseus seedlings

    Directory of Open Access Journals (Sweden)

    Pedro J. Rocha

    2002-07-01

    Full Text Available Catharanthus roseus (L. G Don is a medicinal plant that produces a variety of terpenoid indole alkaloids (TIAs, some of which display pharmacological activity. C. roseus plants and cell cultures have been used to elucidate the TIAs biosynthetic pathway. A considerable number or enzymes have also been characterised, and their respective genes cloned. TIAs production in C. roseus plant and cell cultures is highly regulated at transcriptional-, develop-mental-, and environmental-level. Studies into TIAs biosynthetic gene regulation have been carried out using cell cultures. However, regulation in plants is almost unknown. Here, biosynthetic genes idc, strl, d4h and dat expres-sion levels are qualitatively examined in a developmental series of C. roseus seedlings. The effect of water- and light-stress and methyl jasmonate (MeJa and acetyl salicylic acid (ASA elicitation is also examined. Comparison between seedlings and cell cultures strongly suggests that TIAs biosynthetic gene transcriptional regulation is different in C.roseus plants and cell cultures.

  13. Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves

    Science.gov (United States)

    Kavitha, S.; Dhamodaran, M.; Prasad, Rajendra; Ganesan, M.

    2017-04-01

    Zinc oxide (ZnO) nanoparticles have been widely employed for various pharmacological applications. Several approaches were tried to synthesize ZnO nanoparticles. In this study, ZnO nanoparticles were biosynthesized using terpenoid (TAP) fractions isolated from Andrographis paniculata leaves. Subsequently, the ZnNO3 (0.1 N) is treated with the isolated TAP fractions to biosynthesize zinc oxide nanoparticles (Zn-TAP NPs). This nanoparticle preparation has been confirmed by the colour change from green to cloudy-white and the peak at 300 nm by UV-Visible spectra. FTIR analysis of Zn-TAP NPs showed the presence of functional group (i.e.) C=O which has further been confirmed by H1-NMR studies. From SEM and XRD analysis, it has been found that the hexagonal nanorod particle is 20.23 nm in size and +17.6 mV of zeta potential. Hence, it can be easily absorbed by negatively charged cellular membrane to contribute for efficient intracellular distribution. Therefore, it is suggested that the synthesised Zn-TAP NPs are more suitable in drug delivery processes.

  14. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    Science.gov (United States)

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter

  15. The synthesis and characterization of novel brush-type chiral stationary phase based on terpenoid selector for resolution of chiral drugs

    Directory of Open Access Journals (Sweden)

    Wang Dao-Cai

    2016-01-01

    Full Text Available In the light of the chiral resolution mechanism and structures of brush-type CSP, a new chiral selector 4′-carboxyl-1′-ursolic methyl ester-3β-yl-benzoate has been prepared. Then the terpenoid chiral selector was covalently linked to 3-aminopropyl silica gel. Its structure identification data are provided by 1H NMR, MS and elementary analysis. The enantiodiscriminating capability of the brush-type CSP was evaluated by static adsorption experiment with methyl mandelate, aniline derivative of mandelic acid, benzoin and ibuprofen. Experimental results demonstrated that the chiral selector has selectivity, and the enantiomers of methyl mandelate and ibuprofen could be separated on the CSP, which indicated that the novel brush-type CSP possess a bright prospects for chiral separation potentially.

  16. Phenolics and Terpenoids; the Promising New Search for Anthelmintics: A Critical Review.

    Science.gov (United States)

    Mukherjee, Niladri; Mukherjee, Suprabhat; Saini, Prasanta; Roy, Priya; Babu, Santi P Sinha

    2016-01-01

    Ailments caused by helminth parasites are global causing different types of clinical complications with permanent and long term morbidity in humans. Although huge advances have been made in medical sciences the effectiveness of available anthelmintics are still quite limited. Starting from the 50's, most importance was given to synthetic compounds for developing remedies from them, however, the traditional knowledge of medicine of different countries continued to provide us clues against this widespread health problem. Natural products or structural analogs with diverse structures are always been the major sources for discovering new therapeutics and in recent past different active compounds have also been identified form these plant sources having anthelmintic properties. Although compounds of diverse chemical nature and classes were identified, most active ones belong to either phenol or terpene in broad chemical nature. The mechanism of action of these phytotherapeutics is usually multi-targeted and can act against the helminth parasites through diverse spectrum of activities. In this review we summarized the effective anthelmintics belong to either phenolics or terpenoids and highlighted the major way of their effectiveness. This also highlights the recent development of new therapeutic strategies against helminth parasites in the light of recent advances of knowledge. In addition, developing efficient strategies to promote apoptosis and disturbing redox status in them by natural products can provide us a clue in antifilarial drug developmental research and crucial unmet medical need.

  17. In vitro evaluation of potential bitterness-masking terpenoids from the Canada goldenrod (Solidago canadensis).

    Science.gov (United States)

    Li, Jie; Pan, Li; Fletcher, Joshua N; Lv, Wei; Deng, Ye; Vincent, Michael A; Slack, Jay P; McCluskey, T Scott; Jia, Zhonghua; Cushman, Mark; Kinghorn, A Douglas

    2014-07-25

    In a screening of extracts of selected plants native to Ohio against the human bitterness receptor hTAS2R31, a chloroform-soluble extract of the aerial parts of Solidago canadensis (Canada goldenrod) was determined to have hTAS2R31 antagonistic activity and, thus, was fractionated for isolation of potential bitterness-masking agents. One new labdane diterpenoid, solidagol (1), and six known terpenoids, including two labdane diterpenoids (2 and 3), three clerodane diterpenoids (6β-angeloyloxykolavenic acid, 6β-tigloyloxykolavenic acid, and crotonic acid), and a triterpenoid (longispinogenin), were isolated. Among these compounds, 3β-acetoxycopalic acid (2) was found to be the first member of the labdane diterpene class shown to have inhibitory activity against hTAS2R31 activation (IC50 8 μM). A homology model of hTAS2R31 was constructed, and the molecular docking of 2 to this model indicated that this diterpenoid binds well to the active site of hTAS2R31, whereas this was not the case for the closely structurally related compound 3 (sempervirenic acid). The content of 2 in the chloroform-soluble portion of the methanolic extract of S. canadensis was up to 2.24 g/100 g dry weight, as determined by HPLC.

  18. The genus Scrophularia: a source of iridoids and terpenoids with a diverse biological activity.

    Science.gov (United States)

    Pasdaran, Ardalan; Hamedi, Azadeh

    2017-12-01

    Scrophularia genus (Scrophulariaceae) includes about 350 species commonly known as figwort. Many species of this genus grow wild in nature and have not been cultivated yet. However, some species are in danger of extinction. This paper reviews the chemical compounds, biological activities and the ethnopharmacology of some Scrophularia species. All information was obtained through reported data on bibliographic database such as Scopus, United States National Agricultural Library, Biological Abstracts, EMBASE, PubMed, MedlinePlus, PubChem and Springer Link (1934-2017). The information in different Pharmacopoeias on this genus was also gathered from 1957 to 2007. The structures of 204 compounds and their biological activity were presented in the manuscript: glycoside esters, iridoid glycosides and triterpenoids are the most common compounds in this genus. Among them, scropolioside like iridoids have shown potential for anti-inflammatory, hepatoprotective and wound healing activity. Among the less frequently isolated compounds, resin glycosides such as crypthophilic acids have shown potent antiprotozoal and antimicrobial activities. The Scrophularia genus seems to be a rich source of iridoids and terpenoids, but isolation and identification of its alkaloids have been a neglected area of scientific study. The diverse chemical compounds and biological activities of this genus will motivate further investigation on Scrophularia genus as a source of new therapeutic medications.

  19. Analysis of the transcriptome of Isodon rubescens and key enzymes involved in terpenoid biosynthesis

    Directory of Open Access Journals (Sweden)

    Xiuhong Su

    2016-05-01

    Full Text Available Isodon rubescens is an important medicinal plant in China that has been shown to reduce tumour growth due to the presence of the compound oridonin. In an effort to facilitate molecular research on oridonin biosynthesis, we reported the use of next generation massively parallel sequencing technologies and de novo transcriptome assembly to gain a comprehensive overview of I. rubescens transcriptome. In our study, a total of 50,934,276 clean reads, 101,640 transcripts and 44,626 unigenes were generated through de novo transcriptome assembly. A number of unigenes – 23,987, 10,263, 7359, 18,245, 17,683, 19,485, 9361 – were annotated in the National Center for Biotechnology Information (NCBI non-redundant protein (Nr, NCBI nucleotide sequences (Nt, Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology (KO, Swiss-Prot, protein family (Pfam, gene ontology (GO, eukaryotic ortholog groups (KOG databases, respectively. Furthermore, the annotated unigenes were functionally classified according to the GO, KOG and KEGG. Based on these results, candidate genes encoding enzymes involved in terpenoids backbone biosynthesis were detected. Our data provided the most comprehensive sequence resource available for the study on I. rubescens, as well as demonstrated the effective use of Illumina sequencing and de novo transcriptome assembly on a species lacking genomic information.

  20. Improved anti-inflammatory activity of three new terpenoids derived, by systematic chemical modifications, from the abundant triterpenes of the flowery plant Calendula officinalis.

    Science.gov (United States)

    Neukirch, Hannes; D'Ambrosio, Michele; Sosa, Silvio; Altinier, Gianmario; Della Loggia, Roberto; Guerriero, Antonio

    2005-05-01

    Rings A, D and E of faradiol (1), and ring E of both arnidiol (10) and calenduladiol (4) have been subjected to various selective chemical manipulations to modify polarity, water affinity, H-bonding, sterics, and number of aromatic groups of these anti-inflammatory natural compounds. A total of 15 new and four known pentacyclic triterpenoids have been obtained in this way. Some 13 terpenoids were evaluated for their topical anti-inflammatory activities with respect to inhibition of croton oil induced ear oedema in mouse. Three derivatives of 1, the C(16) benzyl ether 15, the C(30) aldehyde 24, and the C(30) primary alcohol 25 showed significantly improved anti-inflammatory potencies, which is relevant for (future) structure-activity-relationship (SAR) studies.

  1. Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality

    Science.gov (United States)

    Gentner, D. R.; Ormeño, E.; Fares, S.; Ford, T. B.; Weber, R.; Park, J.-H.; Brioude, J.; Angevine, W. M.; Karlik, J. F.; Goldstein, A. H.

    2014-06-01

    Agriculture comprises a substantial, and increasing, fraction of land use in many regions of the world. Emissions from agricultural vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of particulate matter (PM2.5). Using data from three measurement campaigns, we examine the magnitude and composition of reactive gas-phase organic carbon emissions from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions from motor vehicles in California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone PM2.5. Emission rates for a suite of terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008. Ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound ranges were made in the urban area of Bakersfield and over an orange orchard in a rural area of the San Joaquin Valley during two 2010 seasons: summer and spring flowering. We combined measurements from the orchard site with ozone modeling methods to assess the net effect of the orange trees on regional ozone. When accounting for both emissions of reactive precursors and the deposition of ozone to the orchard, the orange trees are a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall, when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by several factors to over an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic

  2. Design and synthesis of new esters of terpenoid alcohols as 15-lipoxygenase inhibitors

    Directory of Open Access Journals (Sweden)

    Hamid Sadeghian

    2018-07-01

    Full Text Available Objective(s: 15-Lipoxygenases are one of the iron-containing proteins capable of performing peroxidation of unsaturated fatty acids in animals and plants. The critical role of enzymes in the formation of inflammations, sensitivities, and some cancers has been demonstrated in mammals. The importance of enzymes has led to the development of mechanistic studies, product analysis, and synthesis of inhibitors. Materials and Methods: The inhibitory activity of all synthetic compounds against SLO (soybean 15-lipoxygenase: L1; EC 1,13,11,12 was determined using the peroxide formation method. In this method, the basis of evaluation of lipoxygenase activity is measuring the concentration of fatty acid peroxide. All measurements were compared with  4-​methyl-​2-​(4-​methylpiperazinylpyrimido[4,​5-​b]benzothiazine (4-MMPB as one of the known lipoxygenase inhibitors. The radical scavenging ability of all synthetic compounds using stable free radicals (DPPH: 2,2-diphenyl-1-picrylhydrazyl was measured for further investigation.Results: In this study, a series of esters from phenolic acids with terpenoid alcohols was synthesized and their inhibitory potency against soybean 15-lipoxygenase and their free radical scavenging properties were determined. Among the synthetic compounds, adamantyl protocatetuate 2j and bornyl protocatetuate 2o showed the most potent inhibitory activity with IC50 values of 0.95 and 0.78 μm, respectively.Conclusion: By changing the alcohol and acyl portions of stylosin, it was found that electronic properties play main role in lipoxygenase inhibition potency in contrast with steric features. Insertion of more reductive phenolic moiety such as catechuate and gallate lead to more lipoxygenase inhibition potency of the esters as observed in their radical scavenging activity.

  3. Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae.

    Directory of Open Access Journals (Sweden)

    Jerome Niogret

    Full Text Available Chemical analyses were conducted to determine the qualitative and quantitative differences in monoterpenes and sesquiterpenes in plant material from avocado trees, Persea americana Mill. (Lauraceae. The initial study analyzed plant material sampled from the trunk to the leaves through different branch diameters to quantify proximo-distal spatial differences within a tree. All trees were seedlings initiated from a single maternal tree. Two-way analysis of variance was conducted on 34 chemicals that comprised at least 3% of the total chemical content of at least one tree and/or location within a tree. There were significant interactions between genotype and location sampled for most chemicals. Parentage analysis using microsatellite molecular markers (SSR's determined that the four trees had three fathers and that they represented two full-siblings and two half-sibling trees. Descriptive discriminant analysis found that both genotype and location within a tree could be separated based on chemical content, and that the chemical content from full-siblings tended to be more similar than chemical content from half-siblings. To further explore the relationship between genetic background and chemical content, samples were analyzed from leaf material from 20 trees that included two sets of full-sibling seedling trees, the maternal tree and the surviving paternal tree. Descriptive discriminant analysis found good separation between the two full-sibling groups, and that the separation was associated with chemistry of the parental trees. Six groups of chemicals were identified that explained the variation among the trees. We discuss the results in relation to the discrimination process used by wood-boring insects for site-selection on host trees, for tree selection among potential host trees, and the potential use of terpenoid chemical content in chemotaxonomy of avocado trees.

  4. Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae).

    Science.gov (United States)

    Niogret, Jerome; Epsky, Nancy D; Schnell, Raymond J; Boza, Edward J; Kendra, Paul E; Heath, Robert R

    2013-01-01

    Chemical analyses were conducted to determine the qualitative and quantitative differences in monoterpenes and sesquiterpenes in plant material from avocado trees, Persea americana Mill. (Lauraceae). The initial study analyzed plant material sampled from the trunk to the leaves through different branch diameters to quantify proximo-distal spatial differences within a tree. All trees were seedlings initiated from a single maternal tree. Two-way analysis of variance was conducted on 34 chemicals that comprised at least 3% of the total chemical content of at least one tree and/or location within a tree. There were significant interactions between genotype and location sampled for most chemicals. Parentage analysis using microsatellite molecular markers (SSR's) determined that the four trees had three fathers and that they represented two full-siblings and two half-sibling trees. Descriptive discriminant analysis found that both genotype and location within a tree could be separated based on chemical content, and that the chemical content from full-siblings tended to be more similar than chemical content from half-siblings. To further explore the relationship between genetic background and chemical content, samples were analyzed from leaf material from 20 trees that included two sets of full-sibling seedling trees, the maternal tree and the surviving paternal tree. Descriptive discriminant analysis found good separation between the two full-sibling groups, and that the separation was associated with chemistry of the parental trees. Six groups of chemicals were identified that explained the variation among the trees. We discuss the results in relation to the discrimination process used by wood-boring insects for site-selection on host trees, for tree selection among potential host trees, and the potential use of terpenoid chemical content in chemotaxonomy of avocado trees.

  5. Investigation of polycyclic aromatic hydrocarbons (PAHs) and cyclic terpenoid biomarkers in the sediments of fishing harbors in Taiwan

    International Nuclear Information System (INIS)

    Kao, Nien-Hsin; Su, Ming-Chien; Fan, Jheng-Rong; Yen, Chih-Chun

    2015-01-01

    Highlights: • Biomarkers in three fishing harbors were investigated and identified. • 17 terpanes, 10 steranes and 10 bicyclic sesquiterpanes were quantified. • Marine diesel and the three kinds of lubricants were studied. • The study can be applied to other harbors to identify oil products in sediments. - Abstract: Three fishing harbors were investigated to study the polycyclic aromatic hydrocarbons in the sediments and trace possible anthropogenic sources by identification of cyclic terpenoid biomarkers. Seventeen terpanes, 10 steranes and 10 bicyclic sesquiterpanes in the marine diesel and the three kinds of lubricants that are mainly used by fishing boats were identified and quantified. Eighteen biomarker diagnostic ratios are suggested and the correlation coefficients among the lubricants and sediment samples have the R 2 value greater than 0.73. Analyzed 16 PAHs in the sediment shows non-normal distributions and the Kruskal Wallis Test shows the significant differences (p value smaller than 0.05) with the greatest variability in benzo[g,h,i]perylene which more than 84% of the effective size (E.S.) is accounted. X-ray Photoelectron Spectroscopy (XPS) analysis was applied and the Kruskal Wallis Test shows a significant difference (p value smaller than 0.05) among certain atoms with the effective size greater than 60%

  6. Change in the terpenoid profile and secondary growth in declining stands of Pinus sylvestris L. under mediterranean influence as a response to local factors

    Directory of Open Access Journals (Sweden)

    Sanz, M. A.

    2014-12-01

    Full Text Available The terpenoid profile could give information about the water status in Scots pine, especially for trees growing in the same geographical area but under contrasting local environmental conditions. Terpenes were analyzed by gas chromatography-mass spectrometry in needles, twigs and wood of ten affected and ten unaffected Scots pines in the southern “Sistema Ibérico” range (Teruel, Spain, where forest decline has been recently reported. Soil depth and secondary growth was also studied in both types of trees. Needles and twigs total resin acids were significantly higher in affected trees. The pimarane type resin acids were also higher in the twigs of affected trees. Secondary growth was lower in affected trees and it showed higher climate sensitivity. The use of the terpenoid profile may be used as an additional tool for the estimation of the water status, especially for situations inducing moderate but relatively prolonged stress conditions.El perfil terpénico podría dar información sobre el estado hídrico en el pino albar, especialmente cuando se comparen especímenes de una zona geográfica concreta afectados por factores ambientales locales. Los terpenos de acículas, brotes del año y madera fueron analizados en diez ejemplares afectados y otros tantos no afectados por el decaimiento mediante cromatografía de masas acoplada a espectrometría de masas. La serie de crecimiento secundario en ambos tipos de ejemplares fue también estudiada. La concentración total de ácidos resínicos aumentó de modo significativo en los árboles afectados tanto en brotes del año como en acículas. La cantidad de ácidos de tipo pimarano también aumentó en los brotes de los árboles afectados. La profundidad del suelo y el crecimiento secundario era menor en este tipo de ejemplares, que muestran una mayor sensibilidad en términos dendrocronológicos. El perfíl terpénico podría utilizarse como una herramienta adicional a la estimación del estado

  7. Satisfaction and convenience of using terpenoid-impregnated eyelid wipes and teaching method in people without blepharitis.

    Science.gov (United States)

    Qiu, Tian Yu; Yeo, Sharon; Tong, Louis

    2018-01-01

    Demodex infestations cause blepharitis and are difficult to treat. Recently, a new type of eyelid wipes with terpenoids has been found effective. We aim to evaluate patient satisfaction after short-term use and compare two teaching modalities on the techniques of use. Eligible participants were taught to use eyelid wipes (Cliradex ® ) by either live or online video demonstration based on random allocation. Participants used the wipes twice daily for a week. All participants had prior evaluation of socioeconomic status, dry eye symptoms, and meibomian gland features. After 1 week, competence of use was assessed by participants showing their technique to the investigator, and a questionnaire on comfort, ease, and convenience of use was administered. Higher scores indicate greater satisfaction, and these levels are compared among the two teaching modalities using chi square. A total of 50 participants were recruited, with a mean age of 42±16 years, and 88% of the participants were females. Overall, median comfort level was 4.0 (range: 1-6), ease level was 5.0 (3-6), and convenience level was 5.0 (2-6). Median stinging was 2.0 (1-4), which corresponded to some but mild stinging. The median competence level was 4.0 (2-4), which corresponded to excellent competence. These satisfactory levels (ease, comfort, and convenience) experienced were not significantly associated with different socioeconomic indicators, that is, housing type, income, highest education level, and were not different between teaching methods ( p >0.05). Short-term use of Cliradex eyelid wipes seems to be acceptable to most people. The teaching instructions before using these wipes were equally effective - whether live or online video demonstration was used.

  8. Rapid Induction of Multiple Terpenoid Groups by Ponderosa Pine in Response to Bark Beetle-Associated Fungi.

    Science.gov (United States)

    Keefover-Ring, Ken; Trowbridge, Amy; Mason, Charles J; Raffa, Kenneth F

    2016-01-01

    Ponderosa pine (Pinus ponderosa) is a major and widely distributed component of conifer biomes in western North America and provides substantial ecological and economic benefits. This tree is exposed to several tree-killing bark beetle-microbial complexes, including the mountain pine beetle (Dendroctonus ponderosae) and the phytopathogenic fungus Grosmannia clavigera that it vectors, which are among the most important. Induced responses play a crucial role in conifer defenses, yet these have not been reported in ponderosa pine. We compared concentrations of terpenes and a phenylpropanoid, two phytochemical classes with strong effects against bark beetles and their symbionts, in constitutive phloem tissue and in tissue following mechanical wounding or simulated D. ponderosae attack (mechanical wounding plus inoculation with G. clavigera). We also tested whether potential induced responses were localized or systemic. Ponderosa pines showed pronounced induced defenses to inoculation, increasing their total phloem concentrations of monoterpenes 22.3-fold, sesquiterpenes 56.7-fold, and diterpenes 34.8-fold within 17 days. In contrast, responses to mechanical wounding alone were only 5.2, 11.3, and 7.7-fold, respectively. Likewise, the phenylpropanoid estragole (4-allyanisole) rose to 19.1-fold constitutive levels after simulated attack but only 4.4-fold after mechanical wounding. Overall, we found no evidence of systemic induction after 17 days, which spans most of this herbivore's narrow peak attack period, as significant quantitative and compositional changes within and between terpenoid groups were localized to the wound site. Implications to the less frequent exploitation of ponderosa than lodgepole pine by D. ponderosae, and potential advantages of rapid localized over long-term systemic responses in this system, are discussed.

  9. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Directory of Open Access Journals (Sweden)

    Noreen F Rizvi

    Full Text Available The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs, including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs with the plant hormone, methyl jasmonate (MJ, while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM. However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str, illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  10. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L. extract polyphenols and terpenoids in Caco-2 cell monolayers.

    Directory of Open Access Journals (Sweden)

    Almudena Pérez-Sánchez

    Full Text Available Rosemary (Rosmarinus officinalis is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids of a rosemary extract (RE, obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS, and the apparent permeability values (Papp were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability; therefore, RE itself should also be classified into this category.

  11. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers

    Science.gov (United States)

    Arráez-Román, David; González-Álvarez, Isabel; Ibáñez, Elena; Segura-Carretero, Antonio; Bermejo, Marival; Micol, Vicente

    2017-01-01

    Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the apparent permeability values (Papp) were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS) of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability); therefore, RE itself should also be classified into this category. PMID:28234919

  12. Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en Catharanthus roseus Analysis of iridoids content and expression studies of genes encoding early enzymes in the indol terpenoid biosynthesis pathway in Catharanthus roseus

    OpenAIRE

    Palacios-Rojas Natalia; Leech Mark

    2004-01-01

    Los alcaloides indol terpenoicos (TIA) son metabolitos secundarios de importancia medicinal por sus propiedades como agentes anticancerígenos, entre otras. Sin embargo, su explotación en la industria farmacéutica se ha visto limitada, ya que la acumulación de estos compuestos en las plantas que los producen es mínima. Dichos alcaloides son biosintetizados por la vía del shikimato y de los terpenoides, los cuales proveen los precursores: secologanina y triptamina, respectivamente. La secologan...

  13. Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid.

    Science.gov (United States)

    Kroes, Anneke; Weldegergis, Berhane T; Cappai, Francesco; Dicke, Marcel; van Loon, Joop J A

    2017-12-01

    One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.

  14. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    Science.gov (United States)

    Ma, Jun; Kanakala, S; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  15. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Jun Ma

    Full Text Available Ananas comosus var. bracteatus (Red Pineapple is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies.The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis.The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  16. Role of the Colletotrichum acutatum sesquiterpene synthase CaTPS in the biosynthesis of sesquiterpenoids

    DEFF Research Database (Denmark)

    Amby, Daniel Buchvaldt; Manczak, Tom; Petersen, Mikael Agerlin

    2016-01-01

    biosynthesis is performed by sesquiterpene synthases (TPS). Only a few TPSs have been functionally characterized from filamentous fungi and none from the genus Colletotrichum. Despite being an important fungal pathogen to agriculture, it is poorly understood at the molecular and chemical levels. The terpenoid...... characterization of TPS in Colletotrichum spp. and terpenoid profiles of Coll. acutatum, which could facilitate studies on the role of terpenoids in the ecology of Coll. acutatum....

  17. Produtos naturais para o controle da transmissão da dengue: atividade larvicida de Myroxylon balsamum (óleo vermelho e de terpenóides e fenilpropanóides Natural products for dengue transmission control: larvicidal activity of Myroxylon balsamum (red oil and of terpenoids and phenylpropanoids

    Directory of Open Access Journals (Sweden)

    Naomi Kato Simas

    2004-02-01

    Full Text Available The bioassay-guided fractionation of the hexane extract obtained from the medicinal plant Myroxylon balsamum (red oil was conducted in preparative thin layer chromatography on silica gel. The obtained fractions and some terpenoids and phenylpropanoids were assayed as larvicidal on third instar Aedes aegypti larvae, NPPN colony. The results indicate that the sesquiterpene nerolidol was the active constituent in the extract and that the sesquiterpenes were more active than the monoterpenes and phenylpropanoids utilized in this study. Lipophilicity seems to be an important property for the activity since the compounds with hydroxyl, carbonyl and methoxyl groups were less active. The results confirm also that essential oils can be a good tool for the control of dengue.

  18. Arctic emissions of biogenic volatile organic compounds – from plants, litter and soils

    DEFF Research Database (Denmark)

    Svendsen, Sarah Hagel

    -terpenoid BVOCs were dominating the emission profile from the soils and the magnitude of the soil emissions depended greatly on the soil water content and temperature. A warmer arctic climate will likely alter the composition of plant species, cause a thawing of permafrost soil and change soil characteristics...... in adsorbent cartridges and analyzed using gas chromatography–mass spectrometry. Ecosystem BVOC emissions were highly dominated by terpenoids but the composition of terpenoids differed between different plant species. Litter emissions were less dominated by terpenoids than the ecosystem emissions, however...... they still constituted approximately 50 % of the total emissions. I suggested that the litter emissions derived both from microbial soil processes and from stores inside the litter tissue and that the relative importance of these two sources were plant species specific. Furthermore, emissions of non...

  19. Phytochemical screening of different extracts of Kalanchoe laciniata

    Directory of Open Access Journals (Sweden)

    Maria Manan

    2015-06-01

    Full Text Available Alkaloids, tannins, saponins, steroids, terpenoids and flavonoids distribution in n-hexane and aqueous-methanolicextract of kalanchoelaciniata was assessed and compared. The present study was carried out to study the phytochemical constituents of Kalanchoe laciniata. Aqueous-methanol and n-hexane were the solvents used for the extraction of the plant. Phytochemical analysis was carried out on both of these extracts, indicated that n-hexane extract constitutes tannins, terpenoids on the other hand aqueous-methanolic extract contains saponins, tannins, terpenoids, flavonoids, glycosides  and anthraquinones. 

  20. Wood and Chemistry – or How to Combine Bob Heath's Two Passions into Entomology Research

    Science.gov (United States)

    Plants generally produce complex mixtures of terpenoids that may differ greatly among species. Terpenoids, such C10 monoterpenes and C15 sesquiterpenes, are known to play an important role in the biology and ecology of plants, directly or indirectly influencing their interactions with their biotic e...

  1. Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts

    NARCIS (Netherlands)

    Muntendam, Remco; Melillo, Elena; Ryden, Annamargareta; Kayser, Oliver

    2009-01-01

    Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood

  2. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes--current status and future opportunities.

    Science.gov (United States)

    Lange, B Markus; Ahkami, Amirhossein

    2013-02-01

    Terpenoids (a.k.a. isoprenoids) represent the most diverse class of natural products found in plants, with tens of thousands of reported structures. Plant-derived terpenoids have a multitude of pharmaceutical and industrial applications, but the natural resources for their extraction are often limited and, in many cases, synthetic routes are not commercially viable. Some of the most valuable terpenoids are not accumulated in model plants or crops, and genetic resources for breeding of terpenoid natural product traits are thus poorly developed. At present, metabolic engineering, either in the native producer or a heterologous host, is the only realistic alternative to improve yield and accessibility. In this review article, we will evaluate the state of the art of modulating the biosynthetic pathways for the production of mono-, sesqui- and diterpenes in plants. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  3. Contrasting Patterns of Diterpene Acid Induction by Red Pine and White Spruce to Simulated Bark Beetle Attack, and Interspecific Differences in Sensitivity Among Fungal Associates

    Science.gov (United States)

    Charles J. Mason; Kier D. Klepzig; Brian J. Kopper; Philip J. Kersten; Barbara L. Illman; Kenneth F. Raffa

    2015-01-01

    Conifers possess a suite of physiochemical defenses that protect their subcortical tissues from bark beetle -fungal complexes. These defenses include rapid induction of terpenoids and phenolics at the site of attack. Studies of the distribution, induction, and bioactivity of conifer terpenoids have focused heavily on monoterpenes. We assessed induction of diterpene...

  4. Multivariate statistical analysis of hemlock (Tsuga) volatiles by SPME/GC/MS: insights into the phytochemistry of the hemlock woolly adelgid (Adelges tsugae Annand)

    Science.gov (United States)

    Anthony Lagalante; Frank Calvosa; Michael Mirzabeigi; Vikram Iyengar; Michael Montgomery; Kathleen Shields

    2007-01-01

    A previously developed single-needle, SPME/GC/MS technique was used to measure the terpenoid content of T. canadensis growing in a hemlock forest at Lake Scranton, PA (Lagalante and Montgomery 2003). The volatile terpenoid composition was measured over a 1-year period from June 2003 to May 2004 to follow the annual cycle of foliage development from...

  5. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    OpenAIRE

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affe...

  6. Molekulare Charakterisierung von Glykosyltransferasen in Vitis vinifera

    OpenAIRE

    Frotscher, Johanna

    2014-01-01

    Terpenoide spielen eine wichtige Rolle für das Aroma von Weinbeeren (Vitis vinifera). Glykosyltransferasen katalysieren die Übertragung von Zuckerresten auf Terpenoide, was diese geruchlos werden lässt. Um die verantwortlichen Enzyme zu identifizieren wurde deren Genfamilie in silico untersucht, 15 Kandidatengene ausgewählt, deren Transkription analysiert und die Ergebnisse mit Terpenoidprofilen verglichen. Dadurch konnten fünf Gene ausgewählt werden, deren offener Leserahmen sequenziert wurd...

  7. [Regulation of terpene metabolism]. Annual progress report, March 15, 1989--March 14, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C{sub 10}) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C{sub 15} C{sub 20}, C{sub 30}, C{sub 40}) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C{sub 15}) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  8. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C[sub 10]) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C[sub 15] C[sub 20], C[sub 30], C[sub 40]) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C[sub 15]) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  9. New Insights on the Terpenome of the Red Seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Louisi Souza de Oliveira

    2015-02-01

    Full Text Available The red seaweeds belonging to the genus Laurencia are well known as halogenated secondary metabolites producers, mainly terpenoids and acetogennins. Several of these chemicals exhibit important ecological roles and biotechnological applications. However, knowledge regarding the genes involved in the biosynthesis of these compounds is still very limited. We detected 20 different genes involved in the biosynthesis of terpenoid precursors, and 21 different genes coding for terpene synthases that are responsible for the chemical modifications of the terpenoid precursors, resulting in a high diversity of carbon chemical skeletons. In addition, we demonstrate through molecular and cytochemical approaches the occurrence of the mevalonate pathway involved in the biosynthesis of terpenes in L. dendroidea. This is the first report on terpene synthase genes in seaweeds, enabling further studies on possible heterologous biosynthesis of terpenes from L. dendroidea exhibiting ecological or biotechnological interest.

  10. New Insights on the terpenome of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta).

    Science.gov (United States)

    de Oliveira, Louisi Souza; Tschoeke, Diogo Antonio; de Oliveira, Aline Santos; Hill, Lilian Jorge; Paradas, Wladimir Costa; Salgado, Leonardo Tavares; Thompson, Cristiane Carneiro; Pereira, Renato Crespo; Thompson, Fabiano L

    2015-02-10

    The red seaweeds belonging to the genus Laurencia are well known as halogenated secondary metabolites producers, mainly terpenoids and acetogennins. Several of these chemicals exhibit important ecological roles and biotechnological applications. However, knowledge regarding the genes involved in the biosynthesis of these compounds is still very limited. We detected 20 different genes involved in the biosynthesis of terpenoid precursors, and 21 different genes coding for terpene synthases that are responsible for the chemical modifications of the terpenoid precursors, resulting in a high diversity of carbon chemical skeletons. In addition, we demonstrate through molecular and cytochemical approaches the occurrence of the mevalonate pathway involved in the biosynthesis of terpenes in L. dendroidea. This is the first report on terpene synthase genes in seaweeds, enabling further studies on possible heterologous biosynthesis of terpenes from L. dendroidea exhibiting ecological or biotechnological interest.

  11. The Study of the Chemical Composition of Essential Oils Mentha Piperita L. are Grown in Non-Chernozem Zone of Russia

    Directory of Open Access Journals (Sweden)

    L. SUSHKOVA

    2014-07-01

    Full Text Available By gas-liquid chromatography and mass spectrometry has been investigated the composition of essential oils and the change in the ontogenesis and exogenous effects on the plant Mentha piperita L. drugs retardant type. With the introduction of oil crops from the southern regions to the more northern regions of the component composition of the essential oil practically does not change. There are only minor variations in the content of some terpenoids oils. Exogenous preharvest treatment plant growth regulators can in some cases deliberately influence the activity of various terpenoid biosynthesis and increase the content of the most valuable components of the essential oil.Content and composition of EM is largely determined by factors such as age and leaves of plants, as well as different climatic cal, soil and agronomic conditions. Processing plants different phytoregulators also affects the content and composition of oil. Biosynthesis of terpenoids polyenzyme performed in centers, the activity and the nature of which is determined primarily genetic characteristics of plants, in addition, the activity of certain enzymes of these centers is under the control of hormonal balance and changes in ontogeny, as well as under the influence of exogenous factors.It is shown that the formation of the maximum bioefficiency in ontogeny of aromatic plants, it is advisable to use a two-stage technology to grow them. Plants producing terpenoids of essential oils, the initial step is to create the conditions for the formation of the maximum yield of aboveground mass of plants, including the use of synthetic plant growth regulators. In the second stage "biosynthetic" upon the occurrence of the reproductive phase before harvesting plants, we recommend that inhibit the growth of phytoregulators retardant type. In this case, we observe stimulation accumulation in aboveground mass of secondary metabolites. Inhibition of growth in the preharvest period, aromatic plants

  12. SHORT COMMUNICATION TERPENOIDS OF BOSWELLIA ...

    African Journals Online (AJOL)

    CH3CO. Glc. 1'. 2'. 3'. 4'. 5'. 6'. 36.2. 24.8. 75.6. 44.0. 50.4. 18.3. 34.0. 41.9. 58.0. 35.0. 205.3. 132.7. 165.5. 44.3. 30.7. 26.6. 34.4. 56.5. 40.0. 43.0. 26.9. 36.9. 24.1. 182.1. 16.0. 17.2. 20.3. 68.8. 16.9. 28.8. 169.8. 20.5. 37.1. 27.7. 70.1. 43.0. 48.0. 20.0. 33.5. 39.4. 47.9. 36.9. 72.1. 122.5. 141.4. 42.1. 29.5. 25.5. 33.8. 55.7. 38.0.

  13. Terpenoid Metabolism in Plastids 1

    Science.gov (United States)

    Camara, Bilal; Bardat, Françoise; Seye, Ababacar; D'Harlingue, Alain; Monéger, René

    1982-01-01

    The synthesis of α-tocopherol from 2,3-dimethylphytylquinol and S-adenosyl-l-methionine was achieved using Capsicum annuum fruit chromoplasts. The enzymes involved in the cyclization (2,3-dimethyl-phytylquinol cyclase) and methylation (S-adenosyl methionine:γ-tocopherol methyl-transferase) are both localized in the chromoplast membrane fraction (envelopes and/or a-chlorophyll lamellae), in contrast to the stroma fraction. PMID:16662717

  14. Terpenoids from Tripterygium doianum (Celastraceae).

    Science.gov (United States)

    Tanaka, Naonobu; Duan, Hongquan; Takaishi, Yoshihisa; Kawazoe, Kazuyoshi; Goto, Satoru

    2002-09-01

    The extract of Tripterygium doianum (Celastraceae) afforded three triterpenoids [3beta-acetoxy-11-ursen-13alpha,30-olide, 25-chloro-24-hydroxytirucall-7-en-3-one and tirucall-7-en-3,24-dione], two sesquiterpenoids [5alpha-acetoxy-1beta,8alpha-bis-cinnamoyl-4alpha-hydroxydihydroagarofuran and 5alpha-acetoxy-1beta-benzoyl-8alpha-cinnamoyl-4alpha-hydroxydihydroagarofuran] and nine known triterpenoids. Their structures were established based on spectroscopic studies. Copyright 2002 Elsevier Science Ltd.

  15. Volatile compounds in the perirenal fat from calves finished on semiextensive or intensive systems with special emphasis on terpenoids

    Directory of Open Access Journals (Sweden)

    Soto, S.

    2015-12-01

    ; n=8. Los compuestos volátiles de grasa perirrenal fueron analizados utilizando un método de extracción-destilación simultánea seguido por cromatografía de gases acoplada a un detector de espectro de masas (CG/EM, operando en modo de barrido completo. Por otra parte, se determinaron de forma específica los terpenoides utilizando la técnica de microextracción en fase solida seguida por CG/EM, operando en modo de barrido selectivo de iones. La grasa del sistema SE mostró menores niveles de octanal, 2-octenal y 2,4-decadienal y mayores niveles de 2,3-octanodiona y escatol que el sistema I. Además, los niveles de α-pineno, aromadendreno, α-felandreno, eucaliptol, α-gurjuneno fueron más altos en el sistema SE. La presencia de fencheno, eucaliptol y α-gurjuneno no ha sido descrita en estudios previos en compuestos volátiles en carne o grasa de bovino. Este estudio muestra la posibilidad de utilizar varios terpenos presentes la grasa perirrenal como indicadores de alimentación en pastoreo en terneros Tudancos.

  16. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    Science.gov (United States)

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  17. Phytochemical screening and anthelmintic activities of andrachne cordifolia

    International Nuclear Information System (INIS)

    Ajaib, M.; Wahla, S.Q.; Wahla, U.G.

    2017-01-01

    The present work was done to assess the phytochemical screening and anthelmintic potential of leaves and bark of Andrachne cordifolia (Wall. ex Decne.) Muell. The phytochemical screening for reducing sugars, terpenoids, cardiac glycosides, flavonoids, saponins, anthraquinones and alkaloids was performed. Saponins, terpenoids and tannins were reported in all the extracts. Anthelmintic activity of the extracts was carried out at four concentrations 20, 50, 80, 100 mg/mL. The time taken for death and paralysis of Haemonchus contortous were determined. Significance anthelmintic potential was shown by all the macerates which was dose dependent and compared to standard piperazine citrate. Chloroform macerate of leaf and petroleum ether extract of bark showed good activity. This may be because of the vicinity of phytochemical constituents like terpenoids, saponins and tannins in the plants. The results indicated that plant has secondary metabolites that have broad anthelmintic properties and plant might be a novel source of pharmaceutical drugs against helminthes. (author)

  18. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    Science.gov (United States)

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  19. [Relativity of commercial specification of Menthae Herba based on chemical analysis].

    Science.gov (United States)

    Ye, Dan; Zhao, Ming; Shao, Yang; Ouyang, Zhen; Peng, Hua-sheng; Han Bang-xing; Zhang, Wei-wan-qi; Gu, Xue-mei

    2015-01-01

    In order to compare the differences of 35 Menthae Herba samples collected on the market and at producing areas, the contents of six total terpenoids, the essential oil and chromatographic fingerprints were analyzed, which provided evidences for drawing up the commodity specifications and grading criteria of Menthae Herba. GC-MS method was used to analyze the chemical constituents of 35 different samples. The chromatographic fingerprints obtained by using GC were then evaluated by similarity analysis, hierarchical clustering analysis and principal component analysis. The relativity between the content of six terpenoids and the essential oil were studied. In this study, the chemical profiles of 35 samples from different producing areas had significant disparity. All samples collected in the report could be categorized into four chemical types, L-menthol, pulegone, carvone and L-menthone, but the chemical profiles had no relationship with the areas. The chromatographic fingerprints of the samples from different types were dissimilar, while the different producing areas were difficult to be separated. It was indicated that the content of volatile oil was positively correlated with the content of L-menthol and the sum of six total terpenoids. The content of the essential oil, L-menthol and the sum of six total terpenoids of Menthae Herba were considered as one of the commercial specifications and grading criteria. These results in the research could be helpful to draw up the commercial specification and grading criteria of Menthae Herba from a view of chemical information.

