WorldWideScience

Sample records for terpenes

  1. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C[sub 10]) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C[sub 15] C[sub 20], C[sub 30], C[sub 40]) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C[sub 15]) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  2. Bacterial terpene cyclases.

    Science.gov (United States)

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references.

  3. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1992-01-01

    This report describes accomplishments over the past year on understanding of terpene synthesis in mint plants and sage. Specifically reported are the fractionation of 4-S-limonene synthetase, the enzyme responsible for the first committed step to monoterpene synthesis, along with isolation of the corresponding RNA and DNA cloning of its gene; the localization of the enzyme within the oil glands, regulation of transcription and translation of the synthetase, the pathway to camphor biosynthesis,a nd studies on the early stages and branch points of the isoprenoid pathway.

  4. 21 CFR 178.3930 - Terpene resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components of...

  5. Terpene synthases from Cannabis sativa.

    Science.gov (United States)

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  6. Terpene synthases from Cannabis sativa.

    Directory of Open Access Journals (Sweden)

    Judith K Booth

    Full Text Available Cannabis (Cannabis sativa plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E-β-ocimene, (--limonene, (+-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  7. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-01-01

    During the last grant period, we have completed studies on the key pathways of monoterpene biosynthesis and catabolism in sage and peppermint, and have, by several lines of evidence, deciphered the rate-limiting step of each pathway. We have at least partially purified and characterized the relevant enzymes of each pathway. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation depends upon the balance between biosynthesis and catabolism, and provided supporting evidence that these processes are developmentally-regulated and very closely associated with senescence of the oil glands. Oil gland ontogeny has been characterized at the ultrastructural level. We have exploited foliar-applied bioregulators to delay gland senescence, and have developed tissue explant and cell culture systems to study several elusive aspects of catabolism. We have isolated pure gland cell clusters and localized monoterpene biosynthesis and catabolism within these structures, and have used these preparations as starting materials for the purification to homogeneity of target regulatory'' enzymes. We have thus developed the necessary background knowledge, based on a firm understanding of enzymology, as well as the necessary experimental tools for studying the regulation of monoterpene metabolism at the molecular level. Furthermore, we are now in a position to extend our systematic approach to other terpenoid classes (C[sub 15]-C[sub 30]) produced by oil glands.

  8. Regulation of terpene metabolism. Progress report, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1986-01-01

    Studies on the metabolism of terpenes by peppermint (Menta piperita) are described. The studies describe the characterization of enzymes involved in the biosynthesis and catabolism of terpenes and the ultrastructure of the oil glands. 10 refs. (DT)

  9. Emergence of terpene cyclization in Artemisia annua

    OpenAIRE

    Salmon, Melissa; Laurendon, Caroline; Vardakou, Maria; Cheema, Jitender; Defernez, Marianne; Faraldos, Juan A.; O'Maille, Paul E.

    2015-01-01

    The emergence of terpene cyclization was critical to the evolutionary expansion of chemical diversity yet remains unexplored. Here we report the first discovery of an epistatic network of residues that controls the onset of terpene cyclization in Artemisia annua. We begin with amorpha-4,11-diene synthase (ADS) and (E)-b-farnesene synthase (BFS), a pair of terpene synthases that produce cyclic or linear terpenes, respectively. A library of B27,000 enzymes is generated by breeding combinations ...

  10. Biosynthesis and transport of terpenes

    NARCIS (Netherlands)

    Ting, H.M.

    2014-01-01

    Terpenoids are the largest class of natural product that are produced by plants, with functions that range from a role in plant development to direct defence against pathogens and indirect defence against insects through the attraction of natural enemies. While terpene biosynthesis genes have been

  11. Mechanistic investigations on six bacterial terpene cyclases

    Directory of Open Access Journals (Sweden)

    Patrick Rabe

    2016-08-01

    Full Text Available The products obtained by incubation of farnesyl diphosphate (FPP with six purified bacterial terpene cyclases were characterised by one- and two-dimensional NMR spectroscopic methods, allowing for a full structure elucidation. The absolute configurations of four terpenes were determined based on their optical rotary powers. Incubation experiments with 13C-labelled isotopomers of FPP in buffers containing water or deuterium oxide allowed for detailed insights into the cyclisation mechanisms of the bacterial terpene cyclases.

  12. Mapping Terpenes over the Teakettle Experimental Forest

    Science.gov (United States)

    Tycner, J.; Ustin, S.; Grigsby, S.

    2015-12-01

    Terpenes are a category of biogenic volatile organic compounds (BVOC) produced by many plants, most notably coniferous plants. Commonly, these terpenes are aromatic compounds. The intensity of terpene emission varies depending greatly on light and temperature. Through remote sensing data as well as ASD spectroradiometry data this study focuses on locating sources of terpene emissions in the Teakettle Experimental Forest. These emissions are of particular concern because of their influence on the chemical concentration of the lower troposphere, as well as being an indicator of tree health. A novel approach has been designed through this study in order to locate and further understand these terpene emissions. Terpenes such as camphene have been reported to have subtle spectral features located at around 1.7 μm. For the first time, a map of terpene sources has been constructed by accentuating this particular feature. A continuum interpolated band ratio (CIBR) was used in order to compute a relative abundance of terpenes from the AVIRIS data. The CIBR equation showed promise, as terpenes were most strongly concentrated in areas of coniferous vegetation (a primary source of terpenes) and were less prominent over bodies of water or industrialized areas. The greatest concentrations were focused over treetops and other woody vegetation. Although it is known that terpenes have weak absorption features in the SWIR, there is little information available regarding the mapping of terpene emissions. This project addresses a novel approach to observing biochemical components in the lower troposphere and could potentially give more information to explain the health of forest ecosystems.

  13. Volatilisation of terpenes from Salvia mellifera

    Science.gov (United States)

    Tyson, B. J.; Dement, W. A.; Mooney, H. A.

    1974-01-01

    The study demonstrates significant terpene volatilisation from Salvia mellifera. Net photosynthesis and dark respiration were measured in an intact branch of a potted plant using a gas analysis system. Photosynthesis and respiration rates were determined for various temperatures. The rates were directly proportional to leaf temperature and were the same in both light and dark reactions. Using the temperature curve for the steady-state rate of terpene volatilisation and the gas exchange characteristics, the daily carbon gain and terpene loss were calculated.

  14. Unique biosynthesis of sesquarterpenes (C35 terpenes).

    Science.gov (United States)

    Sato, Tsutomu

    2013-01-01

    To the best of my knowledge, only 19 cyclic and 8 linear C35 terpenes have been identified to date, and no family name was assigned to this terpene class until recently. In 2011, it was proposed that these C35 terpenes should be called sesquarterpenes. This review highlights the biosynthesis of two kinds of sesquarterpenes (C35 terpenes) that are produced via cyclization of a linear C35 isoprenoid in Bacillus and Mycobacterium species. In Bacillus species, a new type of terpene cyclase that has no sequence homology with any known terpene synthases, as well as a bifunctional terpene cyclase that biosynthesizes two classes of cyclic terpenes with different numbers of carbons as natural products, have been identified. On the other hand, in Mycobacterium species, the first bifunctional Z-prenyltransferase has been found, but a novel terpene cyclase and a unique polyprenyl reductase remain unidentified. The identification of novel enzyme types should lead to the discovery of many homologous enzymes and their products including novel natural compounds. On the other hand, many enzymes responsible for the biosynthesis of natural products have low substrate specificities in vitro. Therefore, to find novel natural products present in organisms, the multifunctionality of enzymes in the biosynthetic pathway of natural products should be analyzed.

  15. Terpene synthases are widely distributed in bacteria

    Science.gov (United States)

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  16. Emergence of terpene cyclization in Artemisia annua.

    Science.gov (United States)

    Salmon, Melissa; Laurendon, Caroline; Vardakou, Maria; Cheema, Jitender; Defernez, Marianne; Green, Sol; Faraldos, Juan A; O'Maille, Paul E

    2015-02-03

    The emergence of terpene cyclization was critical to the evolutionary expansion of chemical diversity yet remains unexplored. Here we report the first discovery of an epistatic network of residues that controls the onset of terpene cyclization in Artemisia annua. We begin with amorpha-4,11-diene synthase (ADS) and (E)-β-farnesene synthase (BFS), a pair of terpene synthases that produce cyclic or linear terpenes, respectively. A library of ~27,000 enzymes is generated by breeding combinations of natural amino-acid substitutions from the cyclic into the linear producer. We discover one dominant mutation is sufficient to activate cyclization, and together with two additional residues comprise a network of strongly epistatic interactions that activate, suppress or reactivate cyclization. Remarkably, this epistatic network of equivalent residues also controls cyclization in a BFS homologue from Citrus junos. Fitness landscape analysis of mutational trajectories provides quantitative insights into a major epoch in specialized metabolism.

  17. Supramolecular catalysis: Terpenes in tight spaces

    Science.gov (United States)

    Roach, Jeremy J.; Shenvi, Ryan A.

    2015-03-01

    The ability of enzymes to direct the synthesis of complex natural products from simple starting materials is epitomized by terpene biosynthesis. Now, a supramolecular catalyst has been shown to mimic some of the reactivity of this process.

  18. Methods for high yield production of terpenes

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  19. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host.

    Science.gov (United States)

    Yamada, Yuuki; Arima, Shiho; Nagamitsu, Tohru; Johmoto, Kohei; Uekusa, Hidehiro; Eguchi, Tadashi; Shin-ya, Kazuo; Cane, David E; Ikeda, Haruo

    2015-06-01

    Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match with any known compounds in spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowed assignment of the structures of 13 new cyclic terpenes. Among these newly identified compounds, two were found to be linear triquinane sesquiterpenes that have never previously been isolated from bacteria or any other source. The remaining 11 new compounds were shown to be diterpene hydrocarbons and alcohol, including hydropyrene (1), hydropyrenol (2), tsukubadiene (11) and odyverdienes A (12) and B (13) each displaying a novel diterpene skeleton that had not previously been reported.

  20. Extraction and Analysis of Terpenes/Terpenoids.

    Science.gov (United States)

    Jiang, Zuodong; Kempinski, Chase; Chappell, Joe

    2016-01-01

    Terpenes/terpenoids constitute one of the largest classes of natural products, this is due to the incredible chemical diversity that can arise from the biochemical transformations of the relatively simple prenyl diphosphate starter units. All terpenes/terpenoids comprise a hydrocarbon backbone that is generated from the various length prenyl diphosphates (a polymer chain of prenyl units). Upon ionization (removal) of the diphosphate group, the remaining allylic carbocation intermediates can be coaxed down complex chemical cascades leading to diverse linear and cyclized hydrocarbon backbones, which can then be further modified with a wide range of functional groups ( e.g . alcohol, ketones, etc .) and substituent additions ( e.g . sugars, fatty acids). Because of this chemical diversity, terpenes/terpenoids have great industrial uses as flavors, fragrances, high grade lubricants, biofuels, agricultural chemicals and medicines. The protocols presented here focus on the extraction of terpenes/terpenoids from various plant sources and have been divided into extraction methods for terpenes/terpenoids with various levels of chemical decoration, from the relative small, nonpolar, volatile hydrocarbons to substantially large molecules with greater physical complexity due to their chemical modifications.

  1. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels.

    Science.gov (United States)

    Mewalal, Ritesh; Rai, Durgesh K; Kainer, David; Chen, Feng; Külheim, Carsten; Peter, Gary F; Tuskan, Gerald A

    2017-03-01

    Research toward renewable and sustainable energy has identified specific terpenes capable of supplementing or replacing current petroleum-derived fuels. Despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants because of low yields. Plant terpene biosynthesis is regulated at multiple levels, leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit, including annotated genomes, high-throughput omics profiling, and genome editing, have begun to elucidate plant terpene metabolism, and such information is useful for bioengineering metabolic pathways for specific terpenes. We review here the status of terpenes as a specialty biofuel and discuss the potential of plants as a viable agronomic solution for future terpene-derived biofuels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 40 CFR 721.9635 - Terpene residue distillates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Terpene residue distillates. 721.9635... Substances § 721.9635 Terpene residue distillates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as terpene residue distillates (PMN P-96-897...

  3. Terpenes and terpenoids in chemical sensitivity.

    Science.gov (United States)

    Rea, William J; Restrepo, Carolina; Pan, Yaqin

    2015-01-01

    CONTEXT : Terpenes and terpenoids are a diverse class of organic compounds produced by a variety of plants, particularly conifers. Chemically sensitive patients can be targeted by terpenes and terpenoids, resulting in a triggering of symptoms and pathology. Often patients cannot clear their symptoms from exposure to chemicals unless terpenes and terpenoids are avoided and neutralized along with chemical avoidance and treatment. This article evaluates the presence, diagnosis, and treatment of terpenes exposure in chemically sensitive patients. A double-blind, placebo-controlled, 2-part study was designed to establish the chemically sensitive state of the patients in part 1, followed by a second set of challenges to determine each patient's concurrent sensitivity to terpenes and terpenoids in part 2. In all of the challenges, normal saline was used as a control. A case report illustrates the history of 1 patient and describes the authors' treatment methods. The study was developed and conducted at the Environmental Health Center of Dallas (EHC-D) because the environment within the center is 5 times less polluted than the surrounding environments, as determined by quantitative air analysis and particulate counts. A total of 45 chemically sensitive patients at EHC-D with odor sensitivity to terpenes. The cohort included 18 males and 27 females, aged 24-62 y.Intervention • Patients were deadapted (4 d) and evaluated in a 5-times-less-polluted environment, which was evaluated using air analysis and particulate counts. After deadaptation, the patients were challenged by inhalation in a controlled, less-polluted glass steel booth inside an environmentally controlled room with an ambient air dose of the toxics in the order of parts per billion (PPB) and parts per million (PPM). These toxics included formaldehyde, pesticide, cigarette smoke, ethanol, phenol, chlorine, new sprint, perfume, and placebo. They were also challenged intradermally with extracts of volatile

  4. Some effects of douglas fir terpenes on certain microorganisms.

    Science.gov (United States)

    Andrews, R E; Parks, L W; Spence, K D

    1980-08-01

    The Douglas fir terpene alpha-pinene was shown to inhibit the growth of a variety of bacteria and a yeast. Other terpenes of the Douglas fir, including limonene, camphene, and isobornyl acetate, were also inhibitory to Bacillus thuringiensis. All terpenes were inhibitory at concentrations normally present in the fir needle diet of Douglas fir tussock moth larvae. The presence of such terpenes in the diet of these insects was found to strongly influence the infectivity of B. thuringiensis spores for the Douglas fir tussock moth larvae. The terpene alpha-pinene destroyed the cellular integrity and modified mitochondrial activity in certain microorganisms.

  5. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    Falara, V.; Akhtar, T.A.; Nguyen, T.T.H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R.C.; Pichersky, E.

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  6. [Regulation of terpene metabolism: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-12-31

    We have completed studies on the key pathways of monoterpene biosynthesis in sage and peppermint, and on biosynthetic enzymes. We have confirmed that monoterpene turnover does occur, have deciphered the function of this process in plants, delineated the essential features of the catabolic pathways for camphor and menthone, and initiated studies on the relevant enzymology. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation (yield and composition) depends on the balance between biosynthetic and catabolic events, and provided supporting evidence that these processes are developmentally regulated and very closely associated with senescence (collapse) of the oil glands. We have demonstrated that foliar applied bioregulators influence terpene composition and yield, probably by a combination of effects in oil gland development and by more direct alteration of enzyme levels. These studies have provided a practical means for modifying terpene composition and yield and, moreover, have provided a powerful approach to studying developmental regulation in intact plants, explants and tissue culture systems. We have thus developed the fundamental background knowledge needed as well as the necessary experimental tools for studying the regulation of terpene metabolism.

  7. (Regulation of terpene metabolism: Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-01-01

    We have completed studies on the key pathways of monoterpene biosynthesis in sage and peppermint, and on biosynthetic enzymes. We have confirmed that monoterpene turnover does occur, have deciphered the function of this process in plants, delineated the essential features of the catabolic pathways for camphor and menthone, and initiated studies on the relevant enzymology. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation (yield and composition) depends on the balance between biosynthetic and catabolic events, and provided supporting evidence that these processes are developmentally regulated and very closely associated with senescence (collapse) of the oil glands. We have demonstrated that foliar applied bioregulators influence terpene composition and yield, probably by a combination of effects in oil gland development and by more direct alteration of enzyme levels. These studies have provided a practical means for modifying terpene composition and yield and, moreover, have provided a powerful approach to studying developmental regulation in intact plants, explants and tissue culture systems. We have thus developed the fundamental background knowledge needed as well as the necessary experimental tools for studying the regulation of terpene metabolism.

  8. Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem.

    Science.gov (United States)

    Achotegui-Castells, Ander; Della Rocca, Gianni; Llusià, Joan; Danti, Roberto; Barberini, Sara; Bouneb, Mabrouk; Simoni, Sauro; Michelozzi, Marco; Peñuelas, Josep

    2016-01-22

    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle.

  9. Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem

    Science.gov (United States)

    Achotegui-Castells, Ander; Della Rocca, Gianni; Llusià, Joan; Danti, Roberto; Barberini, Sara; Bouneb, Mabrouk; Simoni, Sauro; Michelozzi, Marco; Peñuelas, Josep

    2016-01-01

    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle.

  10. Differential sensing using proteins: exploiting the cross-reactivity of serum albumin to pattern individual terpenes and terpenes in perfume.

    Science.gov (United States)

    Adams, Michelle M; Anslyn, Eric V

    2009-12-02

    There has been a growing interest in the use of differential sensing for analyte classification. In an effort to mimic the mammalian senses of taste and smell, which utilize protein-based receptors, we have introduced serum albumins as nonselective receptors for recognition of small hydrophobic molecules. Herein, we employ a sensing ensemble consisting of serum albumins, a hydrophobic fluorescent indicator (PRODAN), and a hydrophobic additive (deoxycholate) to detect terpenes. With the aid of linear discriminant analysis, we successfully applied our system to differentiate five terpenes. We then extended our terpene analysis and utilized our sensing ensemble for terpene discrimination within the complex mixtures found in perfume.

  11. (Regulation of terpene metabolism. ) Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1984-01-01

    This research program represents a very broad-based approach to understanding the biochemistry of the monoterpene and sesquiterpene constituents of the essential oils. This program includes basic research on the pathways, enzymes and mechanisms of terpene biosynthesis and catabolism, on the physiology of essential oil production, and on the morphology and development of oil glands, as well as practical approaches to manipulating essential oil composition and yield. As a natural extension of research on monoterpene biosynthesis and catabolism in sage and peppermint we have explored some aspects of possible regulatory mechanisms. Tentative evidence has been obtained for developmental regulation of the levels of biosynthetic and catabolic enzymes. 10 refs., 8 figs.

  12. Cyclopentanoid terpene biosynthesis in a phasmid insect and in catmint.

    Science.gov (United States)

    Meinwald, J; Happ, G M; Labows, J; Eisner, T

    1966-01-07

    The stick insect, Anisomorpha buprestoides, and the catmint, Nepeta cataria, produce closely related cyclopentanoid terpenes, anisomorphal and nepetalactone. Tracer experiments with isotopes indicate that anisomorphal is synthesized by the walking stick from normal terpene precursors (acetate or mevalonate). In the catmint plant, isolated leaf disks synthesized nepetalactone, utilizing the same precursors.

  13. Selected oxidized fragrance terpenes are common contact allergens

    DEFF Research Database (Denmark)

    Matura, Mihaly; Sköld, Maria; Börje, Anna

    2005-01-01

    Terpenes are widely used fragrance compounds in fine fragrances, but also in domestic and occupational products. Terpenes oxidize easily due to autoxidation on air exposure. Previous studies have shown that limonene, linalool and caryophyllene are not allergenic themselves but readily form allerg...

  14. Terpenes removal from biogas; Terpenenverwijdering uit biogas

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, P.; Holstein, J.; De Haan, HR.; Vlap, H. [DNV KEMA, Arnhem (Netherlands)

    2013-06-15

    Biogas may contain unwanted and harmful components, including aromatic hydrocarbons such as terpenes. These terpenes (organic oils) are mainly present in citrus peel and plant residues; that is why especially raw biogas from organic waste digestion plants contains high concentrations of terpenes. If terpenes end up in the gas grid (with the injected biomethane) there is a risk that plastics (PE pipes) lose their mechanical properties by absorbing liquids or extracting ethereal plasticizers. This can lead to embrittlement greatly lowering the reliability of the piping. In addition, soft components are als o affected (gaskets and rubber O-rings). Besides the impact on the integrity of the gas grid, terpenes also mask the odor of natural gas odorants such as THT. This impedes the detection of gas leaks which is a significant security risk. Furthermore, the presence of terpenes in biogas leads to fouling of equipment used for the drying of biomethane, as well as contamination of adsorption liquids and membranes used in the upgrading process. Currently, terpenes are removed by activated carbon filters. The tool life of such a filter can be relatively short if terpene concentrations are high in the biogas; this results in a significant increase of the operational costs, due to the replacement of the carbon. This study looked at alternative techniques for removing much of the terpenes from biogas in a simple, efficient and cheap way. In a workshop with stakeholders two techniques were chosen to be tested on laboratory scale in order to demonstrate the proof of principle. These techniques are photo-oxydation and a gas scrubbing. Of all investigated techniques for the removal of limonene the application of UV radiation seems to be the most promising option because of the simplicity of the process, the high efficiency (up to 94%), the comparable operational costs with activated carbon (6.7 to 9.5 euro/kg limonene removed, compared to 10 euro/kg limonene removed for activated

  15. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  16. Photosynthetic terpene hydrocarbon production for fuels and chemicals.

    Science.gov (United States)

    Wang, Xin; Ort, Donald R; Yuan, Joshua S

    2015-02-01

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced 'drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to 'disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Removal of floral microbiota reduces floral terpene emissions

    Science.gov (United States)

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-10-01

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

  18. Terpene microemulsions for transdermal curcumin delivery: effects of terpenes and cosurfactants.

    Science.gov (United States)

    Liu, Chi-Hsien; Chang, Fu-Yen; Hung, De-Kai

    2011-01-01

    Microemulsion systems composed of terpenes, polysorbate 80, cosurfactants, and water were investigated as transdermal delivery vehicles for curcumin. Pseudoternary phase diagrams of three terpenes (limonene, 1,8-cineole, and α-terpineol) at a constant surfactant/cosurfactant ratio (1:1) were constructed to illustrate their phase behaviors. Limonene combined with cosurfactants like ethanol, isopropanol, and propylene glycol were employed as microemulsion ingredients to study their potential for transdermal curcumin delivery. The transdermal delivery efficacy and skin retention of curcumin were evaluated using neonate pig skin mounted on a Franz diffusion cell. The curcumin permeation rates in the limonene microemulsion studied were 30- and 44-fold higher than those of 1,8-cineole and α-terpineol microemulsions, respectively. Significant effects on the skin permeation rates were observed from microemulsions containing different limonene/water contents. Histological examination of treated skin was performed to investigate the change of skin morphologies. Characteristics such as droplet size, conductivity, interfacial tension, and viscosity were analyzed to understand the physicochemical properties of the transdermal microemulsions. In conclusion, microemulsions loaded with curcumin were successfully optimized for transdermal delivery after screening various terpenes, cosurfactants, and limonene/water ratios. These results indicate that the limonene microemulsion system is a promising tool for the percutaneous delivery of curcumin. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis.

    Science.gov (United States)

    Crocoll, Christoph; Asbach, Julia; Novak, Johannes; Gershenzon, Jonathan; Degenhardt, Jörg

    2010-08-01

    The aroma, flavor and pharmaceutical value of cultivated oregano (Origanum vulgare L.) is a consequence of its essential oil which consists mostly of monoterpenes and sesquiterpenes. To investigate the biosynthetic pathway to oregano terpenes and its regulation, we identified and characterized seven terpene synthases, key enzymes of terpene biosynthesis, from two cultivars of O. vulgare. Heterologous expression of these enzymes showed that each forms multiple mono- or sesquiterpene products and together they are responsible for the direct production of almost all terpenes found in O. vulgare essential oil. The correlation of essential oil composition with relative and absolute terpene synthase transcript concentrations in different lines of O. vulgare demonstrated that monoterpene synthase activity is predominantly regulated on the level of transcription and that the phenolic monoterpene alcohol thymol is derived from gamma-terpinene, a product of a single monoterpene synthase. The combination of heterologously-expressed terpene synthases for in vitro assays resulted in blends of mono- and sesquiterpene products that strongly resemble those found in vivo, indicating that terpene synthase expression levels directly control the composition of the essential oil. These results will facilitate metabolic engineering and directed breeding of O. vulgare cultivars with higher quantity of essential oil and improved oil composition.

  20. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products.

    Science.gov (United States)

    Brill, Zachary G; Condakes, Matthew L; Ting, Chi P; Maimone, Thomas J

    2017-09-27

    The pool of abundant chiral terpene building blocks (i.e., "chiral pool terpenes") has long served as a starting point for the chemical synthesis of complex natural products, including many terpenes themselves. As inexpensive and versatile starting materials, such compounds continue to influence modern synthetic chemistry. This review highlights 21st century terpene total syntheses which themselves use small, terpene-derived materials as building blocks. An outlook to the future of research in this area is highlighted as well.

  1. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  2. Structural determinants of reductive terpene cyclization in iridoid biosynthesis

    DEFF Research Database (Denmark)

    Kries, Hajo; Caputi, Lorenzo; Stevenson, Clare E M

    2016-01-01

    The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound...

  3. Simultaneous Determination of Flavonols and Terpene Lactones in ...

    African Journals Online (AJOL)

    Simultaneous Determination of Flavonols and Terpene Lactones in Beagle Dog Plasma by Ultra-Performance Liquid Chromatography-Tandem - Mass Spectrometry: 2. Application to Pharmacokinetic Studies on Ginkgo Leaf Extract.

  4. Multi-substrate terpene synthases: their occurrence and physiological significance

    Directory of Open Access Journals (Sweden)

    Leila Pazouki

    2016-07-01

    Full Text Available Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15, and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5, mono- (C10 and diterpenes (C20. Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

  5. Tomato Fruits-A Platform for Metabolic Engineering of Terpenes.

    Science.gov (United States)

    Gutensohn, M; Dudareva, N

    2016-01-01

    Terpenoids are a large and diverse class of plant metabolites including mono-, sesqui-, and diterpenes. They have numerous functions in basic physiological processes as well as the interaction of plants with their biotic and abiotic environment. Due to the tight regulation of biosynthetic pathways and the resulting limited natural availability of terpenes, there is a strong interest in increasing their production in plants by metabolic engineering for agricultural, pharmaceutical, and industrial applications. The tomato fruit system was developed as a platform for metabolic engineering of terpenes to overcome detrimental effects on overall plant growth and photosynthesis traits, which are affected when terpenoid engineering is performed in vegetative tissues. Here we describe how the use of fruit-specific promoters for transgene expression can avoid these unwanted effects. In addition, targeting the expression of the introduced terpene biosynthetic gene to fruit tissue can take advantage of the large precursor pool provided by the methylerythritol-phosphate (MEP) pathway, which is highly active during tomato fruit ripening to facilitate the accumulation of carotenoids. We also discuss how the production of high levels of target terpene compounds can be achieved in fruits by the expression of individual or a combination of (i) the MEP or mevalonic acid pathway enzymes, (ii) prenyltransferases, and/or (iii) terpene synthases. Finally, we provide a brief outline of how the emitted as well as internal pools of terpenes can be analyzed in transgenic tomato fruits. © 2016 Elsevier Inc. All rights reserved.

  6. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance.

    Science.gov (United States)

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

  7. Building terpene production platforms in yeast.

    Science.gov (United States)

    Zhuang, Xun; Chappell, Joe

    2015-09-01

    Plants and microbes commonly make terpenes and terpenoids in small amounts and as complex mixtures, and their chemical synthesis is often costly and inefficient. Hence, there are many efforts to create robust and efficient biological production platforms for this interesting class of molecules. In this study, our effort was directed towards building a yeast production platform using an unbiased genetic selection approach. Yeast strain BY4741 was subjected to EMS mutagenesis, followed by selection for growth in the presence of nystatin, squalestatin, and exogenous cholesterol. This unbiased screen selected for mutant yeast lines having a dispensable mevalonate pathway and containing uncharacterized SUE (sterol uptake enhancement) mutations supporting aerobic uptake of exogenous sterol. These mutants were next screened for high level accumulation of farnesol (FOH), an indicator for high level accumulation of the key intermediate FPP, farnesyl diphosphate. To further improve the FPP pool in these mutants, insertional mutations into the ERG9 gene (coding for squalene synthase) were introduced into those lines capable of accumulating ≥50 mg farnesol/L. This generated another series of lines that accumulated farnesol levels over 70 mg/L in small-scale shake cultures. To evaluate the utility of these lines as a general production platform for specific terpenes, select SUE/erg9 lines were transformed with a vector harboring the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene encoding for a sesquiterpene synthase. The new yeast line ZX178-08 accumulated the highest level of premnaspirodiene, up to 116 mg/L, with FOH levels of 23.6 mg/L. In comparison, the parental line BY4741 accumulated 10 times less premnaspirodiene, 10.94 mg/L, with no farnesol detectable. Co-expression of the HPS gene with an amino-terminal truncated, catalytic form of the hamster HMGR gene, tHMGR, increased premnaspirodiene accumulation to 170.23 ± 30.44 mg/L, almost a 50

  8. Terpene and dextran renewable resources for the synthesis of amphiphilic biopolymers.

    Science.gov (United States)

    Alvès, Marie-Hélène; Sfeir, Huda; Tranchant, Jean-François; Gombart, Emilie; Sagorin, Gilles; Caillol, Sylvain; Billon, Laurent; Save, Maud

    2014-01-13

    The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.

  9. Terpenic profile of different Rosmarinus officinalis extracts.

    Science.gov (United States)

    Olah, Neli-Kinga; Benedec, Daniela; Socaci, Sonia; Toma, Claudia Crina; Filip, Lorena; Morgovan, Claudiu; Hanganu, Daniela

    2017-07-01

    The Rosemary (Rosmarinus officinalis L.), a well-known medicinal and culinary herb, was studied to compare the terpenic profile of different extracts obtained from dry and fresh herb. There were studied the volatile oil extracted by hydro distillation from dry plant, the hydroalcoholic extracts obtained from fresh respectively dry plant and the glycerol macerate obtained from fresh plant, by GC-MS using headspace injection. The separated compounds were identified using a MS spectra library. The quantitative determination was performed by normalization respectively by calibration curve method for 1,8-cineole, alpha-pinene and D-limonene. The main separated compounds were alpha-pinene, 1,8-cineol, camphene, camphor, D-limonene and cymene. A significant difference was observed between the 4 samples volatile profiles. 1,8-cineole was found major component of the essential oil (VO-21.39%) and glycerol macerate (GM-35.60%), while and α-pinene was detected as the main constituent of the two tinctures (T-46.05%; MT-31.93%). The highest 1,8-cineol content, determined by calibration curve method, was found in the volatile oil, while the fresh plant hydroalcoholic extract was richer in α-pinene and D-limonene.

  10. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.

    Science.gov (United States)

    Paramasivan, Kalaivani; Mutturi, Sarma

    2017-12-01

    Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses' viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40 g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies

  11. Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex.

    Science.gov (United States)

    Blanch, Josep-Salvador; Peñuelas, Josep; Llusià, Joan

    2007-10-01

    We studied the effects of water stress, fertilization and time course on foliar volatile terpene emission rates by Quercus ilex and Pinus halepensis in a garden experiment. The terpenes mostly emitted by both species were alpha-pinene, beta-pinene, beta-myrcene and Delta(3)-carene. P. halepensis emission rates (average 31.45 microg g(-1) DM h(-1)) were similar to those of Q. ilex (average 31.71 microg g(-1) DM h(-1)). The effects of drought (reduction to one-third of full watering) and fertilization (250 kg N ha(-1), 250 kg P ha(-1), or both) were different depending on the species: the drought treatment significantly increased the terpene emissions from Q. ilex by 33%, and the fertilization treatments reduced the terpene emissions from P. halepensis by 38%. Terpene emission rates increased with time course in parallel to raising summer temperatures in P. halepensis and Q. ilex, whose emission rates were temperature related (r = 0.42 and r = 0.68, respectively) and light related (r = 0.32 and r = 0.57, respectively). There was a positive relationship for P. halepensis, and a negative relationship for Q. ilex, between emission rates and relative water contents. No relationship was found between emission rates and N or P foliar concentrations. The results of this study show complex species-specific responses with stronger and faster short-term responses in terpene-non-storing than in storing species and indicate that terpene emissions may significantly change in the warmer, drier and more fertilized conditions predicted for the next decades in the Mediterranean region.

  12. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple.

    Science.gov (United States)

    Nieuwenhuizen, Niels J; Green, Sol A; Chen, Xiuyin; Bailleul, Estelle J D; Matich, Adam J; Wang, Mindy Y; Atkinson, Ross G

    2013-02-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies.

  13. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  14. Estrogenic terpenes and terpenoids: Pathways, functions and applications.

    Science.gov (United States)

    Kiyama, Ryoiti

    2017-11-15

    Terpenes are made of the isoprene unit (C 5 ), and along with their derivatives, terpenoids, they are widely distributed in plants as active ingredients involved in anti-inflammation, anti-carcinogenesis and neuroprotection. Estrogenic terpenes and terpenoids are an important category of phytoestrogens and have been used as traditional medicines. The comprehensive list of estrogenic terpenes and terpenoids includes hemi-, mono-, sesqui-, di-, tri-, tetra- and polyterpenes, their derivatives, and meroterpenes, along with the signaling pathways and cellular functions on which their estrogenicity is exerted. Signaling pathways are further classified as bidirectional or unidirectional, the latter being further divided into two types depending upon the presence of both ligands, or the absence of one or both ligands. Although estrogenic activity of terpenes and terpenoids was evaluated by ligand-binding assays, yeast two-hybrid assays, reporter-gene assays, transcription assays, protein assays, cell assays and animal testing, the mechanism of estrogenic activity is still not fully understood. Applications of estrogenic terpenes and terpenoids are categorized into cancer treatment and prevention, cardioprotection, endocrine toxicity/reproductive dysfunction, food/supplement/traditional medicine, immunology/inflammation, menopausal syndromes and neuroprotection, where their benefits are discussed based on their availability, stability and variations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Menthol differs from other terpenic essential oil constituents.

    Science.gov (United States)

    Kolassa, Norbert

    2013-02-01

    The European Medicines Agency concluded that there is a risk of suppositories containing terpenic derivatives, which are used to treat coughs and colds, inducing neurological disorders, especially convulsions, in infants and small children. Terpenic derivatives are found in essential oils obtained from plants and include camphor, eucalyptol (syn. 1,8-cineol), thujone, and menthol. Chemistry, pharmacodynamics and pharmacokinetics of these compounds are clearly different and explain the appearance of convulsions following camphor, thujone, and eucalyptus oil overdose/poisoning, whereas no convulsions have been reported in cases of menthol overdose/poisoning in accordance with the pharmacological properties of menthol. Thus, a general verdict on all terpenic derivatives without differentiation appears inappropriate. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae.

    Science.gov (United States)

    Keszei, Andras; Brubaker, Curt L; Carter, Richard; Köllner, Tobias; Degenhardt, Jörg; Foley, William J

    2010-06-01

    Myrtaceae is one of the chemically most variable and most significant essential oil yielding plant families. Despite an abundance of chemical information, very little work has focussed on the biochemistry of terpene production in these plants. We describe 70 unique partial terpene synthase transcripts and eight full-length cDNA clones from 21 myrtaceous species, and compare phylogenetic relationships and leaf oil composition to reveal clades defined by common function. We provide further support for the correlation between function and phylogenetic relationships by the first functional characterisation of terpene synthases from Myrtaceae: a 1,8-cineole synthase from Eucalyptus sideroxylon and a caryophyllene synthase from Eucalyptusdives. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Estimating terpene and terpenoid emissions from conifer oleoresin composition

    Science.gov (United States)

    Flores, Rosa M.; Doskey, Paul V.

    2015-07-01

    The following algorithm, which is based on the thermodynamics of nonelectrolyte partitioning, was developed to predict emission rates of terpenes and terpenoids from specific storage sites in conifers: Ei =xoriγoripi∘ where Ei is the emission rate (μg C gdw-1 h-1) and pi∘ is the vapor pressure (mm Hg) of the pure liquid terpene or terpenoid, respectively, and xori and γori are the mole fraction and activity coefficient (on a Raoult's law convention), respectively, of the terpene and terpenoid in the oleoresin. Activity coefficients are calculated with Hansen solubility parameters that account for dispersive, polar, and H-bonding interactions of the solutes with the oleoresin matrix. Estimates of pi∘ at 25 °C and molar enthalpies of vaporization are made with the SIMPOL.1 method and are used to estimate pi∘ at environmentally relevant temperatures. Estimated mixing ratios of terpenes and terpenols were comparatively higher above resin-acid- and monoterpene-rich oleoresins, respectively. The results indicated a greater affinity of terpenes and terpenols for the non-functionalized and carboxylic acid containing matrix through dispersive and H-bonding interactions, which are expressed in the emission algorithm by the activity coefficient. The correlation between measured emission rates of terpenes and terpenoids for Pinus strobus and emission rates predicted with the algorithm were very good (R = 0.95). Standard errors for the range and average of monoterpene emission rates were ±6 - ±86% and ±54%, respectively, and were similar in magnitude to reported standard deviations of monoterpene composition of foliar oils (±38 - ±51% and ±67%, respectively).

  18. Hydroxyl radical yields from reactions of terpene mixtures with ozone.

    Science.gov (United States)

    Forester, C D; Wells, J R

    2011-10-01

    Chamber studies were conducted to quantify hydroxyl radical (OH·) yields and to determine whether water vapor affected OH· formation in the reactions of ozone (O(3)) with a single terpene, two-component terpene mixtures, and a commercial pine oil cleaning product (POC). Solid-phase microextraction fibers (SPME) were used for sampling the terpenes and the 2-butanone formation from the hydroxyl reaction with 2-butanol as a measure of OH· yields. Analyses were performed using gas chromatography with flame ionization detection. The individual terpenes' OH· yields from α-terpineol, limonene, and α-pinene were 64 ± 8%, 64 ± 6%, and 76 ± 6%, respectively. OH· yields were also measured from two-component mixtures of these terpenes. In each mixture that contained α-terpineol, the overall OH· yield was lower than the modeled OH· yields of the individual components that comprised the reaction mixture. Reactions of a commercial POC with O(3) were also studied to determine how the individual terpenes react in a complex mixture system, and an OH· formation yield of 51 ± 6% was measured. Relative humidity did not have a significant effect on the OH· formation in the mixtures studied here. The data presented here demonstrate that mixtures may react differently than the sum of their individual components. By investigating the chemistry of mixtures of chemicals in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on indoor environments. © 2011 John Wiley & Sons A/S.

  19. SNARE-RNAi results in higher terpene emission from ectopically expressed caryophyllene synthase in nicotiana benthamiana

    NARCIS (Netherlands)

    Ting, Jimmy; Delatte, Thierry L.; Kolkman, P.; Misas-Villamil, Johana C.; Hoorn, Van Der Renier A.L.; Bouwmeester, Harro J.; Krol, van der Sander

    2015-01-01

    Plants produce numerous terpenes and much effort has been dedicated to the identification and characterization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within the cell and from the cell into the apoplast. To investigate a putative role of

  20. Development of next generation biogas cleaning and upgrading technology: demonstration of terpene removal

    NARCIS (Netherlands)

    Linders, M.J.G.; Ham, L.V. van der; Stille, L.C.; Trap, H.C.; Huigen, L.; Mooijer, J.; Goetheer, E.L.V.

    2015-01-01

    Terpenes are a problem for biogas producers, as grid owners will refuse entry to the natural gas grid when more than a few ppm terpenes are detected in the renewable natural gas injected. The problems are related to the integrity of pipelines, safety at the upgrading plant and the fact that terpenes

  1. Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants.

    Science.gov (United States)

    Cimmino, Alessio; Andolfi, Anna; Evidente, Antonio

    2014-03-01

    This review is about the isolation as well as chemical and biological characterization of simple and complex mono-, sesqui-, di-, sester- and tri-terpenes produced by fungal pathogens of agrarian and forest plants and by some allelopathic plants. In several cases, the structure activity relationships are also discussed, as well as their potential application in agriculture as natural safe herbicides, fungicides and bactericides. Furthermore, the potential application of some fungal terpenes as anticancer compounds with a new mode of action is also discussed.

  2. Chemistry and biology of terpene trilactones from Ginkgo biloba

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Nakanishi, Koji

    2004-01-01

    Ginkgo biloba, the ginkgo tree, is the oldest living tree, with a long history of use in traditional Chinese medicine. In recent years, the leaf extracts have been widely sold as phytomedicine in Europe and as a dietary supplement worldwide. Effects of Ginkgo biloba extracts have been postulated...... for total synthesis. Terpene trilactones are believed to be partly responsible for the neuromodulatory properties of Ginkgo biloba extracts, and several biological effects of the terpene trilactones have been discovered in recent years, making them attractive pharmacological tools that could provide insight...... into the effects of Ginkgo biloba extracts....

  3. Transfer of terpenes from essential oils into cow milk.

    Science.gov (United States)

    Lejonklev, J; Løkke, M M; Larsen, M K; Mortensen, G; Petersen, M A; Weisbjerg, M R

    2013-07-01

    The objective of this study was to investigate the transfer of volatile terpenes from caraway seed and oregano plant essential oils into cow's milk through respiratory and gastrointestinal exposure. Essential oils have potential applications as feed additives because of their antimicrobial properties, but very little work exists on the transfer of their volatile compounds into milk. Lactating Danish Holstein cows with duodenum cannula were used. Gastrointestinal exposure was facilitated by infusing the essential oils, mixed with deodorized sesame oil, into the duodenum cannula. Two levels were tested for each essential oil. Respiratory exposure was facilitated by placing the animal in a chamber together with a sponge soaked in the essential oils. All exposures were spread over 9h. Milk samples were collected immediately before and after exposure, as well as the next morning. Twelve monoterpenes and 2 sesquiterpenes were analyzed in essential oils and in milk samples using dynamic headspace sampling and gas chromatography-mass spectrometry. In the essential oils, almost all of the terpenes were detected in both essential oils at various levels. For caraway, the monoterpenes limonene, carvone, and carvacrol were most abundant; in oregano, the monoterpenes carvacrol and ρ-cymene were most abundant. For almost all treatments, an immediate effect was detected in milk, whereas little or no effect was detected in milk the following day. This suggests that the transfer into milk of these volatile terpenes is fast, and that the milk will not be influenced when treatment is discontinued. Principal component analysis was used to elucidate the effect of the treatments on the terpene profile of the milk. Terpene content for treatment milk samples was characterized by the same terpenes found in the treatment essential oil used for that animal, regardless of pathway of exposure. The terpenes appear to be transferred unaltered into the milk, regardless of the pathway of exposure

  4. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils

    Science.gov (United States)

    2012-01-01

    Background The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Results Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (−)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (−)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (−)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. Conclusions The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils. PMID:22682202

  5. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils.

    Science.gov (United States)

    Irmisch, Sandra; Krause, Sandra T; Kunert, Grit; Gershenzon, Jonathan; Degenhardt, Jörg; Köllner, Tobias G

    2012-06-08

    The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (-)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (-)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (-)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils.

  6. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils

    Directory of Open Access Journals (Sweden)

    Irmisch Sandra

    2012-06-01

    Full Text Available Abstract Background The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS, the key enzymes in constructing terpene carbon skeletons. Results Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita. Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (−-(E-β-caryophyllene (MrTPS1, (+-germacrene A (MrTPS3, (E-β-ocimene (MrTPS4 and (−-germacrene D (MrTPS5. A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (−-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. Conclusions The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils.

  7. Sesquarterpenes (C35 terpenes) biosynthesized via the cyclization of a linear C35 isoprenoid by a tetraprenyl-β-curcumene synthase and a tetraprenyl-β-curcumene cyclase: identification of a new terpene cyclase.

    Science.gov (United States)

    Sato, Tsutomu; Yoshida, Satoru; Hoshino, Hiroko; Tanno, Mizuki; Nakajima, Mami; Hoshino, Tsutomu

    2011-06-29

    In this study, mono- and pentacyclic C(35) terpenes from Bacillus subtilis were biosynthesized via the cyclization of C(35) isoprenoid using purified enzymes, including the first identified new terpene cyclase that shows no sequence homology to any of the known terpene cyclases. On the basis of these findings, we propose that these C(35) terpenes should be called the new family of "sesquarterpenes."

  8. Vanadium haloperoxidase-catalyzed bromination and cyclization of terpenes.

    Science.gov (United States)

    Carter-Franklin, Jayme N; Parrish, Jon D; Tschirret-Guth, Richard A; Little, R Daniel; Butler, Alison

    2003-04-02

    Marine red algae (Rhodophyta) are a rich source of bioactive halogenated natural products, including cyclic terpenes. The biogenesis of certain cyclic halogenated marine natural products is thought to involve marine haloperoxidase enzymes. Evidence is presented that vanadium bromoperoxidase (V-BrPO) isolated and cloned from marine red algae that produce halogenated compounds (e.g., Plocamium cartilagineum, Laurencia pacifica, Corallina officinalis) can catalyze the bromination and cyclization of terpenes and terpene analogues. The V-BrPO-catalyzed reaction with the monoterpene nerol in the presence of bromide ion and hydrogen peroxide produces a monobromo eight-membered cyclic ether similar to laurencin, a brominated C15 acetogenin, from Laurencia glandulifera, along with noncyclic bromohydrin, epoxide, and dibromoproducts; however, reaction of aqueous bromine with nerol produced only noncyclic bromohydrin, epoxide, and dibromoproducts. The V-BrPO-catalyzed reaction with geraniol in the presence of bromide ion and hydrogen peroxide produces two singly brominated six-membered cyclic products, analogous to the ring structures of alpha and beta snyderols, brominated sesquiterpenes from Laurencia, spp., along with noncyclic bromohydrin, epoxide, and dibromoproducts; again, reaction of geraniol with aqueous bromine produces only noncyclic bromohydrin, epoxide, and dibromoproducts. Thus, V-BrPO can direct the electrophilic bromination and cyclization of terpenes.

  9. Transfer of Orally Administered Terpenes in Goat Milk and Cheese

    Directory of Open Access Journals (Sweden)

    I. Poulopoulou

    2012-10-01

    Full Text Available The objective of the present study was to investigate the relationships between terpenes’ intake and their presence in animal tissues (blood and milk as well as in the final product (cheese. Eight dairy goats were divided in two balanced groups, representing control (C and treatment (T group. In T group oral administration of a mixture of terpenes (α-pinene, limonene and β-caryophyllene was applied over a period of 18 d. Cheese was produced, from C and T groups separately, on three time points, twice during the period of terpenes’ oral administration and once after the end of experiment. Terpenes were identified in blood by extraction using petroleum ether and in milk and cheese by the use of solid phase micro-extraction (SPME method, followed by GC-MS analysis. Chemical properties of the milk and the produced cheeses were analyzed and found not differing between the two groups. Limonene and α-pinene were found in all blood and milk samples of the T group after a lag-phase of 3 d, while β-caryophyllene was determined only in few milk samples. Moreover, none of the terpenes were traced in blood and milk of C animals. In cheese, terpenes’ concentrations presented a more complicated pattern implying that terpenes may not be reliable feed tracers. We concluded that monoterpenes can be regarded as potential feed tracers for authentification of goat milk, but further research is required on factors affecting their transfer.

  10. Sustainable heterologous production of terpene hydrocarbons in cyanobacteria.

    Science.gov (United States)

    Formighieri, Cinzia; Melis, Anastasios

    2016-12-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases (k cat = 4 s-1 or slower) makes them noncompetitive for the pool of available substrate, thereby limiting the rate and yield of product generation. Work in this paper applied transformation technologies in Synechocystis for the heterologous production of β-phellandrene (monoterpene) hydrocarbons. Conditions were defined whereby expression of the β-phellandrene synthase (PHLS), as a CpcB·PHLS fusion protein with the β-subunit of phycocyanin, accounted for up to 20 % of total cellular protein. Moreover, CpcB·PHLS was heterologously co-expressed with enzymes of the mevalonic acid (MVA) pathway and geranyl-diphosphate synthase, increasing carbon flux toward the terpenoid biosynthetic pathway and enhancing substrate availability. These improvements enabled yields of 10 mg of β-phellandrene per g of dry cell weight generated in the course of a 48-h incubation period, or the equivalent of 1 % β-phellandrene:biomass (w:w) carbon-partitioning ratio. The work helped to identify prerequisites for the efficient heterologous production of terpene hydrocarbons in cyanobacteria: (i) requirement for overexpression of the heterologous terpene synthase, so as to compensate for the slow catalytic turnover of the enzyme, and (ii) enhanced endogenous carbon partitioning toward the terpenoid biosynthetic pathway, e.g., upon heterologous co-expression of the MVA pathway, thereby supplementing the native metabolic flux toward the universal isopentenyl-diphosphate and dimethylallyl-diphosphate terpenoid precursors. The two prerequisites are shown to be critical determinants of yield in the photosynthetic CO2 to terpene hydrocarbons conversion process.

  11. Investigation of terpene diversification across multiple sequenced plant genomes.

    Science.gov (United States)

    Boutanaev, Alexander M; Moses, Tessa; Zi, Jiachen; Nelson, David R; Mugford, Sam T; Peters, Reuben J; Osbourn, Anne

    2015-01-06

    Plants produce an array of specialized metabolites, including chemicals that are important as medicines, flavors, fragrances, pigments and insecticides. The vast majority of this metabolic diversity is untapped. Here we take a systematic approach toward dissecting genetic components of plant specialized metabolism. Focusing on the terpenes, the largest class of plant natural products, we investigate the basis of terpene diversity through analysis of multiple sequenced plant genomes. The primary drivers of terpene diversification are terpenoid synthase (TS) "signature" enzymes (which generate scaffold diversity), and cytochromes P450 (CYPs), which modify and further diversify these scaffolds, so paving the way for further downstream modifications. Our systematic search of sequenced plant genomes for all TS and CYP genes reveals that distinct TS/CYP gene pairs are found together far more commonly than would be expected by chance, and that certain TS/CYP pairings predominate, providing signals for key events that are likely to have shaped terpene diversity. We recover TS/CYP gene pairs for previously characterized terpene metabolic gene clusters and demonstrate new functional pairing of TSs and CYPs within previously uncharacterized clusters. Unexpectedly, we find evidence for different mechanisms of pathway assembly in eudicots and monocots; in the former, microsyntenic blocks of TS/CYP gene pairs duplicate and provide templates for the evolution of new pathways, whereas in the latter, new pathways arise by mixing and matching of individual TS and CYP genes through dynamic genome rearrangements. This is, to our knowledge, the first documented observation of the unique pattern of TS and CYP assembly in eudicots and monocots.

  12. Terpene arms race in the Seiridium cardinale – Cupressus sempervirens pathosystem

    Science.gov (United States)

    Achotegui-Castells, Ander; Della Rocca, Gianni; Llusià, Joan; Danti, Roberto; Barberini, Sara; Bouneb, Mabrouk; Simoni, Sauro; Michelozzi, Marco; Peñuelas, Josep

    2016-01-01

    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle. PMID:26796122

  13. Progress in renewable polymers from natural terpenes, terpenoids, and rosin.

    Science.gov (United States)

    Wilbon, Perry A; Chu, Fuxiang; Tang, Chuanbing

    2013-01-11

    The development of sustainable renewable polymers from natural resources has increasingly gained attention from scientists, engineers as well as the general public and government agencies. This review covers recent progress in the field of renewable bio-based monomers and polymers from natural resources: terpenes, terpenoids, and rosin, which are a class of hydrocarbon-rich biomass with abundance and low cost, holding much potential for utilization as organic feedstocks for green plastics and composites. This review details polymerization and copolymerization of terpenes such as pinene, limonene, and myrcene and their derivatives, terpenoids including carvone and menthol, and rosin-derived monomers. The future direction on the utilization of these natural resources is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Terpene cyclization catalysed inside a self-assembled cavity

    Science.gov (United States)

    Zhang, Q.; Tiefenbacher, K.

    2015-03-01

    In nature, complex terpene natural products are formed by the so-called tail-to-head terpene (THT) cyclization. The cationic reaction cascade is promoted efficiently in complex enzyme pockets, in which cationic intermediates and transition states are stabilized. In solution, the reaction is hard to control and man-made catalysts able to perform selective THT cyclizations are lacking. We herein report the first example of a successful THT cyclization inside a supramolecular structure. The basic mode of operation in cyclase enzymes was mimicked successfully and a catalytic non-stop THT was achieved with geranyl acetate as the substrate. The results presented have implications for the postulated reaction mechanism in cyclase enzymes. Evidence indicates that the direct isomerization of a geranyl cation to the cisoid isomer, which so far was considered unlikely, is feasible.

  15. Esterification and etherification of steroid and terpene under Mitsunobu conditions

    Directory of Open Access Journals (Sweden)

    Samia Guezane Lakoud

    2016-09-01

    Full Text Available The synthesis and study of steroids and terpenes continues to be a topic of widespread interest, the esterification and etherification under Mitsunobu conditions of primary alcohol such as geraniol prepared in 95% yield, and when a chiral secondary alcohol such as cholesterol or menthol is used, sufficient configurational inversion of alcohol with 65% yield, but the reaction of tertiary alcohols the α-terpeniol for example are rare.

  16. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Catalytic Synthesis and Antifungal Activity of New Polychlorinated Natural Terpenes

    Directory of Open Access Journals (Sweden)

    Hana Ighachane

    2017-01-01

    Full Text Available Various unsaturated natural terpenes were selectively converted to the corresponding polychlorinated products in good yields using iron acetylacetonate in combination with nucleophilic cocatalyst. The synthesized compounds were evaluated for their in vitro antifungal activity. The antifungal bioassays showed that 2c and 2d possessed significant antifungal activity against Fusarium oxysporum f. sp. albedinis (Foa, Fusarium oxysporum f. sp. canariensis (Foc, and Verticillium dahliae (Vd.

  18. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots.

    Science.gov (United States)

    Yahyaa, Mosaab; Tholl, Dorothea; Cormier, Guy; Jensen, Roderick; Simon, Philipp W; Ibdah, Mwafaq

    2015-05-20

    Plants produce an excess of volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and aroma of carrots (Daucus carota L.). A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of volatile terpenes in a diverse collection of fresh carrots (D. carota L.). Here, we report on a transcriptome-based identification and functional characterization of two carrot terpene synthases, the sesquiterpene synthase, DcTPS1, and the monoterpene synthase, DcTPS2. Recombinant DcTPS1 protein produces mainly (E)-β-caryophyllene, the predominant sesquiterpene in carrot roots, and α-humulene, while recombinant DcTPS2 functions as a monoterpene synthase with geraniol as the main product. Both genes are differentially transcribed in different cultivars and during carrot root development. Our results suggest a role for DcTPS genes in carrot aroma biosynthesis.

  19. Induced Terpene Accumulation in Norway Spruce Inhibits Bark Beetle Colonization in a Dose-Dependent Manner

    Science.gov (United States)

    Zhao, Tao; Krokene, Paal; Hu, Jiang; Christiansen, Erik; Björklund, Niklas; Långström, Bo; Solheim, Halvor; Borg-Karlson, Anna-Karin

    2011-01-01

    Background Tree-killing bark beetles (Coleoptera, Scolytinae) are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization. Methods To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L.) we inoculated 20 mature Norway spruce Picea abies (L.) Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem.) C. Moreau, and investigated induced terpene levels and beetle colonization in the bark. Results Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7) had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m−2) and 2.6% as much gallery length (0.029 m m−2 vs. 1.11 m m−2) as trees with low terpene levels (n = 6). There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g−1 dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g−1 dry phloem trees were virtually unattacked. Conclusion/Significance This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles. PMID:22028932

  20. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner.

    Science.gov (United States)

    Zhao, Tao; Krokene, Paal; Hu, Jiang; Christiansen, Erik; Björklund, Niklas; Långström, Bo; Solheim, Halvor; Borg-Karlson, Anna-Karin

    2011-01-01

    Tree-killing bark beetles (Coleoptera, Scolytinae) are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization. To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L.) we inoculated 20 mature Norway spruce Picea abies (L.) Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem.) C. Moreau, and investigated induced terpene levels and beetle colonization in the bark. Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7) had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m(-2)) and 2.6% as much gallery length (0.029 m m(-2) vs. 1.11 m m(-2)) as trees with low terpene levels (n = 6). There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g(-1) dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g(-1) dry phloem trees were virtually unattacked. This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles.

  1. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner.

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    Full Text Available BACKGROUND: Tree-killing bark beetles (Coleoptera, Scolytinae are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization. METHODS: To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L. we inoculated 20 mature Norway spruce Picea abies (L. Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem. C. Moreau, and investigated induced terpene levels and beetle colonization in the bark. RESULTS: Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7 had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m(-2 and 2.6% as much gallery length (0.029 m m(-2 vs. 1.11 m m(-2 as trees with low terpene levels (n = 6. There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g(-1 dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g(-1 dry phloem trees were virtually unattacked. CONCLUSION/SIGNIFICANCE: This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles.