  20. Reações de ozonólise de olefinas em fase gasosa

    Directory of Open Access Journals (Sweden)

    Nunes Fabíola Maria Nobre

    2000-01-01

    Full Text Available Biogenic emissions of volatile organic compounds play a fundamental role in the atmospheric chemistry, vegetation being one of their major sources. Amongst the VOCs emitted by plants, olefins and terpenoids are the most abundant. These compounds, due to the presence of two or more double bonds and other structural features, are very reactive in the atmosphere and act as precursors of the photochemical smog and aerosols. This article presents a review of the reactions of olefins and terpenoids with ozone, in the gas phase, with emphasis toward the mechanisms and kinetic aspects.

  1. Evaluation of Beer Fermentation with a Novel Yeast Williopsis saturnus

    Directory of Open Access Journals (Sweden)

    Althea Ying Hui Quek

    2016-01-01

    Full Text Available The aim of this study is to evaluate the potential of a novel yeast Williopsis saturnus var. mrakii NCYC 500 to produce fruity beer. Fermentation performance of W. mrakii and beer volatile composition were compared against that fermented with Saccharomyces cerevisiae Safale US-05. °Brix, sugar and pH differed significantly between the two types of beer. A total of 8 alcohols, 11 acids, 41 esters, 9 aldehydes, 8 ketones, 21 terpenes and terpenoids, 5 Maillard reaction products and 2 volatile phenolic compounds were detected. Yeast strain Safale US-05 was more capable of producing a wider range of ethyl and other esters, while yeast strain NCYC 500 produced significantly higher amounts of acetate esters. Strain NCYC 500 retained more terpenes and terpenoids, suggesting that the resultant beer could possess more of the aromatic hint of hops. This study showed that W. saturnus var. mrakii NCYC 500 could ferment wort to produce low-alcohol beer with higher levels of acetate esters, terpenes and terpenoids than yeast S. cerevisiae Safale US-05.

  2. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    Science.gov (United States)

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quantification of character-impacting compounds in Ocimum basilicum and 'Pesto alla Genovese' with selected ion flow tube mass spectrometry.

    Science.gov (United States)

    Amadei, Gianluca; Ross, Brian M

    2012-02-15

    Basil (Ocimum basilicum) is an important flavourant plant which constitutes the major ingredient of the pasta sauce 'Pesto alla Genovese'. The characteristic smell of basil stems mainly from a handful of terpenoids (methyl cinnamate, eucalyptol, linalool and estragole), the concentration of which varies according to basil cultivars. The simple and rapid analysis of the terpenoid constituents of basil would be useful as a means to optimise harvesting times and to act as a quality control process for basil-containing foodstuffs. Classical analytical techniques such as gas chromatography/mass spectrometry (GC/MS) are, however, slow, technically demanding and therefore less suitable for routine analysis. A new chemical ionisation technique which allows real-time quantification of traces gases, Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), was therefore utilised to determine its usefulness for the assay of terpenoid concentrations in basil and pesto sauce headspace. Trace gas analysis was performed using the NO(+) precursor ion which minimised interference from other compounds. Character-impacting compound concentration was measured in basil headspace with good reproducibility and statistically significant differences were observed between cultivars. Quantification of linalool in pesto sauce headspace proved more difficult due to the presence of interfering compounds. This was resolved by careful selection of reaction product ions which allowed us to detect differences between various commercial brands of pesto. We conclude that SIFT-MS may be a valid tool for the fast and reproducible analysis of flavourant terpenoids in basil and basil-derived foodstuffs. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Taxadiene Synthase Structure and Evolution of Modular Architecture in Terpene Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    M Köksal; Y Jin; R Coates; R Croteau; D Christianson

    2011-12-31

    With more than 55,000 members identified so far in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A well-known and important member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization and shows remarkable efficacy in cancer chemotherapy. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia) is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene, which is catalysed by taxadiene synthase. The full-length form of this diterpene cyclase contains 862 residues, but a roughly 80-residue amino-terminal transit sequence is cleaved on maturation in plastids. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N terminus, hereafter designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (1.82 {angstrom} resolution) and 2-fluorogeranylgeranyl diphosphate (2.25 {angstrom} resolution). The TXS structure reveals a modular assembly of three {alpha}-helical domains. The carboxy-terminal catalytic domain is a class I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. The N-terminal domain and a third 'insertion' domain together adopt the fold of a vestigial class II terpenoid cyclase. A class II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.

  5. Phytochemical screening of Diplazium esculentum as medicinal plant from Central Kalimantan, Indonesia

    Science.gov (United States)

    Zannah, Fathul; Amin, Mohammad; Suwono, Hadi; Lukiati, Betty

    2017-05-01

    Diplazium esculentum is one of the ferns used by the Dayak's people in Central Kalimantan as a traditional medicine to treat tumors, asthma, and acne. This study aims to determine the content of bioactive compounds in Diplazium esculentum in Central Kalimantan. This research is a descriptive study with a qualitative approach. Qualitative phytochemical screening detected the presence of flavonoids, polyphenols, alkaloids, terpenoids and saponins in aqueous extracts with the boiled and brewed method, while in ethanol extract this detected polyphenols, alkaloids, terpenoids, and saponins. The results show that the use of water as a solvent can be an alternative in plant extracts.

  6. Flavonoids and terpenoids from Helichrysum forskahlii.

    Science.gov (United States)

    Al-Rehaily, Adnan J; Albishi, Omar A; El-Olemy, Mahmoud M; Mossa, Jaber S

    2008-06-01

    Three new flavonoids, namely helichrysone A (1), helichrysone B (2) and helichrysone C (3) were isolated from the aerial parts of Helichrysum forskahlii, together with 10 known flavonoids, three triterpenes, and one sesquiterpene. The structures of the new flavonoids 1-3 were established by 1D and 2D NMR spectral data. In addition, the antimicrobial activities of the isolated compounds were determined.

  7. SHORT COMMUNICATION CHEMICAL CONSTITUENTS AND ...

    African Journals Online (AJOL)

    CHEMICAL CONSTITUENTS AND ANTIOXIDANT ACTIVITIES OF THE FRUITS ... alkaloids, phenols, steroids, flavonoids, saponins and terpenoids while tannin ..... Harveer, K.; Jasmeen, S. Synthesis, characterization and radical scavenging ...

  8. Transcriptome profiling of the Australian arid-land plant Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) for the identification of monoterpene synthases.

    Science.gov (United States)

    Kracht, Octavia Natascha; Ammann, Ann-Christin; Stockmann, Julia; Wibberg, Daniel; Kalinowski, Jörn; Piotrowski, Markus; Kerr, Russell; Brück, Thomas; Kourist, Robert

    2017-04-01

    Plant terpenoids are a large and highly diverse class of metabolites with an important role in the immune defense. They find wide industrial application as active pharmaceutical ingredients, aroma and fragrance compounds. Several Eremophila sp. derived terpenoids have been documented. To elucidate the terpenoid metabolism, the transcriptome of juvenile and mature Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) leaves was sequenced and a transcript library was generated. We report on the first transcriptomic dataset of an Eremophila plant. IlluminaMiSeq sequencing (2 × 300 bp) revealed 7,093,266 paired reads, which could be assembled to 34,505 isogroups. To enable detection of terpene biosynthetic genes, leaves were separately treated with methyl jasmonate, a well-documented inducer of plant secondary metabolites. In total, 21 putative terpene synthase genes were detected in the transcriptome data. Two terpene synthase isoenzymatic genes, termed ES01 and ES02, were successfully expressed in E. coli. The resulting proteins catalyzed the conversion of geranyl pyrophosphate, the universal substrate of monoterpene synthases to myrcene and Z-(b)-ocimene, respectively. The transcriptomic data and the discovery of the first terpene synthases from Eremophila serrulata are the initial step for the understanding of the terpene metabolism in this medicinally important plant genus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Proteome analysis provides insight into the regulation of bioactive metabolites in Hericium erinaceus.

    Science.gov (United States)

    Zeng, Xu; Ling, Hong; Yang, Jianwen; Chen, Juan; Guo, Shunxing

    2018-05-05

    Hericium erinaceus, a famous edible mushroom, is also a well-known traditional medicinal fungus. To date, a large number of bioactive metabolites with antitumor, antibacterial, and immune-boosting effects were isolated from the free-living mycelium and fruiting body of H. erinaceus. Here we used the proteomic approach to explore proteins involved in the regulation of bioactive metabolites, including terpenoid, polyketide, sterol and etc. RESULTS: Using mass spectrometry, a total of 2543 unique proteins were identified using H. erinaceus genome, of which 2449, 1855, 1533 and 690 proteins were successfully annotated in Nr, KOG, KEGG and GO databases. Among them, 722 proteins were differentially expressed (528 up- and 194 down-regulated) in fruiting body compared with mycelium. Most of differentially expressed proteins were putatively involved in energy metabolism, molecular signaling, and secondary metabolism. Additionally, numerous proteins involved in terpenoid, polyketide, and sterol biosynthesis were identified. Our data revealed that proteins involved in polyketide biosynthesis were up-regulated in the fruiting body, while some proteins in mevalonate (MEP) pathway from terpenoid biosynthesis were generally up-regulated in mycelium. The present study suggested that the differential regulation of biosynthesis genes could produce various bioactive metabolites with pharmacological effects in H. erinaceus. Copyright © 2017. Published by Elsevier B.V.

  10. ORIGINAL ARTICLE

    African Journals Online (AJOL)

    User

    ical analysis revealed the presence of important secondary metabolites. Alkaloids ... whiles EthE contained tannins, alkaloids, reducing sugars, cardiac glycosides, anthraquinones, terpenoids ..... densed and hydrolysable tannins as antioxi-.

  11. Terpenoid constituents from leaves of Guarea kunthiana

    International Nuclear Information System (INIS)

    Garcez, Fernanda R.; Garcez, Walmir S.; Bazzo, Rita de Cassia; Silva, Ana Francisca G. da; Resende, Ubirazilda M.

    2004-01-01

    From leaves of Guarea kunthiana one new kaurene diterpene (ent-kaur-16-en-2-one) was isolated along with eight known diterpenes (ent-kaur-16-ene, ent-3α- and 3β-hydroxykaur-16-ene, kolavelool, kolavenol, kolavenal, ent-13-epi-manoyloxide and (-)-nephthenol), four sesquiterpenes (alismol, alismoxide, spathulenol and 4β,10α-aromadendranediol), polyprenol-12 and α- and δ-tocopherols. Kolavenal is reported for the first time as a natural product, as well as the occurrence of cembrane- and ent-kaurane-type diterpenes in the Meliaceae. (author)

  12. Phytochemical and biological characterization of Periploca aphyla ...

    African Journals Online (AJOL)

    Dr.R Ali Khan

    2012-07-10

    Jul 10, 2012 ... quantity of flavonoids in methanolic extract of P. hysterophorus which turned down gradually in n- hexane extract ... Sample Flavonoids Alkaloids Terpenoids Coumarins Saponins ... Science and Technology Bannu, Pakistan.

  13. preliminary phytochemical screening and antimicrobial activity

    African Journals Online (AJOL)

    DR. AMINU

    1Department of Pre-ND and General Studies, School of Technology, Kano State Polytechnic, ... revealed the presence of flavonoids, saponins, tannins, steroids alkaloids and terpenoids. ... phytochemical and antimicrobial activity of extract.

  14. Insect hormones: more than 50-years after the discovery of insect juvenile hormobne analogues (JHA, juvenoids)

    Czech Academy of Sciences Publication Activity Database

    Sláma, Karel

    2013-01-01

    Roč. 6, č. 4 (2013), s. 257-333 ISSN 1874-9828 Institutional support: RVO:60077344 Keywords : juvenile hormone (JH) * activation neurohormone (AH) pseudojuvenile effects * terpenoid juvenoids Subject RIV: ED - Physiology

  15. Phytochemical Screening and Mosquito Repellent Activity of the ...

    African Journals Online (AJOL)

    MBI

    2014-12-24

    Dec 24, 2014 ... that the stem bark contains alkaloids, tannins, flavonoids, saponins, glycosides, terpenoids and sterols. The ethanol extract of the stem bark of Euphorbia balsamifera (commonly known ..... Journal of Agricultural Technology.

  16. Phytochemical screening and antibacterial activity of Garcinia kola ...

    African Journals Online (AJOL)

    , Tannin, Saponin, and Cardiac glycoside, Flavonoid, Terpenoid, Phenols, Anthraquinone and Steroid. However, reducing sugar is absent. The antibacterial activity of the extracts against the isolates showed that ethanol extract is more ...

  17. 2774-IJBCS-Article-Oluwafunmilola Elizabeth A

    African Journals Online (AJOL)

    hp

    Keywords: Hydrodistillation, gas chromatography-mass spectrophotometry, terpenoids, esters. ... 'peraroja' in Mexico, 'bien me sube' or 'pan quesito' in ... Ackee seed is a moderate oil seed that could ... Data analysis was done using.

  18. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen.

    Science.gov (United States)

    DiGuistini, Scott; Wang, Ye; Liao, Nancy Y; Taylor, Greg; Tanguay, Philippe; Feau, Nicolas; Henrissat, Bernard; Chan, Simon K; Hesse-Orce, Uljana; Alamouti, Sepideh Massoumi; Tsui, Clement K M; Docking, Roderick T; Levasseur, Anthony; Haridas, Sajeet; Robertson, Gordon; Birol, Inanc; Holt, Robert A; Marra, Marco A; Hamelin, Richard C; Hirst, Martin; Jones, Steven J M; Bohlmann, Jörg; Breuil, Colette

    2011-02-08

    In western North America, the current outbreak of the mountain pine beetle (MPB) and its microbial associates has destroyed wide areas of lodgepole pine forest, including more than 16 million hectares in British Columbia. Grosmannia clavigera (Gc), a critical component of the outbreak, is a symbiont of the MPB and a pathogen of pine trees. To better understand the interactions between Gc, MPB, and lodgepole pine hosts, we sequenced the ∼30-Mb Gc genome and assembled it into 18 supercontigs. We predict 8,314 protein-coding genes, and support the gene models with proteome, expressed sequence tag, and RNA-seq data. We establish that Gc is heterothallic, and report evidence for repeat-induced point mutation. We report insights, from genome and transcriptome analyses, into how Gc tolerates conifer-defense chemicals, including oleoresin terpenoids, as they colonize a host tree. RNA-seq data indicate that terpenoids induce a substantial antimicrobial stress in Gc, and suggest that the fungus may detoxify these chemicals by using them as a carbon source. Terpenoid treatment strongly activated a ∼100-kb region of the Gc genome that contains a set of genes that may be important for detoxification of these host-defense chemicals. This work is a major step toward understanding the biological interactions between the tripartite MPB/fungus/forest system.

  19. Phytochemical Analysis, Antifungal and Antioxidant Activity of Leaf ...

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal ... of total phenolics, antifungal and antioxidant activity of leaf and fruit extract of Zizyphus xylopyrus (Retz.) ... Flavonoids, saponins, terpenoids, tannins and phenols were found in both extracts.

  20. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  1. Crystal Structure of (+)-[delta]-Cadinene Synthase from Gossypium arboreum and Evolutionary Divergence of Metal Binding Motifs for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gennadios, Heather A.; Gonzalez, Veronica; Di Costanzo, Luigi; Li, Amang; Yu, Fanglei; Miller, David J.; Allemann, Rudolf K.; Christianson, David W.; (UPENN); (Cardiff); (UC)

    2009-09-11

    (+)-{delta}-Cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 {angstrom} resolution and the structure of its complex with three putative Mg{sup 2+} ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 {angstrom} resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D{sup 307}DTYD{sup 311} motif on helix D that interacts with Mg{sub A}{sup 2+} and Mg{sub C}{sup 2+}. However, DCS appears to be unique among terpenoid cyclases in that it does not contain the 'NSE/DTE' motif on helix H that specifically chelates Mg{sub B}{sup 2+}, which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg{sub B}{sup 2+} ligands). Instead, DCS contains a second aspartate-rich motif, D{sup 451}DVAE{sup 455}, that interacts with Mg{sub B}{sup 2+}. In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg{sub B}{sup 2+} binding motif. Analyses of DCS mutants with alanine substitutions in the D{sup 307}DTYD{sup 311} and D{sup 451}DVAE{sup 455} segments reveal the contributions of these segments to catalysis.

  2. Metabolic engineering of the diterpenoid sclareol in the moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Pan, Xiwu

    Plant terpenoids play indispensable roles in primary metabolism as the vital constituents in photosynthesis (chlorophylls, carotenoids and plastoquinones), respiration (ubiquinone) and development regulation (gibberellins, abscisic acid, cytokinin and brassinosteroids). They are also the membrane...

  3. Phytochemical composition, total phenolic content and ferric ...

    African Journals Online (AJOL)

    Nigerian Journal of Technological Research ... The phytochemical analysis revealed the presence of alkaloids, flavonoids, saponins, tannins, terpenoids ... The leaf extract also gave the highest FRAP value, with the root bark extract having the ...

  4. Photosynthetic production of diterpenoids in chloroplasts and cyanobacteria

    DEFF Research Database (Denmark)

    Vavitsas, Konstantinos

    Terpenoids are one of the largest classes of chemical compounds, some of them with industrial interest as nutraceuticals, biofuels, or chemical feedstocks. Diterpenoids are a large terpenoid subclass, and their chemical structure consists of a core skeleton of 20 carbon atoms. This skeleton can...... be further modified by cyclizing enzymes, and be decorated by the addition of chemical groups. Even though they are mainly plant-derived compounds, diterpenoid production in photosynthetic organisms is rather unexplored, with a few successful studies reported in the literature. In this thesis, I elaborate...... on the potential of using plant chloroplasts and cyanobacteria as biosynthetic vessels, with a focus on diterpenoid production, and on the potential direct linking of photosynthesis to drive electron-consuming enzymes, such as the monooxygenases cytochrome P450s. I subsequently present the full localization...

  5. 30__159

    African Journals Online (AJOL)

    User

    Short branched e.g. xanxan gum, and guar gum. - Branch ... carbohydrates, flavonoids terpenoids, amino acid, saponins, oil .... is a branched molecule with the main chain consisting of 1, 3- .... children and adolescent cholesterol and diabetes.

  6. Volatile constituents from Samanae saman (Jacq.) Merr. Fabaceae

    African Journals Online (AJOL)

    AJB SERVER

    2006-10-16

    Oct 16, 2006 ... Key words: Samanae saman, Fabaceae, volatile oil, fatty acids, terpenoids, palmitic acid, 1,8-cineole. .... Gas chromatography – mass spectrometry analyses (GC/MS) ... this study, is an important constituent of most vegetable.

  7. Studies on cytotoxic, phytotoxic and volatile profile of the bark extract ...

    African Journals Online (AJOL)

    rams

    2013-10-23

    Oct 23, 2013 ... (Roxb.) Kurz. by GC-MS analysis and also to investigate the cytotoxic and phytotoxic activity of. Mallotus ... tannins, terpenoids, coumarins, benzopyrans and chalcones ..... Euphorbin I, a new dimeric hydrolyzable tannin from ...

  8. Rhanterium epapposum Oliv. essential oil: Chemical composition and antimicrobial,insect-repellent and anticholinesterase activities

    Science.gov (United States)

    Essential oils from Rhanterium epapposum Oliv. (Asteraceae) was investigated for its repellent, antimicrobial and acetyl- and butyrylcholine esterase inhibitory activities. The oil showed good repellent activity while oils demonstrated weak in antimicrobial and cholinesterase inhibitions. Terpenoids...

  9. Phytochemical constituents of some Nigerian medicinal plants ...

    African Journals Online (AJOL)

    Alkaloids, tannins, saponins, steroid, terpenoid, flavonoids, phlobatannin and cardic glycoside distribution in ten medicinal plants belonging to different families were assessed and compared. The medicinal plants investigated were Cleome nutidosperma, Emilia coccinea, Euphorbia heterophylla, Physalis angulata, ...

  10. Maize terpene volatiles serve as precursors to an array of defensive phytoalexins following insect and pathogen attack

    Science.gov (United States)

    Phytoalexins are inducible biochemicals that locally protect plant tissues against biotic attack. Due to their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses which include insect-inducible monoterpene and sesquiterpene vol...

  11. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-06-01

    Full Text Available Soil provides an important source of volatile organic compounds (VOCs to atmosphere, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail. Especially wintertime fluxes are almost completely unstudied. In this study, we measured the VOC concentrations inside the snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from soil surface towards the surface of the snow, suggesting soil as the source for terpenoids. Forest damages (i.e. broken treetops and branches, fallen trees resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are active and efficient VOC sources also during winter, and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, such as plants, have lower activity.

  12. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis

    Directory of Open Access Journals (Sweden)

    Gladis Raja Malar Chelladurai

    2018-05-01

    Full Text Available ABSTRACT Our present investigation deals with the phytochemical screening, estimation of total flavonoids, terpenoids and tannin contents to evaluate the anti-diabetic activities of Salacia oblonga stem followed by GC-MS analysis. It explores the natural compounds and the potential α-amylase and α-glucosidase inhibitory actions of stem extracts. The aqueous stem extract was selected from other extracts (ethanol, acetone, petroleum ether and chloroform for the in vitro study of anti-diabetic activity by alpha amylase and alpha glucosidase inhibitory assays. The stem extract was also analyzed by gas chromatography mass spectrometry to identify the natural chemical components. Phytochemical analysis of aqueous stem extract showed major classes of secondary metabolites such as phenols, flavonoids, alkaloids, terpenoids, tannins, saponins. The total flavonoid, terpenoid, and tannin contents were quantified as 19.82±0.06 mg QE/g, 96.2±0.20 mg/g and 11.25±0.03 mg TAE/g respectively. The percentage inhibition of assays showed maximum inhibitory effects (59.46±0.04% and 68.51±0.01% at a concentration of 100 mg/mL. The IC50 values of stem extract was found to be 73.56 mg/mL and 80.90 mg/mL for alpha amylase and alpha glucosidase inhibition. Fifteen chemical constituents were found by GC-MS analysis. This study suggest the aqueous stem extract of Salacia oblonga might be considered as potential source of bio active constituents with excellent antidiabetic activity.

  13. Isolation of ethyl acetic based AGF bio-nutrient and its application on the growth of Capsicum annum L. plants

    Science.gov (United States)

    Hendrawan, Sonjaya, Yaya; Khoerunnisa, Fitri; Musthapa, Iqbal; Nurmala, Astri Rizki

    2015-12-01

    The study aimed to obtain the bionutrient derived from extraction of AGF leafs in ethyl acetic solvents and to explore its application on the plant growth of capsicum annum L. (curly red chili). Particularly, the fraction of secondary metabolites groups composed bionutrient was intensively elucidated by liquid vacuum chromatography technique. The characterization of secondary metabolites groups was conducted through several methods, i.e. thin layer chromatography, phytochemical screening, and FTIR spectroscopy. The AGF extracts based bionutrient then was applied on capsicum annum L. plants with dosage of 2 and 10 mL/L. The ethyl acetic solvent and commercial nutrient of Phonska and pesticide of curacron (EC 500) were selected as a blank and a positive control to evaluate the growth pattern of capsicum annum L., respectively. The result showed that the CF 1 dan CF2 of AGF extract contained alkaloid and terpenoid of secondary metabolite group, the CF 3, and CF 4 of AGF extracts were dominated by alkaloid, flavonoid, and terpenoid, while the CF 5 of AGF extract contained alkaloid, tannin and terpenoid groups. The CF 2 of AGF extract has the highest growth rate constant of 0.1702 week-1 with the number and heaviest mass of the yield of 82 pieces and 186.60, respectively. It was also showed the significant bio-pesticide activity that should be useful to support plant growth, indicating that AGF extract can be applied as both bio-nutrient and bio-pesticide.

  14. Ubiquinone and carotene production in the Mucorales Blakeslea and Phycomyces

    DEFF Research Database (Denmark)

    Kuzina, Vera; Cerda-Olmedo, E.

    2007-01-01

    The filamentous fungi Phycomyces blakesleeanus and Blakeslea trispora (Zygomycota, Mucorales) are actual or potential industrial sources of beta-carotene and lycopene. These chemicals and the large terpenoid moiety of ubiquinone derive from geranylgeranyl pyrophosphate. We measured the ubiquinone...

  15. In vitro antioxidant assay of selected aqueous plant extracts and their polyherbal formulation

    Directory of Open Access Journals (Sweden)

    Ganga Raju M.

    2015-04-01

    Full Text Available To support the use of selected plant extracts in Ayurveda, naturopathy, the antioxidant potential of the aqueous extract of Vincarosea (VR, Gymnemasylvestre (GS, Tinosporacordifolia (TC and Emblicaofficinalis (EO and their mixture (PHF of Indian origin was investigated for in vitro antioxidant activity by using in vitro models like superoxide, hydroxyl radical scavenging activity and lipid peroxide inhibition assay. The results were compared with standard (ascorbic acid, a known antioxidant. The various phytoconstituents identified in the above selected plants extracts were poly phenols, flavonoids, terpenoids, tannins, alkaloids. The terpenoids were reported to protect lipids, blood and body fluids against the attack of free radicals, some types of reactive oxygen, hydroxylic groups, peroxides and superoxide radicals. The presence of these phytoconstituents in selected plants might be responsible for antioxidant activity with that of known antioxidant ascorbic acid.

  16. Increased and Altered Fragrance of Tobacco Plants after Metabolic Engineering Using Three Monoterpene Synthases from Lemon

    Science.gov (United States)

    Lücker, Joost; Schwab, Wilfried; van Hautum, Bianca; Blaas, Jan; van der Plas, Linus H. W.; Bouwmeester, Harro J.; Verhoeven, Harrie A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one plant by crossings, we show that it is possible to increase the amount and alter the composition of the blend of monoterpenoids produced in tobacco plants. The transgenic tobacco plant line with the three introduced monoterpene synthases is emitting β-pinene, limonene, and γ-terpinene and a number of side products of the introduced monoterpene synthases, from its leaves and flowers, in addition to the terpenoids emitted by wild-type plants. The results show that there is a sufficiently high level of substrate accessible for the introduced enzymes. PMID:14718674

  17. Chemical constituents of Solanum buddleifolium Sendtn

    International Nuclear Information System (INIS)

    Pinto, Francisco das Chagas L.; Torres, Maria da conceicao M.; Silveira, Edilberto R.; Pessoa, Otilia Deusdenia L.; Braz-Filho, Raimundo; Guedes, Maria Lenise da Silva

    2013-01-01

    The chemical investigation of the stem EtOH extract of S. buddleifolium resulted in the isolation of terpenoids, amides, lignans and a steroidal alkaloid. Based on HRMS, IR and 1 H and 13 C NMR data analysis, the structures of the isolated compounds were identified as: 13-hydroxysolavetivone, betulinic acid, N-trans-caffeoyltyramine, N-trans-feruloyldopamine, N-trans-p-cumaroyltyramine, N-trans-feruloyltyramine, N-trans-feruloyl- 3’-O-methoxydopamine, alangilignoside C, isolariciresinol, polistachiol, (+)-(8R,7’S,8’S)-3α-O-(β-D-glucopiranosyl)-lioniresinol, (-)-(8S,7’R,8’R)-3α-O-(β-D-glucopiranosyl)-lioniresinol and solamargine. The occurrence of terpenoids and amides is common in Solanum, unlike lignans which are rare. The isolated lignans described in this work are reported for the first time in the genus Solanum. (author)

  18. Chemical constituents of Solanum buddleifolium Sendtn; Constituintes quimicos de Solanum buddleifolium Sendtn

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Francisco das Chagas L.; Torres, Maria da conceicao M.; Silveira, Edilberto R.; Pessoa, Otilia Deusdenia L., E-mail: opessoa@ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Centro de Ciencias. Dept. de Quimica Organica e Inorganica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense, Campos, RJ (Brazil). Dept. de Quimica; Guedes, Maria Lenise da Silva [Universidade Federal da Bahia (UFBA), Ondina, BA (Brazil). Inst. de Biologia. Dept. de Botanica

    2013-10-01

    The chemical investigation of the stem EtOH extract of S. buddleifolium resulted in the isolation of terpenoids, amides, lignans and a steroidal alkaloid. Based on HRMS, IR and {sup 1}H and {sup 13}C NMR data analysis, the structures of the isolated compounds were identified as: 13-hydroxysolavetivone, betulinic acid, N-trans-caffeoyltyramine, N-trans-feruloyldopamine, N-trans-p-cumaroyltyramine, N-trans-feruloyltyramine, N-trans-feruloyl- 3'-O-methoxydopamine, alangilignoside C, isolariciresinol, polistachiol, (+)-(8R,7'S,8'S)-3{alpha}-O-({beta}-D-glucopiranosyl)-lioniresinol, (-)-(8S,7'R,8'R)-3{alpha}-O-({beta}-D-glucopiranosyl)-lioniresinol and solamargine. The occurrence of terpenoids and amides is common in Solanum, unlike lignans which are rare. The isolated lignans described in this work are reported for the first time in the genus Solanum. (author)

  19. An assay for secologanin in plant tissues based on enzymatic conversion into strictosidine

    DEFF Research Database (Denmark)

    Hallard, Didier; van der Heijden, Robert; Contin, Adriana

    1998-01-01

    strictosidine, a reaction catalysed by the enzyme strictosidine synthase (STR; E.C. 4.3.3.2). Subsequently, the formation of strictosidine is quantified by HPLC. STR was isolated from transgenic Nicotiana tabacum cells expressing a cDNA-derived gene coding for STR from Catharanthus roseus. The high specificity......The secoiridoid glucoside secologanin is the terpenoid building block in the biosynthesis of terpenoid indole alkaloids. A method for its determination in plant tissues and cell suspension cultures has been developed. This assay is based on the condensation of secologanin with tryptamine, yielding...... of STR for secologanin, in combination with a sensitive and selective HPLC system, allows a simple extraction of secologanin from plant tissue. The detection limit of this methos is 15 ng secologanin. Using this assay, secologanin contents were determined in tissues of various plant species; Lonicera...

  20. An Assay of some Thermal Characteristics, Chemical and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    powder is also added to food as a treatment for asthma. ... investigations and the analysis of the active constituents ... Terpenoids are associated with anti-cancer and also play a role ... and night vision in human (Maret and Sandstead,. 2006).

  1. Regulation of terpene metabolism. Final technical report, March 15, 1988--March 14, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1996-12-31

    This research focuses on the following topics: the biosynthesis and catabolism of monoterpenes; the organization of monoterpene metabolism; the developmental regulation of monoterpene metabolism; the flux control of precursor supply; and the integration of monoterpene and higher terpenoid metabolism.

  2. Genetic mapping and characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin

    NARCIS (Netherlands)

    Menin, B.; Comino, C.; Portis, E.; Moglia, A.; Cankar, K.; Bouwmeester, H.J.; Lanteri, S.; Beekwilder, M.J.

    2012-01-01

    Globe artichoke (Cynara cardunculus var. scolymus L., Asteraceae) is a perennial crop traditionally consumed as a vegetable in the Mediterranean countries and rich in nutraceutically and pharmaceutically active compounds, including phenolic and terpenoid compounds. Its bitter taste is caused by its

  3. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize

    Science.gov (United States)

    Phytoalexins constitute a broad category of pathogen and insect-inducible biochemicals that locally protect plant tissues. Due to their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses which include insect-inducible monoterpene and sesquite...

  4. Polyketide synthases in Cannabis sativa L.

    NARCIS (Netherlands)

    Flores Sanchez, Isvett Josefina

    2008-01-01

    Cannabis sativa L. plants produce a diverse array of secondary metabolites, which have been grouped in cannabinoids, flavonoids, stilbenoids, terpenoids, alkaloids and lignans; the cannabinoids are the best known group of natural products from this plant. The pharmacological aspects of this

  5. Mechanistic Insights on the Reductive Dehydroxylation Pathway for the Biosynthesis of Isoprenoids Promoted by the IspH Enzyme

    KAUST Repository

    Abdel-Azeim, Safwat; Jedidi, Abdesslem; Cavallo, Luigi; Eppinger, Jö rg

    2015-01-01

    Here, we report an integrated quantum mechanics/molecular mechanics (QM/MM) study of the bio-organometallic reaction pathway of the 2H+/2e- reduction of (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) into the so called universal terpenoids

  6. Identification and characterization of biosynthetic components involved in Vitex agnus-castus diterpenes biosynthesis

    DEFF Research Database (Denmark)

    Sundram, Tamil Chelvan Meenakshi

    Many plant terpenoids are commercially important compound, largely used in pharmaceuticals, nutraceuticals, cosmetics and fragrance industry. However, their low production levels in planta still remain as the major challenge in meeting the industrial demand for continuous supply of these valuable...

  7. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and a-bisabolene synthases

    Science.gov (United States)

    Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in leaf tissues. Relatively few genes associated with biosynthetic pathwa...

  8. Chemsearch Journal Volume 4 Number 1, June, 2013

    African Journals Online (AJOL)

    Magashi

    2016-11-07

    Nov 7, 2016 ... malaria, dysentery and fevers, in line with reported claims. Keywords: INTRODUCTION. Medicinal plants contain organic compounds which could produce definite physiological action on the human body. These bioactive substances could include tannins, alkaloids, terpenoids, steroids and flavonoids etc.

  9. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  10. Terpenoid pathway discovery in Tripterygium wilfordii

    DEFF Research Database (Denmark)

    Hansen, Nikolaj Lervad

    -29-oic acid and its precursor 29-hydroxyfriedelin from friedelin, which was formed by the identified oxidosqualene cyclase TwOSC4 (Chapter 5; manuscript in preparation). A different study probed residues important for product identity in two functionally distinct but closely related class II...

  11. Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and ...

    African Journals Online (AJOL)

    Induction and Cell Cycle Arrest in Prostate Cancer Cells. Xiu-Bin Sun1,2, ... Keywords: Prostate cancer, Linalool, Chemotherapy, Cell cycle, Apoptosis, DNA fragmentation, Sub-. G1 phase ..... receptors, regulate expression of various genes.

  12. In-silico Leishmania Target Selectivity of Antiparasitic Terpenoids

    Directory of Open Access Journals (Sweden)

    Ifedayo Victor Ogungbe

    2013-07-01

    Full Text Available Neglected Tropical Diseases (NTDs, like leishmaniasis, are major causes of mortality in resource-limited countries. The mortality associated with these diseases is largely due to fragile healthcare systems, lack of access to medicines, and resistance by the parasites to the few available drugs. Many antiparasitic plant-derived isoprenoids have been reported, and many of them have good in vitro activity against various forms of Leishmania spp. In this work, potential Leishmania biochemical targets of antiparasitic isoprenoids were studied in silico. Antiparasitic monoterpenoids selectively docked to L. infantum nicotinamidase, L. major uridine diphosphate-glucose pyrophosphorylase and methionyl t-RNA synthetase. The two protein targets selectively targeted by germacranolide sesquiterpenoids were L. major methionyl t-RNA synthetase and dihydroorotate dehydrogenase. Diterpenoids generally favored docking to L. mexicana glycerol-3-phosphate dehydrogenase. Limonoids also showed some selectivity for L. mexicana glycerol-3-phosphate dehydrogenase and L. major dihydroorotate dehydrogenase while withanolides docked more selectively with L. major uridine diphosphate-glucose pyrophosphorylase. The selectivity of the different classes of antiparasitic compounds for the protein targets considered in this work can be explored in fragment- and/or structure-based drug design towards the development of leads for new antileishmanial drugs.

  13. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    Energy Technology Data Exchange (ETDEWEB)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determining in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs.

  14. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    International Nuclear Information System (INIS)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determining in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs

  15. SKRINING FITOKIMIA TANAMAN OBAT DI KABUPATEN BIMA

    Directory of Open Access Journals (Sweden)

    Sry Agustina

    2016-06-01

    Full Text Available ABSTRAK : Telah dilakukan penelitian tentang skrining fitokimia tanaman obat yang sering digunakan oleh masyarakat Bima sebagai obat tradisional. Beberapa jenis tanaman yang digunakan oleh masyarakat Bima sebagai obat-obatan tradisional diantaranya kunyit, temulawak, jahe, kulit buah delima dan sebagainya. Penelitian ini bertujuan untuk mengetahui kandungan senyawa aktif yang terdapat dalam tanaman obat lokal yang berperan aktif dalam penyembuhan penyakit. Tanaman obat yang dianalisis pada penelitian ini adalah rimpang kunyit (Curcumma longa Linn, rimpang jahe (Zingiber officinale, rimpang temulawak (Curcuma xanthorrhiza, rimpang lengkuas (Alpinia galanga, daun jambu biji (Psidium guajava, daun sirsak (Annona muricata L., daun sirih (Piper betle L., daun salam (Syzygium polyanthum, kulit buah delima (Punica granatum dan daun kecubung (Datura metel L. Metode yang digunakan pada penelitian ini merupakan metode penapisan/skrining fitokimia untuk mendeteksi kandungan senyawa metabolit sekunder seperti alkaloid, flavonoid, steroid/terpenoid, saponin dan tanin. Dari hasil skrining fitokimia ekstrak etanol tanaman obat yang telah dianalisis menunjukkan bahwa 10 sampel mengandung flavonoid, 9 sampel mengandung alkaloid, 9 sampel mengandung steroid, 4 sampel mengandung terpenoid, 5 sampel mengandung saponin dan 7 sampel mengandung tanin.   ABSTRACT : A research on the phytochemical screening of medicinal plants are often used by Bima community as a traditional medicine was been done. Some types of plants used by Bima community as traditional medicines such as turmeric, ginger, pomegranate skin and so on. This study aims to determine the content of active compound contained in local medicinal plants an active compound in the healing of disease. Medicinal plants are analyzed in this study are turmeric, ginger rhizome, rhizome of ginger, galangal rhizome, the leaves of guava, soursop leaves, betel leaves, bay leaves, bark and leaves of pomegranate. The

  16. Antimicrobial activities of methanol and aqueous extracts of the stem ...

    African Journals Online (AJOL)

    Phytochemical analysis showed the presence of alkaloids, glycosides, proteins, carbohydrates, saponins, steroids, tannins and terpenoids in both the methanol and aqueous extracts. The antimicrobial activity result showed that the methanol extract significantly (P < 0.01) demonstrated antibacterial action against B. subtilis ...

  17. Metabolomic engineering for the microbial production of cartenoids and related products with a focus on the rare C50 carotenoids

    NARCIS (Netherlands)

    Heider, S.A.E.; Peters-Wendisch, P.; Wendisch, V.F.; Beekwilder, M.J.

    2014-01-01

    Carotenoids, a subfamily of terpenoids, are yellowtored-colored pigments synthesized by plants, fungi, algae, and bacteria. They are ubiquitous in nature and take over crucial roles in many biological processes as for example photosynthesis, vision, and the quenching of free radicals and singlet

  18. Phytochemical Screening, Proximate and Mineral Composition of ...

    African Journals Online (AJOL)

    Leaves of sweet potato (Ipomoea batatas) grown in Tepi area was studied for their class of phytochemicals, mineral and proximate composition using standard analytical methods. The phytochemical screening revealed the presence of alkaloids, flavonoid, terpenoids, saponins, quinones, phenol, tannins, amino acid and ...

  19. Research Paper ISSN 0189-6016©2009

    African Journals Online (AJOL)

    Sapogenins. Antimony chloride in concentrated hydrochloric acid. Violet. Terpenoids. Antimony chloride in chloroform. Green. Quinones. Exposure to ammonia fumes. Red, orange, yellow, brown. (Adapted from Chowdhury et al., 2008.) Table 2: % mean Inhibition zones of the extracts/drugs. Extract/ drug. % mean inhibition.

  20. Phytochemistry and proximate composition of ginger ( Zingiber ...

    African Journals Online (AJOL)

    The results of the phytochemical screening showed that alkaloids, carbohydrates, glycosides, proteins, saponins, steroids, flavonoids and terpenoids were present, while reducing sugars, tannins, oils and acid compounds were absent. Similarly, the results of the proximate analysis of the rhizome showed that ginger ...

  1. Exotic multifaceted medicinal plants of drugs and pharmaceutical ...

    African Journals Online (AJOL)

    They are sources of drugs and are used in herbal medicine to treat measles, malaria, asthma, eczema, cough, hepatitis, ringworm, ulcer and scabies. These plants are continuously screened and evaluated for their pharmacological properties. Bioactive compounds comprising flavanoids, alkaloids, steroids, terpenoids and ...

  2. Metabolic engineering of monoterpene biosynthesis in plants

    NARCIS (Netherlands)

    Lücker, J.

    2002-01-01

    Monoterpenes are a large group of compounds that belong to the terpenoid family of natural compounds in plants. They are small, volatile, lipophilic substances of which around one thousand different structures have been

  3. Fitness costs of chemical defense in Plantago lanceolata L.: effects of nutrient and competition stress

    NARCIS (Netherlands)

    Marak, H.B.; Biere, A.; Van Damme, J.M.M.

    2003-01-01

    Fitness costs of defense are often invoked to explain the maintenance of genetic variation in levels of chemical defense compounds in natural plant populations. We investigated fitness costs of iridoid glycosides (IGs), terpenoid compounds that strongly deter generalist insect herbivores, in ribwort

  4. Evaluation of in vitro antimycobacterial activity of Nigerian plants ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... The global threat of tuberculosis (TB) demands for search for alternative antimycobacterial drugs. Some Nigerian ... also help improve treatment adherence and preventing ... and the process was repeated three times for exhaustive extraction, ... terpenoids, glycosides and alkaloids (Brain and Turner, 1975;.

  5. Phytochemical and antimicrobial study on the leaf extracts of ...

    African Journals Online (AJOL)

    The activities observed could be attributed to the presence of terpenoids, saponins, flavonoids, alkaloids and tannins. The results justify the ethnomedicinal use of this plant in the treatment of sores, boils, wounds, dysentery, diarrhea and sexually transmitted infections. Keywords: Erythrophleum africanum, phytochemistry, ...

  6. Phytochemical screening, total phenolic content and phytotoxic activity of corn (Zea mays) extracts against some indicator species.

    Science.gov (United States)

    Ahmed, Hiwa M

    2018-03-01

    Allelopathic effects of corn (Zea mays) extracts was studied, against seed germination and seedling growth of Phalaris minor, Helianthus annuus, Triticumaestivum, Sorghum halepense, Z. mays. Bioassay results showed that aqueous extracts of corn root and shoot, markedly affected seed germination, and other parameters compared with related controls. Preliminary phytochemical screening revealed the presence of various phytochemicals such as tannins, phlobatannins, flavonoids, terpenoids and alkaloids in both roots and shoot aqueous extracts. However, saponins were only present in the shoot aqueous extract, while in shoot ethanol extracts, only terpenoids and alkaloids were detected. Additionally, total polyphenolic (TPC) content in aqueous extracts of corn root and shoot, plus ethanol extracts of corn shoot were determined using an Ultraviolet-visible spectroscopy. Results revealed TPC content of the corn shoot aqueous extract showed the highest yield, compared to other extracts. These findings suggest that phytochemicals present in Z. mays extracts may contribute to allelopathy effect.

  7. Isolation, identification and molecular docking as cyclooxygenase (COX) inhibitors of the main constituents of Matricaria chamomilla L. extract and its synergistic interaction with diclofenac on nociception and gastric damage in rats.

    Science.gov (United States)

    Ortiz, Mario I; Fernández-Martínez, Eduardo; Soria-Jasso, Luis Enrique; Lucas-Gómez, Isaac; Villagómez-Ibarra, Roberto; González-García, Martha P; Castañeda-Hernández, Gilberto; Salinas-Caballero, Mireya

    2016-03-01

    Chamomile (Matricaria chamomilla L., Asteraceae) is a medicinal plant widely used as remedy for pain and gastric disorders. The association of non-steroidal anti-inflammatory drugs (NSAIDs) with medicinal plant extracts may increase its antinociceptive activity, permit the use of lower doses and limit side effects. The aim was to isolate and identify the main chemical constituents of Matricaria chamomilla ethanolic extract (MCE) as well as to explore their activity as cyclooxygenase (COX) inhibitors in silico; besides, to examine the interaction between MCE and diclofenac on nociception in the formalin test by isobolographic analysis, and to determine the level of gastric injury in rats. Three terpenoids, α-bisabolol, bisabolol oxide A, and guaiazulene, were isolated and identified by (1)H NMR. Docking simulation predicted COX inhibitory activity for those terpenoids. Diclofenac, MCE, or their combinations produced an antinociceptive effect. The sole administration of diclofenac and the highest combined dose diclofenac-MCE produced significant a gastric damage, but that effect was not seen with MCE alone. An isobologram was constructed and the derived theoretical ED35 for the antinociceptive effect was significantly different from the experimental ED35; hence, the interaction between diclofenac and MCE that mediates the antinociceptive effect is synergist. The MCE contains three major terpenoids with plausible COX inhibitory activity in silico, but α-bisabolol showed the highest affinity. Data suggest that the diclofenac-MCE combination can interact at the systemic level in a synergic manner and may have therapeutic advantages for the clinical treatment of inflammatory pain. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Insect herbivore feeding and their excretion contribute to volatile organic compounds emission to the atmosphere

    Science.gov (United States)

    Zebelo, S.; Gnavi, G.; Bertea, C.; Bossi, S.; Andrea, O.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Maffei, M.

    2011-12-01

    Secondary plant metabolites play an important role in insect plant interactions. The Lamiaceae family, especially Mentha species, accumulate secondary plant metabolites in their glandular trichomes, mainly mono and sesquiterpenes. Here we show that mint plants respond to herbivory by changing the quality and quantity of leaf secondary plant metabolite components. The volatiles from herbivore damaged, mechanical damage and healthy plant were collected by HS-SPME and analyzed by GC-MS. Plants with the same treatment were kept for genomic analysis. Total RNA was extracted from the above specified treatments. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran and the other major monoterpene (+)-pulegone emitted by healthy and mechanically damaged plants. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. In addition we analysed the VOC composition of C. herbacea frass from insects feeding on Mentha aquatica. VOCs were sampled by HS-SPME and analyzed by GCxGC-qMS, and the results compared through quantitative comparative analysis of 2D chromatographic data. Most terpenoids from M. aquatica were completely catabolized by C. herbacea and were absent in the frass volatile fraction. On the other hand, the monoterpene 1,8-cineole was oxidized and frass yielded several new hydroxy-1,8-cineoles, among which 2α-OH-, 3α-OH-, 3β-OH- and 9-OH-1,8-cineole. The role of VOC emitted during herbivory and frass excretion on secondary organic aerosol formation is discussed.

  9. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Directory of Open Access Journals (Sweden)

    Krishnan Neeraja M

    2012-09-01

    Full Text Available Abstract Background The Azadirachta indica (neem tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides.

  10. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Science.gov (United States)

    2012-01-01

    Background The Azadirachta indica (neem) tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides. PMID:22958331

  11. LC-MS metabolomic analysis of environmental stressor impacts on the metabolite diversity in Nephthea spp.

    Directory of Open Access Journals (Sweden)

    Hedi Indra Januar

    2012-01-01

    Full Text Available Context: The soft coral Nephthea spp. is a source of terpenoid class that potentially has pharmaceutical properties. However, metabolite diversity and cytotoxic activity of this species are varied among coral reefs from various sites. Aim: To analyze the water quality in Nephthea spp. environment as a possible factor causing a difference in its metabolite diversity. Settings and Design: Nephthea spp. from seven sites were taken in October 2010 at the Alor District of Marine Protected Area, Indonesia. Materials and Methods: Water quality assessment was analyzed in situ and indexed by Canadian Council of Ministry Environment-Water Quality Index (CCME-WQI method. Meanwhile, metabolite diversity was analyzed by a LC-MS metabolomic method, using C18 reversed phase and gradient water-acetonitrile system. Statistical Analysis Used: Spearman′s rho and regression analysis were applied to correlate the water quality index to ecological index (richness, diversity, and evenness from LC-MS results. Results: The water quality index had a significant positive correlation and strong linear regression determinant to the total metabolite (R 2 = 0.704, particularly to semipolar metabolite richness (R 2 = 0.809, the area of terpenoid class in the organism. Conclusion: It can be concluded that water quality may serve as a major factor that affects the amount of richness in Nephthea spp. metabolites. When the water quality is lower, as environment stresses increases, it may affect the metabolite richness within direct disrupt of metabolite biosynthesis or indirect ecological means. Terpenoids are known as a soft coral antipredator (coral fishes, the amount of which depends on the water quality.

  12. Secretory cavities and volatiles of Myrrhinium atropurpureum Schott var. atropurpureum (Myrtaceae): an endemic species collected in the restingas of Rio de Janeiro, Brazil.

    Science.gov (United States)

    Victório, Cristiane Pimentel; Moreira, Claudio B; Souza, Marcelo da Costa; Sato, Alice; Arruda, Rosani do Carmo de Oliveira

    2011-07-01

    In this study, we investigated the leaf anatomy and the composition of volatiles in Myrrhinium atropurpureum var. atropurpureum endemic to Rio de Janeiro restingas. Particularly, leaf secretory structures were described using light microscopy, and histochemical tests were performed from fresh leaves to localize the secondary metabolites. To observe secretory cavities, fixed leaf samples were free-hand sectioned. To evaluate lipophilic compounds and terpenoids the following reagents were employed: Sudans III and IV, Red oil O and Nile blue. Leaf volatiles were characterized by gas chromatography after hydrodistillation (HD) or simultaneous distillation-extraction (SDE). Leaf analysis showed several cavities in mesophyll that are the main sites of lipophilic and terpenoid production. Monoterpenes, which represented more than 80% of the major volatiles, were characterized mainly by alpha- and beta-pinene and 1,8-cineole. In order to provide tools for M. atropurpureum identification, the following distinguishing characteristics were revealed by the following data: 1) adaxial face clear and densely punctuated by the presence of round or ellipsoidal secretory cavities randomly distributed in the mesophyll; 2) the presence of cells overlying the upper neck cells of secretory cavities; 3) the presence of numerous paracytic stomata distributed on the abaxial leaf surface, but absent in vein regions and leaf margin; and 4) non-glandular trichomes on both leaf surfaces. Our study of the compounds produced by the secretory cavities of M. atropurpureum led us to conclude that volatile terpenoid class are the main secretory compounds and that they consist of a high concentration of monoterpenes, which may indicate the phytotherapeutic importance of this plant.

  13. The influence of monoterpene synthase transformation on the odour of tabacco.

    NARCIS (Netherlands)

    Tamer, el M.K.; Smeets, M.A.M.; Holthuysen, N.T.E.; Lucker, J.; Tang, A.; Roozen, J.P.; Bouwmeester, H.J.; Voragen, A.G.J.

    2003-01-01

    Monoterpenes are an important class of terpenoids that are commonly present in plant essential oils. These can be extracted from plants and are used in the flavouring and perfumery industry. Monoterpene synthases are the key enzymes in monoterpene biosynthesis, as they catalyse the cyclisation of

  14. In vitro evaluation of the antibacterial activity of some medicinal plant ...

    African Journals Online (AJOL)

    Significant differences in inhibition zone diameter were recorded between species and among test concentrations. The widest inhibition zone was recorded by A. salicifolia followed by P. abyssinica. Unlike others, extract of A. salicifolia had abundant amount of alkaloids, flavonoids, phenols, terpenoids, saponnins, tannins ...

  15. MicroRNA expression profiling during upland cotton gland forming ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... 2Key Laboratory of Cotton Genetic Improvement, Cotton Research Institute of the Chinese Academy of Agricultural. Sciences, Ministry of ... terpenoid aldehyde biosynthesis pathway, genetic engineering and molecular breeding of cotton. ... toxic to non-ruminant animals and humans, which means that large ...

  16. Randomized anticancer and cytotoxicity activities of Guibourtia ...

    African Journals Online (AJOL)

    Materials and Methods: The plants were screened for the presence of coumarins, alkaloids, flavonoids, anthraquinones, steroids and terpenoids using thin layer chromatography. Anticancer screening was performed on a panel of three cancer cell lines, while cytotoxicity was determined using a human fibroblast cell line, ...

  17. Phytochemical screening and antibacterial activity of Azadiracta ...

    African Journals Online (AJOL)

    Preliminary phytochemical analysis showed that both stem bark and leaf extracts contain alkaloid, tannin, anthraquinone, flavonoid, phenols and terpenoid. The extracts of the plant demonstrated antibacterial activity due to presence of phytochemical constituents hence, the application of the decoction of leaf and stem bark ...

  18. Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns

    NARCIS (Netherlands)

    Yang, T.; Stoopen, G.; Yalpani, N.; Vervoort, J.J.M.; Vos, de R.; Voster, A.; Verstappen, F.W.A.; Bouwmeester, H.J.; Jongsma, M.A.

    2011-01-01

    Many terpenoids are known to have antifungal properties and overexpression of these compounds in crops is a potential tool in disease control. In this study, 15 different mono- and sesquiterpenoids were tested in vitro against two major pathogenic fungi of maize (Zea mays), Colletotrichum

  19. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon

    NARCIS (Netherlands)

    Lücker, J.; Schwab, W.; Hautum, van B.; Blaas, J.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one

  20. Characterisation of Acetyl-CoA Thiolase: The First Enzyme in the Biosynthesis of Terpenic Sex Pheromone Components in the Labial Gland of Bombus terrestris

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Jana; Demianová, Z.; Kindl, Jiří; Pichová, Iva; Valterová, Irena; Zarevúcka, Marie

    2015-01-01

    Roč. 16, č. 7 (2015), s. 1047-1051 ISSN 1439-4227 R&D Projects: GA TA ČR TA01020969 Institutional support: RVO:61388963 Keywords : acetyl-CoA thiolase * biosynthesis * Bombus terrestris * labial gland * pheromones * terpenoids Subject RIV: CE - Biochemistry Impact factor: 2.850, year: 2015

  1. Induction of indirect defence against spider-mites in uninfested lima bean leaves.

    NARCIS (Netherlands)

    Takabayashi, J.; Dicke, M.; Posthumus, M.A.

    1991-01-01

    Headspace analyses of uninfested Lima bean (Phaseolus lunatus) leaves show an absence of or only trace amounts of the terpenoids (E)--ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene. Upon infestation by two-spotted spider-mites (Tetranychus urticae), Lima bean leaves produce (E)--ocimene and

  2. Triterpenoid α-amyrin stimulates proliferation of human keratinocytes but does not protect them against UVB damage

    DEFF Research Database (Denmark)

    Biskup, Edyta; Gołębiowski, Marek; Gniadecki, Robert

    2012-01-01

    Rhaponticum carthamoides plants ("maral root") are widely used in Siberian folk medicine. The present study reports for the first time the presence of pentacyclic terpenoid, α-amyrin, in methanol extract from leaves of this plant. α-Amyrin induced proliferation of human keratinocytes (HaCaT) by a...

  3. Evaluation of the anti-inflammatory properties of the hexane extract ...

    African Journals Online (AJOL)

    The extract was finally subjected to GC/MS analysis for the tentative identification of the phytochemical constituents. Phytochemical analysis of the extract revealed the presence of saponin, phenol, flavonoid, tannin, terpenoid and sterol. This extract showed the ability to inhibit thermally-induced protein denaturation and ...

  4. Antibacterial Activity of Germacrane Type Sesquiterpenes from Curcuma heyneana Rhizomes

    Directory of Open Access Journals (Sweden)

    Hartiwi Diastuti

    2014-03-01

    Full Text Available The isolation of terpenoids from C. heyneana rhizomes and their antibacterial activity have been conducted. The terpenoids were isolated by using vacuum liquid chromatography and radial chromatography. The structures of the compounds were determined based on spectroscopic data (1H-NMR, 13C-NMR (1D and 2D. The antibacterial activity was carried out by using microdilution method and evaluated against eight bacteria. Three germacrane type sesquiterpenes have been isolated from C. heyneana rhizhomes and were identified as germacrone, dehydrocurdione, and 1(10,4(5-diepoxygermacrone. Germacrone showed highest antibacterial activity against P. aeruginosa with MIC values of 15.6 µg/mL and MBC values 31.2 µg/mL. Dehydrocurdione showed highest antibacterial activity against B. subtilis with MIC values of 31.2 µg/mL and MBC values of 31.2 µg/mL. However, 1(10,4(5-diepoxygermacrone showed a weak antibacterial activity.

  5. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases

    Science.gov (United States)

    Itoh, Takayuki; Tokunaga, Kinya; Matsuda, Yudai; Fujii, Isao; Abe, Ikuro; Ebizuka, Yutaka; Kushiro, Tetsuo

    2010-10-01

    Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.

  6. Premilinary Studies on Phytochemical Screening of Ulam and Fruit from Malaysia

    Directory of Open Access Journals (Sweden)

    Liliwirianis N.

    2011-01-01

    Full Text Available Alkaloids, saponins, steroid, terpenoid, flavonoids, phenolic distribution in 14 Malaysian favourite ulam and fruit belonging to different families were assessed and compared. The plants investigated were parkia speciosa (petai, solanum torvum (terung pipit, pithecellobium bubalinum (kerdas, moringa oleifera (kacang kelor, dryobalanops oblongifolia (keladan, cosmos caudatus (ulam raja, mentha arvensis (pudina, ocimum sp. (selasih, cymbopogon nardus (serai wangi, eugenia polyantha (serai kayu, Barringtonia scortechinii, (Putat, musa sp. (pisang, talinum paniculatum (akar som and phyllanthus acidus (cermai. Moringa oleifera leaf and dryobalanops oblongifolia fruit were found contain positive reactions of alkaloids. All the samples studied also show high content of saponin except in bark and seed of parkia speciosa and stem of phyllanthus acidus. Meanwhile, results of the phytochemical screening on saponins, steroids, terpenoids, phenolic and flavonoids showed that cosmos caudatus, ocimum sp., mentha arvensis, barringtonia scortechinii and moringa oleifera were the active compounds present in the leaves of the plant.

  7. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles

    Science.gov (United States)

    Simoneit, B. R. T.; Schauer, J. J.; Nolte, C. G.; Oros, D. R.; Elias, V. O.; Fraser, M. P.; Rogge, W. F.; Cass, G. R.

    The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation waxes, resins/gums, and other biopolymers. Levoglucosan and the related degradation products from cellulose can be utilized as specific and general indicator compounds for the presence of emissions from biomass burning in samples of atmospheric fine particulate matter. This enables the potential tracking of such emissions on a global basis. There are other compounds (e.g. amyrones, friedelin, dehydroabietic acid, and thermal derivatives from terpenoids and from lignin—syringaldehyde, vanillin, syringic acid, vanillic acid), which are additional key indicators in smoke from burning of biomass specific to the type of biomass fuel. The monosaccharide derivatives (e.g. levoglucosan) are proposed as specific indicators for cellulose in biomass burning emissions. Levoglucosan is emitted at such high concentrations that it can be detected at considerable distances from the original combustion source.

  8. Effect of Abscission Zone Formation on Orange ( Citrus sinensis) Fruit/Juice Quality for Trees Affected by Huanglongbing (HLB).

    Science.gov (United States)

    Baldwin, Elizabeth; Plotto, Anne; Bai, Jinhe; Manthey, John; Zhao, Wei; Raithore, Smita; Irey, Mike

    2018-03-21

    Orange trees affected by huanglongbing (HLB) exhibit excessive fruit drop, and fruit loosely attached to the tree may have inferior flavor. Fruit were collected from healthy and HLB-infected ( Candidatus liberibacter asiaticus) 'Hamlin' and 'Valencia' trees. Prior to harvest, the trees were shaken, fruit that dropped collected, tree-retained fruit harvested, and all fruit juiced. For chemical analyses, sugars and acids were generally lowest in HLB dropped (HLB-D) fruit juice compared to nonshaken healthy (H), healthy retained (H-R), and healthy dropped fruit (H-D) in early season (December) but not for the late season (January) 'Hamlin' or 'Valencia' except for sugar/acid ratio. The bitter limonoids, many flavonoids, and terpenoid volatiles were generally higher in HLB juice, especially HLB-D juice, compared to the other samples. The lower sugars, higher bitter limonoids, flavonoids, and terpenoid volatiles in HLB-D fruit, loosely attached to the tree, contributed to off-flavor, as was confirmed by sensory analyses.

  9. Ubiquinone and carotene production in the Mucorales Blakeslea and Phycomyces.

    Science.gov (United States)

    Kuzina, Vera; Cerdá-Olmedo, Enrique

    2007-10-01

    The filamentous fungi Phycomyces blakesleeanus and Blakeslea trispora (Zygomycota, Mucorales) are actual or potential industrial sources of beta-carotene and lycopene. These chemicals and the large terpenoid moiety of ubiquinone derive from geranylgeranyl pyrophosphate. We measured the ubiquinone and carotene contents of wild-type and genetically modified strains under various conditions. Light slightly increased the ubiquinone content of Blakeslea and had no effect on that of Phycomyces. Oxidative stress modified ubiquinone production in Phycomyces and carotene production in both fungi. Sexual interaction and mutations in both organisms made the carotene content vary from traces to 23 mg/g dry mass, while the ubiquinone content remained unchanged at 0.3 mg/g dry mass. We concluded that the biosyntheses of ubiquinone and carotene are not coregulated. The specific regulation for carotene biosynthesis does not affect even indirectly the production of ubiquinone, as would be expected if terpenoids were synthesized through a branched pathway that could divert precursor flows from one branch to another.

  10. Preliminary study on fractions' activities of red betel vine (Piper crocatum Ruiz & Pav) leaves ethanol extract toward Mycobacterium tuberculosis

    Science.gov (United States)

    Rachmawaty, Farida Juliantina; Julianto, Tatang Shabur; Tamhid, Hady Anshory

    2018-04-01

    This research aims to identify the antimycobacterial activity of fraction of red betel vine leaves ethanol extract (methanol fraction, ethyl acetate, and chloroform) toward M. tuberculosis. Red betel vine leaves ethanol extract was made with maceration method using ethanol solvent 70%. Resulted extract was then fractionated using Liquid Vacuum Chromatography (LVC) with methanol, ethyl acetate, and chloroform solvent. Each fractionation was exposed to M. tuberculosis with serial dilution method. Controls of fraction, media, bacteria, and isoniazid as standard drug were included in this research. The group of compound from the most active fraction was then identified. The research found that the best fraction for antimycobacterial activity toward M. tuberculosisis chloroform fraction. The compound group of chloroform fraction was then identified. The fraction contains flavonoid, tannin, alkaloid, and terpenoid. The fraction of methanol, ethyl acetate, and chloroform from red betel vine leaves has antimycobacterial activity toward M. tuberculosis. Chloroform fraction has the best antimycobacterial activity and it contains flavonoid, tannin, alkaloid, and terpenoid.

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Maoecrystal V; synthesis; Diels-Alder reaction; dearomatization. Abstract. Nature continues to be a rich source of bio-active compounds that often provide the lead for drug development. Isolation and characterization of maoecrystal V, a C19 terpenoid, having potent and selective cytotoxicity towards HeLa cells ...

  12. Direct and indirect chemical defence of pine against folivorous insects

    NARCIS (Netherlands)

    Mumm, R.; Hilker, M.

    2006-01-01

    The chemical defence of pine against herbivorous insects has been intensively studied with respect to its effects on the performance and behaviour of the herbivores as well as on the natural enemies of pine herbivores. The huge variety of terpenoid pine components play a major role in mediating

  13. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    Science.gov (United States)

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  14. Antibacterial activity of the terrestrial fern Lygodium flexuosum (L. Sw. against multidrug resistant enteric- and uro-pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Nabakishore Nayak

    2013-01-01

    Conclusions: Phytochemical analysis of the water-extract of L. flexuosum confirmed the presence of glycosides and carbohydrates, but alkaloids, terpenoids, steroids, saponins, tannins, and flavonoids were absent. L. flexuosum, being a fern, is a suitable non-microbial source of antimicrobial for MDR strains of major enteric and uro-pathogens.

  15. Reaction of lupane and oleanane triterpenoids with Lawesson's reagent

    Czech Academy of Sciences Publication Activity Database

    Kvasnica, Miroslav; Rudovská, I.; Císařová, I.; Šarek, J.

    2008-01-01

    Roč. 64, č. 17 (2008), s. 3736-3743 ISSN 0040-4020 Grant - others:GA ČR(CZ) GP203/05/P025 Institutional research plan: CEZ:AV0Z40550506 Keywords : terpenoids * Lawesson's reagent * ketones * sulfur Subject RIV: CC - Organic Chemistry Impact factor: 2.897, year: 2008

  16. De novo assembly of leaf transcriptome in the medicinal plant Andrographis paniculata

    Directory of Open Access Journals (Sweden)

    Neeraja Cherukupalli

    2016-08-01

    Full Text Available Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeqTM 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant nonredundant protein database, gene ontology and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts − using kyoto encyclopedia of genes and genomes database − revealed 5,606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6,767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs in 23,168 transcripts. Assembled sequences of transcriptome of A.paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analyses besides identification of key enzymes involved in the various pathways of secondary metabolism.

  17. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata

    Science.gov (United States)

    Cherukupalli, Neeraja; Divate, Mayur; Mittapelli, Suresh R.; Khareedu, Venkateswara R.; Vudem, Dashavantha R.

    2016-01-01

    Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeq™ 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts—using kyoto encyclopedia of genes and genomes database—revealed 5606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs) in 23,168 transcripts. Assembled sequences of transcriptome of A. paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analysis besides identification of key enzymes involved in the various pathways of secondary metabolism. PMID:27582746

  18. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Towards the end, 197 recombinant inbred lines from a cross were grown over two seasons to characterize variability for seven biomass and 23 terpenoid indole alkaloids content-traits and yield-traits. The recombinant inbred lines were genotyped for 178 DNA markers which formed a framework genetic map of eight linkage ...

  19. Evaluating cotton seed gland initiation by microscopy

    Science.gov (United States)

    Gossypol is a terpenoid aldehyde found in cotton (Gossypium hirsutum L.) glands and helps protect the seed from pests and pathogens. However, gossypol is toxic to many animals, so the seed is used mainly in cattle feed, as ruminants are tolerant to the effects of gossypol. In order to develop strat...

  20. Cosmeceutical values, antimicrobial activities and antioxidant ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... commonly used method of dye removal by adsorption. (Nassar and El-geundi, 1991). ... terpenoids, alkaloids, and flavonoids, which have been found in vitro to have ... Folin's reagent is usually used to quantify the total phenolic and polyphenolic ..... HPLC, NMR and MALDI-TOF MS Analysis of. Condensed ...

  1. Constituents of the brown alga Padina tetrastromatica (Hauck)-II

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.; Bose, A.K.; Nair, M.S.R.

    Three terpenoids, (2R,4S)-4-acetoxy-2-hydroxy-2,6,6-trimethylcyclohexanone (1), 3'R,4'-[(2R,4S)-4-acetoxy-2-hydroxy-2,6,6-trimethylcyclohexylidene] but-3'-en-2'-one or apo-9'-fucoxanthinone (2) and loliolide (3) have been isolated from the CHCl sub...

  2. Anti-inflammatory and anti-nociceptive activities of methanolic leaf extract of Indigofera cassioides Rottl. Ex. DC.

    Directory of Open Access Journals (Sweden)

    Raju Senthil Kumar

    2013-01-01

    Conclusions: All the results obtained revealed that the extract MEIC showed potent anti-inflammatory and anti-nociceptive activity against all the tested models and the results obtained were comparable with the standards used. The activity of the extract may be due to the presence of terpenoids, flavonoids and other phytochemicals.

  3. Glutarimide alkaloids and a terpenoid benzoquinone from Cordia globifera.

    Science.gov (United States)

    Parks, Joshua; Gyeltshen, Thinley; Prachyawarakorn, Vilailak; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2010-05-28

    Three new compounds, a meroterpene (2) having a cyclopropane moiety named globiferane and glutarimide alkaloids named cordiarimides A (3) and B (4), were isolated from the roots of Cordia globifera. Compounds 2-4 exhibited weak cytotoxic activity. Cordiarimide B (4) exhibited radical scavenging activity, as it inhibited superoxide anion radical formation in the xanthine/xanthine oxidase (XXO) assay, and also suppressed superoxide anion generation in differentiated HL-60 human promyelocytic leukemia cells when induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). This is the first report on the presence of glutarimide alkaloids in the genus Cordia.

  4. An overview of the non-mevalonate pathway for terpenoid

    Indian Academy of Sciences (India)

    Unknown

    troversial role of isomerase via non-MVA route in which both IPP and DMAPP are reported to be synthe- ... chemical scheme was proposed with a head-to-head con- densation of ..... berry exocarp and mesocarp; Phytochemistry 60 451–459.

  5. Terpenoids, flavonoids and other constituents of Eupatorium betonicaeforme (Asteraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Maria Rose Jane R.; Pires, Andreza Maria L.; Pessoa, Otilia Deusdenia L.; Silveira, Edilberto R. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica. Curso de Pos-Graduacao em Quimica Organica]. E-mail: opessoa@ufc.br

    2006-01-15

    A new acylated kaurene diterpene, characterized as 15{alpha}-decanoyloxy-kaur-16-en-19-oic acid, along with nine known compounds: pentacosanoic acid, 24{alpha}-ethyl-5{alpha}-cholesta-7,22E-dien-3{beta}-ol, 15{alpha}-hydroxy-kaur-16-en-19-oic acid, 8{beta}-angeloyloxy-9{beta},10{beta}-dihydroxy-1-oxogermacra-4E,11(13)dien-12,6{alpha}-olide, 3{beta}-hydroxyeicosan-1,5{beta}-olide, taraxasteryl acetate, 7-Omethylkaempferol, kaempferol, and nepetin were isolated from the flowers of Eupatorium betonicaeforme (Asteraceae). In addition, from the aerial parts were isolated taraxasteryl acetate and {alpha}- and {beta}-amyrin, while the mixture of {beta}-sitosterol and stigmasterol, and 6-acetyl-2,2-dimethylchroman-4-one were isolated from the roots. The structure elucidation of all compounds was performed by spectroscopic analysis and comparison with published data from literature. (author)

  6. Terpenoids, flavonoids and other constituents of Eupatorium betonicaeforme (Asteraceae)

    International Nuclear Information System (INIS)

    Albuquerque, Maria Rose Jane R.; Pires, Andreza Maria L.; Pessoa, Otilia Deusdenia L.; Silveira, Edilberto R.

    2006-01-01

    A new acylated kaurene diterpene, characterized as 15α-decanoyloxy-kaur-16-en-19-oic acid, along with nine known compounds: pentacosanoic acid, 24α-ethyl-5α-cholesta-7,22E-dien-3β-ol, 15α-hydroxy-kaur-16-en-19-oic acid, 8β-angeloyloxy-9β,10β-dihydroxy-1-oxogermacra-4E,11(13)dien-12,6α-olide, 3β-hydroxyeicosan-1,5β-olide, taraxasteryl acetate, 7-Omethylkaempferol, kaempferol, and nepetin were isolated from the flowers of Eupatorium betonicaeforme (Asteraceae). In addition, from the aerial parts were isolated taraxasteryl acetate and α- and β-amyrin, while the mixture of β-sitosterol and stigmasterol, and 6-acetyl-2,2-dimethylchroman-4-one were isolated from the roots. The structure elucidation of all compounds was performed by spectroscopic analysis and comparison with published data from literature. (author)

  7. Transcriptional profiling of three key genes of terpenoid indole ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... indole alkaloid pathway in Catharanthus roseus under different tissue culture .... R 5'-GCA GCA GAC ACT CAA AAT CTC CTC C-3'. 62. CYP72A1 ... generated using both the software programs, and Microsoft Excel. The ΔΔCT ...

  8. Halogenated terpenoids from the brown alga Padina tetrastromatica (HAUCK)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Bhat, K.L.; Das, B.; Kamat, S.Y.; Harnos, S.

    ranging from 14:0 to 22:0 with palmitic acid (16:0, 67.4%) and oleic acid (18:1, 17.1%) being the major constituents, have been isolated from the pet, ether soluble fraction of the methanol extract of the brown alga Padina tetrastromatica...

  9. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2018-01-01

    Roč. 247, č. 5 (2018), s. 1051-1066 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Dimethylallyl diphosphate * Isopentenyl diphosphate * Isoprenoids * Phytoecdysteroids * Plant hormones * Terpenoids Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 3.361, year: 2016

  10. Tetranychus urticae Koch.

    African Journals Online (AJOL)

    Samson Edoja

    2016-07-27

    Jul 27, 2016 ... Simas NK, Lima EC, Conceição SR, Kuster RM, Filho AMO (2004). Natural products for control of dengue transmission – larvicidal activity of Myrozylon balsamum (red oil) and terpenoids and phenylpropanoids. Quim. Nova 27:46-49. Siqueira FFS, Oliveira JV, Ferraz CS, Oliveira CRF, Matos CHC (2014).

  11. Climate change and genetically modified insecticidal plants. Plant-herbivore interactions and secondary chemistry of Bt Cry1Ac-toxin producing oilseed rape (Brassica napus L.) under elevated CO{sub 2} or O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, S.

    2008-07-01

    Transgenic insect-resistant plants producing Bacillus thuringiensis (Bt) crystalline endotoxins are the first commercial applications of genetically modified crops and their use has steadily expanded over the last ten years. Together with the expanding agricultural use of transgenic crops, climate change is predicted to be among the major factors affecting agriculture in the coming years. Plants, herbivores and insects of higher trophic levels are all predicted to be affected by the current atmospheric climate change. However, only very few studies to date have addressed the sustained use and herbivore interactions of Bt-producing plants under the influence of these abiotic factors. The main objective of this study was to comparatively assess the performance of a Bt Cry1Ac toxin-producing oilseed rape line and its non-transgenic parent line in terms of vegetative growth and allocation to secondary defence compounds (glucosinolates and volatile terpenoids), and the performance of Bt-target and nontarget insect herbivores as well as tritrophic interaction functioning on these lines. For this, several growth chamber experiments with vegetative stage non-Bt and Bt plants facing exposures to doubled atmospheric CO{sub 2} level alone or together with increased temperature and different regimes of elevated O{sub 3} were conducted. The main hypothesis of this work was that Bt-transgenic plants have reduced performance or allocation to secondary compounds due to the cost of producing Bt toxin under changed abiotic environments. The Bt-transgenic oilseed rape line exhibited slightly delayed vegetative growth and had increased nitrogen and reduced carbon content compared to the non-transgenic parent line, but the physiological responses (i.e. biomass gain and photosynthesis) of the plant lines to CO{sub 2} and O{sub 3} enhancements were equal. Two aphid species, non-susceptible to Bt Cry1Ac, showed equal performance and reproduction on both plant lines under elevated CO{sub 2

  12. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Fiona K., E-mail: fdavies@mines.edu [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO (United States); Work, Victoria H. [Civil and Environmental Engineering Division, Colorado School of Mines, Golden, CO (United States); Beliaev, Alexander S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA (United States); Posewitz, Matthew C. [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO (United States)

    2014-06-19

    The plant terpenoids limonene (C{sub 10}H{sub 16}) and α-bisabolene (C{sub 15}H{sub 24}) are hydrocarbon precursors to a range of industrially relevant chemicals. High-titer microbial synthesis of limonene and α-bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L{sup −1} limonene and 0.6 mg L{sup −1} α-bisabolene through heterologous expression of the Mentha spicatal-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene or α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate, and acetate) during nitrogen-deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6- to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  13. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Fiona K.; Work, Victoria H.; Beliaev, Alex S.; Posewitz, Matthew C.

    2014-06-19

    The plant terpenoids limonene (C10H16) and α-bisabolene (C15H24) are hydrocarbon precursors to a range of industrially-relevant chemicals. High-titer microbial synthesis of limonene and α- bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L-1 limonene and 0.6 mg L-1 α-bisabolene through heterologous expression of the Mentha spicata L-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene and α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate and acetate) during nitrogen deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6 to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  14. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Davies, Fiona K; Work, Victoria H; Beliaev, Alexander S; Posewitz, Matthew C

    2014-01-01

    The plant terpenoids limonene (C10H16) and α-bisabolene (C15H24) are hydrocarbon precursors to a range of industrially relevant chemicals. High-titer microbial synthesis of limonene and α-bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L(-1) limonene and 0.6 mg L(-1) α-bisabolene through heterologous expression of the Mentha spicatal-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene or α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate, and acetate) during nitrogen-deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6- to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  15. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002

    International Nuclear Information System (INIS)

    Davies, Fiona K.; Work, Victoria H.; Beliaev, Alexander S.; Posewitz, Matthew C.

    2014-01-01

    The plant terpenoids limonene (C 10 H 16 ) and α-bisabolene (C 15 H 24 ) are hydrocarbon precursors to a range of industrially relevant chemicals. High-titer microbial synthesis of limonene and α-bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L −1 limonene and 0.6 mg L −1 α-bisabolene through heterologous expression of the Mentha spicatal-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene or α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate, and acetate) during nitrogen-deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6- to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  16. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa*

    Directory of Open Access Journals (Sweden)

    Molnár István

    2012-10-01

    Full Text Available Abstract Background Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. Results A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. Conclusions The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome

  17. Key cytokines of adaptive immunity are differentially induced in rainbow trout kidney by a group of structurally related geranyl aromatic derivatives.

    Science.gov (United States)

    Valenzuela, Beatriz; Obreque, Javiera; Soto-Aguilera, Sarita; Maisey, Kevin; Imarai, Mónica; Modak, Brenda

    2016-02-01

    Filifolinone is a semi-synthetic terpenoid derivative obtained from Heliotropium filifolium that increases the expression level of pro-inflammatory and anti-inflammatory cytokines in kidney cells of salmon. Because cytokines are produced in response to a foreign organism and by distinct other signals modulating immune responses, we further studied the potential immunomodulatory effects of a group of structural related terpenoid derivatives from H. filifolium on salmonids to determine the relationship between the chemical structure of the derivatives and their ability to modify cytokine expression and the lymphoid content. The resin and four 3H-spiro 1-benzofuran-2,1'-cyclohexane derivatives were tested in vivo in rainbow trout (Oncorhynchus mykiss) by quantifying the transcript levels of antiviral and T helper-type cytokines and T and B cells in the kidney. Three of the four terpenoids differ only in the C-7'substituent of the cyclohexane and the presence of the ketone group at this position in Filifolinone appeared responsible of an important up-regulation of IFN-α1, IFN-γ, IL-4/13A and IL-17D in the kidney of the treated trout. In addition, the absence of a methoxy group in carbon 7 of the benzene ring, found in all compounds but not in Folifolinoic acid, produced a significant reduction of IFN-γ, IL-12 and IL-4/13A transcripts. B cells were not affected by the compound treatment but Filifolinoic acid and the resin induced a significant reduction of T cells. Altogether, results showed that immunomodulating responses observed in the trout by effect of 3H-spiro 1-benzofuran-2,1'-cyclohexane derivatives is related to the presence of the ketone group in the carbon 7' and the methoxy group in carbon 7 of the benzene ring, being Filifolinone the most active immunostimulatory compound identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    Science.gov (United States)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  19. Análise de extratos de plantas por CCD: uma metodologia aplicada à disciplina "química orgânica" Analysis of extracts of plants by tlc: a methodology applied in the "organic chemistry" discipline

    Directory of Open Access Journals (Sweden)

    Mariana H. Chaves

    1997-10-01

    Full Text Available extracts of the regional plants Annona squamosa and Annona muricata were analysed by silica gel thin-layer chromatography using adequate systems of solvents and spray reagents. Carbohydrates, amino acids, alkaloids, flavonoids and terpenoids were detected in both species. These data agree with those on the literature about phytochemistry of the Annonaceae.

  20. Constituintes químicos do caule de Protium hebetatuml (Burseraceae Chemical constituents from the stem of Protium hebetatuml (Burseraceae

    Directory of Open Access Journals (Sweden)

    Túlio de Orleans Gadelha Costa

    2012-01-01

    Full Text Available Protium é um gênero que se destaca na família Burceraceae, compreende cerca de 146 espécies, das quais um pequeno número tem sido estudada do ponto de vista fitoquímico. Neste trabalho, foram isolados os terpenoides α- e β-amirina, os esteroides campesterol, estigmasterol e sitosterol e a cumarina escopoletina, a partir do tronco de Protium hebetatuml. As estruturas destas substâncias foram identificadas por RMN, MS, IV e por comparação com dados espectrais obtidos naa literatura e com amostras autênticas.Protium is the largest genus in the Burceraceae family, which comprises about 146 species, of which a small number has been studied from the phytochemical point of view. In this work the terpenoids α- and β-amyrin, the steroids campesterol, stigmasterol and sitosterol and the coumarin scopoletin were isolated from the stem of Protium hebetatuml. The structures of these substances were identified by NMR, MS, IV and comparison with spectral data from the literature and with authentic samples.

  1. Microbial transformation of (-)-isolongifolol by plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Sakata, Kazuki; Ueda, Masashi

    2010-01-01

    The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (-)-isolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 was converted to (-)-(3R)-3-hydroxy-isolongifolol and (-)-(9R)-9-hydroxy-isolongifolol by G. cingulata.

  2. Phytochemical screening of Plumbago zeylanica: A potent Herb

    OpenAIRE

    Richa Tyagi; Ekta Menghani

    2014-01-01

    The results of the phytochemical screening carried out on Plumbago zeylanica leaf sample showed the existence of beneficial phytonutrients. The results showed that Plumbago zeylanica all six solvent extract contained reducing sugar, terpenoids , tannin, alkaloids and flavonoid. The results of the phytochemical screening on the three species of medicinal plants were discussed in relations to their usefulness to mankind.

  3. Predicting the functions and specificity of triterpenoid synthases: a mechanism-based multi-intermediate docking approach.

    Directory of Open Access Journals (Sweden)

    Bo-Xue Tian

    2014-10-01

    Full Text Available Terpenoid synthases construct the carbon skeletons of tens of thousands of natural products. To predict functions and specificity of triterpenoid synthases, a mechanism-based, multi-intermediate docking approach is proposed. In addition to enzyme function prediction, other potential applications of the current approach, such as enzyme mechanistic studies and enzyme redesign by mutagenesis, are discussed.

  4. Thermal and catalytic intramolecular [4+2]-cycloaddition in 2-alkenylfurans

    International Nuclear Information System (INIS)

    Zubkov, Fedor I; Nikitina, Evgenia V; Varlamov, Alexey V

    2005-01-01

    The published data on the intramolecular Diels-Alder reaction in compounds of the 2-alkenylfuran series are generalised. The methods and conditions for the preparation of tricyclic systems are considered. The effects of the substituents in the furan and the unsaturated fragments on the cycloaddition are discussed. The application of this reaction to the synthesis of alkaloids and terpenoids is exemplified.

  5. Screening and antibacterial activity analysis of some important medicinal plants

    OpenAIRE

    G. Senthilmurugan Viji; B. Vasanthe; Kuru Suresh

    2013-01-01

    The screening and study of five different plant specimens belonging to different families for phytochemical constituents was performed using generally accepted laboratory technique for qualitative determinations. The constituents screened were saponins, combined anthraquinones, terpenoids, flavonoids, carotenoids, steroids, xantho proteins, couramins, alkaloids, quinones, vitamin C. The distribution of these constituents in the plant specimens were assessed and compared. The medicinal plant s...