  2. Four terpene synthases contribute to the generation of chemotypes in tea tree (Melaleuca alternifolia).

    Science.gov (United States)

    Padovan, Amanda; Keszei, Andras; Hassan, Yasmin; Krause, Sandra T; Köllner, Tobias G; Degenhardt, Jörg; Gershenzon, Jonathan; Külheim, Carsten; Foley, William J

    2017-10-04

    Terpene rich leaves are a characteristic of Myrtaceae. There is significant qualitative variation in the terpene profile of plants within a single species, which is observable as "chemotypes". Understanding the molecular basis of chemotypic variation will help explain how such variation is maintained in natural populations as well as allowing focussed breeding for those terpenes sought by industry. The leaves of the medicinal tea tree, Melaleuca alternifolia, are used to produce terpinen-4-ol rich tea tree oil, but there are six naturally occurring chemotypes; three cardinal chemotypes (dominated by terpinen-4-ol, terpinolene and 1,8-cineole, respectively) and three intermediates. It has been predicted that three distinct terpene synthases could be responsible for the maintenance of chemotypic variation in this species. We isolated and characterised the most abundant terpene synthases (TPSs) from the three cardinal chemotypes of M. alternifolia. Functional characterisation of these enzymes shows that they produce the dominant compounds in the foliar terpene profile of all six chemotypes. Using RNA-Seq, we investigated the expression of these and 24 additional putative terpene synthases in young leaves of all six chemotypes of M. alternifolia. Despite contributing to the variation patterns observed, variation in gene expression of the three TPS genes is not enough to explain all variation for the maintenance of chemotypes. Other candidate terpene synthases as well as other levels of regulation must also be involved. The results of this study provide novel insights into the complexity of terpene biosynthesis in natural populations of a non-model organism.

  3. “Cation-Stitching Cascade”: exquisite control of terpene cyclization in cyclooctatin biosynthesis

    Science.gov (United States)

    Sato, Hajime; Teramoto, Kazuya; Masumoto, Yui; Tezuka, Noriyuki; Sakai, Kenta; Ueda, Shota; Totsuka, Yusuke; Shinada, Tetsuro; Nishiyama, Makoto; Wang, Chao; Kuzuyama, Tomohisa; Uchiyama, Masanobu

    2015-12-01

    Terpene cyclization is orchestrated by terpene cyclases, which are involved in the biosynthesis of various cyclic natural products, but understanding the origin and mechanism of the selectivity of terpene cyclization is challenging. In this work, we describe an in-depth mechanistic study on cyclooctatin biosynthesis by means of theoretical calculations combined with experimental methods. We show that the main framework of cyclooctatin is formed through domino-type carbocation transportation along the terpene chain, which we call a “cation-stitching cascade”, including multiple hydrogen-shifts and a ring rearrangement that elegantly determine the stereoselectivity.

  4. "Cation-Stitching Cascade": exquisite control of terpene cyclization in cyclooctatin biosynthesis.

    Science.gov (United States)

    Sato, Hajime; Teramoto, Kazuya; Masumoto, Yui; Tezuka, Noriyuki; Sakai, Kenta; Ueda, Shota; Totsuka, Yusuke; Shinada, Tetsuro; Nishiyama, Makoto; Wang, Chao; Kuzuyama, Tomohisa; Uchiyama, Masanobu

    2015-12-18

    Terpene cyclization is orchestrated by terpene cyclases, which are involved in the biosynthesis of various cyclic natural products, but understanding the origin and mechanism of the selectivity of terpene cyclization is challenging. In this work, we describe an in-depth mechanistic study on cyclooctatin biosynthesis by means of theoretical calculations combined with experimental methods. We show that the main framework of cyclooctatin is formed through domino-type carbocation transportation along the terpene chain, which we call a "cation-stitching cascade", including multiple hydrogen-shifts and a ring rearrangement that elegantly determine the stereoselectivity.

  5. Actividad antimicobacteriana de terpenos Antimycobacterial activity of terpenes

    Directory of Open Access Journals (Sweden)

    Juan Gabriel Bueno-Sánchez

    2009-12-01

    Full Text Available Introducción: La tuberculosis (TB, causada por Mycobacterium tuberculosis es la mayor causa de mortalidad mundial por un único agente patógeno. Asimismo, un gran número de micobacterias no tuberculosas, especialmente M. avium, M. intracellulare y M. chelonae, causan infecciones oportunistas en pacientes con SIDA. Muchos terpenos poseen actividad biológica y se emplean en el tratamiento de diversas enfermedades, razón que los hace fuente de moléculas promisorias. Objetivo: El objetivo del presente estudio fue determinar la actividad antimicobacteriana de 16 terpenos contra M. tuberculosis H37Rv y un aislamiento clínico de M. chelonae. Materiales y métodos: Se obtuvo la concentración mínima inhibitoria (CMI de los mismos y se realizaron curvas de letalidad para establecer actividad bactericida, empleando una técnica de macrodilución en caldo estandarizada para este tipo de compuestos volátiles. Resultados: Los terpenos con menor valor de CMI fueron timol y carvacrol, con concentraciones de 125-250 μg/mL, y actividad bactericida contra los dos microorganismos. Geraniol, mirceno, ρ-cimeno, alfa-pineno, presentaron valores de CMI entre 250 y 500 μg/mL. Conclusiones: Algunos terpenos han presentado actividad importante contra microorganismos del género Mycobacterium, sin embargo los valores de CMI obtenidos no explican el efecto antimicrobiano presentado por el aceite completo, se requiere evaluar las interacciones de sinergismo y/o antagonismo entre los terpenos para determinar los componentes responsables de la acción farmacológica. Salud UIS 2009; 41: 231-235Introduction: Tuberculosis (TB caused by Mycobacterium tuberculosis is the major source of global mortality from a single pathogen. Moreover, a large number of nontuberculous mycobacteria, especially M. avium, M. intracellulare and M. chelonae, cause opportunistic infection in AIDS patients. Terpenes, possess a wide spectrum of biological activity and are used in the

  6. Synthesis of a labelled terpene synthon, useful in the preparation of metabolites of [Delta][sup 1]-tetrahydrocannabinol

    Energy Technology Data Exchange (ETDEWEB)

    Szirmai, M. (Uppsala Univ. (Sweden)); Halldin, M.M.; Ohlsson, A. (Karolinska Inst., Stockholm (Sweden))

    1992-02-01

    The synthesis of an isotopically labelled terpene synthon (4) is described. The usefulness of this terpene synthon in the synthesis of [delta][sup 1]-THC metabolites is shown by preparation of ([+-])-[[sup 2]H[sub 10

  7. Transfer of terpenes from essential oils into cow milk

    DEFF Research Database (Denmark)

    Lejonklev, J.; Løkke, M.M.; Larsen, M.K.

    2013-01-01

    properties, but very little work exists on the transfer of their volatile compounds into milk. Lactating Danish Holstein cows with duodenum cannula were used. Gastrointestinal exposure was facilitated by infusing the essential oils, mixed with deodorized sesame oil, into the duodenum cannula. Two levels were......The objective of this study was to investigate the transfer of volatile terpenes from caraway seed and oregano plant essential oils into cow's milk through respiratory and gastrointestinal exposure. Essential oils have potential applications as feed additives because of their antimicrobial...

  8. Terpenes of Salvia species leaf oils: chemosystematic implications

    OpenAIRE

    Coassini Lokar, Laura; Moneghini, Mariarosa

    2017-01-01

    Wild specimens of Salvia L. were collected in three different moments of anthesis and their volatile leaf oils were analyzed by GC/GCMS. The quantitative terpene composition is very variable with the anthesis. S. bertolonii is the richest species in a-thujone. S. officinalis is characterized by high percentages of 1,8 cineole, 4-terpineol, isorboneol and a -bisabolol. In S. verticillata high percentages of borneol and {3-cariophyllene are present. In the three species a-thujone was always mor...

  9. Terpenes as Green Solvents for Extraction of Oil from Microalgae

    Directory of Open Access Journals (Sweden)

    Celine Dejoye Tanzi

    2012-07-01

    Full Text Available Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  10. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters

    NARCIS (Netherlands)

    Spyropoulou, E.A.; Haring, M.A.; Schuurink, R.C.

    2014-01-01

    BACKGROUND: Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant's defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of

  11. Production of alpha-cuprenene in Xanthophyllomyces dendrorhous : a step closer to a potent terpene biofactory

    NARCIS (Netherlands)

    Melillo, Elena; Setroikromo, Rita; Quax, Wim J.; Kayser, Oliver

    2013-01-01

    Background: The red yeast Xanthophyllomyces dendrorhous is a natural producer of the carotenoid astaxanthin. Because of its high flux, the native terpene pathway leading to the production of the tetraterpene is of particular interest as it can be redirected toward the production of other terpene

  12. Identification of isoafricanol and its terpene cyclase in Streptomyces violaceusniger using CLSA-NMR.

    Science.gov (United States)

    Riclea, Ramona; Citron, Christian A; Rinkel, Jan; Dickschat, Jeroen S

    2014-04-25

    The recently developed CLSA-NMR technique that is based on feeding experiments with (13)C-labelled precursors was applied in the identification of isoafricanol as the main volatile terpene emitted by Streptomyces violaceusniger. The isoafricanol synthase of this organism is presented, together with a recent phylogenetic analysis of bacterial terpene cyclases.

  13. [Studies on metabolism of total terpene ketones from Swertia mussotii with human intestinal bacteria].

    Science.gov (United States)

    Li, Shuang; Tian, Cheng-Wang; Wu, Shuai; Yang, Xiu-Wei; Wang, Li-Li; Zhang, Tie-Jun

    2012-12-01

    To study the metabolism of total terpene ketones from Swertia mussotii with human intestinal bacteria. Total terpene ketones were incubated with human intestinal bacteria under an anaerobic environment and at 37 degrees C. The metabolites were extracted by ethyl acetate processing, detected by HPLC-DAD method. A qualitative analysis was made for its metabolites by HPLC-MS. Eight metabolites were detected from total terpene ketones from S. mussotii with human intestinal bacteria, and two of them were preliminarily identified as gentianine and mangiferin aglycon. Total terpene ketones can be metabolized with human intestinal bacteria, which provides basis for experiments on the metabolism process total terpene ketones from S. mussotii with human intestinal bacteria.

  14. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Science.gov (United States)

    2010-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  15. A high-throughput colorimetric screening assay for terpene synthase activity based on substrate consumption.

    Directory of Open Access Journals (Sweden)

    Maiko Furubayashi

    Full Text Available Terpene synthases catalyze the formation of a variety of terpene chemical structures. Systematic mutagenesis studies have been effective in providing insights into the characteristic and complex mechanisms of C-C bond formations and in exploring the enzymatic potential for inventing new chemical structures. In addition, there is growing demand to increase terpene synthase activity in heterologous hosts, given the maturation of metabolic engineering and host breeding for terpenoid synthesis. We have developed a simple screening method for the cellular activities of terpene synthases by scoring their substrate consumption based on the color loss of the cell harboring carotenoid pathways. We demonstrate that this method can be used to detect activities of various terpene synthase or prenyltransferase genes in a high-throughput manner, irrespective of the product type, enabling the mutation analysis and directed evolution of terpene synthases. We also report the possibility for substrate-specific screening system of terpene synthases by taking advantage of the substrate-size specificity of C30 and C40 carotenoid pathways.

  16. Terpene chemodiversity of relict conifers Picea omorika, Pinus heldreichii, and Pinus peuce, endemic to Balkan.

    Science.gov (United States)

    Nikolić, Biljana; Ristić, Mihailo; Tešević, Vele; Marin, Petar D; Bojović, Srdjan

    2011-12-01

    Terpenes are often used as ecological and chemotaxonomic markers of plant species, as well as for estimation of geographic variability. Essential oils of relic and Balkan endemic/subendemic conifers, Picea omorika, Pinus heldreichii, and P. peuce, in central part of Balkan Peninsula (Serbia and Montenegro), on the level of terpene classes and common terpene compounds were investigated. In finding terpene combinations, which could show the best diversity between species and their natural populations, several statistical methods were applied. Apart from the content of different terpene classes (P. omorika has the most abundant O-containing monoterpenes and sesquiterpenes; P. heldreichii and P. peuce have the largest abundance of sesquiterpene and monoterpene hydrocarbons, resp.), the species are clearly separated according to terpene profile with 22 common compounds. But, divergences in their populations were established only in combination of several compounds (specific for each species), and they were found to be the results of geomorphologic, climatic, and genetic factors. We found similarities between investigated species and some taxa from literature with respect to terpene composition, possibly due to hybridization and phylogenetic relations. Obtained results are also important regarding to chemotaxonomy, biogeography, phylogeny, and evolution of these taxa. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  17. In vitro activity of terpenes against Candida albicans and ultrastructural alterations.

    Science.gov (United States)

    Martínez, Alejandra; Rojas, Ninón; García, Loreto; González, Felipe; Domínguez, Mariana; Catalán, Alfonso

    2014-11-01

    The purpose of this study was to investigate the in vitro activity of terpene blends combined with tissue conditioner against Candida albicans and the effect on its morphology and sub-micro structure. The minimal inhibitory concentration (MIC) of terpenes, obtained from a by-product of kraft pulping, was determined using broth microdilution against C. albicans strains, and the activity of terpenes combined with Coe-Comfort tissue conditioner was assessed. Cell morphologic alterations were evaluated using scanning electronic microscopy and transmission electronic microscopy. Data was analyzed using Student's t test P terpene blends fluctuated between 0.097% and 0.39% (v/v). Coe-Comfort tissue conditioner mixed with terpenes exhibited a total inhibition of C. albicans (P Terpenes induced ultrastructural alterations, even at the MIC value, including an increase in size, shape modification, cell wall damage with perforations, pronounced disconnection between cell wall and cytoplasm, and cytoplasmic vacuoles. Terpenes had pronounced effects against C. albicans alone and in combination with Coe-Comfort tissue conditioner, which mainly resulted in cell wall damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Ex vivo skin absorption of terpenes from Vicks VapoRub ointment.

    Science.gov (United States)

    Cal, Krzysztof; Sopala, Monika

    2008-08-01

    The pharmaceutical market offers a wide range of inhalant drug products applied on the skin that contain essential oils and/or their isolated compounds, i.e. terpenes. Because there are few data concerning the skin penetration of terpenes, especially from complex carriers, the goal of this study was to determine the ex vivo skin absorption kinetics of chosen terpenes, namely eucalyptol, menthol, camphor, alpha-pinene, and beta-pinene, from the product Vicks VapoRub. Human cadaver skin was placed in a flow-through diffusion chamber and the product was applied for 15, 30, and 60 min. After the application time the skin was separated into layers using a tape-stripping technique: three fractions of stratum corneum and epidermis with dermis, and terpenes amounts in the samples were determined by gas-chromatography. The investigated terpenes showed different absorption characteristics related to their physicochemical properties and did not permeate through the skin into the acceptor fluid. Eucalyptol had the largest total accumulation in the stratum corneum and in the epidermis with dermis, while alpha-pinene penetrated into the skin in the smallest amount. The short time in which saturation of the stratum corneum with the terpenes occurred and the high accumulation of most of the investigated terpenes in the skin layers proved that these compounds easily penetrate and permeate the stratum corneum and that in vivo they may easily penetrate into the blood circulation.

  19. Differences in volatile terpene composition between the bark and leaves of tropical tree species.

    Science.gov (United States)

    Courtois, Elodie A; Baraloto, Christopher; Paine, C E Timothy; Petronelli, Pascal; Blandinieres, Pierre-Alain; Stien, Didier; Höuel, Emeline; Bessière, Jean-Marie; Chave, Jérôme

    2012-10-01

    Volatile terpenes are among the most diverse class of defensive compounds in plants, and they are implicated in both direct and indirect defense against herbivores. In terpenes, both the quantity and the diversity of compounds appear to increase the efficiency of defense as a diverse blend of compounds provides a more efficient protection against a broader range of herbivores and limits the chances that an enemy evolves resistance. Theory predicts that plant defensive compounds should be allocated differentially among tissues according to the value of the tissue, its cost of construction and the herbivore pressure on it. We collected volatile terpenes from bark and leaves of 178 individual tree belonging to 55 angiosperm species in French Guiana and compare the kind, amount, and diversity of compounds in these tissues. We hypothesized that in woody plants, the outermost part of the trunk should hold a more diverse blend of volatile terpenes. Additionally, as herbivore communities associated with the leaves is different to the one associated with the bark, we also hypothesized that terpene blends should be distinct in the bark vs. the leaves of a given species. We found that the mixture of volatile terpenes released by bark is different and more diverse than that released by leaves, both in monoterpenes and sesquiterpenes. This supports our hypothesis and further suggests that the emission of terpenes by the bark should be more important for trunk defense than previously thought. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Chemical Components and Pharmacological Activities of Terpene Natural Products from the Genus Paeonia.

    Science.gov (United States)

    Zhao, Dan-Dan; Jiang, Li-Li; Li, Hong-Yi; Yan, Peng-Fei; Zhang, Yan-Long

    2016-10-13

    Paeonia is the single genus of ca. 33 known species in the family Paeoniaceae, found in Asia, Europe and Western North America. Up to now, more than 180 compounds have been isolated from nine species of the genus Paeonia, including terpenes, phenols, flavonoids, essential oil and tannins. Terpenes, the most abundant naturally occurring compounds, which accounted for about 57% and occurred in almost every species, are responsible for the observed in vivo and in vitro biological activities. This paper aims to give a comprehensive overview of the recent phytochemical and pharmacological knowledge of the terpenes from Paeonia plants, and enlighten further drug discovery research.

  1. Chemical Components and Pharmacological Activities of Terpene Natural Products from the Genus Paeonia

    Directory of Open Access Journals (Sweden)

    Dan-Dan Zhao

    2016-10-01

    Full Text Available Paeonia is the single genus of ca. 33 known species in the family Paeoniaceae, found in Asia, Europe and Western North America. Up to now, more than 180 compounds have been isolated from nine species of the genus Paeonia, including terpenes, phenols, flavonoids, essential oil and tannins. Terpenes, the most abundant naturally occurring compounds, which accounted for about 57% and occurred in almost every species, are responsible for the observed in vivo and in vitro biological activities. This paper aims to give a comprehensive overview of the recent phytochemical and pharmacological knowledge of the terpenes from Paeonia plants, and enlighten further drug discovery research.

  2. Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bio-Based Organic Carbonates.

    Science.gov (United States)

    Fiorani, Giulia; Stuck, Moritz; Martín, Carmen; Belmonte, Marta Martínez; Martin, Eddy; Escudero-Adán, Eduardo C; Kleij, Arjan W

    2016-06-08

    The challenging coupling of highly substituted terpene oxides and carbon dioxide into bio-based cyclic organic carbonates catalyzed by Al(aminotriphenolate) complexes is reported. Both acyclic as well as cyclic terpene oxides were used as coupling partners, showing distinct reactivity/selectivity behavior. Whereas cyclic terpene oxides showed excellent chemoselectivity towards the organic carbonate product, acyclic substrates exhibited poorer selectivities owing to concomitant epoxide rearrangement reactions and the formation of undesired oligo/polyether side products. Considering the challenging nature of these coupling reactions, the isolated yields of the targeted bio-carbonates are reasonable and in most cases in the range 50-60 %. The first crystal structures of tri-substituted terpene based cyclic carbonates are reported and their stereoconnectivity suggests that their formation proceeds through a double inversion pathway. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens.

    Science.gov (United States)

    Crutcher, Frankie K; Parich, Alexandra; Schuhmacher, Rainer; Mukherjee, Prasun K; Zeilinger, Susanne; Kenerley, Charles M

    2013-07-01

    A putative terpene cyclase vir4, which is a member of a secondary metabolite cluster, has been deleted in Trichoderma virens to determine its function. The deletion mutants were compared for volatile production with the wild-type as well as two other Trichoderma spp. This gene cluster was originally predicted to function in the synthesis of viridin and viridiol. However, the experimental evidence demonstrates that this gene cluster is involved in the synthesis of volatile terpene compounds. The entire vir4-containing gene cluster is absent in two other species of Trichoderma, T. atroviride and T. reesei. Neither of these two species synthesizes volatile terpenes associated with this cluster in T. virens. We have thus identified a novel class of volatile fungal sesquiterpenes as well as the gene cluster involved in their biosynthesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA

    OpenAIRE

    Mariia Nesterkina; Iryna Kravchenko

    2016-01-01

    Novel esters of ?-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate ac...

  5. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis.

    Science.gov (United States)

    Alessio, G A; Peñuelas, J; De Lillis, M; Llusià, J

    2008-01-01

    We investigated the implications of foliar hydration and terpene content on leaf flammability in two widely distributed forest species of the Mediterranean basin, Quercus ilex, which does not store terpenes, and Pinus halepensis, a terpene-storing species. The experiments were carried out in plants grown under different water regimes that generated a wide range of foliar hydration and terpene contents. We monitored the temperatures and time elapsed to reach the smoke, pyrolysis and flame phases. Smoke appeared much earlier (37 versus 101 s) and at lower temperatures (96 versus 139 degrees C) in Quercus ilex than in Pinus halepensis. Quercus ilex reached pyrolysis earlier than Pinus halepensis (278 versus 338 s) but at the same temperature (365-371 degrees C). There were no significant differences in time elapsed nor in temperature for flammability (386-422 s; 505-487 degrees C in both species). Quercus ilex had lower water hydration than Pinus halepensis (41 versus 100%) and the leaf content of terpenes in Quercus was three orders of magnitude lower. The results of this study show no differences in the flame phase between the two species and the absence of a significant relationship between temperature and elapsed time of the different flammability phases in relation to monoterpene content; thus indicating that the role of monoterpenes in flammability phases is smaller than that of the water content. This, however, does not exclude the effects of terpene content on plant combustibility and fire propagation once fires start.

  6. Selecting microbial strains from pine tree resin: biotechnological applications from a terpene world.

    Science.gov (United States)

    Vilanova, Cristina; Marín, Maria; Baixeras, Joaquín; Latorre, Amparo; Porcar, Manuel

    2014-01-01

    Resin is a chemical and physical defensive barrier secreted by many plants, especially coniferous trees, with insecticidal and antimicrobial properties. The degradation of terpenes, the main components accounting for the toxicity of resin, is highly relevant for a vast range of biotechnological processes, including bioremediation. In the present work, we used a resin-based selective medium in order to study the resin-tolerant microbial communities associated with the galls formed by the moth Retinia resinella; as well as resin from Pinus sylvestris forests, one of the largest ecosystems on Earth and a yet-unexplored source of terpene-degrading microorganisms. The taxonomic and functional diversity of the cultivated, resin-tolerant fraction of the whole microbiota were unveiled by high-throughput sequencing, which resulted in the detection of more than 40 bacterial genera among the terpene-degrading microorganisms, and a range of genes involved in the degradation of different terpene families. We further characterized through culture-based approaches and transcriptome sequencing selected microbial strains, including Pseudomonas sp., the most abundant species in both environmental resin and R. resinella resin-rich galls, and three fungal species, and experimentally confirmed their ability to degrade resin and also other terpene-based compounds and, thus, their potential use in biotechnological applications involving terpene catabolism.

  7. Selecting microbial strains from pine tree resin: biotechnological applications from a terpene world.

    Directory of Open Access Journals (Sweden)

    Cristina Vilanova

    Full Text Available Resin is a chemical and physical defensive barrier secreted by many plants, especially coniferous trees, with insecticidal and antimicrobial properties. The degradation of terpenes, the main components accounting for the toxicity of resin, is highly relevant for a vast range of biotechnological processes, including bioremediation. In the present work, we used a resin-based selective medium in order to study the resin-tolerant microbial communities associated with the galls formed by the moth Retinia resinella; as well as resin from Pinus sylvestris forests, one of the largest ecosystems on Earth and a yet-unexplored source of terpene-degrading microorganisms. The taxonomic and functional diversity of the cultivated, resin-tolerant fraction of the whole microbiota were unveiled by high-throughput sequencing, which resulted in the detection of more than 40 bacterial genera among the terpene-degrading microorganisms, and a range of genes involved in the degradation of different terpene families. We further characterized through culture-based approaches and transcriptome sequencing selected microbial strains, including Pseudomonas sp., the most abundant species in both environmental resin and R. resinella resin-rich galls, and three fungal species, and experimentally confirmed their ability to degrade resin and also other terpene-based compounds and, thus, their potential use in biotechnological applications involving terpene catabolism.

  8. Transcriptome analysis of terpene chemotypes of Melaleuca alternifolia across different tissues.

    Science.gov (United States)

    Bustos-Segura, Carlos; Padovan, Amanda; Kainer, David; Foley, William J; Külheim, Carsten

    2017-10-01

    Plant chemotypes or chemical polymorphisms are defined by discrete variation in secondary metabolites within a species. This variation can have consequences for ecological interactions or the human use of plants. Understanding the molecular basis of chemotypic variation can help to explain how variation of plant secondary metabolites is controlled. We explored the transcriptomes of the 3 cardinal terpene chemotypes of Melaleuca alternifolia in young leaves, mature leaves, and stem and compared transcript abundance to variation in the constitutive profile of terpenes. Leaves from chemotype 1 plants (dominated by terpinen-4-ol) show a similar pattern of gene expression when compared to chemotype 5 plants (dominated by 1,8-cineole). Only terpene synthases in young leaves were differentially expressed between these chemotypes, supporting the idea that terpenes are mainly synthetized in young tissue. Chemotype 2 plants (dominated by terpinolene) show a greater degree of differential gene expression compared to the other chemotypes, which might be related to the isolation of plant populations that exhibit this chemotype and the possibility that the terpinolene synthase gene in M. alternifolia was derived by introgression from a closely related species, Melaleuca trichostachya. By using multivariate analyses, we were able to associate terpenes with candidate terpene synthases. © 2017 John Wiley & Sons Ltd.

  9. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    Science.gov (United States)

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  10. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters.

    Science.gov (United States)

    Spyropoulou, Eleni A; Haring, Michel A; Schuurink, Robert C

    2014-05-27

    Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant's defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of transcription factors (TFs) that control the expression of terpene synthases. A trichome transcriptome database was created with a total of 27,195 contigs that contained 743 annotated TFs. Furthermore a quantitative expression database was obtained of jasmonic acid-treated trichomes. Sixteen candidate TFs were selected for further analysis. One TF of the MYC bHLH class and one of the WRKY class were able to transiently transactivate S. lycopersicum terpene synthase promoters in Nicotiana benthamiana leaves. Strikingly, SlMYC1 was shown to act synergistically with a previously identified zinc finger-like TF, Expression of Terpenoids 1 (SlEOT1) in transactivating the SlTPS5 promoter. High-throughput sequencing of tomato stem trichomes led to the discovery of two transcription factors that activated several terpene synthase promoters. Our results identified new elements of the transcriptional regulation of tomato terpene biosynthesis in trichomes, a largely unexplored field.

  11. Volatile terpenes from actinomycetes: a biosynthetic study correlating chemical analyses to genome data.

    Science.gov (United States)

    Rabe, Patrick; Citron, Christian A; Dickschat, Jeroen S

    2013-11-25

    The volatile terpenes of 24 actinomycetes whose genomes have been sequenced (or are currently being sequenced) were collected by use of a closed-loop stripping apparatus and identified by GC/MS. The analytical data were compared against a phylogenetic analysis of all 192 currently available sequences of bacterial terpene cyclases (excluding geosmin and 2-methylisoborneol synthases). In addition to the several groups of terpenes with known biosynthetic origin, selinadienes were identified as a large group of biosynthetically related sesquiterpenes that are produced by several streptomycetes. The detection of a large number of previously unrecognised side products of known terpene cyclases proved to be particularly important for an in depth understanding of biosynthetic pathways to known terpenes in actinomycetes. Interpretation of the chemical analytical data in the context of the phylogenetic tree of bacterial terpene cyclases pointed to the function of three new enzymes: (E)-β-caryophyllene synthase, selina-3,7(11)-diene synthase and aristolochene synthase. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biological activity of terpene compounds produced by biotechnological methods.

    Science.gov (United States)

    Paduch, Roman; Trytek, Mariusz; Król, Sylwia K; Kud, Joanna; Frant, Maciej; Kandefer-Szerszeń, Martyna; Fiedurek, Jan

    2016-01-01

    Biotransformation systems are profitable tools for structural modification of bioactive natural compounds into valuable biologically active terpenoids. This study determines the biological effect of (R)-(+)-limonene and (-)-α-pinene, and their oxygenated derivatives, (a) perillyl alcohol and (S)-(+)- and (R)-(-)-carvone enantiomers and (b) linalool, trans-verbenol and verbenone, respectively, on human colon tumour cells and normal colonic epithelium. Biotransformation procedures and in vitro cell culture tests were used in this work. Cells were incubated for 24 h with terpenes at concentrations of 5-500 μg/mL for NR, MTT, DPPH, and NO assays. IL-6 was determined by ELISA with/without 2 h pre-activation with 10 μg/mL LPS. trans-Verbenol and perillyl alcohol, obtained via biotransformation, produced in vitro effect against tumour cells at lower concentrations (IC50 value = 77.8 and 98.8 μg/mL, respectively) than their monoterpene precursors, (R)-(+)-limonene (IC50 value = 171.4 μg/mL) and (-)-α-pinene (IC50 value = 206.3 μg/mL). They also showed lower cytotoxicity against normal cells (IC50 > 500 and > 200 μg/mL, respectively). (S)-(+)-Carvone was 59.4% and 27.1% more toxic to tumour and normal cells, respectively, than the (R)-(-)-enantiomer. (R)-(+)-limonene derivatives decreased IL-6 production from normal cells in media with or without LPS (30.2% and 13.9%, respectively), while (-)-α-pinene derivatives induced IL-6 (verbenone had the strongest effect, 60.2% and 29.1% above control, respectively). None of the terpenes had antioxidative activity below 500 μg/mL. Bioactivity against tumour cells decreased in the following order: alcohols > ketones > hydrocarbons. (R)-(+)-limonene, (-)-α-pinene, and their derivatives expressed diverse activity towards normal and tumour cells with noticeable enantiomeric differences.

  13. Carbocations and the Complex Flavor and Bouquet of Wine: Mechanistic Aspects of Terpene Biosynthesis in Wine Grapes.

    Science.gov (United States)

    Wedler, Henry B; Pemberton, Ryan P; Tantillo, Dean J

    2015-06-11

    Computational chemistry approaches for studying the formation of terpenes/terpenoids in wines are presented, using five particular terpenes/terpenoids (1,8-cineole, α-ylangene, botrydial, rotundone, and the wine lactone), volatile compounds (or their precursors) found in wine and/or wine grapes, as representative examples. Through these examples, we show how modern computational quantum chemistry can be employed as an effective tool for assessing the validity of proposed mechanisms for terpene/terpenoid formation.

  14. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry.

    Science.gov (United States)

    Rodríguez-Maecker, Roman; Vyhmeister, Eduardo; Meisen, Stefan; Rosales Martinez, Antonio; Kuklya, Andriy; Telgheder, Ursula

    2017-11-01

    Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.

  15. [Effect of terpene penetration enhancer and its mechanisms on membrane fluidity and potential of HaCaT keratinocytes].

    Science.gov (United States)

    Lan, Yi; Wang, Jing-yan; Liu, Yan; Ru, Qing-guo; Wang, Yi-fei; Yu, Jing-xin; Wu, Qing

    2015-02-01

    The aim of this paper was to investigate the effect of terpene penetration enhancers on membrane fluidity and membrane potential using HaCaT keratinocytes, and study the potential mechanisms of these terpene compounds using as natural transdermal penetration enhancer. Six terpene compounds, namely menthol, limonene, 1,8-cineole, menthone, terpinen-4-ol and pulegone, were chosen in this study on account of their good penetration-enhancement activities. The cytotoxicity of these terpene compounds was measured using an MTT assay. The fluorescence recovery after photobleaching (FRAP) technique was employed to measure the change of membrane fluidity of HaCaT cells. The flow cytometer was used to study the alteration of membrane fluidity of HaCaT cells, and investigate the effect of terpene compounds on intracellular Ca2+. It was found that 6 terpene compounds possessed low cytotoxicity in comparison to the well-established and standard penetration enhancer azone. Those terpene compounds could significantly enhance HaCaT cells membrane fluidity and decrease HaCaT cells membrane potentials. Meanwhile, after treated with various terpene compounds, the Ca2(+)-ATPase activity and intracellular Ca2+ of HaCaT cells was decreased significantly. Terpene penetration enhancers perhaps changed the membrane fluidity and potentials of HaCaT cells by altering the Ca2+ balance of the cell inside and outside, resulting in the low skin permeability to increase the drug transdermal absorption.

  16. Terpene compound drug as medical expulsive therapy for ureterolithiasis: a meta-analysis.

    Science.gov (United States)

    Chua, Michael Erlano; Park, Jane Hyeon; Castillo, Josefino Cortez; Morales, Marcelino Lopeztan

    2013-04-01

    The aim of this study is to investigate the efficacy of terpene compound drug (pinene, camphene, borneol, anethole, fenchone and cineol in olive oil) in facilitating spontaneous passage of ureteral calculi through meta-analysis of randomized controlled trials (RCT). Systematic literature search on MEDLINE, EMBASE, OVID, Science Direct, Proquest, Google scholar, Cochrane Library databases and reference list of related literatures were done without language restriction. RCTs on ureterolithiasis medical expulsive therapy (MET) that compare terpene compound drug versus placebo/control group or alpha-blockers were identified. Articles retrieved were critically appraised by two independent reviewers according to Cochrane Collaboration recommendations. Data from included studies were extracted for calculation of risk ratio (RR) and 95 % confidence interval (CI). Effect estimates were pooled using Mantel-Haenszel method with random effect model. Inter-study heterogeneity and publication bias were assessed. The PRISMA guidelines for meta-analysis reporting were followed. Five RCTs (total of 344 subjects) of adequate methodological quality were included. Pooled effect estimates from homogenous studies showed that compared to placebo/control group, patients treated with terpene compound drug had significantly better ureteral calculi spontaneous expulsion rate (pooled RR: 1.34; 95 % CI 1.12, 1.61). Subgroup analysis of studies that compare terpene compound drug with alpha-blockers showed no significant difference (pooled RR: 0.79; 95 % CI 0.59, 1.06), while significant inter-study heterogeneity was noted. Only minor gastrointestinal adverse effect was reported on terpene compound drug use. The results suggest that terpene compound drug as MET is effective in augmenting spontaneous passage of ureterolithiasis. High quality large-scale RCTs comparing alpha-blockers and terpene compound drug are warranted to make a more definitive conclusion.

  17. Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis

    Energy Technology Data Exchange (ETDEWEB)

    Penuelas, J.; Llusia, J. [Universitat Autonoma, Barcelona (Spain)

    1997-04-01

    Rosmarinus officinalis L. plants were grown under carbon dioxide concentrations of 350 and 700 {mu}mol (atmospheric CO{sub 2} and elevated CO{sub 2}) and under two levels of irrigation (high water and low water) from October 1, 1994 to May 31, 1996. Elevated CO{sub 2} led on increasingly larger monthly growth rates than the atmospheric CO{sub 2} treatments. The increase was 9.5% in spring 1995, 23% in summer 1995, and 53% in spring 1996 in the high-water treatments, whereas in low-water treatments the growth response to elevated CO{sub 2} was constrained until the second year spring, when there was a 47% increase. The terpene concentrations was slightly larger in the elevated CO{sub 2} treatments than in atmospheric CO{sub 2} treatments and reached a maximum 37% difference in spring 1996. There was no significant effect of water treatment, likely as a result of a mild low water treatment for a Mediterranean plant. Terpene concentrations increased throughout the period of study, indicating possible age effects. The most abundant terpenes were {alpha}-pinene, cineole, camphor, borneol, and verbenone, which represented about 75% of the total. No significant differences were found in the terpene composition of the plants in the different treatments or seasons. The emission of volatile terpenes was much larger in spring (about 75 {mu}g/dry wt/hr) than in autumn (about 10 {mu}g/dry wt/hr), partly because of higher temperature and partly because of seasonal effect, but no significant differences was found because of CO{sub 2} or water treatment. The main terpene emitted was {alpha}-pinene, which represented about 50% of the total. There was no clear correlation between content and emission, either quantitatively or qualitatively. More volatile terpenes were proportionally more important in the total emission than in total content and in autumn than in spring.

  18. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species.

    Science.gov (United States)

    Borzak, Christina L; Potts, Brad M; Davies, Noel W; O'Reilly-Wapstra, Julianne M

    2015-01-01

    The development of plant secondary metabolites during early life stages can have significant ecological and evolutionary implications for plant-herbivore interactions. Foliar terpenes influence a broad range of ecological interactions, including plant defence, and their expression may be influenced by ontogenetic and genetic factors. This study investigates the role of these factors in the expression of foliar terpene compounds in Eucalyptus globulus seedlings. Seedlings were sourced from ten families each from three genetically distinct populations, representing relatively high and low chemical resistance to mammalian herbivory. Cotyledon-stage seedlings and consecutive leaf pairs of true leaves were harvested separately across an 8-month period, and analysed for eight monoterpene compounds and six sesquiterpene compounds. Foliar terpenes showed a series of dynamic changes with ontogenetic trajectories differing between populations and families, as well as between and within the two major terpene classes. Sesquiterpenes changed rapidly through ontogeny and expressed opposing trajectories between compounds, but showed consistency in pattern between populations. Conversely, changed expression in monoterpene trajectories was population- and compound-specific. The results suggest that adaptive opportunities exist for changing levels of terpene content through ontogeny, and evolution may exploit the ontogenetic patterns of change in these compounds to create a diverse ontogenetic chemical mosaic with which to defend the plant. It is hypothesized that the observed genetically based patterns in terpene ontogenetic trajectories reflect multiple changes in the regulation of genes throughout different terpene biosynthetic pathways. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Investigation of effects of terpene skin penetration enhancers on stability and biological activity of lysozyme.

    Science.gov (United States)

    Varman, Rahul M; Singh, Somnath

    2012-12-01

    The transport of proteins through skin can be facilitated potentially by using terpenes as chemical enhancers. However, we do not know about the effects of these enhancers on the stability and biological activity of proteins which is crucial for the development of safe and efficient formulations. Therefore, this project investigated the effects of terpene-based skin penetration enhancers which are reported as nontoxic to the skin (e.g., limonene, p-cymene, geraniol, farnesol, eugenol, menthol, terpineol, carveol, carvone, fenchone, and verbenone), on the conformational stability and biological activity of a model protein lysozyme. Terpene (5% v/v) was added to lysozyme solution and kept for 24 h (the time normally a transdermal patch remains) for investigating conformational stability profiles and biological activity. Fourier transform infrared spectrophotometer was used to analyze different secondary structures, e.g., α-helix, β-sheet, β-turn, and random coil. Conformational changes were also monitored by differential scanning calorimeter by determining midpoint transition temperature (Tm) and calorimetric enthalpy (ΔH). Biological activity of lysozyme was determined by measuring decrease in A (450) when it was added to a suspension of Micrococcus lysodeikticus. The results of this study indicate that terpenes 9, 10, and 11 (carvone, L-fenchone, and L-verbenone) decreased conformational stability and biological activity of lysozyme significantly (p terpenes used in this study. It is concluded that smaller terpenes containing ketones with low lipophilicity (log K (ow) ∼2.00) would be optimal for preserving conformational stability and biological activity of lysozyme in a transdermal formulation containing terpene as permeation enhancer.

  20. Terpene composited lipid nanoparticles for enhanced dermal delivery of all-trans-retinoic acids.

    Science.gov (United States)

    Charoenputtakun, Ponwanit; Pamornpathomkul, Boonnada; Opanasopit, Praneet; Rojanarata, Theerasak; Ngawhirunpat, Tanasait

    2014-01-01

    In the present study, terpene composited lipid nanoparticles and lipid nanoparticles were developed and evaluated for dermal delivery of all-trans-retinoic acids (ATRA). Terpene composited lipid nanoparticles and lipid nanoparticles were investigated for size, size distribution, zeta potential, entrapment efficiency, photostability, and cytotoxicity. In vitro skin permeation of ATRA lipid formulations were also evaluated. To explore the ability of lipid nanocarriers to target the skin, the distribution of rhodamine B base in the skin was investigated using confocal laser scanning microscopy (CLSM). The results indicated that the physicochemical characteristics of terpene composited lipid nanoparticles influenced skin permeability. All lipid nanocarriers significantly protected ATRA from photodegradation and were non-toxic to normal human foreskin fibroblast cells in vitro. Solid lipid nanoparticles containing 10% limonene (10% L-SLN) had the highest ATRA skin permeability. Terpene composited SLN and nanostructured lipid carriers (NLC) showed higher epidermal permeation of rhodamine B across the skin based on CLSM image analysis. Our study suggests that terpene composited SLN and NLC can be potentially used as dermal drug delivery carriers for ATRA.

  1. Seasonal variations in terpene emission factors of dominant species in four ecosystems in NE Spain

    Science.gov (United States)

    Llusia, Joan; Peñuelas, Josep; Guenther, Alex; Rapparini, Francesca

    2013-05-01

    We studied the daily patterns in the rates of foliar terpene emissions by four typical species from the Mediterranean region in two days of early spring and two days of summer in 4 localities of increasing biomass cover in Northern Spain. The species studied were Thymelaea tinctoria (in Monegros), Quercus coccifera (in Garraf), Quercus ilex (in Prades) and Fagus sylvatica (in Montseny). Of the total 43 VOCs detected, 23 were monoterpenes, 5 sesquiterpenes and 15 were not terpenes. Sesquiterpenes were the main terpenes emitted from T. tinctoria. Total VOC emission rates were on average about 15 times higher in summer than in early spring. The maximum rates of emission were recorded around midday. Emissions nearly stopped in the dark. No significant differences were found for nocturnal total terpene emission rates between places and seasons. The seasonal variations in the rate of terpene emissions and in their chemical composition can be explained mainly by dramatic changes in emission factors (emission capacity) associated in some cases, such as for beech trees, with very different foliar ontogenical characteristics between spring and summer. The results show that temperature and light-standardised emission rates were on average about 15 times higher in summer than in early spring, which, corroborating other works, calls to attention when applying the same emission factor in modelling throughout the different seasons of the year.

  2. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients.

    Science.gov (United States)

    Ormeño, Elena; Baldy, Virginie; Ballini, Christine; Fernandez, Catherine

    2008-09-01

    Fertilizer effects on terpene production have been noted in numerous reports. In contrast, only a few studies have studied the response of leaf terpene content to naturally different soil fertility levels. Terpene content, as determined by gas chromatography/mass spectrometry/flame ionization detector, and growth of Pinus halepensis, Rosmarinus officinalis, and Cistus albidus were studied on calcareous and siliceous soils under field conditions. The effect of nitrogen (N) and extractable phosphorus (P(E)) from these soils on terpenes was also investigated since calcareous soils mainly differ from siliceous soils in their higher nutrient loadings. Rich terpene mixtures were detected. Twenty-one terpenes appeared in leaf extracts of R. officinalis and C. albidus and 20 in P. halepensis. Growth of all species was enhanced on calcareous soils, while terpene content showed a species-specific response to soil type. The total monoterpene content of P. halepensis and that of some major compounds (e.g., delta-terpinene) were higher on calcareous than on siliceous soils. A significant and positive relationship was found between concentration of N and P(E) and leaf terpene content of this species. These findings suggest that P. halepensis may respond to an environment characterized by increasing soil deposition, by allocating carbon resources to the synthesis of terpene defense metabolites without growth reduction. Results obtained for R. officinalis showed high concentrations of numerous major monoterpenes (e.g., myrcene, camphor) in plants growing on calcareous soils, while alpha-pinene, beta-caryophyllene, and the total sesquiterpene content were higher on siliceous soils. Finally, only alloaromadendrene and delta-cadinene of C. albidus showed higher concentrations on siliceous soils. Unlike P. halepensis, soil nutrients were not involved in terpene variation in calcareous and siliceous soils of these two shrub species. Possible ecological explanations on the effect of

  3. The family of terpene synthases in plants: a mid‐size family of genes for specialized metabolism that is highly diversified throughout the kingdom

    National Research Council Canada - National Science Library

    Chen, Feng; Tholl, Dorothea; Bohlmann, Jörg; Pichersky, Eran

    2011-01-01

    .... In plants, a family of terpene synthases (TPSs) is responsible for the synthesis of the various terpene molecules from two isomeric 5‐carbon precursor ‘building blocks’, leading to 5‐carbon...

  4. Development of an alternative method for determination of terpene lactones in ginkgo dry extract.

    Science.gov (United States)

    Ekman, L; Fransson, D; Claeson, P; Johansson, M

    2009-10-01

    A new liquid chromatographic mass spectrometric (LC-MS) method for determination of terpene lactones in ginkgo dry extract has been developed. The new method has several advantages over the existing European Pharmacopoeia (Ph. Eur.) method for analysis of terpene lactones in ginkgo dry extract, the major ones being a very simple sample pre-treatment and an excellent selectivity. 5 terpene lactones were analysed with a precision expressed as relative standard deviation (RSD) of 0.4-3.1% and a mean relative error (RE) within +/-4.6%. The method was used to analyse 9 samples of ginkgo dry extracts from 3 different extract producers. The content of bilobalide was found to be in the range of 2.6-3.4% in all samples, whereas the sum of ginkgolides A, B and C was found to be in the range of 3.0-3.6%. Ginkgolide J was found in the range of 0.3-0.6%.

  5. Determination of the terpene flux from orange species and Norway spruce by relaxed eddy accumulation

    DEFF Research Database (Denmark)

    Christensen, C.S.; Hummelshøj, P.; Jensen, N.O.

    2000-01-01

    Terpene fluxes from a Norway spruce (Picea abies) forest and an orange orchard (Citrus clementii and Citrus sinensis) were measured by relaxed eddy accumulation (REA) during summer 1997. alpha-pinene and beta-pinene were the most abundant terpenes emitted from Norway spruce and constituted...... or downward flux was observed. The results from a laboratory intercomparison made in Spain deviated by maximum 7%. The flux measured at the two sites exhibited a strong diurnal variation with maximum in the afternoon and minimum in the morning hours and evenings. The applied REA system is new in its design...... rate by using two precision pumps operated at approximately 60 mi min(-1). The terpenes collected on the adsorbent tubes were significantly decomposed by ozone during sampling unless ozone scrubbers were applied. (C) 2000 Elsevier Science Ltd. All rights reserved....

  6. Inhibition of a multiproduct terpene synthase from Medicago truncatula by 3-bromoprenyl diphosphates.

    Science.gov (United States)

    Vattekkatte, Abith; Gatto, Nathalie; Schulze, Eva; Brandt, Wolfgang; Boland, Wilhelm

    2015-04-28

    The multiproduct sesquiterpene synthase MtTPS5 from Medicago truncatula catalyzes the conversion of farnesyl diphosphate (FDP) into a complex mixture of 27 terpenoids. 3-Bromo substrate analogues of geranyl diphosphate (3-BrGDP) and farnesyl diphosphate (3-BrFDP) were evaluated as substrates of MTPS5 enzyme. Kinetic studies demonstrated that these compounds were highly potent competitive inhibitors of the MtTPS5 enzyme with fast binding and slow reversibility. Since there is a lack of knowledge about the crystal structure of multiproduct terpene synthases, these molecules might be ideal candidates for obtaining a co-crystal structure with multiproduct terpene synthases. Due to the structural and mechanistic similarity between various terpene synthases we expect these 3-bromo isoprenoids to be ideal probes for crystal structure studies.

  7. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis

    OpenAIRE

    Blanch, J.; Sampedro, L.; Llusia, Joan; Moreira Tomé, X.; Zas Arregui, Rafael; Peñuelas, Josep

    2012-01-01

    We studied the effects of phosphorus fertilisation on foliar terpene concentrations and foliar volatile terpene emission rates in six half-sib families of Pinus pinaster Ait. seedlings. Half of the seedlings were resistant to attack of the pine weevil Hylobius abietis L., a generalist phloem feeder, and the remaining seedlings were susceptible to this insect. We hypothesised that P stress could modify the terpene concentration in the needles and thus lead to altered terpene emission patterns ...

  8. Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter

    NARCIS (Netherlands)

    Spyropoulou, E.A.; Haring, M.A.; Schuurink, R.C.

    2014-01-01

    Terpene biosynthesis in tomato glandular trichomes has been well studied, with most if not all terpene synthases (TPSs) being identified. However, transcription factors (TFs) that regulate TPSs have not yet been discovered from tomato. In order to unravel the transcriptional regulation of the

  9. Protective Effects of Terpenes on the Cardiovascular System: Current Advances and Future Perspectives.

    Science.gov (United States)

    Alves-Silva, Jorge M; Zuzarte, Monica; Marques, Carla; Salgueiro, Ligia; Girao, Henrique

    2016-01-01

    Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide that seriously affect patient's life quality and are responsible for huge economic and social burdens. It is widely accepted that a plant-based diet may reduce the risk of CVDs by attenuating several risk factors and/or modulating disease's onset and progression. Plants are rich in secondary metabolites, being terpenes the most abundant and structurally diverse group. These compounds have shown broad therapeutic potential as antimicrobial, antiviral, anti-inflammatory and antitumor agents. Despite their popularity, scientific evidence on terpenes cardiovascular effects remains sparse, limiting their potential use as cardioprotective and/or cardiotherapeutic agents. Bearing in mind the lack of comprehensive and systematic studies, the present review aims to gather the knowledge and some of the most scientific evidence accumulated over the past years on the effect of terpenes in the cardiovascular field with focus on CVDs namely ischemic heart disease, heart failure, arrhythmias and hypertension. Several popular search engines including PubMed, Science Direct, Scopus and Google Scholar were consulted. The bibliographic research focused primarily on English written papers published over the last 15 years. A systematic and comprehensive update on the cardiovascular effects of terpenes is provided. Moreover, whenever known, the possible mechanisms of action underlying the cardiovascular effects are pointed out as well as an attempt to identify the most relevant structure- activity relationships of the different classes of terpenes. Overall, this review enables a better understanding of the cardiovascular effects of terpenes, thus paving the way towards future research in medicinal chemistry and rational drug design.

  10. Molecular architecture and biomedical leads of terpenes from red sea marine invertebrates.

    Science.gov (United States)

    Hegazy, Mohamed Elamir F; Mohamed, Tarik A; Alhammady, Montaser A; Shaheen, Alaa M; Reda, Eman H; Elshamy, Abdelsamed I; Aziz, Mina; Paré, Paul W

    2015-05-20

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species.

  11. Temporal effects of prescribed burning on terpene production in Mediterranean pines.

    Science.gov (United States)

    Valor, Teresa; Ormeño, Elena; Casals, Pere

    2017-06-23

    Prescribed burning is used to reduce fuel hazard but underburning can damage standing trees. The effect of burning on needle terpene storage, a proxy for secondary metabolism, in fire-damaged pines is poorly understood despite the protection terpenes confer against biotic and abiotic stressors. We investigated variation in needle terpene storage after burning in three Mediterranean pine species featuring different adaptations to fire regimes. In two pure-stands of Pinus halepensis Mill. and two mixed-stands of Pinus sylvestris L. and Pinus nigra ssp. salzmanni (Dunal) Franco, we compared 24 h and 1 year post-burning concentrations with pre-burning concentrations in 20 trees per species, and evaluated the relative contribution of tree fire severity and physiological condition (δ13C and N concentration) on temporal terpene dynamics (for mono- sesqui- and diterpenes). Twenty-four hours post-burning, monoterpene concentrations were slightly higher in P. halepensis than at pre-burning, while values were similar in P. sylvestris. Differently, in the more fire-resistant P. nigra monoterpene concentrations were lower at 24 h, compared with pre-burning. One year post-burning, concentrations were always lower compared with pre- or 24 h post-burning, regardless of the terpene group. Mono- and sesquiterpene variations were negatively related to pre-burning δ13C, while diterpene variations were associated with fire-induced changes in needle δ13C and N concentration. At both post-burning times, mono- and diterpene concentrations increased significantly with crown scorch volume in all species. Differences in post-burning terpene contents as a function of the pine species' sensitivity to fire suggest that terpenic metabolites could have adaptive importance in fire-prone ecosystems in terms of flammability or defence against biotic agents post-burning. One year post-burning, our results suggest that in a context of fire-induced resource availability, pines likely prioritize

  12. Terpene sensor array with bridge-type resistors by CMOS technology

    Science.gov (United States)

    Lee, Sung Pil

    2015-07-01

    The interaction of terpene gas with the sensing element in the sensor array can cause changes in electrical properties because of a charge transfer and the polymer chain structure. Resistive type interdigited electrode sensor arrays covered with a mixture of molecularly imprinted polymer (MIP)/conductive polymer (CP) were designed and fabricated to detect terpene gases. MIP coated on CP (MOC) type showed markedly higher sensitivity compared to mixture of MIP and CP (MMC) type. The gas detection patterns by PCA were used to get higher selectivity of multicomponent chemical media.

  13. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates

    Directory of Open Access Journals (Sweden)

    Mohamed Elamir F. Hegazy

    2015-05-01

    Full Text Available Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species.

  14. The α-terpineol to 1,8-cineole cyclization reaction of tobacco terpene synthases

    NARCIS (Netherlands)

    Piechulla, Birgit; Bartelt, Richard; Brosemann, Anne; Effmert, Uta; Bouwmeester, Harro; Hippauf, Frank; Brandt, Wolfgang

    2016-01-01

    Flowers of Nicotiana species emit a characteristic blend including the cineole cassette monoterpenes. This set of terpenes is synthesized by multiproduct enzymes, with either 1,8-cineole or α-terpineol contributing most to the volatile spectrum, thus referring to cineole or terpineol synthase,

  15. Ozone-initiated terpene reaction products in five European offices: Replacement of a floor cleaning agent

    NARCIS (Netherlands)

    Nørgaard, A.W.; Kofoed-Sørensen, V.; Mandin, C.; Ventura, G.; Mabilia, R.; Perreca, E.; Cattaneo, A.; Spinazzè, A.; Mihucz, V.G.; Szigeti, T.; De Kluizenaar, Y.; Cornelissen, H.J.M.; Trantallidi, M.; Carrer, P.; Sakellaris, I.; Bartzis, J.; Wolkoff, P.

    2014-01-01

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union

  16. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum.

    Science.gov (United States)

    Pontin, Mariela; Bottini, Rubén; Burba, José Luis; Piccoli, Patricia

    2015-07-01

    This study investigated terpene biosynthesis in different tissues (root, protobulb, leaf sheath and blade) of in vitro-grown garlic plants either infected or not (control) with Sclerotium cepivorum, the causative agent of Allium White Rot disease. The terpenes identified by gas chromatography-electron impact mass spectrometry (GC-EIMS) in infected plants were nerolidol, phytol, squalene, α-pinene, terpinolene, limonene, 1,8-cineole and γ-terpinene, whose levels significantly increased when exposed to the fungus. Consistent with this, an increase in terpene synthase (TPS) activity was measured in infected plants. Among the terpenes identified, nerolidol, α-pinene and terpinolene were the most abundant with antifungal activity against S. cepivorum being assessed in vitro by mycelium growth inhibition. Nerolidol and terpinolene significantly reduced sclerotia production, while α-pinene stimulated it in a concentration-dependent manner. Parallel to fungal growth inhibition, electron microscopy observations established morphological alterations in the hyphae exposed to terpinolene and nerolidol. Differences in hyphal EtBr uptake suggested that one of the antifungal mechanisms of nerolidol and terpinolene might be disruption of fungal membrane integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Needle Terpenes as Chemotaxonomic Markers in Pinus: Subsections Pinus and Pinaster.

    Science.gov (United States)

    Mitić, Zorica S; Jovanović, Snežana Č; Zlatković, Bojan K; Nikolić, Biljana M; Stojanović, Gordana S; Marin, Petar D

    2017-05-01

    Chemical compositions of needle essential oils of 27 taxa from the section Pinus, including 20 and 7 taxa of the subsections Pinus and Pinaster, respectively, were compared in order to determine chemotaxonomic significance of terpenes at infrageneric level. According to analysis of variance, six out of 31 studied terpene characters were characterized by a high level of significance, indicating statistically significant difference between the examined subsections. Agglomerative hierarchical cluster analysis has shown separation of eight groups, where representatives of subsect. Pinaster were distributed within the first seven groups on the dendrogram together with P. nigra subsp. laricio and P. merkusii from the subsect. Pinus. On the other hand, the eighth group included the majority of the members of subsect. Pinus. Our findings, based on terpene characters, complement those obtained from morphological, biochemical, and molecular parameters studied over the past two decades. In addition, results presented in this article confirmed that terpenes are good markers at infrageneric level. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  18. Concurrent and supercritical fluid chromatographic analysis of Terpene Lactones and ginkolic acids in Ginko biloba

    Science.gov (United States)

    Supercritical fluid chromatography was used to resolve and determine ginkgolic acids (GAs) and terpene lactones concurrently in ginkgo plant materials and commercial dietary supplements. Analysis of GAs (C13:0, C15:0, C15:1 and C17:1) was carried out by ESI (-) mass detection. The ESI (-) spectra of...