  6. Uji Aktivitas Antioksidan Ekstrak Air dan Ekstrak Etanol Daun Kelor (Moringa Oleifera LAM)

    OpenAIRE

    Rizkayanti, Rizkayanti; Diah, Anang Wahid M; Jura, Minarni Rama

    2017-01-01

    Moringa (moringa oleifera Lam) leaves contains many molecules as inhibitors for free radicals such as phenolic compounds (phenolic acids, flavonoids, quinones, coumarins, lignans, stilbenes, tannins), nitrogen compounds (alkaloids, amines, betalain), vitamins, terpenoids (including carotenoids), and several other endogenous metabolites as antioxidants. This study aimed to determine the antioxidant potency of water and ethanol extracts of moringa (moringa oleifera Lam) leave obtained by macera...

  7. New Compounds from Euphorbia helioscopia and Absolute Configuration Determination by Computational Methods

    International Nuclear Information System (INIS)

    He, Jiangbo; Zhu, Hua Jie; Luo, Gui Fen; Li, Yan; Cheng, Yong Xian; Chen, Hao; Chen, Shaopeng; Lu, Xin; Zhou, Guochun; Liu, Guang Ming

    2010-01-01

    The whole plant of Euphorbia helioscopia is an important traditional Chinese medicine. Fom its BuOH soluble extract, one new lactam, three new terpenoids including a new naturally occurring compound, and three known compounds were isolated. Their structures were identified by spectroscopic evidences. In particular, the absolute configurations of side chain of compounds 1 and 2 were determined using computational methods

  8. Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach

    OpenAIRE

    Bilia, Anna Rita; Guccione, Clizia; Isacchi, Benedetta; Righeschi, Chiara; Firenzuoli, Fabio; Bergonzi, Maria Camilla

    2014-01-01

    Essential oils are complex blends of a variety of volatile molecules such as terpenoids, phenol-derived aromatic components, and aliphatic components having a strong interest in pharmaceutical, sanitary, cosmetic, agricultural, and food industries. Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, and other medicinal properties such as analgesic, sedative, anti-inflammatory, spasmolytic, and locally anaesthetic ...

  9. Thermal and catalytic intramolecular [4+2]-cycloaddition in 2-alkenylfurans

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Fedor I; Nikitina, Evgenia V; Varlamov, Alexey V [Department of Physical, Mathematical and Natural Sciences, Peoples' Friendship University of Russia (Russian Federation)

    2005-07-31

    The published data on the intramolecular Diels-Alder reaction in compounds of the 2-alkenylfuran series are generalised. The methods and conditions for the preparation of tricyclic systems are considered. The effects of the substituents in the furan and the unsaturated fragments on the cycloaddition are discussed. The application of this reaction to the synthesis of alkaloids and terpenoids is exemplified.

  10. Indole alkaloids and terpenoids from Tabernaemontana markgrafiana

    DEFF Research Database (Denmark)

    Nielsen, H.B.; Hazell, A.; Hazell, R.

    1994-01-01

    The bark of Tabernaemontana markgrafiana yielded five acetylated pentacyclic triterpenes and 24 monoterpene indole alkaloids. The major triterpene was baurenyl acetate, which constituted ca 6% of the crude petrol extract. An X-ray study of iso-ursenyl acetate was carried out for the first time...

  11. Gibberellins – terpenoid plant hormones: Biological importance and chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Terezie; Tarkowská, Danuše; Strnad, Miroslav; Hedden, P.

    2011-01-01

    Roč. 76, č. 12 (2011), s. 1669-1686 ISSN 0010-0765 R&D Projects: GA AV ČR KAN200380801; GA MŠk ED0007/01/01 Keywords : Gibberellins * Biosynthesis * Signaling * Profiling * Extraction * Purification * Mass spectrometry * Liquid chromatography Subject RIV: EF - Botanics Impact factor: 1.283, year: 2011

  12. Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells.

    Science.gov (United States)

    Ishida, Takashi

    2005-05-01

    This review article summarizes our knowledge of the metabolism of mono- and sesquiterpenoids in mammals, microorganisms, cloned-insect enzymes, and plant-cultured cells. A number of unusual enzymatic reactions and products are reported such as the stereoselective formation of primary alcohols from sterically congested Me2C groups. Such enzymatic processes, including unknown chemical transformations under abiotic conditions, could lead to the discovery of new chemical reactions and might be helpful in the design of new drugs. The transformations of the following mono- and sesquiterpenoids (in alphabetical order) are discussed: (+)-(1R)-aromadendrene (61), (-)-allo-aromadendrene (62), (+/-)-camphene (21), (-)-cis-carane (20), (+)-3-carene (17), (+/-)-carvone (27), (-)-beta-caryophyllene (43), (+)-cedrol (35), cuminaldehyde (25), (+)-curdione (69), (-)-cyclocolorenone (60), (-)-elemol (51), (2E,6E)-farnesol (31), germacrone (67), ginsenol (40), (-)-globulol (63), isoprobotryan-9alpha-ol (82a), juvenile hormone III (33), (+)-ledol (65), (+)-longifolene (46), myrcene (3), (-)-myrtenal (23), (+)-nootkatone (48), patchouli alcohol (37), (-)-perillaldehyde (24), (-)-alpha- and beta-pinene (8 and 9), alpha-santalol (28), (-)-6beta-santonin (83a), 6beta-tetrahydrosantonin (83b), beta-selinene (57), alpha-thujone (26a), beta-thujone (26b), T-2 toxin (87), and valerianol (53).

  13. Study of the Performance of the Organic Extracts of Chenopodium ambrosioides for Ag Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Luis M. Carrillo-López

    2016-01-01

    Full Text Available There are many ways to obtain metal nanoparticles: biological, physical, and chemical ways and combinations of these approaches. Synthesis assisted with plant extracts has been widely documented. However, one issue that is under discussion refers to the metabolites responsible for reduction and stabilization that confine nanoparticle growth and prevent coalescence between nanoparticles in order to avoid agglomeration/precipitation. In this study, Ag nanoparticles were synthesized using organic extracts of Chenopodium ambrosioides with different polarities (hexane, dichloromethane, and methanol. Each extract was phytochemically characterized to identify the nature of the metabolites responsible for nanoparticle formation. With methanol extract, the compounds responsible for reducing and stabilizing silver nanoparticle were associated with the presence of phenolic compounds (flavonoids and tannins, while, with dichloromethane and hexane extracts, the responsible compounds were mainly terpenoids. Large part of the reducing activity of secondary metabolites in C. ambrosioides is closely related to compounds with antioxidant capacity, such as phenolic compounds (flavone glycoside and isorhamnetin, which are the main constituents of the methanol extracts. Otherwise, terpenoids (trans-diol, α-terpineol, monoterpene hydroperoxides, and apiole are the central metabolites present in dichloromethane and hexane extracts.

  14. Is forest management a significant source of monoterpenes into the boreal atmosphere?

    Science.gov (United States)

    Haapanala, S.; Hakola, H.; Hellén, H.; Vestenius, M.; Levula, J.; Rinne, J.

    2012-04-01

    Volatile organic compounds (VOCs) including terpenoids are emitted into the atmosphere from various natural sources. Damaging the plant tissue is known to strongly increase their monoterpene release. We measured the terpenoid emissions caused by timber felling, i.e. those from stumps and logging residue. The emissions from stumps were studied using enclosures and those from the whole felling area using an ecosystem-scale micrometeorological method, disjunct eddy accumulation (DEA). The compounds analyzed were isoprene, monoterpenes and sesquiterpenes. Strong emissions of monoterpenes were measured from both the stumps and from the whole felling area. The emission rate decreased rapidly within a few months after the logging. In addition to fresh logging residue, the results suggest also other strong monoterpene sources may be present in the felling area. These could include pre-existing litter, increased microbial activity and remaining undergrowth. In order to evaluate the possible importance of monoterpenes emitted annually from cut Scots pine forests in Finland, we conducted a rough upscaling calculation. The resulting monoterpene release was approximated to be on the order of 15 kilotonnes per year, which corresponds to about one tenth of the monoterpene release from intact forests in Finland.

  15. Is forest management a significant source of monoterpenes into the boreal atmosphere?

    Directory of Open Access Journals (Sweden)

    S. Haapanala

    2012-04-01

    Full Text Available Volatile organic compounds (VOCs including terpenoids are emitted into the atmosphere from various natural sources. Damaging the plant tissue is known to strongly increase their monoterpene release. We measured the terpenoid emissions caused by timber felling, i.e. those from stumps and logging residue. The emissions from stumps were studied using enclosures and those from the whole felling area using an ecosystem-scale micrometeorological method, disjunct eddy accumulation (DEA. The compounds analyzed were isoprene, monoterpenes and sesquiterpenes. Strong emissions of monoterpenes were measured from both the stumps and from the whole felling area. The emission rate decreased rapidly within a few months after the logging. In addition to fresh logging residue, the results suggest also other strong monoterpene sources may be present in the felling area. These could include pre-existing litter, increased microbial activity and remaining undergrowth. In order to evaluate the possible importance of monoterpenes emitted annually from cut Scots pine forests in Finland, we conducted a rough upscaling calculation. The resulting monoterpene release was approximated to be on the order of 15 kilotonnes per year, which corresponds to about one tenth of the monoterpene release from intact forests in Finland.

  16. GC-MS Analysis of the Volatile Constituents in the Leaves of 14 Compositae Plants

    Directory of Open Access Journals (Sweden)

    Yiguang Wang

    2018-01-01

    Full Text Available The green organs, especially the leaves, of many Compositae plants possess characteristic aromas. To exploit the utility value of these germplasm resources, the constituents, mainly volatile compounds, in the leaves of 14 scented plant materials were qualitatively and quantitatively compared via gas chromatography-mass spectrometry (GC-MS. A total of 213 constituents were detected and tentatively identified in the leaf extracts, and terpenoids (especially monoterpene and sesquiterpene derivatives, accounting for 40.45–90.38% of the total compounds, were the main components. The quantitative results revealed diverse concentrations and compositions of the chemical constituents between species. Principal component analysis (PCA showed that different groups of these Compositae plants were characterized by main components of α-thujone, germacrene D, eucalyptol, β-caryophyllene, and camphor, for example. On the other hand, cluster memberships corresponding to the molecular phylogenetic framework, were found by hierarchical cluster analysis (HCA based on the terpenoid composition of the tested species. These results provide a phytochemical foundation for the use of these scented Compositae plants, and for the further study of the chemotaxonomy and differential metabolism of Compositae species.

  17. Structure, histochemistry and phytochemical profile of the bark of the sobol and aerial stem of Tontelea micrantha (Celastraceae - Hippocrateoideae

    Directory of Open Access Journals (Sweden)

    MARIA OLÍVIA MERCADANTE-SIMÕES

    2014-09-01

    Full Text Available The bark of the underground stem of Tontelea micrantha (Mart. ex. Schult. A. C. Sm., a native Brazilian Cerrado species, is used in folk medicine for treating kidney ailments. The structures of the underground and the aerial stems were examined and their barks were analyzed for the presence of secondary metabolites. Bark fragments were processed according to conventional techniques in plant anatomy and their chemical compositions examined using histochemical and phytochemical tests, thin layer chromatography, and high-efficiency liquid chromatography. The underground stem is a sobol with unusual cambial activity. Laticifers that secrete terpenoids were present in the cortex and phloem of both organs and can contribute to the identification of the species in field. Druses were present in both barks, but mono-crystals were only observed in the sobol. Tannins, flavonoids, alkaloids, and terpenoids occurred in both types of bark, but carotenoids were only detected in the sobol. The similarities between these two organs indicate that the aerial stem bark has potential medicinal use and represents a plausible alternative to harvesting the sobol, which could contribute to the preservation of natural populations of this species.

  18. Structure, histochemistry and phytochemical profile of the bark of the sobol and aerial stem of Tontelea micrantha (Celastraceae - Hippocrateoideae).

    Science.gov (United States)

    Mercadante-Simões, Maria Olívia; Mazzottini-Dos-Santos, Hellen C; Nery, Lays A; Ferreira, Peracio R B; Ribeiro, Leonardo M; Royo, Vanessa A; de Oliveira, Dario A

    2014-09-01

    The bark of the underground stem of Tontelea micrantha (Mart. ex. Schult.) A. C. Sm., a native Brazilian Cerrado species, is used in folk medicine for treating kidney ailments. The structures of the underground and the aerial stems were examined and their barks were analyzed for the presence of secondary metabolites. Bark fragments were processed according to conventional techniques in plant anatomy and their chemical compositions examined using histochemical and phytochemical tests, thin layer chromatography, and high-efficiency liquid chromatography. The underground stem is a sobol with unusual cambial activity. Laticifers that secrete terpenoids were present in the cortex and phloem of both organs and can contribute to the identification of the species in field. Druses were present in both barks, but mono-crystals were only observed in the sobol. Tannins, flavonoids, alkaloids, and terpenoids occurred in both types of bark, but carotenoids were only detected in the sobol. The similarities between these two organs indicate that the aerial stem bark has potential medicinal use and represents a plausible alternative to harvesting the sobol, which could contribute to the preservation of natural populations of this species.

  19. Phytotoxicity evaluation and phytochemical analysis of three medicinally important plants from Pakistan.

    Science.gov (United States)

    Ullah, Nazif; Haq, Ihsan-Ul; Mirza, Bushra

    2015-05-01

    This work examines the crude methanolic extracts of three medicinally important plants native to Pakistan for potent phytotoxic activities and important phytochemicals. These plants include Euphorbia wallichii, Bergenia ciliata and Phytolacca latbenia. The phytotoxic effects were checked at 10,000, 1000, and 100 µg/ml against two economically important standard target species, Triticum aestivum (monocot representative) and Brassica napus (dicot representative). The phytotoxicity effects on seed germination, seedling growth and seedling weight were checked. A simple, cost-effective in vitro phytotoxicity assay (that uses petri plates) was used to evaluate the allelopathic properties of crude extracts. At highest concentration, extracts from all the three plants showed phytotoxic activities such that P. latbenia > E. wallichii > B. ciliata. In seedling growth, root length was affected more than shoot length, whereas among the target species B. napus was found to be more sensitive towards extracts when compared with T. aestivum. Phytochemical analysis showed that P. latbenia is rich in saponins and terpenoids, while E. wallichii and B. ciliata are rich in tannins, terpenoids and cardiac glycoside. P. latbenia also carries a moderate amount of cardiac glycosides. © The Author(s) 2012.

  20. Process for purifying lignocellulosic feedstocks

    Science.gov (United States)

    Gray, Matthew; Matthes, Megan; Nelson, Thomas; Held, Andrew

    2018-01-09

    The present invention includes methods for removing mineral acids, mineral salts and contaminants, such as metal impurities, ash, terpenoids, stilbenes, flavonoids, proteins, and other inorganic products, from a lignocellulosic feedstock stream containing organic acids, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, phenols, cresols, and other oxygenated hydrocarbons, in a manner that maintains a portion of the organic acids and other oxygenated hydrocarbons in the product stream.

  1. Flavones, lignans and terpene from Piper umbellata (Piperaceae); Flavonas, lignanas e terpeno de Piper umbellata (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Baldoqui, Debora Cristina; Bolzani, Vanderlan da S.; Furlan, Maysa [UNESP, Araraquara, SP (Brazil). Inst. de Quimica], e-mail: maysaf@iq.unesp.br; Kato, Massuo J. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Marques, Marcia O.M. [Instituto Agronomico de Campinas, SP (Brazil)

    2009-07-01

    The phytochemical investigation of Piper umbellata leaves yielded nine compounds including one terpenoid glucoside, five flavones (vitexin 2{sup -}O-{beta}-glucopyranoside, apigenin 8-C-{beta}-D-glucopyranoside, orientin 8-C-{beta}-D-glucopyranoside,5-hydroxy-7,3',4'-trimethoxy-flavone and velutin), two lignans (sesamin and dihydrocubebin) and 4-nerolidylcathecol. Excepting 4-nerolidylcathecol, all compounds have not been described from this species yet (author)

  2. Antibacterial Compounds from Red Seaweeds (Rhodophyta)

    OpenAIRE

    Noer Kasanah; Triyanto Triyanto; Drajad Sarwo Seto; Windi Amelia; Alim Isnansetyo

    2015-01-01

    Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta) are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported...

  3. Flavones, lignans and terpene from Piper umbellata (Piperaceae)

    International Nuclear Information System (INIS)

    Baldoqui, Debora Cristina; Bolzani, Vanderlan da S.; Furlan, Maysa

    2009-01-01

    The phytochemical investigation of Piper umbellata leaves yielded nine compounds including one terpenoid glucoside, five flavones (vitexin 2 - O-β-glucopyranoside, apigenin 8-C-β-D-glucopyranoside, orientin 8-C-β-D-glucopyranoside,5-hydroxy-7,3',4'-trimethoxy-flavone and velutin), two lignans (sesamin and dihydrocubebin) and 4-nerolidylcathecol. Excepting 4-nerolidylcathecol, all compounds have not been described from this species yet (author)

  4. Overexpression of artificially fused bifunctional enzyme 4CL1?CCR: a method for production of secreted 4-hydroxycinnamaldehydes in Escherichia coli

    OpenAIRE

    Liu, Shuxin; Qi, Qi; Chao, Nan; Hou, Jiayin; Rao, Guodong; Xie, Jin; Lu, Hai; Jiang, Xiangning; Gai, Ying

    2015-01-01

    Background 4-Hydroxycinnamaldehydes are important intermediates in several secondary metabolism pathways, including those involved in the biosynthesis of phenolic acids, flavonoids, terpenoids and monolignols. They are also involved in the biosynthesis and degradation of lignins, which are important limiting factors during the processes of papermaking and biofuel production. Access to these aromatic polymers is necessary to explore the secondary biometabolic pathways they are involved in. Con...

  5. Phytochemical screening and In vivo anti-ulcer activity of Ethanolic extract of Heliotropium indicum L

    OpenAIRE

    S.Nethaji; T. Ushadevi; C.Manoharan

    2013-01-01

    The phytochemical compounds and anti-ulcer activity of leaves and root extracts of Heliotropium indicum Linn. The preliminary phytochemical screening was performed by in vitromethod and anti-ulcer activity was conducted by in vivomethod. The phytochemical analysis revealed the presence of alkaloids, carbohydrates and glycosides, phytosterols, fixed oils and fats, phenolic compounds and tannins, flavonoids, terpenoids,proteins and amino acids. The ethanolic extract of Heliotropium indicumleaf ...

  6. Anti-leishmanial evaluation of fraxinus xanthoxyloides (G. don) DC. collected from district Islamabad

    International Nuclear Information System (INIS)

    Younis, T.; Khan, M.R.; Zai, J.A.; Khan, H.; Shah, N.A.

    2016-01-01

    In this study, we have investigated phytochemical classes, antileishmanial and cytotoxic activity of Fraxinus xanthoxyloides (Oleaceae) leaves. Powder of F. xanthoxyloides leaves was extracted with methanol to obtain the crude extract (FXM) and the resultant was fractionated with solvents in escalating polarity; n-hexane (FXH), chloroform (FXC), ethyl acetate (FXE), n-butanol (FXB) and the residual aqueous (FXA) fraction. Quantitative estimation of terpenoids, coumarins, flavonoids, phenolics and tannins was conducted. Anti-leishmanial activity was performed against Leishmania tropica promastigote stage parasite while insecticidal activity was assessed through brine shrimps lethality assay. Our results showed the maximum concentration of terpenoids in FXC while the highest quantity of coumarins, flavonoids, phenolics and tannins was recorded in FXE. Presence of terpenoids was not detected in FXB and in FXA. Among the extract/fractions, FXC exhibited the highest anti-leishmanial activity with LD/sub 50/ of 15.239+-0.9 mu g/ml to that of glucantime (LD/sub 50/ = 5.6+-2.4 mu g/ml) a reference drug. FXH exhibited the anti-leishmanial activity of LD/sub 50/ = 40.68+-1.9 mu g/ml followed by FXE (LD/sub 50/ = 102.9+-3.1 mu g/ml). Similarly potent insecticidal activity was recorded (LD/sub 50/ = 28.15+-1.8 mu g/ml) for FXC followed by FXH (LD/sub 50/ = 67.59+-2.3 mu g/ml). However, other fractions exhibited low level of anti-leishmanial and insecticidal activity. Correlation analysis exhibited a strong association (p 0.05) with the insecticidal activity. The coumarins established a medium association with the insecticidal activity. Other chemical classes exhibited a moderate to low level of association with the anti-leishmanial and the insecticidal activity. On the basis of these results we can conclude that chloroform fraction of F. xanthoxyloides is a potential source for anti-leishmanial and insecticidal activities and further studies are required to isolate the active

  7. Chamomile: A herbal medicine of the past with bright future

    OpenAIRE

    Srivastava, Janmejai K; Shankar, Eswar; Gupta, Sanjay

    2010-01-01

    Chamomile is one of the most ancient medicinal herbs known to mankind. It is a member of Asteraceae/Compositae family and represented by two common varieties viz. German Chamomile (Chamomilla recutita) and Roman Chamomile (Chamaemelum nobile). The dried flowers of chamomile contain many terpenoids and flavonoids contributing to its medicinal properties. Chamomile preparations are commonly used for many human ailments such as hay fever, inflammation, muscle spasms, menstrual disorders, insomni...

  8. Exploring natural variation of Pinus pinaster Aiton using metabolomics: Is it possible to identify the region of origin of a pine from its metabolites?

    Czech Academy of Sciences Publication Activity Database

    Meijon, M.; Feito, I.; Oravec, Michal; Delatorre, C.; Weckwerth, W.; Majada, J.; Valledor, Luis

    2016-01-01

    Roč. 25, č. 4 (2016), s. 959-976 ISSN 0962-1083 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) EE2.3.20.0256 Grant - others:Akademie věd České Republiky(CZ) M200871201 Institutional support: RVO:67179843 Keywords : abiotic stress * adaptation * conifers * flavonoids * terpenoids * UPLC-Orbitrap-MS Subject RIV: EH - Ecology, Behaviour Impact factor: 6.086, year: 2016

  9. PHARMACOLOGICAL AND TOXICOLOGICAL EFFECTS OF HELIOTROPIUM UNDULATUM [H. BACCIFERUM] AND HELIOTROPIUM EUROPAEUM- A REVIEW

    OpenAIRE

    Ali Esmail Al-Snafi

    2018-01-01

    The phytochemical analysis of Heliotropium undulatum [Heliotropium bacciferum] revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. While, Heliotropium europaeum was shown to contain three major alkaloids: heliotrine N-oxide 0.08%, lasiocarpine 0.09% and lasiocarpine N-oxide 0.05%; and four minor alkaloids: heliotrine 0.02%, europine 0.02%, acetyllasiocarpine 0.03% and a novel alkaloid acetyllasiocarpine N-oxide 0.05%. Twenty six co...

  10. PHYTOCHEMICAL SCREENING AND ANTIOXIDANT ACTIVITY OF SELECTED MANGO (MANGIFERA INDICA L.) AND AVOCADO (PERSEA AMERICANA) FRUITS IN ILLU ABABOR ZONE, OROMIA REGIONAL STATE, ETHIOPIA

    OpenAIRE

    Lalisa Wakjira Duresa1*, Daniel Manaye2

    2017-01-01

    Mango (Mangifera indica L.) and Avocado (Persea americana) fruits are rich in bioactive molecules that protect human cells against the detrimental effect of free radicals. The phytochemical analysis revealed the Presence of alkaloids, terpenoids, saponins, tannins, phenolics and flavonoids in both fruits. The free radical scavenging activity using total antioxidant capacity of the phosphomolybdenum method and hydrogen peroxide method were carried out on the water extracts of mango and avocado...

  11. Comparative Phenolic Fingerprint and LC-ESI+QTOF-MS Composition of Oregano and Rosemary Hydrophilic Extracts in Relation to their Antibacterial Effect

    OpenAIRE

    Florina Bunghez; Mihaela Ancuţa Morar; Raluca Maria Pop; Florina Romanciuc; Florina Csernatoni; Florinela Fetea; Zoriţa Diaconeasa; Carmen Socaciu

    2015-01-01

    Rosemary (Rosmarinus officinalis) and oregano (Origanum vulgare) are known aromatic plants used as spice, with good flavoring, preservative, antioxidant and antibacterial activity. Beside their known terpenoid content responsible for the antibacterial activity, the water-soluble compounds (phenolic derivatives) are of high interest not only for their antioxidant activity but as a good alternative or as a hydrophilic new antibacterial solution. Two hydrophilic extracts from each plant were obt...

  12. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS.

    Science.gov (United States)

    Lee, Jueun; Jung, Youngae; Shin, Jeoung-Hwa; Kim, Ho Kyoung; Moon, Byeong Cheol; Ryu, Do Hyun; Hwang, Geum-Sook

    2014-07-04

    Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS) and ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.

  13. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity.

    Science.gov (United States)

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-12-01

    Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  14. In Vitro Screening of Three Indian Medicinal Plants for Their Phytochemicals, Anticholinesterase, Antiglucosidase, Antioxidant, and Neuroprotective Effects.

    Science.gov (United States)

    Penumala, Mohan; Zinka, Raveendra Babu; Shaik, Jeelan Basha; Amooru Gangaiah, Damu

    2017-01-01

    Cooccurrence of Diabetes Mellitus and Alzheimer's disease in elder people prompts scientists to develop multitarget agents that combat causes and symptoms of both diseases simultaneously. In line with this modern paradigm and as a follow-up to our previous studies, the present study is designed to investigate the crude methanolic extracts and subsequent CHCl 3 , n -BuOH, and H 2 O fractions of Acalypha alnifolia , Pavetta indica, and Ochna obtusata for their inhibitory activities towards specific targets involved in AD and DM, namely, acetylcholinesterase, butyrylcholinesterase, and α -glucosidase ( α -Glc). The methanolic extract and its derived chloroform fractions exhibited remarkable inhibitory capacities with IC 50 values being found at the μ g/mL level. Further studies on most active chloroform fractions presented a prominent ability to scavenge DPPH and ABTS reactive species and highest neuroprotective effect against H 2 O 2 induced cell injury. Phytochemical analysis showed a large amount of phenolics, flavonoids, and terpenoids in active fractions. In conclusion, A. alnifolia , P. indica, and O. obtusata could be promising sources for the treatment of AD and DM since these fractions induced significant anticholinesterase, antidiabetic, antioxidant, and neuroprotection effects attributable to phenolic, flavonoid, and terpenoid contents and encourage further studies for development of multifunctional therapeutic agent for AD and DM dual therapy.

  15. Apoptotic and antiproliferative properties of 3β-hydroxy-Δ5-steroidal congeners from a partially purified column fraction of Dendronephthya gigantea against HL-60 and MCF-7 cancer cells.

    Science.gov (United States)

    Fernando, I P Shanura; Sanjeewa, K K Asanka; Kim, Hyun-Soo; Wang, Lei; Lee, Won Woo; Jeon, You-Jin

    2018-04-01

    Organisms belonging to the genus Dendronephthya are among a group of marine invertebrates that produce a variety of terpenoids with biofunctional properties. Many of these terpenoids have been proven effective as anticancer drugs. Here, we report the antiproliferative effect of 3β-hydroxy-Δ5-steroidal congeners against the proliferation of HL-60 human leukemia cells and MCF-7 human breast cancer cells. The sterol-rich fraction (DGEHF2-1) inhibited the growth of HL-60 and MCF-7 cells with IC 50 values of 13.59 ± 1.40 and 29.41 ± 0.87 μg ml -1 respectively. Treatment with DGEHF2-1 caused a dose-dependent increase in apoptotic body formation, DNA damage and the sub-G 1 apoptotic cell population. Moreover, DGEHF2-1 downregulated the expression of Bcl-xL while upregulating Bax, caspase-9, and PARP cleavage in both HL-60 and MCF-7 cells. The steroid fraction was found to act via the mitochondria-mediated apoptosis pathway. Identification of the sterols was performed via gas chromatography-tandem mass spectrometry analysis. Studying the mechanism of the anticancer effect caused by these sterol derivatives could lead to the identification of other natural products with anticancer properties. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Phytochemical screening, total phenolic, total flavonoids contents and antioxidant activity of cinchona ledgeriana leaves ethanol extract

    Science.gov (United States)

    Sundowo, Andini; Artanti, Nina; Hanafi, M.; Minarti, Primahana, Gian

    2017-11-01

    C ledgeriana is a medicinal plant that contains alkaloids, especially on the barks for commercial production of quinine as antimalarial. The main alkaloids in this plant are cinchonine, cinchonidine, quinine and quinidine. Besides for antiamalarial this plant is also commonly used to treat whooping cough, influenza and dysentery. Compare to other medicinal plants, nowadays only very few studies were conducted in Cinchona species. Our current study aims to determine the content of phytochemical, total phenol and total flavonoids from C. ledgeriana leaves 70% ethanol extract. The extraction was performed by maceration method using 70% ethanol solvent and then fractionated into hexane, ethylacetate and butanol. Phytochemical screening was performed to determine the content of alkaloids, flavonoids, terpenoids, tannins and saponins. Total phenol and flavonoid contents of the extract were determined by Folin-Ciocalteu and alumunium chloride colorimetric methods using gallic acid and quercetin as standards. The antioxidant activity was determined by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The results of phytochemical screening showed that the 70% ethanol extract of C. ledgeriana leaves contained alkaloids, flavonoids, terpenoids, tannins and saponins. The total phenol and total flavonoids analysis showed that ethyl acetate fraction had the highest total phenol (40.23%) and total flavonoids (65.34%).

  17. Overview of the taxonomy and of the major secondary metabolites and their biological activities related to human health of the Laurencia complex (Ceramiales, Rhodophyta from Brazil

    Directory of Open Access Journals (Sweden)

    Mutue T. Fujii

    2011-04-01

    Full Text Available In Brazil, the Laurencia complex is represented by twenty taxa: Laurencia s.s. with twelve species, Palisada with four species (including Chondrophycus furcatus now that the proposal of its transference to Palisada is in process, and Osmundea and Yuzurua with two species each. The majority of the Brazilian species of the Laurencia complex have been phylogenetically analyzed by 54 rbcL sequences, including five other Rhodomelacean species as outgroups. The analysis showed that the Laurencia complex is monophyletic with high posterior probability value. The complex was separated into five clades, corresponding to the genera: Chondrophycus, Laurencia, Osmundea, Palisada, and Yuzurua. A bibliographical survey of the terpenoids produced by Brazilian species showed that only six species of Laurencia and five of Palisada (including C. furcatcus have been submitted to chemical analysis with 48 terpenoids (47 sesquiterpenes and one triterpene isolated. No diterpenes were found. Of the total, 23 sesquiterpenes belong to the bisabolane class and eighteen to the chamigrene type, whose biochemical precursor is bisabolane, two are derived from lauranes and four are triquinols. Despite the considerable number of known terpenes and their ecological and pharmacological importance, few experimental biological studies have been performed. In this review, only bioactivities related to human health were considered.

  18. Chemical Composition and Biological Activity of Essential Oils of Sempervivum brevipilum Muirhead

    Directory of Open Access Journals (Sweden)

    Nuran Kahriman

    2015-06-01

    Full Text Available The essential oils of the fresh flower, leaf, and stem of Sempervivum brevipilum Muirhead. (Crassulaceae were isolated by hydrodistillation in a modified Clevenger-type apparatus, and characterized by GC-FID and GC-MS. A total of fifty, fourty-three, and thirty-one compounds were identified, constituting over 92.6%, 92.6%, and 94.3% of oil composition of the flower, leaf, and stem of S. brevipilum, respectively. The chemical profile reveals the dominance of hydrocarbons (flower: 65.3%, leaf: 47.6%, stem: 71.1%. The major compounds of essential oils from S. brevipilum were tetracosane (20.2% in flower, 1,2-diphenyl ethandione (16.1% in leaf and docosane (30.5% in stem. Monoterpene hydrocarbons were the major class of terpenoids in flower (2.2% and in stem (1.8%, oxygenated diterpene was the major class of terpenoids in leaf (4.5%. Oxygenated monoterpenes were in minor amounts in all parts (flower: 0.3%, leaf: 0.7%, stem: 0.1% of the plant. In addition, antimicrobial activities of the essential oils of S. brevipilum were investigated. The oils didn’t show any antibacterial and antifungal activity against tested bacteria, but showed high antituberculostatic activity against Mycobacterium smegmatis.

  19. Chemical Composition of Herbal Macerates and Corresponding Commercial Essential Oils and Their Effect on Bacteria Escherichia coli

    Directory of Open Access Journals (Sweden)

    Marietta Białoń

    2017-11-01

    Full Text Available This study addresses the chemical composition of some commercial essential oils (clove, juniper, oregano, and marjoram oils, as well as appropriate herbal extracts obtained in the process of cold maceration and their biological activity against selected Escherichia coli strains: E. coli ATTC 25922, E. coli ATTC 10536, and E. coli 127 isolated from poultry waste. On the basis of the gas chromatography-mass spectrometry (GCMS analysis, it was found that the commercial essential oils revealed considerable differences in terms of the composition and diversity of terpenes, terpenoids and sesquiterpenes as compared with the extracts obtained from plant material. The commercial clove, oregano, and marjoram oils showed antibacterial properties against all the tested strains of E. coli. However, these strains were not sensitive to essential oils obtained from the plant material in the process of maceration. The tested strains of E. coli show a high sensitivity, mainly against monoterpenes (α-pinene, β-pinene, α,β,γ-terpinene, limonene and some terpenoids (thymol, carvacrol. The commercial juniper oil contained mainly monoterpenes and monoterpenoids, while the extracts contained lower amounts of monoterpenes and high amounts of sesquiterpenes—the anti-microbiotic properties of the juniper herbal extract seem to be caused by the synergistic activity of mono- and sesquiterpenes.

  20. Qualitative Phytochemical Analysis and Microbial Inhibitory Activities of Pacific Rain Tree (Samanea saman (Jacq. Merr. Pods

    Directory of Open Access Journals (Sweden)

    James Kennard S. Jacob

    2016-08-01

    Full Text Available Background: Crop diseases and human health are always at stake and the emerging problem on the use of synthetic anti-pathogens and medicine is one of the most difficult to combat. The first step towards determining such capabilities among plants is to determine their phytochemicals. Methods: Eight preliminary phytochemical tests was done on Samanea saman which includes, test for alkaloids saponins, flavonoids, tannins, glycosides, steroids, terpenoids and resins. Powdered pods were subjected to ethanol and aqueous extraction. Extracts were also tested for its antifungal and anti-microbial properties against Fusarium oxysporum, E. coli and S. aureus, respectively. Results: Out of the eight phytochemical tests done, seven (7 were found to be present both on the ethanol and aqueous extracts namely, alkaloids, saponins, tannins, glycosides, steroids, terpenoids and resins. However, flavonoids is absent. The statistical results exhibited that there is a significant difference on the inhibitory effects against in-vitro bioassay of Fusarium oxysporum which is known to cause crop wilts and the two bacterial pathogens E. coli and S. aureus. Conclusions: The presence of such phytochemicals in Samanea saman pods revealed that it can be a basis of new, natural and non-synthetic treatments. This finding suggests that its pods can be used as antibacterial and antifungal source.

  1. Preliminary phytochemicals evaluation of different solvent extracts of Gynura procumbens

    International Nuclear Information System (INIS)

    Hazlina Ahmad Hassali; Fazliana Mohd Saaya; Anuar, A.M.K.; Shafii Khamis

    2014-01-01

    Phytochemicals are natural bioactive compounds found in plants, such as vegetables, fruits, medicinal plants, flowers, leaves and roots that work with nutrients and fibers to protect against various human diseases. Gynura procumbens or locally known as Sambung Nyawa is a plant species widely planted in many warmer regions. It is a perennial plant of the Asteraceae family, which may grow to 100 cm high with oval-shaped, leaves to 10 cm long and have a rather fleshy feel. Gynura procumbens has been used for the treatment of eruptive fevers, rash and kidney disease. The leaves of this plant continue to be used as folk medicine to control diabetes mellitus and hyperlipidaemia. The aim of this research was to evaluate the presence of phytochemicals constituents in different solvent extracts of Gynura procumbens leaves. Qualitative phytochemicals screening of hexane, chloroform, methanol and water extracts were carried out for the detection of terpenoids, alkaloids, flavonoids, tannins, saponins, steroids, lipids, coumarin, cardiac glycosides and anthraquinones. The phytochemicals screening showed positive results for terpenoids, alkaloids, flavonoids, tannins, saponins, lipids, coumarin and anthraquinones in methanol and water extracts of Gynura procumbens. The diversity of phytochemicals present suggests that Gynura procumbens leaves could serve as a source of useful drugs. (author)

  2. Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology.

    Science.gov (United States)

    Lesage-Meessen, Laurence; Bou, Marine; Sigoillot, Jean-Claude; Faulds, Craig B; Lomascolo, Anne

    2015-04-01

    The Lavandula genus, which includes lavender (Lavandula angustifolia) and lavandin (L. angustifolia × Lavandula latifolia), is cultivated worldwide for its essential oils, which find applications in perfumes, cosmetics, food processing and, more recently, in aromatherapy products. The chemical composition of lavender and lavandin essential oils, usually produced by steam distillation from the flowering stems, is characterized by the presence of terpenes (e.g. linalool and linalyl acetate) and terpenoids (e.g. 1,8-cineole), which are mainly responsible for their characteristic flavour and their biological and therapeutic properties. Lavender and lavandin distilled straws, the by-products of oil extraction, were traditionally used for soil replenishment or converted to a fuel source. They are mineral- and carbon-rich plant residues and, therefore, a cheap, readily available source of valuable substances of industrial interest, especially aroma and antioxidants (e.g. terpenoids, lactones and phenolic compounds including coumarin, herniarin, α-bisabolol, rosmarinic and chlorogenic acids). Accordingly, recent studies have emphasized the possible uses of lavender and lavandin straws in fermentative or enzymatic processes involving various microorganisms, especially filamentous fungi, for the production of antimicrobials, antioxidants and other bioproducts with pharmaceutical and cosmetic activities, opening up new challenging perspectives in white biotechnology applications.

  3. Secondary Metabolite Profiling of Curcuma Species Grown at Different Locations Using GC/TOF and UPLC/Q-TOF MS

    Directory of Open Access Journals (Sweden)

    Jueun Lee

    2014-07-01

    Full Text Available Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS and ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA and partial least-squares discriminant analysis (PLS-DA plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.

  4. [Study on the terpenoids of chemical constituents of Buddleja purdomii (II)].

    Science.gov (United States)

    Gao, Yan; Cai, Li; Li, Hai-Yan; Li, Chong

    2007-06-01

    To study the chemical constituents of Buddleja purdomii W. W. Smith. The constituents were isolated and purified by various chromatographic methods and structurally identified by spectral analysis. 7 compounds were obtained as luteolin (I), luteolin-7-O-beta-D-glucoside (II), trans-caffeic acid (III), cis-caffeic acid (IV), beta-stiosterol (V), stigmasterol (VI), nonacosane (VII). All these compounds are obtained from this plant for the first time.

  5. Elucidation of terpenoid metabolism in Scoparia dulcis by RNA-seq analysis.

    Science.gov (United States)

    Yamamura, Yoshimi; Kurosaki, Fumiya; Lee, Jung-Bum

    2017-03-07

    Scoparia dulcis biosynthesize bioactive diterpenes, such as scopadulcic acid B (SDB), which are known for their unique molecular skeleton. Although the biosynthesis of bioactive diterpenes is catalyzed by a sequence of class II and class I diterpene synthases (diTPSs), the mechanisms underlying this process are yet to be fully identified. To elucidate these biosynthetic machinery, we performed a high-throughput RNA-seq analysis, and de novo assembly of clean reads revealed 46,332 unique transcripts and 40,503 two unigenes. We found diTPSs genes including a putative syn-copalyl diphosphate synthase (SdCPS2) and two kaurene synthase-like (SdKSLs) genes. Besides them, total 79 full-length of cytochrome P450 (CYP450) genes were also discovered. The expression analyses showed selected CYP450s associated with their expression pattern of SdCPS2 and SdKSL1, suggesting that CYP450 candidates involved diterpene modification. SdCPS2 represents the first predicted gene to produce syn-copalyl diphosphate in dicots. In addition, SdKSL1 potentially contributes to the SDB biosynthetic pathway. Therefore, these identified genes associated with diterpene biosynthesis lead to the development of genetic engineering focus on diterpene metabolism in S. dulcis.

  6. Actividad antibacteriana de terpenoides y alcaloides aislados de tres plantas colombianas

    Directory of Open Access Journals (Sweden)

    Luis Enrique Cuca Suárez

    2011-06-01

    Full Text Available El potencial antibacteriano de 14 compuestos obtenidos de 3 especies nativas colombianas (Pleurothyrium cinereum [van der Werff], Esenbeckia alata [Karst & Triana], y Raputia heptaphylla [Pittier] fue evaluado mediante la inhibición del crecimiento bacteriano por el método de difusión en agar contra 4 cepas bacterianas: Enterococcus faecalis 29212, Staphylococcus aureus 6539, Escherichia coli 25922 y Salmonella tiphymurium 14028s. Los compuestos evaluados mostraron actividad frente a las cepas a diferentes niveles, observando una tendencia y selectividad según el núcleo base. El alcaloide 4-metoxi-1-metil-quinolin-2-(1H-ona (8 fue el compuesto que presentó la mayor actividad.

  7. Secondary Metabolites from Inula britannica L. and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Yoon-Ha Kim

    2010-03-01

    Full Text Available Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica.

  8. Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1) in Cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.)