  19. Comprehensive two-dimensional gas chromatography for determination of the terpenes profile of blue honeysuckle berries.

    Science.gov (United States)

    Kupska, Magdalena; Chmiel, Tomasz; Jędrkiewicz, Renata; Wardencki, Waldemar; Namieśnik, Jacek

    2014-01-01

    Terpenes are the main group of secondary metabolites, which play essential role in human. The establishment of the terpenes profile of berries of different blue honeysuckle cultivars was achieved by headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GC×GC-TOFMS). The berries were found to contain 44 terpenes identified by GC×GC-TOFMS. From these, 10 were previously reported in blueberries. According to their chemical structure, the compounds were organised in different groups: monoterpene hydrocarbons and monoterpene oxygen-containing compounds (oxides, alcohols, aldehydes, and ketones). Positive identification of some of the compounds was performed using authentic standards, while tentative identification of the compounds was based on deconvoluted mass spectra and comparison of linear retention indices (LRI) with literature values. The major components of volatile fraction were monoterpenes, such as eucalyptol, linalool and p-cymene. Furthermore, quantitative analysis showed that eucalyptol was the most abundant bioactive terpene in analysed berries (12.4-418.2 μg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae.

    Science.gov (United States)

    Wu, Weihua; Tran, William; Taatjes, Craig A; Alonso-Gutierrez, Jorge; Lee, Taek Soon; Gladden, John M

    2016-01-01

    Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs) derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME) and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.

  1. Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes.

    Science.gov (United States)

    Zhang, Pangzhen; Fuentes, Sigfredo; Siebert, Tracey; Krstic, Mark; Herderich, Markus; Barlow, Edward William R; Howell, Kate

    2016-08-01

    The flavour of wine is derived, in part, from the flavour compounds present in the grape, which change as the grapes accumulate sugar and ripen. Grape berry terpene concentrations may vary at different stages of berry development. This study aimed to investigate terpene evolution in grape berries from four weeks post-flowering to maturity. Grape bunches were sampled at fortnightly intervals over two vintages (2012-13 and 2013-14). In total, five monoterpenoids, 24 sesquiterpenes, and four norisoprenoids were detected in grape samples. The highest concentrations of total monoterpenoids, total sesquiterpenes, and total norisoprenoids in grapes were all observed at pre-veraison. Terpenes derived from the same biosynthetic pathway had a similar production pattern during berry development. Terpenes in grapes at harvest might not necessarily be synthesised at post-veraison, since the compounds or their precursors may already exist in grapes at pre-veraison, with the veraison to harvest period functioning to convert these precursors into final products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae.

    Directory of Open Access Journals (Sweden)

    Weihua Wu

    Full Text Available Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.

  3. Mechanism-Based Post-Translational Modification and Inactivation in Terpene Synthases.

    Science.gov (United States)

    Kersten, Roland D; Diedrich, Jolene K; Yates, John R; Noel, Joseph P

    2015-11-20

    Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Moreover, the level of cation-mediated inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.

  4. Natural and Semi synthetic Antimalarial Compounds: Emphasis on the Terpene Class.

    Science.gov (United States)

    Silva, G N S; Rezende, L C D; Emery, F S; Gosmann, G; Gnoatto, S C B

    2015-01-01

    Malaria is one of the most important tropical diseases since more than 40% of the world population is at risk. This disease is endemic to more than 100 nations and remains one of the main leading causes of death in children less than five years of age worldwide. Natural product-derived compounds have played a major role in drug discovery, often as prototypes to obtain more active semi synthetic derivatives. Antimalarial pharmacotherapy is a significant example of plant-derived medicines, such as quinine and artemisinin. This review highlights studies on terpenes and their semi synthetic derivatives from natural sources with antimalarial activity reported in the literature during eleven years (2002-2013). A total of 114 compounds are found among terpenes and their semi synthetic derivatives. Cytotoxicity of the compounds is also found in this review. Furthermore, the physicochemical properties of the terpenes addressed are discussed based on seven well established descriptors, which provide a useful source for the elaboration of a terpene library of antimalarial compounds.

  5. In Vitro Screening of α-Amylase Inhibition by Selected Terpenes ...

    African Journals Online (AJOL)

    HP

    from 0.39 – 5.50 µmol cm-3. Commercial sera (with normal-N and high-H enzyme activity) were used as a source of α-amylase. α-Amylase activity was determined by standard methods using an automated analyzer. Results: All the selected terpenes at their maximal concentrations inhibited α-amylase in N-sera in the.

  6. Comparison of terpene composition in Engelmann spruce (Picea engelmannii) using hydrodistillation, SPME and PLE.

    Science.gov (United States)

    Mardarowicz, Marek; Wianowska, Dorota; Dawidowicz, Andrzej L; Sawicki, Ryszard

    2004-01-01

    Terpenes emitted by conifer trees are generally determined by analysing plant extracts or essential oils, prepared from foliage and cones using steam distillation. The application of these procedures limits experiments to cut plant materials. Recently headspace techniques have been adopted to examine terpene emission by living plants. This paper deals with the application of solid-phase micro-extraction (SPME) for the analysis of terpenes emitted by conifers foliage of Engelmann spruce (Picea engelmannii), including its seedlings. The compositions of SPME extracts obtained for destroyed and non-destroyed old and juvenile spruce needles were compared with the compositions of essential oils and pressurised liquid extraction (PLE) extracts corresponding to the same plant materials. No substantial differences have been found in the qualitative terpene composition estimated by analysing essential oil and PLE and SPME extracts from non-destroyed old and juvenile foliage. The disintegration of spruce needles results in the formation of a significant amount of myrcene in the case of the old conifer foliage and non-terpenoic compounds in the case of juvenile conifer foliage. This phenomenon can be attributed to enzymatic reactions occurring in the destroyed plant cells.

  7. 75 FR 39450 - Terpene Constituents of the Extract of Chenopodium ambrosioides

    Science.gov (United States)

    2010-07-09

    ... human consumption. 2. d-Limonene is a major terpene constituent of lemon oil, orange oil, and grapefruit..., raspberries, lemon oil, and spices. p-Cymene is permitted by FDA for direct addition to food as a flavoring... Health Assessment Data Requirements Acute toxicity data were submitted for this synthetically...

  8. CCN activity of secondary aerosols from terpene ozonolysis under atmospheric relevant conditions

    Science.gov (United States)

    Yuan, Cheng; Ma, Yan; Diao, Yiwei; Yao, Lei; Zhou, Yaoyao; Wang, Xing; Zheng, Jun

    2017-04-01

    Gas-phase ozonolysis of terpenes is an important source of atmospheric secondary organic aerosol. The contribution of terpene-derived aerosols to the atmospheric cloud condensation nucleus (CCN) burden under atmospheric conditions, however, remains highly uncertain. The results obtained in previous studies under simple laboratory conditions may not be applicable to atmospheric relevant conditions. Here we present that CCN activities of aerosols from terpene ozonolysis can be significantly affected by atmospheric relevant species that can act as stabilized Criegee intermediate (SCI) or OH scavengers. Ozonolysis reactions of α-pinene, limonene, α-cedrene, and α-humulene were conducted in a 4.5 m3 collapsible fluoropolymer chamber at near-atmospheric concentrations in the presence of different OH scavengers (cyclohexane, 2-butanol, or CO) and SCI scavengers (CH3COOH, H2O, or SO2). The number size distribution and CCN activity of aerosol particles formed during ozonolysis were simultaneously determined. Additionally, particulate products were chemically analyzed by using a Filter Inlet for Gases and AEROsols High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer. Results showed that aerosol CCN activity following monoterpene ozonolysis was more sensitive to the choice of OH scavengers, while that from sesquiterpene ozonolysis was significantly affected by SCI scavengers. Combined with chemical analysis results, it was concluded that the unimolecular decomposition of CIs giving hygroscopic organic products can be largely suppressed by bimolecular reactions during sesquiterpene ozonolysis but was not significantly impacted in monoterpene ozonolysis. Our study underscores the key role of CIs in the CCN activity of terpene ozonolysis-derived aerosols. The effects of atmospheric relevant species (e.g., SO2, H2O, and CO) need to be considered when assessing the contribution of biogenic terpenes to the atmospheric CCN burden under ambient conditions.

  9. The health significance of gas- and particle-phase terpene oxidation products: a review.

    Science.gov (United States)

    Rohr, Annette C

    2013-10-01

    The reactions between terpenes and ozone (or other oxidants) produce a wide variety of both gas- and particle-phase products. Terpenes are biogenic volatile organic compounds (VOCs) that are also contained in many consumer products. Ozone is present indoors since it infiltrates into the indoor environment and is emitted by some office and consumer equipment. Some of the gaseous products formed are irritating to biological tissues, while the condensed-phase products have received attention due to their contribution to ambient fine particulate matter (PM2.5) and its respective health significance. Despite common scientific questions, the indoor and ambient air research communities have tended to operate in isolation regarding this topic. This review critically evaluates the literature related to terpene oxidation products and attempts to synthesize results of indoor and ambient air studies to better understand the health significance of these materials and identify knowledge gaps. The review documents the results of a literature search covering terpene oxidation chemistry, epidemiological, toxicological, and controlled human exposure studies, as well as health studies focused more generically on secondary organic aerosol (SOA). The literature shows a clear role for gas-phase terpene oxidation products in adverse airway effects at high concentrations; however, whether these effects occur at more environmentally relevant levels is unclear. The evidence for toxicity of particle-phase products is less conclusive. Knowledge gaps and future research needs are outlined, and include the need for more consistency in study designs, incorporation of reaction product measurements into epidemiological studies conducted in both indoor and ambient settings, and more focused research on the toxicity of SOA, especially SOA of biogenic origin. © 2013.

  10. Rice terpene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses.

    Science.gov (United States)

    Lee, Gun Woong; Lee, Sungbeom; Chung, Moon-Soo; Jeong, Yeon Sim; Chung, Byung Yeoup

    2015-07-01

    This study examined the volatile terpenes produced by rice seedlings in response to oxidative stress induced by various abiotic factors. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analyses revealed that when exposed to UV-B radiation, rice seedlings emitted a bouquet of monoterpene mixtures in a time-dependent manner. The mixtures comprised limonene, sabinene, myrcene, α-terpinene, β-ocimene, γ-terpinene, and α-terpinolene. Among them, (S)-limonene was the most abundant volatile, discriminated by chiral SPME-GC-MS. The volatile profiles collected from rice plants treated with both γ-irradiation and H2O2 were identical to those observed in the UV-B irradiated plants, thus indicating that the volatile mixtures were specifically produced in response to oxidative stress, particularly in the presence of H2O2. Using a reverse genetics approach, we isolated full-length rice terpene synthase 20 (OsTPS20, 599 amino acids, 69.39 kDa), which was further characterized as an (S)-limonene synthase by removing the N-terminal signal peptide (63 amino acids) of the protein. The recombinant OsTPS20 protein catalyzed the conversion of geranyl diphosphate to (S)-limonene and other minor monoterpenes, essentially covering all of the volatile compounds detected from the plant. Moreover, qRT-PCR revealed that the transcript levels of OsTPS20 were significantly induced in response to oxidative stress, thereby suggesting that OsTPS20 plays a major role in producing terpene volatiles during abiotic stress. Detailed biochemical analyses and the unusual domain characteristics of OsTPS20 are also discussed in this report.

  11. Analysis of terpene lactones in a Ginkgo leaf extract by high-performance liquid chromatography using charged aerosol detection.

    Science.gov (United States)

    Kakigi, Yasuhiro; Mochizuki, Naoki; Icho, Takeshi; Hakamatsuka, Takashi; Goda, Yukihiro

    2010-01-01

    A new HPLC method using charged aerosol detection was developed for the determination of terpene lactones in a Ginkgo leaf extract. The linearity of the standard curves was excellent (r>0.999). The repeatability of the method was less than 3%, and its reproducibility was less than 5% for each analyte. The limit of detection was between 0.087 and 0.45 microg/ml. The developed method was applied to the analysis of terpene lactones in Ginkgo leaf products distributed in the Japanese market. The results suggest that some health food products contained approximately equivalent amounts of terpene lactones to those in the medical product and that the proportion of terpene lactones varied in each health product.

  12. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis.

    Science.gov (United States)

    Blanch, J-S; Sampedro, L; Llusià, J; Moreira, X; Zas, R; Peñuelas, J

    2012-03-01

    We studied the effects of phosphorus fertilisation on foliar terpene concentrations and foliar volatile terpene emission rates in six half-sib families of Pinus pinaster Ait. seedlings. Half of the seedlings were resistant to attack of the pine weevil Hylobius abietis L., a generalist phloem feeder, and the remaining seedlings were susceptible to this insect. We hypothesised that P stress could modify the terpene concentration in the needles and thus lead to altered terpene emission patterns relevant to plant-insect signalling. The total concentration and emission rate ranged between 5732 and 13,995 μg·g(-1) DW and between 2 and 22 μg·g(-1) DW·h(-1), respectively. Storage and emission were dominated by the isomers α- and β-pinene (77.2% and 84.2% of the total terpene amount amassed and released, respectively). In both resistant and susceptible families, P stress caused an increase of 31% in foliar terpene concentration with an associated 5-fold decrease in terpene emission rates. A higher terpene content in the leaves implies that the 'excess carbon', available under limiting growth conditions (P scarcity), is allocated to terpene production. Sensitive families showed a greater increase in terpene emission rates with increasing P concentrations, which could explain their susceptibility to H. abietis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Induction of Volatile Terpene Biosynthesis and Diurnal Emission by Methyl Jasmonate in Foliage of Norway Spruce1

    Science.gov (United States)

    Martin, Diane M.; Gershenzon, Jonathan; Bohlmann, Jörg

    2003-01-01

    Terpenoids are characteristic constitutive and inducible defense chemicals of conifers. The biochemical regulation of terpene formation, accumulation, and release from conifer needles was studied in Norway spruce [Picea abies L. (Karst)] saplings using methyl jasmonate (MeJA) to induce defensive responses without inflicting physical damage to terpene storage structures. MeJA treatment caused a 2-fold increase in monoterpene and sesquiterpene accumulation in needles without changes in terpene composition, much less than the 10- and 40-fold increases in monoterpenes and diterpenes, respectively, observed in wood tissue after MeJA treatment (D. Martin, D. Tholl, J. Gershenzon, J. Bohlmann [2002] Plant Physiol 129: 1003–1018). At the same time, MeJA triggered a 5-fold increase in total terpene emission from foliage, with a shift in composition to a blend dominated by oxygenated monoterpenes (e.g. linalool) and sesquiterpenes [e.g. (E)-β-farnesene] that also included methyl salicylate. The rate of linalool emission increased more than 100-fold and that of sesquiterpenes increased more than 30-fold. Emission of these compounds followed a pronounced diurnal rhythm with the maximum amount released during the light period. The major MeJA-induced volatile terpenes appear to be synthesized de novo after treatment, rather than being released from stored terpene pools, because they are almost completely absent from needle oleoresin and are the major products of terpene synthase activity measured after MeJA treatment. Based on precedents in other species, the induced emission of terpenes from Norway spruce foliage may have ecological and physiological significance. PMID:12857838

  14. Frankincense derived heavy terpene cocktail boosting breast cancer cell (MDA-MB-231 death in vitro

    Directory of Open Access Journals (Sweden)

    Faruck Lukmanul Hakkim

    2015-10-01

    Conclusions: Extracting anti-cancer active principle cocktail by simple Soxhlet method is cost effective and less time consuming. Our in vitro anti-cancer data forms the rationale for us to test heavy terpene complex in breast cancer xenograft model in vivo. Furthermore, fractionation and developing frankincense heavy terpene based breast cancer drug is the major goal of our laboratory.

  15. Strong Induction of Minor Terpenes in Italian Cypress, Cupressus sempervirens, in Response to Infection by the Fungus Seiridium cardinale.

    Science.gov (United States)

    Achotegui-Castells, Ander; Danti, Roberto; Llusià, Joan; Della Rocca, Gianni; Barberini, Sara; Peñuelas, Josep

    2015-03-01

    Seiridium cardinale, the main fungal pathogen responsible for cypress bark canker, is the largest threat to cypresses worldwide. The terpene response of canker-resistant clones of Italian cypress, Cupressus sempervirens, to two differently aggressive isolates of S. cardinale was studied. Phloem terpene concentrations, foliar terpene concentrations, as well as foliar terpene emission rates were analyzed 1, 10, 30, and 90 days after artificial inoculation with fungal isolates. The phloem surrounding the inoculation point exhibited de novo production of four oxygenated monoterpenes and two unidentified terpenes. The concentrations of several constitutive mono- and diterpenes increased strongly (especially α-thujene, sabinene, terpinolene, terpinen-4-ol, oxygenated monoterpenes, manool, and two unidentified diterpenes) as the infection progressed. The proportion of minor terpenes in the infected cypresses increased markedly from the first day after inoculation (from 10% in the control to 30-50% in the infected treatments). Foliar concentrations showed no clear trend, but emission rates peaked at day 10 in infected trees, with higher δ-3-carene (15-fold) and total monoterpene (10-fold) emissions than the control. No substantial differences were found among cypresses infected by the two fungal isolates. These results suggest that cypresses activate several direct and indirect chemical defense mechanisms after infection by S. cardinale.

  16. Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa.

    Science.gov (United States)

    Danner, Holger; Boeckler, G Andreas; Irmisch, Sandra; Yuan, Joshua S; Chen, Feng; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2011-06-01

    After herbivore damage, many plants increase their emission of volatile compounds, with terpenes usually comprising the major group of induced volatiles. Populus trichocarpa is the first woody species with a fully sequenced genome, enabling rapid molecular approaches towards characterization of volatile terpene biosynthesis in this and other poplar species. We identified and characterized four terpene synthases (PtTPS1-4) from P. trichocarpa which form major terpene compounds of the volatile blend induced by gypsy moth (Lymantria dispar) feeding. The enzymes were heterologously expressed and assayed with potential prenyl diphosphate substrates. PtTPS1 and PtTPS2 accepted only farnesyl diphosphate and produced (-)-germacrene D and (E,E)-α-farnesene as their major products, respectively. In contrast, PtTPS3 and PtTPS4 showed both mono- and sesquiterpene synthase activity. They produce the acyclic terpene alcohols linalool and nerolidol but exhibited opposite stereospecificity. qRT-PCR analysis revealed that the expression of the respective terpene synthase genes was induced after feeding of gypsy moth caterpillars. The TPS enzyme products may play important roles in indirect defense of poplar to herbivores and in mediating intra- and inter-plant signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Variation of terpenes in milk and cultured cream from Norwegian alpine rangeland-fed and in-door fed cows.

    Science.gov (United States)

    Borge, Grethe Iren A; Sandberg, Ellen; Øyaas, Jorun; Abrahamsen, Roger K

    2016-05-15

    The terpene content of milk and cream made from milk obtained from cows fed indoors, and by early or late grazing, in alpine rangeland farms in Norway, were analysed for three consecutive years. The main terpenes identified and semi-quantified were the monoterpenes β-pinene, α-pinene, α-thujene, camphene, sabinene, δ-3-carene, d-limonene, γ-terpinene, camphor, β-citronellene, and the sesquiterpene β-caryophyllene. The average total terpene content increased five times during the alpine rangeland feeding period. The terpenes α-thujene, sabinene, γ-terpinene and β-citronellene were only detected in milk and cultured cream from the alpine rangeland feeding period and not in samples from the indoors feeding period. These four terpenes could be used, as indicators, to show that milk and cultured cream originate from the alpine rangeland feeding period. The terpenes did not influence the sensorial quality of the milk or the cultured cream. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Determination of terpene alcohols in Sicilian Muscat wines by HS-SPME-GC-MS.

    Science.gov (United States)

    Barbera, Daniela; Avellone, Giuseppe; Filizzola, Felice; Monte, Lucio G; Catanzaro, Paola; Agozzino, Pasquale

    2013-01-01

    Muscat is a grape family used to obtain several sweet, aromatic white dessert wines common in the Mediterranean area. Currently, three Sicilian cultivars (all classified DOC) are known: 'Moscato di Siracusa' the oldest and very rare today; 'Moscato di Noto', a modern derivative of the first and finally 'Moscato di Pantelleria', now the most common. This study concerns the volatile profile of 15 different Sicilian Muscat wines produced in different years using HS-SPME-GC-MS. In particular, four fundamental terpene alcohols (linalool, geraniol, nerol and citronellol) were considered. The principal aim was to study the evolution of aromatic compounds in wine during aging, and the information obtained is useful for production and marketing. It was found that the amount of terpenes decreased with aging, thereby reducing the quality characteristic of these wines. An accurate analysis of chromatograms could characterise Muscat wines on the basis of geographic origin.

  19. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery

    Science.gov (United States)

    Jansen, Daniel J; Shenvi, Ryan A

    2014-01-01

    Terpenoids constitute a significant fraction of molecules produced by living organisms that have found use in medicine and other industries. Problems associated with their procurement and adaptation for human use can be solved using chemical synthesis, which is an increasingly economical option in the modern era of chemistry. This article documents, by way of individual case studies, strategies for reducing the time and cost of terpene synthesis for drug discovery. A major trend evident in recent syntheses is that complex terpenes are increasingly realistic starting points for both medicinal chemistry campaigns and large-scale syntheses, at least in the context of the academic laboratory, and this trend will likely penetrate the commercial sector in the near future. PMID:25078134

  20. An unusual terpene cyclization mechanism involving a carbon-carbon bond rearrangement.

    Science.gov (United States)

    Meguro, Ayuko; Motoyoshi, Yudai; Teramoto, Kazuya; Ueda, Shota; Totsuka, Yusuke; Ando, Yumi; Tomita, Takeo; Kim, Seung-Young; Kimura, Tomoyuki; Igarashi, Masayuki; Sawa, Ryuichi; Shinada, Tetsuro; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2015-03-27

    Terpene cyclization reactions are fascinating owing to the precise control of connectivity and stereochemistry during the catalytic process. Cyclooctat-9-en-7-ol synthase (CotB2) synthesizes an unusual 5-8-5 fused-ring structure with six chiral centers from the universal diterpene precursor, the achiral C20 geranylgeranyl diphosphate substrate. An unusual new mechanism for the exquisite CotB2-catalyzed cyclization that involves a carbon-carbon backbone rearrangement and three long-range hydride shifts is proposed, based on a powerful combination of in vivo studies using uniformly (13)C-labeled glucose and in vitro reactions of regiospecifically deuterium-substituted geranylgeranyl diphosphate substrates. This study shows that CotB2 elegantly demonstrates the synthetic virtuosity and stereochemical control that evolution has conferred on terpene synthases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. HPLC determination of certain flavonoids and terpene lactones in selected Ginkgo biloba L. phytopharmaceuticals.

    Science.gov (United States)

    Mesbah, Mostafa K; Khalifa, Sherief I; El-Gindy, Alaa; Tawfik, Kamilia A

    2005-01-01

    The biologically active secondary metabolites of Ginkgo biloba extract EGb 761 in phytopharmaceuticals were analyzed using two simple, rapid, accurate and sensitive HPLC methods. The proposed methods were successfully applied in the determination of terpenes and flavonoids in four phytopharmaceutical preparations selected from the Egyptian market. The terpenes; ginkgolide A, ginkgolide B, and bilobalide were analyzed using RP 18 column with a mobile phase consisting of water/methanol/isopropanol (72.5:17.5:10, v/v) at a flow rate of 1 ml min-1 and UV detection at 220 nm. The flavonoids; quercetin and kaempferol were analyzed using RP 18 column in a step gradient elution with acetonitrile and water at pH 3.3 and flow rate of 1.5 ml min-1 with UV detection at 370 nm. The two HPLC methods were completely validated.

  2. [Regulation of terpene metabolism]. Annual progress report, March 15, 1989--March 14, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C{sub 10}) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C{sub 15} C{sub 20}, C{sub 30}, C{sub 40}) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C{sub 15}) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  3. Polyphenylenesulfide, noxon® an ozone scavenger for the analysis of oxygenated terpenes in air

    Science.gov (United States)

    Calogirou, A.; Duane, M.; Kotzias, D.; Lahaniati, M.; Larsen, B. R.

    During sampling, oxygenated terpenes may undergo decomposition through reaction with atmospheric ozone. We have studied their ozonolytic decomposition during preconcentration on Tenax. The saturated. terpenoids 1,8-cineole, bornyl acetate nopinone and pinonaldehyde are practically unaffected by ozone in the range of 8 to 120 ppbv. Compounds which contain one or more C-C double bonds are decomposed in the order: linalool ≈ citronellal ≈ 6-methyl-5-hepten-2-one > citral > 4-acetyl-1-methyl-cyclohexane > 3-(1-methylethenyl)-6-oxo-heptanal > myrtenal ≈ 2-methyl-3-buten-2-ol. The degree of decomposition varies from 0 to 5% for the least reactive to 80 to 90% for the most reactive compounds. A broad range of material was investigated as potential ozone scavengers. By using the polymer noXon (polyphenylenesulfide) all the investigated compounds could be sampled with quantitative recoveries even at high ozone mixing ratios (95-110 ppbv). This ozone scrubber was tested for sampling of terpene oxidation products on Tenax and dinitrophenylhydrazine impregnated C 18-silicagel cartridges. Recoveries from 85 to 110% were obtained for all investigated compounds. The method was used for the analysis of oxidation products of terpenes in ambient air in three campaigns. Attention was focused on nopinone from β-pinene, pinonaldehyde from α-pinene, 3-(1-methylethenyl)-6-oxo-heptanal and 4-acetyl-1-methyl-cyclohexane from limonene, and 5-(1-methylethyl)-bicyclo[3.1.0] hexan-2-one from sabinene. Nopinone was the only product which could be frequently detected in ratios from 0 to 90% of the measured β-pinene concentrations. Pinonaldehyde was encountered only once (30% of α-pinene) while the other products were not found. These data have to be seen as a first attempt to measure terpene oxidation products in the troposphere.

  4. Selected terpenes from leaves of Ocimum basilicum L. induce hemoglobin accumulation in human K562 cells.

    Science.gov (United States)

    Giordana, Feriotto; Nicola, Marchetti; Valentina, Costa; Torricelli, Piera; Beninati, Simone; Tagliati, Federico; Mischiati, Carlo

    2018-02-13

    Re-expression of fetal hemoglobin (HbF) was proposed as a possible therapeutic strategy for β-haemoglobinopathies. Although several inducers of HbF were tested in clinical trials, only hydroxyurea (HU) received FDA approval. Despite it produced adequate HbF levels only in half of HU-treated SCD patients, and was ineffective at all in β-thalassemia patients, beneficial effects of this approach suggested to continue in this direction identifying further molecules capable of inducing HbF. We tested the potential of essential oil isolated from Ocimum basilicum L. leaves (ObEO) in inducing hemoglobin biosynthesis. Initially, dose-dependent effect and kinetics of hemoglobin accumulation in K562 cells after treatment with ObEO were evaluated. ObEO induced dose-dependent hemoglobin accumulation superior to hydroxyurea and rapamycin and a strongest γ-globin mRNA expression. Terpenes composition of ObEO was studied by GC-MS. Three main constituents, linalool, eugenol and eucalyptol, represented about 75% of total. A blend of these three terpenes fully replicated the ObEO's biological effect, thus indicating that one of them or all together could be the active ingredients. When terpenes were tested individually, eugenol was the only one inducing stable hemoglobin accumulation, while eucalyptol and linalool produced only a small transient response. However, eugenol potential was strongly enhanced in the presence of eucalyptol and linalool, suggesting a synergistic effect on hemoglobin accumulation. By these results, the discovery of a new inducer and the interesting activity of a blend of major terpenes from ObOE on Hb accumulation could have positive fallouts on β-thalassemia and sickle cells anemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. An improved technique for the rapid chemical characterisation of bacterial terpene cyclases.

    Science.gov (United States)

    Dickschat, Jeroen S; Pahirulzaman, Khomaizon A K; Rabe, Patrick; Klapschinski, Tim A

    2014-04-14

    A derivative of the pET28c(+) expression vector was constructed. It contains a yeast replication system (2μ origin of replication) and a yeast selectable marker (URA3), and can be used for gene cloning in yeast by efficient homologous recombination, and for heterologous expression in E. coli. The vector was used for the expression and chemical characterisation of three bacterial terpene cyclases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chemotypic variation in terpenes emitted from storage pools influences early aphid colonisation on tansy.

    Science.gov (United States)

    Clancy, Mary V; Zytynska, Sharon E; Senft, Matthias; Weisser, Wolfgang W; Schnitzler, Jörg-Peter

    2016-11-28

    Tansy plants (Tanacetum vulgare L.) exhibit high chemical variation, particularly in mono- and sesquiterpenes that are stored in specialised glands on the plant surface. In the present work we investigated the effects of terpene chemotypes on Metopeurum fuscoviride, an aphid species specialised on tansy, and their tending ants, at the field scale. Previous studies have chemotyped tansy by assessing dominant compounds; here we propose a method of chemotyping using all volatile compounds that are likely emitted from the storage glands. The analysis is based on two extraction methods: GC-MS analysis of leaf hexane extracts and SBSE analysis of headspace emissions. In an initial screening we identified the subset of compounds present in both chemical patterns, labelled as 'compounds likely emitted from storage'. In a large field survey we could show that the putative chemotypic emission pattern from storage pools significantly affected the early aphid colonisation of tansy. Moreover, the statistical analyses revealed that minor compounds exerted a stronger influence on aphid and tending-ant presence than dominant compounds. Overall we demonstrated that within the enormous chemotypic variation of terpenes in tansy plants, chemical signatures of volatile terpenes can be related to the occurrence of insects on individual plants in the field.

  7. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Science.gov (United States)

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  8. Synthesis and antibacterial properties of 2,3-dideoxyglucosides of terpene alcohols and phenols.

    Science.gov (United States)

    Bound, D James; Murthy, Pushpa S; Srinivas, P

    2015-10-15

    Essential oils and their oxygenated terpene constituents possess potent antimicrobial properties. In the present study, a facile synthetic route to the 2,3-dideoxy 1-O-glucosides of important phenols and terpene alcohols in excellent yields (85-96%) has been delineated. Studies on their antimicrobial action against four food-borne pathogens--Bacillus cereus, Staphylococcus aureus, Escherichia coli and Yersinia enterocolitica--demonstrated that the zone of inhibition, in general, was higher for the 2,3-unsaturated 1-O-glucoside derivatives (1b-6b) and the corresponding saturated glucosides (1c-5c) when compared to the parent alcohols/phenols (1-6). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for these derivatives too were generally lower than those of the parent compounds. Furthermore, the time-kill and bacteriolysis assays too demonstrated the greater antimicrobial potential of the derivatives. The 2,3-dideoxy 1-O-glucosides of phenols and terpene alcohols were more effective in their antimicrobial action than the corresponding parent compounds. The study indicated that these novel derivatives can find useful application in control of food-related pathogenic microbes in foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Berta Alquézar

    2017-08-01

    Full Text Available Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck genome sequence allowed us to characterize for the first time the terpene synthase (TPS family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  10. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates.

    Science.gov (United States)

    Bution, Murillo L; Molina, Gustavo; Abrahão, Meissa R E; Pastore, Gláucia M

    2015-01-01

    Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aromas in industry. Terpenes belong to the largest class of natural compounds, are produced by all living organisms and play a fundamental role in human nutrition, cosmetics and medicine. Recent advances in systems biology and synthetic biology are allowing us to perform metabolic engineering at the whole-cell level, thus enabling the optimal design of microorganisms for the efficient production of drugs, cosmetic and food additives. This review describes the recent advances made in the genetic and metabolic engineering of the terpenes pathway with a particular focus on systems biotechnology.

  11. Determination of terpenes in tequila by solid phase microextraction-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Peña-Alvarez, Araceli; Capella, Santiago; Juárez, Rocío; Labastida, Carmen

    2006-11-17

    Solid phase microextraction and capillary gas chromatography-mass spectrometry were used for the determination of seven terpenes in tequila. The method was selected based on the following parameters: coating selection (PA, PDMS, CW/DVB, and PDMS/DVB), extraction temperature, addition of salt, and extraction time profile. The extraction conditions were: PDMS/DVB fiber, Headspace, 100% NaCl, 25 degrees C extraction temperature, 30 min extraction time and stirring at 1200 rpm. The calibration curves (50-1000 ng/ml) for the terpenes followed linear relationships with correlation coefficients (r) greater than 0.99, except for trans,trans-farnesol (r = 0.98). RSD values were smaller than 10% confirmed that the technique was precise. Samples from 18 different trade brands of "Aged" tequila analyzed with the developed method showed the same terpenes in different concentrations. The analytical procedure used is selective, robust (more than 100 analyses with the same fiber), fast and of low-cost.

  12. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  13. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    Science.gov (United States)

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  14. Insights into molecular architecture of terpenes using small angle neutron scattering

    Science.gov (United States)

    Rai, Durgesh K.; Annamraju, Aparna; Pingali, Sai Venkatesh; O'Neill, Hugh M.; Mewalal, Ritesh; Gunter, Lee E.; Tuskan, Gerald A.

    Understanding macromolecular architectures is vital to engineering prospective terpene candidates for advanced biofuels. Eucalyptus plants store terpenes in specialized cavity-like structures in the leaves called oil glands, which comprises of volatile (VTs) and non-volatile (NVTs) terpenes. Using small-angle neutron scattering, we have investigated the structure and phase behavior of the supramolecular assembly formed by Geranyl beta-D-glucoside (GDG), a NVT and compare the results with that of beta-octyl glucoside (BOG). The formation of micellar structures was observed in the concentration range of 0.5-5 v/v% in water using small angle neutron scattering (SANS) where Schultz sphere model was used in quantifying structural parameters of micelles. SANS studies determine that GDG and BOG behave like amphiphiles forming micellar structures in aqueous solution. The micelles swell upon addition of alpha-Pinene (AP) indicating partition to the core region of the micelles. The general behavior of the micellar growth after partitioning of AP to form thermodynamically stable sizes varies with the NVT concentration. Our studies reveal that the presence of steric hindrance in the GDG via the unsaturated bonds could help stabilize VTs inside the oil glands. LDRD project LOIS ID 7428, SNS, CSMB, HFIR, ORNL, DOE Office of Science User Facilities.

  15. A Genome-Wide Scenario of Terpene Pathways in Self-pollinated Artemisia annua.

    Science.gov (United States)

    Ma, Dong-Ming; Wang, Zhilong; Wang, Liangjiang; Alejos-Gonzales, Fatima; Sun, Ming-An; Xie, De-Yu

    2015-11-02

    Scenarios of genes to metabolites in Artemisia annua remain uninvestigated. Here, we report the use of an integrated approach combining metabolomics, transcriptomics, and gene function analyses to characterize gene-to-terpene and terpene pathway scenarios in a self-pollinating variety of this species. Eighty-eight metabolites including 22 sesquiterpenes (e.g., artemisinin), 26 monoterpenes, two triterpenes, one diterpene and 38 other non-polar metabolites were identified from 14 tissues. These metabolites were differentially produced by leaves and flowers at lower to higher positions. Sequences from cDNA libraries of six tissues were assembled into 18 871 contigs and genome-wide gene expression profiles in tissues were strongly associated with developmental stages and spatial specificities. Sequence mining identified 47 genes that mapped to the artemisinin, non-amorphadiene sesquiterpene, monoterpene, triterpene, 2-C-methyl-D-erythritol 4-phosphate and mevalonate pathways. Pearson correlation analysis resulted in network integration that characterized significant correlations of gene-to-gene expression patterns and gene expression-to-metabolite levels in six tissues simultaneously. More importantly, manipulations of amorpha-4,11-diene synthase gene expression not only affected the activity of this pathway toward artemisinin, artemisinic acid, and arteannuin b but also altered non-amorphadiene sesquiterpene and genome-wide volatile profiles. Such gene-to-terpene landscapes associated with different tissues are fundamental to the metabolic engineering of artemisinin. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  16. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions.

    Science.gov (United States)

    Wen, Ya-Qin; Zhong, Gan-Yuan; Gao, Yuan; Lan, Yi-Bin; Duan, Chang-Qing; Pan, Qiu-Hong

    2015-10-06

    Terpenes are of great interest to winemakers because of their extremely low perception thresholds and pleasant floral odors. Even for the same variety, terpene profile can be substantially different for grapevine growing environments. Recently a series of genes required for terpene biosynthesis were biochemically characterized in grape berries. However, the genes that dominate the differential terpene accumulation of grape berries between regions have yet to be identified. Free and glycosidically-bound terpenes were identified and quantified using gas chromatography-mass spectrometry (GC-MS) technique. The transcription expression profiling of the genes was obtained by RNA sequencing and part of the results were verified by quantitative real time PCR (QPCR). The gene co-expression networks were constructed with the Cytoscape software v 2.8.2 ( www.cytoscape.org). 'Muscat Blanc a Petits Grains' berries were collected from two wine-producing regions with strikingly different climates, Gaotai (GT) in Gansu Province and Changli (CL) in Hebei Province in China, at four developmental stages for two consecutive years. GC-MS analysis demonstrated that both free and glycosidically bound terpenes accumulated primarily after veraison and that mature grape berries from CL contained significantly higher concentrations of free and glycosidically bound terpenes than berries from GT. Transcriptome analysis revealed that some key genes involved in terpene biosynthesis were markedly up-regulated in the CL region. Particularly in the MEP pathway, the expression of VviHDR (1-hydroxy-2-methyl-2-butenyl 4-diphosphate reductase) paralleled with the accumulation of terpenes, which can promote the flow of isopentenyl diphosphate (IPP) into the terpene synthetic pathway. The glycosidically bound monoterpenes accumulated differentially along with maturation in both regions, which is synchronous with the expression of a monoterpene glucosyltransferase gene (VviUGT85A2L4 (VviGT14)). Other

  17. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values.

    Directory of Open Access Journals (Sweden)

    Heverton Silva Camargos

    Full Text Available Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6 parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9% at their respective IC50 values. For assays with high cell concentrations (2×10(9 parasites/mL, the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.

  18. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values.

    Science.gov (United States)

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6) parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9%) at their respective IC50 values. For assays with high cell concentrations (2×10(9) parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.

  19. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes.

    Science.gov (United States)

    Aizpurua-Olaizola, Oier; Soydaner, Umut; Öztürk, Ekin; Schibano, Daniele; Simsir, Yilmaz; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-02-26

    The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled conditions. Every week, three plants from each variety were cut and dried, and the leaves and flowers were analyzed separately. Eight major cannabinoids were analyzed via HPLC-DAD, and 28 terpenes were quantified using GC-FID and verified via GC-MS. The chemotypes of the plants, as defined by the tetrahydrocannabinolic acid/cannabidiolic acid (THCA/CBDA) ratio, were clear from the beginning and stable during growth. The concentrations of the major cannabinoids and terpenes were determined, and different patterns were found among the chemotypes. In particular, the plants from chemotypes II and III needed more time to reach peak production of THCA, CBDA, and monoterpenes. Differences in the cannabigerolic acid development among the different chemotypes and between monoterpene and sesquiterpene evolution patterns were also observed. Plants of different chemotypes were clearly differentiated by their terpene content, and characteristic terpenes of each chemotype were identified.

  20. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.

    Science.gov (United States)

    Nørgaard, A W; Kofoed-Sørensen, V; Mandin, C; Ventura, G; Mabilia, R; Perreca, E; Cattaneo, A; Spinazzè, A; Mihucz, V G; Szigeti, T; de Kluizenaar, Y; Cornelissen, H J M; Trantallidi, M; Carrer, P; Sakellaris, I; Bartzis, J; Wolkoff, P

    2014-11-18

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways.

  1. Enhancing Terpene yield from sugars via novel routes to 1-deoxy-d-xylulose 5-phosphate.

    Science.gov (United States)

    Kirby, James; Nishimoto, Minobu; Chow, Ruthie W N; Baidoo, Edward E K; Wang, George; Martin, Joel; Schackwitz, Wendy; Chan, Rossana; Fortman, Jeffrey L; Keasling, Jay D

    2015-01-01

    Terpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5 sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of a dxs deletion in Escherichia coli grown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-type E. coli yajO gene, annotated as a putative xylose reductase, or via various mutations in the native ribB gene. In vitro analysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway in E. coli for production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Genomic characterization, molecular cloning and expression analysis of two terpene synthases from Thymus caespititius (Lamiaceae).

    Science.gov (United States)

    Lima, A Sofia; Schimmel, Jette; Lukas, Brigitte; Novak, Johannes; Barroso, José G; Figueiredo, A Cristina; Pedro, Luis G; Degenhardt, Jörg; Trindade, Helena

    2013-07-01

    The identification, isolation and functional characterization of two genes encoding two monoterpene synthases-γ-terpinene synthase (Tctps2) and α-terpineol synthase (Tctps5)-from three chemically distinct Thymus caespititius (Lamiaceae) genotypes were performed. Genomic exon-intron structure was also determined for both terpene synthase genes, revealing an organization with seven exons and six introns. The cDNA of Tctps2 was 2,308 bp long and had an open reading frame of 1,794 bp encoding for a protein with 598 amino acids. Tctps5 was longer, mainly due to intron sequences, and presented high intraspecific variability on the plants analyzed. It encoded for a protein of 602 amino acids from an open reading frame of 1,806 bp comprising a total of 2,507 bp genomic sequence. The amino acid sequence of these two active Tctps genes shared 74 % pairwise identity, ranging between 42 and 94 % similarity with about 50 known terpene synthases of other Lamiaceae species. Gene expression revealed a multi-product Tctps2 and Tctps5 enzymes, producing γ-terpinene and α-terpineol as major components, respectively. These enzymatic results were consistent with the monoterpene profile present in T. caespititius field plants, suggesting a transcriptional regulation in leaves. Herewith reported for the first time for this species, these two newly characterized Tctps genes improve the understanding of the molecular mechanisms of reaction responsible for terpene biosynthesis and chemical diversity found in T. caespititius.

  3. [Regulation of terpene metabolism]. Annual progress report, March 15, 1991--March 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1992-12-31

    This report describes accomplishments over the past year on understanding of terpene synthesis in mint plants and sage. Specifically reported are the fractionation of 4-S-limonene synthetase, the enzyme responsible for the first committed step to monoterpene synthesis, along with isolation of the corresponding RNA and DNA cloning of its gene; the localization of the enzyme within the oil glands, regulation of transcription and translation of the synthetase, the pathway to camphor biosynthesis,a nd studies on the early stages and branch points of the isoprenoid pathway.

  4. Reaction rates of ozone and terpenes adsorbed to model indoor surfaces.

    Science.gov (United States)

    Springs, M; Wells, J R; Morrison, G C

    2011-08-01

    Reaction rates and reaction probabilities have been quantified on model indoor surfaces for the reaction of ozone with two monoterpenes (Δ(3) -carene and d-limonene). Molar surface loadings were obtained by performing breakthrough experiments in a plug-flow reactor (PFR) packed with beads of glass, polyvinylchloride or zirconium silicate. Reaction rates and probabilities were determined by equilibrating the PFR with both the terpene and the ozone and measuring the ozone consumption rate. To mimic typical indoor conditions, temperatures of 20, 25, and 30°C were used in both types of experiments along with a relative humidity ranging from 10% to 80%. The molar surface loading decreased with increased relative humidity, especially on glass, suggesting that water competed with the terpenes for adsorption sites. The ozone reactivity experiments indicate that higher surface loadings correspond with higher ozone uptake. The reaction probability for Δ(3) -carene with ozone ranged from 2.9 × 10(-6) to 3.0 × 10(-5) while reaction probabilities for d-limonene ranged from 2.8 × 10(-5) to 3.0 × 10(-4) . These surface reaction probabilities are roughly 10-100 times greater than the corresponding gas-phase values. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially for lower volatility terpenoids. At present, it is unclear how important heterogeneous reactions will be in influencing indoor concentrations of terpenes, ozone and their reaction products. We observe that surface reaction probabilities were 10 to 100 times greater than their corresponding gas-phase values. Thus indoor surfaces do enhance effective reaction rates and adsorption of terpenes will increase ozone flux to otherwise low-reactivity surfaces. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially

  5. In-vitro study on ureteral smooth muscle contractility with tamsulosin, nifedipine, and terpene mixture (Rowatinex®).

    Science.gov (United States)

    Whan Lee, J; Young Lee, M; Young Seo, I

    2015-06-01

    The aim of this study was to evaluate whether tamsulosin, an alpha-blocker, has an effect on decreasing spontaneous ureteral contractility with or without phenylephrine, an alpha-agonist. Additionally, nifedipine and a terpene mixture (Rowatinex®) were tested and compared with each other. We obtained ureteral segments from freshly killed eight-week-old rabbits. Preparation was performed in an aerated Krebs buffer (95% oxygen and 5% carbon dioxide) at a constant temperature of 37 °C. All segments were suspended into organ tissue baths containing aerated Krebs buffer using stainless steel hangers and clips. The ureter was divided into four segments: upper, middle, low and uretero-vesical junction. Each ureteral segment was suspended longitudinally and circularly by opposite corners, respectively. Tamsulosin, nifedipine, and the terpene mixture were separately applied into the segments. Contractile activities of each drug were recorded and analyzed by the PowerLab data acquisition system (AD instruments CO., USA). The area under the curve was compared between before and after each drug application for each 5 minutes with or without pheylephrine. Statistical analysis was performed using the unpaired Student's t test. Under Krebs solution, ureteral smooth muscle contractility was significantly decreased in all segments over 10(-6) M in tamsulosin, 10(-7) M in nifedipine and 0.001x1 concentrations in the terpene mixture (P=0.038). However, under Krebs solution with 10(-5) M phenylephrine, there was no significant difference at all concentrations in tamsoluin and nifedipine. In contrast to tamsolusin and nifedipine, there was a significant decrease in ureteral smooth muscle contractility in most of segments at 0.01x1 concentrations (P=0.042) in the terpene mixture. Tamsulosin, nifedipine, and the terpene mixture showed the effect on spontaneous ureteral contractility. In particular, the terpene mixture might have the better effect on decreasing ureteral smooth muscle

  6. Terpene content of wine from the aromatic grape variety ‘Irsai Oliver’ (Vitis vinifera L. depends on maceration time

    Directory of Open Access Journals (Sweden)

    Baron Mojmir

    2017-03-01

    Full Text Available This study deals with the determination of the content of both free and bound terpenes in berries and wine of the aromatic grapevine variety ‘Irsai Oliver’. Grapes were macerated in juice for different time intervals (viz. 0; 5; 12; 24 hours and thereafter processed to wine. The objective was to map the dependence of some selected terpenes on the period of maceration. Using gas chromatography, some nine organic compounds were detected. Attention was paid to contents of linalool (3,7-dimethylokta-1,6-dien-3-ol, 2,6-dimetyl-3,7-octadiene-2,6-diol, hotrienol ([(5E-3,7-dimethylocta-1,5,7-trien-3-yl] acetate, αterpineol (2-(4-Methyl-1-cyclohex-3-enylpropan-2-ol, β-citronellol (3,7-Dimethyloct-6-en-1-ol, nerol ((Z-3,7-dimethyl-2,6-octadien-1-ol, geraniol ((trans-3,7-dimethyl-2,6-oktadien-1-ol and epoxylinalool (2-(5-ethenyl-5-methyloxolan-2-ylpropan-2- ol: epoxylinalool 1 (trans-linalool oxide (furanoid cis-linalool oxide (furanoid and epoxylinalool 2 (trans-linalool oxide (pyranoid cis-linalool oxide (pyranoid. Some basic wine parameters (alcohol, pH, sugars and total acids were estimated as well. The terpene content in wine increased gradually with the period of maceration. The highest and the lowest amounts of terpenes were recorded after 24 hours of maceration and no maceration, respectively. The terpene glycosides content was higher than that of the aglycones. Linalool and 2,6-dimetyl-3,7-octadiene-2,6-diol were the most abundant terpenes.

  7. Biomimetic synthesis of (+)-ledene, (+)-viridiflorol, (-)-palustrol, (+)-spathulenol, and psiguadial A, C, and D via the platform terpene (+)-bicyclogermacrene.

    Science.gov (United States)

    Tran, Duc N; Cramer, Nicolai

    2014-08-18

    (+)-Bicyclogermacrene is a strained bicyclic and common sesquiterpene found in several essential oils. A short and good yielding synthesis of bicyclogermacrene proceeding in seven steps is reported. This terpene is used as key platform intermediate for a biomimetic access to several aromadendrene sesquiterpenoids, such as ledene, viridiflorol, palestrol, and spathulenol. Furthermore, bicyclogermacrene is shown to be the terpene component in the synthesis of the meroterpenoids psiguadial A, C, and D. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA

    Science.gov (United States)

    Nesterkina, Mariia; Kravchenko, Iryna

    2016-01-01

    Novel esters of γ-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg) was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg) and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects. PMID:27304960

  9. Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA

    Directory of Open Access Journals (Sweden)

    Mariia Nesterkina

    2016-06-01

    Full Text Available Novel esters of γ-aminobutyric acid (GABA with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects.

  10. Terpene trilactones from Ginkgo biloba are antagonists of cortical glycine and GABA(A) receptors.

    Science.gov (United States)

    Ivic, Lidija; Sands, Tristan T J; Fishkin, Nathan; Nakanishi, Koji; Kriegstein, Arnold R; Strømgaard, Kristian

    2003-12-05

    Glycine and gamma-aminobutyric acid, type A (GABA(A)) receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory synaptic transmission in the adult central nervous system. During development, the activation of these receptors leads to membrane depolarization. Ligands for the two receptors have important implications both in disease therapy and as pharmacological tools. Terpene trilactones (ginkgolides and bilobalide) are unique constituents of Ginkgo biloba extracts that have various effects on the central nervous system. We have investigated the relative potency of these compounds on glycine and GABA(A) receptors. We find that most of the ginkgolides are selective and potent antagonists of the glycine receptor. Bilobalide, the single major component in G. biloba extracts, also reduces glycine-induced currents, although to a lesser extent. Both ginkgolides and bilobalide inhibit GABA(A) receptors, with bilobalide demonstrating a more potent effect. Additionally, we provide evidence that open channels are required for glycine receptor inhibition by ginkgolides. Finally, we employ molecular modeling to elucidate the similarities and differences in the structure of the terpene trilactones to account for the pharmacological properties of these compounds and demonstrate a striking similarity between ginkgolides and picrotoxinin, a GABA(A) and recombinant glycine alpha-homomeric receptor antagonist.

  11. Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from Zea mays.

    Science.gov (United States)

    Vattekkatte, Abith; Gatto, Nathalie; Köllner, Tobias G; Degenhardt, Jörg; Gershenzon, Jonathan; Boland, Wilhelm

    2015-06-07

    Multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from maize (Zea mays) catalyze the conversion of farnesyl diphosphate (FDP) and geranyl diphosphate (GDP) into a complex mixture of sesquiterpenes and monoterpenes, respectively. Various isotopic and geometric isomers of natural substrates like (2Z)-[2-(2)H]- and [2,4,4,9,9,9-(2)H6]-(GDP) and (2Z,6E)-[2-(2)H]- and [2,4,4,13,13,13-(2)H6]-(FDP) were synthesized analogous to presumptive reaction intermediates. On incubation with labeled (2Z) substrates, TPS4 and TPS5 showed much lower kinetic isotope effects than the labeled (2E) substrates. Interestingly, the products arising from the deuterated (2Z)-precursors revealed a distinct preference for cyclic products and exhibited an enhanced turnover on comparison with natural (2E)-substrates. This increase in the efficiency due to (2Z) configuration emphasizes the rate limiting effect of the initial (2E) → (2Z) isomerization step in the reaction cascade of the multiproduct terpene synthases. Apart from turnover advantages, these results suggest that substrate geometry can be used as a tool to optimize the biosynthetic reaction cascade towards valuable cyclic terpenoids.

  12. Comparing terpenes from plant essential oils as pesticides for the poultry red mite (Dermanyssus gallinae).

    Science.gov (United States)

    Sparagano, O; Khallaayoune, K; Duvallet, G; Nayak, S; George, D

    2013-11-01

    Resistance to conventional synthetic pesticides has been widely reported in ticks, parasitic mites and other pests of veterinary and medical significance. New and novel approaches to manage these pests are therefore needed to ensure efficient control programmes that can be implemented now and in the future. Recent research in this area has focused on the pesticidal potential of plant essential oils. These products are attractive as pesticide candidates on the grounds of low mammalian toxicity, short environmental persistence and complex chemistries (limiting the development of pest resistance against them). Although issues may exist concerning reliability in efficacy of essential oils, these may be overcome by identifying and developing bioactive oil components for use in pest management. In the current work, three such components (terpenes) found in essential oils (eugenol, geraniol and citral) were tested against the poultry red mite Dermanyssus gallinae. All provided 100% mortality in toxicity tests when undiluted. Even at 1% of this dose, eugenol was 20% effective against experimental pest populations, although the remaining terpenes were largely ineffective at this concentration. © 2013 Blackwell Verlag GmbH.

  13. Terpene-induced porphyria and the illness of Vincent van Gogh

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, R.; Cable, E.; Cable, J.; Clements, E.; Donohue, S.; Greene, Y.; Srivastava, K.; Arnold, W.; Bonkovsky, H. (Univ. of Massachusetts Medical Center, Worcester (United States) Univ. of Kansas Medical Center, Kansas City (United States))

    1992-01-01

    Vincent van Gogh suffered from recurrent bouts of an illness that may have been acute porphyria and abused camphor and alcohol, the latter particularly in the form of absinthe, a liqueur distilled from wormwood that was popular in 19th C France. To learn whether camphor or terpenes found in absinthe are porphyrogenic, the authors studied them in cultures of chick embryo liver cells. All were found to be porphyrogenic, especially in the presence of deferoxamine. The terpenes also induced the activity and protein amount of 5-aminolevulinate synthase and heme oxygenase, and induced activities of benzphetamine demethylase. The degree of porphyrin and enzyme induction produced by 1mM camphor was similar to that produced by 50uM glutethimide, a potent porphyrogen. Potency of pinene and thujone were lower. Camphor and glutethimide both produced accumulations of 8- and 7-COOH porphyrins, whereas pinene and thujone produced 4- and 2-COOH porphyrin accumulation. The authors conclude that camphor, pinen and thujone are porphyrogenic, cable of exacerbating acute porphyria, and may have done so in van Gogh.

  14. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot.

    Science.gov (United States)

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-11-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    Science.gov (United States)

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  16. Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3.

    Science.gov (United States)

    Liu, Jianyu; Huang, Fang; Wang, Xia; Zhang, Man; Zheng, Rui; Wang, Jiao; Yu, Deyue

    2014-07-01

    Terpenes (terpenoids or isoprenoids) constitute a large class of plant natural products and play numerous functional roles in primary and secondary metabolism as well as inecological interactions. This study presents a genomic analysis of 23 putative soybean (Glycine max) terpene synthase genes (GmTPSs) distributed over 10 of 20 chromosomes. The GmTPSs are grouped into six types based on gene architecture and sequence identity. Sequence alignment indicates that most GmTPSs contain the conserved aspartate-rich DDX2D motif, and two clades encoded by TPS-a and TPS-b contain variations of an arginine-rich RRX8W motif. Quantitative real-time PCR analysis demonstrated that GmTPSs were predominantly expressed in reproductive organs. Heterologous expression followed by enzymatic assay suggested that GmTPS3 functions as a geraniol synthase. We also generated transgenic tobacco plants ectopically expressing GmTPS3. In dual-choice feeding-preference and force-feeding assays, the transgenic tobacco lines expressing GmTPS3 exhibited enhanced resistance to cotton leafworms and an increased level of geraniol. Taken together, these data provide a comprehensive understanding of the TPS family in soybeans and suggest a promising approach to engineering transgenic plants with enhanced insect resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    Science.gov (United States)

    Klein, Felix; Farren, Naomi J.; Bozzetti, Carlo; Daellenbach, Kaspar R.; Kilic, Dogushan; Kumar, Nivedita K.; Pieber, Simone M.; Slowik, Jay G.; Tuthill, Rosemary N.; Hamilton, Jacqueline F.; Baltensperger, Urs; Prévôt, André S. H.; El Haddad, Imad

    2016-11-01

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air.

  18. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes

    NARCIS (Netherlands)

    Aizpurua-Olaizola, Oier; Soydaner, Umut; Öztürk, Ekin; Schibano, Daniele; Simsir, Yilmaz; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-01-01

    The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled

  19. Palladium-catalysed telomerisation of isoprene with glycerol and polyethylene glycol: A facile route to new terpene derivatives

    NARCIS (Netherlands)

    Gordillo, A.; Durán Páchon, L.; de Jesus, E.; Rothenberg, G.

    2009-01-01

    We present here the first example of the telomerisation of isoprene with glycerol and polyethylene glycol (PEG-200), opening a facile route to new terpene structures, based on a combination of renewable and petroleum-based feedstocks. The reaction is catalysed by a palladium-carbene complex.

  20. Transcriptomic insight into terpenoid and carbazole alkaloid biosynthesis, and functional characterization of two terpene synthases in curry tree (Murraya koenigii).