    OpenAIRE

    Bua-In Saowaluck; Paisooksantivatana Yingyong; Weimer Bart C.; Chowpongpang Srimek

    2014-01-01

    Cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.) is a native Thai herb with a high content and large variety of terpenoids in its essential oil. Improving the essential oil content and quality of cassumunar ginger is difficult for a breeder due to its clonally propagated nature. In this research, we describe the isolation and expression level of the monoterpene synthase gene that controls the key step of essential oil synthesis in this plant an...

  9. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase

    OpenAIRE

    Karuppiah, Vijaykumar; Ranaghan, Kara E.; Leferink, Nicole G. H.; Johannissen, Linus O.; Shanmugam, Muralidharan; Ní Cheallaigh, Aisling; Bennett, Nathan J.; Kearsey, Lewis J.; Takano, Eriko; Gardiner, John M.; van der Kamp, Marc W.; Hay, Sam; Mulholland, Adrian J.; Leys, David; Scrutton, Nigel S.

    2017-01-01

    Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS)...

  10. ANALGESIC ACTIVITY OF PET ETHER, AQUEOUS, AND HYDRO-ETHANOLIC LEAF EXTRACTS OF ASPILIA AFRICANA (PERS) C.D. ADAMS (ASTERACEAE) IN RODENTS

    OpenAIRE

    Koffuor George Asumeng; Ameyaw Elvis Ofori; Oppong Kyekyeku James; Amponsah Kingsley Isaac; Sunkwa Andrews; Semenyo Samuella Afriyie

    2013-01-01

    Traditionally, Aspilia africana is used in the management of pain in Ghana and most parts of West Africa. This study therefore investigated the analgesic effect of the petroleum ether, aqueous, and hydro-ethanolic leaf extracts of Aspilia africana using rodent models. Preliminary phytochemical screening was done on all the extracts, which showed the presence of alkaloids, flavonoids, saponins, tannins, glycosides, phytosterols and terpenoids. The extracts (40-400 mg/kg p.o.) were administered...

  11. Phytochemical content of hot and cold water extracts of Orthosiphon stamineus leaves

    Science.gov (United States)

    Habboo, Maysam Dahham; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2018-04-01

    Orthosiphon stamineus Benth (Lamiaceae) is a plant with ethnobotanical applications including antifungal and antibacterial properties. This study aimed to evaluate the phytochemical contents of Orthosiphon stamineus leaves water extract prepared in cold and hot distilled water. Phytochemical screening revealed the presence of phytochemicals components such as a flavonoid, terpenoid and steroid in both extracts. Cold water extract has two extra components: saponin and alkaloid that may be destroyed by the exposure to heat.

  12. Two New Cyathane Diterpenoids from Mycelial Cultures of the Medicinal Mushroom Hericium erinaceus and the Rare Species, Hericium flagellum

    OpenAIRE

    Rupcic, Zeljka; Rascher, Monique; Kanaki, Sae; Köster, Reinhard W.; Stadler, Marc; Wittstein, Kathrin

    2018-01-01

    Basidiomycetes of the genus Hericium are among the most praised medicinal and edible mushrooms, which are known to produce secondary metabolites with the potential to treat neurodegenerative diseases. This activity has been attributed to the discovery of various terpenoids that can stimulate the production of nerve growth factor (NGF) or (as established more recently) brain-derived neurotrophic factor (BDNF) in cell-based bioassays. The present study reports on the metabolite profiles of a Li...

  13. Solid phase microextraction as a reliable alternative to conventional extraction techniques to evaluate the pattern of hydrolytically released components in Vitis vinifera L. grapes.

    Science.gov (United States)

    Perestrelo, Rosa; Caldeira, Michael; Câmara, José S

    2012-06-15

    In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-qMS), was evaluated as a reliable and improved alternative to the commonly used liquid-liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35°C for 42h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible

  14. Analysis of volatile components from Melipona beecheii geopropolis from Southeast Mexico by headspace solid-phase microextraction.

    Science.gov (United States)

    Torres-González, Ahira; López-Rivera, Paulina; Duarte-Lisci, Georgina; López-Ramírez, Ángel; Correa-Benítez, Adriana; Rivero-Cruz, J Fausto

    2016-01-01

    A head space solid-phase microextraction method combined with gas chromatography-mass spectrometry was developed and optimised to extract and analyse volatile compounds of Melipona beecheii geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53-15.45%), styrene (8.72-9.98%), benzaldehyde (7.44-7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).

  15. Interferon-Gamma and Interlukin-4 Patterns in BALB/c Mice Suffering From Cutaneous Leishmaniasis Treated With Cantharidin

    OpenAIRE

    Maroufi, Yahya; Ghaffarifar, Fatemeh; Dalimi, Abdolhosein; Sharifi, Zohreh

    2014-01-01

    Background: Cutaneous leishmaniasis is a health problem in the world. Lesions should be treated on cosmetically or functionally important sites, such as the face and hands. Cantharidin is a terpenoid compound produced naturally by beetles of Meloidae and Oedemeridae families. Objectives: The current study aimed to investigate the effect of cantharidin on Cutaneous Leishmaniasis (CL) lesions and IFN-γ and IL-4 patterns in infected BALB/c mice. Materials and Methods: Infected BALB/c mice were d...

  16. Modules of co-regulated metabolites in turmeric (Curcuma longa) rhizome suggest the existence of biosynthetic modules in plant specialized metabolism.

    Science.gov (United States)

    Xie, Zhengzhi; Ma, Xiaoqiang; Gang, David R

    2009-01-01

    Turmeric is an excellent example of a plant that produces large numbers of metabolites from diverse metabolic pathways or networks. It is hypothesized that these metabolic pathways or networks contain biosynthetic modules, which lead to the formation of metabolite modules-groups of metabolites whose production is co-regulated and biosynthetically linked. To test whether such co-regulated metabolite modules do exist in this plant, metabolic profiling analysis was performed on turmeric rhizome samples that were collected from 16 different growth and development treatments, which had significant impacts on the levels of 249 volatile and non-volatile metabolites that were detected. Importantly, one of the many co-regulated metabolite modules that were indeed readily detected in this analysis contained the three major curcuminoids, whereas many other structurally related diarylheptanoids belonged to separate metabolite modules, as did groups of terpenoids. The existence of these co-regulated metabolite modules supported the hypothesis that the 3-methoxyl groups on the aromatic rings of the curcuminoids are formed before the formation of the heptanoid backbone during the biosynthesis of curcumin and also suggested the involvement of multiple polyketide synthases with different substrate selectivities in the formation of the array of diarylheptanoids detected in turmeric. Similar conclusions about terpenoid biosynthesis could also be made. Thus, discovery and analysis of metabolite modules can be a powerful predictive tool in efforts to understand metabolism in plants.

  17. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2014-12-01

    Full Text Available Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  18. Phytochemicals Screening and Antioxidant Activity of Annona muricata Aqueous Extracts

    International Nuclear Information System (INIS)

    Rosniza Razali; Hazlina Ahmad Hassali; Arapoc, D.J.

    2016-01-01

    Annona Muricata belongs to the family Annonaceae which is known to have anticancer, anti-inflammatory and many other bio activities. Leaves, twig, fruit and seed of A. muricata were collected from Suhan Biotech and dried. Hot and cold aqueous extracts were prepared for the preliminary screening of phytochemicals and aqueous extracts of A. muricata were evaluated for total phenolic, scavenging assay (DPPH; 1-1-diphenyl-2-picrylhydrazyl) and cytotoxic activities. Phytochemicals screening of leaves extracts revealed the presence of alkaloids, terpenoid, reducing sugar, carbohydrate and anthocyanins. While for twig extracts it revealed the presence of coumarine. Antra quinones, terpenoid, flavonoid, reducing sugar, lipids and coumarine were found in fruit and seed extracts. The total phenolic content was found to be 2.372±0.922 μg GAE/ g, 85.85±6.23 μg GAE/ g, 53.56±8.39 μg GAE/ g and 54.67±13.33 μg GAE/ g for leaves, twig, fruit and seed respectively. On the other hand, all extract have showed IC_5_0 value more than 500 μg/ mL in DPPH scavenging assay. Cytotoxic evaluation of all extracts against HTB43, MCF-7 and MDAMB231 cell lines showed IC_5_0 value more than 250 μg/ mL. In conclusion, the results showed that aqueous extract of A.muricata was inappropriate as anticancer agen (author)

  19. Bioprospecting of Marine Invertebrates for New Natural Products — A Chemical and Zoogeographical Perspective

    Directory of Open Access Journals (Sweden)

    Ricardo Calado

    2012-08-01

    Full Text Available Bioprospecting for new marine natural products (NPs has increased significantly over the last decades, leading to an unprecedented discovery of new molecules. Marine invertebrates have been the most important source of these NPs, with researchers commonly targeting particular taxonomic groups, marine regions and/or molecules from specific chemical groups. The present review focuses on new NPs identified from marine invertebrates between 2000 and 2009, and performs a detailed analysis on: (1 the chemical groups of these NPs; (2 the association of particular chemical groups to specific marine invertebrate taxa; and (3 the yielding of molecules from the same chemical group from organisms occurring in a particular geographic region. Our survey revealed an increasing number of new terpenoids being discovered between 2000 and 2009, contrasting with the decreasing trend in the discovery of new alkaloids and aliphatic molecules. Overall, no particular association was identified between marine invertebrate taxa and chemical groups of new NPs. Nonetheless, it is worth noting that most NPs recorded from cnidarians and mollusks were terpenoids, while most NPs identified in echinoderms were aliphatic compounds or carbohydrates. The geographical trends observed in our study do not support the idea of particular chemical groups of new NPs being associated with marine invertebrates from any specific geographical region, as NPs from different chemical groups were commonly distributed worldwide.

  20. Genetic variation of lodgepole pine, Pinus contorta var. latifolia, chemical and physical defenses that affect mountain pine beetle, Dendroctonus ponderosae, attack and tree mortality.

    Science.gov (United States)

    Ott, Daniel S; Yanchuk, Alvin D; Huber, Dezene P W; Wallin, Kimberly F

    2011-09-01

    Plant secondary chemistry is determined by both genetic and environmental factors, and while large intraspecific variation in secondary chemistry has been reported frequently, the levels of genetic variation of many secondary metabolites in forest trees in the context of potential resistance against pests have been rarely investigated. We examined the effect of tree genotype and environment/site on the variation in defensive secondary chemistry of lodgepole pine, Pinus contorta var. latifolia, against the fungus, Grosmannia clavigera (formerly known as Ophiostoma clavigerum), associated with the mountain pine beetle, Dendroctonus ponderosae. Terpenoids were analyzed in phloem samples from 887, 20-yr-old trees originating from 45 half-sibling families planted at two sites. Samples were collected both pre- and post-inoculation with G. clavigera. Significant variation in constitutive and induced terpenoid compounds was attributed to differences among families. The response to the challenge inoculation with G. clavigera was strong for some individual compounds, but primarily for monoterpenoids. Environment (site) also had a significant effect on the accumulation of some compounds, whereas for others, no significant environmental effect occurred. However, for a few compounds significant family x environment interactions were found. These results suggest that P. c. latifolia secondary chemistry is under strong genetic control, but the effects depend on the individual compounds and whether or not they are expressed constitutively or following induction.

  1. Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites.

    Science.gov (United States)

    Remus-Emsermann, Mitja N P; Schmid, Michael; Gekenidis, Maria-Theresia; Pelludat, Cosima; Frey, Jürg E; Ahrens, Christian H; Drissner, David

    2016-01-01

    Pseudomonas citronellolis is a Gram negative, motile gammaproteobacterium belonging to the order Pseudomonadales and the family Pseudomonadaceae . We isolated strain P3B5 from the phyllosphere of basil plants ( Ocimum basilicum L.). Here we describe the physiology of this microorganism, its full genome sequence, and detailed annotation. The 6.95 Mbp genome contains 6071 predicted protein coding sequences and 96 RNA coding sequences. P. citronellolis has been the subject of many studies including the investigation of long-chain aliphatic compounds and terpene degradation. Plant leaves are covered by long-chain aliphates making up a waxy layer that is associated with the leaf cuticle. In addition, basil leaves are known to contain high amounts of terpenoid substances, hinting to a potential nutrient niche that might be exploited by P. citronellolis . Furthermore, the isolated strain exhibited resistance to several antibiotics. To evaluate the potential of this strain as source of transferable antibiotic resistance genes on raw consumed herbs we therefore investigated if those resistances are encoded on mobile genetic elements. The availability of the genome will be helpful for comparative genomics of the phylogenetically broad pseudomonads, in particular with the sequence of the P. citronellolis type strain PRJDB205 not yet publicly available. The genome is discussed with respect to a phyllosphere related lifestyle, aliphate and terpenoid degradation, and antibiotic resistance.

  2. UJI AKTIVITAS EKSTRAK ETANOL 50°/o UMBI KELADI TIKUS (TYPHONIUM FLAGELLIFORME (LOOD Bl TERHADAP SEL KANKER PAYUDARA MCF-7 IN VITRO

    Directory of Open Access Journals (Sweden)

    Lucie Widowati

    2012-09-01

    Full Text Available  Keladi tikus root (Typhonium flagelliforme (Lodd BI is one of plants that is used for cancer healing. The plant contents flavonoid, tannin, terpenoid and steroid. Flavonoid and terpenoid compound groups are known for anti cancer activities. The investigation  is conducted to test cytotoxic effect of ethanol free dry extract of keladi tikuroot (Typhonium jlagelliforme (LoodBI against brest cancer cell MCF-7. Maceration extraction  method used 50% ethanol solvent and vaporized until ethanol.free dry extract of keladi tikus root was obtained. The test used 5 level of concentration, those were 50, 75, I 00, 125 and 150 µg/ml with 3 times iteration. DMSO was used as negative control and Cisplatin with concentration of 4, 6, 8, 19, 12 µg/ml were used as positive control. Test result showed ethanol free dry extract of keladi tikus root has value of LC50 = 89,15 and Cisplatin  has value of LC50 = 7,84  µg/ml. Further investigation of advance sitotoxic test value LC50 and value LC50 against  fraction of 50% ethanol extract is necessary to obtain active compound against brest cancer cell MCF-7. Ethanol Extract 50%  of  keladi  tikus  root (Typhonium flagelliforme (Lood BI, Breast Cancer, MCF-7 Cell, LC50.

  3. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    Science.gov (United States)

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  4. The importance of mass spectrometric dereplication in fungal secondary metabolite analysis

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld

    2015-01-01

    Having entered the Genomic Era, it is now evident that the biosynthetic potential of filamentous fungi is much larger than was thought even a decade ago. Fungi harbor many cryptic gene clusters encoding for the biosynthesis of polyketides, non-ribosomal peptides, and terpenoids - which can all...... the importance of each stage of the process from sample preparation to chromatographic separation and finally toward both manual and more targeted methods for automated dereplication of fungal natural products using state-of-the art MS instrumentation....

  5. Alkaloids and other metabolites from stems and fruits of Zanthoxylum tingoassuiba A. St. Hil; Alcaloides e outros metabolitos do caule e frutos de Zanthoxylum tingoassuiba A. St. Hil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cinara Vasconcelos da; Detoni, Cassia Britto; Velozo, Eudes da Silva [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Faculdade de Farmacia. Dept. do Medicamento]. E-mail: cinarav@hotmail.com; Guedes, Maria Lenise da Silva [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Biologia. Herbario Alexandre Leal Costa

    2008-07-01

    Phytochemical investigation of this species, popularly known as tinguaciba and used in traditional medicine to various diseases, resulted in the isolation of 15 substances: 2 alkaloids - norchelerythrine and arnottianamide; 1 lignan - sesamin; 4 terpenoids - citronellyl acetate, lupeol, {alpha}-bisabolol and spatulenol; 5 coumarins described for the first time - xanthotoxin, isopimpinelin, O-prenylumbelliferone, imperatorin and aurapten, 1 protoalkaloid - methyl N-methylanthranilate and 2 steroids - stigmasterol and {beta}-sitosterol. The structures of the compounds were elucidated by spectroscopic analyses and compared with literature data. (author)

  6. Antitumor-promoting activity of scopadulcic acid B, isolated from the medicinal plant Scoparia dulcis L.

    Science.gov (United States)

    Nishino, H; Hayashi, T; Arisawa, M; Satomi, Y; Iwashima, A

    1993-01-01

    Scopadulcic acid B (SDB), a tetracyclic diterpenoid isolated from a medicinal plant, Scoparia dulcis L., inhibited the effects of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro and in vivo; SDB inhibited TPA-enhanced phospholipid synthesis in cultured cells, and also suppressed the promoting effect of TPA on skin tumor formation in mice initiated with 7,12-dimethylbenz[a]anthracene. The potency of SDB proved to be stronger than that of other natural antitumor-promoting terpenoids, such as glycyrrhetinic acid.

  7. A practical deca-gram scale ring expansion of (R)-(-)-carvone to (R)-(+)-3-methyl-6-isopropenyl-cyclohept-3-enone-1.

    Science.gov (United States)

    Alves, Leandro de C; Desiderá, André L; de Oliveira, Kleber T; Newton, Sean; Ley, Steven V; Brocksom, Timothy J

    2015-07-28

    A route to enantiopure (R)-(+)-3-methyl-6-isopropenyl-cyclohept-3-enone-1, an intermediate for terpenoids, has been developed and includes a highly chemo- and regioselective Tiffeneau-Demjanov reaction. Starting from readily available (R)-(-)-carvone, this robust sequence is available on a deca-gram scale and uses flow chemistry for the initial epoxidation reaction. The stereochemistry of the addition of two nucleophiles to the carbonyl group of (R)-(-)-carvone has been determined by X-ray diffraction studies and chemical correlation.

  8. Phytoconstituents from Vitex agnus-castus fruits.

    Science.gov (United States)

    Chen, Shao-Nong; Friesen, J Brent; Webster, Donna; Nikolic, Dejan; van Breemen, Richard B; Wang, Z Jim; Fong, Harry H S; Farnsworth, Norman R; Pauli, Guido F

    2011-06-01

    A new labdane-diterpene, viteagnusin I (1), together with 23 known phytoconstituents were isolated from the fruits of Vitex agnus-castus L, and their structures characterized by spectroscopic methods (NMR and MS). The known compounds include ten flavonoids, five terpenoids, three neolignans, and four phenolic compounds, as well as one glyceride. Biological evaluation identified apigenin, 3-methylkaempferol, luteolin, and casticin as weak ligands of delta and mu opioid receptors, exhibiting dose-dependent receptor binding. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Further iridoid glucosides in the genus Manulea (Scrophulariaceae)

    DEFF Research Database (Denmark)

    Gousiadou, Chryssoula; Kokubun, Tetsuo; Gotfredsen, Charlotte Held

    2015-01-01

    From Manulea altissima (Scrophulariaceae) were isolated five known secoiridoid glucosides sweroside, eustomoside, eustoside, secoxyloganin and secologanoside as well as the 4″-O-rhamnopyranosyl-feruloyl ester of adoxosidic acid, named altissimoside. Also, the caffeoyl phenylethanoid glycoside...... verbascoside was isolated. In addition two previously unknown terpenoid esters of 6β-hydroxy 8-epi-boschnaloside, named manucoside A and B were isolated from a formerly obtained fraction from the work-up of Manulea corymbosa. The distribution of iridoid glucosides in the Scrophulariaceae is discussed....

  10. Alkaloids and other metabolites from stems and fruits of Zanthoxylum tingoassuiba A. St. Hil

    International Nuclear Information System (INIS)

    Silva, Cinara Vasconcelos da; Detoni, Cassia Britto; Velozo, Eudes da Silva; Guedes, Maria Lenise da Silva

    2008-01-01

    Phytochemical investigation of this species, popularly known as tinguaciba and used in traditional medicine to various diseases, resulted in the isolation of 15 substances: 2 alkaloids - norchelerythrine and arnottianamide; 1 lignan - sesamin; 4 terpenoids - citronellyl acetate, lupeol, α-bisabolol and spatulenol; 5 coumarins described for the first time - xanthotoxin, isopimpinelin, O-prenylumbelliferone, imperatorin and aurapten, 1 protoalkaloid - methyl N-methylanthranilate and 2 steroids - stigmasterol and β-sitosterol. The structures of the compounds were elucidated by spectroscopic analyses and compared with literature data. (author)

  11. Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en catharanthus roseus

    OpenAIRE

    Palacios-Rojas, Natalia; Leech, Mark

    2007-01-01

    Los alcaloides indol terpenoicos (TIA) son metabolitos secundarios de importancia medicinal por sus propiedades como agentes anticancerígenos, entre otras. Sin embargo, su explotación en la industria farmacéutica se ha visto limitada, ya que la acumulación de estos compuestos en las plantas que los producen es mínima. Dichos alcaloides son biosintetizados por la vía del shikimato y de los terpenoides, los cuales proveen los precursores: secologanina y triptamina, respectivamente. La secologan...

  12. Fungal immunomodulatory proteins in the context of biomedicine.

    Science.gov (United States)

    Uribe-Echeverry, Paula Tatiana; Lopez-Gartner, German Ariel

    2017-06-01

    Fungi represent a large group of biodiverse microorganisms with potential applications ranging from industrial fields to the treatment for human diseases. A large number of pharmacologically active compounds including terpenoids, polysaccharides and proteins have been derived from these microorganisms. Fungal Immunomodulatory Proteins (FIPs) are a group of active compounds that are being considered for the treatment of asthma, allergy, autoimmune diseases and cancer. Here, we discuss the discovery, heterologous production bioactive mechanisms of action and their potential use in biomedicine.

  13. Global Emissions of Terpenoid VOCs from Terrestrial Vegetation in the Last Millennium

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Navarro, J. C.; Smolander, S.; Struthers, H.; Zorita, E.; Ekman, A. M.; Kaplan, J. O.; Guenther, Alex B.; Arneth, A.; Riipinen, I.

    2014-06-16

    We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8 GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have signicant short term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during during 1750-1850 and 1000- 15 1200, respectively) and LPJ-GUESS emissions were 323 TgC yr-1 (15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1 (10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% 19 20 less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1 (10% and 4% higher than during1750-1850 and 1000-1200, respectively). Although both models capture similar We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8GUESS), for isoprene and monoterpenes. We found the millennial trends ofglobal isoprene emissions to be mostly a*ected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have signifcant short term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during during 1750-1850 and 1000- 1200, respectively) and LPJ-GUESS emissions were 323 TgC yr-1 (15% and 16 17 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1 (10% and 6% higher than during 1750-1850 and 18 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1 (10% and 4% higher than during1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.

  14. Antiproliferative terpenoids from almond hulls (Prunus dulcis): identification and structure-activity relationships.

    Science.gov (United States)

    Amico, Vincenzo; Barresi, Vincenza; Condorelli, Daniele; Spatafora, Carmela; Tringali, Corrado

    2006-02-08

    Bioassay-guided fractionation of the EtOAc crude extract from Sicilian almond hulls, a waste material from Prunus dulcis crop, allowed identification of 10 constituents, isolated as pure compounds (1-5, 7, and 10) or unseparable mixtures (5 + 6 and 8 + 9). All compounds were subjected to spectroscopic analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide bioassay on MCF-7 human breast cancer cells. In addition to the main components oleanolic (1), ursolic (2), and betulinic (3) acids, the 2-hydroxy analogues alphitolic (4), corosolic (5), and maslinic (6) acids, as well as the related aldehydes, namely, betulinic (7), oleanolic (8), and ursolic (9), were identified. From a more polar fraction, the beta-sitosterol 3-O-glucoside (10) was also identified. A sample of commercially available betulin (11) was also included in bioassays as further support to a structure-activity relationship study. Betulinic acid showed antiproliferative activity toward MCF-7 cells (GI50 = 0.27 microM), higher than the anticancer drug 5-fluorouracil.

  15. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium

    Science.gov (United States)

    Acosta Navarro, J C; Smolander, S; Struthers, H; Zorita, E; Ekman, A M L; Kaplan, J O; Guenther, A; Arneth, A; Riipinen, I

    2014-01-01

    We investigated the millennial variability (1000 A.D.–2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr−1 (13% and 19% less than during 1750–1850 and 1000–1200, respectively), and LPJ-GUESS emissions were 323 TgC yr−1(15% and 20% less than during 1750–1850 and 1000–1200, respectively). Monoterpene emissions were 89 TgC yr−1(10% and 6% higher than during 1750–1850 and 1000–1200, respectively) in MEGAN, and 24 TgC yr−1 (2% higher and 5% less than during 1750–1850 and 1000–1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr−1(10% and 4% higher than during 1750–1850 and 1000–1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation. PMID:25866703

  16. Terpenoid Profile of Artemisia Alba is Related to Endogenous Cytokinins in Vitro

    Czech Academy of Sciences Publication Activity Database

    Krumova, S.; Motyka, Václav; Dobrev, Petre; Todorova, M.; Trendafilova, A.; Evstatieva, L.; Danova, K.

    2013-01-01

    Roč. 19, č. 2 (2013), s. 26-30 ISSN 1310-0351 R&D Projects: GA ČR(CZ) GAP506/11/0774 Institutional research plan: CEZ:AV0Z50380511 Keywords : Artemisia alba * in vitro * endogenous cytokinins Subject RIV: EF - Botanics Impact factor: 0.136, year: 2012 http://www.agrojournal.org/19/02-06s.pdf

  17. Biotransformation of (+)-cycloisolongifolol by plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Sakata, Kazuki

    2007-05-01

    The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (+)-cycloisolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 gave one major metabolic product and a number of minor metabolic products. Major product was dehydration at the C-8 position to (+)-dehydrocycloisolongifolene (2). The structure of the product was determined by their spectroscopic data. Glomerella cingulata gave dehydration in the specifically and over 70% conversion.

  18. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae).

    Science.gov (United States)

    Dzoyem, Jean P; Melong, Raduis; Tsamo, Armelle T; Tchinda, Alembert T; Kapche, Deccaux G W F; Ngadjui, Bonaventure T; McGaw, Lyndy J; Eloff, Jacobus N

    2017-03-06

    Entada abyssinica is a plant traditionally used against gastrointestinal bacterial infections. Eight compounds including three flavonoids, three terpenoids, a monoglyceride and a phenolic compound isolated from E. abyssinica were investigated for their cytotoxicity, antibacterial and antioxidant activity. Compounds 7 and 2 had remarkable activity against Salmonella typhimurium with the lowest respective minimum inhibitory concentration (MIC) values of 1.56 and 3.12 µg/mL. The antioxidant assay gave IC 50 values varied from 0.48 to 2.87 μg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, from 2.53 to 17.04 μg/mL in the 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay and from 1.43 to 103.98 µg/mL in the FRAP assay. Compounds had relatively low cytotoxicity (LC 50 values ranging from 22.42 to 80.55 µg/mL) towards Vero cells. Ursolic acid had the most potent cytotoxicity against THP-1 and RAW 264.7 cells with LC 50 values of 9.62 and 4.56 μg/mL respectively, and selectivity index values of 7.32 and 15.44 respectively. Our findings suggest that among the terpenoid and flavonoid compounds studied, entadanin (compound 7) possess tremendous antibacterial activity against S. typhimurium and could be developed for the treatment of bacterial diseases.

  19. Phytochemical analysis of essential oil of Anthriscus nemorosa and evaluation of antioxidant and anti-malarial activity

    Directory of Open Access Journals (Sweden)

    S. Naeini

    2017-11-01

    Full Text Available Background and objectives: This investigation was performed in order to analyze the composition of the essential oil (EO of Anthriscus nemorosa and evaluation of its anti-oxidant and anti-malarial activity of its extracts and determination of the total phenolics content (TPC and total flavonoid content (TFC. Methods: One hundred g dried powder of Anthriscus nemorosa was submitted to hydro-distillation and also was extracted (with n-hexane, dichloromethane (DCM and methanol (MeOH, by using Clevenger and Soxhlet apparatus, respectively. Moreover, extracted essential oil (EO was analyzed by GC-MS. Furthermore, the anti-oxidant, anti- malaria, Total phenolics content (TPC and total flavonoid content (TFC of EO and the extracts were investigated by DPPH, cell free -hematin formation, Folin- Ciocalteau and colorimetric methods, respectively. Results: Fifty nine compounds, representing 94% of total oil were identified High content of terpenoids (60.02% were identified in the essential oil with isogeranol (28.86%, crystathenyl acetate  (13.86% and farnesene (10.39% as the most dominant compounds.. Methanol extract demonstrated free radical scavenging activity (RC50 0.192±0.133.Total phenol contents was (325.82±2.72 mg/g. Total flavonoid content was (140.4096±2.4 mg/g. None of the extracts showed anti-malaria effect. Conclusion: Main constituents of A. nemorosa were terpenoids. In comparison with other species of Anthriscus, antioxidant activity of A. nemorosa essential oil was less noticeable.

  20. Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Nadja A. Henke

    2018-04-01

    Full Text Available Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii prevention of carotenoid-like byproduct formation; (iii overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP-pathway to increase precursor supply; and (iv heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1.

  1. Volatile Metabolomic Composition of Vitex Species: Chemodiversity Insights and Acaricidal Activity

    Directory of Open Access Journals (Sweden)

    José G. de Sena Filho

    2017-11-01

    Full Text Available The Vitex genus (Lamiaceae produces a plethora of metabolites that include ecdysteroids and terpenoids, some of which have demonstrated insect repellent properties. The volatile composition of several members of this genus has not been chemically defined, as many taxa are endemic to remote ecosystems. In this study, leaves were collected from the northeast of Brazil from Vitex capitata, V. megapotamica, V. gardneriana, and V. rufescens plants and examined for their chemical profile via GC-MS/FID of essential oil extracts. The analyses showed a diversity of terpenoids. Of particular note were seven-member ring sesquiterpenes which were present in great abundance; a dendrogram showed clades separating by the production of bicyclogermacrene, aromadendrane and 5,10-cycloaromadendrane sesquiterpenoids for the four species. Comparison of volatile metabolite profiles to 13 other Vitex species showed strong similarities in the production of some monoterpenes, but varied by their production of larger terpenes, especially those with gem-dimethylcyclopropyl subunits on seven-member ring compounds. From this work, we suggest that the sesquiterpene skeleton with seven member rings is a good chemosystematic biomarker candidate for the Vitex genus. Separation using this biomarker was then validated using Inter-Simple Sequence Repeat profiling. Lastly, experiments examining the toxicity of these four oils against the coconut mite Aceria guerreronis showed that only the oil of V. gardneriana had strong acaricidal activity, with an LC50 of 0.85 mg/mL, thus demonstrating its potential for use as a natural pesticide.

  2. Cardiovascular activity of the n-butanol fraction of the methanol extract of Loranthus ferrugineus Roxb.

    Directory of Open Access Journals (Sweden)

    O.Z. Ameer

    2010-02-01

    Full Text Available We investigated the vascular responses and the blood pressure reducing effects of different fractions obtained from the methanol extract of Loranthus ferrugineus Roxb. (F. Loranthaceae. By means of solvent-solvent extraction, L. ferrugineus methanol extract (LFME was successively fractionated with chloroform, ethyl acetate and n-butanol. The ability of these LFME fractions to relax vascular smooth muscle against phenylephrine (PE- and KCl-induced contractions in isolated rat aortic rings was determined. In another set of experiments, LFME fractions were tested for blood pressure lowering activity in anesthetized adult male Sprague-Dawley rats (250-300 g, 14-18 weeks. The n-butanol fraction of LFME (NBF-LFME produced a significant concentration-dependent inhibition of PE- and KCl-induced aortic ring contractions compared to other fractions. Moreover, NBF-LFME had a significantly higher relaxant effect against PE- than against high K+-induced contractions. In anesthetized Sprague-Dawley rats, NBF-LFME significantly lowered blood pressure in a dose-dependent manner and with a relatively longer duration of action compared to the other fractions. HPLC, UV and IR spectra suggested the presence of terpenoid constituents in both LFME and NBF-LFME. Accordingly, we conclude that NBF-LFME is the most potent fraction producing a concentration-dependent relaxation in vascular smooth muscle in vitro and a dose-dependent blood pressure lowering activity in vivo. The cardiovascular effects of NBF-LFME are most likely attributable to its terpenoid content.

  3. Genus Cistus: a model for exploring labdane-type diterpenes' biosynthesis and a natural source of high value products with biological, aromatic and pharmacological properties

    Science.gov (United States)

    Papaefthimiou, Dimitra; Papanikolaou, Antigoni; Falara, Vasiliki; Givanoudi, Stella; Kostas, Stefanos; Kanellis, Angelos

    2014-06-01

    The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with 5 genera native of the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum and Tuberaria). Traditionally, a number of Cistus specie have been used in Mediterranean folk medicine as herbal tea infusions for healing, digestive problems and colds, as extracts for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the glandular trichomes of certain Cistus species contains a number of phytochemicals with antioxidant, antibacterial, antifungal and anticancer properties. Furthermore, total leaf aqueous extracts possess anti-influenza virus activity. All these properties have been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, several groups of alkaloids and other types of secondary metabolites. In the past 20 years, research on Cistus involved chemical, biological and phylogenetic analysis but recent investigations have involved genomic and molecular approaches. Our lab is exploring the biosynthetic machinery that generates terpenoids and phenylpropanoids, with a goal to harness their numerous properties that have applications in the pharmaceutical, chemical and aromatic industries. This review focuses on the systematics, botanical characteristics, geographic distribution, chemical analyses, biological function and biosynthesis of major compounds, as well as genomic analyses and biotechnological approaches of the main Cistus species found in the Mediterranean basin, namely C. albidus, C. creticus, C. crispus, C. parviflorus, C. monspeliensis, C. populifolius, C. salviifolius, C. ladanifer, C. laurifolius and C. clusii.

  4. Analgesic and antipyretic effects of Sansevieria trifasciata leaves.

    Science.gov (United States)

    Anbu, Jeba Sunilson J; Jayaraj, P; Varatharajan, R; Thomas, John; Jisha, James; Muthappan, M

    2009-07-03

    The ethanol and water extracts of Sansevieria trifasciata leaves showed dose-dependent and significant (P < 0.05) increase in pain threshold in tail-immersion test. Moreover, both the extracts (100 - 200 mg/kg) exhibited a dose-dependent inhibition of writhing and also showed a significant (P < 0.001) inhibition of both phases of the formalin pain test. The ethanol extract (200 mg/kg) significantly (P < 0.01) reversed yeast-induced fever. Preliminary phytochemical screening of the extracts showed the presence of alkaloids, flavonoids, saponins, glycosides, terpenoids, tannins, proteins and carbohydrates.

  5. [Chemical components of Vetiveria zizanioides volatiles].

    Science.gov (United States)

    Huang, Jinghua; Li, Huashou; Yang, Jun; Chen, Yufen; Liu, Yinghu; Li, Ning; Nie, Chengrong

    2004-01-01

    The chemical components of the volatiles from Vetiveria zizanioides were analyzed by SPME and GC-MS. In the roots, the main component was valencene (30.36%), while in the shoots and leaves, they were 9-octadecenamide (33.50%), 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene (27.46%), and 1,2-benzendicarboxylic acid, diisooctyl ester(18.29%). The results showed that there were many terpenoids in the volatils. In shoot volatiles, there existed 3 monoterpenes, 2 sequiterpenes and 1 triterpene. Most of the volatiles in roots were sesquiterpenes.

  6. Synthesis of Marine Polycyclic Polyethers via Endo-Selective Epoxide-Opening Cascades

    Directory of Open Access Journals (Sweden)

    Timothy F. Jamison

    2010-03-01

    Full Text Available The proposed biosynthetic pathways to ladder polyethers of polyketide origin and oxasqualenoids of terpenoid origin share a dramatic epoxide-opening cascade as a key step. Polycyclic structures generated in these biosynthetic pathways display biological effects ranging from potentially therapeutic properties to extreme lethality. Much of the structural complexity of ladder polyether and oxasqualenoid natural products can be traced to these hypothesized cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of ladder polyethers and oxasqualenoid natural products.

  7. Antibacterial Compounds from Red Seaweeds (Rhodophyta

    Directory of Open Access Journals (Sweden)

    Noer Kasanah

    2015-07-01

    Full Text Available Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported such as bromophycolides and neurymenolides. In summary, red seaweeds are potential sources for antibacterial agents and can serve as lead in synthesis of new natural medicines.

  8. Further iridoid glucosides in the genus Manulea (Scrophulariaceae).

    Science.gov (United States)

    Gousiadou, Chrysoula; Kokubun, Tetsuo; Gotfredsen, Charlotte H; Jensen, Søren R

    2015-01-01

    From Manulea altissima (Scrophulariaceae) were isolated five known secoiridoid glucosides sweroside, eustomoside, eustoside, secoxyloganin and secologanoside as well as the 4″-O-rhamnopyranosyl-feruloyl ester of adoxosidic acid, named altissimoside. Also, the caffeoyl phenylethanoid glycoside verbascoside was isolated. In addition two previously unknown terpenoid esters of 6β-hydroxy 8-epi-boschnaloside, named manucoside A and B were isolated from a formerly obtained fraction from the work-up of Manulea corymbosa. The distribution of iridoid glucosides in the Scrophulariaceae is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Implicações químicas na sistemática e filogenia de Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Franciane Auxiliadora Cipriani

    2012-01-01

    Full Text Available Our solemn homage to the great Master Otto R. Gottlieb who knew how to teach the mystery of evolutionary relationships between chemistry and its natural sources. The micromolecular chemical study of the family Bignoniaceae shows a profile predominantly characterized by the occurrence of metabolites derived from acetic acid biosynthetic pathways such as terpenoids, quinones, flavonoids and special aromatic derivatives. Analysis of different chemosystematic parameters for the metabolite data collected, provided valuable information for the systematic characterization of the Bignoniaceae family within the Angiosperm derived taxa.

  10. The Curative Activity of Isolated Fraction from Spathodea campanulata Beauv Stem Bark on Rat’s Exposed to Benzopyrene

    Directory of Open Access Journals (Sweden)

    Masruri Masruri

    2014-11-01

    Full Text Available This paper reports a screening results of the secondary metabolites composed in Spathodea campanulata Beauv stem bark, evaluate inhibiting activity of malondialdehyde (MDA on rat’s cancer model exposed with benzopyrene, and the histology of its lung. The secondary metabolite of the stem bark fraction consisted of alkaloids, flavonoids-phenolic, terpenoid and steroid compounds. The isolated fraction contained of these metabolites significantly indicate bioactivity by reducting of malondialdehyde (MDA level, and also histology appearance of the lung tissue prepared from the benzopyrene-exposed rat indicated a curative activity.

  11. Magterpenoids A-C, Three Polycyclic Meroterpenoids with PTP1B Inhibitory Activity from the Bark of Magnolia officinalis var. biloba.

    Science.gov (United States)

    Li, Chuan; Li, Chuang-Jun; Ma, Jie; Chen, Fang-You; Li, Li; Wang, Xiao-Liang; Ye, Fei; Zhang, Dong-Ming

    2018-06-15

    Magterpenoid A (1), possessing a rare 4,6,11-trioxatricyclo[5.3.1.0 1,5 ]undecane framework with an irregular monoterpenoid moiety, magterpenoid B (2), with an unprecedented 6/6/6/6 polycyclic skeleton, and magterpenoid C (3), a novel terpenoid quinone with a C6-C3 unit, were isolated from the bark of Magnolia officinalis var. biloba. Plausible biogenetic pathways of 1-3 are presented. Compounds 1 and 3 exhibited significant PTP1B inhibitory activities with IC 50 values of 1.44 and 0.81 μM, respectively.

  12. Chemical characterization using gas chromatography/mass spectrometry of two extracts from Phyllanthus orbicularis HBK

    International Nuclear Information System (INIS)

    Gutierrez Gaiten, Yamilet Irene; Miranda Martinez, Migdalia; Bello Alarcon, Adonis

    2011-01-01

    The objective of this paper was the chemical characterization of two extracts from Phyllanthus orbicularis HBK through gas chromatography/mass spectrometry. To this end, maceration with N-hexane and ethyl acetate was used to obtain the respective extracts. The study of the hexane extract identified 17 components in which hydrocarbonate structures prevailed, mainly cyclooctacosane. In the ethyl acetate extract, 19 compounds were detected, being the terpenoids the predominant, although the most abundant was sterol g-sitosterol. For the first time, the identified compounds are reported for this species

  13. Antifungal activity of neem (Azadirachta indica: Meliaceae extracts against dermatophytes

    Directory of Open Access Journals (Sweden)

    Daniel Iván Ospina Salazar

    2015-09-01

    Full Text Available In order to assess the antifungal activity of methanolic extracts from neem tree (Azadirachta indica A. Juss., several bioassays were conducted following M38-A2 broth microdilution method on 14 isolates of the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum. Neem extracts were obtained through methanol-hexane partitioning of mature green leaves and seed oil. Furthermore, high performance liquid chromatography (HPLC analyses were carried out to relate the chemical profile with their content of terpenoids, of widely known antifungal activity. The antimycotic Terbinafine served as a positive control. Results showed that there was total growth inhibition of the dermatophytes isolates at minimal inhibitory concentrations (MIC between 50 μg/mL and 200 μg/mL for leaves extract, and between 625 μg/mL and 2500 μg/mL for seed oil extract. The MIC of positive control (Terbinafine ranged between 0.0019 μg/mL and 0.0313 μg/mL. Both neem leaves and seed oil methanol extracts exhibited different chromatographic profiles by HPLC, which could explain the differences observed in their antifungal activity. This analysis revealed the possible presence of terpenoids in both extracts, which are known to have biological activity. The results of this research are a new report on the therapeutic potential of neem to the control of dermatophytosis.  Actividad antifúngica de extractos de neem (Azadirachta indica: Meliaceae sobre hongos dermatofitos Se determinó la actividad antifúngica de extractos metanólicos de la especie Azadirachta indica A. Juss. (Meliaceae, conocida comúnmente como neem, empleando el método de microdilución en caldo M38-A2 de referencia para hongos filamentosos y dermatofitos. Se evaluaron 14 aislamientos de los dermatofitos Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis y Epidermophyton floccosum. Los extractos de neem fueron obtenidos mediante partici

  14. Highly Efficient Synthesis of the Natural Spiro-Terpenoid ( ± )-Andirolactone via RCM Reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; YANG Li-Ting; LIU Hua-Wei; LI Yu-Lin

    2003-01-01

    @@ Andirolactone 1 as the dextro enantiomer is a sesquiterpenoid with structure of spirocyclic butenolide, isolated from the wood of cedar ( Cedrus libanotica ), which is a needle-leaf tree that grows in southern Turkey and Libanon.The tar, which is obtained from its wood, is used to cure various diseases. [1

  15. HRGC-MS analysis of terpenoids from Maytenus ilicifolia and Maytenus aquifolium ("espinheira santa"

    Directory of Open Access Journals (Sweden)

    Cordeiro Paulo J. M.