    Science.gov (United States)

    Meena, Seema; Rajeev Kumar, Sarma; Dwivedi, Varun; Kumar Singh, Anup; Chanotiya, Chandan S; Akhtar, Md Qussen; Kumar, Krishna; Kumar Shasany, Ajit; Nagegowda, Dinesh A

    2017-03-08

    Curry tree (Murraya koenigii L.) is a rich source of aromatic terpenes and pharmacologically important carbazole alkaloids. Here, M. koenigii leaf transcriptome was generated to gain insight into terpenoid and alkaloid biosynthesis. Analysis of de novo assembled contigs yielded genes for terpene backbone biosynthesis and terpene synthases. Also, gene families possibly involved in carbazole alkaloid formation were identified that included polyketide synthases, prenyltransferases, methyltransferases and cytochrome P450s. Further, two genes encoding terpene synthases (MkTPS1 and MkTPS2) with highest in silico transcript abundance were cloned and functionally characterized to determine their involvement in leaf volatile formation. Subcellular localization using GFP fusions revealed the plastidial and cytosolic localization of MkTPS1 and MkTPS2, respectively. Enzymatic characterization demonstrated the monoterpene synthase activity of recombinant MkTPS1, which produced primarily (-)-sabinene from geranyl diphosphate (GPP). Recombinant MkTPS2 exhibited sesquiterpene synthase activity and formed (E,E)-α-farnesene as the major product from farnesyl diphosphate (FPP). Moreover, mRNA expression and leaf volatile analyses indicated that MkTPS1 accounts for (-)-sabinene emitted by M. koenigii leaves. Overall, the transcriptome data generated in this study will be a great resource and the start point for characterizing genes involved in the biosynthetic pathway of medicinally important carbazole alkaloids.

  1. Effects of Terpene Chemotypes of Melaleuca alternifolia on Two Specialist Leaf Beetles and Susceptibility to Myrtle Rust.

    Science.gov (United States)

    Bustos-Segura, Carlos; Külheim, Carsten; Foley, William

    2015-10-01

    Plant chemical polymorphisms, or plant chemotypes, are characterized by intraspecific discrete differences of plant secondary metabolites in the same plant tissue. Chemotypes that differ in foliar terpene composition are found commonly in Myrtaceae. In this study, we focused on terpene chemotypes of medicinal tea tree, Melalecua alternifolia, to explore whether this variation affects two specialist herbivores Paropsisterna tigrina and Faex sp. (Coleoptera: Chrysomelidae), and if this could explain the maintenance of this variation. We tested whether insect performance, oviposition preference, and plant damage were associated with different chemotypes. We found that larval growth rate of Faex sp. was higher in chemotypes with high concentrations of 1,8-cineole, and that oviposition preference depended on the chemotype of the larval diet. Although performance traits and preference for oviposition of P. tigrina did not vary among chemotypes, adults inflicted less damage on plants with a high concentration of terpinolene. Additionally, we tested whether different chemotypes showed different levels of susceptibility by myrtle rust (Puccinia psidii). We found that plants with a high concentration of 1,8-cineole were more likely to be infected under controlled conditions. Although there is evidence that terpene chemotypes are a mediator of the interaction with natural enemies, the most detrimental pest of this plant, P. tigrina, does not seem to be affected by variation in plant terpenes.

  2. Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds.

    Science.gov (United States)

    Wu, Weihua; Liu, Fang; Davis, Ryan W

    2018-06-01

    Recent studies have revealed that caryophyllene and its stereoisomers not only exhibit multiple biological activities but also have desired properties as renewable candidates for ground transportation and jet fuel applications. This study presents the first significant production of caryophyllene and caryolan-1-ol by an engineered E. coli with heterologous expression of mevalonate pathway genes with a caryophyllene synthase and a caryolan-1-ol synthase. By optimizing metabolic flux and fermentation parameters, the engineered strains yielded 449 mg/L of total terpene, including 406 mg/L sesquiterpene with 100 mg/L caryophyllene and 10 mg/L caryolan-1-ol. Furthermore, a marine microalgae hydrolysate was used as the sole carbon source for the production of caryophyllene and other terpene compounds. Under the optimal fermentation conditions, 360 mg/L of total terpene, 322 mg/L of sesquiterpene, and 75 mg/L caryophyllene were obtained from the pretreated algae hydrolysates. The highest yields achieved on the biomass basis were 48 mg total terpene/g algae and 10 mg caryophyllene/g algae and the caryophyllene yield is approximately ten times higher than that from plant tissues by solvent extraction. The study provides a sustainable alternative for production of caryophyllene and its alcohol from microalgae biomass as potential candidates for next generation aviation fuels.

  3. Measurement of Secondary Products During Oxidation Reactions of Terpenes and Ozone Based on the PTR-MS Analysis: Effects of Coexistent Carbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Yukio Yanagisawa

    2010-11-01

    Full Text Available Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene.

  4. Measurement of Secondary Products During Oxidation Reactions of Terpenes and Ozone Based on the PTR-MS Analysis: Effects of Coexistent Carbonyl Compounds

    Science.gov (United States)

    Ishizuka, Yusuke; Tokumura, Masahiro; Mizukoshi, Atsushi; Noguchi, Miyuki; Yanagisawa, Yukio

    2010-01-01

    Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS) can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs) are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs) concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene. PMID:21139865

  5. Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites.

    Science.gov (United States)

    Gonzales-Vigil, Eliana; Hufnagel, David E; Kim, Jeongwoon; Last, Robert L; Barry, Cornelius S

    2012-09-01

    A systematic screen of volatile terpene production in the glandular trichomes of 79 accessions of Solanum habrochaites was conducted and revealed the presence of 21 mono- and sesquiterpenes that exhibit a range of qualitative and quantitative variation. Hierarchical clustering identified distinct terpene phenotypic modules with shared patterns of terpene accumulation across accessions. Several terpene modules could be assigned to previously identified terpene synthase (TPS) activities that included members of the TPS-e/f subfamily that utilize the unusual cis-prenyl diphosphate substrates neryl diphosphate and 2z,6z-farnesyl diphosphate. DNA sequencing and in vitro enzyme activity analysis of TPS-e/f members from S. habrochaites identified three previously unassigned enzyme activities that utilize these cisoid substrates. These produce either the monoterpenes α-pinene and limonene, or the sesquiterpene 7-epizingiberene, with the in vitro analyses that recapitulated the trichome chemistry found in planta. Comparison of the distribution of S. habrochaites accessions with terpene content revealed a strong preference for the presence of particular TPS20 alleles at distinct geographic locations. This study reveals that the unusually high intra-specific variation of volatile terpene synthesis in glandular trichomes of S. habrochaites is due at least in part to evolution at the TPS20 locus. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  6. Assessing terpene content variability of whitebark pine in order to estimate representative sample size

    Directory of Open Access Journals (Sweden)

    Stefanović Milena

    2013-01-01

    Full Text Available In studies of population variability, particular attention has to be paid to the selection of a representative sample. The aim of this study was to assess the size of the new representative sample on the basis of the variability of chemical content of the initial sample on the example of a whitebark pine population. Statistical analysis included the content of 19 characteristics (terpene hydrocarbons and their derivates of the initial sample of 10 elements (trees. It was determined that the new sample should contain 20 trees so that the mean value calculated from it represents a basic set with a probability higher than 95 %. Determination of the lower limit of the representative sample size that guarantees a satisfactory reliability of generalization proved to be very important in order to achieve cost efficiency of the research. [Projekat Ministarstva nauke Republike Srbije, br. OI-173011, br. TR-37002 i br. III-43007

  7. Oxidized limonene and oxidized linalool - concomitant contact allergy to common fragrance terpenes

    DEFF Research Database (Denmark)

    Bråred Christensson, Johanna; Karlberg, Ann-Therese; Andersen, Klaus E

    2016-01-01

    BACKGROUND: Limonene and linalool are common fragrance terpenes. Both oxidized R-limonene and oxidized linalool have recently been patch tested in an international setting, showing contact allergy in 5.2% and 6.9% of dermatitis patients, respectively. OBJECTIVE: To investigate concomitant reactions...... between oxidized R-limonene and oxidized linalool in consecutive dermatitis patients. METHODS: Oxidized R-limonene 3.0% (containing limonene hydroperoxides 0.33%) and oxidized linalool 6% (linalool hydroperoxides 1%) in petrolatum were tested in 2900 consecutive dermatitis patients in Australia, Denmark......, Singapore, Spain, Sweden, and the United Kingdom. RESULTS: A total of 281 patients reacted to either oxidized R-limonene or oxidized linalool. Of these, 25% had concomitant reactions to both compounds, whereas 29% reacted only to oxidized R-limonene and 46% only to oxidized linalool. Of the 152 patients...

  8. Stingless bees use terpenes as olfactory cues to find resin sources.

    Science.gov (United States)

    Leonhardt, S D; Zeilhofer, S; Blüthgen, N; Schmitt, Thomas

    2010-09-01

    Insects largely rely on olfactory cues when seeking and judging information on nests, partners, or resources. Bees are known to use volatile compounds-besides visual cues-to find flowers suitable for pollen and nectar collection. Tropical stingless bees additionally collect large amounts of plant resins for nest construction, nest maintenance, nest defense, and to derive chemical constituents for their cuticular profiles. We here demonstrate that stingless bees of Borneo also use olfactory cues to find tree resins. They rely on volatile mono- and sesquiterpenes to locate or recognize known resin sources. Moreover, by modifying resin extracts, we found that stingless bees do not use the entire resin bouquet but relative proportions of several terpenes. In doing so, the bees are able to learn specific tree resin profiles and distinguish between tree species and partly even tree individuals.

  9. Application of terpene-induced cell for enhancing biodegradation of TCE contaminated soil

    Directory of Open Access Journals (Sweden)

    Ekawan Luepromchai

    2004-02-01

    Full Text Available Trichloroethylene (TCE, a chlorinated solvent, is a major water pollutant originating from spillage and inappropriate disposal of dry cleaning agents, degreasing solvents, and paint strippers. Due to its widespread contamination and potential health threat, remediation technology to clean-up TCE is necessary. Aerobic biodegradation of TCE is reported to occur via cometabolism, by which TCE degrading bacteria utilize other compounds such as toluene, phenol, and methane as growth substrate and enzyme inducer. Although toluene is reported to be the most effective inducer, it is regulated as a hazardous material and should not be applied to the environment. The objectives of this study were to identify an alternative enzyme inducer as well as to apply the induced bacteria for degradation of TCE in contaminated soil. We investigated the effect of terpenes, the main components in volatile essential oils of plants, on induction of TCE degradation in Rhodococcus gordoniae P3, a local Gram (+ bacterium. Selected terpenes including cumene, limonene, carvone and pinene at various concentrations were used in the study. Results from liquid culture showed that 25 mg l-1 cumeneinduced R. gordoniae P3 cells resulted in 75% degradation of 10 ppm TCE within 24 hrs. Soil microcosms were later employed to investigate the ability of cumene to enhance TCE biodegradation in the environment. There were two bioremediation treatments studied, including bioaugmentation, the inoculation of cumeneinduced R. gordoniae P3, and biostimulation, the addition of cumene to induce soil indigenous microorganisms to degrade TCE. Bioaugmentation and biostimulation were shown to accelerate TCE reduction significantly more than control treatment at the beginning of study. The results suggest that cumene-induced R. gordoniae P3 and cumene can achieve rapid TCE biodegradation.

  10. Impact of biogenic terpene emissions from Brassica napus on tropospheric ozone over Saxony (Germany): numerical investigation.

    Science.gov (United States)

    Renner, Eberhard; Münzenberg, Annette

    2003-01-01

    The role of biogenic emissions in tropospheric ozone production is currently under discussion and major aspects are not well understood yet. This study aims towards the estimation of the influence of biogenic emissions on tropospheric ozone concentrations over Saxony in general and of biogenic emissions from brassica napus in special. MODELLING TOOLS: The studies are performed by utilizing a coupled numerical modelling system consisting of the meteorological model METRAS and the chemistry transport model MUSCAT. For the chemical part, the Euro-RADM algorithm is used. EMISSIONS: Anthropogenic and biogenic emissions are taken into account. The anthropogenic emissions are introduced by an emission inventory. Biogenic emissions, VOC and NO, are calculated within the chemical transport model MUSCAT at each time step and in each grid cell depending on land use type and on the temperature. The emissions of hydrocarbons from forest areas as well as biogenic NO especially from agricultural grounds are considered. Also terpene emissions from brassica napus fields are estimated. SIMULATION SETUP AND METEOROLOGICAL CONDITIONS: The simulations were performed over an area with an extension of 160 x 140 km2 which covers the main parts of Saxony and neighboring areas of Brandenburg, Sachsen-Anhalt and Thuringia. Summer smog with high ozone concentrations can be expected during high pressure conditions on hot summer days. Typical meteorological conditions for such cases were introduced in an conceptual way. It is estimated that biogenic emissions change tropospheric ozone concentrations in a noticeable way (up to 15% to 20%) and, therefore, should not be neglected in studies about tropospheric ozone. Emissions from brassica napus do have a moderate potential to enhance tropospheric ozone concentrations, but emissions are still under consideration and, therefore, results vary to a high degree. Summing up, the effect of brassica napus terpene emissions on ozone concentrations is

  11. Comparative genomic and transcriptomic analysis of terpene synthases in Arabidopsis and Medicago.

    Science.gov (United States)

    Parker, Michael T; Zhong, Yuan; Dai, Xinbin; Wang, Shiliang; Zhao, Patrick

    2014-08-01

    This study provides a timely comparative genomic and transcriptomic analysis of the terpene synthase (TPS) gene family in Medicago truncatula (bears glandular and non-glandular trichomes) and Arabidopsis thaliana (bears non-glandular trichomes). The authors' efforts aimed to gain insight into TPS function, phylogenetic relationships and the role of trichomes in terpene biosynthesis and function. In silico analysis identified 33 and 23 putative full-length TPS genes in Arabidopsis and Medicago, respectively. All AtTPS and MtTPS fall into the five established angiosperm TPS subfamilies, with lineage-specific expansion of Subfamily A in Arabidopsis and Subfamily G in Medicago. Large amounts of tandem duplication have occurred in both species, but only one syntenic duplication seems to have occurred in Arabidopsis, with no such duplication apparent in Medicago. Expression analysis indicates that there is much more trichome-localised TPS expression in Medicago than in Arabidopsis. However, TPS genes were expressed in non-glandular trichomes in both species. One trichome-specific gene has been identified in each Medicago and Arabidopsis along with flower-, seed-, stem- and root-specific genes. Of these, MtTPS11 is a promising candidate for trichome-specific genetic engineering, a technology that may be possible for both plants according to the findings of this manuscript. These results suggest that non-glandular trichomes may play a role in plant chemical defense and/or ecological communication instead of only in physical defence. Finally, the general lack of correlation between expression patterns and phylogenetic relationships in both species suggests that phylogenetic analysis alone is insufficient to predict gene function even for phylogenetically close paralogs.

  12. Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03.

    Science.gov (United States)

    Huang, Mengsu; Abel, Christian; Sohrabi, Reza; Petri, Jana; Haupt, Ina; Cosimano, John; Gershenzon, Jonathan; Tholl, Dorothea

    2010-07-01

    When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated intraspecific differences of volatile emissions induced from rosette leaves of 27 accessions of Arabidopsis (Arabidopsis thaliana) upon treatment with coronalon, a jasmonate mimic eliciting responses similar to those caused by insect feeding. Quantitative variation was found for the emission of the monoterpene (E)-beta-ocimene, the sesquiterpene (E,E)-alpha-farnesene, the irregular homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene, and the benzenoid compound methyl salicylate. Differences in the relative emissions of (E)-beta-ocimene and (E,E)-alpha-farnesene from accession Wassilewskija (Ws), a high-(E)-beta-ocimene emitter, and accession Columbia (Col-0), a trace-(E)-beta-ocimene emitter, were attributed to allelic variation of two closely related, tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-beta-ocimene and (E,E)-alpha-farnesene synthase activities. However, differential subcellular compartmentalization of the two enzymes in plastids and the cytosol was found to be responsible for the ecotype-specific differences in (E)-beta-ocimene/(E,E)-alpha-farnesene emission. Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and insect treatment and occurs constitutively in floral tissues. Our studies show that both pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes control the variation and plasticity of induced volatile emissions in wild plant species.

  13. The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies.

    Science.gov (United States)

    Zhao, Tao; Krokene, Paal; Björklund, Niklas; Långström, Bo; Solheim, Halvor; Christiansen, Erik; Borg-Karlson, Anna-Karin

    2010-08-01

    Constitutive and inducible terpene production is involved in conifer resistance against bark beetles and their associated fungi. In this study 72 Norway spruce (Picea abies) were randomly assigned to methyl jasmonate (MJ) application, inoculation with the bluestain fungus Ceratocystis polonica, or no-treatment control. We investigated terpene levels in the stem bark of the trees before treatment, 30 days and one year after treatment using GC-MS and two-dimensional GC (2D-GC) with a chiral column, and monitored landing and attack rates of the spruce bark beetle, Ips typographus, on the trees by sticky traps and visual inspection. Thirty days after fungal inoculation the absolute amount and relative proportion of (+)-3-carene, sabinene, and terpinolene increased and (+)-alpha-pinene decreased. Spraying the stems with MJ tended to generally increase the concentration of most major terpenes with minor alteration to their relative proportions, but significant increases were only observed for (-)-beta-pinene and (-)-limonene. Fungal inoculation significantly increased the enantiomeric ratio of (-)-alpha-pinene and (-)-limonene 1 month after treatment, whereas MJ only increased that of (-)-limonene. One year after treatment, both MJ and fungal inoculation increased the concentration of most terpenes relative to undisturbed control trees, with significant changes in (-)-beta-pinene, (-)-beta-phellandrene and some other compounds. Terpene levels did not change in untreated stem sections after treatment, and chemical induction by MJ and C. polonica thus seemed to be restricted to the treated stem section. The enantiomeric ratio of (-)-alpha-pinene was significantly higher and the relative proportions of (-)-limonene were significantly lower in trees that were attractive to bark beetles compared to unattractive trees. One month after fungal inoculation, the total amount of diterpenes was significantly higher in putative resistant trees with shorter lesion lengths than in

  14. The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares.

    Science.gov (United States)

    Welter, Saskia; Bracho-Nuñez, Araceli; Mir, Céline; Zimmer, Ina; Kesselmeier, Jürgen; Lumaret, Roselyne; Schnitzler, Jörg-Peter; Staudt, Michael

    2012-09-01

    Interspecific gene flow is common in oaks. In the Mediterranean, this process produced geographical differentiations and new species, which may have contributed to the diversification of the production of volatile terpenes in the oak species of this region. The endemic North African deciduous oak Quercus afares (Pomel) is considered to be a stabilized hybrid between the evergreen Quercus suber (L.) and the deciduous Quercus canariensis (Willd.), presumably being monoterpene and isoprene emitters, respectively. In a common garden experiment, we examined the terpene emission capacities, terpene synthase (TPS) activities and nuclear genetic markers in 52 trees of these three oak species. All but one of the Q. suber and Q. canariensis trees were found to be genetically pure, whereas most Q. afares trees possessed a mixed genotype with a predominance of Q. suber alleles. Analysis of the foliar terpene emissions and TPS activities revealed that all the Q. canariensis trees strongly produced isoprene while all the Q. suber trees were strong monoterpene producers. Quercus afares trees produced monoterpenes as well but at more variable and significantly lower rates, and with a monoterpene pattern different than that observed in Q. suber. Among 17 individuals tested, one Q. afares tree emitted only an insignificant amount of terpenes. No mixed isoprene/monoterpene emitter was detected. Our results suggest that the capacity and pattern of volatile terpene production in Algerian Q. afares populations have strongly diverged from those of its parental species and became quantitatively and qualitatively reduced, including the complete suppression of isoprene production.

  15. Potential Contribution of Fish Feed and Phytoplankton to the Content of Volatile Terpenes in Cultured Pangasius (Pangasianodon hypophthalmus) and Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Podduturi, Raju; Petersen, Mikael A; Mahmud, Sultan; Rahman, Md Mizanur; Jørgensen, Niels O G

    2017-05-10

    Geosmin and 2-methylisoborneol are the most recognized off-flavors in freshwater fish, but terpenes may also contribute off-flavor in fish. We identified six monoterpenes, 11 sesquiterpenes, and three terpene-related compounds in pangasius and tilapia from aquaculture farms in Bangladesh. The concentrations of most of the volatiles were below published odor thresholds, except for α-pinene, limonene, β-caryophyllene, α-humulene, and β-ionone in tilapia, and limonene and β-ionone in pangasius. To identify sources of the terpenes, terpene profiles of fish feed and phytoplankton in the ponds were analyzed. In feed and mustard cake (feed ingredient), five monoterpenes and two sesquiterpenes were identified, and five of these compounds were also detected in the fish. In phytoplankton, 11 monoterpenes were found and three also occurred in the fish. The higher number of terpenes common to both fish and feed, than to fish and phytoplankton, suggests that feed was a more abundant source of odor-active terpenes in the fish than phytoplankton.

  16. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves

    Directory of Open Access Journals (Sweden)

    Patil Shriniwas P.

    2017-07-01

    Full Text Available Several attempts have been made for green synthesis of silver nanoparticles (AgNPs using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii with LD50 value 514.50 µg/ml.

  17. Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization.

    Science.gov (United States)

    Llusia, Joan; Bermejo-Bermejo, Victoria; Calvete-Sogo, Héctor; Peñuelas, Josep

    2014-11-01

    Increasing tropospheric ozone (O3) and nitrogen soil availability (N) are two of the main drivers of global change. They both may affect gas exchange, including plant emission of volatiles such as terpenes. We conducted an experiment using open-top chambers to analyze these possible effects on two leguminous species of Mediterranean pastures that are known to have different O3 sensitivity, Ornithopus compressus and Trifolium striatum. O3 exposure and N fertilization did not affect the photosynthetic rates of O. compressus and T. striatum, although O3 tended to induce an increase in the stomatal conductance of both species, especially T. striatum, the most sensitive species. O3 and N soil availability reduced the emission of terpenes in O. compressus and T. striatum. If these responses are confirmed as a general pattern, O3 could affect the competitiveness of these species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves.

    Science.gov (United States)

    P, Patil Shriniwas; T, Kumbhar Subhash

    2017-07-01

    Several attempts have been made for green synthesis of silver nanoparticles (AgNPs) using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE) of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV-Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose - dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii) with LD50 value 514.50 µg/ml.

  19. QCM-Arrays for Sensing Terpenes in Fresh and Dried Herbs via Bio-Mimetic MIP Layers

    Directory of Open Access Journals (Sweden)

    Naseer Iqbal

    2010-06-01

    Full Text Available A piezoelectric 10 MHz multichannel quartz crystal microbalance (MQCM, coated with six molecularly imprinted polystyrene artificial recognition membranes have been developed for selective quantification of terpenes emanated from fresh and dried Lamiaceae family species, i.e., rosemary (Rosmarinus Officinalis L., basil (Ocimum Basilicum and sage (Salvia Officinalis. Optimal e-nose parameters, such as layer heights (1–6 KHz, sensitivity

  20. Correlation of the solubility of several aromatics and terpenes in aqueous hydroxypropyl-beta-cyclodextrin with steric and hydrophobicity parameters.

    Science.gov (United States)

    Demian, B A

    2000-10-06

    The solubility isotherms of nineteen aromatics and terpenes in aqueous hydroxypropyl-beta-cyclodextrin were determined to be straight lines. This is explained by the host-guest complexation which is characteristic for the whole class of cyclodextrins and derivatives. The slopes of the solubility isotherms correlate with Sterimol L and log P(ow) as descriptors of the steric fit and hydrophobicity match, in accord with the qualitative representation of the phenomenon.

  1. Effect of DC/mDC iontophoresis and terpenes on transdermal permeation of methotrexate: in vitro study.

    Science.gov (United States)

    Prasad, R; Koul, V; Anand, S; Khar, R K

    2007-03-21

    The systemic toxicity caused by methotrexate limits its use and transdermal delivery would be a possible alternative. Transdermal permeation of methotrexate loaded into polyacrylamide-based hydrogel patch, across mice skin was studied in vitro after pretreatment with terpenes and ethanol, alone or in combination with iontophoresis (DC/mDC). Polyacrylamide patches gave the maximum flux as compared to the copolymers of acrylamide and acrylic acid. Of the terpenes used, pure menthol showed maximum enhancement (38%), whereas pure limonene elicited a minimum of 9.9% enhancement. Binary combination of menthol and ethanol increased the permeation to 54.9%, which was further enhanced to 93.69% and 117% when used in combination with DC and square wave (mDC) iontophoresis, respectively. ATR-FTIR of the stratum corneum treated with terpenes showed a split in the asymmetric C-H stretching vibrations along with decrease in peak heights and areas of asymmetric, symmetric C-H stretching, C=O stretching and amide bands. A split in amide II band was observed with iontophoresis. ATR-FTIR studies suggest conformational changes in the lipid-protein domains thereby increasing permeation. Histopathological studies on treated skin samples, gave an insight about the anatomical changes brought by the application of various enhancers. Binary mixture of menthol and ethanol in combination with square wave gave best results.

  2. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases.

    Science.gov (United States)

    Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A; O'Maille, Paul E

    2014-01-01

    Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography-mass spectrometry (GC-MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of k cat/K M among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries.

  3. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L

    Directory of Open Access Journals (Sweden)

    Lundgren Anneli

    2011-03-01

    Full Text Available Abstract Background Recently, Artemisia annua L. (annual or sweet wormwood has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues. Results The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13 reductase and aldehyde dehydrogenase 1 showed remarkably higher expression (between ~40- to ~500-fold in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures. Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves. Conclusions Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes. The expression of dihydroartemisinic aldehyde reductase has been suggested to have a

  4. Chemodiversity of a Scots pine stand and implications for terpene air concentrations

    Directory of Open Access Journals (Sweden)

    J. Bäck

    2012-02-01

    Full Text Available Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 48 yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40–97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum. An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene

  5. Isolation and biological activities of neomyrrhaol and other terpenes from the resin of Commiphora myrrha.

    Science.gov (United States)

    Su, Shu-Lan; Duan, Jin-Ao; Tang, Yu-Ping; Zhang, Xu; Yu, Li; Jiang, Feng-Rong; Zhou, Wei; Luo, Dan; Ding, An-Wei

    2009-03-01

    A new cycloartane-type triterpene named cycloartane-1alpha,2alpha,3beta,25-tetraol (neomyrrhaol) (1), along with four known terpenes, sandaracopimaric acid (2), abietic acid (3), 2-methoxy-5-acetoxyfruranogermacr-1(10)-en-6-one (4), and dehydroabietic acid (5) have been isolated from the resin of COMMIPHORA MYRRHA. Their structures were elucidated by means of 1D, 2 D NMR and HR-mass spectroscopy. Compounds 2-5 are known compounds but not previously isolated from the resin of C. MYRRHA. Compounds 4 and 5 exhibited significant aromatase inhibiting activity with IC50 values at 0.2 microM and 0.3 microM, respectively. As shown in the MTT assay, 2, 3, 4, and 5 had inhibitory effects on HUVEC growth with IC50 values of 0.122 microM (2), 0.125 microM (3), 0.069 microM (5). Compounds 1-5 did not inhibit contraction of the isolated uterine and did not protect HUVEC from damage induced by H2O2 at the tested concentration.

  6. Antibacterial terpenes from the oleo-resin of Commiphora molmol (Engl.).

    Science.gov (United States)

    Rahman, M Mukhlesur; Garvey, Mark; Piddock, Laura J V; Gibbons, Simon

    2008-10-01

    Two octanordammaranes, mansumbinone (1) and 3,4-seco-mansumbinoic acid (2), and two sesquiterpenes, beta-elemene (3) and T-cadinol (4) have been isolated from the oleo-resin of Commiphora molmol (Engl.). The structures of these compounds were established unambiguously by a series of 1D and 2D-NMR analyses. We have also unambiguously assigned all (1)H and (13)C NMR resonances for 2 and revised its (13)C data. The crude extract of the oleo-resin of C. molmol displayed potentiation of ciprofloxacin and tetracycline against S. aureus, several Salmonella enterica serovar Typhimurium strains and two K. pneumoniae strains. The antibacterial activity of terpenes 1-4 was determined against a number of Staphylococcus aureus strains: SA1199B, ATCC25923, XU212, RN4220 and EMRSA15 and minimum inhibitory concentration (MIC) values were found to be in the range of 4-256 microg/ml. The highest activity was observed by the seco-A-ring octanordammarane 2 with an MIC of 4 microg/ml against SA1199B, a multidrug-resistant strain which over-expresses the NorA efflux transporter, the major characterized antibiotic pump in this species. This activity compared favorably to the antibiotic norfloxacin with an MIC of 32 microg/ml. Compound 2 also displayed weak potentiation of ciprofloxacin and tetracycline activity against strains of Salmonella enterica serovar Typhimurium SL1344 and L10. (c) 2008 John Wiley & Sons, Ltd.

  7. Exposure to formaldehyde, nitrogen dioxide, ozone, and terpenes among office workers and associations with reported symptoms.

    Science.gov (United States)

    Glas, Bo; Stenberg, Berndt; Stenlund, Hans; Sunesson, Anna-Lena

    2015-07-01

    To compare exposure to formaldehyde, nitrogen dioxide, ozone and terpenes among office workers with and without sick building syndrome and the odds ratio for exposure. Are there significant differences? In this cross-sectional study of office workers, we investigated the associations between exposure to formaldehyde, nitrogen dioxide, ozone, α-pinene, and D-limonene using a case-control analysis. Data on perceived general, mucosal, and skin symptoms were obtained by questionnaires. Personal exposure measurements of the compounds were performed among cases and controls, and the odds ratios for exposures to the substances, both singly and in combination, were investigated. Exposures varied for formaldehyde between 0.23 and 45 µg/m(3), nitrogen dioxide between 0.26 and 110 µg/m(3), ozone between <16 and 165 µg/m(3), α-pinene between 0.2 and 170 µg/m(3), and D-limonene between 0.8 and 1,400 µg/m(3). No consistent differences in exposure odds ratios were found between cases and controls or for individual symptoms.

  8. The α-Terpineol to 1,8-Cineole Cyclization Reaction of Tobacco Terpene Synthases.

    Science.gov (United States)

    Piechulla, Birgit; Bartelt, Richard; Brosemann, Anne; Effmert, Uta; Bouwmeester, Harro; Hippauf, Frank; Brandt, Wolfgang

    2016-12-01

    Flowers of Nicotiana species emit a characteristic blend including the cineole cassette monoterpenes. This set of terpenes is synthesized by multiproduct enzymes, with either 1,8-cineole or α-terpineol contributing most to the volatile spectrum, thus referring to cineole or terpineol synthase, respectively. To understand the molecular and structural requirements of the enzymes that favor the biochemical formation of α-terpineol and 1,8-cineole, site-directed mutagenesis, in silico modeling, and semiempiric calculations were performed. Our results indicate the formation of α-terpineol by a nucleophilic attack of water. During this attack, the α-terpinyl cation is stabilized by π-stacking with a tryptophan side chain (tryptophan-253). The hypothesized catalytic mechanism of α-terpineol-to-1,8-cineole conversion is initiated by a catalytic dyad (histidine-502 and glutamate-249), acting as a base, and a threonine (threonine-278) providing the subsequent rearrangement from terpineol to cineol by catalyzing the autoprotonation of (S)-(-)-α-terpineol, which is the favored enantiomer product of the recombinant enzymes. Furthermore, by site-directed mutagenesis, we were able to identify amino acids at positions 147, 148, and 266 that determine the different terpineol-cineole ratios in Nicotiana suaveolens cineole synthase and Nicotiana langsdorffii terpineol synthase. Since amino acid 266 is more than 10 Å away from the active site, an indirect effect of this amino acid exchange on the catalysis is discussed. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. The α-Terpineol to 1,8-Cineole Cyclization Reaction of Tobacco Terpene Synthases1

    Science.gov (United States)

    Piechulla, Birgit; Bartelt, Richard; Brosemann, Anne; Bouwmeester, Harro; Hippauf, Frank

    2016-01-01

    Flowers of Nicotiana species emit a characteristic blend including the cineole cassette monoterpenes. This set of terpenes is synthesized by multiproduct enzymes, with either 1,8-cineole or α-terpineol contributing most to the volatile spectrum, thus referring to cineole or terpineol synthase, respectively. To understand the molecular and structural requirements of the enzymes that favor the biochemical formation of α-terpineol and 1,8-cineole, site-directed mutagenesis, in silico modeling, and semiempiric calculations were performed. Our results indicate the formation of α-terpineol by a nucleophilic attack of water. During this attack, the α-terpinyl cation is stabilized by π-stacking with a tryptophan side chain (tryptophan-253). The hypothesized catalytic mechanism of α-terpineol-to-1,8-cineole conversion is initiated by a catalytic dyad (histidine-502 and glutamate-249), acting as a base, and a threonine (threonine-278) providing the subsequent rearrangement from terpineol to cineol by catalyzing the autoprotonation of (S)-(−)-α-terpineol, which is the favored enantiomer product of the recombinant enzymes. Furthermore, by site-directed mutagenesis, we were able to identify amino acids at positions 147, 148, and 266 that determine the different terpineol-cineole ratios in Nicotiana suaveolens cineole synthase and Nicotiana langsdorffii terpineol synthase. Since amino acid 266 is more than 10 Å away from the active site, an indirect effect of this amino acid exchange on the catalysis is discussed. PMID:27729471

  10. Degradation of terpenes and terpenoids from Mediterranean rangelands by mixed rumen bacteria in vitro.

    Science.gov (United States)

    Malecky, M; Albarello, H; Broudiscou, L P

    2012-04-01

    This in vitro study aimed at estimating the disappearance rates of 14 terpenes and terpenoids after 24-h incubation with mixed bacteria from caprine rumens. These compounds comprised nine monoterpene hydrocarbons (δ-3-carene, p-cymene, β-myrcene, (E)- and (Z)-β-ocimene, α-phellandrene, α-terpinene, γ-terpinene and α-terpinolene), four oxygenated monoterpenes ((E)- and (Z)-linalool oxide, 4-terpinenol, α + γ terpineol) and one sesquiterpene hydrocarbon (β-cedrene). They were individually exposed to goat rumen microflora for 24 h in 70 ml culture tubes at an input level of 0.5 ml/l. Terpenoids were the least degraded, 100% of (E)-linalool oxide, 95% of (Z)-linalool oxide, 91% of 4-terpinenol and 75% of terpineol remained intact after 24-h incubation. In contrast, α-terpinolene concentration in fermentation broth extracts was below quantification limit, thus indicating an extensive, if not complete, degradation by rumen bacteria. Only 2% of the initial amounts of α-phellandrene were recovered. The other monoterpenes and β-cedrene were partly degraded, with losses ranging from 67% for δ-3-carene to 90% for (E)-β-ocimene. The corresponding rates of disappearance were between 2.67 and 4.08 μmol/ml inoculum per day.

  11. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

  12. Quantitative structure-activity relationship study of phloroglucinol-terpene adducts as anti-leishmanial agents.

    Science.gov (United States)

    Bharate, Sandip B; Singh, Inder Pal

    2011-07-15

    Phloroglucinol class of natural products occur widely in Myrtaceae family and possess variety of biological activities viz. antimicrobial, antimalarial, cancer chemopreventive, anti-HIV and anti-leishmanial. In the present article, quantitative structure-activity relationship (QSAR) study was carried out for a series of phloroglucinol-terpene adducts exhibiting anti-leishmanial activity to find out the structural features which are crucial for the biological activity. The QSAR study was carried out using JChem for Excel and the best QSAR model was derived by multiple regression analysis. The best model of four descriptors yields squared correlation coefficient of 0.930 (s=0.096, F=65.93, Pstudy indicated that the lipophilic character (CLogP), isoelectric point, Haray index and Platt index play important role in anti-leishmanial activity of compounds. Anti-leishmanial activity of several structurally similar naturally occurring euglobals has also been predicted using developed QSAR model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. [Regulation of terpene metabolism]. Annual progress report, March 15, 1990--March 14, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-12-31

    During the last grant period, we have completed studies on the key pathways of monoterpene biosynthesis and catabolism in sage and peppermint, and have, by several lines of evidence, deciphered the rate-limiting step of each pathway. We have at least partially purified and characterized the relevant enzymes of each pathway. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation depends upon the balance between biosynthesis and catabolism, and provided supporting evidence that these processes are developmentally-regulated and very closely associated with senescence of the oil glands. Oil gland ontogeny has been characterized at the ultrastructural level. We have exploited foliar-applied bioregulators to delay gland senescence, and have developed tissue explant and cell culture systems to study several elusive aspects of catabolism. We have isolated pure gland cell clusters and localized monoterpene biosynthesis and catabolism within these structures, and have used these preparations as starting materials for the purification to homogeneity of target ``regulatory`` enzymes. We have thus developed the necessary background knowledge, based on a firm understanding of enzymology, as well as the necessary experimental tools for studying the regulation of monoterpene metabolism at the molecular level. Furthermore, we are now in a position to extend our systematic approach to other terpenoid classes (C{sub 15}-C{sub 30}) produced by oil glands.

  14. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.

    Science.gov (United States)

    Giunta, A D; Runyon, J B; Jenkins, M J; Teich, M

    2016-08-01

    Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with consequences for wildfires. In this study, we measured chemical changes to Douglas-fir (Pseudotsuga menziesii var. glauca (Mirb.) Franco) foliage in response to attack by Douglas-fir beetles (Dendroctonus pseudotsugae Hopkins) as trees die and crowns transitioned from green/healthy, to green-infested (year of attack), to yellow (year after attack), and red (2 yr after attack). We found large differences in volatile and within-needle terpene concentrations among crown classes and variation across a growing season. In general, emissions and concentrations of total and individual terpenes were greater for yellow and red needles than green needles. Douglas-fir beetle attack increased emissions and concentrations of terpene compounds linked to increased tree flammability in other conifer species and compounds known to attract beetles (e.g., [Formula: see text]-pinene, camphene, and D-limonene). There was little relationship between air temperature or within-needle concentrations of terpenes and emission of terpenes, suggesting that passive emission of terpenes (e.g., from dead foliage) does not fully explain changes in volatile emissions. The potential physiological causes and ecological consequences of these bark beetle-associated chemical changes are discussed. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A special terpene combination (Rowatinex®) improves stone clearance after extracorporeal shockwave lithotripsy in urolithiasis patients: results of a placebo-controlled randomised controlled trial.

    Science.gov (United States)

    Romics, Imre; Siller, György; Kohnen, Ralf; Mavrogenis, Stelios; Varga, József; Holman, Endre

    2011-01-01

    To investigate the safety and efficacy of a special terpene combination in the treatment of patients with urolithiasis after extracorporeal shockwave lithotripsy (ESWL). 222 patients with clinically stable kidney or ureter stones of 0.3-2.0 cm undergoing complication-free ESWL were randomised to receive a special terpene combination (Rowatinex®; 3 × 2 capsules/day) or placebo. The study consisted of a 12-week active treatment phase and a 2-week follow-up phase. All patients had a physical examination, and diagnosis of kidney stones was made by X-ray, intravenous pyelogram or ultrasound at weeks 1, 4, 8 and 12 as well as after 2 weeks of follow-up. Stone-free status was defined as obviously successful expulsion of calculi/fragments, being without any stone. In all, when compared to placebo, significantly more patients receiving the terpene combination treatment in the intent-to-treat (ITT) group [72 (67.9%) vs. 49 (50.0%); p = 0.0009] and the per-protocol (PP) group [69 (78.4%) vs. 48 (52.2%); p = 0.0004] were stone-free at the end of the study. Treatment with the terpene combination was also more effective when analysed with respect to the size of the treated stone. In addition, treatment with the terpene combination significantly reduced the median time to stone-free status from 85.0 to 56.0 days (p = 0.0061) and from 85.0 to 49.5 days (p = 0.0028) in the ITT and PP populations, respectively. Nine mild-to-moderate adverse events (AE; terpene combination group: 7 AE in 4 patients; placebo group: 2 AE in 2 patients) were assessed as drug-related. Treatment with the terpene combination is well tolerated and safe. The terpene combination was found to be an efficacious treatment in eliminating calculi fragments generated by ESWL as compared to placebo. The pharmacodynamic properties of the terpene combination (antilithogenic, antibacterial, antiinflammatory, spasmolytic and analgesic effects), which have been also confirmed in preclinical studies, represent a

  16. Immissions of terpenes over Picea abies stands in open-top chambers fumigated with ozone, sulphur dioxide and a mixture of both

    Energy Technology Data Exchange (ETDEWEB)

    Juettner, F.; Bufler, U.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A. (comps.)

    1987-04-01

    The terpene immissions were measured in the air over stands of Picea abies which have been cultivated 3 years in open-top chambers with O/sub 3/-, SO/sub 2/- and O/sub 3//SO/sub 2/-enriched air. A stand fumigated with charcoal-treated air was used as the reference. Highest terpene immissions were observed for ..cap alpha..-pinene, limonene and sabinene, medium for eucalyptol, ..beta..-pinene, camphene and myrcene, and lowest for tricyclene, camphor, ..gamma..-terpinene and bornyl acetate. A reduction of terpene immissions was found over all stands which were fumigated with noxious gases. A change of the terpene pattern that was characterized by an increase of the limonene concentration was observed after a one-week dry period in the O/sub 3/- and O/sub 3//SO/sub 2/-chamber. After sprinkling, the terpene immissions generally increased. Under these conditions, exceptionally high concentrations of sabinene were observed over O/sub 3/-treated stands of Picea abies.

  17. Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers

    Energy Technology Data Exchange (ETDEWEB)

    Zoradova-Murinova, Slavomira; Dudasova, Hana; Lukacova, Lucia; Certik, Milan; Dercova, Katarina [Slovak Univ. of Technology, Bratislava (Slovakia). Inst. of Biotechnology and Food Science; Silharova, Katarina; Vrana, Branislav [Water Research Institute, Bratislava (Slovakia)

    2012-06-15

    In this study, we examined the effect of polychlorinated biphenyls (PCBs) in the presence of natural and synthetic terpenes and biphenyl on biomass production, lipid accumulation, and membrane adaptation mechanisms of two PCB-degrading bacterial strains Pseudomonas stutzeri and Burkholderia xenovorans LB400. According to the results obtained, it could be concluded that natural terpenes, mainly those contained in ivy leaves and pine needles, decreased adaptation responses induced by PCBs in these strains. The adaptation processes under investigation included growth inhibition, lipid accumulation, composition of fatty acids, cis/trans isomerization, and membrane saturation. Growth inhibition effect decreased upon addition of these natural compounds to the medium. The amount of unsaturated fatty acids that can lead to elevated membrane fluidity increased in both strains after the addition of the two natural terpene sources. The cells adaptation changes were more prominent in the presence of carvone, limonene, and biphenyl than in the presence of natural terpenes, as indicated by growth inhibition, lipid accumulation, and cis/trans isomerization. Addition of biphenyl and carvone simultaneously with PCBs increased the trans/cis ratio of fatty acids in membrane fractions probably as a result of fluidizing effects of PCBs. This stimulation is more pronounced in the presence of PCBs as a sole carbon source. This suggests that PCBs alone have a stronger effect on bacterial membrane adaptation mechanisms than when added together with biphenyl or natural or synthetic terpenes. (orig.)

  18. Zero-emission wood chip drier with terpene recovery. Project 2: Condensate treatment and terpene production. Final report; Emissonsfreier Holzspaenetrockner mit Rueckgewinnung von Terpenen. Teilvorhaben 2: Kondensataufbereitung und Terpengewinnung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, H.; Sievers, M.

    2002-07-01

    The wood drying process releases volatile constituents, of which terpene compounds are the most important as they can be used as feedstocks for the chemical industry (odorants and aromatic substances). Closed-cycle steam drying of wood chips (pinewood) with vapour condensation and integrated production of terpenes was investigated on a pilot scale and semi-industrial scale. The project was successful. An economic assessment of the pilot experiments showed that integrated terpene production may be economically interesting, especially if the condensates are used as process fluids and the process heat is recycled at least partly. (orig.) [German] Bei der Trocknung von Holz werden fluechtige orginaere Holzinhaltsstoffe freigesetzt. Besondere Bedeutung kommt den Terpenverbindungen zu, da diese als Rohstoffe in der chemischen Industrie (Duft- und Aromastoffherstellung) eingesetzt werden. Mit der Dampftrocknung im geschlossenen Gaskreislauf bietet sich erstmals die Moeglichkeit einer wirtschaftlichen produktionsintegrierten Gewinnung von Terpenverbindungen ueber eine Kondensation der angereicherten Brueden. Im Rahmen eines Verbundvorhabens wurde deshalb a) die technische Umsetzung eines Spaenetrockners (hier: Kiefernholz) wissenschaftlich und messtechnisch begleitet (Teilvorhaben 1, Bearbeitung: Wilhelm-Klauditz-Institut (FhG), Braunschweig) und b) die integrierte Gewinnung von Terpenen im Pilot- und halbtechnischen Massstab untersucht (Teilvorhaben 2, CUTEC-Institut). Mit Hilfe einer zweistufigen Abluftbehandlung aus Absorption und Kondensation im halbtechnischen Massstab konnte eine Vorfraktionierung der Holzinhaltsstoffe dahingehend erreicht werden, dass sich Staub, Harze und Wachse im Waschwasser anreichern, waehrend die fuer die Duftstoffindustrie interessanten Holzoele (Terpene) mit dem Kondensat abgeschieden werden. Die Abtrennung der Holzoele aus dem Kondensat wurde mit einem Leichtstoffabscheider realisiert. Bei Kondensatmengen von 200 bis 500 L/h wurden

  19. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    Science.gov (United States)

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants. Copyright © 2015. Published by Elsevier Inc.

  20. Taxadiene Synthase Structure and Evolution of Modular Architecture in Terpene Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    M Köksal; Y Jin; R Coates; R Croteau; D Christianson

    2011-12-31

    With more than 55,000 members identified so far in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A well-known and important member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization and shows remarkable efficacy in cancer chemotherapy. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia) is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene, which is catalysed by taxadiene synthase. The full-length form of this diterpene cyclase contains 862 residues, but a roughly 80-residue amino-terminal transit sequence is cleaved on maturation in plastids. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N terminus, hereafter designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (1.82 {angstrom} resolution) and 2-fluorogeranylgeranyl diphosphate (2.25 {angstrom} resolution). The TXS structure reveals a modular assembly of three {alpha}-helical domains. The carboxy-terminal catalytic domain is a class I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. The N-terminal domain and a third 'insertion' domain together adopt the fold of a vestigial class II terpenoid cyclase. A class II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.

  1. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies.

    Science.gov (United States)

    Schmidt, Axel; Wächtler, Betty; Temp, Ulrike; Krekling, Trygve; Séguin, Armand; Gershenzon, Jonathan

    2010-02-01

    The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C(10)) and diterpenes (C(20)). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C(10)) and geranylgeranyl diphosphate (C(20)). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate.

  2. In vitro inhibitory activity of terpenic derivatives against clinical and environmental strains of the Sporothrix schenkii complex.

    Science.gov (United States)

    Brilhante, Raimunda Sâmia Nogueira; Silva, Natalya Fechine; Marques, Francisca Jakelyne de Farias; Castelo-Branco, Débora de Souza Collares Maia; de Lima, Rita Amanda Chaves; Malaquias, Angela Donato Maia; Caetano, Erica Pacheco; Barbosa, Giovanna Riello; de Camargo, Zoilo Pires; Rodrigues, Anderson Messias; Monteiro, André Jalles; Bandeira, Tereza de Jesus Pinheiro Gomes; Cordeiro, Rossana de Aguiar; Sidrim, José Júlio Costa; Moreira, José Luciano Bezerra; Rocha, Marcos Fábio Gadelha

    2015-02-01

    Sporotrichosis is a subacute or chronic subcutaneous infection, caused by the fungus Sporothrix schenkii complex, occurring in human and animal tissues. Potassium iodide and itraconazole have been used as effective therapy for first-choice treatment, while amphotericin B may be indicated for disseminated infection. However, the adverse effects of potassium iodide and amphotericin B or the long duration of therapy with itraconazole often weigh against their use, leading to the search for alternatives for the treatment of severe infections. Terpinen-4-ol and farnesol are components of essential oils present in many plant species and have been described to have antifungal activity against microorganisms. In this study, 40 strains of Sporothrix spp. were tested for the susceptibility to terpinen-4-ol and farnesol. Changes in cytoplasmic membrane permeability were also investigated. Terpenes inhibited all Sporothrix strains with MIC values ranging from 87.9 to 1,429.8 μg/ml for terpinen-4-ol and from 0.003 to 0.222 μg/ml for farnesol. The MFC values ranged from 177.8 to 5,722.6 μg/ml and from 0.027 to 0.88 μg/ml, respectively, for terpinen-4-ol and farnesol. Farnesol was the most active compound for the Sporothrix strains. Significant loss of 260 and 280 nm-absorbing material did not occur after treatment with concentrations equivalent to the MIC and sub-MIC of the tested terpenes, when compared to corresponding untreated samples. The failure of terpenes to lyse Sporothrix cells suggests that their primary mechanism of action is not by causing irreversible cell membrane damage. Thus, new studies are needed to better understand the mechanisms involved in the antifungal activity. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Terpene Glycosides from the Roots of Sanguisorba officinalis L. and Their Hemostatic Activities

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2012-06-01

    Full Text Available Guided by a hemostasis bioassay, seven terpene glycosides were isolated from the roots of Sanguisorba officinalis L. by silica gel column chromatography and preparative HPLC. On the grounds of chemical and spectroscopic methods, their structures were identified as citronellol-1-O-α-l-arabinofuranosyl-(1→6-β-d-glucopyranoside (1, geraniol-1-O-α-l-arabinofuranosyl-(1→6-β-d-glucopyranoside (2, geraniol-1-O-α-l-arabinopyranosyl-(1→6-β-d-glucopyranoside (3, 3β-[(α-l-arabinopyranosyloxy]-19α-hydroxyolean-12-en-28-oic acid 28-β-d-glucopyranoside (4, 3β-[(α-l-arabinopyranosyl-oxy]-19α-hydroxyurs-12-en-28-oic acid 28-β-d-glucopyranoside (ziyu-glycoside I, 5, 3β,19α-hydroxyolean-12-en-28-oic acid 28-β-d-glucopyranoside (6 and 3β,19α-di-hydroxyurs-12-en-28-oic acid 28-β-d-glucopyranoside (7. Compound 1 is a new mono-terpene glycoside and compounds 2, 3 and 5 were isolated from the Sanguisorba genus for the first time. Compounds 17 were assayed for their hemostatic activities with a Goat Anti-Human α2-plasmin inhibitor ELISA kit, and ziyu-glycoside I (5 showed the strongest hemostatic activity among the seven terpene glycosides. This is the first report that ziyu-glycoside Ι has strong hemostatic activity.

  4. Terpene Profile, Leaf Anatomy, and Enzyme Activity of Resistant and Susceptible Cocoa Clonesto Vascular Streak Dieback Disease

    Directory of Open Access Journals (Sweden)

    Adi Prawoto

    2014-10-01

    Full Text Available Vascular-streak dieback (VSD, Oncobasidium theobromae is the most prevalent disease of Theobroma cacao L. in Indonesia. This study aims to analyze resistance mechanism to VSD based on terpene profile, leaf anatomy, chitinase, and peroxidase study. Resistant clones of Sulawesi 1 and Sca 6 and susceptible clones of ICS 60 and TSH 858 were used for terpene profile, leaf anatomy analysis, chitinase, peroxides, polyphenol, lignin, and cellulose analysis. Those clones and KEE 2, KKM 22 and ICS 13 were used for peroxides analysis. For trichome study, the resistant clones of Sulawesi 1, Sca 6, KEE 2, and KKM 22, and susceptible clones of ICS 60 and TSH 858 were used. GCMS analysis showed that chromatogram pattern of resistant and susceptible groups were quite similar, but resistant clones contained 22% more components than the susceptible ones. Resistant clones contained groups of pinene, decane, myrcene, and octadecanoic acid, while those substances on usceptible clones were absent. Trichome was thicker on younger leaf, and its density on the basal was higher than that on the middle and tip leaf parts. Trichome density of resistant clone was not always thicker than that of susceptible ones. On resistant clones, stomatal density was lower and width of stomate pits was narrower, while thickness of epidermis layer and pallisade parenchym were higher. Polyphenol content of resistant clones were higher but lignin and cellulose of both groups were similar. Chitinase activity which has a role in hydrolysis of mycelia cell wall was higher on the resistant clones, but peroxides which has a role in polymeration of lignin biosynthesis was similar between both groups. It is concluded that groups of terpene pinene, decane, myrcene, and octadecanoic acid, thickness of leaf epidermis, density and width of stomata pit, and chitinase activity plays important role in cocoa resistance to VSD. Key words: Theobroma cacaoL., clone, vascular-streak dieback, resistance, leaf

  5. Effect of Enzyme Inhibitors on Terpene Trilactones Biosynthesis and Gene Expression Profiling in Ginkgo biloba Cultured Cells.

    Science.gov (United States)

    Chen, Lijia; Tong, Hui; Wang, Mingxuan; Zhu, Jianhua; Zi, Jiachen; Song, Liyan; Yu, Rongmin

    2015-12-01

    The biosynthetic pathway of terpene trilactones of Ginkgo biloba is unclear. In this present study, suspension cultured cells of G. biloba were used to explore the regulation of the mevalonic acid (MVA) and methylerythritol 4-phosphate (MEP) pathways in response to specific enzyme inhibitors (lovastatin and clomazone). The results showed that the biosynthesis of bilobalide was more highly correlated with the MVA pathway, and the biosynthesis of ginkgolides was more highly correlated with the MEP pathway. Meanwhile, according to the results, it could be speculated that bilobalide might be a product of ginkgolide metabolism.

  6. Terpenóides e seu metabolismo em fungos: um estudo de Scleroderma sp. e Xylaria sp.

    OpenAIRE

    Diego Zulkiewicz Gomes

    2011-01-01

    No presente trabalho foram isolados os triterpenos lanostanos Lanosta-8,24-diene-3ß,23-diol e Lanosta-8,23-diene-3ß,25-diol do basidiomiceto Scleroderma sp., uma fonte rica em triterpenos e ainda não reportada como produtora destes metabólitos. As estruturas moleculares foram completamente determinadas por RMN 1D e 2D e análises de espectrometria de massas, tendo ainda as fragmentações propostas. Esses e outros substratos foram considerados para o estudo do metabolismo de terpenóides em Xylar...

  7. Stereoselective Copolymerization of Styrene with Terpenes Catalyzed by an Ansa-Lanthanidocene Catalyst: Access to New Syndiotactic Polystyrene-Based Materials

    Directory of Open Access Journals (Sweden)

    Eva Laur

    2017-11-01

    Full Text Available The copolymerization of bio-renewable β-myrcene or β-farnesene with styrene was examined using an ansa-neodymocene catalyst, affording two series of copolymers with high styrene content and unprecedented syndioregularity of the polystyrene sequences. The incorporation of terpene in the copolymers ranged from 5.6 to 30.8 mol % (β-myrcene and from 2.5 to 9.8 mol % (β-farnesene, respectively. NMR spectroscopy and DSC analyses suggested that the microstructure of the copolymers consists of 1,4- and 3,4-poly(terpene units randomly distributed along syndiotactic polystyrene chains. The thermal properties of the copolymers are strongly dependent on the terpene content, which is easily controlled by the initial feed. The terpolymerization of styrene with β-myrcene in the presence of ethylene was also examined.

  8. Potential contribution of fish feed and phytoplankton to the content of volatile terpenes in cultured Pangasius (Pangasianodon hypophthalmus) and Tilapia (Oreochromis niloticus)

    DEFF Research Database (Denmark)

    Podduturi, Raju; Petersen, Mikael Agerlin; Mahmud, Sultan

    2017-01-01

    Geosmin and 2-methylisoborneol are the most recognized off-flavors in freshwater fish, but terpenes may also contribute off-flavor in fish. We identified six monoterpenes, 11 sesquiterpenes, and three terpene-related compounds in pangasius and tilapia from aquaculture farms in Bangladesh. The con...

  9. Computational selections of terpenes present in the plant Calotropis gigantea as mosquito larvicide’s by blocking the sterol carrying protein, AeSCP-2

    Directory of Open Access Journals (Sweden)

    P. Suresh Kumar

    2012-03-01

    Full Text Available The present study reports the phytochemical properties of Calotropis gigantea (Asclepiadaceae commonly known as milk weed. In addition, in silico docking analysis was also carried out to assess the mosquito larvicidal potential of three terpene compounds isolated from C. gigantea. Considerable amount of primary metabolites, essential macro and micro nutrients were documented in the plant. The GC-MS analysis of the chloroform extract revealed the presence of eight terpenes in the plant. From the docking studies it is evident that ?- amyrin has a great potential against AeSCP-2. The phytochemical screening and docking results gives strong baseline information for the posterity.

  10. A chamber study of alkyl nitrate production formed by terpene ozonolysis in the presence of NO and alkanes

    Science.gov (United States)

    Jackson, Stephen R.; Harrison, Joel C.; Ham, Jason E.; Wells, J. R.

    2017-12-01

    Organic nitrates are relatively long-lived species and have been shown to have a potential impact on atmospheric chemistry on local, regional, and even global scales. However, the significance of these compounds in the indoor environment remains to be seen. This work describes an impinger-based sampling and analysis technique for organic nitrate species, focusing on formation via terpene ozonolysis in the presence of nitric oxide (NO). Experiments were conducted in a Teflon film environmental chamber to measure the formation of alkyl nitrates produced from α-pinene ozonolysis in the presence of NO and alkanes using gas chromatography with an electron capture detector. For the different concentrations of NO and O3 analyzed, the concentration ratio of [O3]/[NO] around 1 was found to produce the highest organic nitrate concentration, with [O3] = 100 ppb & [NO] = 105 ppb resulting in the most organic nitrate formation, roughly 5 ppb. The experiments on α-pinene ozonolysis in the presence of NO suggest that organic nitrates have the potential to form in indoor air between infiltrated ozone/NO and terpenes from household and consumer products.

  11. Design of the extraction process for terpenes and other volatiles from allspice by solid-phase microextraction and hydrodistillation.

    Science.gov (United States)

    Bajer, Tomáš; Ligor, Magdalena; Ligor, Tomasz; Buszewski, Bogusław

    2016-02-01

    Methods for the separation and determination of terpenes (mono- and sesqui-) and phenylpropanoids such as eugenol and methyleugenol from samples of allspice berries have been developed. Chromatographic analyses of isolated groups of compounds were carried out by means of gas chromatography coupled with mass spectrometry. A comparison of various types of solid-phase microextraction fibers was performed. The highest yields of terpenes were extracted by polydimethylsiloxane and divinylbenzene/Carboxen/polydimethylsiloxane fibers (almost the same for these two fibers), approximately twice as much as by Carbowax/divinylbenzene fiber. The highest amounts of monoterpenes were extracted by divinylbenzene/Carboxen/polydimethylsiloxane fiber, and the highest amounts of sesquiterpenes were extracted by polydimethylsiloxane fiber. Moreover, the effect of water addition on extraction yields as well as time and temperature of extraction were tested. Aroma profiles of extracts obtained by solid-phase microextraction and essential oil obtained by hydrodistillation of allspice berries were compared. The aroma profile of the divinylbenzene/Carboxen/polydimethylsiloxane fiber extract was similar to the aroma profile of essential oil. Particular characteristics of volatile allspice matters were presented. The linear retention indices for each compound were calculated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. QCM-Arrays for Sensing Terpenes in Fresh and Dried Herbs via Bio-Mimetic MIP Layers †

    Science.gov (United States)

    Iqbal, Naseer; Mustafa, Ghulam; Rehman, Abdul; Biedermann, Alexander; Najafi, Bita; Lieberzeit, Peter A.; Dickert, Franz L.

    2010-01-01

    A piezoelectric 10 MHz multichannel quartz crystal microbalance (MQCM), coated with six molecularly imprinted polystyrene artificial recognition membranes have been developed for selective quantification of terpenes emanated from fresh and dried Lamiaceae family species, i.e., rosemary (Rosmarinus Officinalis L.), basil (Ocimum Basilicum) and sage (Salvia Officinalis). Optimal e-nose parameters, such as layer heights (1–6 KHz), sensitivity <20 ppm of analytes, selectivity at 50 ppm of terpenes, repeatability and reproducibility were thoroughly adjusted prior to online monitoring. Linearity in reversible responses over a wide concentration range <20–250 ppm has been achieved. Discrimination between molecules of similar molar masses, even for isomers, e.g. α-pinene and β-pinene is possible. The array has proven its sensitive and selective properties of sensor responses (20–1,200 Hz) for the difference of fresh and dried herbs. The sensor data attained was validated by GC-MS, to analyze the profiles of sensor emanation patterns. The shelf-life of herbs was monitored via emanation of organic volatiles during a few days. Such an array in association with data analysis tools can be utilized for characterizing complex mixtures. PMID:22163554

  13. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais

    Science.gov (United States)

    Pizzolitto, Romina P.; Herrera, Jimena M.; Zaio, Yesica P.; Dambolena, Jose S.; Zunino, Maria P.; Gallucci, Mauro N.; Zygadlo, Julio A.

    2015-01-01

    Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure–activity relationship (Q-SAR) studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87) affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05). The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (−77.8 ± 8.5, p < 0.001) against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize. PMID:27682121

  14. REVIEW: Epistasis and dominance in the emergence of catalytic function as exemplified by the evolution of plant terpene synthases.

    Science.gov (United States)

    Cheema, Jitender; Faraldos, Juan A; O'Maille, Paul E

    2017-02-01

    Epistasis, the interaction between mutations and the genetic background, is a pervasive force in evolution that is difficult to predict yet derives from a simple principle - biological systems are interconnected. Therefore, one effect may be intimately linked to another, hence interdependent. Untangling epistatic interactions between and within genes is a vibrant area of research. Deriving a mechanistic understanding of epistasis is a major challenge. Particularly, elucidating how epistasis can attenuate the effects of otherwise dominant mutations that control phenotypes. Using the emergence of terpene cyclization in specialized metabolism as an excellent example, this review describes the process of discovery and interpretation of dominance and epistasis in relation to current efforts. Specifically, we outline experimental approaches to isolating epistatic networks of mutations in protein structure, formally quantifying epistatic interactions, then building biochemical models with chemical mechanisms in efforts to achieve an understanding of the physical basis for epistasis. From these models we describe informed conjectures about past evolutionary events that underlie the emergence, divergence and specialization of terpene synthases to illustrate key principles of the constraining forces of epistasis in enzyme function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Characterization of the first naturally thermostable terpene synthases and development of strategies to improve thermostability in this family of enzymes.

    Science.gov (United States)

    Styles, Matthew Q; Nesbitt, Edward A; Marr, Scott; Hutchby, Marc; Leak, David J

    2017-06-01

    The terpenoid family of natural products is being targeted for heterologous microbial production as a cheaper and more reliable alternative to extraction from plants. The key enzyme responsible for diversification of terpene structure is the class-I terpene synthase (TS), and these often require engineering to improve properties such as thermostability, robustness and catalytic activity before they are suitable for industrial use. Improving thermostability typically relies on screening a large number of mutants, as there are no naturally thermostable TSs described upon which to base rational design decisions. We have characterized the first examples of natural TSs exhibiting thermostability, which catalyse the formation of the sesquiterpene τ-muurolol at temperatures up to 78 °C. We also report an enzyme with a kcat value of 0.95 s-1 at 65 °C, the highest kcat recorded for a bacterial sesquiterpene synthase. In turn, these thermostable enzymes were used as a model to inform the rational engineering of another TS, with the same specificity but low sequence identity to the model. The newly engineered variant displayed increased thermostability and turnover. Given the high structural homology of the class-I TS domain, this approach could be generally applicable to improving the properties of other enzymes in this class. Model data are available in the PMDB database under the accession number PM0080780. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  16. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.

    Science.gov (United States)

    Oates, Caryn N; Külheim, Carsten; Myburg, Alexander A; Slippers, Bernard; Naidoo, Sanushka

    2015-07-01

    Plants have evolved complex defenses that allow them to protect themselves against pests and pathogens. However, there is relatively little information regarding the Eucalyptus defensome. Leptocybe invasa is one of the most damaging pests in global Eucalyptus forestry, and essentially nothing is known regarding the molecular mechanisms governing the interaction between the pest and host. The aim of the study was to investigate changes in the transcriptional landscape and terpene profile of a resistant and susceptible Eucalyptus genotype in an effort to improve our understanding of this interaction. We used RNA-seqencing to investigate transcriptional changes following L. invasa oviposition. Expression levels were validated using real-time quantitative PCR. Terpene profiles were investigated using gas chromatography coupled to mass spectometry on uninfested and oviposited leaves. We found 698 and 1,115 significantly differentially expressed genes from the resistant and susceptible interactions, respectively. Gene Ontology enrichment and Mapman analyses identified putative defense mechanisms including cell wall reinforcement, protease inhibitors, cell cycle suppression and regulatory hormone signaling pathways. There were significant differences in the mono- and sesquiterpene profiles between genotypes and between control and infested material. A model of the interaction between Eucalyptus and L. invasa was proposed from the transcriptomic and chemical data. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Terpene Down-Regulation Triggers Defense Responses in Transgenic Orange Leading to Resistance against Fungal Pathogens1[W

    Science.gov (United States)

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Alquézar, Berta; Gadea, José; Gómez-Cadenas, Aurelio; De Ollas, Carlos José; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores. PMID:24192451

  18. A terpene synthase is involved in the synthesis of the volatile organic compound sodorifen of Serratia plymuthica 4Rx13

    Directory of Open Access Journals (Sweden)

    Dajana eDomik

    2016-05-01

    Full Text Available Bacteria release a plethora of volatile organic compounds (VOCs, including compounds with extraordinary structures. Sodorifen (IUPAC name: 1,2,4,5,6,7,8-heptamethyl-3-methylenebicyclo[3.2.1]oct-6-ene is a recently identified and unusual volatile hydrocarbon that is emitted by the rhizobacterium Serratia plymuthica 4Rx13. Sodorifen comprises a bicyclic ring structure solely consisting of carbon and hydrogen atoms, where every carbon atom of the skeleton is substituted with either a methyl or a methylene group. This unusual feature of sodorifen made a prediction of its biosynthetic origin very difficult and so far its biosynthesis was unknown. To unravel the biosynthetic pathway we performed genome and transcriptome analyses to identify candidate genes. One knockout mutant (SOD_c20750 showed the desired negative sodorifen phenotype. Here it was shown for the first time that this gene is indispensable for the synthesis of sodorifen and strongly supports the hypothesis that sodorifen descends from the terpene metabolism. SOD_c20750 is the first bacterial terpene cyclase isolated from Serratia spp. and Enterobacteriales. Homology modeling revealed a 3D structure, which indicated a functional role of amino acids for intermediate cation stabilization (W325 and putative proton acceptance (Y331. Moreover, the size and hydrophobicity of the active site strongly indicated that indeed the enzyme may catalyze the unusual compound sodorifen.

  19. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais

    Directory of Open Access Journals (Sweden)

    Romina P. Pizzolitto

    2015-11-01

    Full Text Available Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure–activity relationship (Q-SAR studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87 affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05. The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (−77.8 ± 8.5, p < 0.001 against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize.

  20. Preparation of sulfonated graphene/polypyrrole solid-phase microextraction coating by in situ electrochemical polymerization for analysis of trace terpenes.

    Science.gov (United States)

    Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-06-13

    In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Terpene Down-Regulation in Orange Reveals the Role of Fruit Aromas in Mediating Interactions with Insect Herbivores and Pathogens1[C][W

    Science.gov (United States)

    Rodríguez, Ana; San Andrés, Victoria; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Shimada, Takehiko; Gadea, José; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M.; Castañera, Pedro; Peña, Leandro

    2011-01-01

    Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens. PMID:21525333

  2. Can contact allergy to p-phenylenediamine explain the high rates of terpene hydroperoxide allergy? - An epidemiological study based on consecutive patch test results

    DEFF Research Database (Denmark)

    Bennike, Niels Højsager; Lepoittevin, Jean-Pierre; Johansen, Jeanne D

    2017-01-01

    BACKGROUND: Contact allergy to linalool hydroperoxides (Lin-OOHs) and limonene hydroperoxides (Lim-OOHs) is common. Similarly to what occurs with the terpene hydroperoxides, reactive intermediates formed from p-phenylenediamine (PPD) can cause oxidative modifications of tryptophan residues on pro...

  3. Volatile and within-needle terpene changes to Douglas-fir trees associated with Douglas-fir beetle (Coleoptera: Curculionidae) attack

    Science.gov (United States)

    A. D. Giunta; Justin Runyon; M. J. Jenkins; M. Teich

    2016-01-01

    Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with...

  4. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis.

    Science.gov (United States)

    Tsaballa, Aphrodite; Nikolaidis, Alexandros; Trikka, Foteini; Ignea, Codruta; Kampranis, Sotirios C; Makris, Antonios M; Argiriou, Anagnostis

    2015-07-07

    Solanum elaeagnifolium, an invasive weed of the Solanaceae family, is poorly studied although it poses a significant threat to crops. Here the analysis of the transcriptome of S. elaeagnifolium is presented, as a means to explore the biology of this species and to identify genes related to its adaptation to environmental stress. One of the basic mechanisms by which plants respond to environmental stress is through the synthesis of specific secondary metabolites that protect the plant from herbivores and microorganisms, or serve as signaling molecules. One important such group of secondary metabolites are terpenes. By next-generation sequencing, the flower/leaf transcriptome of S. elaeagnifolium was sequenced and de novo assembled into 75,618 unigenes. Among the unigenes identified, several corresponded to genes involved in terpene biosynthesis; these included terpene synthases (TPSs) and genes of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways. Functional characterization of two of the TPSs showed that one produced the sesquiterpene (E)-caryophyllene and the second produced the monoterpene camphene. Analysis of wounded S. elaeagnifolium leaves has shown significant increase of the concentration of (E)-caryophyllene and geranyl linalool, two terpenes implicated in stress responses. The increased production of (E)-caryophyllene was matched to the induced expression of the corresponding TPS gene. Wounding also led to the increased expression of the putative 1-deoxy-D-xylulose-5-phosphate synthase 2 (DXS2) gene, a key enzyme of the MEP pathway, corroborating the overall increased output of terpene biosynthesis. The reported S. elaeagnifolium de novo transcriptome provides a valuable sequence database that could facilitate study of this invasive weed and contribute to our understanding of the highly diverse Solanaceae family. Analysis of genes and pathways involved in the plant's interaction with the environment will help to elucidate the

  5. Effective immobilization of Candida antarctica lipase B in organic-modified clays: Application for the epoxidation of terpenes

    Energy Technology Data Exchange (ETDEWEB)

    Tzialla, Aikaterini A.; Kalogeris, Emmanuel [Department of Biological Applications and Technologies, University of Ioannina, GR-45110 Ioannina (Greece); Enotiadis, Apostolos [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Taha, Ali A. [Department of Biological Applications and Technologies, University of Ioannina, GR-45110 Ioannina (Greece); Gournis, Dimitrios, E-mail: dgourni@cc.uoi.g [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Stamatis, Haralambos, E-mail: hstamati@cc.uoi.g [Department of Biological Applications and Technologies, University of Ioannina, GR-45110 Ioannina (Greece)

    2009-12-15

    The use of three smectite nanoclays (Laponite, SWy-2 and Kunipia) organic-modified with octadecyl-trimethyl-ammonium surfactant, as suitable host matrices for the immobilization of lipase B from Candida antarctica (CaLB) was demonstrated. The resulting hybrid biocatalysts were characterized by a combination of powder X-ray diffraction, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy and infrared spectroscopy. The experimental results confirmed the remarkable binding capacity of the three organoclays for CaLB. Activity and operational stability of immobilized CaLB were determined for the chemo-enzymatic epoxidation of terpenes (alpha-pinene and d-limonene) in organic media using various oxidizing agents. The immobilized enzyme retains a significant part of its activity after repeated use under drastic reaction conditions originating from the use of oxidants.

  6. Bioactive compounds with added value prepared from terpenes contained in solid wastes from the olive oil industry.

    Science.gov (United States)

    Parra, Andres; Lopez, Pilar E; Garcia-Granados, Andres

    2010-02-01

    Starting from solid wastes from two-phase olive-oil extraction, the pentacyclic triterpenes oleanolic acid and maslinic acid were isolated. These natural compounds were transformed into methyl olean-12-en-28-oate (5), which then was transformed into several seco-C-ring triterpene compounds by chemical and photolytic modifications. The triene seco-products were fragmented through several oxidative procedures to produce, simultaneously, cis- and trans-decalin derivatives, both potential synthons for bioactive compounds. The chemical behavior of the isolated fragments was investigated, and a suitable approach to several low-molecular-weight terpenes was performed. These are interesting processes for the value-addition to solid waste from the olive-oil industry.

  7. TPS46, a Rice Terpene Synthase Conferring Natural Resistance to Bird Cherry-Oat Aphid, Rhopalosiphum padi (Linnaeus).

    Science.gov (United States)

    Sun, Yang; Huang, Xinzheng; Ning, Yuese; Jing, Weixia; Bruce, Toby J A; Qi, Fangjun; Xu, Qixia; Wu, Kongming; Zhang, Yongjun; Guo, Yuyuan

    2017-01-01

    Plant terpene synthases (TPSs) are key enzymes responsible for terpene biosynthesis, and can play important roles in defense against herbivore attack. In rice, the protein sequence of TPS46 was most closely related to maize TPS10. However, unlike maize tps10, tps46 was also constitutively expressed in rice even in the absence of herbivore attack. Potential roles or constitutive emissions of specific volatiles may due to the constitutive expressions of tps46 in rice. Therefore, in the present study, RNA interference (Ri) and overexpression (Oe) rice lines were generated to investigate the potential function of TPS46 in Oryza sativa sp. japonica. Interestingly, the rice plants become more susceptible to Rhopalosiphum padi when expression of tps46 was silenced compared with Wt in greenhouse conditions. Artificial infestation bioassays further confirmed that Ri rice lines were susceptible to R. padi, whereas Oe rice lines were repellent to R. padi. Based on GC-MS and ToF-MS analysis, a total of eight volatile products catalyzed by TPS46 in rice were identified. Among them, only limonene and Eβf could be detected in all the Ri, Oe, and Wt lines, whereas other six volatiles were only found in the blend of volatiles from Oe lines. Moreover, the amount of constitutive limonene and Eβf in the Ri lines was significantly lower than in Wt lines, while the amounts of these two volatiles in the Oe line were obviously higher than in control rice. Our data suggested that the constitutive emissions of Eβf and limonene regulated by the constitutive expression of tps46 may play a crucial role in rice defense against R. padi. Consequently, tps46 could be a potential target gene to be employed for improving the resistance of plants to aphids.

  8. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera.

    Science.gov (United States)

    Matarese, Fabiola; Cuzzola, Angela; Scalabrelli, Giancarlo; D'Onofrio, Claudio

    2014-09-01

    Plants produce a plethora of volatile organic compounds (VOCs) which are important in determining the quality and nutraceutical properties of horticultural food products, including the taste and aroma of wine. Given that some of the most prevalent grape aroma constituents are terpenoids, we investigated the possible variations in the relative expression of terpene synthase (TPS) genes that depend on the organ. We thus analysed mature leaves, young leaves, stems, young stems, roots, rachis, tendrils, peduncles, bud flowers, flowers and berries of cv Moscato bianco in terms of their VOC content and the expression of 23 TPS genes. In terms of the volatile characterization of the organs by SPME/GC-MS analysis, flower buds and open flowers appeared to be clearly distinct from all the other organs analysed in terms of their high VOC concentration. Qualitatively detected VOCs clearly separated all the vegetative organs from flowers and berries, then the roots and rachis from other vegetative organs and flowers from berries, which confirms the specialization in volatile production among different organs. Our real-time RT-PCR results revealed that the majority of TPS genes analysed exhibited detectable transcripts in all the organs investigated, while only some were found to be expressed specifically in one or just a few organs. In most cases, we found that the known products of the in vitro assay of VvTPS enzymes corresponded well to the terpenes found in the organs in which the encoding gene was expressed, as in the case of (E)-β-caryophyllene synthases, α-terpineol synthase and α-farnesene synthase. In addition, we found groups of homologous TPS genes, such as (E)-β-caryophyllene and β-ocimene synthases, expressed distinctively in the various tissues. This thus confirmed the subfunctionalization events and a specialization on the basis of the organs in which they are mostly expressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration

    Science.gov (United States)

    Chen, Feng; Li, Li; Xu, Fang; Sun, Yan; Du, Feifei; Ma, Xutao; Zhong, Chenchun; Li, Xiuxue; Wang, Fengqing; Zhang, Nating; Li, Chuan

    2013-01-01

    BACKGROUND AND PURPOSE Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds’ pharmacokinetics. EXPERIMENTAL APPROACH Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. KEY RESULTS Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. CONCLUSION AND IMPLICATIONS Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects. PMID:23808355

  10. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration.

    Science.gov (United States)

    Chen, Feng; Li, Li; Xu, Fang; Sun, Yan; Du, Feifei; Ma, Xutao; Zhong, Chenchun; Li, Xiuxue; Wang, Fengqing; Zhang, Nating; Li, Chuan

    2013-09-01

    Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds' pharmacokinetics. Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.

  11. The Terpene Synthase Gene Family of Carrot (Daucus carota L.: Identification of QTLs and Candidate Genes Associated with Terpenoid Volatile Compounds

    Directory of Open Access Journals (Sweden)

    Jens Keilwagen

    2017-11-01

    Full Text Available Terpenes are an important group of secondary metabolites in carrots influencing taste and flavor, and some of them might also play a role as bioactive substances with an impact on human physiology and health. Understanding the genetic and molecular basis of terpene synthases (TPS involved in the biosynthesis of volatile terpenoids will provide insights for improving breeding strategies aimed at quality traits and for developing specific carrot chemotypes possibly useful for pharmaceutical applications. Hence, a combination of terpene metabolite profiling, genotyping-by-sequencing (GBS, and genome-wide association study (GWAS was used in this work to get insights into the genetic control of terpene biosynthesis in carrots and to identify several TPS candidate genes that might be involved in the production of specific monoterpenes. In a panel of 85 carrot cultivars and accessions, metabolite profiling was used to identify 31 terpenoid volatile organic compounds (VOCs in carrot leaves and roots, and a GBS approach was used to provide dense genome-wide marker coverage (>168,000 SNPs. Based on this data, a total of 30 quantitative trait loci (QTLs was identified for 15 terpenoid volatiles. Most QTLs were detected for the monoterpene compounds ocimene, sabinene, β-pinene, borneol and bornyl acetate. We identified four genomic regions on three different carrot chromosomes by GWAS which are both associated with high significance (LOD ≥ 5.91 to distinct monoterpenes and to TPS candidate genes, which have been identified by homology-based gene prediction utilizing RNA-seq data. In total, 65 TPS candidate gene models in carrot were identified and assigned to known plant TPS subfamilies with the exception of TPS-d and TPS-h. TPS-b was identified as largest subfamily with 32 TPS candidate genes.

  12. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers.

    Science.gov (United States)

    Aros, Danilo; Gonzalez, Veronica; Allemann, Rudolf K; Müller, Carsten T; Rosati, Carlo; Rogers, Hilary J

    2012-04-01

    Native to South America, Alstroemeria flowers are known for their colourful tepals, and Alstroemeria hybrids are an important cut flower. However, in common with many commercial cut flowers, virtually all the commercial Alstroemeria hybrids are not scented. The cultivar 'Sweet Laura' is one of very few scented commercial Alstroemeria hybrids. Characterization of the volatile emission profile of these cut flowers revealed three major terpene compounds: (E)-caryophyllene, humulene (also known as α-caryophyllene), an ocimene-like compound, and several minor peaks, one of which was identified as myrcene. The profile is completely different from that of the parental scented species A. caryophyllaea. Volatile emission peaked at anthesis in both scented genotypes, coincident in cv. 'Sweet Laura' with the maximal expression of a putative terpene synthase gene AlstroTPS. This gene was preferentially expressed in floral tissues of both cv. 'Sweet Laura' and A. caryophyllaea. Characterization of the AlstroTPS gene structure from cv. 'Sweet Laura' placed it as a member of the class III terpene synthases, and the predicted 567 amino acid sequence placed it into the subfamily TPS-b. The conserved sequences R(28)(R)X(8)W and D(321)DXXD are the putative Mg(2+)-binding sites, and in vitro assay of AlstroTPS expressed in Escherichia coli revealed that the encoded enzyme possesses myrcene synthase activity, consistent with a role for AlstroTPS in scent production in Alstroemeria cv. 'Sweet Laura' flowers.

  13. Porphyrogenic properties of the terpenes camphor, pinene, and thujone (with a note on historic implications for absinthe and the illness of Vincent van Gogh).

    Science.gov (United States)

    Bonkovsky, H L; Cable, E E; Cable, J W; Donohue, S E; White, E C; Greene, Y J; Lambrecht, R W; Srivastava, K K; Arnold, W N

    1992-06-09

    Camphor, alpha-pinene (the major component of turpentine), and thujone (a constituent in the liqueur called absinthe) produced an increase in porphyrin production in primary cultures of chick embryo liver cells. In the presence of desferrioxamine (an iron chelator which inhibits heme synthesis and thereby mimics the effect of the block associated with acute porphyria), the terpenes enhanced porphyrin accumulation 5- to 20-fold. They also induced synthesis of the rate-controlling enzyme for the pathway, 5-aminolevulinic acid synthase, which was monitored both spectrophotometrically and immunochemically. These effects are shared by well-known porphyrogenic chemicals such as phenobarbital and glutethimide. Camphor and glutethimide alone led to the accumulation of mostly uro- and heptacarboxylporphyrins, whereas alpha-pinene and thujone resulted in lesser accumulations of porphyrins which were predominantly copro- and protoporphyrins. In the presence of desferrioxamine, plus any of the three terpenes, the major product that accumulated was protoporphyrin. The present results indicate that the terpenes tested are porphyrogenic and hazardous to patients with underlying defects in hepatic heme synthesis. There are also implications for the illness of Vincent van Gogh and the once popular, but now banned liqueur, called absinthe.

  14. Multivariate optimization of a headspace solid-phase microextraction method followed by gas chromatography with mass spectrometry for the determination of terpenes in Nicotiana langsdorffii.

    Science.gov (United States)

    Ardini, Francisco; Carro, Marina Di; Abelmoschi, Maria Luisa; Grotti, Marco; Magi, Emanuele

    2014-07-01

    A simple and sensitive procedure based on headspace solid-phase microextraction and gas chromatography with mass spectrometry was developed for the determination of five terpenes (α-pinene, limonene, linalool, α-terpineol, and geraniol) in the leaves of Nicotiana langsdorffii. The microextraction conditions (extraction temperature, equilibration time, and extraction time) were optimized by means of a Doehlert design. The experimental design showed that, for α-pinene and limonene, a low temperature and a long extraction time were needed for optimal extraction, while linalool, α-terpineol, and geraniol required a high temperature and a long extraction time. The chosen compromise conditions were temperature 60°C, equilibration time 15 min and extraction time 50 min. The main analytical figures of the optimized method were evaluated; LODs ranged from 0.07 ng/g (α-pinene) to 8.0 ng/g (geraniol), while intraday and interday repeatability were in the range 10-17% and 9-13%, respectively. Finally, the procedure was applied to in vitro wild-type and transgenic specimens of N. langsdorffii subjected to abiotic stresses (chemical and heat stress). With the exception of geraniol (75-374 ng/g), low concentration levels of terpenes were measured (ng/g level or lower); some interesting variations in terpene concentration induced by abiotic stress were observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Terpenes as Useful Markers in Differentiation of Natural Populations of Relict Pines Pinus heldreichii, P. nigra, and P. peuce.

    Science.gov (United States)

    Mitić, Zorica S; Nikolić, Biljana M; Ristić, Mihailo S; Tešević, Vele V; Bojović, Srdjan R; Marin, Petar D

    2017-08-01

    Comparative analysis of terpene diversity and differentiation of relict pines Pinus heldreichii, P. nigra, and P. peuce from the central Balkans was performed at the population level. Multivariate statistical analyses showed that the composition of needle terpenes reflects clear divergence among the pine species from different subgenera: P. peuce (subgenus Strobus) vs. P. nigra and P. heldreichii (subgenus Pinus). In addition, despite the described morphological similarities and the fact that P. nigra and P. heldreichii may spontaneously hybridize, our results indicated differentiation of their populations naturally growing in the same area. In accordance with recently proposed concept of 'flavonic evolution' in the genus Pinus, we assumed that the terpene profile of soft pine P. peuce, defined by high amounts of six monoterpenes, is more basal than those of hard pines P. nigra and P. heldreichii, which were characterized by high content levels of mainly sesquiterpenes. In order to establish precise positions of P. heldreichii, P. nigra and P. peuce within the taxonomic and phylogenetic tree, as well as develop suitable conservation strategies and future breeding efforts, it is necessary to perform additional morphological, biochemical, and genetic studies. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. Effect of season on fatty acid and terpene profiles of milk from Greek sheep raised under a semi-extensive production system.

    Science.gov (United States)

    Papaloukas, Loukas; Sinapis, Efthymios; Arsenos, George; Kyriakou, George; Basdagianni, Zoitsa

    2016-08-01

    The objective of the study was to investigate the effect of season on the fatty acid and terpene composition in ewe milk. A total of 760 samples of bulk sheep milk were collected during winter (147 samples), spring (314 samples) and summer (299 samples) of 2011, from 90 commercial farms of dairy sheep from the prefecture of Grevena, Greece. Regarding fatty acid composition, summer samples had higher concentrations of α-linolenic acid, cis-9, trans 11- CLA, trans-11, C18 : 1 and PUFAs but lower content of saturated fatty acids particularly C12 : 0, C14 : 0 and C16 : 0. The winter milk had the lowest content of terpenes, in particular sesquiterpenes, compared to spring and summer milk. The terpene profile of milk samples, in all three seasons, revealed the presence of monoterpenes: a-pinene, b-pinene and D-limonene, especially with a higher frequency of appearance in summer. The most common and abundant sesquiterpenes found in milk samples were β-caryophyllene and α-caryophyllene with a higher frequency of appearance in summer. In conclusion, the available pastures in semi-extensive farming systems can contribute to the production of high quality milk.

  17. Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries.

    Science.gov (United States)

    Shim, Jimin; Lee, Jae Won; Bae, Ki Yoon; Kim, Hee Joong; Yoon, Woo Young; Lee, Jong-Chan

    2017-05-22

    Lithium-metal anode has fundamental problems concerning formation and growth of lithium dendrites, which prevents practical applications of next generation of high-capacity lithium-metal batteries. The synergistic combination of solid polymer electrolyte (SPE) crosslinked with naturally occurring terpenes and lithium-powder anode is promising solution to resolve the dendrite issues by substituting conventional liquid electrolyte/separator and lithium-foil anode system. A series of SPEs based on polysiloxane crosslinked with natural terpenes are prepared by facile thiol-ene click reaction under mild condition and the structural effect of terpene crosslinkers on electrochemical properties is studied. Lithium powder with large surface area is prepared by droplet emulsion technique (DET) and used as anode material. The effect of the physical state of electrolyte (solid/liquid) and morphology of lithium-metal anode (powder/foil) on dendrite growth behavior is systematically studied. The synergistic combination of SPE and lithium-powder anode suggests an effective solution to suppress the dendrite growth owing to the formation of a stable solid-electrolyte interface (SEI) layer and delocalized current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Acaricidal Potentials of the Terpene-rich Essential Oils of Two Iranian Eucalyptus Species against Tetranychus urticae Koch.

    Science.gov (United States)

    Ebadollahi, Asgar; Sendi, Jalal Jalali; Maroufpoor, Mostafa; Rahimi-Nasrabadi, Mehdi

    2017-03-01

    There is a rapid growth in the screening of plant materials for finding new bio-pesticides. In the present study, the essential oils of E. oleosa and E. torquata leaves were extracted using a Clevenger apparatus and their chemical profiles were investigated by Gas Chromatography-Mass Spectrometry (GC-MS). Among identified compounds, the terpenes had highest amount for both essential oils; 93.59% for E. oleosa and 97.69% for E. torquata. 1,8-Cineole (31.96%), α-pinene (15.25%) and trans-anethole (7.32%) in the essential oil of E. oleosa and 1,8-cineole (28.57%), α-pinene (15.74%) and globulol (13.11%) in the E. torquata essential oil were identified as the main components. The acaricidal activity of the essential oils of E. oleosa and E. torquata were examined using fumigation methods against the adult females of Tetranychus urticae Koch. The essential oils have potential acaricidal effects on T. urticae. The essential oil of E. oleosa with LC 50 value of 2.42 µL/L air was stronger than E. torquata. A correlation between log concentration and mite mortality has been observed. Based on the results of present study, it can be stated that the essential oils of E. oleosa and E. torquata have a worthy potential in the management of T. urticae.

  19. Analysis of black pepper volatiles by solid phase microextraction-gas chromatography: A comparison of terpenes profiles with hydrodistillation.

    Science.gov (United States)

    Jeleń, Henryk H; Gracka, Anna

    2015-10-30

    Solid phase microextraction (SPME) is widely used in food flavor compounds analysis in majority for profiling volatile compounds. Based on such profiles conclusions are often drawn concerning the percentage composition of volatile compounds in particular food, spices or raw materials. This paper focuses on the usefulness of SPME for the profiling of volatile compounds from spices using black pepper as an example. SPME profiles obtained in different analytical conditions were compared to the profile of pepper volatiles obtained using hydrodistillation in Clevenger apparatus. The profiles of both monoterpenes and sesquiterpenes of black pepper were highly dependent on sample weight (0.1 and 1g samples were tested), and extraction time (durations from 2 to 120min were tested), regardless of the SPME fiber used (PDMS and CAR/PDMS coatings were used). The characteristic phenomenon for extraction from dry ground pepper was the decrease of monoterpenes % share in volatiles with increasing extraction times, whereas at the same time the % contents of sesquiterpenes increased. Addition of water to ground pepper substantially changed extraction kinetics and mutual proportions of mono to sesquiterpenes compared to dry samples by minimizing changes in mono- to sesquiterpenes ratio in different extraction times. Obtained results indicate that SPME can be a fast extraction method for volatiles of black pepper. Short extraction times (2-10min) in conjunction with the fast GC analysis (2.1min) proposed here may offer fast alternative to hydrodistillation allowing black pepper terpenes characterization. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.

    Directory of Open Access Journals (Sweden)

    Dullat Harpreet K

    2011-03-01

    Full Text Available Abstract Background In conifers, terpene synthases (TPSs of the gymnosperm-specific TPS-d subfamily form a diverse array of mono-, sesqui-, and diterpenoid compounds, which are components of the oleoresin secretions and volatile emissions. These compounds contribute to defence against herbivores and pathogens and perhaps also protect against abiotic stress. Results The availability of extensive transcriptome resources in the form of expressed sequence tags (ESTs and full-length cDNAs in several spruce (Picea species allowed us to estimate that a conifer genome contains at least 69 unique and transcriptionally active TPS genes. This number is comparable to the number of TPSs found in any of the sequenced and well-annotated angiosperm genomes. We functionally characterized a total of 21 spruce TPSs: 12 from Sitka spruce (P. sitchensis, 5 from white spruce (P. glauca, and 4 from hybrid white spruce (P. glauca × P. engelmannii, which included 15 monoterpene synthases, 4 sesquiterpene synthases, and 2 diterpene synthases. Conclusions The functional diversity of these characterized TPSs parallels the diversity of terpenoids found in the oleoresin and volatile emissions of Sitka spruce and provides a context for understanding this chemical diversity at the molecular and mechanistic levels. The comparative characterization of Sitka spruce and Norway spruce diterpene synthases revealed the natural occurrence of TPS sequence variants between closely related spruce species, confirming a previous prediction from site-directed mutagenesis and modelling.

  1. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.)

    Science.gov (United States)

    2011-01-01

    Background In conifers, terpene synthases (TPSs) of the gymnosperm-specific TPS-d subfamily form a diverse array of mono-, sesqui-, and diterpenoid compounds, which are components of the oleoresin secretions and volatile emissions. These compounds contribute to defence against herbivores and pathogens and perhaps also protect against abiotic stress. Results The availability of extensive transcriptome resources in the form of expressed sequence tags (ESTs) and full-length cDNAs in several spruce (Picea) species allowed us to estimate that a conifer genome contains at least 69 unique and transcriptionally active TPS genes. This number is comparable to the number of TPSs found in any of the sequenced and well-annotated angiosperm genomes. We functionally characterized a total of 21 spruce TPSs: 12 from Sitka spruce (P. sitchensis), 5 from white spruce (P. glauca), and 4 from hybrid white spruce (P. glauca × P. engelmannii), which included 15 monoterpene synthases, 4 sesquiterpene synthases, and 2 diterpene synthases. Conclusions The functional diversity of these characterized TPSs parallels the diversity of terpenoids found in the oleoresin and volatile emissions of Sitka spruce and provides a context for understanding this chemical diversity at the molecular and mechanistic levels. The comparative characterization of Sitka spruce and Norway spruce diterpene synthases revealed the natural occurrence of TPS sequence variants between closely related spruce species, confirming a previous prediction from site-directed mutagenesis and modelling. PMID:21385377

  2. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    Science.gov (United States)

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  3. Emission and accumulation of monoterpene and the key terpene synthase (TPS associated with monoterpene biosynthesis in Osmanthus fragrans Lour.

    Directory of Open Access Journals (Sweden)

    Xaingling eZeng

    2016-01-01

    Full Text Available Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2 and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers.

  4. Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPS02 and TPS031[W][OA

    Science.gov (United States)

    Huang, Mengsu; Abel, Christian; Sohrabi, Reza; Petri, Jana; Haupt, Ina; Cosimano, John; Gershenzon, Jonathan; Tholl, Dorothea

    2010-01-01

    When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated intraspecific differences of volatile emissions induced from rosette leaves of 27 accessions of Arabidopsis (Arabidopsis thaliana) upon treatment with coronalon, a jasmonate mimic eliciting responses similar to those caused by insect feeding. Quantitative variation was found for the emission of the monoterpene (E)-β-ocimene, the sesquiterpene (E,E)-α-farnesene, the irregular homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene, and the benzenoid compound methyl salicylate. Differences in the relative emissions of (E)-β-ocimene and (E,E)-α-farnesene from accession Wassilewskija (Ws), a high-(E)-β-ocimene emitter, and accession Columbia (Col-0), a trace-(E)-β-ocimene emitter, were attributed to allelic variation of two closely related, tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-β-ocimene and (E,E)-α-farnesene synthase activities. However, differential subcellular compartmentalization of the two enzymes in plastids and the cytosol was found to be responsible for the ecotype-specific differences in (E)-β-ocimene/(E,E)-α-farnesene emission. Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and insect treatment and occurs constitutively in floral tissues. Our studies show that both pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes control the variation and plasticity of induced volatile emissions in wild plant species. PMID:20463089

  5. Spectroscopic investigation of Ginkgo biloba terpene trilactones and their interaction with amyloid peptide Aβ(25-35)

    Science.gov (United States)

    He, Jiangtao; Petrovic, Ana G.; Dzyuba, Sergei V.; Berova, Nina; Nakanishi, Koji; Polavarapu, Prasad L.

    2008-04-01

    The beneficial effects of Ginkgo biloba extract in the "treatment" of dementia are attributed to its terpene trilactone (TTL) constituents. The interactions between TTLs and amyloid peptide are believed to be responsible in preventing the aggregation of peptide. These interactions have been investigated using infrared vibrational absorption (VA) and circular dichroism (VCD) spectra. Four TTLs, namely ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and bilobalide (BB) and amyloid Aβ(25-35) peptide, as a model for the full length peptide, are used in this study. GA-monoether and GA-diether have also been synthesized and investigated to help understand the role of individual carbonyl groups in these interactions. The precipitation and solubility issues encountered with the mixture of ginkgolide + Aβ peptide for VA and VCD studies were overcome using binary ethanol-D 2O solvent mixture. The experimental VA and VCD spectra of GA, GB, GC and BB, GA-monoether and GA-diether have been analyzed using the corresponding spectra predicted with density functional theory. The time-dependent experimental VA and VCD spectra of Aβ(25-35) peptide and the corresponding experimental spectra in the presence of TTLs indicated that the effect of the TTLs in modulating the aggregation of Aβ(25-35) peptide is relatively small. Such small effects might indicate the absence of a specific interaction between the TTLs and Aβ(25-35) peptide as a major force leading to the reduced aggregation of amyloid peptides. It is possible that the therapeutic effect of G. biloba extract does not originate from direct interactions between TTLs and the Aβ(25-35) peptide and is more complex.

  6. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    Science.gov (United States)

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  7. EssOilDB: a database of essential oils reflecting terpene composition and variability in the plant kingdom

    Science.gov (United States)

    Kumari, Sangita; Pundhir, Sachin; Priya, Piyush; Jeena, Ganga; Punetha, Ankita; Chawla, Konika; Firdos Jafaree, Zohra; Mondal, Subhasish; Yadav, Gitanjali

    2014-01-01

    Plant essential oils are complex mixtures of volatile organic compounds, which play indispensable roles in the environment, for the plant itself, as well as for humans. The potential biological information stored in essential oil composition data can provide an insight into the silent language of plants, and the roles of these chemical emissions in defense, communication and pollinator attraction. In order to decipher volatile profile patterns from a global perspective, we have developed the ESSential OIL DataBase (EssOilDB), a continually updated, freely available electronic database designed to provide knowledge resource for plant essential oils, that enables one to address a multitude of queries on volatile profiles of native, invasive, normal or stressed plants, across taxonomic clades, geographical locations and several other biotic and abiotic influences. To our knowledge, EssOilDB is the only database in the public domain providing an opportunity for context based scientific research on volatile patterns in plants. EssOilDB presently contains 123 041 essential oil records spanning a century of published reports on volatile profiles, with data from 92 plant taxonomic families, spread across diverse geographical locations all over the globe. We hope that this huge repository of VOCs will facilitate unraveling of the true significance of volatiles in plants, along with creating potential avenues for industrial applications of essential oils. We also illustrate the use of this database in terpene biology and show how EssOilDB can be used to complement data from computational genomics to gain insights into the diversity and variability of terpenoids in the plant kingdom. EssOilDB would serve as a valuable information resource, for students and researchers in plant biology, in the design and discovery of new odor profiles, as well as for entrepreneurs—the potential for generating consumer specific scents being one of the most attractive and interesting topics

  8. Observational Constraints on Terpene Oxidation with and without Anthropogenic Influence in the Amazon using Speciated Measurements from SV-TAG

    Science.gov (United States)

    Yee, L.; Isaacman, G. A.; Kreisberg, N. M.; Liu, Y.; McKinney, K. A.; de Sá, S. S.; Martin, S. T.; Alexander, M. L.; Palm, B. B.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Viegas, J.; Springston, S. R.; Wurm, F.; Ferreira De Brito, J.; Artaxo, P.; Manzi, A. O.; Machado, L.; Longo, K.; Oliveira, M. B.; Souza, R. A. F. D.; Hering, S. V.; Goldstein, A. H.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) from the Amazon forest represent the largest regional source of organic carbon emissions to the atmosphere. These BVOC emissions dominantly consist of volatile and semi-volatile terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). However, the oxidation pathways of these compounds are still not well understood, and are expected to differ significantly between "pristine" conditions, as is common in Amazonia, and polluted conditions caused by emissions from growing cities. Our focus is to elucidate how anthropogenic emissions influence BVOC chemistry and BSOA formation through speciated measurements of their oxidation products. We have deployed the Semi-Volatile Thermal desorption Aerosol Gas Chromatograph (SV-TAG) at the rural T3 site located west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon) 2014 field campaign to measure hourly concentrations of semi-volatile BVOCs and their oxidation products during the wet and dry seasons. Primary BVOC concentrations measured by the SV-TAG include sesquiterpenes and diterpenes, which have rarely been speciated with high time-resolution. We observe sesquiterpenes to be anti-correlated with ozone, indicative of sesquiterpene oxidation playing a major role in the regional oxidant budget. The role of sesquiterpenes in atmospheric SOA formation are of interest due to their high aerosol yields and high reactivity with ozone, relative to more commonly measured BVOCs (e.g. monoterpenes). We explore relative concentrations of sesquiterpenes and monoterpenes and their roles as precursors to SOA formation by combining SV-TAG measurements with those from an additional suite of VOC and particle measurements deployed in the Amazon. We also report the first ever hourly observations of the gas-particle partitioning of speciated terpene oxidation products in the Amazon

  9. A Bifunctional Geranyl and Geranylgeranyl Diphosphate Synthase Is Involved in Terpene Oleoresin Formation in Picea abies1[W][OA

    Science.gov (United States)

    Schmidt, Axel; Wächtler, Betty; Temp, Ulrike; Krekling, Trygve; Séguin, Armand; Gershenzon, Jonathan

    2010-01-01

    The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C10) and diterpenes (C20). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C10), farnesyl diphosphate (C15), and geranylgeranyl diphosphate (C20) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C10) and geranylgeranyl diphosphate (C20). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate. PMID:19939949

  10. Molecular cloning and functional characterization of three terpene synthases from unripe fruit of black pepper (Piper nigrum).

    Science.gov (United States)

    Jin, Zhehao; Kwon, Moonhyuk; Lee, Ah-Reum; Ro, Dae-Kyun; Wungsintaweekul, Juraithip; Kim, Soo-Un

    2018-01-15

    To identify terpene synthases (TPS) responsible for the biosynthesis of the sesquiterpenes that contribute to the characteristic flavors of black pepper (Piper nigrum), unripe peppercorn was subjected to the Illumina transcriptome sequencing. The BLAST analysis using amorpha-4,11-diene synthase as a query identified 19 sesquiterpene synthases (sesqui-TPSs), of which three full-length cDNAs (PnTPS1 through 3) were cloned. These sesqui-TPS cDNAs were expressed in E. coli to produce recombinant enzymes for in vitro assays, and also expressed in the engineered yeast strain to assess their catalytic activities in vivo. PnTPS1 produced β-caryophyllene as a main product and humulene as a minor compound, and thus was named caryophyllene synthase (PnCPS). Likewise, PnTPS2 and PnTPS3 were, respectively, named cadinol/cadinene synthase (PnCO/CDS) and germacrene D synthase (PnGDS). PnGDS expression in yeast yielded β-cadinene and α-copaene, the rearrangement products of germacrene D. Their k cat /K m values (20-37.7 s -1  mM -1 ) were comparable to those of other sesqui-TPSs. Among three PnTPSs, the transcript level of PnCPS was the highest, correlating with the predominant β-caryophyllene biosynthesis in the peppercorn. The products and rearranged products of three PnTPSs could account for about a half of the sesquiterpenes in number found in unripe peppercorn. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others.

    Science.gov (United States)

    Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2013-09-01

    The volatile profiles of rare Malus domestica Borkh. honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44-45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid-pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H-indole-3-acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car-2-en-4-one (10.2%). CH2 Cl2 and pentane/Et2 O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9-3.9%), benzoic acid (2.0-11.2%), terpendiol I (0.3-7.4%), coumaran (0.0-2.8%), 2-phenylacetic acid (2.0-26.4%), methyl syringate (3.9-13.1%), vomifoliol (5.0-31.8%), and methyl 1H-indole-3-acetate (1.9-10.2%). Apple honey contained also benzyl alcohol, 2-phenylethanol, (E)-cinnamaldehyde, (E)-cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  12. Synthesis and Analysis of Putative Terpene Oxidation Products and the Secondary Organic Aerosol Particles that Form from Them

    Science.gov (United States)

    Ebben, C. J.; Strick, B. F.; Upshur, M.; Shrestha, M.; Velarde, L.; Lu, Z.; Wang, H.; Xiao, D.; Batista, V. S.; Martin, S. T.; Thomson, R. J.; Geiger, F. M.

    2013-12-01

    The terpenes isoprene and α-pinene are abundant volatile organic compounds (VOCs) that are emitted by trees and oxidized in the atmosphere. However, the chemical processes involved in the formation of secondary organic aerosol (SOA) particles from VOCs are not well understood. In this work, we use a combined synthetic, analytical, and theoretical approach to gain a molecular level understanding of the chemistry involved in the formation of SOA particles from VOC precursors. To this end, we have synthesized putative products of isoprene and α-pinene oxidation and the oligomers that form from them. Specifically, we have focused on the epoxide and 2-methyltetraols that form from isoprene oxidation by hydroxyl radicals, as well as products of α-pinene ozonolysis. In our analysis, we utilize a spectroscopic technique called sum frequency generation (SFG). SFG is a coherent, surface-specific, vibrational spectroscopy that uses infrared and visible laser light fields, overlapped spatially and temporally at a surface, to probe vibrational transitions within molecules. Our use of this technique allows us to assess the chemical identity of aerosol-forming components at their surfaces, where interactions with the gas phase occur. The spectral responses from these compounds are compared to those of synthetic isoprene- and α-pinene-derived aerosol particles, as well as natural aerosol particles collected in tropical and boreal forests to begin to predict the constituents that may be present at the surfaces of these particles. In addition, isotope editing is utilized to gain a better understanding of α-pinene. The rigidity of this molecule makes it difficult to understand spectroscopically. The combination of synthesis with deuterium labeling, theory, and broadband and high-resolution SFG spectroscopy in the C-H and C-D stretching regions allow us to determine the orientation of this important molecule on a surface, which could have implications for its reactivity in the

  13. Terpene glycoside component from Moutan Cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses.

    Science.gov (United States)

    Chen, Juan; Hou, Xue-Feng; Wang, Gang; Zhong, Qing-Xiang; Liu, Ying; Qiu, Hui-Hui; Yang, Nan; Gu, Jun-Fei; Wang, Chun-Fei; Zhang, Li; Song, Jie; Huang, Lu-Qi; Jia, Xiao-Bin; Zhang, Ming-Hua; Feng, Liang

    2016-12-04

    Multiple lines of evidences have suggested that endoplasmic reticulum (ER) stress-related inflammatory responses play a critical role in the pathogenesis of diabetic nephropathy (DN). Moutan Cortex (MC), the root bark of Paeonia suffruticosa Andr., is a well-known traditional Chinese medicine (TCM), which has been used clinically for treating inflammatory diseases in China. The findings from our previous research suggested that terpene glycoside (TG) component of MC possessed favorable anti-inflammatory properties in curing DN. However, the underlying mechanisms of MC-TG for treating DN are still unknown. To explore the role of ER stress-related inflammatory responses in the progression of DN, and to investigate the underlying protective mechanisms of MC-TG in kidney damage. DN rats and advanced glycation end-products (AGEs) induced HBZY-1 cell dysfunction were established to evaluate the protective effect of MC-TG on ameliorating renal injury. Evaluation of pathological lesions was performed by Masson staining and transmission electron microscopy (TEM). Interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), glucose regulated protein 78 (GRP78/Bip), as well as spliced X box binding protein 1(XBP-1(s)) levels in rat serum were detected by an enzyme-linked immunosorbent assay (ELISA). Furthermore, western blotting (WB) was applied to detect the protein expressions including IL-6, MCP-1, intercellular cell adhesion molecule-1 (ICAM-1), GRP78/Bip, XBP-1 (s), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), cleaved activating transcription factor 6 (ATF6), phosphorylated PKR-like endoplasmic reticulum kinase (p-PERK), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in vivo and in vitro. Immunohistochemistry (IHC) was carried out to determine the phosphorylation of IRE1α and NF-κB p65 in kidney tissues. Pretreatment with MC-TG could markedly improve renal insufficiency and pathologic changes. It could down-regulate ER stress-related factors

  14. Comparative characterization of total flavonol glycosides and terpene lactones at different ages, from different cultivation sources and genders of Ginkgo biloba leaves.

    Science.gov (United States)

    Yao, Xin; Shang, Erxin; Zhou, Guisheng; Tang, Yuping; Guo, Sheng; Su, Shulan; Jin, Chun; Qian, Dawei; Qin, Yong; Duan, Jin-Ao

    2012-01-01

    The extract from Ginkgo biloba leaves has become a very popular plant medicine and herbal supplement for its potential benefit in alleviating symptoms associated with peripheral vascular disease, dementia, asthma and tinnitus. Most research on G. biloba leaves focus on the leaves collected in July and August from four to seven year-old trees, however a large number of leaves from fruit cultivars (trees older than 10 years) are ignored and become obsolete after fruit harvest season (November). In this paper, we expand the tree age range (from one to 300 years) and first comparatively analyze the total flavonol glycosides and terpene lactones at different ages, from different cultivation sources and genders of G. biloba leaves collected in November by using the validated HPLC-ELSD and HPLC-PDA methods. The results show that the contents of total terpene lactones and flavonol glycosides in the leaves of young ginkgo trees are higher than those in old trees, and they are higher in male trees than in female trees. Geographical factors appear to have a significant influence on the contents as well. These results will provide a good basis for the comprehensive utilization of G. biloba leaves, especially the leaves from fruit cultivars.

  15. Comparative Characterization of Total Flavonol Glycosides and Terpene Lactones at Different Ages, from Different Cultivation Sources and Genders of Ginkgo biloba Leaves

    Science.gov (United States)

    Yao, Xin; Shang, Erxin; Zhou, Guisheng; Tang, Yuping; Guo, Sheng; Su, Shulan; Jin, Chun; Qian, Dawei; Qin, Yong; Duan, Jin-Ao

    2012-01-01

    The extract from Ginkgo biloba leaves has become a very popular plant medicine and herbal supplement for its potential benefit in alleviating symptoms associated with peripheral vascular disease, dementia, asthma and tinnitus. Most research on G. biloba leaves focus on the leaves collected in July and August from four to seven year-old trees, however a large number of leaves from fruit cultivars (trees older than 10 years) are ignored and become obsolete after fruit harvest season (November). In this paper, we expand the tree age range (from one to 300 years) and first comparatively analyze the total flavonol glycosides and terpene lactones at different ages, from different cultivation sources and genders of G. biloba leaves collected in November by using the validated HPLC-ELSD and HPLC-PDA methods. The results show that the contents of total terpene lactones and flavonol glycosides in the leaves of young ginkgo trees are higher than those in old trees, and they are higher in male trees than in female trees. Geographical factors appear to have a significant influence on the contents as well. These results will provide a good basis for the comprehensive utilization of G. biloba leaves, especially the leaves from fruit cultivars. PMID:22949862

  16. An innovative approach to the recovery of phenolic compounds and volatile terpenes from the same fresh foliar sample of Rosmarinus officinalis L.

    Science.gov (United States)

    Bellumori, Maria; Michelozzi, Marco; Innocenti, Marzia; Congiu, Federica; Cencetti, Gabriele; Mulinacci, Nadia

    2015-01-01

    Rosmarinus officinalis L. is a plant of relevant commercial interest because of its volatile fraction and also its phenolic constituents which are both well known for their numerous properties. Nevertheless, an extractive method suitable to recovering both the aromatic and phenolic fractions from the same fresh foliar tissue has not yet been reported. In this work we have optimized a two-step procedure able to recover first the phenolic compounds and successively the volatile terpenes from the same foliar sample. The recovery of the whole phenolic fraction, partially degraded using a traditional extractive method, was guaranteed and we observed a significant increment in the amount of volatile terpenes compared to a traditional extraction procedure. We also highlight crucial information on the enzymatic activity of the endogenous oxidases that rapidly transform the phenolic substrates, mainly the rosmarinic acid. Our results suggest that this extractive procedure could also be used for other aromatic plants, thus providing a useful tool for more complete analyses of the main phytochemicals available in fresh foliar samples and creating the possibility of incrementing yields of volatile compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata).

    Science.gov (United States)

    Wang, Qian; Reddy, Vaishnavi Amarr; Panicker, Deepa; Mao, Hui-Zhu; Kumar, Nadimuthu; Rajan, Chakravarthy; Venkatesh, Prasanna Nori; Chua, Nam-Hai; Sarojam, Rajani

    2016-07-01

    In many aromatic plants including spearmint (Mentha spicata), the sites of secondary metabolite production are tiny specialized structures called peltate glandular trichomes (PGT). Having high commercial values, these secondary metabolites are exploited largely as flavours, fragrances and pharmaceuticals. But, knowledge about transcription factors (TFs) that regulate secondary metabolism in PGT remains elusive. Understanding the role of TFs in secondary metabolism pathway will aid in metabolic engineering for increased yield of secondary metabolites and also the development of new production techniques for valuable metabolites. Here, we isolated and functionally characterized a novel MsYABBY5 gene that is preferentially expressed in PGT of spearmint. We generated transgenic plants in which MsYABBY5 was either overexpressed or silenced using RNA interference (RNAi). Analysis of the transgenic lines showed that the reduced expression of MsYABBY5 led to increased levels of terpenes and that overexpression decreased terpene levels. Additionally, ectopic expression of MsYABBY5 in Ocimum basilicum and Nicotiana sylvestris decreased secondary metabolite production in them, suggesting that the encoded transcription factor is probably a repressor of secondary metabolism. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Regulation of Terpene Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Croteau

    2004-03-14

    OAK-B135 Research over the last four years has progressed fairly closely along the lines initially proposed, with progress-driven expansion of Objectives 1, 2 and 3. Recent advances have developed from three research thrusts: 1. Random sequencing of an enriched peppermint oil gland cDNA library has given access to a large number of potential pathway and regulatory genes for test of function; 2. The availability of new DNA probes and antibodies has permitted investigation of developmental regulation and organization of terpenoid metabolism; and 3. The development of a transformation system for peppermint by colleagues at Purdue University has allowed direct transgenic testing of gene function and added a biotechnological component to the project. The current status of each of the original research objectives is outlined below.

  19. Modeling with the logistic regression of the growth/no growth interface of Saccharomyces cerevisiae in relation to 2 antimicrobial terpenes (citral and linalool), pH, and a(w).