    1999-01-01

    Full Text Available This work describes the identification of some of the minor chemical constituents of "espinheira santa" (Maytenus ilicifolia and Maytenus aquifolium, Celastraceae, a medicinal plant widely utilized in Brazil. By using high resolution gas chromatography coupled to mass spectrometry (HRGC-MS, it was possible to identify mainly triterpenoids and steroids in "espinheira santa", most of them reported for the first time in both Maytenus species.

  16. Biomimetic transformation and biological activities of Globiferin, a terpenoid benzoquinone from Cordia globifera.

    Science.gov (United States)

    Dettrakul, Suppamit; Surerum, Sanya; Rajviroongit, Shuleewan; Kittakoop, Prasat

    2009-05-22

    A new 10-membered ring meroterpene (1), named globiferin, was isolated from root extracts of Cordia globifera. Biomimetic transformations of 1 and its derivatives, either by acid cyclization or by Cope rearrangement, provided information relating to the biogenesis of cordiachromes A-C. Globiferin (1) underwent Cope rearrangement upon refluxing in xylene and DMSO-d(6) to yield cordiachrome C (3) and cordiaquinol C (4), respectively. Heating in DMSO-d(6) resulted in an unexpected reduction of a quinone moiety. Globiferin diacetate (1b) cyclized under acidic conditions to give compounds 10 and 11, respective derivatives of natural cordiachromes B (2) and A (12). The present study indicates that globiferin (1) is a genuine intermediate for the biosynthesis of cordiachromes in Cordia species. Compounds 1 and 3 exhibited significant antimycobacterial activity, with MIC values of 6.2 and 1.5 mug/mL, respectively. Antimalarial, antifungal, and cytotoxic activities of 1 and its derivatives were also evaluated.

  17. Isolasi Dan Identifikasi Terpenoid dari Fraksi n-Butanol Herba Lampasau (Diplazium esculentum Swartz

    Directory of Open Access Journals (Sweden)

    Maria Dewi Astuti

    2017-03-01

    Full Text Available Abstrak Telah dilakukan penelitian yang bertujuan untuk mengidentifikasi senyawa kimia yang diisolasi dari fraksi n-butanol ekstrak metanol herba lampasau (Diplazium esculentum Swartz. Ekstrak metanol diperoleh secara maserasi dan difraksinasi berturut-turut denganpetroleum eter, etil asetat, dan n-butanol. Fraksi n­-butanol difraksinasidengan kromatografi kolom dengan fase diam silika gel dihasilkan fraksi A, B, C, dan D. Fraksi B dimurnikan dengan kromatografi lapis tipis preparatif pada silika geldihasilkan isolat B1. Isolat B1 berupa padatan tidak berwarna danberfluoresensi putih di bawah lampu UV 366 nm. Panjang gelombang maksimum pada spektra UV  isolat B1 adalah 225 nm dan 272.5 nm yang menunjukkan adanya ikatan rangkap tak terkonjugasi. Spektra IR isolat B1 menunjukkan adanya gugus C=C, –OH, C=O lakton, –CO, C–H ulur, dan C–H tekuk. Spektra 1H-NMR isolat B1 menunjukkan sinyal proton pada ikatan rangkap, proton –OH, proton pada –CH2 yang terikat atom oksigen, serta proton gugus metil –CH3. Berdasarkan data spektra UV, IR, dan 1H-NMR maka isolat B1 disarankan sebagai turunan senyawa triterpenoid hopan-lakton. Kata kunci : diplazium esculentum Swartz, fraksi n-butanol, triterpenoid hopan-lakton  Abstract The research  aims to identify chemical compounds isolated fromn-butanol fraction methanol extract of lampasau herbs (Diplazium esculentum Swartz. The methanol extract was obtained by maceration and fractioned by petroleum ether, ethyl acetate, andn-butanol. N-butanol fraction was fractionated using column chromatography on silica gel produced fractions A, B, C, and D. Fraction B was purified by preparative thin layer chromatography on silica gel produced isolate B1. Isolate B1was colorless solid and has white fluorescent under UV lamp 366 nm. The maximum wavelength on UV spectra of B1 are 225 nm and 272,5 nm indicates the unconjugated double bond. IR spectra of B1 showed the vibration of C=C, –OH, C=O lactone, –CO, C–H stretching and   C–H bending. Signals of 1H-NMR spectra of B1 showed the proton of double bond, –OH  proton, –CH2 proton bounded on oxygen atom, and –CH3 methyl proton. Based on data of spectra UV, IR, and 1H-NMR, isolate B1 suggested as a hopan triterpen derivative. Keywords : diplazium esculentum Swartz, n-butanol fraction, hopan-lactone triterpene

  18. Molecular Cloning and Characterization of a Broad Substrate Terpenoid Oxidoreductase from Artemisia annua

    NARCIS (Netherlands)

    Ryden, Anna-Margareta; Ruyter-Spira, Carolien; Litjens, Ralph; Takahashi, Shunji; Quax, Wim; Osada, Hiroyuki; Bouwmeester, Harro; Kayser, Oliver

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids,

  19. Molecular cloning and characterization of a broad substrate terpenoid oxidoreductase from Artemisia annua.

    NARCIS (Netherlands)

    Ryden, A.M.; Ruyter-Spira, C.P.; Litjens, R.; Takahashi, S.; Quax, W.J.; Osada, H.; Bouwmeester, H.J.; Kayser, O.

    2010-01-01

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression, and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids,

  20. Methyl Sartortuoate Inhibits Colon Cancer Cell Growth by Inducing Apoptosis and G2/M-Phase Arrest.

    Science.gov (United States)

    Lan, Qiusheng; Li, Shoufeng; Lai, Wei; Xu, Heyang; Zhang, Yang; Zeng, Yujie; Lan, Wenjian; Chu, Zhonghua

    2015-08-17

    The potential anti-neoplastic activity of terpenoids is of continued interest. In this study, we investigate whether methyl sartortuoate, a terpenoid isolated from soft coral, induced cell cycle arrest and apoptosis in a human colon cancer cell line. Culture studies found that methyl sartortuoate inhibited colon cancer cell (LoVo and RKO) growth and caused apoptotic death in a concentration- and time-dependent manner, by activation of caspase-8, caspase-9, caspase-3, p53 and Bax, and inactivation of B-cell lymphoma 2 (Bcl-2) apoptosis regulating proteins. Methyl sartortuoate treatment led to reduced expression of cdc2 and up-regulated p21 and p53, suggesting that Methyl sartortuoate induced G2-M arrest through modulation of p53/p21/cdc2 pathways. Methyl sartortuoate also up-regulated phospho-JNK and phospho-p38 expression levels. This resulted in cell cycle arrest at the G2-M phase and apoptosis in LoVo and RKO cells. Treatment with the JNK inhibitor SP600125 and the p38 MAPK inhibitor SB203580 prevented methyl sartortuoate-induced apoptosis in LoVo cells. Moreover, methyl sartortuoate also prevented neoplasm growth in NOD-SCID nude mice inoculated with LoVo cells. Taken together, these findings suggest that methyl sartortuoate is capable of leading to activation of caspase-8, -9, -3, increasing p53 and Bax/Bcl-2 ratio apoptosis through MAPK-dependent apoptosis and results in G2-M phase arrest in LoVo and RKO cells. Thus, methyl sartortuoate may be a promising anticancer candidate.

  1. Establishment of the Volatile Signature of Wine-Based Aromatic Vinegars Subjected to Maceration

    Directory of Open Access Journals (Sweden)

    Rosa Perestrelo

    2018-02-01

    Full Text Available The flavoring of vinegars with aromatic fruits and medicinal herbs is a practice with increasing trend mostly in countries with oenological tradition, resulting in a product of improved quality and consumer attractiveness. This study was directed towards the evaluation of the impact of the maceration process on the volatile signature of wine-based aromatic vinegars (WBAVs. The evaluation was performed using solid phase microextraction (SPME combined with gas chromatography combined with mass spectrometry (GC-MS. Experimental parameters influencing headspace solid (HS-SPME extraction efficiency, were optimized using an univariate experimental design. The best results were achieved using a polydimethylsiloxane (PDMS fiber, 10 mL of vinegar sample, at 50 °C for 30 min of extraction. This way One hundred and three volatile organic compounds (VOCs, belonging to different chemical families including ethyl esters (37, higher alcohols (20, fatty acids (10, terpenoids (23, carbonyl compounds (six, lactones (five and volatile phenols (two, were identified in wine vinegar (control and WBAV. As far as we know, 34 of these VOCs are reported for the first time in macerated vinegars. Higher alcohols and lactones are the major chemical families in WBAV macerated with apple, whereas terpenoids are predominant in WBAV macerated with banana. The obtained data represent a suitable tool to guarantee the authenticity and genuineness of WBAV, as well as to promote the production of WBAV with improved sensorial and organoleptic properties. To the best of our knowledge, there are no reported studies dealing with the volatile signature of WBAV enriched with banana, passion fruit, apple and pennyroyal.

  2. Biogenic volatile organic compound emissions from the Eurasian taiga: current knowledge and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, J. (Dept. of Physics, Univ. of Helsinki (Finland)); Baeck, J. (Dept. of Forest Ecology, Univ. of Helsinki (Finland)); Hakola, H. (Finnish Meteorological Institute, Air Quality Research, Helsinki (Finland))

    2009-07-01

    n this paper, the research conducted on the emissions of the biogenic volatile organic compounds (BVOCs) from the European boreal zone, or taiga, is reviewed. We highlight the main findings and the key gaps in our knowledge. Ecosystem scale BVOC emissions from the Eurasian taiga are observed to be relatively low as compared with those from some forest ecosystems in warmer climates. One of the distinctive features of the Eurasian taiga is the predominance of monoterpene emitting coniferous trees. Recent research indicates that in addition to evaporation from storage structures, part of the monoterpene emission of conifers originates directly from synthesis. Monoterpene emission from boreal deciduous trees originates mainly directly from synthesis. The boreal trees exhibit distinct intra-species variation in the monoterpene mixtures they emit. Important sources of isoprene in the Eurasian taiga include Norway spruce, open wetland ecosystems and some non-dominant woody species, such as European aspen and willows. Many boreal tree species also emit non-terpenoid compounds and highly reactive sesquiterpenes. The future challenges in the research on BVOC emissions from the Eurasian taiga include (i) quantification and understanding the non-terpenoid VOC emissions from the taiga ecosystems, (ii) bringing ecosystems in the eastern Eurasian taiga into the sphere of BVOC emission studies, (iii) establishing long-term ecosystem flux studies combined with plant physiological measurements, and (iv) integrating knowledge and research skills on BVOC synthesis, storages and emissions, land cover changes and atmospheric processes in different spatial and temporal scales in order to better understand the impact of biosphere on atmospheric chemistry and composition in changing climate. (orig.)

  3. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase.

    Science.gov (United States)

    Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  4. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves.

    Science.gov (United States)

    Shabbir, Maria; Khan, Muhammad Rashid; Saeed, Naima

    2013-06-22

    Maytenus royleanus is traditionally used in gastro-intestinal disorders. The aim of this study was to evaluate the methanol extract of leaves and its derived fractions for various antioxidant assays and for its potential against lipid peroxidation and hemolytic activity. Various parameters including scavenging of free-radicals (DPPH, ABTS, hydroxyl and superoxide radical), hydrogen peroxide scavenging, Fe3+ to Fe2+ reducing capacity, total antioxidant capacity, anti-lipid peroxidation and anti-hemolytic activity were investigated. Methanol extract and its derived fractions were also subjected for chemical constituents. LC-MS was also performed on the methanol extract. Qualitative analysis of methanol extract exhibited the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. LC-MS chromatogram indicated the composition of diverse compounds including flavonoids, phenolics and phytoestrogens. Methanol extract, its ethyl acetate and n-butanol fractions constituted the highest amount of total phenolic and flavonoid contents and showed a strong correlation coefficient with the IC50 values for the scavenging of DPPH, hydrogen peroxide radicals, superoxide radicals, anti-lipid peroxidation and anti-hemolytic efficacy. Moreover, n-butanol fraction showed the highest scavenging activity for ABTS radicals and for reduction of Fe3+ to Fe2+. Present results suggested the therapeutic potential of Maytenus royleanus leaves, in particular, methanol extract, ethyl acetate and n-butanol fraction as therapeutic agent against free-radical associated damages. The protective potential of the extract and or fraction may be attributed due to the high concentration of phenolic, flavonoid, tannins and terpenoids.

  5. Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns.

    Science.gov (United States)

    Yang, Ting; Stoopen, Geert; Yalpani, Nasser; Vervoort, Jacques; de Vos, Ric; Voster, Alessandra; Verstappen, Francel W A; Bouwmeester, Harro J; Jongsma, Maarten A

    2011-07-01

    Many terpenoids are known to have antifungal properties and overexpression of these compounds in crops is a potential tool in disease control. In this study, 15 different mono- and sesquiterpenoids were tested in vitro against two major pathogenic fungi of maize (Zea mays), Colletotrichum graminicola and Fusarium graminearum. Among all tested terpenoids, geranic acid showed very strong inhibitory activity against both fungi (MICLippia dulcis under the control of a ubiquitin promoter. The volatile and non-volatile metabolite profiles of leaves from transgenic and control lines were compared. The headspaces collected from intact seedlings of transgenic and control plants were not significantly different, although detached leaves of transgenic plants emitted 5-fold more geranyl acetate compared to control plants. Non-targeted LC-MS profiling and LC-MS-MS identification of extracts from maize leaves revealed that the major significantly different non-volatile compounds were 2 geranic acid derivatives, a geraniol dihexose and 4 different types of hydroxyl-geranic acid-hexoses. A geranic acid glycoside was the most abundant, and identified by NMR as geranoyl-6-O-malonyl-β-d-glucopyranoside with an average concentration of 45μM. Fungal bioassays with C. graminicola and F. graminearum did not reveal an effect of these changes in secondary metabolite composition on plant resistance to either fungus. The results demonstrate that metabolic engineering of geraniol into geranic acid can rely on the existing default pathway, but branching glycosylation pathways must be controlled to achieve accumulation of the aglycones. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Structure of the ent -Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  7. Contact lenses and the rate of evaporation measured in vitro; the influence of wear, squalene and wax.

    Science.gov (United States)

    Vishnubhatla, Sravya; Borchman, Douglas; Foulks, Gary N

    2012-12-01

    Accelerated evaporation of tears may contribute to dry eye symptoms. It is not clear whether contact lenses decrease or increase the rate of evaporation of tears. In this study, the rates of evaporation through contact lenses (ERTCL) were measured in vitro to gain insight to this question. Contact lenses were equilibrated with various solutions to determine if they influenced ERTCL in vitro. ERTCL was measured gravimetrically. ERTCL measured in vitro for used contact lenses was about 20% faster than for buffer alone suggesting that natural tear components bound to the lenses changed the ERTCL. One natural tear component that binds to contact lenses is waxes. Equilibration of contact lenses with wax increased the ERTCL by about 30% suggesting that waxes might potentially increase ERTCL in vivo. Squalene, found in sebum and possibly meibum was infused into the contact lenses as a step toward decreasing the ERTCL. Squalene decreased ERTCL by over 60% in vitro. Soaking a contact lens in DuraSite(®) with benzalkonium chloride (BAK) did not alter the ERTCL. ERTCL were about 40% higher than the evaporation rate of DuraSite(®) alone or without BAK. In addition to lowering the ERTCL, the squalene in contact lenses could be a source of terpenoids to replace the terpenoids deficient in patients with MGD. If the ERTCL could be minimized in vivo, contact lenses could potentially be used to relieve dry eye symptoms in patients with evaporative dry eye. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. Cannabis - from cultivar to chemovar.

    Science.gov (United States)

    Hazekamp, A; Fischedick, J T

    2012-01-01

    The medicinal use of Cannabis is increasing as countries worldwide are setting up official programs to provide patients with access to safe sources of medicinal-grade Cannabis. An important question that remains to be answered is which of the many varieties of Cannabis should be made available for medicinal use. Drug varieties of Cannabis are commonly distinguished through the use of popular names, with a major distinction being made between Indica and Sativa types. Although more than 700 different cultivars have already been described, it is unclear whether such classification reflects any relevant differences in chemical composition. Some attempts have been made to classify Cannabis varieties based on chemical composition, but they have mainly been useful for forensic applications, distinguishing drug varieties, with high THC content, from the non-drug hemp varieties. The biologically active terpenoids have not been included in these approaches. For a clearer understanding of the medicinal properties of the Cannabis plant, a better classification system, based on a range of potentially active constituents, is needed. The cannabinoids and terpenoids, present in high concentrations in Cannabis flowers, are the main candidates. In this study, we compared cultivars obtained from multiple sources. Based on the analysis of 28 major compounds present in these samples, followed by principal component analysis (PCA) of the quantitative data, we were able to identify the Cannabis constituents that defined the samples into distinct chemovar groups. The study indicates the usefulness of a PCA approach for chemotaxonomic classification of Cannabis varieties. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Target-oriented mechanisms of novel herbal therapeutics in the chemotherapy of gastrointestinal cancer and inflammation.

    Science.gov (United States)

    Ko, Joshua K; Auyeung, Kathy K

    2013-01-01

    A prominent group of effective cancer chemopreventive drugs has been derived from natural products having low toxicity while possessing apparent benefit in the disease process. It is plausible that there are multiple target molecules critical to cancer cell survival. Herbal terpenoids have demonstrated excellent target-specific anti-neoplastic functions by suppression of cell proliferation and induction of apoptosis. Transcriptional molecules in the NF-κB, MEK/ERK and PI3K/Akt/mTOR pathways are important molecular targets of chemotherapy that play distinctive roles in modulating the apoptosis cascades. It is recently suggested that NSAID-activated gene (NAG-1), a novel proapoptotic protein, is the upstream anti-carcinogenic target of NSAIDs, PPAR ligands and herbal chemotherapeutic agents that triggers some of the events mentioned above. Besides, angiogenesis, oxidative stress as well as inflammation are important factors that contribute to the development and metastasis of cancer, which could be actively modulated by novel agents of plant origin. The aim of the present review is to discuss and summarize the contemporary use of herbal therapeutics and phytochemicals in the treatment of human cancers, in particular that of the colon. The major events and signaling pathways in the carcinogenesis process being potentially modulated by natural products and novel herbal compounds will be evaluated, with emphasis on some terpenoids. Advances in eliciting the precise cellular and molecular mechanisms during the anti-tumorigenic process of novel herbal therapeutics will be of imperative clinical significance to increase the efficacy and reduce prominent adverse drug effects in cancer patients through target-specific therapy.

  10. Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Petra Peters-Wendisch

    2017-04-01

    Full Text Available Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin.

  11. Medicinal Uses, Phytochemistry, and Pharmacology of Origanum onites (L.): A Review.

    Science.gov (United States)

    Tepe, Bektas; Cakir, Ahmet; Sihoglu Tepe, Arzuhan

    2016-05-01

    Origanum onites L., known as Turkish oregano, has great traditional, medicinal, preservative, and commercial importance. It is used for the treatment of several kinds of ailments, such as gastrointestinal disorders, diabetes, high cholesterol, leukemia, bronchitis, etc. In this review, traditional use, phytochemistry, and pharmacology of O. onites reported between 1988 and 2014 were discussed. This review was prepared based on literature survey on scientific journals and books from libraries and electronic sources, such as Web of Science, PubMed, Scopus, Google Scholar, etc. All databases were searched up to June 2014. Several different classes of terpenoids, triterpene acids, phenolic acids, hydroquinones, flavonoids, hydrocarbons, sterols, pigments, fatty acids, tocopherols, and inorganic compounds were detected mainly in the aerial parts of this plant. Pharmacological studies revealed that extracts obtained from several solvents and individual compounds exhibited antimicrobial, antiviral, antioxidant, insecticidal, anticancer, hepatoprotective, genotoxic, antidiabetic, cholinesterase inhibitory, anti-inflammatory, analgesic activities, etc. O. onites, in general, exhibited remarkable activity potential in almost all test systems. The results of toxicity studies indicated that O. onites did not show any significant toxicity and mutagenicity on Drosophila and Salmonella. Toxicity of the extracts/essential oils and also individual compounds should be evaluated on mammalian cells to ensure their safety. The bioactivity of individual compounds aside from terpenoids should also be assessed in detail. Additionally, mode of action for the bioactive compounds should be evaluated to understand the complex pharmacological effects of these phytochemicals. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  12. Amarkand: A comprehensive review on its ethnopharmacology, nutritional aspects and taxonomy

    Directory of Open Access Journals (Sweden)

    Aarti Nilesh Narkhede

    2016-06-01

    Results and Discussion: Amarkand species have been used as a remedy for the treatment of various diseases such as diarrhoea, stomach pain, rheumatoid arthritis, cancer, asthma, bronchitis, sexual impotency, tuberculosis and so on. Nutritionally, Amarkand is considered as an excellent food for children and convalescents. Recent studies confirm antioxidant, anti-inflammatory, anti-diarrhoeal, and so forth activities to Amarkand species. These species are reported to possess various phyto-constituents such as flavonoids, terpenoids and phenanthrene derivatives. The present review will help to understand overall ethnopharmacology, nutritional aspects and taxonomy of Amarkand species. [J Complement Med Res 2016; 5(2.000: 198-204

  13. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    Science.gov (United States)

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  14. [Advances in research of chemical constituents and pharmacological activites of Bauhinia].

    Science.gov (United States)

    Shang, Xiao-Ya; Liu, Wei; Zhao, Cong-Wei

    2008-03-01

    The research advances based on the related references were summarized in the last thirty years. Bauhinia contained many kinds of chemical constituents, primarily including flavanoids, steroids, terpenoid and so on, some of them were firstly obtained from the nature. Many plants of the Bauhinia are used in traditional medicine for their interesting biological activities such as antidiabetic, antiinflammatory, antimicrobial, analgesic, astringent and diuretic effects. This paper gives an overview of phytochemical and pharmacological research in Bauhinia, and it has been classified accordding to the chemical structure characteristics. To provide more material to draw on for further development and utilization resources of Bauhinia.

  15. Chemotaxonomy of three genera of the Annonaceae family using self-organizing maps and 13C NMR data of diterpenes

    International Nuclear Information System (INIS)

    Scotti, Luciana; Tavares, Josean Fechine; Silva, Marcelo Sobral da; Falcao, Emanuela Viana; Silva, Luana de Morais e; Soares, Gabriela Cristina da Silva; Scotti, Marcus Tullius

    2012-01-01

    The Annonaceae family is distributed throughout Neotropical regions of the world. In Brazil, it covers nearly all natural formations particularly Annona, Xylopia and Polyalthia and is characterized chemically by the production of sources of terpenoids (mainly diterpenes), alkaloids, steroids, polyphenols and, flavonoids. Studies from 13 C NMR data of diterpenes related with their botanical occurrence were used to generate self-organizing maps. Results corroborate those in the literature obtained from morphological and molecular data for three genera and the model can be used to project other diterpenes. Therefore, the model produced can predict which genera are likely to contain a compound. (author)

  16. Chemotaxonomy of three genera of the Annonaceae family using self-organizing maps and {sup 13}C NMR data of diterpenes

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, Luciana; Tavares, Josean Fechine; Silva, Marcelo Sobral da [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Ciencias Farmaceuticas; Falcao, Emanuela Viana; Silva, Luana de Morais e; Soares, Gabriela Cristina da Silva; Scotti, Marcus Tullius, E-mail: mtscotti@ccae.ufpb.br [Universidade Federal da Paraiba (UFPB), Rio Tinto, PB (Brazil). Dept. de Engenharia e Meio Ambiente

    2012-07-01

    The Annonaceae family is distributed throughout Neotropical regions of the world. In Brazil, it covers nearly all natural formations particularly Annona, Xylopia and Polyalthia and is characterized chemically by the production of sources of terpenoids (mainly diterpenes), alkaloids, steroids, polyphenols and, flavonoids. Studies from {sup 13}C NMR data of diterpenes related with their botanical occurrence were used to generate self-organizing maps. Results corroborate those in the literature obtained from morphological and molecular data for three genera and the model can be used to project other diterpenes. Therefore, the model produced can predict which genera are likely to contain a compound. (author)

  17. Antimicrobial activity and phyto constituents of Some medicinal plants from Kordofan province in Sudan

    International Nuclear Information System (INIS)

    Sulieman, M. H. A.; Ayoub, S. M. H.

    2008-01-01

    Twenty four extracts from different morphological parts of eleven medicinal plants belonging to ten families growing in the study area Wad Albaga, Kordofan province, have been screened photochemically and assessed for their antimicrobial activity. Selection of plants was based primarily on their ethnobotanical and ethno pharmacological uses as antimicrobial plants for treatment of infections and wounds. Flavonoids, tannins, and terpenoids were detected in all screened extracts, about 66% of the extract contained alkaloids and 66% contained saponins with different concentrations. The extracts exhibited variable antimicrobial activity against two Gram-positive and three Gram-negative standard bacteria and two fungi. (Author)

  18. Fig volatile compounds--a first comparative study.

    Science.gov (United States)

    Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie

    2002-09-01

    We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.

  19. Diversity of secondary metabolites from Genus Artocarpus (Moraceae

    Directory of Open Access Journals (Sweden)

    ALIEFMAN HAKIM

    2010-11-01

    Full Text Available Hakim A. 2010. The diversity of secondary metabolites from Genus Artocarpus (Moraceae. Nusantara Bioscience 2:146-156. Several species of the Artocarpus genus (Moraceae have been investigated their natural product. The secondary metabolites successfully being isolatad from Artocarpus genus consist of terpenoid, flavonoids, stilbenoid, arylbenzofuran, neolignan, and adduct Diels-Alder. Flavonoid group represent the compound which is the most found from Artocarpus plant. The flavonoids compound which are successfully isolated from Artocarpus plant consist of the varied frameworks like chalcone, flavanone, flavan-3-ol, simple flavone, prenylflavone, oxepinoflavone, pyranoflavone, dihydrobenzoxanthone, furanodihydrobenzoxanthone, pyranodihydrobenzoxanthone, quinonoxanthone, cyclopentenoxanthone, xanthonolide, dihydroxanthone.

  20. Gaultheria: Phytochemical and Pharmacological Characteristics

    Directory of Open Access Journals (Sweden)

    Ren-Bing Shi

    2013-09-01

    Full Text Available The genus Gaultheria, comprised of approximately 134 species, is mostly used in ethnic drugs to cure rheumatism and relieve pain. Phytochemical investigations of the genus Gaultheria have revealed the presence of methyl salicylate derivatives, C6-C3 constituents, organic acids, terpenoids, steroids, and other compounds. Methyl salicylate glycoside is considered as a characteristic ingredient in this genus, whose anti-rheumatic effects may have a new mechanism of action. In this review, comprehensive information on the phytochemistry, volatile components and the pharmacology of the genus Gaultheria is provided to explore its potential and advance research.

  1. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.

    Science.gov (United States)

    Zhu, Wen-Liang; Cui, Jin-Yu; Cui, Lan-Yu; Liang, Wei-Fan; Yang, Song; Zhang, Chong; Xing, Xin-Hui

    2016-03-01

    Methylotrophic biosynthesis using methanol as a feedstock is a promising and attractive method to solve the over-dependence of the bioindustry on sugar feedstocks derived from grains that are used for food. In this study, we introduced and engineered the mevalonate pathway into Methylobacterium extorquens AM1 to achieve high mevalonate production from methanol, which could be a platform for terpenoid synthesis. We first constructed a natural operon (MVE) harboring the mvaS and mvaE genes from Enterococcus faecalis as well as an artificial operon (MVH) harboring the hmgcs1 gene from Blattella germanica and the tchmgr gene from Trypanosoma cruzi that encoded enzymes with the highest reported activities. We achieved mevalonate titers of 56 and 66 mg/L, respectively, in flask cultivation. Introduction of the phaA gene from Ralstonia eutropha into the operon MVH increased the mevalonate titer to 180 mg/L, 3.2-fold higher than that of the natural operon MVE. Further modification of the expression level of the phaA gene by regulating the strength of the ribosomal binding site resulted in an additional 20 % increase in mevalonate production to 215 mg/L. A fed-batch fermentation of the best-engineered strain yielded a mevalonate titer of 2.22 g/L, which was equivalent to an overall yield and productivity of 28.4 mg mevalonate/g methanol and 7.16 mg/L/h, respectively. The production of mevalonate from methanol, which is the initial, but critical step linking methanol with valuable terpenoids via methylotrophic biosynthesis, represents a proof of concept for pathway engineering in M. extorquens AM1.

  2. High performance thin layer chromatography profile of Cassytha filiformis

    Institute of Scientific and Technical Information of China (English)

    Mythili Sathiavelu; Sathiavelu Arunachalam

    2012-01-01

    Objective: To study the phenols, flavonoids, saponin profile of the medicinal plant Cassytha filiformis (C. filiformis) using high performance thin layer chromatography (HPTLC). Methods:The extracts were tested to determine the presence of various phytochmeicals like alkaloids, phenolic compounds, flavonoids, carbohydrates, glycosides, saponins, terpenoids, tannins, fixed oils, fats and protein and aminoacids (Harborne and Harborne, 1998). HPTLC studies were carried out by Harborne and Wagner et al method. Different compositions of the mobile phase for HPTLC analysis were tested in order to obtain high resolution and reproducible peaks. Results: The results of the preliminary phytochemical studies confirm the presence of phenols, alkaloids, carbohydrates, saponins, flavanoids, terpenoids and tannins in the methanolic extracts of C. filiformis. The methanolic extracts of C. filiformis displayed the presence of 13 types of phenolic substances with 13 different Rf values ranging from 0.01 to 0.96. The results illustrated the presence of 9 different types of flavonoides with 9 different Rf values ranging from 0.01 to 0.97. The results of HPTLC analysis of saponins demonstrated the presence of 11 different types of saponins with 11 different Rf values ranging from 0.04 to 0.92. Conclusions: In the present study we observed the phenols, flavonoids, saponin profile of the medicinal plant C. filiformis using high performance thin layer chromatography (HPTLC). Hence it was concluded that the phenolic compounds present in the methonolic extract could be responsible for antioxidant activities. Plant derived antioxidants, especially phenols and flavonoids, have been described to have various properties like anticancer, antiaging and prevention of cardiovascular diseases. Furthur, separation and characterization of the bioactive compound from the plant is to be evaluated and reported in near future.

  3. Testing phenotypic trade-offs in the chemical defence strategy of Scots pine under growth-limiting field conditions.

    Science.gov (United States)

    Villari, Caterina; Faccoli, Massimo; Battisti, Andrea; Bonello, Pierluigi; Marini, Lorenzo

    2014-09-01

    Plants protect themselves from pathogens and herbivores through fine-tuned resource allocation, including trade-offs among resource investments to support constitutive and inducible defences. However, empirical research, especially concerning conifers growing under natural conditions, is still scarce. We investigated the complexity of constitutive and induced defences in a natural Scots pine (Pinus sylvestris L.) stand under growth-limiting conditions typical of alpine environments. Phenotypic trade-offs at three hierarchical levels were tested by investigating the behaviour of phenolic compounds and terpenoids of outer bark and phloem. We tested resource-derived phenotypic correlations between (i) constitutive and inducible defences vs tree ring growth, (ii) different constitutive defence metabolites and (iii) constitutive concentration and inducible variation of individual metabolites. Tree ring growth was positively correlated only with constitutive concentration of total terpenoids, and no overall phenotypic trade-offs between different constitutive defensive metabolites were found. At the lowest hierarchical level tested, i.e., at the level of relationship between constitutive and inducible variation of individual metabolites, we found that different compounds displayed different behaviours; we identified five different defensive metabolite response types, based on direction and strength of the response, regardless of tree age and growth rate. Therefore, under growth-limiting field conditions, Scots pine appears to utilize varied and complex outer bark and phloem defence chemistry, in which only part of the constitutive specialized metabolism is influenced by tree growth, and individual components do not appear to be expressed in a mutually exclusive manner in either constitutive or inducible metabolism. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii.

    Science.gov (United States)

    Chen, Quanzhu; Guo, Wenshuo; Feng, Lizhen; Ye, Xiaozhen; Xie, Wanfeng; Huang, Xiuping; Liu, Jinyan

    2015-02-06

    Cylindrocladium leaf blight is one of the most severe diseases in Eucalyptus plantations and nurseries. There are Eucalyptus cultivars with resistance to the disease. However, little is known about the defense mechanism of resistant cultivars. Here, we investigated the transcriptome and proteome of Eucalyptus leaves (E. urophylla×E. tereticornis M1), infected or not with Calonectria pseudoreteaudii. A total of 8585 differentially expressed genes (|log2 ratio| ≥1, FDR ≤0.001) at 12 and 24hours post-inoculation were detected using RNA-seq. Transcriptional changes for five genes were further confirmed by qRT-PCR. A total of 3680 proteins at the two time points were identified using iTRAQ technique.The combined transcriptome and proteome analysis revealed that the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway (jasmonic acid and sugar) were activated. The data also showed that some proteins (WRKY33 and PR proteins) which have been reported to involve in plant defense response were up-regulated. However, photosynthesis, nucleic acid metabolism and protein metabolism were impaired by the infection of C. pseudoreteaudii. This work will facilitate the identification of defense related genes and provide insights into Eucalyptus defense responses to Cylindrocladium leaf blight. In this study, a total of 130 proteins and genes involved in the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway, cell transport, carbohydrate and energy metabolism, nucleic acid metabolism and protein metabolism in Eucalyptus leaves after infected with C. pseudoreteaudii were identified. This is the first report of a comprehensive transcriptomic and proteomic analysis of Eucalyptus in response to Calonectria sp. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera

    Directory of Open Access Journals (Sweden)

    Robertson Gordon

    2010-10-01

    Full Text Available Abstract Background Grosmannia clavigera is a bark beetle-vectored fungal pathogen of pines that causes wood discoloration and may kill trees by disrupting nutrient and water transport. Trees respond to attacks from beetles and associated fungi by releasing terpenoid and phenolic defense compounds. It is unclear which genes are important for G. clavigera's ability to overcome antifungal pine terpenoids and phenolics. Results We constructed seven cDNA libraries from eight G. clavigera isolates grown under various culture conditions, and Sanger sequenced the 5' and 3' ends of 25,000 cDNA clones, resulting in 44,288 high quality ESTs. The assembled dataset of unique transcripts (unigenes consists of 6,265 contigs and 2,459 singletons that mapped to 6,467 locations on the G. clavigera reference genome, representing ~70% of the predicted G. clavigera genes. Although only 54% of the unigenes matched characterized proteins at the NCBI database, this dataset extensively covers major metabolic pathways, cellular processes, and genes necessary for response to environmental stimuli and genetic information processing. Furthermore, we identified genes expressed in spores prior to germination, and genes involved in response to treatment with lodgepole pine phloem extract (LPPE. Conclusions We provide a comprehensively annotated EST dataset for G. clavigera that represents a rich resource for gene characterization in this and other ophiostomatoid fungi. Genes expressed in response to LPPE treatment are indicative of fungal oxidative stress response. We identified two clusters of potentially functionally related genes responsive to LPPE treatment. Furthermore, we report a simple method for identifying contig misassemblies in de novo assembled EST collections caused by gene overlap on the genome.

  6. Comparative Phenolic Fingerprint and LC-ESI+QTOF-MS Composition of Oregano and Rosemary Hydrophilic Extracts in Relation to their Antibacterial Effect

    Directory of Open Access Journals (Sweden)

    Florina Bunghez

    2015-05-01

    Full Text Available Rosemary (Rosmarinus officinalis and oregano (Origanum vulgare are known aromatic plants used as spice, with good flavoring, preservative, antioxidant and antibacterial activity. Beside their known terpenoid content responsible for the antibacterial activity, the water-soluble compounds (phenolic derivatives are of high interest not only for their antioxidant activity but as a good alternative or as a hydrophilic new antibacterial solution. Two hydrophilic extracts from each plant were obtained (15% plant in hot water and the phytochemicals were fingerprinted by UV-Vis and FTIR spectrometry and quantified. The total phenolic content was higher in case of oregano (54.2 mg GAE/g DW comparing to rosemary (54.25 vs 15.35 mg GAE/g dry matter. By LC-ESI+QTOF-MS analysis there were identified mainly, in both extracts, flavonoid and diterpene derivatives, mainly carnosol, carnosic acid, rosmarinic acid, kaempferol 3-O-glucuronide. Other flavonoid glucuronides were more specific to one or the other plant, e.g. Luteolin 3'-(4''-acetylglucuronide for rosemary and Apigenin 7-O-glucuronide for oregano. Water favorized increased extraction of flavonoid derivatives and soluble diterpenes, but not non-soluble  terpenes. The antibacterial activity of both extracts was tested against B.cereus, L. monocytogenes, Salmonella, S. aureus and E.coli. Both oregano and rosemary extracts showed a slight antibacterial activity, which can be related to the low concentration of terpenoids, known to have the most important antibacterial activity in these plants. Nevertheless, the antibacterial activity seems to be strain dependent, Bacillus cereus being the most sensitive bacterial strain comparing with the other four bacteria, the oregano extract having a slightly superior activity comparing to the rosemary extract.

  7. Simultaneous quantitative determination of multiple bioactive markers in Ocimum sanctum obtained from different locations and its marketed herbal formulations using UPLC-ESI-MS/MS combined with principal component analysis.

    Science.gov (United States)

    Pandey, Renu; Chandra, Preeti; Srivastava, Mukesh; Mishra, D K; Kumar, Brijesh

    2015-01-01

    Ocimum sanctum L., with phenolic acids, flavonoids, propenyl phenols and terpenoids as active pharmacological constituents, is a popular medicinal herb and is present as an ingredient in many herbal formulations. Therefore, development of a reliable analytical method for simultaneous determination of the pharmacologically active constituents of O. sanctum is of high importance. To develop and validate a new, rapid, sensitive and selective UPLC-ESI/MS/MS method for simultaneous determination of 23 bioactive markers including phenolic acids, flavonoids, propenyl phenol and terpenoid in the leaf extract and marketed herbal formulations of O. sanctum. An UPLC-ESI/MS/MS method using negative electrospray ionisation (ESI) in multiple-reaction-monitoring (MRM) mode was used for simultaneous determination. Chromatographic separation was achieved on an Acquity UPLC BEH C18 -column using a gradient elution with 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Principal component analysis (PCA) was applied to correlate and discriminate eight geographical collections of O. sanctum based on quantitative data of the analytes. The developed method was validated as per International Conference on Harmonization guidelines and found to be accurate, with overall recovery in the range 95.09-104.84% (RSD ≤ 1.85%), precise (RSD ≤ 1.98%) and linear (r(2)  ≥ 0.9971) over the concentration range of 0.5-1000 ng/mL. Ursolic acid was found to be the most abundant marker in all the samples investigated, except for the marketed tablet. The method established is simple, rapid and sensitive, hence it can be reliably utilised for the quality control of O. sanctum and derived herbal formulations. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review

    OpenAIRE

    Darija Cör; Željko Knez; Maša Knez Hrnčič

    2018-01-01

    Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, ste...

  9. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review.

    Science.gov (United States)

    Cör, Darija; Knez, Željko; Knez Hrnčič, Maša

    2018-03-13

    Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.

  10. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review

    Directory of Open Access Journals (Sweden)

    Darija Cör

    2018-03-01

    Full Text Available Ganoderma lucidum (Reishi is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.

  11. Redox protective potential of fruits and vegetables: A review

    Directory of Open Access Journals (Sweden)

    Zainab Tahir

    2015-08-01

    Full Text Available Although oxidation reactions are crucial for life, they can also be damaging to cells and tissues, causing variety of chronic ailments like, aging, cancer, autoimmune problems, cardiovascular and neurodegenerative disorders etc. Redox protective systems are present in body for general immunization against free radicals, which can be supported by antioxidants that we take in our daily diet. Natural antioxidants such as flavonoids, hydrolysable tannins, coumarins, xanthones, phenolics, terpenoids, ascorbic acid, carotenoids and proanthocyanins are found in various plant products, including fruits, leaves, seeds oils, and juices. This review gives a brief account of research reports on fruits and vegetables which provide free radical scavenging compounds to the body.

  12. Phytochemistry and Biological Properties of Burnet Weed (Sanguisorba spp.: A Review

    Directory of Open Access Journals (Sweden)

    Anestis KARKANIS

    2014-12-01

    Full Text Available Great burnet (Sanguisorba officinalis L. and small burnet (Sansguisorba minor Scop. are edible, perennial weeds widely distributed in the world. These are the most widespread Sanguisorba species. The bioactive components of Sanguisorba plants include phenolics (phenolic acids, flavonoids and neolignans and terpenoids. Large potential exists to use burnets as medicinal plants. Sanguisorba species are known to show anticancer properties, antioxidative, antimicrobial and antiviral activities. Also, Sanguisorba extracts show anti-Alzheimer and anti-inflammatory properties. Small burnet extracts could also be a useful alternative to synthetic fungicides for crop production. This review focuses on biological activities of Sanguisorba extracts and emphasizing their potential applications in pharmaceutical areas.