    Science.gov (United States)

    Tabanelli, Giulia; Montanari, Chiara; Patrignani, Francesca; Siroli, Lorenzo; Lanciotti, Rosalba; Gardini, Fausto

    2014-03-01

    The antimicrobial effects of 2 terpenes (citral and linalool) on a Saccharomyces cerevisiae strain isolated from spoiled soft drink have been evaluated, alone or in combination, in relation to pH and aw using in vitro assays. The obtained data were fitted with the logit model to find the growth/no growth boundary regions of the 2 terpenes, focusing the attention on the type of interaction exerted by citral and linalool. In particular, the results showed an increase of citral antimicrobial effect in growth media characterized by low aw value, as well as a higher linalool antimicrobial effect in media at low pH. Moreover, the interactive effects of the 2 terpenes were exploited. The results obtained with the model were validated in an independent experiment. The knowledge of the interactions of essential oil molecules with enhanced antimicrobial activity, in relation to some of the most important chemicophysical variables, can have important industrial applications, since these substances are able to assure the desired antimicrobial effect without negatively modifying the product flavor profile. The effects of the main chemicophysical parameters (such as aw and pH) on the antimicrobial activity of bioactive terpenes are necessary for the definition of an industrially applicable preservation strategy based on the use of essential oils as natural antimicrobials aimed to prolong shelf life of food products. © 2014 Institute of Food Technologists®

  20. Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells.

    Science.gov (United States)

    Leyva-López, Nayely; Nair, Vimal; Bang, Woo Young; Cisneros-Zevallos, Luis; Heredia, J Basilio

    2016-07-01

    Mexican oregano infusions have been traditionally used in México for the treatment of inflammation-related diseases, such as respiratory and digestive disorders, headaches and rheumatism, among others. Nevertheless, there is limited information regarding the phenolic compounds, terpenes and composition as well as biological activity of Mexican oregano. To determine the phenolic and terpene composition and to evaluate the anti-inflammatory potential of three species of Mexican oregano (Lippia graveolens (LG), Lippia palmeri (LP) and Hedeoma patens (HP)) in order to provide a scientific basis for their use. We obtained methanol and chloroform extracts from dried oregano leaves of each species. We used LC-DAD-ESI-MS/MS and GC-MS to determine the phenolic and terpene profiles of the leaves, respectively. We evaluated anti-inflammatory potential by measuring the effect of Mexican oregano extracts on some pro-inflammatory mediators, such as nitric oxide (NO) and reactive oxygen species (ROS) using lipopolysaccharide(LPS)-stimulated RAW 264.7 macrophage cells and evaluating cyclooxygenase activity (COX-1, COX-2). Nine phenolic compounds (phenolic acids and flavonoids) and 22 terpenes (monoterpenes and sesquiterpenes) were detected in LG, LP and HP. We studied extracts from LG, LP and HP, and fractions from LG and LP in order to know their effect on some pro-inflammatory mediators. The phenolic and terpene extracts from LG, LP and HP exhibited significant inhibitory effect on ROS and NO production and mitochondrial activity in LPS-induced inflammation in RAW 264.7 macrophage cells. Nitric oxide production was also diminished by the terpene LG fraction LGF2 and the LP fractions LPF1, LPF2 and LPF3, confirming that both monoterpenes and sesquiterpenes are active compounds of oregano. Furthermore, the total extracts of LG, LP and HP exhibited non-selective inhibitions against the activity of the cyclooxygenases COX-1 and COX-2. Our results suggest that Lippia graveolens

  1. Genetics, phosphorus availability, and herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine species

    Science.gov (United States)

    Sampedro, Luis; Llusia, Joan; Peñuelas, Josep; Zas, Rafael

    2010-01-01

    Oleoresin produced and stored in pine tree leaves provides direct resistance to herbivores, while leaf volatile terpenes (LVT) in the resin are also powerful airborne infochemicals. Resin concentration and profile show considerable spatial and temporal phenotypic variation within and among pine populations. LVT biochemistry is known to be under genetic control, and although LVT should be plastic to diverse abiotic and biotic environmental factors such as nutrient availability and herbivore attack, little is known about their relative contributions and interactive effects. The aim of this paper was to clarify whether reduced phosphorus availability could increase the LVT concentration and affect the expression of herbivore-derived induced defences, and how plasticity would contribute to the phenotypic variation of LVT. The constitutive and methyl-jasmonate (MeJa) induced LVT concentration and profile were analysed in 17 half-sib Pinus pinaster families growing under two levels of P-availability (complete and P-limited fertilization). Individual terpene concentrations showed large additive genetic variation, which was more pronounced in the control than in MeJa-induced pines. MeJa application did not affect the LVT concentration, but significantly modified the LVT profile by depleting the α-pinene content and reducing the sesquiterpene fraction. Low P-availability strongly reduced plant growth and foliar nutrient concentrations, but did not affect LVT concentration and profile, and did not interact with MeJa-induction. Results indicate a strong homeostasis of LVT concentration to P-availability, and minor changes in the LVT profile due to MeJa-induction. Genetic variation appears to be the main source of phenotypic variation affecting the LVT concentration in this pine species. PMID:20952630

  2. Can contact allergy to p-phenylenediamine explain the high rates of terpene hydroperoxide allergy? - An epidemiological study based on consecutive patch test results.

    Science.gov (United States)

    Bennike, Niels Højsager; Lepoittevin, Jean-Pierre; Johansen, Jeanne D

    2017-02-01

    Contact allergy to linalool hydroperoxides (Lin-OOHs) and limonene hydroperoxides (Lim-OOHs) is common. Similarly to what occurs with the terpene hydroperoxides, reactive intermediates formed from p-phenylenediamine (PPD) can cause oxidative modifications of tryptophan residues on proteins in mechanistic studies. To test the hypothesis that patients sensitized to PPD are at increased risk of concomitant reactivity to either of the terpene hydroperoxides, owing to a 'common pathway' of skin protein oxidation. A database study of consecutively patch tested eczema patients (n = 3843) from 2012 to 2015, tested concomitantly with PPD, Lim-OOHs and Lin-OOHs, was performed. Associations were examined by level of concordance and odds ratios (ORs) adjusted for age, sex, and contact allergy to fragrance mix I and fragrance mix II. Concomitant reactions to PPD were seen in 2.2% of Lim-OOH-positive patients and in 4.9% of Lin-OOH-positive patients. Neither proportion was higher than expected by chance. No association existed between PPD and Lim-OOH patch test reactivity. In a multiple logistic regression analysis, PPD allergy was associated with an insignificantly increased risk (OR 2.11, 95%CI:0.92-4.80) of a positive patch test reaction to Lin-OOHs. PPD sensitization cannot explain the high rates of sensitization to Lin-OOHs and/or Lim-OOHs. Contact allergy to oxidized linalool is more strongly associated with fragrance allergy than with PPD allergy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism.

    Science.gov (United States)

    Pandey, Pallavi; Kaur, Ranjeet; Singh, Sailendra; Chattopadhyay, Sunil Kumar; Srivastava, Santosh Kumar; Banerjee, Suchitra

    2014-07-01

    The effect of 6 years of cultivation and use of table-sugar (TS) on the biomass/terpene alkaloid productivities and rol gene expression were studied in a hairy root (HR) clone of Rauvolfia serpentina. The media cost could be reduced >94 % by replacing sucrose (SUC) with TS—an unexplored avenue for HR cultivation. The overall productivities increased over long-term cultivation with sugar proving superior to SUC for biomass (24.4 ± 2.11 g/l DW after 40 days to 17.31 % higher) and reserpine (0.094 ± 0.008 % DW after 60 days to 193.8 % more) production. The latter however revealed comparatively better yields concerning ajmaline (0.507 ± 0.048 % DW after 60 days to 61.98 % higher) and yohimbine (0.628 ± 0.062 % DW after 60 days to 38.32 % higher), respectively. PCR amplification of rol genes confirmed long-term expression stability.

  4. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    Science.gov (United States)

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  5. Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Qiangwen Chen

    2017-01-01

    Full Text Available Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs, are terpenoids that form the main active substance of Ginkgo biloba. Terpenoids in the mevalonate (MVA biosynthetic pathway include acetyl-CoA C-acetyltransferase (AACT and mevalonate kinase (MVK as core enzymes. In this study, two full-length (cDNAs encoding AACT (GbAACT, GenBank Accession No. KX904942 and MVK (GbMVK, GenBank Accession No. KX904944 were cloned from G. biloba. The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.

  6. Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba.

    Science.gov (United States)

    Chen, Qiangwen; Yan, Jiaping; Meng, Xiangxiang; Xu, Feng; Zhang, Weiwei; Liao, Yongling; Qu, Jinwang

    2017-01-02

    Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba . Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C -acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT ( GbAACT , GenBank Accession No. KX904942) and MVK ( GbMVK , GenBank Accession No. KX904944) were cloned from G. biloba . The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.

  7. Functional Characterization of Nine Norway Spruce TPS Genes and Evolution of Gymnosperm Terpene Synthases of the TPS-d Subfamily1[w

    Science.gov (United States)

    Martin, Diane M.; Fäldt, Jenny; Bohlmann, Jörg

    2004-01-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (−)-limonene synthase, (−)-α/β-pinene synthase, and (−)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-α-farnesene synthase, and E-α-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed. PMID:15310829

  8. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis.

    Science.gov (United States)

    Narnoliya, Lokesh K; Kaushal, Girija; Singh, Sudhir P; Sangwan, Rajender S

    2017-01-13

    Rose-scented geranium (Pelargonium sp.) is a perennial herb that produces a high value essential oil of fragrant significance due to the characteristic compositional blend of rose-oxide and acyclic monoterpenoids in foliage. Recently, the plant has also been shown to produce tartaric acid in leaf tissues. Rose-scented geranium represents top-tier cash crop in terms of economic returns and significance of the plant and plant products. However, there has hardly been any study on its metabolism and functional genomics, nor any genomic expression dataset resource is available in public domain. Therefore, to begin the gains in molecular understanding of specialized metabolic pathways of the plant, de novo sequencing of rose-scented geranium leaf transcriptome, transcript assembly, annotation, expression profiling as well as their validation were carried out. De novo transcriptome analysis resulted a total of 78,943 unique contigs (average length: 623 bp, and N50 length: 752 bp) from 15.44 million high quality raw reads. In silico functional annotation led to the identification of several putative genes representing terpene, ascorbic acid and tartaric acid biosynthetic pathways, hormone metabolism, and transcription factors. Additionally, a total of 6,040 simple sequence repeat (SSR) motifs were identified in 6.8% of the expressed transcripts. The highest frequency of SSR was of tri-nucleotides (50%). Further, transcriptome assembly was validated for randomly selected putative genes by standard PCR-based approach. In silico expression profile of assembled contigs were validated by real-time PCR analysis of selected transcripts. Being the first report on transcriptome analysis of rose-scented geranium the data sets and the leads and directions reflected in this investigation will serve as a foundation for pursuing and understanding molecular aspects of its biology, and specialized metabolic pathways, metabolic engineering, genetic diversity as well as molecular breeding.

  9. Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species.

    Science.gov (United States)

    Salomon, María Victoria; Purpora, Rebeca; Bottini, Rubén; Piccoli, Patricia

    2016-09-01

    It has been proposed that plant growth promoting rhizobacteria (PGPR) stimulate plant growth and development by inducing the biosynthesis of secondary metabolites, like terpenes, which reduce stress incidence. Three bacteria previously isolated from grapevine roots and adjacent soil (Microbacterium imperiale Rz19M10, Kocuria erythromyxa Rt5M10 and Terribacillus saccharophilus Rt17M10) were tested as PGPR. After 30 days since root inoculation of in vitro grown Vitis vinifera cv. Malbec plants, the monoterpenes α-pinene, terpinolene and 4-carene, and the sesquiterpene nerolidol were detected only in bacterized-plant leaves. Also, the concentrations of the diterpenes α and γ-tocopherol, and the sterols sitosterol and lupeol were significantly enhanced compared to controls. The leaf extracts of bacterized plants showed photoprotective properties since they decreased the oxygen consumption (that is photo-oxidation) of the amino acid tryptophan in a sensitized solution, thus indicating an increment of the antioxidant capacity of the tissues. In addition, experiments with α-pinene and nerolidol standards showed the capability to intercept reactive oxygen species in the sensitized solution. Moreover, bacterized plants infected with the pathogen Botrytis cinerea showed a reduction in the lesion diameter compared with non-bacterized plants. The results suggest that M. imperiale, K. erythromyxa and mainly T. saccharophilus are able to induce a systemic response that trigger increases on monoterpenes, sesquiterpenes, tocopherols and membrane sterols. These compounds enhance the antioxidant capacity in leaf tissues that may help grapevine to cope with stresses. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Síntese de esteres terpenóides por via enzimática: influência do tamanho da cadeia alifática do ácido graxo e da estrutura do álcool de terpeno Synthesis of terpen esters by enzymatic route: influence of the fatty acid size chain and alcohol structure

    Directory of Open Access Journals (Sweden)

    Heizir F. CASTRO

    1997-12-01

    Full Text Available A especificidade de uma preparação comercial de lipase imobilizada, com relação a molécula ácida e alcoólica do substrato, foi estudada através da síntese de diversos ésteres de terpenóides. Na série de reações do citronelol e ácidos graxos com diferentes tamanho de cadeia alifática (C2 a C18, altas taxas de esterificação (95 a 98% foram alcançadas para ácidos contendo 4 ou mais carbonos. Numa segunda série de experimentos, diferentes álcoois terpenos foram esterificados com ácido butírico, sendo constatado uma influência marcante da estrutura do álcool de terpeno no desempenho desta preparação enzimática. Graus de esterificação maiores que 95% somente foram obtidos para os álcoois primários como citronelol, geraniol e nerol. Álcoois secundários (mentol e terciários (linalol não foram esterificados, sob as condições testadas.The selectivity of a commercial immobilized lipase preparation was tested in two set of esterification reactions. In the first group, synthesis were carried out with citronellol and different organic acids (C2 to C18. For this case, with the exception of acetic acid, the size of the carbon chain showed no significant alteration in the esterification rates. Acids containing four or more carbons, were considered to be excellent acyl donors, resulting in the esterification rates in the range of 95% to 98%. Alternatively, the esterification reactions were carried out with different terpen alcohols and butyric acid. The alcohol structure showed to have great influence on the performance of this enzyme preparation. Esterification degree over 95% were attained for primary alcohols such as citronellol, geraniol and nerol. Secondary (menthol and tertiary (linallol were not esterified under the tested conditions.

  11. Screening of Polish Fir Honeydew Honey Using GC/MS, HPLC-DAD, and Physical-Chemical Parameters: Benzene Derivatives and Terpenes as Chemical Markers.

    Science.gov (United States)

    Kuś, Piotr M; Jerković, Igor; Marijanović, Zvonimir; Tuberoso, Carlo I G

    2017-09-01

    GC/MS of headspace solid phase micro extraction (HS-SPME) and solvent extractives along with targeted HPLC-DAD of Polish fir (Abies alba Mill.) honeydew honey (FHH), were used to determine the chemical profiles and potential markers of botanical origin. Additionally, typical physical-chemical parameters were also assigned. The values determined for FHH were: conductivity (1.2 mS/cm), water content (16.7 g/100 g), pH (4.5), and CIE chromaticity coordinates (L* = 48.4, a* = 20.6, b* = 69.7, C* = 72.9, and h° = 73.5). FHH contained moderate-high total phenolic content (533.2 mg GAE/kg) and antioxidant activity (1.1 mmol TEAC/kg) and (3.2 mmol Fe 2+ /kg) in DPPH and FRAP assays. The chemical profiles were dominated by source plant-originated benzene derivatives: 3,4-dihydroxybenzoic acid (up to 8.7 mg/kg, HPLC/honey solution), methyl syringate (up to 14.5%, GC/solvent extracts) or benzaldehyde (up to 43.7%, GC/headspace). Other markers were terpenes including norisoprenoid (4-hydroxy-3,5,6-trimethyl-4-(3-oxobut-1-enyl)cyclohex-2-en-1-one, up to 20.3%, GC/solvent extracts) and monoterpenes, mainly linalool derivatives (up to 49%, GC/headspace) as well as borneol (up to 5.9%, GC/headspace). The application of various techniques allowed comprehensive characterisation of FHH. 4-Hydroxy-3,5,6-trimethyl-4-(3-oxobut-1-enyl)cyclohex-2-en-1-one, coniferyl alcohol, borneol, and benzaldehyde were first time proposed for FHH screening. Protocatechuic acid may be a potential marker of FFH regardless of the geographical origin. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  12. Direct analysis of 18 flavonol glycosides, aglycones and terpene trilactones in Ginkgo biloba tablets by matrix solid phase dispersion coupled with ultra-high performance liquid chromatography tandem triple quadrupole mass spectrometry.

    Science.gov (United States)

    Liu, Xin-Guang; Yang, Hua; Cheng, Xiao-Lan; Liu, Lei; Qin, Yong; Wang, Qi; Qi, Lian-Wen; Li, Ping

    2014-08-01

    Analysis and quality control of Ginkgo biloba have been comprehensively studied. However, little attention has been devoted to the simultaneous extraction and analysis of flavonols and terpene trilactones, especially for direct quantification of flavonol glycosides. This work described a rapid strategy for one-step extraction and quantification of the components. A matrix solid phase dispersion (MSPD) method was designed for the extraction of ginkgo ingredients and compared with the heat-reflux and ultrasonic extraction methods. An ultra-high performance liquid chromatography (UHPLC)-tandem-triple-quadrupole-mass spectrometry (QQQ-MS) method was developed for detection of the 18 components, including 10 original flavonol glycosides, 3 aglycones, and 5 lactones. Subsequently, the proposed strategy was used for the analysis of 12 G. biloba tablets. Results showed that MSPD produced comparable extraction efficiency but consumed less time and required lower solvent volumes compared with conventional methods. Without hydrolysis, the concentration detected was much closer to the original in the sample. The total flavonol glycoside contents in ginkgo tablets ranged from 3.59 to 125.21μgmg(-1), and the terpene trilactone varied from 3.45 to 57.8μgmg(-1) among different manufacturers. In conclusion, the proposed MSPD and UHPLC-QQQ-MS is rapid and sensitive in providing comprehensive profile of chemical constituents especially the genuine flavonol glycosides for improved quality control of ginkgo products. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Principal component analysis (PCA) of volatile terpene compounds dataset emitted by genetically modified sweet orange fruits and juices in which a D-limonene synthase was either up- or down-regulated vs. empty vector controls.

    Science.gov (United States)

    Rodríguez, Ana; Peris, Josep E; Redondo, Ana; Shimada, Takehiko; Peña, Leandro

    2016-12-01

    We have categorized the dataset from content and emission of terpene volatiles of peel and juice in both Navelina and Pineapple sweet orange cultivars in which D-limonene was either up- (S), down-regulated (AS) or non-altered (EV; control) ("Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception"(A. Rodríguez, J.E. Peris, A. Redondo, T. Shimada, E. Costell, I. Carbonell, C. Rojas, L. Peña, (2016)) [1]). Data from volatile identification and quantification by HS-SPME and GC-MS were classified by Principal Component Analysis (PCA) individually or as chemical groups. AS juice was characterized by the higher influence of the oxygen fraction, and S juice by the major influence of ethyl esters. S juices emitted less linalool compared to AS and EV juices.

  14. Principal component analysis (PCA of volatile terpene compounds dataset emitted by genetically modified sweet orange fruits and juices in which a D-limonene synthase was either up- or down-regulated vs. empty vector controls

    Directory of Open Access Journals (Sweden)

    Ana Rodríguez

    2016-12-01

    Full Text Available We have categorized the dataset from content and emission of terpene volatiles of peel and juice in both Navelina and Pineapple sweet orange cultivars in which D-limonene was either up- (S, down-regulated (AS or non-altered (EV; control (“Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception”(A. Rodríguez, J.E. Peris, A. Redondo, T. Shimada, E. Costell, I. Carbonell, C. Rojas, L. Peña, (2016 [1]. Data from volatile identification and quantification by HS-SPME and GC–MS were classified by Principal Component Analysis (PCA individually or as chemical groups. AS juice was characterized by the higher influence of the oxygen fraction, and S juice by the major influence of ethyl esters. S juices emitted less linalool compared to AS and EV juices.

  15. Quantitative analysis of the flavonoid glycosides and terpene trilactones in the extract of Ginkgo biloba and evaluation of their inhibitory activity towards fibril formation of β-amyloid peptide.

    Science.gov (United States)

    Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong

    2014-04-10

    The standard extract of Ginkgo biloba leaves (EGb761) is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ) and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer's Disease (AD), and the inhibition of Aβ aggregation and destabilization of the preformed fibrils represent viable approaches for the prevention and treatment of AD. Flavonoid glycosides and terpene trilactones (TTLs) are the two main components of EGb761 which represent 24 and 6% of the overall content, respectively. In our research, seven abundant flavonoid glycosides 1-7 were isolated from the extract of Ginkgo biloba leaves and characterized by spectroscopic analysis. Furthermore, an ultra-high performance liquid chromatography method was established for the simultaneous quantification of these seven flavonoids. The inhibitory activities of these flavonoids, as well as four TTLs, i.e., ginkgolides A, B, and C and bilobalide (compounds 8-11), were evaluated towards Aβ42 fibril formation using a thioflavin T fluorescence assay. It was found that three flavonoids 1, 3 and 4 exhibited moderate inhibitory activities, whereas the other four flavonoids 2, 5, 6 and 7, as well as the four terpene trilactones, showed poor activity. This is the first report of the inhibition of Aβ fibril formation of two characteristic acylated flavonoid glycosides 6, 7 in Ginkgo leaves, on the basis of which the structure-activity relationship of these flavonoids 1-7 was discussed.

  16. Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in Curcuma longa as a Case Study.

    Science.gov (United States)

    Qiao, Xue; Lin, Xiong-hao; Ji, Shuai; Zhang, Zheng-xiang; Bo, Tao; Guo, De-an; Ye, Min

    2016-01-05

    To fully understand the chemical diversity of an herbal medicine is challenging. In this work, we describe a new approach to globally profile and discover novel compounds from an herbal extract using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis. Turmeric (the rhizomes of Curcuma longa L.) was used as an example. This approach consists of three steps: (i) multiple neutral loss/precursor ion scanning to obtain substructure information; (ii) targeted identification of new compounds by extracted ion current and substructure recognition; and (iii) untargeted identification using total ion current and multivariate statistical analysis to discover novel structures. Using this approach, 846 terpecurcumins (terpene-conjugated curcuminoids) were discovered from turmeric, including a number of potentially novel compounds. Furthermore, two unprecedented compounds (terpecurcumins X and Y) were purified, and their structures were identified by NMR spectroscopy. This study extended the application of mass spectrometry to global profiling of natural products in herbal medicines and could help chemists to rapidly discover novel compounds from a complex matrix.

  17. Simultaneous Quantification of Flavonol Glycosides, Terpene Lactones, Biflavones, Proanthocyanidins, and Ginkgolic Acids in Ginkgo biloba Leaves from Fruit Cultivars by Ultrahigh-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xin Yao

    2013-01-01

    Full Text Available On the basis of liquid chromatography coupled with triple quadrupole mass spectrometry working in multiple reaction monitoring mode, an analytical method has been established to simultaneously determine flavonol glycosides, terpene lactones, biflavones, proanthocyanidins, and ginkgolic acids in Ginkgo biloba leaves. Chromatographic separation was carried out on an Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm with gradient elution of acetonitrile and 0.10% formic acid (v/v at a flow rate of 0.4 mL/min, and column temperature 30°C. The developed method was validated in terms of linearity, accuracy, precision, stability, and sensitivity. The optimized method was successfully applied to analyze twenty-two G. biloba leaf samples of fruit cultivars collected from different places in China. Furthermore, hierarchical clustering analysis (HCA was performed to evaluate and classify the samples according to the contents of the twenty-four chemical constituents. All of the results demonstrated that the developed method was useful for the overall evaluation of the quality of G. biloba leaves, and this study was also helpful for the comprehensive utilization and development of G. biloba resources.

  18. YY-1224, a terpene trilactone-strengthened Ginkgo biloba, attenuates neurodegenerative changes induced by β-amyloid (1-42) or double transgenic overexpression of APP and PS1 via inhibition of cyclooxygenase-2.

    Science.gov (United States)

    Li, Zheng-Yi; Chung, Yoon Hee; Shin, Eun-Joo; Dang, Duy-Khanh; Jeong, Ji Hoon; Ko, Sung Kwon; Nah, Seung-Yeol; Baik, Tae Gon; Jhoo, Jin Hyeong; Ong, Wei-Yi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2017-04-27

    Ginkgo biloba has been reported to possess free radical-scavenging antioxidant activity and anti-inflammatory properties. In our pilot study, YY-1224, a terpene trilactone-strengthened extract of G. biloba, showed anti-inflammatory, neurotrophic, and antioxidant effects. We investigated the pharmacological potential of YY-1224 in β-amyloid (Aβ) (1-42)-induced memory impairment using cyclooxygenase-2 (COX-2) knockout (-/-) and APPswe/PS1dE9 transgenic (APP/PS1 Tg) mice. Repeated treatment with YY-1224 significantly attenuated Aβ (1-42)-induced memory impairment in COX-2 (+/+) mice, but not in COX-2 (-/-) mice. YY-1224 significantly attenuated Aβ (1-42)-induced upregulation of platelet-activating factor (PAF) receptor gene expression, reactive oxygen species, and pro-inflammatory factors. In addition, YY-1224 significantly inhibited Aβ (1-42)-induced downregulation of PAF-acetylhydrolase-1 (PAF-AH-1) and peroxisome proliferator-activated receptor γ (PPARγ) gene expression. These changes were more pronounced in COX-2 (+/+) mice than in COX-2 (-/-) mice. YY-1224 significantly attenuated learning impairment, Aβ deposition, and pro-inflammatory microglial activation in APP/PS1 Tg mice, whereas it significantly enhanced PAF-AH and PPARγ expression. A preferential COX-2 inhibitor, meloxicam, did not affect the pharmacological activity by YY-1224, suggesting that the COX-2 gene is a critical mediator of the neuroprotective effects of YY-1224. The protective activity of YY-1224 appeared to be more efficacious than a standard G. biloba extract (Gb) against Aβ insult. Our results suggest that the protective effects of YY-1224 against Aβ toxicity may be associated with its PAF antagonistic- and PPARγ agonistic-potential as well as inhibition of the Aβ-mediated pro-inflammatory switch of microglia phenotypes through suppression of COX-2 expression.

  19. Synthetic Strategies to Terpene Quinones/Hydroquinones

    Directory of Open Access Journals (Sweden)

    Marina Gordaliza

    2012-02-01

    Full Text Available The cytotoxic and antiproliferative properties of many natural sesquiterpene-quinones and -hydroquinones from sponges offer promising opportunities for the development of new drugs. A review dealing with different strategies for obtaining bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches for the preparation of the most relevant quinones/hydroquinones are described.

  20. Seasonal trends of biogenic terpene emissions.

    Science.gov (United States)

    Helmig, Detlev; Daly, Ryan Woodfin; Milford, Jana; Guenther, Alex

    2013-09-01

    Biogenic volatile organic compound (BVOC) emissions from six coniferous tree species, i.e. Pinus ponderosa (Ponderosa Pine), Picea pungens (Blue Spruce), Pseudotsuga menziesii (Rocky Mountain Douglas Fir) and Pinus longaeva (Bristlecone Pine), as well as from two deciduous species, Quercus gambelii (Gamble Oak) and Betula occidentalis (Western River Birch) were studied over a full annual growing cycle. Monoterpene (MT) and sesquiterpene (SQT) emissions rates were quantified in a total of 1236 individual branch enclosure samples. MT dominated coniferous emissions, producing greater than 95% of BVOC emissions. MT and SQT demonstrated short-term emission dependence with temperature. Two oxygenated MT, 1,8-cineol and piperitone, were both light and temperature dependent. Basal emission rates (BER, normalized to 1000μmolm(-2)s(-1) and 30°C) were generally higher in spring and summer than in winter; MT seasonal BER from the coniferous trees maximized between 1.5 and 6.0μgg(-1)h(-1), while seasonal lows were near 0.1μgg(-1)h(-1). The fractional contribution of individual MT to total emissions was found to fluctuate with season. SQT BER measured from the coniferous trees ranged from <0.01 to 0.15μgg(-1)h(-1). BER of up to 1.2μgg(-1)h(-1) of the SQT germacrene B were found from Q. gambelii, peaking in late summer. The β-factor, used to define temperature dependence in emissions modeling, was not found to exhibit discernible growth season trends. A seasonal correction factor proposed by others in previous work to account for a sinusoidal shaped emission pattern was applied to the data. Varying levels of agreement were found between the data and model results for the different plant species seasonal data sets using this correction. Consequently, the analyses on this extensive data set suggest that it is not feasible to apply a universal seasonal correction factor across different vegetation species. A modeling exercise comparing two case scenarios, (1) without and (2) with consideration of the seasonal changes in emission factors illustrated large deviations when emission factors are applied for other seasons than those in which they were experimentally determined. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. 21 CFR 172.280 - Terpene resin.

    Science.gov (United States)

    2010-04-01

    ... capsule. (2) As a moisture barrier on powders of ascorbic acid or its salts in an amount not to exceed 7... availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register...

  2. Bioactive Terpenes from Marine-Derived Fungi

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elissawy

    2015-04-01

    Full Text Available Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years’ reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  3. Development of two step liquid-liquid extraction tandem UHPLC-MS/MS method for the simultaneous determination of Ginkgo flavonoids, terpene lactones and nimodipine in rat plasma: Application to the pharmacokinetic study of the combination of Ginkgo biloba dispersible tablets and Nimodipine tablets.

    Science.gov (United States)

    Xiao, Jie; Wang, Tianyang; Li, Pei; Liu, Ran; Li, Qing; Bi, Kaishun

    2016-08-15

    A sensitive, reliable and accurate UHPLC-MS/MS method has been firstly established and validated for the simultaneous quantification of ginkgo flavonoids, terpene lactones and nimodipine in rat plasma after oral administration of Ginkgo biloba dispersible tablets, Nimodipine tablets and the combination of the both, respectively. The plasma samples were extracted by two step liquid-liquid extraction, nimodipine was extracted by hexane-ether (3:1, v/v) at the first step, after that ginkgo flavonoids and terpene lactones were extracted by ethyl acetate. Then the analytes were successfully separated by running gradient elution with the mobile phase consisting of 0.1% formic acid in water and methanol at a flow rate of 0.6mL/min. The detection of the analytes was performed on a UHPLC-MS/MS system with turbo ion spray source in the negative ion and multiple reaction monitoring (MRM) mode. The calibration curves for the determination of all the analytes showed good linearity (R(2)>0.99), and the lower limits of quantification were 0.50-4.00ng/mL. Intra-day and inter-day precisions were in the range of 3.6%-9.2% and 3.2%-13.1% for all the analytes. The mean extraction recoveries of the analytes were within 69.82%-103.5% and the matrix were within 82.8%-110.0%. The validated method had been successfully applied to compare the pharmacokinetic parameters of ginkgo flavonoids, terpene lactones and nimodipine in rat plasma after oral administration of Ginkgo biloba dispersible tablets, Nimodipine tablets with the combination of the both. There were no statistically significant differences on the pharmacokinetic behaviors of all the analytes between the combined and single administration groups. Results showed that the combination of the two agents may avoid dosage adjustments in clinic and the combination is more convenient as well as efficient on different pathogenesis of cerebral ischemia. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Variação de terpenos em Hyptis suaveolens e seu papel na defesa contra herbívoros The role of terpene variation in Hyptis suaveolens in the defense against herbivores

    Directory of Open Access Journals (Sweden)

    Rachel Benetti Queiroz-Voltan

    1995-01-01

    in the chemistry of monoterpenes in the development of herbivores. Populations were more susceptible to attack by herbivores in the period preceding flowering. Heavy herbivore damage was not detected during this period, in spite of higher herbivore densities. The results suggest that the variation in chemical composition probably has an effect on the development of generalist herbivores. On the other hand, Pyrausta insignatalis Guenée (Lep.-Pyralidae-Pyraustinae is probably well adapted to the plant and appears to be resistent to the terpenes. Differences in chemistry and differences in protection against herbivores were not observed between populations in sunny and shady sites. The results support an important role for genetic variability in populations in protection against herbivory and inhibition of specialization.

  5. Development of a method of measuring air-borne biogenic hydrocarbons and its application in studies on emission and decomposition of terpenes in forests; Entwicklung eines Verfahrens zur Messung luftgetragener biogener Kohlenwasserstoffe und seine Anwendung zur Untersuchung von Emission und Abbau von Terpenen in Waldbestaenden

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, T.

    1992-11-17

    The study deals with the sampling and GC/MS analysis of air-borne biogenic hydrocarbons such as isoprene, monoterpenes, sesquiterpenes and certain oxygenic terpenoids. Atmospheric concentrations of these compounds were determined in a survey on forest areas, the main purpose being to establish their significance as precursors of phytotoxic air constituents such as H{sub 2}O{sub 2} and organic peroxides. After that, experiments were conducted in closed exposure chambers for a closer examination of the influence of ozone on plant terpene emission. It turned out that cloned spruce emit greater quantities of monoterpenes when exposed to ozone. It follows that this pollutant has a fast-acting impact on plant physiological processes. (orig.) [Deutsch] Die vorliegende Arbeit befasst sich mit der Probenahme und GC/MS-Bestimmung luftgetragener biogener Kohlenwasserstoffe wie Isopren, Monoterpene, Sesquiterpene und einige sauerstoffhaltige Terpenoide. Im Rahmen von Feldmessungen in Waldbestaenden sollte die Bestimmung der atmosphaerischen Konzentrationen dieser Verbindungen vor allem Aufschluesse ueber ihre Bedeutung als Vorlaeuferstoffe fuer phytotoxische Luftinhaltsstoffe wie H{sub 2}O{sub 2} und organische Peroxide geben. Im Rahmen von Experimenten in geschlossenen Expositionskammern wurde schliesslich die Beeinflussung der pflanzlichen Terpenemissionen durch Ozon naeher untersucht. Hierbei zeigte sich eine erhoehte Emission der reaktiveren Monoterpene waehrend der Ozonbelastung von Klonfichten und damit ein schneller Eingriff dieses Schadgases in pflanzenphysiologische Prozesse. (orig.)

  6. Macroalgal terpenes function as allelopathic agents against reef corals.

    Science.gov (United States)

    Rasher, Douglas B; Stout, E Paige; Engel, Sebastian; Kubanek, Julia; Hay, Mark E

    2011-10-25

    During recent decades, many tropical reefs have transitioned from coral to macroalgal dominance. These community shifts increase the frequency of algal-coral interactions and may suppress coral recovery following both anthropogenic and natural disturbance. However, the extent to which macroalgae damage corals directly, the mechanisms involved, and the species specificity of algal-coral interactions remain uncertain. Here, we conducted field experiments demonstrating that numerous macroalgae directly damage corals by transfer of hydrophobic allelochemicals present on algal surfaces. These hydrophobic compounds caused bleaching, decreased photosynthesis, and occasionally death of corals in 79% of the 24 interactions assayed (three corals and eight algae). Coral damage generally was limited to sites of algal contact, but algae were unaffected by contact with corals. Artificial mimics for shading and abrasion produced no impact on corals, and effects of hydrophobic surface extracts from macroalgae paralleled effects of whole algae; both findings suggest that local effects are generated by allelochemical rather than physical mechanisms. Rankings of macroalgae from most to least allelopathic were similar across the three coral genera tested. However, corals varied markedly in susceptibility to allelopathic algae, with globally declining corals such as Acropora more strongly affected. Bioassay-guided fractionation of extracts from two allelopathic algae led to identification of two loliolide derivatives from the red alga Galaxaura filamentosa and two acetylated diterpenes from the green alga Chlorodesmis fastigiata as potent allelochemicals. Our results highlight a newly demonstrated but potentially widespread competitive mechanism to help explain the lack of coral recovery on many present-day reefs.

  7. (Regulation of terpene metabolism). Progress report. [Mentha piperita

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1986-01-01

    Studies on the regulation of monoterpene metabolism in M. piperita were conducted. All of the steps from the acyclic precursor geranyl pyrophosphate to the various menthol isomers have been demonstrated. The first intermediate to accumulate in vivo is d-pulegone. The emphasis has been on the demonstration, partial purification and characterization of the relevant enzymes in the pathway. The studies on the isopiperitenol dehydrogenase and isopiperitenone isomerase have been completed. We are not studying the endocyclic double-bond reductase (NADPH-dependent) and, based on substrate specificity studies and the previously demonstrated isomerization of cis- isopulegone to pulegone, are now virtually convinced that the major pathway to menthol(s) in peppermint involves reduction of isopiperitenone to isopulegone and isomerication of isopulegone to pulegone. 16 refs., 1 fig.

  8. Flavanols and terpenes/sterols with antimycobacterial activity from ...

    African Journals Online (AJOL)

    Leguminosae) was studied using the agar proportion method. Phytochemical screening was also carried out to determine the major phytochemical groups responsible for the activity. Only the stem bark of the plant was found to possess varying degrees ...

  9. Toxicity of terpenes to spores and mycelium of Penicillium digitatum

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, M.J. van der

    2002-01-01

    Spores, although often considered metabolically inert, catalyze a variety of reactions. The use of spores instead of mycelium for bioconversions has several advantages. In this paper, we describe the difference in susceptibility of mycelium and spores against toxic substrates and products. A higher

  10. Toxicity of terpenes to spores and mycelium op Penicillium digitatum

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, van der M.J.

    2002-01-01

    Spores, although often considered metabolically inert, catalyze a variety of reactions. The use of spores instead of mycelium for bioconversions has several advantages. In this paper, we describe the difference in susceptibility of mycelium and spores against toxic substrates and products. A higher

  11. Microtubules are an intracellular target of the plant terpene citral.

    Science.gov (United States)

    Chaimovitsh, David; Abu-Abied, Mohamad; Belausov, Eduard; Rubin, Baruch; Dudai, Nativ; Sadot, Einat

    2010-02-01

    Citral is a component of plant essential oils that possesses several biological activities. It has known medicinal traits, and is used as a food additive and in cosmetics. Citral has been suggested to have potential in weed management, but its precise mode of action at the cellular level is unknown. Here we investigated the immediate response of plant cells to citral at micromolar concentrations. It was found that microtubules of Arabidopsis seedlings were disrupted within minutes after exposure to citral in the gaseous phase, whereas actin filaments remained intact. The effect of citral on plant microtubules was both time- and dose-dependent, and recovery only occurred many hours after a short exposure of several minutes to citral. Citral was also able to disrupt animal microtubules, albeit less efficiently. In addition, polymerization of microtubules in vitro was inhibited in the presence of citral. Taken together, our results suggest that citral is a potent, volatile, anti-microtubule compound.

  12. Biotransformations of terpenes by fungi from Amazonian citrus plants.

    Science.gov (United States)

    Moreno Rueda, Maria Gabriela; Guerrini, Alessandra; Giovannini, Pier Paolo; Medici, Alessandro; Grandini, Alessandro; Sacchetti, Gianni; Pedrini, Paola

    2013-10-01

    The biotransformations of (RS)-linalool (1), (S)-citronellal (2), and sabinene (3) with fungi isolated from the epicarp of fruits of Citrus genus of the Amazonian forest (i.e., C. limon, C. aurantifolia, C. aurantium, and C. paradisiaca) are reported. The more active strains have been characterized, and they belong to the genus Penicillium and Fusarium. Different biotransformation products have been obtained depending on fungi and substrates. (RS)-Linalool (1) afforded the (E)- and (Z)-furanlinalool oxides (7 and 8, resp.; 39 and 37% yield, resp.) with Fusarium sp. (1D2), 6-methylhept-5-en-2-one (4; 49%) with F. fujikuroi, and 1-methyl-1-(4-methypentyl)oxiranemethanol (6; 42%) with F. concentricum. (S)-Citronellal (2) gave (S)-citronellol (12; 36-76%) and (S)-citronellic acid (11; 5-43%) with Fusarium species, while diastereoisomeric p-menthane-3,8-diols 13 and 14 (20 and 50% yield, resp.) were obtained as main products with Penicillium paxilli. Finally, both Fusarium species and P. paxilli biotransformed sabinene (3) to give mainly 4-terpineol (19; 23-56%), and (Z)- and (E)-sabinene hydrates (17 (3-21%) and 18 (11-17%), resp.). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Nucleophilic addition of nitriles to secondary terpene alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, N.G.; Popova, L.A.; Nesterov, G.V.

    1987-01-10

    The addition of nitriles of varying nucleophilicity to isocamphanol and exo-1,5,5-trimethyl-bicyclo(2.2.1)heptan-2-ol (isofenchol) was investigated. The authors examined the effect of the reaction conditions on the yield and structure of the target products of the reaction: N-substituted amides. As a result of the study, it was shown that in the reaction with chloroacetonitrile, propionitrile, methoxypropionitrile, isovaleronitrile, and phenylacetonitrile under the conditions of the Ritter reaction, isocamphanol is transformed into the corresponding substituted exo-N-acyl-1,7,7-trimethylbicyclo(2.2.1)hept-2-ylamines, as in the reaction with aceto- and benzonitriles, due to 2,6-hydride displacement accompanied by Wagner-Meerwein rearrangement. The structures of these amides were demonstrated by PMR spectroscopy.

  14. The Synthesis of Mono- and Sesqui-terpene Insect Pheromones

    Science.gov (United States)

    Moiseenkov, Aiexsander M.; Lebedeva, K. V.; Cheskis, Boris A.

    1984-10-01

    The review presents a critical discussion of the available information on the syntheses of isoprenoid insect pheromones. Attention is concentrated on modern methods for the construction of molecules with a specified carbon skeleton. The efficiencies of the synthetic schemes are compared on the basis of the number of stages and the overall yields of the desired products. A systematic account of the data is given in terms of the types of pheromones. The bibliography includes 179 references.

  15. Terpenes in lamb fat to trace animal grass feeding

    Directory of Open Access Journals (Sweden)

    A. Priolo

    2011-03-01

    Full Text Available Several efforts have been done in the last years to trace grass feeding directly in the herbivore products and different methods, based on carotenoid pigments (Priolo et al., 2002; Prache et al., 2003 have been proposed. Some volatile compounds, such as 2,3-octanedione or 3-methylindole (skatole have been indicated as excellent indicators of pasture diets (Young et al., 1997...

  16. Simultaneous Determination of Flavonols and Terpene Lactones in ...

    African Journals Online (AJOL)

    Methods: A randomized 4*4 crossover study with eight beagle dogs was carried out. Plasma samples were collected ... Keywords: Ginkgo biloba, Beagle dog plasma, Kaempferol, Quercetin, Isorhamnetin, Ginkgolides A,. Ginkgolides B, Ginkgolides C, ... Food and Drug Administration of the United. States, botanical drug ...

  17. Simultaneous Determination of Flavonols and Terpene Lactones in ...

    African Journals Online (AJOL)

    Purpose: To develop an ultra-performance liquid chromatography-tandem mass spectrometry (UPLCMS/MS) method for the simultaneous determination of 7 major components of Ginkgo leaf (kaempferol, quercetin, isorhamnetin, ginkgolides A, ginkgolides B, ginkgolides C and bilobalide) in dog plasma. Methods: Beagle ...

  18. Terpenes From the Root of Salvia hypoleuca Benth

    Science.gov (United States)

    2012-01-01

    Background The genus Salvia, with nearly 900 species, is one of the largest members of Lamiaceae family. In the Flora of Iran, the genus Salvia is represented by 58 species of which 17 species are endemic. Salvia hypoleuca Benth., is one of these species growing wildly in northern and central parts of Iran. Salvia species are well known in folk medicine and widely used for therapeutic purposes. Literature review shows that there is no report on phytochemical investigation of the roots of S. hypoleuca. Results The separation and purification process were carried out using various chromatographic methods. Structural elucidation was on the basis of NMR and MS data, in comparison with those reported in the literature. The isolated compounds were identified as sitosteryl oleate (1), β-sitosterol (2), stigmasterol (3), manool (4), 7α-acetoxy royleanone (5), ursolic acid (6), oleanolic acid (7), 3-epicorosolic acid (8), 3-epimaslinic acid (9) and coleonolic acid (10). Conclusions In the present study, three sterols, two diterpenes and five triterpenes were isolated from the ethyl acetate extract of the roots of S. hypoleuca. As the chemotaxonomic significance, some of the isolated compounds (1–7, 9) have not been previously reported from the species S. hypoleuca, while the triterpenes 8 and 10 are now documented from Salvia genus for the first time. PMID:23351362

  19. Microwave-assisted extraction kinetics of terpenes from caraway seeds

    NARCIS (Netherlands)

    Chemat, S.; Ait-Amar, H.; Lagha, A.; Esveld, D.C.

    2005-01-01

    The process conditions during the extraction of carvone and limonene from caraway seed (Carum carvi L.) with microwave-assisted extraction have been studied with respect to microwave power, radiation dose and extraction time in order to obtain the secondary metabolites selectively. Using classical

  20. New Terpenes from the Egyptian Soft Coral Sarcophyton ehrenbergi

    Directory of Open Access Journals (Sweden)

    Ahmed Elkhateeb

    2014-04-01

    Full Text Available Chemical investigations of the Egyptian soft coral Sarcophyton ehrenbergi have led to the isolation of compounds 1–3 as well as the previously reported marine cembranoid diterpene sarcophine (4. Structures were elucidated by comprehensive NMR and HRMS experimentation. Isolated compounds were in vitro assayed for cytotoxic activity against human hepatocarcinoma (HepG2 and breast adenocarcinoma (MCF-7 cell lines.

  1. Simultaneous Determination of Flavonols and Terpene Lactones in ...

    African Journals Online (AJOL)

    Purpose: To develop an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-. MS/MS) method for the simultaneous determination of 7 major components of Ginkgo leaf (kaempferol, quercetin, isorhamnetin, ginkgolides A, ginkgolides B, ginkgolides C and bilobalide) in dog plasma. Methods: Beagle ...

  2. Chirality-sensitive microwave spectroscopy - application to terpene molecules

    Science.gov (United States)

    Schnell, Melanie

    Most molecules of biochemical relevance are chiral. Even though the physical properties of two enantiomers are nearly identical, they might exhibit completely different biochemical effects, such as different odor in the case of carvone. In nature and as products of chemical syntheses, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) is still one of the challenging and very important tasks of analytical chemistry. We recently experimentally demonstrated a new method of differentiating enantiomeric pairs of chiral molecules in the gas phase. It is based on broadband rotational spectroscopy and is a three-wave mixing process that involves a closed cycle of three rotational transitions. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the product of the transition dipole moments. Furthermore, because the signal amplitude is proportional to the ee, this technique allows not only for determining which enantiomer is in excess, but also by how much. A unique advantage of our technique is that it can also be applied to mixtures of chiral molecules, even when the molecules are very similar. In my lecture, I will introduce the technique and give an update on the recent developments.

  3. Transcription factors regulating terpene synthases in tomato trichomes

    NARCIS (Netherlands)

    Spyropoulou, E.

    2012-01-01

    Net zoals veel andere planten produceren en bewaren tomaten secundaire metabolieten in klierhaartjes. Klierhaartjes bevinden zich op het vegetatieve weefsel van planten en zijn van epidermale afkomst. Een groep van metabolieten geproduceerd door deze gespecialiseerde organen zijn vluchtige terpenen,

  4. [Regulation of terpene metabolism]. [Mentha piperita, Mentha spicata

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-01-01

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  5. Simultaneous Determination of Flavonols and Terpene Lactones in ...

    African Journals Online (AJOL)

    Keywords: Ultra-performance liquid chromatography-tandem mass spectrometry, Ginkgo biloba,. Beagle dog plasma, Kaempferol, Quercetin, Isorhamnetin, Ginkgolides A, Ginkgolides B, Ginkgolides C,. Bilobalide. Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,.

  6. Ptaquiloside, the major toxin of bracken, and related terpene glycosides: chemistry, biology and ecology.

    Science.gov (United States)

    Yamada, Kiyoyuki; Ojika, Makoto; Kigoshi, Hideo

    2007-08-01

    Bracken (Pteridium spp.) is a ubiquitous fern which has been described as one of the five most common plants on the earth. The toxic effects of bracken on livestock have been recorded since the end of the 19th century, and extensive and intensive investigations for the bracken toxin(s) led to the isolation of ptaquiloside in 1983 as the major, but unstable, toxin of bracken. This review concentrates mainly on the results of the scientific investigations into ptaquiloside, and cites 133 references.

  7. [Regulation of terpene metabolism]. Progress report, [March 15, 1993--March 14, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1994-03-01

    Many lines of evidence suggest that the cyclases ((+){minus}bornyl pyrophosphate cyclases and ({minus}){minus}limonene cyclases) catalyze the rate-limiting steps of monoterpene biosynthesis in sage and mint, respectively. Similar evidence indicates that camphor hydroxylase, and the reductases that control the disposition of methone, are the critical steps of monoterpene catabolism in these systems. Related studies, based on in vitro assay of enzyme activities, have suggested that the accumulation and the compartmentation of these processes. Further studies directed toward localizing the pathways and determining the relevant protein and transcript levels require pure enzymes for antibody preparation and amino determining the relevant protein and transcript levels require pure enzymes for antibody preparation and amino acid sequence determination.

  8. Modulation of LPS induced inflammatory response by Lawsonyl monocyclic terpene from the marine derived Streptomyces sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Ali, A.; Khajuria, A.; Sidiq, T.; AshokKumar; Thakur, N.L.; Naik, D.; Vishwakarma, R.A.

    , myocardical ischemia, local or systemic inflammatory disorders, diabetes and other diseases. Therefore, inhibition of NO is also potentially beneficial. The inhibition of IL-1β, IL-6, TNF-α and NO production by Lawsonone (1) suggests the involvement...

  9. Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa.

    Science.gov (United States)

    Kawoosa, Tabasum; Singh, Harsharan; Kumar, Amit; Sharma, Sunil Kumar; Devi, Kiran; Dutt, Som; Vats, Surender Kumar; Sharma, Madhu; Ahuja, Paramvir Singh; Kumar, Sanjay

    2010-08-01

    Picrorhiza (Picrorhiza kurrooa) is an endangered medicinal plant with well-known hepatoprotective activity attributed to monoterpenoid picrosides. The present article details on regulatory genes of terpenoid metabolism, 3-hydroxy-3-methylglutaryl coenzyme A reductase (pkhmgr) and 1-deoxy-D-xylulose-5-phosphate synthase (pkdxs) from picrorhiza. Since no molecular information was available, these genes were cloned to full-length by degenerate primers and rapid amplification of cDNA ends, followed by cloning of the upstream sequences that showed the presence of core sequences for light and temperature responsiveness. Electrophoretic mobility shift assay confirmed binding of protein to these motifs. Expression of pkhmgr and pkdxs was up-regulated at 15 degrees C as compared to at 25 degrees C as well as under light as compared to dark conditions. Picrosides content exhibited the trend similar to gene expression. To rule out the possible limitation of carbon pool under dark condition, plantlets of picrorhiza were raised in vitro in Murashige and Skoog medium supplemented with 3% sucrose. Results showed similar up-regulation of both the genes and the higher picrosides content in in vitro raised plantlets in the presence of light. Data suggested the important roles played by light and temperature in regulating pkhmgr and pkdxs, and the picrosides level in picrorhiza.

  10. Alkanes and terpenes in wood and leaves of Pinus jeffreyi and P. sabiniana

    Science.gov (United States)

    Robert P. Adams; Jessica W. Wright

    2012-01-01

    The wood oils of Pinus jeffreyi and P. sabiniana contain considerable amounts of heptane (76.6%, 92%), on a monoterpene basis. However, when entire wood extractables is considered, the amounts drop considerably (3.4%, 36.8%) with the major portion of the wood oils being diterpene acids. The leaf oil of P. jeffreyi...

  11. Isolation and Structure Elucidation of the Terpene "[beta]"-Thujone from Cedar Leaf Oil

    Science.gov (United States)

    French, Larry G.

    2011-01-01

    Western red cedar leaf affords an essential oil characterized by high thujone content. Students in an advanced organic chemistry lab course isolate a single thujone diastereoisomer from commercially available cedar leaf oil. Treatment of crude oil, containing roughly 70% thujone, predominately as [alpha]-thujone (6.5:1), with ethanolic sodium…

  12. Development of antibacterial conjugates using sulfamethoxazole with monocyclic terpenes: A systematic medicinal chemistry based computational approach.

    Science.gov (United States)

    Swain, Shasank S; Paidesetty, Sudhir K; Padhy, Rabindra N

    2017-03-01

    To develop 6 conjugate agents of the moribund antibiotic sulfamethoxazole (SMZ) joined to 6 individual monoterpenes, followed by protocols of medicinal chemistry as potent antibacterials, against multidrug resistant (MDR) human gruesome pathogenic bacteria. Antibacterial activities of the proposed conjugates were ascertained by the 'prediction of activity spectra of substances' (PASS) program. Drug-likeness parameters and toxicity profiles of conjugates were standardized with the Lipinski rule of five, using cheminformatic tools, Molsoft, molinspiration, OSIRIS and ProTox. Antibacterial activities of individual chemicals and conjugates were examined by targeting the bacterial folic acid biosynthesis enzyme, dihydropteroate synthases (DHPSs) of bacteria, Bacillus anthracis, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae and Mycobacterium tuberculosis, with 3D structures of DHPSs from protein data bank. According to the PASS program, biological spectral values of conjugate-2, conjugate-5 and conjugate-6 were ascertained effective with 'probably active' or 'Pa' value > 0.5, for anti-infective and antituberculosic activities. Using molecular docking against 5 cited bacterial DHPSs, effective docking scores of 6 monoterpenes in the specified decreasing order (kcal/mol): -9.72 (eugenol against B. anthracis), -9.61 (eugenol against S. pneumoniae), -9. 42 (safrol, against B. anthracis), -9.39 (thymol, against M. tuberculosis), -9.34 (myristicin, against S. pneumoniae) and -9.29 (thymol, against B. anthracis); whereas the lowest docking score of SMZ was -8.46kcal/mol against S. aureus DHPS. Similarly, effective docking scores of conjugates were as specified (kcal/mol.): -10.80 (conjugate-4 consisting SMZ+safrol, against M. tuberculosis), -10.78 (conjugate-5 consisting SMZ+thymol, against M. tuberculosis), -10.60 (conjugate-5 against B. anthracis), -10.26 (conjugate-2 consisting SMZ+ eugenol, against M. tuberculosis), -10.25 (conjugate-5, against S. aureus) and -10.19 (conjugate-2 against S. pneumoniae. Conjugates-2 and -5 were the most effective antibacterials based on Lipinski rule of five with lethal doses 3471 and 3500mg/kg, respectively and toxicity class levels. Conjugate-2 and conjugate-5 were more effective than individual monoterpenes and SMZ, against pathogenic bacteria. Synthesis, characterization and in vitro antibacterial study with acute toxicity testing for Wister rat model of the conjugate-5 could land at success in the recorded computational trial and it could be promoted for synthesis in the control of MDR bacteria. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Xanthophyllomyces dendrorhous as a platform organism for the production of terpenes

    NARCIS (Netherlands)

    Melillo, Elena

    2013-01-01

    Xanthophyllomyces dendrorhous is een gist die industrieel wordt gebruikt om carotenoïden, die antioxiderende eigenschappen bezitten, te produceren. Wij hebben onderzocht of de gist X. dendrorhous ook gebruikt kan worden voor de productie van andere stoffen, die chemisch gerelateerd zijn aan

  14. Halogenated Terpenes and a C15-Acetogenin from the Marine Red Alga Laurencia saitoi

    Directory of Open Access Journals (Sweden)

    Xiao-Ming Li

    2008-11-01

    Full Text Available Seven parguerane diterpenes: 15-bromo-2,7,19-triacetoxyparguer-9(11-en-16-ol (1, 15-bromo-2,7,16,19-tetraacetoxyparguer-9(11-ene (2, 15-bromo-2,19-diacetoxyparguer-9(11-en-7,16-diol (3, 15-bromo-2,16,19-triacetoxyparguer-9(11-en-7-ol (4, 15-bromo-2,16-diacetoxyparguer-9(11-en-7-ol (5, 15-bromoparguer-9(11-en-16-ol (6, 15-bromoparguer-7-en-16-ol (7, two polyether triterpenes: thyrsiferol (8 and thyrsiferyl 23-acetate (9, and one C15-acetogenin, neolaurallene (10, were isolated from a sample of marine red alga Laurencia saitoi collected off the coast of Yantai. Their structures were established by detailed NMR spectroscopic analysis and comparison with literature data.

  15. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada

    National Research Council Canada - National Science Library

    Papiez, Maria R; Potosnak, Mark J; Goliff, Wendy S; Guenther, Alex B; Matsunaga, Sou N; Stockwell, William R

    2009-01-01

    .... Maximum plant-level basal emission rates were moderate: 18.1 [mu]gC gdw.sup.-1 h.sup.-1 (Washingtonia spp., palms) for isoprene and 9.56 [mu]gC gdw.sup.-1 h.sup.-1 (Fraxinus velutina, Arizona ash...

  17. Rhenium-Catalyzed Dehydration of Nonbenzylic and Terpene Alcohols to Olefins

    NARCIS (Netherlands)

    Korstanje, T.J.|info:eu-repo/dai/nl/314841008; de Waard, E.F.; Jastrzebski, J.T.B.H.|info:eu-repo/dai/nl/086369326; Klein Gebbink, R.J.M.|info:eu-repo/dai/nl/166032646

    2012-01-01

    With the increasing importance of research into biomass as a feedstock for the chemical industry, new methods to reduce the oxygen content of biomass are required. Here, we present our progress in the field of the dehydration reaction, using various rhenium-based catalysts, with rhenium(VII) oxide

  18. Interaction of human chymase with ginkgolides, terpene trilactones of Ginkgo biloba investigated by molecular docking simulations.

    Science.gov (United States)

    Dubey, Amit; Marabotti, Anna; Ramteke, Pramod W; Facchiano, Angelo

    2016-04-29

    The search for natural chymase inhibitors has a good potential to provide a novel therapeutic approach against the cardiovascular diseases and other heart ailments. We selected from literature 20 promising Ginkgo biloba compounds, and tested them for their potential ability to bind chymase enzyme using docking and a deep analysis of surface pocket features. Docking results indicated that the compounds may interact with the active site of human chymase, with favorable distinct interactions with important residues Lys40, His57, Lys192, Phe191, Val146, Ser218, Gly216, and Ser195. In particular, proanthocyanidin is the one with the best-predicted binding energy, with seven hydrogen bonds. Interestingly, all active G. biloba compounds have formed the hydrogen bond interactions with the positively charged Lys192 residue at the active site, involved in the mechanism of pH enhancement for the cleavage of angiotensin I site. Ginkgolic acid and proanthocyanidin have better predicted binding energy towards chymase than other serine proteases, i.e kallikrein, tryptase and elastase, suggesting specificity for chymase inhibition. Our study suggests these G. biloba compounds are a promising starting point for developing chymase inhibitors for the potential development of future drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Isolation and evaluation of antiglycation potential of polyalthic acid (furano-terpene from Daniella oliveri

    Directory of Open Access Journals (Sweden)

    Olubunmi Atolani

    2014-12-01

    Full Text Available A furano-diterpene (polyalthic acid was isolated as a major stable compound for the first time from the oleoresin of the Daniella oliveri of the family Caesalpiniacea through column chromatography fractionation. Polyalthic acid was characterized using data obtained from EIMS, HREIMS, ESI-MS, MALDI-MS as well as 1D and 2D NMR and it was evaluated for its potential to inhibit the formation of advanced glycation end-products (AGEs using a standard in vitro antiglycation procedure. Polyalthic acid indicated a negative antiglycation potential compared to standard inhibitor that has 85% inhibition, which is an indication that polyalthic acid may not contribute to the antiglycation activity of the plant as acclaimed in folkloric medicine. The negative antiglycation observed could indicate that the polyalthic acid could trigger glycation, thereby subjecting users to various degrees of complications. The bioactivity evaluation on molinspiration evaluator indicated that polyalthic acid could be a potential drug candidate. The biological and chemical insights gained on polyalthic acid provide a good basis for future research. Keywords: Daniella oliveria, Polyalthic acid, Furano-diterpene, Antiglycation, Matrix assisted laser desorption/ionization (MALDI

  20. Fungal endophytes – the hidden inducers of volatile terpene biosynthesis in tomato plants

    DEFF Research Database (Denmark)

    Ntana, Fani; Jensen, Birgit; Jørgensen, Hans Jørgen Lyngs

    Endophytes comprise a polyphyletic and diverse group of microorganisms that colonize plant tissues and do not cause any immediate infection symptoms. Revealing the mechanisms of plant-endophyte mutualistic interactions has attracted considerable attention lately, mainly due to their multiple...... benefits on plant growth and fitness, but also due to the need for alternative and more sustainable agricultural solutions. Serendipita indica (syn. Piriformospora indica) is an endophytic fungus with several promising agricultural and biotechnological applications. The fungus, originally isolated from...

  1. Terpenes isolated of Coussarea platyphylla Muell. Arg. (Rubiaceae); Terpenos isolados de Coussarea platyphylla Muell. Arg. (Rubiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Francieli Casassa Vieira de; Marques, Fabio Goncalves; Silva, Cleuza Conceicao da; Santin, Silvana Maria de Oliveira [Universidade Estadual de Maringa, PR (Brazil). Dept. de Quimica], e-mail: smoliveira@uem.br; Nakamura, Celso Vataru [Universidade Estadual de Maringa, PR (Brazil). Dept. de Microbiologia; Zamuner, Maria Lucilia Motinha [Universidade Estadual de Maringa, PR (Brazil). Dept. de Farmacia e Farmacologia; Souza, Maria Conceicao de [Universidade Estadual de Maringa, PR (Brazil). Dept. de Biologia

    2009-07-01

    The phytochemical investigation of Coussarea platyphylla led to the isolation of triterpenes betulonic and betulinic acid, monoterpenes monotropein and monotropein salt, the diterpene trans-phytol and steroids. The structures of the isolated compounds were assigned on the basis of spectroscopic data, including two-dimensional NMR methods. The antiproliferative properties against human cancer cell lines and molluscicidal activity against Biomphalaria glabrata of the crude methanolic extract and of its fractions were investigated. (author)

  2. Distribution of the carcinogenic terpene ptaquiloside in Bracken fronds, rhizomes (Pteridium aquilinum) and litter in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lars Holm; Jensen, Lasse Sander; Hansen, Hans Christian Bruun

    2003-01-01

    The distribution of ptaquiloside (PTA) was studied in four Danish bracken populations in order to evaluate the transfer of PTA from ferns to soil. Populations showed statistically significant differences in PTAcontents of fronds and rhizomes despite large in-site variations. The highest concentra...

  3. TERPENOS COM APLICAÇÃO CARDIOVASCULAR TERPENE WITH CARDIOVASCULAR APLICATION

    Directory of Open Access Journals (Sweden)

    Américo Azevedo de Souza

    2015-06-01

    Full Text Available O uso de plantas medicinais como alternativa terapêutica é tão antigo quanto a própria existência humana. Desta maneira, a procura por moléculas com efetividade para aplicações cardiovasculares é uma alternativa para as pesquisas farmacológicas. Nesta gama de moléculas estão inseridos os terpenos, constituintes de óleos essenciais que estão contidos em todos os órgãos das plantas e que apresentam diversas aplicações farmacológicas, inclusive propriedades cardiovasculares. Assim, o objetivo desse trabalho foi realizar uma triagem nos depósitos de patentes sobre a aplicação cardiovascular de terpenos até o momento. Para isso, a prospecção foi realizada no Escritório Europeu de Patentes, na Organização Mundial de Propriedade Intelectual, no Escritório Americano de Marcas e Patentes e no Instituto Nacional de Propriedade Industrial do Brasil. O maior número de pedidos de patentes encontrados foi no Escritório Americano de Marcas e Patentes. Os maiores depositantes foram Estados Unidos e China. Os maiores requerentes de propriedade intelectual foram empresas e pessoas físicas. O Brasil não apresentou pedido de registro de patente. A classificação internacional que mais ocorreu nessa prospecção foi a A61K.

  4. Terpenes and fatty acids from Dipteryx lacunifera Ducke; Terpenos e acidos graxos de Dipteryx lacunifera Ducke

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Junior, Gerardo Magela; Silva, Hilris Rocha e; Bittencourt, Thais Chaves; Chaves, Mariana H. [Universidade Federal do Piaui (UFPI), Teresina (Brazil). Dept. de Quimica]. E-mail: mariana@ufpi.br; Simone, Carlos Alberto de [Universidade Federal do Alagoas (UFAL), Maceio, AL (Brazil). Inst. de Quimica e Biotecnologia

    2007-07-01

    This paper describes the isolation of the furanocassane-type diterpene, named vinhaticoic acid, along with b-farnesene and spatulenol from fruit shells of D. lacunifera. Structural determinations were accomplished by chemical derivatization and spectral analysis, including 1D and 2D NMR and X-ray crystallography. The fatty portion was extracted from the fruit kernels, transesterfied and analysed by HRGC/MS. Oleic acid (75.8 +- 4.3%) was the major component. Essential oil extracted from the fruit shells of D. lacunifera was analysed by HRGC/MS and nine sesquiterpenes were identified; beta-farnesene (48.6%) and spatulenol (21.61%) were the major constituents. (author)

  5. Probing the Mechanism of 1,4-Conjugate Elimination Reactions Catalyzed by Terpene Synthases

    OpenAIRE

    Faraldos, Juan A.; Gonzalez, Veronica; Li, Amang; Yu, Fanglei; Köksal, Mustafa; Christianson, David W.; Allemann, Rudolf K.

    2012-01-01

    The reaction mechanisms of (E)-β-farnesene synthase (EBFS) and isoprene synthase (ISPS), enzymes that catalyze a formal regioespecific 1,4-conjugate elimination of hydrogen-diphosphate from (E, E)-farnesyl and dimethylallyl diphosphate (FDP and DMADP) to generate the semiochemicals (E)-β-farnesene and isoprene, respectively, were probed with substrate analogs and kinetic measurements. The results support stepwise reaction mechanisms through analogous enzyme-bound allylic cationic intermediate...

  6. Probing the mechanism of 1,4-conjugate elimination reactions catalyzed by terpene synthases.

    Science.gov (United States)

    Faraldos, Juan A; Gonzalez, Veronica; Li, Amang; Yu, Fanglei; Köksal, Mustafa; Christianson, David W; Allemann, Rudolf K

    2012-12-26

    The reaction mechanisms of (E)-β-farnesene synthase (EBFS) and isoprene synthase (ISPS), enzymes that catalyze a formal regiospecific 1,4-conjugate elimination of hydrogen diphosphate from (E,E)-farnesyl and dimethylallyl diphosphate (FDP and DMADP) to generate the semiochemicals (E)-β-farnesene and isoprene, respectively, were probed with substrate analogs and kinetic measurements. The results support stepwise reaction mechanisms through analogous enzyme-bound allylic cationic intermediates. For EBFS, we demonstrate that the elimination reaction can proceed via the enzyme-bound intermediate trans-nerolidyl diphosphate, while for ISPS the intermediacy of 2-methylbut-3-enyl 2-diphosphate can be inferred from the product outcome when deuterated DMADPs are used as substrates. Possible implications derived from the mechanistic details of the EBFS-catalyzed reaction for the evolution of sesquiterpene synthases are discussed.

  7. Enzymatic Addition of Alcohols to Terpenes by Squalene Hopene Cyclase Variants.

    Science.gov (United States)

    Kühnel, Lisa C; Nestl, Bettina M; Hauer, Bernhard

    2017-11-16

    Squalene-hopene cyclases (SHCs) catalyze the polycyclization of squalene into a mixture of hopene and hopanol. Recently, amino-acid residues lining the catalytic cavity of the SHC from Alicyclobacillus acidocaldarius were replaced by small and large hydrophobic amino acids. The alteration of leucine 607 to phenylalanine resulted in increased enzymatic activity towards the formation of an intermolecular farnesyl-farnesyl ether product from farnesol. Furthermore, the addition of small-chain alcohols acting as nucleophiles led to the formation of non-natural ether-linked terpenoids and, thus, to significant alteration of the product pattern relative to that obtained with the wild type. It is proposed that the mutation of leucine at position 607 may facilitate premature quenching of the intermediate by small alcohol nucleophiles. This mutagenesis-based study opens the field for further intermolecular bond-forming reactions and the generation of non-natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Terpenes from bogwood of Cryptomeria japonica D. Don and characterization of its ash

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Hiroe; Yatagai, Mitsuyoshi [University of Tokyo (Japan). Graduate School of Agricultural and Life Sciences

    2006-07-15

    The essential oils from a bogwood trunk of sugi (Cryptomeria japonica D. Don) from Sanbe-cho, Shimane, Japan, preserved for c. 3500-3800 years in volcanic ash (S-bogwood), were analyzed using gas chromatography-mass spectrometry (GC/MS). Eight sesquiterpenes and four diterpenes were identified. The main components were simonellite (19.2%), cis-calamenene (11.6%), and a-phyllocladane (8.8%). These results were compared with previous results for oils from a fresh stump of C. japonica, from Muikaichi-cho, Shimane, Japan (fresh wood) and for oils from a stump of another sugi bogwood preserved for c. 3000 years in sediment of a muddy field in Abu-cho, Yamaguchi, Japan (Y-bogwood). Simonellite, a-phyllocladane, selinane (4.3%), and eudalene (2.7%) were identified for the first time in bogwood trunk oil. Ash generated by oxidation of each of the two bogwood samples and fresh wood sample at 700{sup o}C was analyzed using scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDXA). The major elements were S and Ca in S-bogwood ash, Fe and Ca in Y-bogwood ash, and K and Ca in the fresh wood ash, respectively. Sulfur in the S-bogwood ash is thought to have come from volcanic ash. The results suggest that S-bogwood was influenced directly by volcanic ash and the degree of terpenoid alteration was more drastic than that of Y-bogwood. (author)

  9. Flavones, lignans and terpene from Piper umbellata (Piperaceae); Flavonas, lignanas e terpeno de Piper umbellata (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Baldoqui, Debora Cristina; Bolzani, Vanderlan da S.; Furlan, Maysa [UNESP, Araraquara, SP (Brazil). Inst. de Quimica], e-mail: maysaf@iq.unesp.br; Kato, Massuo J. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Marques, Marcia O.M. [Instituto Agronomico de Campinas, SP (Brazil)

    2009-07-01

    The phytochemical investigation of Piper umbellata leaves yielded nine compounds including one terpenoid glucoside, five flavones (vitexin 2{sup -}O-{beta}-glucopyranoside, apigenin 8-C-{beta}-D-glucopyranoside, orientin 8-C-{beta}-D-glucopyranoside,5-hydroxy-7,3',4'-trimethoxy-flavone and velutin), two lignans (sesamin and dihydrocubebin) and 4-nerolidylcathecol. Excepting 4-nerolidylcathecol, all compounds have not been described from this species yet (author)

  10. The FEMA GRAS assessment of aliphatic and aromatic terpene hydrocarbons used as flavor ingredients

    NARCIS (Netherlands)

    Adams, T.B.; Lucas Gavin, C.; McGowen, M.M.; Waddell, W.J.; Cohen, S.M.; Feron, V.J.; Marnett, L.J.; Munro, I.C.; Porthogese, P.S.; Rietjens, I.; Smith, R.L.

    2011-01-01

    This publication is the thirteenth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions

  11. In vivo biosynthesis of terpene nucleosides provides unique chemical markers of Mycobacterium tuberculosis infection

    NARCIS (Netherlands)

    Young, David C; Layre, Emilie; Pan, Shih-Jung; Tapley, Asa; Adamson, John; Seshadri, Chetan; Wu, Zhongtao; Buter, Jeffrey; Minnaard, Adriaan J; Coscolla, Mireia; Gagneux, Sebastien; Copin, Richard; Ernst, Joel D; Bishai, William R; Snider, Barry B; Moody, D Branch

    2015-01-01

    Although small molecules shed from pathogens are widely used to diagnose infection, such tests have not been widely implemented for tuberculosis. Here we show that the recently identified compound, 1-tuberculosinyladenosine (1-TbAd), accumulates to comprise >1% of all Mycobacterium tuberculosis

  12. Flavonas, lignanas e terpeno de Piper umbellata (Piperaceae Flavones, lignans and terpene from Piper umbellata (Piperaceae

    Directory of Open Access Journals (Sweden)

    Debora Cristina Baldoqui

    2009-01-01

    Full Text Available The phytochemical investigation of Piper umbellata leaves yielded nine compounds including one terpenoid glucoside, five flavones (vitexin 2"-O-β-glucopyranoside, apigenin 8-C-β-D-glucopyranoside,orientin 8-C-β-D-glucopyranoside,5-hydroxy-7,3',4'-trimethoxy-flavone and velutin, two lignans (sesamin e dihydrocubebin and 4-nerolidylcathecol. Excepting 4-nerolidylcathecol, all compounds have not been described from this species yet.

  13. Known and novel terpenes from Buddleja globosa displaying selective antifungal activity against dermatophytes.

    Science.gov (United States)

    Mensah, A Y; Houghton, P J; Bloomfield, S; Vlietinck, A; Vanden Berghe, D

    2000-09-01

    Lipophilic extracts of the stembark of Buddleja globosa were found to have antifungal activity at 125 microg/mL against three dermatophytic fungal species but had no activity at 1000 microg/mL against four other fungal species or two yeast species. Bioassay-guided fractionation of Si gel column eluates using the sensitive fungal species resulted in active fractions from which were isolated five compounds that were characterized by spectroscopic methods as one novel and four known compounds. The known compounds were the diterpene buddlejone (1), the bisditerpene maytenone, and the two sesquiterpenes buddledin A and buddledin B, while the novel compound was characterized as the diterpene deoxybuddlejone (2). The minimum inhibitory concentration of all the compounds was determined against all the microorganisms under test, and buddledins A and B were shown to exhibit the greatest antifungal activity, with values of 43 microM and 51 microM, respectively, against the sensitive fungi Trichophyton rubrum, Tricophyton interdigitale, and Epidermophyton floccosum.

  14. [Regulation of terpene metabolism]. Annual progress report, March 15, 1988--March 14, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-12-31

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  15. Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation.

    Directory of Open Access Journals (Sweden)

    Elena Butturini

    Full Text Available The main purpose of the present study is to envisage the molecular mechanism of inhibitory action of dehydrocostuslactone (DCE and costunolide (CS, two naturally occurring sesquiterpene lactones, towards the activation of signal transducer and activator of transcription 3 (STAT3. We report that, in human THP-1 cell line, they inhibit IL-6-elicited tyrosine phosphorylation of STAT3 and its DNA binding activity with EC(50 of 10 µM with concomitant down-regulation of the phosphorylation of the tyrosine Janus kinases JAK1, JAK2 and Tyk2. Furthermore, these compounds that contain an α-β-unsaturated carbonyl moiety and function as potent Michael reaction acceptor, induce a rapid drop in intracellular glutathione (GSH concentration by direct interaction with it, thereby triggering S-glutathionylation of STAT3. Dehydrocostunolide (HCS, the reduced form of CS lacking only the α-β-unsaturated carbonyl group, fails to exert any inhibitory action. Finally, the glutathione ethylene ester (GEE, the cell permeable GSH form, reverts the inhibitory action of DCE and CS on STAT3 tyrosine phosphorylation. We conclude that these two sesquiterpene lactones are able to induce redox-dependent post-translational modification of cysteine residues of STAT3 protein in order to regulate its function.

  16. Copaifera duckei Oleoresin and Its Main Nonvolatile Terpenes: In Vitro Schistosomicidal Properties.

    Science.gov (United States)

    Borges, Carly H G; Cruz, Michele G; Carneiro, Luiza J; da Silva, Jonas J M; Bastos, Jairo K; Tavares, Denise C; de Oliveira, Pollyanna F; Rodrigues, Vanderlei; Veneziani, Rodrigo C S; Parreira, Renato L T; Caramori, Giovanni F; Nagurniak, Gláucio R; Magalhães, Lizandra G; Ambrósio, Sérgio R

    2016-10-01

    In this article, the in vitro schistosomicidal effects of three Brazilian Copaifera oleoresins (C. duckei, C. langsdorffii, and C. reticulata) are reported. From these botanical sources, the oleoresin of C. duckei (OCd) demonstrated to be the most promising, displaying LC50 values of 75.8, 50.6, and 47.2 μg/ml at 24, 48, and 72 h of incubation, respectively, against adult worms of Schistosoma mansoni, with a selectivity index of 10.26. Therefore, the major compounds from OCd were isolated, and the diterpene, (-)-polyalthic acid (PA), showed to be active (LC50 values of 41.7, 36.2, and 33.4 μg/ml, respectively, at 24, 48, and 72 h of incubation). Moreover, OCd and PA affected the production and development of eggs, and OCd modified the functionality of the tegument of S. mansoni. Possible synergistic and/or additive effects of this balsam were also verified when a mixture of the two of its main compounds (PA and ent-labd-8(17)-en-15,18-dioic acid) in the specific proportion of 3:1 (w/w) was tested. The obtained results indicate that PA should be considered for further investigations against S. mansoni, such as, synergistic (combination with praziquantel (PZQ)) and in vivo studies. It also shows that diterpenes are an important class of natural compounds for the investigation of agents capable of fighting the parasite responsible for human schistosomiasis. © 2016 Wiley-VHCA AG, Zürich.

  17. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion

    Energy Technology Data Exchange (ETDEWEB)

    Himejima, Masaki; Hobson, K.R.; Otsuka, Toshikazu; Wood, D.L.; Kubo, Isao (Univ. of California, Berkeley (United States))

    1992-10-01

    The oleoresin of the ponderosa pine, Pinus ponderosa (Pinaceae) exhibited broad antimicrobial activity. In order to identify the active compounds, the oleoresin was steam distilled to give a distillate and residue. The distillate contained mainly monoterpenes and some sesquiterpenes, while the residue consisted chiefly of four structurally related diterpene acids. An antimicrobial assay with the pure compounds indicated that the monoterpenes were active primarily against fungi, but there was also some activity against gram-positive bacteria. The diterpene acids, in contrast, only exhibited activity against gram-positive bacteria. Although not all of the identified sesquiterpenes could be tested, longifolene showed activity only against gram-positive bacteria. Therefore, it appears that the oleoresin of P. ponderosa functions as a biochemical defense against microbial invasion.

  18. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    OpenAIRE

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on le...

  19. Regulation of terpene metabolism. Final technical report, March 15, 1988--March 14, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1996-12-31

    This research focuses on the following topics: the biosynthesis and catabolism of monoterpenes; the organization of monoterpene metabolism; the developmental regulation of monoterpene metabolism; the flux control of precursor supply; and the integration of monoterpene and higher terpenoid metabolism.

  20. Two Naturally Occurring Terpenes, Dehydrocostuslactone and Costunolide, Decrease Intracellular GSH Content and Inhibit STAT3 Activation

    Science.gov (United States)

    Butturini, Elena; Cavalieri, Elisabetta; Carcereri de Prati, Alessandra; Darra, Elena; Rigo, Antonella; Shoji, Kazuo; Murayama, Norie; Yamazaki, Hiroshi; Watanabe, Yasuo; Suzuki, Hisanori; Mariotto, Sofia

    2011-01-01

    The main purpose of the present study is to envisage the molecular mechanism of inhibitory action ofdehydrocostuslactone (DCE) andcostunolide (CS), two naturally occurring sesquiterpene lactones, towards the activation of signal transducer and activator of transcription 3 (STAT3). We report that, in human THP-1 cell line, they inhibit IL-6-elicited tyrosine phosphorylation of STAT3 and its DNA binding activity with EC50 of 10 µM with concomitantdown-regulation ofthe phosphorylation of the tyrosine Janus kinases JAK1, JAK2 and Tyk2. Furthermore, these compounds that contain an α-β-unsatured carbonyl moiety and function as potent Michael reaction acceptor, induce a rapid drop in intracellular glutathione (GSH) concentration by direct interaction with it, thereby triggering S-glutathionylation of STAT3. Dehydrocostunolide (HCS), the reduced form of CS lacking only the α-β-unsaturated carbonyl group, fails to exert any inhibitory action. Finally, the glutathione ethylene ester (GEE), the cell permeable GSH form, reverts the inhibitory action of DCE and CS on STAT3 tyrosine phosphorylation. We conclude that these two sesquiterpene lactones are able to induce redox-dependent post-translational modification of cysteine residues of STAT3 protein in order to regulate its function. PMID:21625597

  1. Valorization of polystyrene wastes using natural terpenes and high pressure CO2.

    OpenAIRE

    Gutiérrez Muñoz, Cristina

    2016-01-01

    Larger and increasing volumes of plastics are produced yearly due to their low price, versatility and suitability for a large number of applications and uses. Unfortunately, after its use, polymers become a valuable feedstock and they must be recovered in order to prevent the environmental pollution and to preserve natural sources following the mandates of the European policies about wastes management. In fact, during the last decade, some positive trends concerning the recovery and recycling...

  2. Acyl glycosides lignans, coumarins, and terpenes from the stems of Erycibe obtusifolia.

    Science.gov (United States)

    Liu, Zhao-Zhen; Zhan, Zhi-Lai; Liu, Fu; Yang, Ya-Nan; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2013-05-03

    Nine new acyl glycosides, obtusifosides A-I (1-9), and eight known compounds have been isolated from an EtOH extract of the stems of Erycibe obtusifolia. Their structures were elucidated on the basis of a spectroscopic data analysis (NMR, HRESIMS, and CD) and chemical evidence. The hepatoprotective effects of some of the compounds from d-galactosamine-induced cytotoxicity in HL-7702 hepatic cells were evaluated. Compounds 1, 10, 11, 13, 16, and 17 showed significant hepatoprotective activities compared with the positive control bicyclol at concentrations of 1×10(-5)M. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Biosynthesis of the phenolic monoterpenes , thymol and carvacrol , by terpene synthases and cytochrome P450s in oregano and thyme

    DEFF Research Database (Denmark)

    Crocoll, Christoph

    2011-01-01

    Plants are sophisticated light-driven “green” factories able to synthesize an immense number of bio-active natural products (Jensen and Møller, 2010). These natural products are also referred to as secondary products or secondary metabolites since they are not directly essential for the basic pro...

  4. Changes in the essential oil content and terpene composition of rosemary (Rosmarinus officinalis L. by using plant biostimulants

    Directory of Open Access Journals (Sweden)

    Amir FOROUTAN NIA

    2016-04-01

    Full Text Available Plant biostimulants can stimulate the increase of growth, metabolism and the biosynthesis of metabolites in plants. This study investigated the changes of rosemary essential oil and its components composition under use of biostimulants for the possible reduction in use of chemical fertilizers. Treatments included biostimulants based on amino acids in four formulations, Aminolforte, Kadostim, Humiforte, and Fosnutren (each of them at 0.75 and 1.5 L ha-1, and application of N.P.K fertilizer as a control treatment (by applied complete fertilizer at 100 kg per hectar with proportion of 15:8:15 percentage of N:P:K in the fertilizer. Results showed that the essential oil content and its components were significantly affected by biostimulants application. The maximum content of essential oil was obtained at 1.5 L ha-1 Humiforte and both concentrations of Aminolforte. While, the highest content of α-pinene, 1,8-cineole, and camphor as major components of rosemary essential oil were obtained at 1.5 L ha-1 Fosnutren. In addition, the maximum content of linalool, z-pinocamphone, bornyl acetate, and caryophyllene oxide were observed at 1.5 L ha-1 Fosnutren.Although, the highest content of myrcene and verbenone was obtained in the treatment with N.P.K fertilizer, but the maximum contents of β-pinene, camphene, borneol, and α-terpineol were related to the both concentrations of Aminolforte.We can conclude that biostimulants based on amino acids can be an effective alternative in reducing the use of chemical fertilizer and increasing the quantity and quality of rosemary essential oil.

  5. Overexpression of a synthetic insect-plant geranyl pyrophosphate synthase gene in Camelina sativa alters plant growth and terpene biosynthesis.

    Science.gov (United States)

    Xi, Jing; Rossi, Lorenzo; Lin, Xiuli; Xie, De-Yu

    2016-07-01

    A novel plastidial homodimeric insect-plant geranyl pyrophosphate synthase gene is synthesized from three different cDNA origins. Its overexpression in Camelina sativa effectively alters plant development and terpenoid metabolism. Geranyl pyrophosphate synthase (GPPS) converts one isopentenyl pyrophosphate and dimethylallyl pyrophosphate to GPP. Here, we report a synthetic insect-plant GPPS gene and effects of its overexpression on plant growth and terpenoid metabolism of Camelina sativa. We synthesized a 1353-bp cDNA, namely PTP-MpGPPS. This synthetic cDNA was composed of a 1086-bp cDNA fragment encoding a small GPPS isomer of the aphid Myzus persicae (Mp), 240-bp Arabidopsis thaliana cDNA fragment encoding a plastidial transit peptide (PTP), and a 27-bp short cDNA fragment encoding a human influenza hemagglutinin tag peptide. Structural modeling showed that the deduced protein was a homodimeric prenyltransferase. Confocal microscopy analysis demonstrated that the PTP-MpGPPS fused with green florescent protein was localized in the plastids. The synthetic PTP-MpGPPS cDNA driven by 2 × 35S promoters was introduced into Camelina (Camelina sativa) by Agrobacterium-mediated transformation and its overexpression in transgenic plants were demonstrated by western blot. T2 and T3 progeny of transgenic plants developed larger leaves, grew more and longer internodes, and flowered earlier than wild-type plants. Metabolic analysis showed that the levels of beta-amyrin and campesterol were higher in tissues of transgenic plants than in those of wild-type plants. Fast isoprene sensor analysis demonstrated that transgenic Camelina plants emitted significantly less isoprene than wild-type plants. In addition, transcriptional analyses revealed that the expression levels of gibberellic acid and brassinosteroids-responsive genes were higher in transgenic plants than in wild-type plants. Taken together, these data demonstrated that this novel synthetic insect-plant GPPS cDNA was effective to improve growth traits and alter terpenoid metabolism of Camelina.

  6. Colophonium and Compositae mix as markers of fragrance allergy: cross-reactivity between fragrance terpenes, colophonium and compositae plant extracts

    DEFF Research Database (Denmark)

    Paulsen, Evy; Andersen, Klaus Ejner

    2005-01-01

    sensitizer beta-caryophyllene had positive colophonium reactions, and cross-reactivity between essential oils and Compositae was related to the Compositae plant extracts of the Compositae mix and not the pure sesquiterpene lactones of the standard series. The implication is that Compositae mix......The aim of this study was to assess the strength of any association between sensitization to 'new' fragrance compounds and sensitization to Compositae, fragrance mix, Myroxylon pereirae resin and colophonium, respectively. Consecutive eczema patients were tested with a series of essential oils......, colophonium and fragrance mix sensitization. The individual results indicated that simultaneously occurring positive reactions to essential oils, colophonium and Compositae were based on cross-reactivity rather than concomitant sensitization. Thus, all patients with positive reaction to the rare fragrance...

  7. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    Directory of Open Access Journals (Sweden)

    Blake L Joyce

    Full Text Available Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1 to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2 to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass. Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  8. Flavonoids, norisoprenoids and other terpenes from leaves of Tapirira guianensis; Flavonoides, norisoprenoides e outros terpenos das folhas de Tapirira guianensis

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Suzimone de J. [Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil). Dept. de Quimica e Exatas; David, Jorge M.; Silva, Eliezer P. da [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica]. E-mail: jmdavid@ufba.br; David, Juceni P. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Faculdade de Farmacia; Lopes, Lucia M.X. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Guedes, Maria Lenise S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Biologia

    2008-07-01

    From hexane fraction of methanol extract of leaves of Tapirira guianensis (Anacardiaceae) were obtained lupeol, 24-methylenecycloartan-3-ol, phytol, {alpha}-amyrin, {beta}-amyrin, sitosterol, sitostenone, glycosyl sitosterol, as well as sitosterol esterified with palmitic and stearic acids. Phytol, {alpha}-amyrin and {beta}-amyrin esterified with fatty acids were also identified from same extract. The EtOAc extract besides the norisoprenoids (6S,7E,9S)-6,9-dihydroxy-megastigma-4,7-dien-3-one 9-O-{beta}-glucopyranoside and (6S,7E,9R)-6,9-dihydroxy-megastigma-4,7-dien-3-one 9-O-{beta}-glucopyranoside also afforded kaempferol 3-O-rhamnoside, kaempferol 3-O-arabinofuranoside, quercetin 3-O-rhamnoside, and kaempferol. The structural elucidation of isolated compounds were based on UV, IR, MS, {sup 1}H and {sup 13}C NMR data analysis. (author)

  9. On the total synthesis of terpenes containing quaternary stereocenters : Stereoselective synthesis of the taiwaniaquinoids, mastigophorene A, and tuberculosinyl adenosine

    NARCIS (Netherlands)

    Buter, Jeffrey

    2016-01-01

    Dit proefschrift beschrijft de stereoselectieve synthese van natuurstoffen. Allereerst is de synthese van mycoketide beschreven, en de daaropvolgende analyse met NMR-spectroscopie. De analyse heeft bijgedragen aan het opstellen van een voorspelmodel voor natuurproducten die het 1,5-methyl raamwerk

  10. Electron impact ionization technique on the study of terpenes and related species in French Guiana tropical forest

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Paula Regina Corain; Bustillos, Oscar W.V., E-mail: paulinhacorain@usp.br, E-mail: ovega@ipen.br [Instituto de Pesquisa Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Guenther, Alex B.; Turnipseed, Andrew A.; Emmons, Louisa, E-mail: guenther@ucar.edu [Biosphere Atmosphere Interaction Group, Atmosphere Chemistry Division of National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Bonal, Damien; Burban, Benoit; Siebicke, Lukas, E-mail: lukas.siebicke@ecofog.gf [Institut National de la Recherche Agronomique (INRA-UMR EEF), Nancy (France); Serca, Dominique, E-mail: dominique.serca@aero.obs-mip.fr [Universite Paul Sabatier (UPS), Toulouse (France). Laboratoire d' Aerologie

    2013-07-01

    The electron impact ionization is, originally, a mass spectrometry ionization method and still the most widely used of all ionization methods.In this technique, a beam of electrons passes through the gas phase sample. An electron that collides with a neutral analyte molecule can knock off another electron, resulting in a positively charged ion. The fragmentation process dependent sup on many qualities including primary structure, electron energy and ion source temperature. This paper presents a study on the seasonal variation of isoprene and some other significant biogenic volatile organic compounds (BVOC) such as α-pinene, β-pinene, limonene, e-βocimene and longifolene, measured at the Guyaflux Tower located in a wet tropical forest in French Guiana using the Relaxed Eddy Accumulation technique and analyzed by a mass spectrometer coupled to a gas chromatograph, a thermo desorption unit and a flame ionization detector (TD-GC-MS-FID). The results showed that isoprene was by far the biogenic volatile organic compound with the highest concentration and flux, followed by alpha-pinene. Previous limited studies in Amazonia and the Congo suggested that a higher concentration and flux rate of isoprene and alpha-pinene should be expected during the dry season with lower emissions during the wet season, which is in relative agreement with what was observed at this tropical forest site in French Guiana. The exceptions were observed in a long wet period in which the concentration of isoprene and alpha-pinene increased more than it was expected to, for this time of the year. (author)

  11. Comparative toxicity of essential oil and blends of selected terpenes of Ocotea species from Pernambuco, Brazil, against Tetranychus urticae Koch.

    Science.gov (United States)

    Moraes, Marcilio M DE; Camara, Claudio A G DA; Silva, Milena M C DA

    2017-01-01

    Essential oils from the leaves of two species of the genus Ocotea that occur in the Atlantic Forest in the state of Pernambuco, Brazil, were analyzed using gas chromatography-mass spectrometry. The acaricidal activity of these oils as well as 11 selected components and blends were evaluated in fumigation and residual contact tests against the two-spotted spider mite (Tetranychus urticae). Sixty-seven constituents were identified, totaling 97.3 ± 0.3% and 97.8 ± 0.5% of the oils from O. duckei and O. glomerata, respectively. Sesquiterpene was the dominant class. The compounds β-caryophyllene (18.6 ± 0.1%) and aromadendrene (17.3 ± 0.6%) were the main constituents of the oils from O. duckei and O. glomerata, respectively. Acaricidal action varied depending on the method employed, species and chemical nature of the selected constituents. The mites were susceptible to the oils and chemical constituents using the fumigation method. The O. duckei oil was respectively 2.5-fold and 1.5-fold more toxic than the O. glomerata oil using the fumigation and residual contact methods. Among the selected constituents, β-caryophyllene was the most toxic, independently of the method employed. The individual toxicity of the selected compounds and their blends as well as the role of these constituents in the overall toxicity of the essential oils are also discussed.

  12. A new use for modified sugarcane bagasse containing adsorbed Co2+and Cr3+: catalytic oxidation of terpenes.

    OpenAIRE

    Silva, Anderson Gabriel Marques da; Rodrigues, Thenner Silva; Gurgel, Leandro Vinícius Alves; Assis, Patrícia Aparecida de; Gil, Laurent Frédéric; Dutenhefner, Patricia Alejandra Robles

    2013-01-01

    This study describes the applicability of two chemically modified sugarcane bagasses containing eitheradsorbed Co2+or Cr3+ions as heterogeneous catalysts for the autooxidation of monoterpenes. The mainobjective was to investigate new uses for these adsorbent materials which had been previously employedfor treatment of aqueous solutions or effluents containing metals such as Co2+and Cr3+. The adsorptionefficiency of Co2+and Cr3+on SCB2 and EB was evaluated by adsorption isotherms and other tec...

  13. Terpenos isolados de Coussarea platyphylla Müll. Arg. (Rubiaceae Terpenes isolated of Coussarea platyphylla Müll. Arg. (Rubiaceae

    Directory of Open Access Journals (Sweden)

    Francieli Casassa Vieira de Araujo

    2009-01-01

    Full Text Available The phytochemical investigation of Coussarea platyphylla led to the isolation of triterpenes betulonic and betulinic acid, monoterpenes monotropein and monotropein salt, the diterpene trans-phytol and esteroids. The structures of the isolated compounds were assigned on the basis of spectroscopic data, including two-dimensional NMR methods. The antiproliferative properties against human cancer cell lines and molluscicidal activity against Biomphalaria glabrata of the crude methanolic extract and of its fractions were investigated.

  14. Terpenos e ácidos graxos de Dipteryx lacunifera Ducke Terpenes and fatty acids from Dipteryx lacunifera Ducke

    Directory of Open Access Journals (Sweden)

    Gerardo Magela Vieira Júnior

    2007-01-01

    Full Text Available This paper describes the isolation of the furanocassane-type diterpene, named vinhaticoic acid, along with beta-farnesene and spatulenol from fruit shells of D. lacunifera. Structural determinations were accomplished by chemical derivatization and spectral analysis, including 1D and 2D NMR and X-ray crystallography. The fatty portion was extracted from the fruit kernels, transesterfied and analysed by HRGC/MS. Oleic acid (75.8 ± 4.3% was the major component. Essential oil extracted from the fruit shells of D. lacunifera was analysed by HRGC/MS and nine sesquiterpenes were identified; beta-farnesene (48.6% and spatulenol (21.61% were the major constituents.

  15. Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth

    Science.gov (United States)

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina; Heitto, Arto; Lutz, Anna; Hallquist, Mattias; D'Ambro, Emma L.; Rissanen, Matti P.; Hao, Liqing; Schobesberger, Siegfried; Kulmala, Markku; Mauldin, Roy L.; Makkonen, Ulla; Sipilä, Mikko; Petäjä, Tuukka; Thornton, Joel A.

    2017-03-01

    We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10-15 to 10-6 µg m-3 (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10-3 to 10-2 µg m-3 ( 106-107 molecules cm-3) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of 5% to early stage particle growth from the 60 gaseous dimer compounds.

  16. Ethanol and high-value terpene co-production from lignocellulosic biomass of Cymbopogon flexuosus and Cymbopogon martinii

    Science.gov (United States)

    Cymbopogon flexuosus and C. martinii are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosi...

  17. Influence of Mountain Pine Beetle on Fuels, Foliar Fuel Moisture Content, and Litter and Volatile Terpenes in Whitebark Pine

    OpenAIRE

    Toone, Chelsea

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has caused extensive tree mortality in whitebark pine (Pinus albicaulis Engelm) forests. Previous studies conducted in various conifer forests have shown that fine surface fuels are significantly altered during a bark beetle outbreak. Bark beetle activity in conifer stands has also been shown to alter foliar fuel moisture content and chemistry over the course of the bark beetle rotation.The objective of this study was to evaluate changes ...

  18. Natural Plant Oils and Terpenes as Protector for the Potato Tubers against Phthorimaea operculella Infestation by Different Application Methods

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2014-06-01

    Full Text Available For protecting potato tubers from the potato tuber moth (PTM infestation during storage, different concentrations of ten natural plant oils and three commercial monoterpnes were tested, some as fumigants or dusts against adults or dusts against neonate larvae, while others as sprays on the gunny sacks in which potato tubers were stored. Tuber damage indices as well as persistence indices for tested materials were assessed. Vapors of Cymbopogon citratus, Myristica fragrans (nutmag, Mentha citrata and a-Ionone (monoterpene caused a highly significant reductions in the life span of exposed moths as well as in new adult offsprings. Other tested oils as Cinnamonium zeylanicum, Myristica. fragrans (Mace and Pelargonium graveolens caused a insignificant effect. There was no significant effect of the tested vapors on egg hatchability, except in case of oils of C. citratus, M. fragrans (nutmag and M. tragrans(Mace oil which caused high reduction in egg hatchability. According to the values of damage indices, the most effective oil vapors were arranged ascendingly as follows: Myristica (nutmag < Cymbopogon < Mentha < a - Ionone. Dusting potato tubers with 1% conc., (mixed with talcum powder of Myristica, Mentha, Cymbopogons oils and a-Ionone (monoterpene caused high reduction in egg deposition, adult emergence as well as percentage of penetrated larvae of PTM. According to their damage indices, Cymbopogon and ά-Ionone were the most protective oils, followed by Myristica and Mentha. Spraying gunnysacks with 1% conc., of the aforementioned natural oils separately elicited high reduction in PTM progeny; while their combinations did not elicit any significant synergistic effect. According to their tuber damage indices, it was found that Cymbopogon oil alone or mixed with Myristica oil showed the best protective effect, followed by Myristica oil alone and Mentha oil mixed with Cymbopogon oil. Assessment of the persistence index of various tested materials during storage indicated that: Vapors of Cymbopogon and Myristica (nutmag gave the best protection from PTM infestation during storage (for 20 days. Dusting potato tubers with plant oil of Cymbopogon (mixed with talcum powder gave the best protection during storage (for 15 days. Spraying gunnysacks with natural plant oils of Cymbopogon and Myristica, separately or mixed elicited the best protection from infestation by PTM during storage up to 20 days.

  19. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling.

    Science.gov (United States)

    Pasoreck, Elise K; Su, Jin; Silverman, Ian M; Gosai, Sager J; Gregory, Brian D; Yuan, Joshua S; Daniell, Henry

    2016-09-01

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Identification of (-)-beta-caryophyllene as a gender-specific terpene produced by the multicolored Asian lady beetle.

    Science.gov (United States)

    Brown, Ashli E; Riddick, Eric W; Aldrich, Jeffrey R; Holmes, William E

    2006-11-01

    This work reports the development and use of techniques for characterizing volatile chemicals emitted by the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in an effort to identify the semiochemicals involved in establishment and persistence of overwintering beetle aggregations. Volatiles emitted from live beetles were detected by using whole-air sampling and solid-phase microextraction (SPME). Adsorbed volatiles were thermally desorbed and identified with gas chromatography-mass spectrometry (GC/MS). By comparing the chromatograms of volatiles emitted from live male and female beetles, a sesquiterpene, (-)-beta-caryophyllene, was found only in the females. The identity of (-)-beta-caryophyllene was confirmed by using NIST Library searches, comparing retention times with those of known standards, and by using higher-resolution GC/MS above bench top capability. Although SPME trapping detected a wider array of compounds compared to whole-air sampling, the latter method is better suited for automation. Unattended automated sampling is required for the continuous measurement of targeted compounds under dynamically changing incubation conditions. These conditions, mimicking natural overwintering conditions, are essential to our long-term goal of using this technology to detect and identify the aggregation pheromone of H. axyridis.

  1. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    Science.gov (United States)

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta-thujone was not transcriptionally regulated. 2010 Elsevier GmbH. All rights reserved.

  2. The plant hopper Issus coleoptratus can detoxify phloem sap saponins including the degradation of the terpene core

    Directory of Open Access Journals (Sweden)

    Markus Himmelsbach

    2016-03-01

    Full Text Available Issus coleoptratus is a small plant hopper which mainly feeds on the phloem sap from ivy. Although all parts of ivy are poisonous as the plant contains saponins, especially hederasaponins, I. coleoptratus can cope with the poison. In contrast to other animals like the stick insect Carausius morosus which accumulates saponins in its body, I. coleoptratus can degrade and disintegrate not only the saponins but even the genines, i.e. the triterpene core of the substances. This is perhaps made possible by a specialised midgut and/or the salivary glands. When the glands and the gut are dissected and added to saponins in solution, the saponins, including the genines, are degraded ex vivo.

  3. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    OpenAIRE

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Robert Sykes; Cantrell, Charles L.; Choo Hamilton; David G J Mann; Miguel Rodriguez; Mielenz, Jonathan R; Tess Astatkie; C. Neal Stewart

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting...

  4. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy.

    Science.gov (United States)

    Zengin, Hatice; Baysal, Ayse H

    2014-11-03

    The antibacterial activity and antioxidant effect of the compounds α-terpineol, linalool, eucalyptol and α-pinene obtained from essential oils (EOs), against pathogenic and spoilage forming bacteria were determined. The antibacterial activities of these compounds were observed in vitro on four Gram-negative and three Gram-positive strains. S. putrefaciens was the most resistant bacteria to all tested components, with MIC values of 2% or higher, whereas E. coli O157:H7 was the most sensitive strain among the tested bacteria. Eucalyptol extended the lag phase of S. Typhimurium, E. coli O157:H7 and S. aureus at the concentrations of 0.7%, 0.6% and 1%, respectively. In vitro cell growth experiments showed the tested compounds had toxic effects on all bacterial species with different level of potency. Synergistic and additive effects were observed at least one dose pair of combination against S. Typhimurium, E. coli O157:H7 and S. aureus, however antagonistic effects were not found in these combinations. The results of this first study are encouraging for further investigations on mechanisms of antimicrobial activity of these EO components.

  5. Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy

    Directory of Open Access Journals (Sweden)

    Hatice Zengin

    2014-11-01

    Full Text Available The antibacterial activity and antioxidant effect of the compounds α-terpineol, linalool, eucalyptol and α-pinene obtained from essential oils (EOs, against pathogenic and spoilage forming bacteria were determined. The antibacterial activities of these compounds were observed in vitro on four Gram-negative and three Gram-positive strains. S. putrefaciens was the most resistant bacteria to all tested components, with MIC values of 2% or higher, whereas E. coli O157:H7 was the most sensitive strain among the tested bacteria. Eucalyptol extended the lag phase of S. Typhimurium, E. coli O157:H7 and S. aureus at the concentrations of 0.7%, 0.6% and 1%, respectively. In vitro cell growth experiments showed the tested compounds had toxic effects on all bacterial species with different level of potency. Synergistic and additive effects were observed at least one dose pair of combination against S. Typhimurium, E. coli O157:H7 and S. aureus, however antagonistic effects were not found in these combinations. The results of this first study are encouraging for further investigations on mechanisms of antimicrobial activity of these EO components.

  6. Evaluation of three headspace sorptive extraction coatings for the determination of volatile terpenes in honey using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2015-06-19

    Headspace sorptive extraction (HSSE) was used to preconcentrate seven monoterpenes (eucalyptol, linalool, menthol, geraniol, carvacrol, thymol and eugenol) for separation by gas chromatography and mass spectrometry (GC-MS). Three commercially available coatings for the stir bars, namely Polydimethylsiloxane (PDMS), polyacrilate (PA) and Ethylene glycol-silicone (EG-Silicone), were tested, and the influential parameters both in the adsorption and the thermal desorption steps were optimized. PDMS provided the best sensitivity for linalool, geraniol, menthol and eucalyptol, whereas EG-Silicone was best for extracting the phenolic monoterpenes studied. Considering the average obtained slopes from all compounds, PDMS pointed as the best option, and the analytical characteristics for the HSSE-TD-GC-MS method using this coating were obtained. Quantification of the samples was carried out by matrix-matched calibration using a synthetic honey. Detection limits ranged between 0.007 and 0.032 ng g(-1), depending on the compound. Twelve honey samples of different floral origins were analyzed using the HSSE-GC-MS method, the analytes being detected at concentrations up to 64 ng g(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana.

    Science.gov (United States)

    Matías-Hernández, Luis; Jiang, Weimin; Yang, Ke; Tang, Kexuan; Brodelius, Peter E; Pelaz, Soraya

    2017-05-01

    The effective anti-malarial drug artemisinin (AN) isolated from Artemisia annua is relatively expensive due to the low AN content in the plant as AN is only synthesized within the glandular trichomes. Therefore, genetic engineering of A. annua is one of the most promising approaches for improving the yield of AN. In this work, the AaMYB1 transcription factor has been identified and characterized. When AaMYB1 is overexpressed in A. annua, either exclusively in trichomes or in the whole plant, essential AN biosynthetic genes are also overexpressed and consequently the amount of AN is significantly increased. Artemisia AaMYB1 constitutively overexpressing plants displayed a greater number of trichomes. In order to study the role of AaMYB1 on trichome development and other possibly connected biological processes, AaMYB1 was overexpressed in Arabidopsis thaliana. To support our findings in Arabidopsis thaliana, an AaMYB1 orthologue from this model plant, AtMYB61, was identified and atmyb61 mutants characterized. Both AaMYB1 and AtMYB61 affected trichome initiation, root development and stomatal aperture in A. thaliana. Molecular analyses indicated that two crucial trichome activator genes are misexpressed in atmyb61 mutant plants and in plants overexpressing AaMYB1. Furthermore, AaMYB1 and AtMYB61 are also essential for gibberellin (GA) biosynthesis and degradation in both species by positively affecting the expression of the enzymes that convert GA9 into the bioactive GA4 as well as the enzymes involved in the degradation of GA4 . Overall, these results identify AaMYB1/AtMYB61 as a key component of the molecular network that connects important biosynthetic processes, and reveal its potential value for AN production through genetic engineering. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Flavonóides, norisoprenóides e outros terpenos das folhas de Tapirira guianensis Flavonoids, norisoprenoids and other terpenes from leaves of Tapirira guianensis

    Directory of Open Access Journals (Sweden)

    Suzimone de J. Correia

    2008-01-01

    Full Text Available From hexane fraction of methanol extract of leaves of Tapirira guianensis (Anacardiaceae were obtained lupeol, 24-methylenecycloartan-3-ol, phytol, α-amyrin, β-amyrin, sitosterol, sitostenone, glycosyl sitosterol, as well as sitosterol esterified with palmitic and stearic acids. Phytol, α-amyrin and β-amyrin esterified with fatty acids were also identified from same extract. The EtOAc extract besides the norisoprenoids (6S,7E,9S-6,9-dihydroxy-megastigma-4,7-dien -3-one 9-O-β-glucopyranoside and (6S,7E,9R-6,9-dihydroxy-megastigma-4,7-dien-3-one 9-O-β-glucopyranoside also afforded kaempferol 3-O-rhamnoside, kaempferol 3-O-arabinofuranoside, quercetin 3-O-rhamnoside, and kaempferol. The structural elucidation of isolated compounds were based on UV, IR, MS, ¹H and 13C NMR data analysis.

  9. Mono terpenes characterization by {sup 1} H and {sup 13} C-1 NMR; Caracterizacao de monoterpenos por RMN - {sup 1} H e de {sup 13} C-1

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Martha T. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Fisico-Quimica; Silveira, Carmen L.P. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Quimica Organica; Mcchesney, James D. [Mississippi Univ., University, MS (United States). Research Inst. of Pharmaceutical Sciences

    1991-12-31

    Artemisinine, a new lactone sesquiterpene containing one peroxide binding, is the main anti malarial agent obtained from the Artemisia annua L. Viewing to obtain a simple synthetic route for artemisinic acid preparation, which is the key intermediary for total synthesis of this type of anti malarial agent, R-carvone has been chosen as starting material. The S-carvone was used as model for reaction optimization and preparation of derivatives to be used for NMR studies. The main objective of this work is the signalling of the {sup 13} C and {sup 1} H NMR spectra, using the 2 D-COSY and 2 D-Hector spectra 4 refs., 3 figs., 1 tab

  10. Actividad antibacteriana de terpenoides y alcaloides aislados de tres plantas colombianas Antibacterial activity of terpenes and alkaloids isolated from three Colombian plants

    Directory of Open Access Journals (Sweden)

    Luis Enrique Cuca Suárez

    2011-06-01

    Full Text Available El potencial antibacteriano de 14 compuestos obtenidos de 3 especies nativas colombianas (Pleurothyrium cinereum [van der Werff], Esenbeckia alata [Karst & Triana], y Raputia heptaphylla [Pittier] fue evaluado mediante la inhibición del crecimiento bacteriano por el método de difusión en agar contra 4 cepas bacterianas: Enterococcus faecalis 29212, Staphylococcus aureus 6539, Escherichia coli 25922 y Salmonella tiphymurium 14028s. Los compuestos evaluados mostraron actividad frente a las cepas a diferentes niveles, observando una tendencia y selectividad según el núcleo base. El alcaloide 4-metoxi-1-metil-quinolin-2-(1H-ona (8 fue el compuesto que presentó la mayor actividad.The antibacterial potential of 14 compounds obtained from three native Colombian species( [Pleurothyrium cinereum [van der Werff], Esenbeckia alata [Karst & Triana], Reputia heptaphylla [Pittier] was assessed by agar diffusion method versus four bacterial species: Enterococcus faecalis 29212, Staphylococcus aureus 6539, Escherichia coli 25922 and Salmonella tiphymurium 14028s. The assessed compounds showed activity versus strains at different levels, maintaining a trend and selectivity according the base nucleus. The 4-methoxi-1-methyl-quinolin-2-(1H alkaloid, other (8 was the compound with the highest activity.

  11. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family.

  12. Análise de terpenóides de espécies de Croton sect. Lamprocroton (Mull. Arg.) Pax (Euphorbiaceae)

    OpenAIRE

    Diego Amaral de Feliu

    2011-01-01

    Croton é um gênero gigante de Euphorbiaceae com cerca de 1.300 espécies distribuídas em regiões tropicais e subtropicais da América, África, Ásia e Austrália. O Brasil é um importante centro de diversificação da espécie, com mais de 350 espécies descritas, sendo muitas endêmicas. Muitas espécies são utilizadas como plantas medicinais pelas populações locais, para o tratamento de diversos males, como câncer, diabetes, febre, hipercolesterolemia, hipertensão, entre outros. Mesmo assim, a maiori...

  13. ROLE OF CANOPY-SCALE PHOTOCHEMISTRY IN MODIFYING BIOGENIC-ATMOSPHERE EXCHANGE OF REACTIVE TERPENE SPECIES: RESULTS FROM THE CELTIC FIELD STUDY

    Science.gov (United States)

    A one-dimensional canopy model was used to quantify the impact of photochemistry in modifying biosphere-atmosphere exchange of trace gases. Canopy escape efficiencies, defined as the fraction of emission that escapes into the well-mixed boundary layer, were calculated for reactiv...

  14. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis

    National Research Council Canada - National Science Library

    Narnoliya, Lokesh K; Kaushal, Girija; Singh, Sudhir P; Sangwan, Rajender S

    2017-01-01

    .... Recently, the plant has also been shown to produce tartaric acid in leaf tissues. Rose-scented geranium represents top-tier cash crop in terms of economic returns and significance of the plant and plant products...

  15. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Science.gov (United States)

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family. PMID:20964856

  16. The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily

    DEFF Research Database (Denmark)

    Hansen, Nikolaj Lervad; Heskes, Allison Maree; Hamberger, Britta

    2017-01-01

    Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri...... in the formation of four C-20 diphosphate intermediates, precursors of both generalized and specialized metabolism and a novel scaffold for Celastraceae. Functional pairs of the class I and II enzymes resulted in formation of three scaffolds, accounting for some of the terpenoid diversity found in T. wilfordii...

  17. Metabolic engineering of terpene biosynthesis in plants using a trichome?specific transcription factor MsYABBY5 from spearmint (Mentha spicata)

    OpenAIRE

    Wang, Qian; Reddy, Vaishnavi Amarr; Panicker, Deepa; Mao, Hui?Zhu; Kumar, Nadimuthu; Rajan, Chakravarthy; Venkatesh, Prasanna Nori; Chua, Nam?Hai; Sarojam, Rajani

    2016-01-01

    Summary In many aromatic plants including spearmint (Mentha spicata), the sites of secondary metabolite production are tiny specialized structures called peltate glandular trichomes (PGT). Having high commercial values, these secondary metabolites are exploited largely as flavours, fragrances and pharmaceuticals. But, knowledge about transcription factors (TFs) that regulate secondary metabolism in PGT remains elusive. Understanding the role of TFs in secondary metabolism pathway will aid in ...

  18. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpen...e synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 1e-21 ...

  19. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpen...e synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-64 ...

  20. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpen...e synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-65 ...

  1. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only...

  2. 21 CFR 73.1 - Diluents in color additive mixtures for food use exempt from certification.

    Science.gov (United States)

    2010-04-01

    ... chapter Not more than 2 pct of the ink solids. Terpene resins, natural As set forth in sec. 172.615 of this chapter Terpene resins, synthetic Polymers of α- and β-pinene (2) Diluents in color additive...