  13. Phytochemistry and Biological Properties of Burnet Weed (Sanguisorba spp.: A Review

    Directory of Open Access Journals (Sweden)

    Anestis KARKANIS

    2014-12-01

    Full Text Available Great burnet (Sanguisorba officinalis L. and small burnet (Sansguisorba minor Scop. are edible, perennial weeds widely distributed in the world. These are the most widespread Sanguisorba species. The bioactive components of Sanguisorba plants include phenolics (phenolic acids, flavonoids and neolignans and terpenoids. Large potential exists to use burnets as medicinal plants. Sanguisorba species are known to show anticancer properties, antioxidative, antimicrobial and antiviral activities. Also, Sanguisorba extracts show anti-Alzheimer and anti-inflammatory properties. Small burnet extracts could also be a useful alternative to synthetic fungicides for crop production. This review focuses on biological activities of Sanguisorba extracts and emphasizing their potential applications in pharmaceutical areas.

  14. Research Advances and Detection Methodologies for Microbe-Derived Acetylcholinesterase Inhibitors: A Systemic Review

    Directory of Open Access Journals (Sweden)

    Jingqian Su

    2017-01-01

    Full Text Available Acetylcholinesterase inhibitors (AChEIs are an attractive research subject owing to their potential applications in the treatment of neurodegenerative diseases. Fungi and bacteria are major producers of AChEIs. Their active ingredients of fermentation products include alkaloids, terpenoids, phenylpropanoids, and steroids. A variety of in vitro acetylcholinesterase inhibitor assays have been developed and used to measure the activity of acetylcholinesterases, including modified Ellman’s method, thin layer chromatography bioautography, and the combined liquid chromatography-mass spectrometry/modified Ellman’s method. In this review, we provide an overview of the different detection methodologies, the microbe-derived AChEIs, and their producing strains.

  15. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates

    Science.gov (United States)

    Hegazy, Mohamed Elamir F.; Mohamed, Tarik A.; Alhammady, Montaser A.; Shaheen, Alaa M.; Reda, Eman H.; Elshamy, Abdelsamed I.; Aziz, Mina; Paré, Paul W.

    2015-01-01

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species. PMID:26006713

  16. Active compounds from cyanobacteria and microalgae: properties and potential applications in biomedicine

    Directory of Open Access Journals (Sweden)

    Alexey Llopiz

    2016-05-01

    Full Text Available Cyanobacteria and microalgae are source of many chemicals substances with potential applications on biopharmaceutical industry. Many structures have been characterized in these organism, such as: peptides, proteins, carbohydrates, terpenoids, polyinsatured fatty acids, flavonoids, phenolic compounds, vitamins, porfirins and other organic substances. Chemicals structures of isolated compounds are diverse and it depends of microalgae habitats. Pharmacological activities located in microalgae are bactericides, immunomodulatory, antioxidants, cytoprotective, fungicides and antivirals. These properties may possible the potential treatment of many diseases including autoimmunes disorders, tumoral, and infectious process. In this review are presented and discussed some elements associated to chemical structure and biological activities around of compounds with potential uses as biopharmaceuticals.

  17. Potential cancer chemopreventive agents from Arbutus unedo.

    Science.gov (United States)

    Carcache-Blanco, Esperanza J; Cuendet, Muriel; Park, Eun Jung; Su, Bao-Ning; Rivero-Cruz, J Fausto; Farnsworth, Norman R; Pezzuto, John M; Douglas Kinghorn, A

    2006-04-01

    A phytochemical study of the petroleum ether and ethyl acetate extracts of the entire plant of Arbutus unedo led to the isolation of a new sterol, 7beta-hydroxystigmast-4-en-3-one (1), and nine known compounds of the flavan, steroid, and terpenoid types. The structure of 1 was determined by spectroscopic data interpretation in combination with molecular modeling calculations. The absolute stereochemistry of C-7 was assigned as S for compound 1 based on the obtained CD spectral data. Activity in the JB6 cell transformation assay was found for pomolic acid 3-acetate (4). All isolates obtained were evaluated in a cyclooxygenase-2 (COX-2) inhibition assay.

  18. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates

    Directory of Open Access Journals (Sweden)

    Mohamed Elamir F. Hegazy

    2015-05-01

    Full Text Available Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species.

  19. Analysis of a Brazilian green propolis from Baccharis dracunculifolia by HPLC-APCI-MS and GC-MS

    Directory of Open Access Journals (Sweden)

    Roberto Chang

    Full Text Available Ethanol and dichloromethane extracts of a Brazilian green propolis from Baccharis dracunculifolia were analyzed by HPLC-APCI-MS and GC-MS, respectively. The HPLC-APCI-MS technique, at the positive mode, furnished a complete and unequivocal chemical composition of the green propolis sample. It serves as fingerprint for different propolis samples. The composition of the ethanol extract consisted mainly of cinnamic acid and derivatives, flavonoids, benzoic acid and a few benzoates, non-hydroxylated aromatics, and aliphatic acids and esters, which are normally not reported in the literature because they do not absorb UV light. The main constituents of the dichloromethane extract were prenylated compounds, alkanes and terpenoids.

  20. Phytochemical analysis, antimicrobial, antioxidant and urease inhibitory potential of Cyphostemma digitatum Lam.

    Science.gov (United States)

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammad Mansour; Ali, Jawad; Rauf, Abdur

    2015-01-01

    In this paper we report the antimicrobial, antiradical and urease inhibitory potential along with photochemical investigation of the crude extracts of Cyphostemma digitatum Lam. Phytochemical screening of both the crude (hot/cold) alcoholic and aqueous extracts of C. digitatum showed the presence of alkaloids, flavonoids, saponins, coumarins, steroids, terpenoids and tannins. The crude methanolic extract (hot/cold) exhibited good antioxidant activity, while the aqueous extract was a weak antioxidant. The crude methanolic extract was found to be more active against Bacillus subtilis, while both the extracts showed moderate antifungal potential, the methanolic crude extract showed good urease inhibitory activity compared with the aqueous crude extract.

  1. Engineering Microbial Cells for the Biosynthesis of Natural Compounds of Pharmaceutical Significance

    Directory of Open Access Journals (Sweden)

    Philippe Jeandet

    2013-01-01

    Full Text Available Microbes constitute important platforms for the biosynthesis of numerous molecules of pharmaceutical interest such as antitumor, anticancer, antiviral, antihypertensive, antiparasitic, antioxidant, immunological agents, and antibiotics as well as hormones, belonging to various chemical families, for instance, terpenoids, alkaloids, polyphenols, polyketides, amines, and proteins. Engineering microbial factories offers rich opportunities for the production of natural products that are too complex for cost-effective chemical synthesis and whose extraction from their originating plants needs the use of many solvents. Recent progresses that have been made since the millennium beginning with metabolic engineering of microorganisms for the biosynthesis of natural products of pharmaceutical significance will be reviewed.

  2. Perfil cualitativo de metabolitos secundarios en la fracción comestible de especies leñosas seleccionadas por vacunos en un bosque semicaducifolio

    Directory of Open Access Journals (Sweden)

    Á Ojeda

    Full Text Available Con el fin de caracterizar cualitativamente el perfil de metabolitos secundarios de la fracción comestible de plantas leñosas seleccionadas por vacunos en silvopastoreo, las cuales se encuentran en un bosque tropófilo semicaducifolio de Venezuela, se utilizaron 14 vacunos machos Brahman x Holstein de 390,4 ± 18,0 kg de PV. Estos fueron manejados en pastoreo continuo en una superficie de 81 ha, de las cuales 50 ha correspondían a un bosque semicaducifolio y el resto, a vegetación herbácea natural (Cynodon nlemfuensis, Sporobolus indicus, Axonopus sp., Mimosa pudica e Hyptis suaveolens. La composición de la biomasa leñosa seleccionada por los animales se estudió mediante la evaluación de los fragmentos epidérmicos presentes en las heces colectadas por vía transrectal, cada 15 días. A partir de estos resultados, se tomaron muestras de cinco plantas por especie leñosa, en los periodos seco y lluvioso. Se determinaron 15 grupos de metabolitos: alcaloides, á-aminos, carbohidratos solubles, cardenólidos, cianógenos, esteroles, fenoles totales, flavonoides, lectinas, mucílagos, quinonas, saponinas, taninos extractables (totales y condensados y terpenoides. La mayoría de la biomasa correspondió a especies de la familia Fabaceae, las cuales presentaron todos los metabolitos evaluados. En ambos periodos se detectaron niveles de esteroles, terpenoides, fenoles totales y taninos extractables que variaron desde leves hasta cuantiosos. Con independencia del periodo, el 66,7 % de las especies presentó entre 10-11 metabolitos secundarios en su biomasa comestible. Se recomienda realizar estudios para la cuantificación de los metabolitos secundarios presentes en plantas leñosas de valor forrajero, para este sistema silvopastoril

  3. Pengaruh Konsentrasi Gula dan Ragi Dalam Pembuatan Cuka Dari Rosella (Hibiscus sabdariffa.L Terhadap Mutu Cuka Rosella

    Directory of Open Access Journals (Sweden)

    Firdausni Firdausni

    2013-12-01

    Full Text Available Rosellla (Hibiscus sabdariffa.L has been traditionally used as nutritious functional beverages. Rosella flowers contain flavonoid secondary metabolites, terpenoids, and vitamin C, which are considered as antioxidant. Research aims to see the effect of sugar and yeast  on quality of vinegar. The study was conducted with the treatment of sugar utilization (10, 15, 20, 25 %, fermentation with yeast Saccharomyces cerevisiae (2, 4, 6 g and fermentation time until three weeks. Rosella vinegar as a results of fermentation further was analyzed the pH, acetic acid content, extract content and antioxidant activity test consisted of qualitative test of phenolic, flavonoid, and % inhibition. Result of the optimal research was obtained in the treatment of sugar utilization 20% and the addition of yeast 6 g with analysis result of pH 2.67, acetic acid 14.80%, extract content 7.15%, and % inhibition 31%, moreover it contained phenolic and flavonoidscompounds qalitatively.ABSTRAKRosellla (Hibiscus sabdariffa.L telah digunakan secara tradisional sebagai minuman yang berkhasiat fungsional. Bunga rosella mengandung flavonoid metabolit sekunder, terpenoid, dan vitamin C yang berfungsi sebagai antioksidan. Penelitian ini bertujuan untuk melihat pengaruh pemakaian gula dan ragi  terhadap mutu cuka. Penelitian dilakukan dengan perlakuan penggunaan gula pasir (10, 15, 20, 25 %, fermentasi dengan ragi Saccharomyces cerevisiae (2, 4, 6 g dan waktu fermentasi  sampai tiga minggu. Hasil fermentasi berupa cuka rosella selanjutnya diuji pH, kandungan asam asetat, kadar sari dan uji aktifitas antioksidan yang terdiri dari uji kualitatif fenolik, flavonoid, dan % inhibisi. Hasil penelitian optimal diperoleh pada perlakuan penggunaan gula 20% dan penambahan ragi 6 g dengan hasil analisis pH 2,67, asam asetat 14,80%, kadar sari 7,15% dan % inhibisi 31% serta secara kualitatif mengandung senyawaan fenolik dan flavonoid.

  4. Induction of Terpene Biosynthesis in Berries of Microvine Transformed with VvDXS1 Alleles

    Directory of Open Access Journals (Sweden)

    Lorenza Dalla Costa

    2018-01-01

    Full Text Available Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1, the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system “microvine” and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.

  5. Cannabis sativa: the plant of the thousand and one molecules

    Directory of Open Access Journals (Sweden)

    Christelle M Andre

    2016-02-01

    Full Text Available Cannabis sativa L. is an important herbaceous species originating from Central Asia, which has been used in folk medicine and as a source of textile fibre since the dawn of times. This fast-growing plant has recently seen a resurgence of interest because of its multi-purpose applications: it is indeed a treasure trove of phytochemicals and a rich source of both cellulosic and woody fibres. Equally highly interested in this plant are the pharmaceutical and construction sectors, since its metabolites show potent bioactivities on human health and its outer and inner stem tissues can be used to make bioplastics and concrete-like material, respectively. In this review, the rich spectrum of hemp phytochemicals is discussed by putting a special emphasis on molecules of industrial interest, including cannabinoids, terpenoids and phenolic compounds, and their biosynthetic routes. Cannabinoids represent the most studied group of compounds, mainly due to their wide range of pharmaceutical effects in humans, including psychotropic activities. The therapeutic and commercial interests of some terpenoids and phenolic compounds, and in particular stilbenoids and lignans, are also highlighted in view of the most recent literature data. Biotechnological avenues to enhance the production and bioactivity of hemp secondary metabolites are proposed by discussing the power of plant genetic engineering and tissue culture. In particular two systems are reviewed, i.e. cell suspension and hairy root cultures. Additionally, an entire section is devoted to hemp trichomes, in the light of their importance as phytochemical factories. Ultimately, prospects on the benefits linked to the use of the -omics technologies, such as metabolomics and transcriptomics to speed up the identification and the large-scale production of lead agents from bioengineered Cannabis cell culture, are presented.

  6. Identification of Viscum album L. miRNAs and prediction of their medicinal values.

    Directory of Open Access Journals (Sweden)

    Wenyan Xie

    Full Text Available MicroRNAs (miRNAs are a class of approximately 22 nucleotides single-stranded non-coding RNA molecules that play crucial roles in gene expression. It has been reported that the plant miRNAs might enter mammalian bloodstream and have a functional role in human metabolism, indicating that miRNAs might be one of the hidden bioactive ingredients in medicinal plants. Viscum album L. (Loranthaceae, European mistletoe has been widely used for the treatment of cancer and cardiovascular diseases, but its functional compounds have not been well characterized. We considered that miRNAs might be involved in the pharmacological activities of V. album. High-throughput Illumina sequencing was performed to identify the novel and conserved miRNAs of V. album. The putative human targets were predicted. In total, 699 conserved miRNAs and 1373 novel miRNAs have been identified from V. album. Based on the combined use of TargetScan, miRanda, PITA, and RNAhybrid methods, the intersection of 30697 potential human genes have been predicted as putative targets of 29 novel miRNAs, while 14559 putative targets were highly enriched in 33 KEGG pathways. Interestingly, these highly enriched KEGG pathways were associated with some human diseases, especially cancer, cardiovascular diseases and neurological disorders, which might explain the clinical use as well as folk medicine use of mistletoe. However, further experimental validation is necessary to confirm these human targets of mistletoe miRNAs. Additionally, target genes involved in bioactive components synthesis in V. album were predicted as well. A total of 68 miRNAs were predicted to be involved in terpenoid biosynthesis, while two miRNAs including val-miR152 and miR9738 were predicted to target viscotoxins and lectins, respectively, which increased the knowledge regarding miRNA-based regulation of terpenoid biosynthesis, lectin and viscotoxin expressions in V. album.

  7. Gamma of effects radiation on the production of secondary metabolites by tissues of Jatropha curcas L. cultured in-vitro

    International Nuclear Information System (INIS)

    Nyembo, K.; Luyindula, N.; Onyembe, P.M.L.; Makosso, N.; Muambi, N.

    2005-01-01

    Petiole explants of Jatropha curcas L. were irradiated with gamma rays at doses ranging from 5 to 100 Gy from a Cs source and cultured in vitro during 60 days. Callus formation decreased markedly with increasing gamma rays dose. The extraction's yield of hydrosoluble components from irradiated material at 5Gy (29,3%) is higher than of the control (17,2%). The phytochemical screening has revealed presence of saponins, alkaloids, amino-compounds, steroids and terpenoids in a large amount in both irradiated and control materials. The antibacterial activity against the strains of Proteus mirabilis and Escherichia coli is highly significant. This activity is depending upon one or more of phytochemical groups identified.

  8. Effects of sulfur dioxide and nitrogen dioxide on vegetation. Progress report, 1 June 1977--28 February 1978

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, L.H.; McCune, D.C.; MacLean, D.C.

    1978-02-01

    The areas of research selected are related to fossil fuel combustion and are believed or are known to occur in the field: the mode of action of SO/sub 2/ in relation to its metabolic fate; the influence of NO/sub 2/ on the phytotoxicity of SO/sub 2/, and the combined effects of these pollutants on crop yield under field conditions; the effect of SO/sub 2/ on the plant with respect to its susceptibility to plant diseases; and the effect of SO/sub 2/ on the behavior and development of the Mexican bean beetle on soybean and on the production of volatile terpenoids in conifers with respect to their suitability for colonization by insects.

  9. Prospecting for bioactive constituents from traditional medicinal plants through ethnobotanical approaches.

    Science.gov (United States)

    Gu, Ronghui; Wang, Yuehu; Long, Bo; Kennelly, Edward; Wu, Shibiao; Liu, Bo; Li, Ping; Long, Chunlin

    2014-01-01

    Pharmacologically active constituents from traditional medicinal plants have received great attention as sources of novel agents, pharmaceutical intermediates, and chemical entities for synthetic or semisynthetic drugs due to their potent pharmacological activities, low toxicity, and economic viability. Numerous components have been isolated from traditional medicinal plants, including alkaloids, flavonoids, and terpenoids, and clinical and experimental studies suggested that these components have useful pharmacological properties such as antiinfectious, antioxidative, and antiinflammatory effects. In this review, modern ethnobotanical approaches to explore folk medicinal plants as candidates for drug discovery with the greatest possibility of success are discussed. Determining the bioactive mechanisms and tracing structure-activity relationships will promote the discovery of new drugs and pharmacological agents.

  10. Allelopathic potential of digera muricata, a desert summer annual

    International Nuclear Information System (INIS)

    Aziz, S.; Shahid, S.; Shaukat, S.

    2014-01-01

    Allelopathic potential of Digera muricata was tested on different crops by germinating them in different concentrations of D. muricata extract. It was observed that germination of all test species were highly affected in the higher concentration of D. muricata extract. Bulrush-millet was the most affected species. Decaying plant material of D. muricata was also found to be highly phytotoxic. Maximum reduction in growth of bulrush-millet was observed in the decaying root material. Phenolic compounds (Quercetin, sinapic and ferluic acid), alkaloids (cystine and berbine) and a terpenoid (limonene) were detected from roots and shoots of D. muricata, Greater quantities of all these allelochemicals were present in the roots followed by shoots. (author)

  11. 1H HRMAS NMR spectroscopy and chemometrics for evaluation of metabolic changes in citrus sinensis Caused by Xanthomonas axonopodis pv. citri

    International Nuclear Information System (INIS)

    Silva, Lorena M.A.; Alves Filho, Elenilson G.; Choze, Rafael; Liao, Luciano M.; Alcantara, Glaucia B.

    2012-01-01

    Xanthomonas axonopodis (Xac) bacterium causes one of the most feared and untreatable diseases in citriculture: citrus canker. To understand the response mechanisms of orange trees when attacked by Xac, leaves and fruits of Citrus sinensis were directly evaluated by HRMAS NMR (high resolution magic angle spinning nuclear magnetic resonance) spectroscopy. This technique allows the analysis of samples without laborious pre-treatments and also allows access to important information about chemical composition of samples. The orange tree leaves and fruit peels investigated in this study demonstrated the biochemical changes caused by Xac. Aided by chemometric analysis, the HRMAS NMR results show relevant changes in amino acids, carbohydrates, organic acids and terpenoids content. (author)

  12. Chemical Analysis of Essential oil of "Artemisia haussknechtii Boiss" by GC and GC/ MS

    Directory of Open Access Journals (Sweden)

    A. Nassir- Ahraadi . A. Rustaiyan

    1994-08-01

    Full Text Available The composition of the essential oil from the leaves and flowers of "Artemisia haussknechtii Boiss growing wild in the north-west of Iran, was investigated by GC and GC/MS."nThe main components of the volatile oil were 1,8 - cineol (16.5%, camphor (14.1%. artemisia ketone (10.5%, fragranol (9.0%, Yomogi alcohol (7.5% and B- pinene (5.4%. The total contribution of these compounds to the oil amounted to 63.0%."nMonoterpens and sesquiterpenes represent 90.08% and 1.52% of the oil respectively. Of the twenty oxygen-containing monoterpenes which made up a fairly large fraction of the terpenoid composition, the predominant components were 1,8 - cineole and camphor.

  13. Endophytes: a treasure house of bioactive compounds of medicinal importance

    Directory of Open Access Journals (Sweden)

    Sushanto Gouda

    2016-09-01

    Full Text Available Endophytes are an endosymbiotic group of microorganisms that colonize in plants and microbes that can be readily isolated from any microbial or plant growth medium. They act as reservoirs of novel bioactive secondary metabolites, such as alkaloids, phenolic acids, quinones, steroids, saponins, tannins, and terpenoids that serve as a potential candidate for antimicrobial, anti-insect, anticancer and many more properties. While plant sources are being extensively explored for new chemical entities for therapeutic purposes, endophytic microbes also constitute an important source for drug discovery. This review aims to comprehend the contribution and uses of endophytes as an impending source of drugs against various forms of diseases and other possible medicinal use.

  14. Isolation and identification of curcumin and bisacurone from rhizome extract of temu glenyeh (Curcuma soloensis. Val)

    Science.gov (United States)

    Vitasari, Rista A.; Wibowo, Fajar R.; Marliyana, Soerya D.; Widyo Wartono, M.

    2016-02-01

    Temu glenyeh (Curcuma soloensis. Val) is one of the medicinal plants that grow in Surakarta. This plant is similar with C. longa and C. Xanthoriza. Chemical constituents from an extract of the plant have never been studied. In this paper, we report the isolation of a terpenoid and curcumin from the rhizome of C. soloensis. The isolation was employed by soxhlet apparatus using acetone as solvent. The fractionation and purification of the compound from the acetone extracts were undertaken by vacuum liquid chromatography and flash chromatography. Identification of compounds used spectroscopy methods, such as FTIR, NMR (1H NMR, 13C NMR, COSY, HSQC and HMBC) and GC-MS. Isolated compounds were identified as curcumin (1) and bisacurone (2).

  15. Phytochemical research of leaves and flowers of Smallanthus pyramidalis (Triana) H. Rob. (Arboloco) and its use in the recovery of wetlands in Bogota

    International Nuclear Information System (INIS)

    Guzman Avendano, Antonio J; Barrera Adame, Diana A.

    2011-01-01

    This research focused on the phytochemical characterization of the species Smallanthus pyramidalis (Triana) H. Rob. in order to identify the secondary metabolites of flowers and leaves. This is due to the importance these trees on the sustainable development of the wetlands in the Sabana de Bogota, and its possible application as a promising species in the use and conservation of these ecosystems. We performed preliminary chemical tests, fractionation using conventional techniques, identification of physical and chemical properties, and structural analysis using spectroscopic and spectrometric techniques, such as UV, 1H-RMN, 13C-RMN and GC-MS. We identified alkane-type compounds, steroids, terpenoids and flavonoids mainly, and their role in the plant and the ecosystem.

  16. Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Jose L. Barredo

    2017-07-01

    Full Text Available Carotenoids are organic lipophilic yellow to orange and reddish pigments of terpenoid nature that are usually composed of eight isoprene units. This group of secondary metabolites includes carotenes and xanthophylls, which can be naturally obtained from photosynthetic organisms, some fungi, and bacteria. One of the microorganisms able to synthesise carotenoids is the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous, which represents the teleomorphic state of Phaffia rhodozyma, and is mainly used for the production of the xanthophyll astaxanthin. Upgraded knowledge on the biosynthetic pathway of the main carotenoids synthesised by X. dendrorhous, the biotechnology-based improvement of astaxanthin production, as well as the current omics approaches available in this yeast are reviewed in depth.

  17. Differences in bioactivity of three endemic Nepeta species arising from main terpenoid and phenolic constituents

    Directory of Open Access Journals (Sweden)

    Nestorović-Živković Jasmina

    2018-01-01

    Full Text Available Methanol extracts of three endemic Nepeta species were analyzed for their main secondary metabolites, terpenes and phenolics, and further investigated for antioxidant capacity and embryonic toxicity in zebrafish. UHPLC/DAD/(± HESI-MS/MS analysis showed that the dominant compound in N. rtanjensis was trans,cis-nepetalactone, the cis,trans isomer of this monoterpene lactone was dominant in N. sibirica, while nepetalactone was detected only in traces in N. nervosa. In all investigated species, rosmarinic acid was the dominant phenolic compound, while other identified phenolic acids (chlorogenic, neochlorogenic and caffeic were present in considerably lower amounts. ABTS and DPPH assays showed that the methanol extracts of N. rtanjensis, N. sibirica and especially N. nervosa possessed strong antioxidant activities, with the FRAP assay revealing high ferric-reducing abilities for all three tested species. Such a strong antioxidant potential, especially as manifested in the DPPH and FRAP assays, can be attributed to phenolic acids, and in the first place to rosmarinic acid. Increased lethality of zebrafish embryos in any of the treatments was not observed, but several toxic effects on embryonic development were recorded, such as pericardial and yolk sac edema. As in other Nepeta species, the three studied endemic species possessed a great potential for food conservation or as medicinal supplements if applied in optimized concentrations; however, alternative sources of plant material (e.g. field cultivation should be established bearing in mind their vulnerability in nature.

  18. LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Hey, Daniel; Rothbart, Maxi; Herbst, Josephine; Wang, Peng; Müller, Jakob; Wittmann, Daniel; Gruhl, Kirsten; Grimm, Bernhard

    2017-06-01

    The LIL3 protein of Arabidopsis ( Arabidopsis thaliana ) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes.

    Science.gov (United States)

    Fischedick, Justin Thomas; Hazekamp, Arno; Erkelens, Tjalling; Choi, Young Hae; Verpoorte, Rob

    2010-12-01

    Cannabis sativa L. is an important medicinal plant. In order to develop cannabis plant material as a medicinal product quality control and clear chemotaxonomic discrimination between varieties is a necessity. Therefore in this study 11 cannabis varieties were grown under the same environmental conditions. Chemical analysis of cannabis plant material used a gas chromatography flame ionization detection method that was validated for quantitative analysis of cannabis monoterpenoids, sesquiterpenoids, and cannabinoids. Quantitative data was analyzed using principal component analysis to determine which compounds are most important in discriminating cannabis varieties. In total 36 compounds were identified and quantified in the 11 varieties. Using principal component analysis each cannabis variety could be chemically discriminated. This methodology is useful for both chemotaxonomic discrimination of cannabis varieties and quality control of plant material. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content.

    Science.gov (United States)

    Farag, Mohamed A; Al-Mahdy, Dalia A; Meyer, Achim; Westphal, Hildegard; Wessjohann, Ludger A

    2017-04-05

    The effects of six biotic and abiotic elicitors, i.e. MeJA (methyl jasmonate), SA (salicylic acid), ZnCl 2 , glutathione and β-glucan BG (fungal elicitor), and wounding, on the secondary metabolite accumulation in the soft coral Sarcophyton ehrenbergi were assessed. Upon elicitation, metabolites were extracted and analysed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Except for MeJA, no differences in photosynthetic efficiency were observed after treatments, suggesting the absence of a remarkable stress on primary production. Chemometric analyses of UPLC-MS data showed clear segregation of SA and ZnCl 2 elicited samples at 24 and 48 h post elicitation. Levels of acetylated diterpene and sterol viz., sarcophytonolide I and cholesteryl acetate, was increased in ZnCl 2 and SA groups, respectively, suggesting an activation of specific acetyl transferases. Post elicitation, sarcophytonolide I level increased 132 and 17-folds at 48 h in 0.1 mM SA and 1 mM ZnCl 2 groups, respectively. Interestingly, decrease in sarcophine, a major diterpene was observed only in response to ZnCl 2 , whereas no change was observed in sesquiterpene content following treatments. To the best of our knowledge, this study provides the first documentation for elicitation effects on a soft corals secondary metabolome and suggests that SA could be applied to increase diterpenoid levels in corals.

  1. Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content

    OpenAIRE

    Farag, Mohamed A.; Al-Mahdy, Dalia A.; Meyer, Achim; Westphal, Hildegard; Wessjohann, Ludger A.

    2017-01-01

    The effects of six biotic and abiotic elicitors, i.e. MeJA (methyl jasmonate), SA (salicylic acid), ZnCl2, glutathione and ?-glucan BG (fungal elicitor), and wounding, on the secondary metabolite accumulation in the soft coral Sarcophyton ehrenbergi were assessed. Upon elicitation, metabolites were extracted and analysed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Except for MeJA, no differences in photosynthetic efficiency were observed after treatments, suggestin...

  2. Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid

    NARCIS (Netherlands)

    Kos, M.; Houshyani, B.; Overeem, A.J.; Bouwmeester, H.J.; Weldegergis, B.T.; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2013-01-01

    BACKGROUND: Most insect-resistant transgenic crops employ toxins to control pests. A novel approach is to enhance the effectiveness of natural enemies by genetic engineering of the biosynthesis of volatile organic compounds (VOCs). Before the commercialisation of such transgenic plants can be

  3. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP.

    Science.gov (United States)

    Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I

    1997-03-01

    Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs).

  4. The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint.

    Science.gov (United States)

    Lincoln, D E; Couvet, D

    1989-01-01

    The carbon supply of peppermint plants was manipulated by growing clonal propagules under three carbon dioxide regimes (350, 500 and 650 μl l -1 ). Feeding by fourth instar caterpillars of Spodoptera eridania increased with elevated CO 2 hostplant regime, as well as with low leaf nitrogen content and by a high proportion of leaf volatile terpenoids. Leaf weight increased significantly with the increased carbon supply, but the amount of nitrogen per leaf did not change. The amount of volatile leaf mono-and sesquiterpenes increased proportionately with total leaf dry weight and hence was not influenced by CO 2 supply. These results are consistent with ecological hypotheses which assume that allocation to defense is closely regulated and not sensitive to carbon supply per se.

  5. Free radical scavengers from the aerial parts of Grammosciadium platycarpum Boiss. & Hausskn. (Apiaceae and GC-MS analysis of the essential oils from its fruits

    Directory of Open Access Journals (Sweden)

    Hossein Nazemiyeh

    2010-05-01

    Full Text Available Grammosciadium platycarpum Boiss. & Hausskn (Apiaceae is one of three endemic Iranian species of the genus Grammosciadium DC. Consumption of the aerial parts of this plant affects renal function and causes diuresis. In the DPPH assay the methanol extract showed the highest level of free radical scavenging activity (RC50 = 1.196 x 10-2 mg/mL among the extracts. Reversed-phase preparative HPLC analyses of the methanol extract yielded nine flavonoids, which were responsible for the free radical scavenging activity of the MeOH extract. The GC-MS analyses of the essential oils led to the identification of 29 terpenoids, mainly monoterpenes (non-oxygenated 3.97% and oxygenated 77.49% accounting for over 96% of the total oils.

  6. Engineering cyanobacteria for direct biofuel production from CO2.

    Science.gov (United States)

    Savakis, Philipp; Hellingwerf, Klaas J

    2015-06-01

    For a sustainable future of our society it is essential to close the global carbon cycle. Oxidised forms of carbon, in particular CO2, can be used to synthesise energy-rich organic molecules. Engineered cyanobacteria have attracted attention as catalysts for the direct conversion of CO2 into reduced fuel compounds. Proof of principle for this approach has been provided for a vast range of commodity chemicals, mostly energy carriers, such as short chain and medium chain alcohols. More recently, research has focused on the photosynthetic production of compounds with higher added value, most notably terpenoids. Below we review the recent developments that have improved the state-of-the-art of this approach and speculate on future developments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. In silico gene expression profiling in Cannabis sativa.

    Science.gov (United States)

    Massimino, Luca

    2017-01-01

    The cannabis plant and its active ingredients (i.e., cannabinoids and terpenoids) have been socially stigmatized for half a century. Luckily, with more than 430,000 published scientific papers and about 600 ongoing and completed clinical trials, nowadays cannabis is employed for the treatment of many different medical conditions. Nevertheless, even if a large amount of high-throughput functional genomic data exists, most researchers feature a strong background in molecular biology but lack advanced bioinformatics skills. In this work, publicly available gene expression datasets have been analyzed giving rise to a total of 40,224 gene expression profiles taken from cannabis plant tissue at different developmental stages. The resource presented here will provide researchers with a starting point for future investigations with Cannabis sativa .

  8. ANTI-DIABETIC EFFICACY AND PHYTOCHEMICAL SCREENING OF METHANOLIC LEAF EXTRACT OF PAWPAW (Carica papaya GROWN IN NORTH CENTRAL NIGERIA.

    Directory of Open Access Journals (Sweden)

    Ayorinde Victor Ogundele

    2016-10-01

    Full Text Available Carica papaya leaves samples (Green were freshly harvested from Islamic village in Ilorin, Ilorin west local Government, Kwara State Nigeria. The leaves were extracted with methanol; the resulting extracts were screened for the phytochemical constituents using standard procedure. Phytochemical screening revealed the presence of bioactive compounds such as tannins, saponins, terpenoids, glycosides and alkaloids. The in-vitro anti-diabetic potential of the plant was also determined so as to justify the traditional usage of the plant in treating diabetes. The result of the present study confirmed that the methanolic extract of C.papaya leaves possess significant anti-diabetic activity in-vitro, this shows that the leaves has the potential for the development of drugs in combating diabetes.

  9. Antiplasmodial Natural Products

    Directory of Open Access Journals (Sweden)

    Cláudio R. Nogueira

    2011-03-01

    Full Text Available Malaria is a human infectious disease that is caused by four species of Plasmodium. It is responsible for more than 1 million deaths per year. Natural products contain a great variety of chemical structures and have been screened for antiplasmodial activity as potential sources of new antimalarial drugs. This review highlights studies on natural products with antimalarial and antiplasmodial activity reported in the literature from January 2009 to November 2010. A total of 360 antiplasmodial natural products comprised of terpenes, including iridoids, sesquiterpenes, diterpenes, terpenoid benzoquinones, steroids, quassinoids, limonoids, curcubitacins, and lanostanes; flavonoids; alkaloids; peptides; phenylalkanoids; xanthones; naphthopyrones; polyketides, including halenaquinones, peroxides, polyacetylenes, and resorcylic acids; depsidones; benzophenones; macrolides; and miscellaneous compounds, including halogenated compounds and chromenes are listed in this review.

  10. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products.

    Science.gov (United States)

    Hygreeva, Desugari; Pandey, M C; Radhakrishna, K

    2014-09-01

    Growing concern about diet and health has led to development of healthier food products. In general consumer perception towards the intake of meat and meat products is unhealthy because it may increase the risk of diseases like cardiovascular diseases, obesity and cancer, because of its high fat content (especially saturated fat) and added synthetic antioxidants and antimicrobials. Addition of plant derivatives having antioxidant components including vitamins A, C and E, minerals, polyphenols, flavanoids and terpenoids in meat products may decrease the risk of several degenerative diseases. To change consumer attitudes towards meat consumption, the meat industry is undergoing major transformations by addition of nonmeat ingredients as animal fat replacers, natural antioxidants and antimicrobials, preferably derived from plant sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: 1H and 13C chemical shift assignments

    International Nuclear Information System (INIS)

    Facundo, Valdir A.; Morais, Selene M.; Braz Filho, Raimundo

    2004-01-01

    In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-penta methoxyflavone (1), 3',4',5,7-tetra methoxyflavone (2) and 5-hydroxy-3',4',5',7-tetra methoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete 1 H and 13 C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra. (author)

  12. Constituintes químicos de Ottonia corcovadensis Miq. da floresta Amazônica: atribuição dos deslocamentos químicos dos átomos de hidrogênio e carbono Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: ¹h and 13c chemical shift assignments

    Directory of Open Access Journals (Sweden)

    Valdir A. Facundo

    2004-02-01

    Full Text Available In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-pentamethoxyflavone (1, 3',4',5,7-tetramethoxyflavone (2 and 5-hydroxy-3',4',5',7-tetramethoxyflavone (3 and cafeic acid (4. Two amides (5 and 6 were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D and mass spectra. Extensive NMR analysis was also used to complete ¹H and 13C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra.

  13. Physiochemical screening and antimicrobial potential of otostegia limbata benth

    International Nuclear Information System (INIS)

    Naz, S.; Farooq, U.; Khan, A.; Sarwar, R.

    2014-01-01

    Otostegia limbata (Benth.) has been used in treatment of gums diseases, dental disorders, healing of wounds, hypertension, eye inflammation, and most importantly as anticancer. The present investigation deals with the physiochemical screening of crude extract of O. limbata and antimicrobial activities of its various fractions. The results showed the presence of alkaloids, catecholic tannins, phenols, sugars, flavonoids, terpenoids, and saponins. Antimicrobial activities of four fractions of O. limbata namely n-hexane, chloroform, ethyl acetate, and n-butanol were performed by using disc diffusion method against Salmonella setubal, Pseudomonas pickettii, Staphlococcus aureus, and Micrococcus luteus to evaluate its therapeutic value. All the fractions showed significant antibacterial activities but none of the fractions showed antifungal activity against Aspergilus niger and Aspergilus flavus. (author)

  14. Identification of oxygen containing volatiles in cephalic secretions of workers of Brazilian stingless bees

    Directory of Open Access Journals (Sweden)

    Francke Wittko

    2000-01-01

    Full Text Available The volatile constituents of cephalic secrections of 11 Brazilian social stingless bee species of the Tetragonisca - Tetragona line have been analysed. By gas chromatography/mass spectrometry 145 compounds could be identified which include 72 esters, 22 alcohols, 16 carboxylic acids, 13 terpenoids, 8 aldehydes, 7 ketones, 4 aromatic compounds, 2 lactones and 1 dihydropyran. Structural relations, origin, and distribution of these compounds are discussed. With respect to qualitative and quantitative composition, each species shows a specific odour pattern which is made up by less specific components. To a certain extent, closely related species show some similarities in the odour bouquets. The mass spectrometric fragmentation patterns of typical wax type esters and DMDS derivatives of unsaturated esters are discussed in detail.

  15. SIFAT FISIK, KIMIA, DAN FUNGSIONAL DAMAR [Brief Review on: Physical, Chemical and Functional Properties of Dammar

    Directory of Open Access Journals (Sweden)

    Noryawati Mulyono1

    2004-12-01

    Full Text Available Dammar is one of Indonesian forestry products which is abundant. It has unique physical, chemical and functional properties. The important physical properties of dammar include its solubility in some organic solvents, softening temperature, viscosity and its absorbance. The important chemical properties reviewed here include its properties as resin, composition of terpenoid compounds present in dammar, and essential oil yielded from distillation of fresh dammar. Physical and chemical properties of dammar need to be studied further in order to optimize its functional properties. So far, dammar is widely used as weighting agent and source of essential oil. However, now, some species of dammar are being explored and developed for sal flour, fat source, triacylglycerol substituent for cocoa butter and wood preservatives.

  16. An Update Review on the Anthelmintic Activity of Bitter Gourd, Momordica charantia.

    Science.gov (United States)

    Poolperm, Sutthaya; Jiraungkoorskul, Wannee

    2017-01-01

    Momordica charantia (Family: Cucurbitales ), as known as bitter melon or gourd, is a daily consumption as food and traditional medicinal plant in Southeast Asia and Indo-China. It has been shown to possess anticancer, antidepressant, antidiabetic, anti-inflammatory, antimicrobial, antiobesity, antioxidant, and antiulcer properties. Its common phytochemical components include alkaloids, charantin, flavonoids, glycosides, phenolics, tannins, and terpenoids. This plant is rich in various saponins including momordicin, momordin, momordicoside, karavilagenin, karaviloside, and kuguacin, all of which have been reported to contribute to its remedial properties including antibacterial, antifungal, antiviral, and antiparasitic infections. Based on established literature on the anthelmintic activity of M. charantia and possible mode of action, this review article has attempted to compile M. charantia could be further explored for the development of potential anthelmintic drug.

  17. Review-An overview of Pistacia integerrima a medicinal plant species: Ethnobotany, biological activities and phytochemistry.

    Science.gov (United States)

    Bibi, Yamin; Zia, Muhammad; Qayyum, Abdul

    2015-05-01

    Pistacia integerrima with a common name crab's claw is an ethnobotanically important tree native to Asia. Traditionally plant parts particularly its galls have been utilized for treatment of cough, asthma, dysentery, liver disorders and for snake bite. Plant mainly contains alkaloids, flavonoids, tannins, saponins and sterols in different parts including leaf, stem, bark, galls and fruit. A number of terpenoids, sterols and phenolic compounds have been isolated from Pistacia integerrima extracts. Plant has many biological activities including anti-microbial, antioxidant, analgesic, cytotoxicity and phytotoxicity due to its chemical constituents. This review covers its traditional ethnomedicinal uses along with progresses in biological and phytochemical evaluation of this medicinally important plant species and aims to serve as foundation for further exploration and utilization.

  18. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber.

    Science.gov (United States)

    Dutta, Suryendu; Mehrotra, Rakesh C; Paul, Swagata; Tiwari, R P; Bhattacharya, Sharmila; Srivastava, Gaurav; Ralte, V Z; Zoramthara, C

    2017-09-08

    Plants produce and release a large array of volatile organic compounds that play many ecological functions. These volatile plant metabolites serve as pollinator attractants, herbivore and pathogen repellents and protect plants from abiotic stresses. To date, the geological evolution of these organic compounds remains unknown. The preservation potential of these metabolites in the fossil record is very poor due to their low boiling points. Here we report a series of volatile sesquiterpenoids, including δ-elemene, α-copaene, β-elemene, β-caryophyllene, α-humulene, germacrene D, δ-cadiene and spathunenol, from early Miocene (~17 million year) amber from eastern India. The survival of these unaltered bioterpenoids can be attributed to the existence of extraordinary taphonomic conditions conducive to the preservation of volatile biomolecules through deep time. Furthermore, the occurrence of these volatiles in the early Miocene amber suggests that the plants from this period had evolved metabolic pathways to synthesize these organic molecules to play an active role in forest ecology, especially in plant-animal interactions.

  19. Shoot-level terpenoids emission in Norway spruce (Picea abies) under natural field and manipulated laboratory conditions

    Czech Academy of Sciences Publication Activity Database

    Esposito, R.; Lusini, I.; Večeřová, Kristýna; Holišová, Petra; Pallozzi, E.; Guidolotti, G.; Urban, Otmar; Calfapietra, Carlo

    2016-01-01

    Roč. 108, nov (2016), s. 530-538 ISSN 0981-9428 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13031; GA MŠk(CZ) LM2015061 Institutional support: RVO:67179843 Keywords : Norway spruce * BVOC * Monoterpenes * Temperature * Ozone * Sun-shade * Stress Subject RIV: EF - Botanics Impact factor: 2.724, year: 2016

  20. Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves.

    Science.gov (United States)

    Mendoza-Poudereux, Isabel; Muñoz-Bertomeu, Jesús; Navarro, Alicia; Arrillaga, Isabel; Segura, Juan

    2014-05-01

    Transgenic Lavandula latifolia plants overexpressing the linalool synthase (LIS) gene from Clarkia breweri, encoding the LIS enzyme that catalyzes the synthesis of linalool were generated. Most of these plants increased significantly their linalool content as compared to controls, especially in the youngest leaves, where a linalool increase up to a 1000% was observed. The phenotype of increased linalool content observed in young leaves was maintained in those T1 progenies that inherit the LIS transgene, although this phenotype was less evident in the flower essential oil. Cross-pollination of transgenic spike lavender plants allowed the generation of double transgenic plants containing the DXS (1-deoxy-d-xylulose-5-P synthase), coding for the first enzyme of the methyl-d-erythritol-4-phosphate pathway, and LIS genes. Both essential oil yield and linalool content in double DXS-LIS transgenic plants were lower than that of their parentals, which could be due to co-suppression effects linked to the structures of the constructs used. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Phytochemical and toxicological investigations of crude methanolic extracts, subsequent fractions and crude saponins of Isodon rugosus

    Directory of Open Access Journals (Sweden)

    Anwar Zeb Abdul Sadiq

    2014-01-01

    Full Text Available BACKGROUND: Isodon rugosus is used traditionally in the management of hypertension, rheumatism, tooth-ache and pyrexia. Present study was arranged to investigate I. rugosus for phytoconstituents, phytotoxic and cytotoxic activities to explore its toxicological, pharmacological potentials and to rationalize its ethnomedicinal uses. Briefly, qualitative phytochemical analysis of the plant extracts were carried out for the existence of alkaloids, flavonoids, saponins, oils, glycosides, anthraquinones, terpenoids, sterols and tannins. Plant crude methanolic extract (Ir.Cr, its subsequent fractions; n-hexane (Ir.Hex, chloroform (Ir.Chf, ethyl acetate (Ir.EtAc, aqueous (Ir.Aq and saponins (Ir.Sp in different concentrations were tested for phytotoxic and cytotoxic activities using radish seeds and brine shrimps (Artemia salina respectively. The phytotoxic activity was determined by percent root length inhibition (RLI and percent seeds germination inhibition (SGI while the cytotoxicity was obtained with percent lethality of the brine shrimps. RESULTS: Ir.Cr was tested positive for the presence of alkaloids, glycosides, flavonoids, oils, terpenoids, saponins, tannins and anthraquinones. Among different fractions Ir.Sp, Ir.Chf, Ir.EtAc, and Ir.Cr were most effective causing 93.55, 89.32, 81.32 and 58.68% inhibition of seeds in phytotoxicity assay, with IC50 values of 0.1, 0.1, 0.1 and 52 μg/ml respectively. Similarly, among all the tested samples, Ir.Sp exhibited the highest phytotoxic effect causing 91.33% root length inhibition with IC50 of 0.1 μg/ml. Ir.Sp and Ir.Chf were most effective against brine shrimps showing 92.23 and 76.67% lethality with LC50 values of 10 and 12 μg/ml respectively. CONCLUSIONS: It may be inferred from the current investigations that I. rugosus contains different secondary metabolites and is a potential source for the isolation of natural anticancer and herbicidal drug molecules. Different fractions exhibited phytotoxic and

  2. Preliminary Phytochemical and Biological activities on Russelia juncea Zucc

    Directory of Open Access Journals (Sweden)

    Maryam Bibi

    2017-12-01

    Full Text Available To probe the ethnomedicinal claims of Russelia juncea Zucc. (Plantaginaceae as prescribed traditionally in the folklore history of medicines. Methods: The dichloromethane and methanol extracts of aerial parts and roots were examined for antimicrobial, antioxidant, antiglycation, insecticidal, leishmanicidal, cytotoxic and phytotoxic activities. Different phytochemical tests were also performed to confirm the presence of various groups of secondary metabolites such as alkaloids, glycosides, saponins, tannins, flavonoids and terpenoids. Results: Phytochemical screening of this plant confirmed the presence of alkaloids, saponins, tannins, flavonoids and terpenoids. Antibacterial activity was only shown by RJRD with 80% inhibition at the concentration of 150µg/ml against Shigella flexneri. Among the tested samples, RJAM and RJRM displayed significant radical scavenging activity up to 93% and 89% with IC50 values of 184.75 ± 4.05µM and 263.01 ± 9.36µM. The significant antiglycation potential was exhibited by RJAD, RJAM and RJRM with 55.35%, 62.25% and 59.22% inhibition and IC50 values of 0.84 ± 0.08mg/ml, 1.37 ± 0.15mg/ml and 1.52 ± 0.10mg/ml respectively. Moderate leishmanicidal activity was exposed by RJAD and RJRM with IC50 values of 73.04 ± 1.05µg/ml and 77.66 ± 0.23µg/ml while RJAM was found to be more potent and exposed significant leishmanicidal activity having IC50 of 48 ± 0.39µg/ml. However, prominent cytotoxic activity was displayed by RJRM with 66.08% inhibition and IC50 of 31.20 ± 3µg/ml. Non-significant antifungal, insecticidal and phytotoxic activities were demonstrated by all the tested samples. Conclusion: All the above contributions give serious attentiveness to scientists to isolate and purify the biologically active phytoconstituents by using advanced scientific methodologies that serve as lead compounds in the synthesis of new therapeutic agents of desired interest in the world of drug discovery.

  3. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta and its microbiome

    Directory of Open Access Journals (Sweden)

    de Oliveira Louisi

    2012-09-01

    Full Text Available Abstract Background Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. Results A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. Conclusions This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L

  4. Chemical composition of volatiles from Opuntia littoralis, Opuntia ficus-indica, and Opuntia prolifera growing on Catalina Island, California.

    Science.gov (United States)

    Wright, Cynthia R; Setzer, William N

    2014-01-01

    The essential oils from the cladodes of Opuntia littoralis, Opuntia ficus-indica and Opuntia prolifera growing wild on Santa Catalina Island, California, were obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry (GC-MS). Terpenoids were the dominant class of volatiles in O. littoralis, with the two main components being the furanoid forms of cis-linalool oxide (10.8%) and trans-linalool oxide (8.8%). Fatty acid-derived compounds dominated the essential oil of O. ficus-indica with linoleic acid (22.3%), palmitic acid (12.7%), lauric acid (10.5%) and myristic acid (4.2%) as major fatty acids. O. prolifera oil was composed of 46.6% alkanes and the primary hydrocarbon component was heptadecane (19.2%). Sixteen compounds were common to all the three Opuntia species.

  5. Portulaca oleracea L.: a review of phytochemistry and pharmacological effects.

    Science.gov (United States)

    Zhou, Yan-Xi; Xin, Hai-Liang; Rahman, Khalid; Wang, Su-Juan; Peng, Cheng; Zhang, Hong

    2015-01-01

    Portulaca oleracea L., belonging to the Portulacaceae family, is commonly known as purslane in English and Ma-Chi-Xian in Chinese. It is a warm-climate, herbaceous succulent annual plant with a cosmopolitan distribution. It is eaten extensively as a potherb and added in soups and salads around the Mediterranean and tropical Asian countries and has been used as a folk medicine in many countries. Diverse compounds have been isolated from Portulaca oleracea, such as flavonoids, alkaloids, polysaccharides, fatty acids, terpenoids, sterols, proteins vitamins and minerals. Portulaca oleracea possesses a wide spectrum of pharmacological properties such as neuroprotective, antimicrobial, antidiabetic, antioxidant, anti-inflammatory, antiulcerogenic, and anticancer activities. However, few molecular mechanisms of action are known. This review provides a summary of phytochemistry and pharmacological effects of this plant.

  6. Engineering isoprene synthesis in cyanobacteria.

    Science.gov (United States)

    Chaves, Julie E; Melis, Anastasios

    2018-04-24

    The renewable production of isoprene (Isp) hydrocarbons, to serve as fuel and synthetic chemistry feedstock, has attracted interest in the field recently. Isp (C 5 H 8 ) is naturally produced from sunlight, CO 2 and H 2 O photosynthetically in terrestrial plant chloroplasts via the terpenoid biosynthetic pathway and emitted in the atmosphere as a response to heat stress. Efforts to institute a high capacity continuous and renewable process have included heterologous expression of the Isp synthesis pathway in photosynthetic microorganisms. This review examines the premise and promise emanating from this relatively new research effort. Also examined are the metabolic engineering approaches applied in the quest of renewable Isp hydrocarbons production, the progress achieved so far, and barriers encountered along the way. © 2018 Federation of European Biochemical Societies.

  7. Phytochemical and Pharmacological Investigation of Ethanol Extract of Cissampelos pareira.

    Science.gov (United States)

    Reza, H M; Shohel, M; Aziz, Sadia B; Pinaz, Farzana I; Uddin, M F; Al-Amin, M; Khan, I N; Jain, Preeti

    2014-09-01

    In this study, the ethanol extract of Cissampelos pareira has been evaluated. The extract was tested for analgesic properties using both hot plate and acetic acid-induced writhing methods. Antiinflammatory effect was investigated using two different doses of 250 and 500 mg/kg body weight on Evans rats by carrageenan-induced paw edema test. The antipyretic activity was evaluated using Brewer's yeast-induced pyrexia in Wistar rats. The phytochemical screening of the extract of Cissampelos pareira exhibited the presence of several phytochemical compounds including saponins, gums and carbohydrates, reducing sugars, alkaloids and terpenoids. Ethanol extract of Cissampelos pareira exhibited significant analgesic, antiinflammatory and antipyretic activity in a dose-dependent manner. The results obtained from these studies confirm its therapeutic value against diseases caused by various pain and fever.

  8. Mushroom immunomodulators: unique molecules with unlimited applications.

    Science.gov (United States)

    El Enshasy, Hesham A; Hatti-Kaul, Rajni

    2013-12-01

    For centuries, mushrooms have been used as food and medicine in different cultures. More recently, many bioactive compounds have been isolated from different types of mushrooms. Among these, immunomodulators have gained much interest based on the increasing growth of the immunotherapy sector. Mushroom immunomodulators are classified under four categories based on their chemical nature as: lectins, terpenoids, proteins, and polysaccharides. These compounds are produced naturally in mushrooms cultivated in greenhouses. For effective industrial production, cultivation is carried out in submerged culture to increase the bioactive compound yield, decrease the production time, and reduce the cost of downstream processing. This review provides a comprehensive overview on mushroom immunomodulators in terms of chemistry, industrial production, and applications in medical and nonmedical sectors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Volatile metabolites from actinomycetes

    DEFF Research Database (Denmark)

    Scholler, C.E.G.; Gurtler, H.; Pedersen, R.

    2002-01-01

    Twenty-six Streptomyces spp. were screened for their volatile production capacity on yeast starch agar. The volatile organic compounds (VOCs) were concentrated on a porous polymer throughout an 8-day growth period. VOCs were analyzed by gas chromatography with flame ionization detection...... and identified or characterized by gas chromatography-mass spectrometry. A total of 120 VOCs were characterized by retention index and mass spectra. Fifty-three compounds were characterized as terpenoid compounds, among which 18 could be identified. Among the VOCs were alkanes, alkenes, alcohols, esters, ketones....... The relationship between the excretion of geosmin and the production of spores was examined for one isolate. A good correlation between headspace geosmin and the number of spores was observed, suggesting that VOCs could be used to indicate the activity of these microorganisms in heterogeneous substrates....

  10. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity

    Science.gov (United States)

    Govindappa, M.; Farheen, H.; Chandrappa, C. P.; Channabasava; Rai, Ravishankar V.; Raghavendra, Vinay B.

    2016-09-01

    Silver nanoparticles were synthesized using endophytic fungal species, Penicillium species from Glycosmis mautitiana. Phytochemicals, namely tannins, saponins, terpenoids and flavonoids, were identified in Penicillium species extracts, and act as agents of reducing and capping in the conversion of silver nanoparticles into nanoparticles. Using SEM, UV-spectroscopy and XRD, the Penicillium species silver nanoparticles (PsAgNPs) were characterized. The PsAgNPs are shown to be strong antioxidants (DDPH and FRAP), have demonstrated anti-inflammatory properties by three different methods in vitro and strongly inhibited the activity of xanthine oxidase, lipoxygenase and tyrosine kinase. E. coli and P. aeruginosa bacterial species were strongly inhibited by PsAgNPs activity at maximum levels and SEM picture of P. aeruginosa confirms these effects and that they were shrunken due to the toxic effect of PsAgNPs.

  11. Raman spectroscopy for the characterization of different fractions of hemp essential oil extracted at 130 °C using steam distillation method

    Science.gov (United States)

    Hanif, Muhammad Asif; Nawaz, Haq; Naz, Saima; Mukhtar, Rubina; Rashid, Nosheen; Bhatti, Ijaz Ahmad; Saleem, Muhammad

    2017-07-01

    In this study, Raman spectroscopy along with Principal Component Analysis (PCA) is used for the characterization of pure essential oil (pure EO) isolated from the leaves of the Hemp (Cannabis sativa L.,) as well as its different fractions obtained by fractional distillation process. Raman spectra of pure Hemp essential oil and its different fractions show characteristic key bands of main volatile terpenes and terpenoids, which significantly differentiate them from each other. These bands provide information about the chemical composition of sample under investigation and hence can be used as Raman spectral markers for the qualitative monitoring of the pure EO and different fractions containing different active compounds. PCA differentiates the Raman spectral data into different clusters and loadings of the PCA further confirm the biological origin of the different fractions of the essential oil.

  12. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Chemical Constituents of Luffa acutangula (L.) Roxb Fruit

    Science.gov (United States)

    Suryanti, V.; Marliyana, S. D.; Astuti, I. Y.

    2017-04-01

    The phytochemical screening conducted on ethanol extract of Luffa acutangula (L.) Roxb’s fruit revealed the presence of alkaloids, saponins, carotenoids and terpenoids and the absence of flavonoids, tannins and anthraquinones. The GC-MS of the analysis L. acutangula (L.) Roxb’s fraction resulted in the identification of six compounds. The compounds that could be identified were 2,3-dihydro,3,5-dihydroxy-6-methyl-(4H)-pyran-4-one; 3,7,11,15-tetramethyl-2-hexadecen-1-ol; (3β, 20R)-cholest-5-en-3-ol; n-hexadecanoic acid; 9, 12, 15-octadecatrienoic acid methyl ester and citronellyl tiglate. The present study provides evidence that L. acutangula’s fruit contains medicinally important bioactive compounds and this justifies the possibly use of these fruits as traditional medicine for treatment of various diseases.

  14. Yellow colored blooms of Argemone mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity

    Science.gov (United States)

    Chandrasekhar, N.; Vinay, S. P.

    2017-11-01

    In the present work, AgNPs were prepared using a simple bio-reduction method. This is ecologically welcoming and cost-effective method. Yellow colored blooms concentrate of Argemone mexicana and Turnera ulmifolia are used as bio reducing agents in the study. The formation of silver nanoparticles was confirmed by UV-Vis spectrophotometer and characterization of the nanoparticles was done by FTIR, SEM, XRD and EDX. The Antibacterial action of silver nanoparticles was tested against Staphylococus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella aerogenes. The phytochemical analysis of the blooms concentrate has shown the existence of saponins, alkaloids, amino acids, phenols, tannins, terpenoids, flavonoids and cardiac glycosides. In vitro anti-oxidant action of both A. mexicana and T. ulmifolia AgNPs were studied by DPPH assay and reducing power assay.

  15. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    Directory of Open Access Journals (Sweden)

    Eduardo Fuentes

    2013-01-01

    Full Text Available Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists.

  16. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity

    Science.gov (United States)

    Dash, Shib Shankar; Bag, Braja Gopal

    2014-01-01

    Punica granatum juice, a delicious multivitamin drink of great medicinal significance, is rich in different types of phytochemicals, such as terpenoids, alkaloids, sterols, polyphenols, sugars, fatty acids, aromatic compounds, amino acids, tocopherols, etc. We have demonstrated the use of the juice for the synthesis of gold nanoparticles (AuNPs) at room temperature under very mild conditions. The synthesis of the AuNPs was complete in few minutes and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the fruit extract. The AuNPs were characterized by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, fourier transform infrared spectroscopy and X-ray diffraction studies. Catalytic activity of the synthesized colloidal AuNPs has also been demonstrated.

  17. Determination of total lipids and characterization of marigold flower extracts (Calendula officinalis

    Directory of Open Access Journals (Sweden)

    Novković Vesna M.

    2005-01-01

    Full Text Available Bioactive extracts from marigold flower are important ingredients for parapharmaceutical and cosmetic preparations. Their antiflogistic holeretic.antimicrobic, antidermatic and anticancer effects are due to the presence of flavonoids, carotenoids, etheric oils, and terpenoids. This study presents the results of spectrophotometric investigation for the overall carotene content calculated as (3-caroten (442 nm, visual and physico-chemical characteristics according to Ph.Jug. V in oil extracts of marigold flower obtained by maceration (room temperature and 70°C and percolation (room temperature with olive oil and sunflower oil by original procedures.The largest content of (3-carotene (57.5 mg/kg of oil extracts is in the oil extract obtained by maceration for 72 hours with olive oil (solvomodulus 1:5 m/m at room temperature.

  18. A Spotlight on Chemical Constituents and Pharmacological Activities of Nigella glandulifera Freyn et Sint Seeds

    Directory of Open Access Journals (Sweden)

    Besma Boubertakh

    2013-01-01

    Full Text Available Plants belonging to the Ranunculaceae family, and particularly their seeds, have been a hot research topic in numerous pharmacognosy laboratories. Nigella glandulifera Freyn et Sint (NG is one of the promising, but relatively insufficiently studied, plants from this family. In this review, we summarize the recently isolated chemical constituents from the seeds of this plant including alkaloids, flavonol glycosides, isobenzofuranone derivatives, saponins, terpenes, terpenoids, and fatty acids. We put also a spotlight on the recently studied therapeutic potentials of such amazing herb seeds as antidiabetes, melanogenesis inhibition, anticancer, anti-inflammatory, antithrombosis, and antiplatelet aggregation effects. Herein, we illustrate certain properties and potentials via selected examples, and thus we suggest more studies to confirm the therapeutic hypotheses, find out new compounds, and eventually to discover novel properties.

  19. AKTIFITAS ANTIINFLAMASI TOPIKAL MINYAK ATSIRI DAN EKSTRAK ETER TUMBUHAN TENGGULUN, PROTIUM JAVANICUM, BURM TERHADAP MODEL INFLAMASI KULIT PADA TIKUS

    Directory of Open Access Journals (Sweden)

    I Wayan Suirta

    2016-06-01

    Full Text Available ABSTRAK: Tenggulun (Protium javanicum, Burm secara tradisional telah dimanfaatkan masyarakat Bali sebagai tanaman obat untuk mengobati bengkak. Penelitian ini bertujuan untuk menentukan aktivitas antiinflamasi ekstrak eter kulit batang dan minyak atsiri daun tengulun pada udem (inflamasi telinga tikus yang diinduksi TPA (12-O-tetradecanoylphorbol-13-acetate secara topikal. Ekstraksi dilakukan dengan maserasi dan isolasi minyak atsiri dengan distilasi uap. Pada penelitian ini digunakan rancangan acak lengkap dengan sembilan kelompok perlakuan dengan masing-masing perlakuan terdiri dari lima ekor tikus. Inflamasi diukur 6 jam setelah perlakuan. Hasil triturasi 180g ekstrak etanol kulit batang tenggulun diperoleh 6,30 g ekstrak dietil eter dan hasil distilasi uap 4,5 kg daun segar diperoleh 2,5 g minyak atsiri. Hasil uji fitokimia ekstrak kulit batang tenggulun mengandung senyawa golongan terpenoid dan minyak atsiri mengandung senyawa flavonoid, terpenoid, dan steroid. Hasil uji aktifitas antiinflamasi menunjukkan bahwa persentase hambatan peradangan dari ekstrak tenggulun didapatkan : KEI (58,34% , KEII (54,17% , KEIII (45,85% dan KAI (50,02% yang menunjukkan hambatan yang tidak berbeda secara bermakna dengan hambatan yang diberikan oleh kontrol positip  KP (62,50%. Ekstrak eter 12 mg dan 20 mg masih memberikan hambatan peradangan yang lebih besar dari minyak atsiri 20 mg. Hasil uji histologi menunjukkan ekstrak eter dan minyak atsiri dapat menghambat migrasi sel radang lebih dari 50%.  Jumlah sel radang yang bermigrasi ke daerah peradangan sebanyak 17 sel untuk ekstrak eter dosis 20 mg/telinga  dan 20 sel radang untuk minyak atsiri dosis 20 mg/ telinga. Dengan induksi TPA jumlah sel radang yang bermigrasi ke daerah peradangan sebanyak 64 sel ABSTRACT: Protium javanicum, Burm (Tenggulun has been used traditionally in Bali as medicines to treat inflamation. This research aimed to evaluate topical anti-inflammatory activity of stem bark ether

  20. The chemistry and pharmacology of Ligularia przewalskii: A review.

    Science.gov (United States)

    Liu, Shi-Jun; Tang, Zhi-Shu; Liao, Zhi-Xin; Cui, Chun-Li; Liu, Hong-Bo; Liang, Yan-Ni; Zhang, Yu; Xu, Hong-Bo; Zhang, Dong-Bo; Zheng, Ya-Ting; Shi, Huan-Xian; Li, Shi-Ying

    2018-06-12

    Ligularia przewalskii (Maxim.) Diels (LP) (called zhangyetuowu in Chinese), is generally found in moist forest areas in the western regions of China. The root, leaves and flower of LP are utilized as a common traditional medicine in China. It has been utilized conventionally in herbal remedies for the remedy of haemoptysis, asthma, pulmonary phthisis, jaundice hepatitis, food poisoning, bronchitis, cough, fever, wound healing, measles, carbuncle, swelling and phlegm diseases. The review aims to provide a systematic summary of LP and to reveal the correlation between the traditional uses and pharmacological activities in order to provide updated, comprehensive and categorized information and identify the therapeutic potential for its use as a new medicine. The relevant data were searched by using the keywords "Ligularia przewalskii" "phytochemistry", "pharmacology", "Traditional uses", and "Toxicity" in "Scopus", "Scifinder", "Springer", "Pubmed", "Wiley", "Web of Science", "China Knowledge Resource Integrated databases (CNKI)", "Ph.D." and "M.Sc. dissertations", and a hand-search was done to acquire peer-reviewed articles and reports about LP. The plant taxonomy was validated by the databases "The Plant List", "Flora Reipublicae Popularis Sinicae", "A Collection of Qinghai Economic Plants", "Inner Mongolia plant medicine Chi", Zhonghua-bencao and the Standard of Chinese herbal medicine in Gansu. Based on the traditional uses, the chemical nature and biological effects of LP have been the focus of research. In modern research, approximately seventy-six secondary metabolites, including thirty-eight terpenoids, nine benzofuran derivatives, seven flavonoids, ten sterols and others, were isolated from this plant. They exhibit anti-inflammatory, antioxidative, anti-bacterial and anti-tumour effects, and so on. Currently, there is no report on the toxicity of LP, but hepatotoxic pyrrolizidine alkaloids (HPA) were first detected with LC/MS n in LP, and they have potential

  1. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L. Extract

    Directory of Open Access Journals (Sweden)

    Pedro Mena

    2016-11-01

    Full Text Available This paper presents a comprehensive analysis of the phytochemical profile of a proprietary rosemary (Rosmarinus officinalis L. extract rich in carnosic acid. A characterization of the (polyphenolic and volatile fractions of the extract was carried out using mass spectrometric techniques. The (polyphenolic composition was assessed by ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MSn and a total of 57 compounds were tentatively identified and quantified, 14 of these being detected in rosemary extract for the first time. The rosemary extract contained 24 flavonoids (mainly flavones, although flavonols and flavanones were also detected, 5 phenolic acids, 24 diterpenoids (carnosic acid, carnosol, and rosmanol derivatives, 1 triterpenoid (betulinic acid, and 3 lignans (medioresinol derivatives. Carnosic acid was the predominant phenolic compound. The volatile profile of the rosemary extract was evaluated by head space solid-phase microextraction (HS-SPME linked to gas chromatography-mass spectrometry (GC-MS. Sixty-three volatile molecules (mainly terpenes, alcohols, esters, aldehydes, and ketones were identified. This characterization extends the current knowledge on the phytochemistry of Rosmarinus officinalis and is, to our knowledge, the broadest profiling of its secondary metabolites to date. It can assist in the authentication of rosemary extracts or rosemary-containing products or in testing its bioactivity. Moreover, this methodological approach could be applied to the study of other plant-based food ingredients.

  2. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract.

    Science.gov (United States)

    Mena, Pedro; Cirlini, Martina; Tassotti, Michele; Herrlinger, Kelli A; Dall'Asta, Chiara; Del Rio, Daniele

    2016-11-19

    This paper presents a comprehensive analysis of the phytochemical profile of a proprietary rosemary ( Rosmarinus officinalis L.) extract rich in carnosic acid. A characterization of the (poly)phenolic and volatile fractions of the extract was carried out using mass spectrometric techniques. The (poly)phenolic composition was assessed by ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MS n ) and a total of 57 compounds were tentatively identified and quantified, 14 of these being detected in rosemary extract for the first time. The rosemary extract contained 24 flavonoids (mainly flavones, although flavonols and flavanones were also detected), 5 phenolic acids, 24 diterpenoids (carnosic acid, carnosol, and rosmanol derivatives), 1 triterpenoid (betulinic acid), and 3 lignans (medioresinol derivatives). Carnosic acid was the predominant phenolic compound. The volatile profile of the rosemary extract was evaluated by head space solid-phase microextraction (HS-SPME) linked to gas chromatography-mass spectrometry (GC-MS). Sixty-three volatile molecules (mainly terpenes, alcohols, esters, aldehydes, and ketones) were identified. This characterization extends the current knowledge on the phytochemistry of Rosmarinus officinalis and is, to our knowledge, the broadest profiling of its secondary metabolites to date. It can assist in the authentication of rosemary extracts or rosemary-containing products or in testing its bioactivity. Moreover, this methodological approach could be applied to the study of other plant-based food ingredients.

  3. Interaction of plant essential oil terpenoids with the southern cattle tick tyramine receptor: A potential biopesticide target

    Science.gov (United States)

    The southern cattle tick (Rhipicephalus (Boophilus) microplus) has historically been a devastating pest to the cattle industry worldwide. The use of chemical acaricides has been the mainstay for controlling the southern cattle tick. However, there have been several reports of chemical acaricide resi...

  4. Phytochemical screening and in-vitro evaluation of pharmacological activities of peels of Musa sapientum and Carica papaya fruit.

    Science.gov (United States)

    Siddique, Sarmad; Nawaz, Shamsa; Muhammad, Faqir; Akhtar, Bushra; Aslam, Bilal

    2018-06-01

    Aqueous, absolute and 80% ethanolic extract of fruit peels of Musa sapientum and Carica papaya were investigated for their antibacterial activity, measured by disc diffusion method and antioxidant activity, measured by four different methods. Papaya and banana peels were found to contain terpenoids, tannins, alkaloids, saponins steroid, phenols, fixed oils and fats. 80% ethanolic extract of banana peel was found to contain highest total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity but in papaya peel, highest TPC and reducing activity was shown by water extract while, TFC and radical scavenging activity was given by 80% ethanolic extract. In banana, water extract showed highest antibacterial activity against tested bacteria while in case of papaya, absolute ethanolic extract showed highest antibacterial activity. The present study revealed that peels of banana and papaya fruits are potentially good source of antioxidant and antibacterial agents.

  5. RESEARCH OF SOPHORA JAPONICA L. FLOWER BUDS VOLATILE COMPOUNDS WITH GAS-CHROMATOGRAPHY/MASS- SPECTROMETRY METHOD

    Directory of Open Access Journals (Sweden)

    Cholak I.S.

    2013-10-01

    Full Text Available This work represents the results of the research ofessential oil contained in Sophora japonica L. flowerbuds volatile compounds collected during the nextstages of their development: green flower buds, formedflower buds and the beginning of flower buds opening.Essential oil assay content in Sophora japonica L.flower buds was determined with hydrodistillationmethod. Content of essential oil in the raw material isless than 0,1%. Qualitative composition and assaycontent of Sophora japonica L. flower buds essential oilconstituents were determined with chromato-massspectrometry method. In consequence of the research 80constituents were identified in Sophora japonica L.flower buds out of which 61 substances are during thegreen flower buds and beginning of flower budsopening stages, 66 substances are during formed flowerbuds stage. Substances are represented by aliphatic andcyclic terpenoids, their alcohols and ketones. Mostvolatile substances were extracted on the stage offormed buds.

  6. Antidiabetic potential of Conocarpus lancifolius

    Directory of Open Access Journals (Sweden)

    Malik Saadullah

    2014-06-01

    Full Text Available The antidiabetic activity of Conocarpus lancifolius extract was investigated in vitro, as alpha glucosidase inhibition and in vivo as alloxan induced diabetic rabbits with other biochemical parameters (LDL, HDL, SGPT, SGOT, cretinine, urea and triglyceride. Alpha-glucosidase inhibition activity was performed by using acorbose as standred. Methanolic extract show alpha-glucosidase inhibition activity. The dose of 200 mg/kg body weight significantly (p<0.05 decreases the blood glucose level, plasma total cholesterol, triglycerides and LDL in treated rabbits as compared to diabetic rabbits. This dose significantly increased the level of HDL in treated group. The activity of SGOT and SGPT also significantly (p<0.05 decreased in treated diabetic rabbits. Phytochemical studies show the presence of glycosides, tannins, saponins and terpenoids. The antidiabetic potential is may be due to its saponin contents.

  7. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  8. Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review.

    Science.gov (United States)

    Hasanudin, Khairunnisa; Hashim, Puziah; Mustafa, Shuhaimi

    2012-08-13

    Corn silk (Stigma maydis) is an important herb used traditionally by the Chinese, and Native Americans to treat many diseases. It is also used as traditional medicine in many parts of the world such as Turkey, United States and France. Its potential antioxidant and healthcare applications as diuretic agent, in hyperglycemia reduction, as anti-depressant and anti-fatigue use have been claimed in several reports. Other uses of corn silk include teas and supplements to treat urinary related problems. The potential use is very much related to its properties and mechanism of action of its plant's bioactive constituents such as flavonoids and terpenoids. As such, this review will cover the research findings on the potential applications of corn silk in healthcare which include its phytochemical and pharmacological activities. In addition, the botanical description and its toxicological studies are also included.

  9. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study

    Science.gov (United States)

    Roy, Pragyan; Das, Bhagyalaxmi; Mohanty, Abhipsa; Mohapatra, Sujata

    2017-11-01

    In this study, green synthesis of silver nanoparticles was done using leaf extracts of Azadirachta indica. The flavonoids and terpenoids present in the extract act as both reducing and capping agent. Microbes ( Escherichia coli and Gram-positive bacteria) were isolated from borewell water using selective media. The silver nanoparticles showed antimicrobial activities against Gram-positive bacteria and E. coli. However the silver nanoparticles were more effective against E. coli as compared to Gram-positive bacteria. Various techniques were used to characterize synthesized silver nanoparticles such as DLS and UV-visible spectrophotometer. The absorbance peak was in the range of 420-450 nm, that varied depending upon the variation in the concentration of neem extract. This is a very rapid and cost-effective method for generation of silver nanoparticle at room temperature, however, its exact dose in water purification has to be determined.

  10. Isolation of bioactive allelochemicals from sunflower (variety Suncross-42) through fractionation-guided bioassays.

    Science.gov (United States)

    Anjum, Tehmina; Bajwa, Rukhsana

    2010-11-01

    Plants are rich source of biologically active allelochemicals. However, natural product discovery is not an easy task. Many problems encountered during this laborious practice can be overcome through the modification of preliminary trials. Bioassay-directed isolation of active plant compounds can increase efficiency by eliminating many of the problems encountered. This strategy avoids unnecessary compounds, concentrating on potential components and thus reducing the cost and time required. In this study, a crude aqueous extract of sunflower leaves was fractionated through high performance liquid chromatography. The isolated fractions were checked against Chenopodium album and Rumex dentatus. The fraction found active against two selected weeds was re-fractionated, and the active components were checked for their composition. Thin layer chromatography isolated a range of phenolics, whereas the presence of bioactive terpenoids was confirmed through mass spectroscopy and nuclear magnetic resonance spectroscopy.

  11. Compostos voláteis em méis florais Volatile compounds in floral honeys

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Bastos De Maria

    2003-01-01

    Full Text Available A review about origin, composition and importance of volatile compounds in floral honeys is presented. Hydrocarbons, aromatic components, acids, diacids, terpenoids, ketones, aldehydes, esters and alcohols have been found in honey aroma of different botanical origin. Cis-rose oxide has been proposed as an indicator for Tilia cordata honey. Citrus honeys are known to contain methyl anthranilate, a compound which other honeys virtually lack. Linalool, phenylethylalcohol, phenylacetaldehyde, p-anisaldehyde and benzaldehyde are important contributors for the aroma of different unifloral honeys. Both isovaleric acid, gama-decalactone and benzoic acid appears to be important odourants for Anarcadium occidentale and Croton sp. honeys from Brazil. The furfurylmercaptan, benzyl alcohol, delta-octalactone, eugenol, phenylethylalcohol and guaiacol appear to be only relevant compounds for Anarcadium occidentale. The vanillin was considered an important odourant only for Croton sp..

  12. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  13. Enhanced antimicrobial activity in biosynthesized ZnO nanoparticles

    Science.gov (United States)

    Kumari, Niraj; Kumari, Priti; Jha, Anal K.; Prasad, K.

    2018-05-01

    Biological synthesis of different metallic and/or oxide nanoparticles and their applications especially in agriculture and biomedical sciences are gaining prominence nowadays due to their handy and reproducible synthetic protocols which are cost-effective and eco-friendly. In this work, green synthesis of zinc oxide nanoparticles (ZnO NPs) using the alcoholic extract of Azadirachta indica as a reducing and stabilizing agent has been presented. Formation of ZnO NPs was confirmed by X-ray diffraction, scanning and transmission electron microscopy techniques. The phytochemicals responsible for nano-transformation were principally alkaloids, flavanoids, terpenoids, tannins and organic acids present in the Azadirachta indica leaves. The synthesized ZnO NPs were used for antimicrobial assays by disc diffusion method against Staphylococcus aureus and Candida albicans. Results showed that ZnO NPs may act as antimicrobial agent especially against skin infections.

  14. Comparison of Essential Oils from Three Kinds of Cryptotaenia japonica Hassk (Kirimitsuba, Nemitsuba, and Itomitsuba) used in Japanese Food.

    Science.gov (United States)

    Okuno, Yoshiharu; Marumoto, Shinsuke; Miyazawa, Mitsuo

    2017-11-01

    The compositions of the essential oils from three kinds of Cryptotaenia japonica Hassk ("Mitsuba" in Japanese, Kirimitsuba (KM), Nemitsuba (NM), and Itomitsuba (IM)) were investigated by capillary GC/GC-MS. The oils contained 53 volatile components, of which 95% were terpenoids. The major constituents were sesquiterpenoids, which were α-selinene (KM: 39.1%; NM: 38.4%; IM: 13.2%), β-selinene (15.5%, 15.2%, 4.8%), germacrene D (12.1%, 7.2%, 24.1%), trans-farnesene (11.1%, 6.0%, 10.9%), β-elemene (2.9%, 2.9%, 6.8%), and trans-caryophyllene (1.7%, 1.7%, 2.6%). The main sesquiterpene found in KM and NM was α-selinene and in IM was germacrene D. The major monoterpenes found were β-myrcene (3.8%, 6.7%, and 3.5%) and β-pinene (2.8%, 0.2%, and 1.4%).

  15. In silicio expression analysis of PKS genes isolated from Cannabis sativa L.

    Directory of Open Access Journals (Sweden)

    Isvett J. Flores-Sanchez

    2010-01-01

    Full Text Available Cannabinoids, flavonoids, and stilbenoids have been identified in the annual dioecious plant Cannabis sativa L. Of these, the cannabinoids are the best known group of this plant's natural products. Polyketide synthases (PKSs are responsible for the biosynthesis of diverse secondary metabolites, including flavonoids and stilbenoids. Biosynthetically, the cannabinoids are polyketide substituted with terpenoid moiety. Using an RT-PCR homology search, PKS cDNAs were isolated from cannabis plants. The deduced amino acid sequences showed 51%-73% identity to other CHS/STS type sequences of the PKS family. Further, phylogenetic analysis revealed that these PKS cDNAs grouped with other non-chalcone-producing PKSs. Homology modeling analysis of these cannabis PKSs predicts a 3D overall fold, similar to alfalfa CHS2, with small steric differences on the residues that shape the active site of the cannabis PKSs.

  16. Use of (S)-trans-gamma-monocyclofarnesol as a useful chiral building block for the stereoselective synthesis of diterpenic natural products.

    Science.gov (United States)

    Serra, Stefano; Cominetti, Alessandra A; Lissoni, Veronica

    2014-03-01

    A comprehensive study of the exploitation of (S)-trans-gamma-monocyclofarnesol as a useful chiral building block for the stereoselective synthesis of natural diterpene derivatives is here described. The farnesol derivative (+)-1 was used as starting material in the preparation of the diterpenes (S)-dehydroambliol-A and (S)-trixagol, as well as for the syntheses of the dinorditerpene (S)-dinortrixagone and of the guanidine-interrupted terpenoid (S)-dotofide. Key steps of the presented syntheses were the cross-coupling between an allyl acetate and a Grignard reagent, the Wittig reaction, the selective preparation ofa diacylguanidine derivative and the alkylation of a sulfone derivative, followed by the reductive removal of the same functional group. It is worth noting that the natural products (+)-8, (+)-12 and (+)-15 were prepared stereoselectively for the first time, thus allowing the unambiguous assignment of their absolute configuration.

  17. Bioassay-Guided Isolation of Cytotoxic Isocryptoporic Acids from Cryptoporus volvatus

    Directory of Open Access Journals (Sweden)

    Ling-Yun Zhou

    2016-12-01

    Full Text Available The present work constitutes a contribution to the phytochemical investigation of Cryptoporus volvatus aiming to search for effective cytotoxic constituents against tumor cell lines in vivo. Bioassay-guided separation of the ethylacetate extract of C. volvatus afforded four new isocryptoporic acid (ICA derivatives, ICA-B trimethyl ester (1, ICA-E (2, ICA-E pentamethyl ester (3, and ICA-G (4, together with nine known cryptoporic acids. These isocryptoporic acids are isomers of the cryptoporic acids with drimenol instead of albicanol as the terpenoid fragment; their structures were elucidated on the basis of spectroscopic evidences (UV, IR, HRMS, and NMR and comparison with literature values. All isolates show certain cytotoxic activities against five tumor cell lines. Among them, compound 4 showed an comparable activity to that of the positive control cis-platin, while other compounds exhibited weak cytotoxic activities.

  18. Primary Pharmacological and Other Important Findings on the Medicinal Plant “Aconitum Heterophyllum” (Aruna

    Directory of Open Access Journals (Sweden)

    Debashish Paramanick

    2017-06-01

    Full Text Available Abstract: Aconitum Heterophyllum (A. Heterophyllum is an indigenous medicinal plant of India and belongs to the family Ranunculaceae. A. Heterophyllum is known to possess a number of therapeutic effects. For very ancient times, this plant has been used in some formulations in the traditional healing system of India, i.e., Ayurveda. It is reported to have use in treating patients with urinary infections, diarrhea, and inflammation. It also has been used as an expectorant and for the promotion of hepatoprotective activity. The chemical studies of the plant have revealed that various parts of the plant contain alkaloids, carbohydrates, proteins and amino acids, saponins, glycosides, quinones, flavonoids, terpenoids, etc. In the present study, a comprehensive phytochemistry and pharmacognosy, as well as the medicinal properties, of A. Heterophyllum are discussed. Abstract: Scientific information on the plant was collected from various sources,

  19. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    Directory of Open Access Journals (Sweden)

    Haule Emmanuel E

    2012-10-01

    Full Text Available Abstract Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich. Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae, Maytenus senegalensis (Lam. Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922, Salmonella typhi (NCTC 8385, Vibrio cholerae (clinical isolate, and Klebsiella pneumoniae (clinical isolate using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole

  20. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    Science.gov (United States)

    2012-01-01

    Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich.) Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae), Maytenus senegalensis (Lam.) Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.)Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholerae (clinical isolate), and Klebsiella pneumoniae (clinical isolate) using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole. Both the individual