  3. Identification of Sesquiterpene Synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. Strain PCC 7120▿ †

    OpenAIRE

    Agger, Sean A.; Lopez-Gallego, Fernando; Hoye, Thomas R.; Schmidt-Dannert, Claudia

    2008-01-01

    Cyanobacteria are a rich source of natural products and are known to produce terpenoids. These bacteria are the major source of the musty-smelling terpenes geosmin and 2-methylisoborneol, which are found in many natural water supplies; however, no terpene synthases have been characterized from these organisms to date. Here, we describe the characterization of three sesquiterpene synthases identified in Nostoc sp. strain PCC 7120 (terpene synthase NS1) and Nostoc punctiforme PCC 73102 (terpene...

  4. Mirror-Symmetry-Breaking in Poly[(9,9-di-n-octylfluorenyl-2,7-diyl-alt-biphenyl] (PF8P2 is Susceptible to Terpene Chirality, Achiral Solvents, and Mechanical Stirring

    Directory of Open Access Journals (Sweden)

    Ayako Nakao

    2013-06-01

    Full Text Available Solvent chirality transfer of (S-/(R-limonenes allows the instant generation of optically active PF8P2 aggregates with distinct circular dichroism (CD/circularly polarized luminescence (CPL amplitudes with a high quantum yield of 16–20%. The present paper also reports subtle mirror-symmetry-breaking effects in CD-/CPL-amplitude and sign, CD/UV-vis spectral wavelengths, and photodynamics of the aggregates, though the reasons for the anomaly are unsolved. However, these photophysical properties depend on (i the chemical natures of chiral and achiral molecules when used in solvent quantity, (ii clockwise and counterclockwise stirring operations, and (iii the order of addition of limonene and methanol to the chloroform solution.

  5. Terpenóides e avaliação do potencial antimalárico, larvicida, anti-radicalar e anticolinesterásico de Pouteria venosa (Sapotaceae

    Directory of Open Access Journals (Sweden)

    Livya Holanda M. Montenegro

    Full Text Available O presente trabalho descreve o isolamento de quatro triterpenos (taraxerol, ácido ursólico, ácido 3b,19a,23-triidroxiurs-12-en-28-óico e ácido 2a,3a,19a,23-tetraidroxiurs-12-en-28-óico e um fitoesteróide (espinasterol, bem como a avaliação do potencial antimalárico (cepa NK-65 do Plasmodium berghei, larvicida (larvas do 4º instar do Aedes aegypti, anti-radicalar (2,2-difenil-1-picril-hidrazila, DPPH e anticolinesterásico de extratos das folhas, cascas do caule e caule de Pouteria venosa (Mart. Baehni. Todos os compostos isolados estão sendo descritos pela primeira vez nesta espécie e foram identificados com base na análise de dados espectrais (IV e RMN, incluindo APT e DEPT, bem como pela comparação com dados descritos na literatura.

  6. Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa

    OpenAIRE

    Larayetan, Rotimi A.; Okoh, Omobola O.; Sadimenko, Alexander; Okoh, Anthony I.

    2017-01-01

    Background Volatile oil from aromatic plants has been used by ancient Egyptians in embalming for the inhibition of bacterial growth and prevention of decay, Callistemon citrinus is used in traditional therapies for the treatment of bronchitis, cough, inflammation and as an antimicrobial herbs. This study examines the essential constituents of the volatile oils obtained from the aerial parts of the plant as well as its antioxidant activity, free radical scavenging, phenolic content and the ant...

  7. Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa

    National Research Council Canada - National Science Library

    Rotimi A Larayetan; Omobola O Okoh; Alexander Sadimenko; Anthony I Okoh

    2017-01-01

    Background Volatile oil from aromatic plants has been used by ancient Egyptians in embalming for the inhibition of bacterial growth and prevention of decay, Callistemon citrinus is used in traditional...

  8. Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa.

    Science.gov (United States)

    Larayetan, Rotimi A; Okoh, Omobola O; Sadimenko, Alexander; Okoh, Anthony I

    2017-06-05

    Volatile oil from aromatic plants has been used by ancient Egyptians in embalming for the inhibition of bacterial growth and prevention of decay, Callistemon citrinus is used in traditional therapies for the treatment of bronchitis, cough, inflammation and as an antimicrobial herbs. This study examines the essential constituents of the volatile oils obtained from the aerial parts of the plant as well as its antioxidant activity, free radical scavenging, phenolic content and the antibacterial potential of the oils. A portion of 500 g, 250 g and 150 g of the leaves, flowers and stems of this plant respectively were subjected to hydro-distillation process for three hours. The oils collected from the various plant parts were immediately subjected to GC-MS analysis. The overall phenolic content of the leaves oil, radical scavenging, antibacterial action and antioxidant activities of the essential oils of both the leaves and flowers of Callistemon citrinus were determined using standard methods, with free radical DPPH and ABTS as a reference antioxidant. Analyses of the three oils revealed a total of twenty-six components for the leaves oil representing 96.84% of the total oil composition, forty-one components for the flowers oil accounting for 98.92% of the whole composition and ten components for the stem oil amounting to 99.98% of the entire oil constituents. The dominant compounds in the leaves oil were eucalyptol (48.98%) and α-terpineol (8.01%), while α-eudesmol (12.93%), caryophyllene (11.89%), (-)-bornyl-acetate (10.02%) and eucalyptol (8.11%) were the main constituents of the flowers oil. In the same vein, the leading constituents in the stems oil were eucalyptol (56.00%) and α-pinene (31.03%). The antioxidant capacities of both the leaves and flowers oils of the plant were evaluated and their IC 50 were (1.49 and 1.13) for DPPH and (0.14 and 0.03) for ABTS assay respectively. The antibacterial activities of the oils from the (leaves and flowers) were also examined and were found to have wide range of activities against the bacterial strains used in this study. Observations drawn from this experiment shows clearly that the leaves and flowers of Callistemon citrinus possess phenolic compounds and cyclic ether of several pharmacological behaviors.

  9. Prediction of the GC-MS Retention Indices for a Diverse Set of Terpenes as Constituent Components of Camu-camu (Myrciaria dubia (HBK Mc Vaugh Volatile Oil, Using Particle Swarm Optimization-Multiple Linear Regression (PSO-MLR

    Directory of Open Access Journals (Sweden)

    Majid Mohammadhosseini

    2014-05-01

    Full Text Available A reliable quantitative structure retention relationship (QSRR study has been evaluated to predict the retention indices (RIs of a broad spectrum of compounds, namely 118 non-linear, cyclic and heterocyclic terpenoids (both saturated and unsaturated, on an HP-5MS fused silica column. A principal component analysis showed that seven compounds lay outside of the main cluster. After elimination of the outliers, the data set was divided into training and test sets involving 80 and 28 compounds. The method was tested by application of the particle swarm optimization (PSO method to find the most effective molecular descriptors, followed by multiple linear regressions (MLR. The PSO-MLR model was further confirmed through “leave one out cross validation” (LOO-CV and “leave group out cross validation” (LGO-CV, as well as external validations. The promising statistical figures of merit associated with the proposed model (R2train=0.936, Q2LOO=0.928, Q2LGO=0.921, F=376.4 confirm its high ability to predict RIs with negligible relative errors of predictions (REP train=4.8%, REP test=6.0%.

  10. Uso de métodos quimiométricos e mecânico-quanticos na análise de terpenóides e fenilpropanóides bioativos contra o Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Reginaldo Bezerra dos Santos

    2009-12-01

    Full Text Available Dengue fever is one of the main public health problems in the world. Many mosquitoes have developed resistance to the conventional insecticides used. Thus, the search for vegetable extracts and natural substances as alternative insecticides has increased. In this study, chemometric methods were employed to classify a group ofterpenoid and phenylpropanoid compounds with biological activity against the larval of the A. aegypti mosquitoes. The AM1 (Austin Model 1 method was used to calculate a set of molecular descriptors (properties for the studied compounds. Then, the descriptors were analyzed using the following methods of pattern recognition: Principal Component Analysis (PCA and Hierarchical Clustering Analysis (HCA. The PCA and HCA methods have shown to be very effective for the classification of the study compounds in two groups (active and inactive. The electronic variables EHOMO-1, EHOMO-2, ELUMO, ELUMO+2, and the structural LogP were used to classify as active and inactive compounds. In most studied compounds, the variables responsible for separating active from inactive compounds were electronic descriptors. Thus, it can be concluded that electronic effects play a fundamental role in the interaction between biological receptor and terpenoid and phenylpropanoid compounds with activity against larval A. aegypti mosquitoes.

  11. Isolation, X-ray crystal structure and theoretical calculations of the new compound 8-Eepicordatin and identification of others terpenes and steroids from the bark and leaves of Croton palanostigma Klotzsch

    Energy Technology Data Exchange (ETDEWEB)

    Brasil, Davi S.B.; Mueller, Adolfo H.; Guilhon, Gisele M.S.P.; Alves, Claudio N., E-mail: muller@ufpa.b [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Ciencias Exatas e Naturais; Peris, Gabriel; Llusar, Rosa; Moliner, Vicent [Universitat Jaume I, Castellon (Spain).VDept. de Quimica Fisica i Analitica

    2010-07-01

    Phytochemical studies of the bark and leaves of Croton palanostigma Klotzsch (Euphorbiaceae) led to the isolation of a new clerodane diterpene, 8-epicordatin (2), in addition to 12-oxohardwickiic acid methyl ester (3), aparisthman, cordatin (1), ent-trachyloban-18-oic acid, ent-13-epimanoyl oxide, ent-3-oxo-13-epimanoyl oxide, ent-3{beta}-hydroxy-13-epimanoyl oxide, sitosterol, stigmasterol, stigmastan-3-one, 6{beta}-hydroxystigmast-4-en-3-one, 6{beta}-hydroxystigmasta-4,22-dien-3-one, stigmast-4-en-3-one, stigmasta-4,22-dien-3-one, 3-O-acetylaleuritolic acid, 11a-hydroxyurs-12-en-3-one, a-amyrenone, 24-methylenecycloartenone and lupenone. These compounds were isolated using typical phytochemical procedures and the structures were deduced from spectroscopic studies, including 2D NMR experiments. In addition, the crystalline structure of 8-epicordatin (2) was determined by X-ray diffraction. NMR theoretical calculations at the B3PW91/DGDZVP level were used to confirm the assignment of the chemical shifts of the H-7a and H-7{beta} hydrogens of 8-epicordatin. (author)

  12. Environmentally Friendly Cleaners for Removing Tar from Metal Surfaces

    Science.gov (United States)

    2009-04-01

    Terpene Solvent degreaser. 11 Inland Technologies 401 East 27th Street Tacoma, WA 98421 inland@inladtech.com Teksol EP Hydrotreated heavy naptha...4molyoil@wwt.net #739 Citrol II Monocyclic Terpene Removes road tar from vehicles. 18 Selden Research Ltd Staden Business Park Staden Lane Buxton...Orange terpenes , Ethyl lacatate Removes tar Universal cleaner 26 Walter Surface Technologies J. Walter Inc. 810 Day Hill Road Windsor, CT 06095

  13. Acaricidal activity of ethanolic extract from aerial parts of Tagetes patula L. (Asteraceae) against larvae and engorged adult females of Rhipicephalus sanguineus (Latreille, 1806)

    National Research Council Canada - National Science Library

    Politi, Flavio Augusto Sanches; Figueira, Glyn Mara; Araujo, Andrea Mendez; Sampieri, Bruno Rodrigues; Mathias, Maria Izabel Camargo; Szabo, Matias Pablo Juan; Bechara, Gervasio Henrique; dos Santos, Lourdes Campaner; Vilegas, Wagner; Pietro, Rosemeire Cristina Linhari Rodrigues

    2012-01-01

    ...) is a plant with highlighted economic and commercial importance due to the production of secondary metabolites with insecticide and acaricide potential, mainly flavonoids, thiophenes and terpenes. Methods...

  14. A Review of Potentials of Black Pepper ( Piper Nigrum L.) to ...

    African Journals Online (AJOL)

    It is made up of essential oils, acids, esters, alcohol and phenols. The essential oils which gives it its characteristic flavor is basically composed of group of organic compounds called terpenes. Terpenes give black pepper its antibacterial property. The essential oils could perforate the bacteria cell to exert its antibacterial ...

  15. Author Details

    African Journals Online (AJOL)

    Simultaneous Determination of Flavonols and Terpene Lactones in Beagle Dog Plasma by Ultra-Performance Liquid Chromatography-Tandem - Mass Spectrometry: 1. Method Development Abstract PDF · Vol 14, No 5 (2015) - Articles Simultaneous Determination of Flavonols and Terpene Lactones in Beagle Dog Plasma ...

  16. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At1g61680.1 68414.m06957 terpene synthase/cyclase family protei...n similar to 1,8-cineole synthase [GI:3309117][Salvia officinalis]; contains Pfam profile: PF01397 terpene synthase family 7e-42 ...

  17. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At4g16730.1 68417.m02527 terpene synthase/cyclase family protei...n similar to myrcene/ocimene synthase [GI:9957293]; contains Pfam profile: PF01397 terpene synthase family 2e-69 ...

  18. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At4g16730.1 68417.m02527 terpene synthase/cyclase family protei...n similar to myrcene/ocimene synthase [GI:9957293]; contains Pfam profile: PF01397 terpene synthase family 2e-69 ...

  19. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At1g61680.1 68414.m06957 terpene synthase/cyclase family protei...n similar to 1,8-cineole synthase [GI:3309117][Salvia officinalis]; contains Pfam profile: PF01397 terpene synthase family 1e-16 ...

  20. Arabidopsis CDS blastp result: AK110925 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110925 002-173-D07 At1g61680.1 terpene synthase/cyclase family protein similar to... 1,8-cineole synthase [GI:3309117][Salvia officinalis]; contains Pfam profile: PF01397 terpene synthase family 5e-91 ...

  1. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At4g16730.1 68417.m02527 terpene synthase/cyclase family protei...n similar to myrcene/ocimene synthase [GI:9957293]; contains Pfam profile: PF01397 terpene synthase family 5e-25 ...

  2. Effect of dietary protein level and quebracho tannin on consumption of pine needles (Pinus ponderosa) by beef cows

    Science.gov (United States)

    Ponderosa pine trees occupy over 15 million hectares of rangeland in western North America. Pregnant cows often consume pine needles (PN), and subsequently abort. The protein-to-energy ratio may be important in the ability of cattle to tolerate dietary terpenes. Tannins often co-occur with terpenes ...

  3. Large emissions of sesquiterpenes and methyl chavicol quantified from branch enclosure measurements

    NARCIS (Netherlands)

    Bouvier-Brown, N.C.; Holzinger, R.; Palitzsch, K.; Goldstein, A.H.

    2009-01-01

    Multiple field studies have suggested chemistry within a forest canopy is poorly understood due to inadequate detection and quantification of reactive biogenic emissions, such as terpenes. To measure emission rates of terpenes at Blodgett Forest, a coniferous forest in the Sierra Nevada mountains of

  4. Fluids, Lubrication, Fuels and Related Materials

    Science.gov (United States)

    1974-06-01

    Nitrogen Atmosphere and a Sulfurized Terpene on the Antlwear Activity of Tricresyl Phosphate and Zinc Dihexyldithiophosphate 213 47 Comparison of...Extreme-Pressure Characteristics of Zinc Dihesyidithiophosphate to Dilauryl Acid Phosphate and a Sulfurized Terpene 224 48 Thermal Stability Threshold... phosphates provide Zn, S, and P in polar form for comparison with the effect of the zinc dlalkyldlthlophosphate. Recent studies show that

  5. Molecular regulation of plant monoterpene biosynthesis in relation to fragrance

    NARCIS (Netherlands)

    Tamer, El M.K.

    2002-01-01

    Citrus belongs to an important economical group of crops. Fruits have a distinguished and pleasant taste partly due to the presence of terpenes. Furthermore, these terpenes potentially play a role in the resistance against pathogens such as insects and fungi. The aim of this thesis was

  6. Classification of Pinus patula, P. tecunumanii, P. oocarpa, P. caribaea var. hondurensis, and Related Taxonomic Entities

    Science.gov (United States)

    A.E. Squillace; Jesse P. Perry

    1992-01-01

    Stem xylem terpenes of 75 pine populations were studied to determine relationships among taxonomic entities. Typical Pinus patula populations occurring in areas north and west of Oaxaca, Mexico, had very high proportions of 3-phellandrene and low proportions of other constituents. Terpene compositions of populations of variety longipeduncalatain...

  7. 78 FR 4138 - Notice of Intent To Grant Co-Exclusive Licenses

    Science.gov (United States)

    2013-01-18

    ... terminal alcohols to terminal alkenes.//Patent Application Serial No. 13/434668: A Process for the....//Patent Application Serial No. 13/426294: Process and apparatus for the selective dimerization of terpenes....//Patent Application Serial No. 13/426347: Process and apparatus for the selective dimerization of terpenes...

  8. Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120.

    Science.gov (United States)

    Agger, Sean A; Lopez-Gallego, Fernando; Hoye, Thomas R; Schmidt-Dannert, Claudia

    2008-09-01

    Cyanobacteria are a rich source of natural products and are known to produce terpenoids. These bacteria are the major source of the musty-smelling terpenes geosmin and 2-methylisoborneol, which are found in many natural water supplies; however, no terpene synthases have been characterized from these organisms to date. Here, we describe the characterization of three sesquiterpene synthases identified in Nostoc sp. strain PCC 7120 (terpene synthase NS1) and Nostoc punctiforme PCC 73102 (terpene synthases NP1 and NP2). The second terpene synthase in N. punctiforme (NP2) is homologous to fusion-type sesquiterpene synthases from Streptomyces spp. shown to produce geosmin via an intermediate germacradienol. The enzymes were functionally expressed in Escherichia coli, and their terpene products were structurally identified as germacrene A (from NS1), the eudesmadiene 8a-epi-alpha-selinene (from NP1), and germacradienol (from NP2). The product of NP1, 8a-epi-alpha-selinene, so far has been isolated only from termites, in which it functions as a defense compound. Terpene synthases NP1 and NS1 are part of an apparent minicluster that includes a P450 and a putative hybrid two-component protein located downstream of the terpene synthases. Coexpression of P450 genes with their adjacent located terpene synthase genes in E. coli demonstrates that the P450 from Nostoc sp. can be functionally expressed in E. coli when coexpressed with a ferredoxin gene and a ferredoxin reductase gene from Nostoc and that the enzyme oxygenates the NS1 terpene product germacrene A. This represents to the best of our knowledge the first example of functional expression of a cyanobacterial P450 in E. coli.

  9. Foliar mono- and sesquiterpene contents in relation to leaf economic spectrum in native and alien species in Oahu (Hawai'i).

    Science.gov (United States)

    Sardans, Jordi; Llusià, Joan; Niinemets, Ulo; Owen, Sue; Peñuelas, Josep

    2010-02-01

    Capacity for terpene production may confer advantage in protection against abiotic stresses such as heat and drought, and also against herbivore and pathogen attack. Plant invasive success has been intense in the Hawaiian islands, but little is known about terpene content in native and alien plant species on these islands. We conducted a screening of leaf terpene concentrations in 35 native and 38 alien dominant plant species on Oahu island. Ten (29%) of the 35 native species and 15 (39%) of the 38 alien species contained terpenes in the leaves. This is the first report of terpene content for the ten native species, and for 10 of the 15 alien species. A total of 156 different terpenes (54 monoterpenes and 102 sesquiterpenes) were detected. Terpene content had no phylogenetic significance among the studied species. Alien species contained significantly more terpenes in leaves (average+/-SE=1965+/-367 microg g(-1)) than native species (830+/-227 microg g(-1)). Alien species showed significantly higher photosynthetic capacity, N content, and lower Leaf Mass Area (LMA) than native species, and showed higher total terpene leaf content per N and P leaf content. Alien species, thus, did not follow the expected pattern of "excess carbon" in comparison with native species. Instead, patterns were consistent with the "nutrient driven synthesis" hypothesis. Comparing alien and native species, the results also support the modified Evolution of Increased Competitive Ability (EICA) hypothesis that suggests that alien success may be favored by a defense system based on an increase in concentrations of less costly defenses (terpenes) against generalist herbivores.

  10. Variabilidade sazonal e biossíntese de terpenóides presentes no óleo essencial de Lippia alba (Mill. N. E. Brown (Verbenaceae Seasonal variability and terpenoid biosynthesis of the essential oil of Lippia alba (Mill. N. E. Brown (Verbenaceae

    Directory of Open Access Journals (Sweden)

    Francisco Maikon Corrêa de Barros

    2009-01-01

    Full Text Available The essential oil of the leaves of Lippia alba chemotype linalool-1,8-cineol was extracted by hidrodistillation at different seasons and analyzed by GC/MS. Qualitative and quantitative variations in regard to the period of harvesting have been performed and the results were correlated with meteorological data. The essential oil yield varied from 0.33 to 0.67%. The chemical diversity of the constituents increased throughout the year, being 1,8-cineol and linalool the major components. Possible biosynthetic routes of mono and sesquiterpenoids present in the essential oil are discussed.

  11. Identificação de terpenos no óleo essencial dos frutos de Campomanesia adamantium (Cambessédes O. Berg – Myrtaceae. Terpenes identification in essential oils of fruits of Campomanesia adamantium (Cambessédes O. Berg – Myrtaceae.

    Directory of Open Access Journals (Sweden)

    Maria Isabel VALLILO

    2006-12-01

    Full Text Available O presente trabalho teve como objetivoidentificar os componentes químicos voláteis quecontribuem para o aroma agradável exalado pelosfrutos de Campomanesia adamantium, Myrtaceae,popularmente conhecida por gabiroba ou guabirobacomum no cerrado. A caracterização química do óleoessencial (0,05% v/p foi realizada utilizando-se atécnica da cromatografia a gás, acoplada àespectrometria de massas (CG-EM. O resultadoda análise atesta a presença de 30 componentesentre monoterpenos de fórmulas químicas iguais aC10H14, C10H16; C10H18O, C11H18O2, e sesquiterpenos,de fórmulas químicas equivalentes a C15H24 eC15H24O no óleo dos frutos dessa espécie.The present work aimed to identify thevolatile chemical components that contribute forpleasant fragrance exhaled by fruits ofCampomanesia adamantium, Myrtaceae, popularlyknown as guabiroba or gabiroba. The chemicalcharacterization of essential oil was carriedthrough using technique of gas chromatographyconnected to mass spectrometry (GC-MS. Resultsof analysis certify the presence of 30 compoundsbetween monotherpenes C10H14, C10H16, C10H18O,C11H18O2 and sesquitherpenes C15H24, C15H24O inthe essential oil of the fruits of this species.

  12. The influence of genetics, defensive chemistry and the fungal microbiome on disease outcome in whitebark pine trees.

    Science.gov (United States)

    Bullington, Lorinda S; Lekberg, Ylva; Sniezko, Richard; Larkin, Beau

    2018-02-01

    The invasive fungal pathogen Cronartium ribicola infects and kills whitebark pine (Pinus albicaulis) throughout western North America. Whitebark pine has been proposed for listing under the Endangered Species Act in the USA, and the loss of this species is predicted to have severe impacts on ecosystem composition and function in high-elevation forests. Numerous fungal endophytes live inside whitebark pine tissues and may influence the severity of C. ribicola infection, either directly by inhibition of pathogen growth or indirectly by the induction of chemical defensive pathways in the tree. Terpenes, a form of chemical defence in pine trees, can also influence disease. In this study, we characterized fungal endophyte communities in whitebark pine seedlings before and after experimental inoculation with C. ribicola, monitored disease progression and compared fungal community composition in susceptible vs. resistant seedlings in a common garden. We analysed the terpene composition of these same seedlings. Seed family identity or maternal genetics influenced both terpenes and endophyte communities. Terpene and endophyte composition correlated with disease severity, and terpene concentrations differed in resistant vs. susceptible seedlings. These results suggest that the resistance to C. ribicola observed in natural whitebark pine populations is caused by the combined effects of genetics, endophytes and terpenes within needle tissue, in which initial interactions between microbes and hosts take place. Tree genotype, terpene and microbiome combinations associated with healthy trees could help to predict or reduce disease severity and improve outcomes of future tree breeding programmes. © 2018 BSPP AND JOHN WILEY & SONS LTD.

  13. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems

    Directory of Open Access Journals (Sweden)

    Katarina Kemper

    2017-05-01

    Full Text Available With over 50.000 identified compounds terpenes are the largest and most structurally diverse group of natural products. They are ubiquitous in bacteria, plants, animals and fungi, conducting several biological functions such as cell wall components or defense mechanisms. Industrial applications entail among others pharmaceuticals, food additives, vitamins, fragrances, fuels and fuel additives. Central building blocks of all terpenes are the isoprenoid compounds isopentenyl diphosphate and dimethylallyl diphosphate. Bacteria like Escherichia coli harbor a native metabolic pathway for these isoprenoids that is quite amenable for genetic engineering. Together with recombinant terpene biosynthesis modules, they are very suitable hosts for heterologous production of high value terpenes. Yet, in contrast to the number of extracted and characterized terpenes, little is known about the specific biosynthetic enzymes that are involved especially in the formation of highly functionalized compounds. Novel approaches discussed in this review include metabolic engineering as well as site-directed mutagenesis to expand the natural terpene landscape. Focusing mainly on the validation of successful integration of engineered biosynthetic pathways into optimized terpene producing Escherichia coli, this review shall give an insight in recent progresses regarding manipulation of mostly diterpene synthases.

  14. Volatile monoterpenes in black currant (Ribes nigrum L.) juice: effects of heating and enzymatic treatment by beta-glucosidase.

    Science.gov (United States)

    Varming, Camilla; Andersen, Mogens L; Poll, Leif

    2006-03-22

    Changes of terpenes in black currant juice induced by the action of heat were investigated in the present study. Limonene, alpha-terpinene, linalool, alpha-terpineol, 4-terpineol, and menthol added to either black currant juice or a model system were thermally treated at 90 degrees C for 30 min. Similar heat-induced decreases in the concentration of the terpenes were observed in the two systems. The concentration of a range of terpene hydrocarbons and oxygenated terpenes increased, alpha-terpineol being a main conversion product of most of the examined compounds. In the main, the measured loss of compounds exceeded the detected concentrations of products formed. In addition, determination of glycosidically bound terpenes in the juice was carried out by two methods of enzymatic hydrolysis, namely, addition of beta-glucosidase to an Amberlite XAD-2 isolate or directly to black currant juice. The two methods gave the same patterns of seven released volatile aglyconic terpenes. However, none of the released terpenes are important for the odor of black currant juice.

  15. Modeling chemical reactions in the indoor environment by CFD

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Weschler, Charles J.

    2002-01-01

    The concentrations of ozone and a terpene that react in the gas-phase to produce a hypothetical product were investigated by computational fluid dynamics (CFD) for two different air exchange rates. Ozone entered the room with the ventilation air. The terpenes were introduced as a localized source...... with an emission pattern similar to an air freshener; this was in contrast to an otherwise identical earlier study in which the terpene was introduced as a floor source with an emission pattern similar to a floor care product (Sørensen and Weschler, 2002). The results show that there are large concentration...

  16. Efficacy of experimental Newcastle disease water-in-oil oil-emulsion vaccines formulated from squalane and squalene.

    Science.gov (United States)

    Stone, H D; Xie, Z X

    1990-01-01

    Water-in-oil inactivated Newcastle disease oil-emulsion vaccines were formulated with the terpene oils squalane or squalene, or mixtures thereof, and injected into 4-week-old broilers. Vaccine efficacy based on hemagglutination-inhibition (HI) titers was comparable to that of control mineral oil vaccines. Tissue reaction to intramuscular injection of the terpene oil emulsion vaccines was greatly reduced 3 weeks post-vaccination compared with that of mineral oil-based vaccine. Viscosity of the terpene oil vaccines was satisfactory but increased three to four times that of mineral oil vaccine when the antigen phase volume increased from 5% to 20%.

  17. Chemistry with a Peel.

    Science.gov (United States)

    Borer, Londa; Larsen, Eric

    1997-01-01

    Presents experiments that introduce natural product chemistry into high school classrooms. In the laboratory activities, students isolate and analyze the oil in orange peels. Students also perform a steam distillation and learn about terpenes. (DDR)

  18. phytochemical screen chronic toxicity studies of aqu ytochemical ...

    African Journals Online (AJOL)

    userpc

    Inference. Alkaloids. Polyphenols. Flavonoids. Flavonols. Glycosides. Cardiac Glycosides. Anthraquinones. Saponins. Tannins. Phlobatannins. Fats and Oils. Terpenes. Triterpenoids. Steroids. Phytosterols. Anthocyanins. Leucoanthocyanins. Emodins. Coumarins. Chalcones. Carbohydrates. Starch. Gums and Mucilages.

  19. Medical cannabis Q&A

    National Research Council Canada - National Science Library

    2017-01-01

    The term "medical cannabis" is used to describe products derived from the whole cannabis plant or its extracts containing a variety of active cannabinoids and terpenes, which patients take for medical...

  20. Base oils and methods for making the same

    Energy Technology Data Exchange (ETDEWEB)

    Ohler, Nicholas; Fisher, Karl; Tirmizi, Shakeel

    2018-01-09

    Provided herein are isoparaffins derived from hydrocarbon terpenes such as myrcene, ocimene and farnesene, and methods for making the same. In certain variations, the isoparaffins have utility as lubricant base stocks.

  1. Piptaderol From Piptadenia africana | Mbouangouere | African ...

    African Journals Online (AJOL)

    methyletherapigenin) were isolated from the stem bark extract of Piptadenia africana, a western Cameroonian plant species. Common terpenes like sitosterol, β-amyrin and eicosane were also isolated. These compounds were identified using ...

  2. Volvatellin, caulerpenyne-related product fromt he sacoglossan Volvatella sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Fontana, A.; Ciavatta, M.L.; Mollo, E.; Naik, C.G.; Wahidullah, S.; DeSouza, L.; Cimino, G.

    Volvatellin (4) is a highly unstable terpene isolated from the extracts of the Indian opisthobranch mollusk Volvatella sp. The structure and the relative stereochemistry of 4 were determined by NMR methods. The paper also describes a hypothetical...

  3. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Andersen, Birgitte; Thrane, Ulf

    2008-01-01

    have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys...

  4. Extraction of Chemical Compounds from Medicinal Plants using Supercritical Carbon Dioxide

    OpenAIRE

    Topiař, Martin

    2014-01-01

    Objective of this work was to optimize the SFE from eucalyptus (Eucalyptus grandis L.) leaves, which find application both in medicine and as botanical insecticide. In particular, terpenes and terpenoids belong to active components of eucalyptus essential oil.

  5. Reference: 218 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the previously identified At5g23960 gene lacked the emission of three sesquiterp... monoterpene and sesquiterpene emissions suggesting that floral terpene volatiles must play some significant

  6. Effect of oregano and caraway essential oils on the production and flavor of cow milk

    DEFF Research Database (Denmark)

    Lejonklev, Johan; Kidmose, U.; Jensen, S.

    2016-01-01

    of essential oils, 0.2 and 1.0 g of oil/kg of dry matter, were added to the feed of lactating cows for 24 d. No effects on feed consumption, milk production, and methane emissions were observed. The amount and composition of volatile terpenes were altered in the produced milk based on the terpene content....... Essential oils from caraway (Carum carvi) seeds and oregano (Origanum vulgare) plants were included in dairy cow diets to study the effects on terpene composition and sensory properties of the produced milk, as well as feed consumption, production levels of milk, and methane emissions. Two levels...... of the essential oils used, with the total amount of terpenes increasing when essential oils were added to the diet. Sensory properties of the produced milk were altered as well, and milk samples from animals receiving essential oil treatment were perceived as having a fresher aroma and lower stored aroma...

  7. Short communication: Effect of oregano and caraway essential oils on the production and flavor of cow milk

    DEFF Research Database (Denmark)

    Lejonklev, Johan; Kidmose, Ulla; Jensen, Sidsel

    2016-01-01

    of essential oils, 0.2 and 1.0 g of oil/kg of dry matter, were added to the feed of lactating cows for 24 d. No effects on feed consumption, milk production, and methane emissions were observed. The amount and composition of volatile terpenes were altered in the produced milk based on the terpene content....... Essential oils from caraway (Carum carvi) seeds and oregano (Origanum vulgare) plants were included in dairy cow diets to study the effects on terpene composition and sensory properties of the produced milk, as well as feed consumption, production levels of milk, and methane emissions. Two levels...... of the essential oils used, with the total amount of terpenes increasing when essential oils were added to the diet. Sensory properties of the produced milk were altered as well, and milk samples from animals receiving essential oil treatment were perceived as having a fresher aroma and lower stored aroma...

  8. Antidiuretic Activity of the Methanol Extract of Aporusa lindleyana ...

    African Journals Online (AJOL)

    , unsaturated terpenes, unsaturated lactones, lucocyanins, tannins and polyphenols and cyanogenic glycosides. Conclusion: The methanol extract of Aporusa lindleyana has moderate and safe oral antidiuretic activity. Keywords: Aporusa ...

  9. New Insights on the Terpenome of the Red Seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Louisi Souza de Oliveira

    2015-02-01

    Full Text Available The red seaweeds belonging to the genus Laurencia are well known as halogenated secondary metabolites producers, mainly terpenoids and acetogennins. Several of these chemicals exhibit important ecological roles and biotechnological applications. However, knowledge regarding the genes involved in the biosynthesis of these compounds is still very limited. We detected 20 different genes involved in the biosynthesis of terpenoid precursors, and 21 different genes coding for terpene synthases that are responsible for the chemical modifications of the terpenoid precursors, resulting in a high diversity of carbon chemical skeletons. In addition, we demonstrate through molecular and cytochemical approaches the occurrence of the mevalonate pathway involved in the biosynthesis of terpenes in L. dendroidea. This is the first report on terpene synthase genes in seaweeds, enabling further studies on possible heterologous biosynthesis of terpenes from L. dendroidea exhibiting ecological or biotechnological interest.

  10. Herbal and alternative medicine: the impact on anesthesia

    African Journals Online (AJOL)

    Diabetes medications – additive hypoglycaemic effect. Ginkgo. (Ginkgo biloba). Oral – memory loss, Alzheimer's disease, circulatory disorders, intermittent claudication and tinnitus. Topical – frostbite and wound dressings. Terpene lactones,. Ginkgo flavone glycosides. Isorhamnetin, quercetin, kaempferol, and proantho-.

  11. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    Science.gov (United States)

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  12. The application of anethole, menthone, and eugenol in transdermal penetration of valsartan: Enhancement and mechanistic investigation.

    Science.gov (United States)

    Ahad, Abdul; Aqil, Mohd; Ali, Asgar

    2016-01-01

    The main barrier for transdermal delivery is the obstacle property of the stratum corneum. Many types of chemical penetration enhancers have been used to breach the skin barrier; among the penetration enhancers, terpenes are found as the most highly advanced, safe, and proven category. In the present investigation, the terpenes anethole, menthone, and eugenol were used to enhance the permeation of valsartan through rat skin in vitro and their enhancement mechanism was investigated. Skin permeation studies of valsartan across rat skin in the absence and the presence of terpenes at 1% w/v, 3% w/v, and 5% w/v in vehicle were carried out using the transdermal diffusion cell sampling system across rat skin and samples were withdrawn from the receptor compartment at 1, 2, 3, 4, 6, 8, 10, 12, and 24 h and analysed for drug content by the HPLC method. The mechanism of skin permeation enhancement of valsartan by terpenes treatment was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and differential scanning calorimetry (DSC). All the investigated terpenes provided a significant (p  menthone > eugenol with 4.4-, 4.0-, and 3.0-fold enhancement ratio over control, respectively. DSC study showed that the treatment of stratum corneum with anethole shifted endotherm down to lower melting point while FTIR studies revealed that anethole produced maximum decrease in peak height and area than other two terpenes. The investigated terpenes can be successfully used as potential enhancers for the enhancement of skin permeation of lipophilic drug.

  13. Skin disposition of d-camphor and l-menthol alone and together.

    Science.gov (United States)

    Cal, Krysztof

    2009-05-01

    The terpenes camphor and menthol are often used in topical preparations, although some data indicate concern about their skin penetration after application in most commonly used vehicles. The cutaneous disposition of these substances applied alone and together in either an oily solution or a hydrogel was evaluated ex vivo using full human skin mounted in flow-through diffusion cells. After 0.5, 1 and 2 h of application, the skin was progressively tape-stripped into three fractions of stratum corneum (SC) and the remaining epidermis with the dermis. The content of terpenes in the skin layers was determined using gas chromatography. Different penetration into the skin layers was observed depending on the type of vehicle. The highest SC absorption was noted when terpenes were applied in hydrogel, where the total content in the SC was 200 microg/cm2 for camphor and 400 microg/cm2 for menthol, and the total skin absorption was 310 and 460 microg/cm2, respectively. The SC penetration of both terpenes from the oily solution was the same (approximately equal to 35 microg/cm2). When both terpenes were present in the hydrogel the SC absorption decreased, the amounts of camphor and menthol in the SC being 50 and 190 microg/cm2, respectively (total skin accumulation was 120 and 220 microg/cm2, respectively). Such an effect was not observed for the oily solution. Copyright 2009 Prous Science, S.A.U. or its licensors. All rights reserved.

  14. Short communication: Effect of oregano and caraway essential oils on the production and flavor of cow milk.

    Science.gov (United States)

    Lejonklev, J; Kidmose, U; Jensen, S; Petersen, M A; Helwing, A L F; Mortensen, G; Weisbjerg, M R; Larsen, M K

    2016-10-01

    Many essential oils and their terpene constituents display antimicrobial properties, which may affect rumen metabolism and influence milk production parameters. Many of these compounds also have distinct flavors and aromas that may make their way into the milk, altering its sensory properties. Essential oils from caraway (Carum carvi) seeds and oregano (Origanum vulgare) plants were included in dairy cow diets to study the effects on terpene composition and sensory properties of the produced milk, as well as feed consumption, production levels of milk, and methane emissions. Two levels of essential oils, 0.2 and 1.0g of oil/kg of dry matter, were added to the feed of lactating cows for 24d. No effects on feed consumption, milk production, and methane emissions were observed. The amount and composition of volatile terpenes were altered in the produced milk based on the terpene content of the essential oils used, with the total amount of terpenes increasing when essential oils were added to the diet. Sensory properties of the produced milk were altered as well, and milk samples from animals receiving essential oil treatment were perceived as having a fresher aroma and lower stored aroma and flavor. The levels of essential oils used in this study mimic realistic levels of essential oils in herbs from feed, but were too low to affect milk production and methane emissions, and their inclusion in the animal diet did not adversely affect milk flavor. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis).

    Science.gov (United States)

    Ali, Mohammed; Li, Penghui; She, Guangbiao; Chen, Daofu; Wan, Xiaochun; Zhao, Jian

    2017-11-22

    A large number of terpenoid compounds have been extracted from different tissues of S. officinalis. However, the molecular genetic basis of terpene biosynthesis pathways is virtually unknown. In this study, approximately 6.6 Gb of raw data were generated from the transcriptome of S. officinalis leaves using Illumina HiSeq 2000 sequencing. After filtering and removing the adapter sequences from the raw data, the number of reads reached 21 million, comprising 98 million of high-quality nucleotide bases. 48,671 unigenes were assembled de novo and annotated for establishing a valid database for studying terpenoid biosynthesis. We identified 135 unigenes that are putatively involved in terpenoid metabolism, including 70 mevalonate and methyl-erythritol phosphate pathways, terpenoid backbone biosynthesis genes, and 65 terpene synthase genes. Moreover, five terpene synthase genes were studied for their functions in terpenoid biosynthesis by using transgenic tobacco; most transgenic tobacco plants expressing these terpene synthetic genes produced increased amounts of terpenoids compared with wild-type control. The combined data analyses from the transcriptome and metabolome provide new insights into our understanding of the complex metabolic genes in terpenoid-rich sage, and our study paves the way for the future metabolic engineering of the biosynthesis of useful terpene compounds in S. officinalis.

  16. Exploration and mining of the bacterial terpenome.

    Science.gov (United States)

    Cane, David E; Ikeda, Haruo

    2012-03-20

    Tens of thousands of terpenoids are present in both terrestrial and marine plants, as well as fungi. In the last 5-10 years, however, it has become evident that terpenes are also produced by numerous bacteria, especially soil-dwelling Gram-positive organisms such as Streptomyces and other Actinomycetes. Although some microbial terpenes, such as geosmin, the degraded sesquiterpene responsible for the smell of moist soil, the characteristic odor of the earth itself, have been known for over 100 years, few terpenoids have been identified by classical structure- or activity-guided screening of bacterial culture extracts. In fact, the majority of cyclic terpenes from bacterial species have only recently been uncovered by the newly developed techniques of "genome mining". In this new paradigm for biochemical discovery, bacterial genome sequences are first analyzed with powerful bioinformatic tools, such as the BLASTP program or Profile Hidden Markov models, to screen for and identify conserved protein sequences harboring a characteristic set of universally conserved functional domains typical of all terpene synthases. Of particular importance is the presence of variants of two universally conserved domains, the aspartate-rich DDXX(D/E) motif and the NSE/DTE triad, (N/D)DXX(S/T)XX(K/R)(D/E). Both domains have been implicated in the binding of the essential divalent cation, typically Mg(2+), that is required for cyclization of the universal acyclic terpene precursors, such as farnesyl and geranyl diphosphate. The low level of overall sequence similarity among terpene synthases, however, has so far precluded any simple correlation of protein sequence with the structure of the cyclized terpene product. The actual biochemical function of a cryptic bacterial (or indeed any) terpene synthase must therefore be determined by direct experiment. Two common approaches are (i) incubation of the expressed recombinant protein with acyclic allylic diphosphate substrates and

  17. Every plant for himself; the effect of a phenolic monoterpene on germination and biomass of Thymus pulegioides and T. serpyllum.

    DEFF Research Database (Denmark)

    Jensen, Catrine Grønberg; Ehlers, Bodil

    2009-01-01

    Thyme plants are known for their production of aromatic oils, whose main component is terpenes. The plants leach terpenes to their surroundings and thereby affect the seed germination and biomass of associated plants, but also potentially themselves. A variation in the dominant terpenes produced...... by thyme plants is found both within and among species. In Denmark two thyme species (Thymus pulegioides and T. serpyllum) are naturally occurring. The essential oil of T. pulegioides in Denmark is mainly dominated by one monoterpene; 'carvacrol'. In contrast, the essential oil of T. serpyllum constitutes...... and growth of both T. pulegioides and T. serpyllum. We compared the performance of seeds and seedlings of both thyme species on soil treated with carvacrol versus control soil. We found no effect of treatment on germination, but we detected a highly significant effect of treatment on seedling biomass...

  18. Seasonal variations in monoterpene profiles and ecophysiological traits in Mediterranean pine species of group halepensis

    Directory of Open Access Journals (Sweden)

    Michelozzi M

    2004-01-01

    Full Text Available Foliar and cortical terpene profile, and needle gas exchange and water potential of P. halepensis, P. brutia and P. eldarica were compared over three consecutive seasons (1996-1998 in an experimental plantation nearby Firenze (Italy. Terpene percentages in mature tissue (cortex and needle did not change in response to water stress during summer period and remained stable through seasons and years. Terpene profiles were not affected by seasonal drought, and are thus valuable to characterize Mediterranean pine species of the group “halepensis”. There was a threshold-type response of maximum daily gas exchange to decreasing predawn water potential in all pines. Net photosynthesis and needle conductance were linearly related, regardless of the species.

  19. Quality of carrots as affected by pre- and postharvest factors and processing

    DEFF Research Database (Denmark)

    Seljåsen, Randi; Kristensen, Hanne L; Lauridsen, Charlotte

    2013-01-01

    in content of terpenes, β-carotene, magnesium, iron and phenolics as well as a 1–4-fold difference in falcarindiol, bitter taste and sweet taste. Climate-related factors may cause a difference of up to 20-fold for terpenes, 82% for total sugars and 30–40% for β-carotene, sweet taste and bitter taste. Organic...... farming in comparison with conventional farming has shown 70% higher levels for magnesium and 10% for iron. Low nitrogen fertilisation level may cause up to 100% increase in terpene content, minor increase in dry matter (+4 to +6%) and magnesium (+8%) and reduction in β-carotene content (−8 to −11...... of furan accumulation. Sensory and chemical quality parameters of carrots are determined mainly by genetic and climate-related factors and to a minor extent by cultivation method. Retail temperature and storage atmosphere as well as heating procedure in processing have the highest impact in quality...

  20. Environmentally adapted energy production and working environment. Manufacture of wood pellets; Miljoeanpassad energiproduktion och arbetsmiljoe. Tillverkning av traepellets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez de Davila, Eliana

    2002-04-01

    The working environment at three wood pellet production plants was studied. Measurements were made of dust, microorganisms (bacteria and molds) and terpenes. Both stationary and personal sampling equipment were used. Dust sources and dust diffusion were mapped. Work in the raw material storage rooms and at the semi-automatic sack-filling stations can give high exposure to wood dusts (max. 4.7 mg/m{sup 3}). These high levels might cause irritations in the respiratory tract. Relatively high levels of terpenes were detected in the plant that did not dry wood shavings or sawdust. Pressing of non-dried shavings probably leads to emission of terpenes and other gaseous substances in the plant. Recommendations for improvements of the working conditions are given in the report.

  1. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique

    Science.gov (United States)

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-01-01

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography–mass spectrometry (GC–MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples. PMID:28231089

  2. Secondary organic aerosols from ozone-initiated reactions with emissions from wood-based materials and a ‘‘green’’ paint

    DEFF Research Database (Denmark)

    Toftum, Jørn; Freund, Sarah; Salthammer, Tunga

    2008-01-01

    This study examined the formation and growth of secondary organic aerosols (SOA) generated when ozone was added to a 1 m3 glass chamber that contained either pine shelving, oriented strand board (OSB), beech boards, or beach boards painted with an ‘‘eco’’ paint. The experiments were conducted...... with both a condensation nuclei counter and an optical counter, while terpenes were measured before and after the ozone exposure period using sorbent tubes. The pine boards emitted primarily a-pinene and 3-carene and lesser amounts of 5 other terpenes; when O3 was introduced, the particle counts increased...... with the mass concentration reaching w20 mgm3 at w15 ppb O3 and w160 mgm3 at w35 ppb O3. These experiments demonstrate that the emission of terpenes and potential generation of SOA varies greatly among different types of wood and pressed wood materials. In the case of the pine boards and painted beech boards...

  3. Examinations Of The Matrix Isolation Fourier Transform Infrared Spectra Of Organic Compounds.

    Science.gov (United States)

    Coleman, W. M.

    1989-12-01

    Matrix isolation Fourier transform infrared spectra (MI/FT-IR), mass spectra (MS), carbon-13 Nuclear Magnetic Resonance (13C-NMR) spectra, condensed phase infrared spectra and vapor phase infrared (IR) spectra are presented for a series of terpene compounds. Subtle differences in positional and configurational isomers commonly found with terpenes could be easily detected by the. MI/FT-IR spqctra. The results are comparable in some aspects to those obtainable from IJC-NMR and thin film IR, however, most importantly, they are acquired at the low nanogram level for MI/FTIR as compared to the milligram level for the other techniques. These results represent an advance in the technology available for the analysis of complex mixtures such as essential oils containing terpene-like molecules.

  4. Terpenoid biosynthesis off the beaten track: unconventional cyclases and their impact on biomimetic synthesis.

    Science.gov (United States)

    Baunach, Martin; Franke, Jakob; Hertweck, Christian

    2015-02-23

    Terpene and terpenoid cyclizations are counted among the most complex chemical reactions occurring in nature and contribute crucially to the tremendous structural diversity of this largest family of natural products. Many studies were conducted at the chemical, genetic, and biochemical levels to gain mechanistic insights into these intriguing reactions that are catalyzed by terpene and terpenoid cyclases. A myriad of these enzymes have been characterized. Classical textbook knowledge divides terpene/terpenoid cyclases into two major classes according to their structure and reaction mechanism. However, recent discoveries of novel types of terpenoid cyclases illustrate that nature's enzymatic repertoire is far more diverse than initially thought. This Review outlines novel terpenoid cyclases that are out of the ordinary. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Differential Gene Expression Network in Terpenoid Synthesis of Antrodia cinnamomea in Mycelia and Fruiting Bodies.

    Science.gov (United States)

    Lin, Yan-Liang; Ma, Li-Ting; Lee, Yi-Ru; Shaw, Jei-Fu; Wang, Sheng-Yang; Chu, Fang-Hua

    2017-03-08

    Antodia cinnamomea, a precious brown-rot fungus endemic to Taiwan, has pharmaceutical applications due to its diverse array of metabolites. The terpenoids found in A. cinnamomea contribute to its most important bioactivities. We identified several terpenoid compounds in A. cinnamomea and revealed that their content in mycelium and fruiting body were significantly different. Using next-generation sequencing and an in-house transcriptome database, we identified several terpene synthase (TPS) candidates. After sequence analysis and functional characterization, 10 out of 12 candidates were found to have single or multiple terpene synthesis functions. Most of the terpenoid compounds were found to confer important bioactivities. RT-PCR results showed a positive correlation between terpene synthase expression pattern and terpenoid content. In addition, we identified several modification enzyme candidates that may be involved in the postmodification of terpenoid compounds with a genomic DNA scaffold, and a putative genetic network.

  6. The Terpenoid Biosynthesis Toolkit of Trichoderma.

    Science.gov (United States)

    Bansal, Ravindra; Mukherjee, Prasun Kumar

    2016-04-01

    The widely used biotechnologically important fungi belonging to the genus Trichoderma are rich sources of secondary metabolites. Even though the genomes of several Trichoderma spp. have been published, and data are available on the genes involved in biosynthesis of non-ribosomal peptide synthetases and polyketide synthases, no genome-wide data are available for the terpenoid biosynthesis machinery in these organisms. In the present study, we have identified the genes involved in terpene biosynthesis in the genomes of three Trichoderma spp., viz., T. virens, T. atroviride and T. reesei. While the genes involved in the condensation steps are highly conserved across the three species, these fungi differed in the number and organization of terpene cyclases. T. virens genome harbours eleven terpene cyclases, while T. atroviride harbours seven, and T. reeseisix in their genomes; seven, three and two being part of putative secondary metabolism related gene clusters.

  7. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique

    Directory of Open Access Journals (Sweden)

    Ahmet Salih Sonmezdag

    2017-02-01

    Full Text Available The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography–mass spectrometry (GC–MS technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples.

  8. Theoretical and experimental analysis of the reaction mechanism of MrTPS2, a triquinane-forming sesquiterpene synthase from chamomile.

    Science.gov (United States)

    Hong, Young J; Irmisch, Sandra; Wang, Selina C; Garms, Stefan; Gershenzon, Jonathan; Zu, Liansuo; Köllner, Tobias G; Tantillo, Dean J

    2013-09-27

    Terpene synthases, as key enzymes of terpene biosynthesis, have garnered the attention of chemists and biologists for many years. Their carbocationic reaction mechanisms are responsible for the huge variety of terpene structures in nature. These mechanisms are amenable to study by using classical biochemical approaches as well as computational analysis, and in this study we combine quantum-chemical calculations and deuterium-labeling experiments to elucidate the reaction mechanism of a triquinane forming sesquiterpene synthase from chamomile. Our results suggest that the reaction from farnesyl diphosphate to triquinanes proceeds through caryophyllyl and presilphiperfolanyl cations and involves the protonation of a stable (-)-(E)-β-caryophyllene intermediate. A tyrosine residue was identified that appears to be involved in the proton-transfer process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    Erin L. Clark

    2014-02-01

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC, where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC and one population of jack pine (AB were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the

  10. Compost spreading in Mediterranean shrubland indirectly increases biogenic emissions by promoting growth of VOC-emitting plant parts

    Science.gov (United States)

    Olivier, Romain; Lavoir, Anne-Violette; Ormeño, Elena; Mouillot, Florent; Greff, Stéphane; Lecareux, Caroline; Staudt, Michael; Fernandez, Catherine

    2011-07-01

    We investigated the effect of sewage sludge compost spreading on plant growth and leaf terpene emissions and content of Quercus coccifera, Rosmarinus officinalis and Cistus albidus in a Mediterranean shrubland. Measurements were performed during 3 consecutive summers on 2 different plots treated in 2002 or 2007 with 50 or 100 tons of compost per hectare, corresponding to observations carried out 2 months to 7 years after spreading. A slight nutrient enrichment of soil and leaves ( R. officinalis and C. albidus) was observed, especially for phosphorous. Terpene emissions were not affected by compost spreading, although they tended to increase on treated plots after 6 and 7 years for R. officinalis and C. albidus respectively. Terpene content was not affected by any compost treatment. Leaf and stem growth were significantly enhanced by compost spreading after 2 and/or 7 years in all species with little difference between doses. Total leaf biomass on the last growth units was increased by more than 50% in C. albidus and more than 90% in Q. coccifera. The results suggest that compost spreading in Meditteranean shrublands has no or little direct effect on leaf terpene emissions, but indirectly leads to their increase through leaf biomass enhancement. Simulation of terpene emissions at stand level revealed an increase of terpene fluxes ranging between 6 and 13%, depending on the plant species. Overall, compost spreading was assessed to result in an emission rate of 1.1 kg ha -1 y -1 for a typical Q. coccifera shrubland, but can reach 2.6 kg ha -1 y -1 for a typical R. officinalis shrubland.

  11. Triterpenoids and Prevention of Prostate Cancer

    Science.gov (United States)

    2001-10-01

    NMR (CDC13): 6 178.5, 177.9, 174.2, 143.8, 122.6, 94.3, Chemistry of Terpenes and Terpenoids ; Newman, A. A., Ed.; 52.5, 51.8, 51.7, 47.0, 46.13, 46.09...hydroxyursolic acid and other ursane analogues from ursonic Terpenoids . XXXI. The structure and stereochemistry of medi- acid. Aust. J. Chem. 1993, 46...Triterpenoids. In aqueous HCl solution and EtOAc. The aqueous layer was Chemistry of Terpenes and Terpenoids ; Newman, A. A., Ed.; extracted with EtOAc (three

  12. [2H26]-1-epi-Cubenol, a completely deuterated natural product from Streptomyces griseus

    Directory of Open Access Journals (Sweden)

    Christian A. Citron

    2013-12-01

    Full Text Available During growth on fully deuterated medium the volatile terpene [2H26]-1-epi-cubenol was released by the actinomycete Streptomyces griseus. This compound represents the first completely deuterated terpene obtained by fermentation. Despite a few previous reports in the literature the operability of this approach to fully deuterated compounds is still surprising, because the strong kinetic isotope effect of deuterium is known to slow down all metabolic processes in living organisms. Potential applications of completely labelled compounds from natural sources in structure elucidation, biosynthetic or pharmacokinetic investigations are discussed.

  13. Development of an integrated approach for α-pinene recovery and sugar production from loblolly pine using ionic liquids

    DEFF Research Database (Denmark)

    Papa, Gabriella; Kirby, James; Murthy Konda, N. V. S. N.

    2017-01-01

    In the southeastern US, loblolly pine (Pinus taeda L.) is widely used as a feedstock in the wood, pulp and paper industry. In loblolly pine, the oleoresin is composed of terpenes and has long been a valuable source for a variety of chemicals, and has recently attracted interest from a biofuel...... perspective for the production of advanced cellulosic biofuels. To date, there have been very few examples where a single conversion process has enabled recovery of both terpenes and fermentable sugars in an integrated fashion. We have used the ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate [C2C1Im...

  14. Volatile compound profiling of Turkish Divle Cave cheese during production and ripening

    NARCIS (Netherlands)

    Ozturkoglu-Budak, S; Gursoy, A; Aykas, D P; Koçak, C; Dönmez, S; de Vries, R P; Bron, P A

    2016-01-01

    The formation of volatile compounds in Turkish Divle Cave cheese produced in 3 different dairy farms was determined during production and ripening, revealing 110 compounds including acids, alcohols, ketones, esters, and terpenes. The presence and concentration of these volatile compounds varied

  15. Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes

    Directory of Open Access Journals (Sweden)

    J. Joensuu

    2016-06-01

    Full Text Available Biogenic volatile organic compounds (BVOCs produced by plants have a major role in atmospheric chemistry. The different physicochemical properties of BVOCs affect their transport within and out of the plant as well as their reactions along the way. Some of these compounds may accumulate in or on the waxy surface layer of conifer needles and participate in chemical reactions on or near the foliage surface. The aim of this work was to determine whether terpenes, a key category of BVOCs produced by trees, can be found on the epicuticles of Scots pine (Pinus sylvestris L. and, if so, how they compare with the terpenes found in shoot emissions of the same tree. We measured shoot-level emissions of pine seedlings at a remote outdoor location in central Finland and subsequently analysed the needle surface waxes for the same compounds. Both emissions and wax extracts were clearly dominated by monoterpenes, but the proportion of sesquiterpenes was higher in the wax extracts. There were also differences in the terpene spectra of the emissions and the wax extracts. The results, therefore, support the existence of BVOC associated to the epicuticular waxes. We briefly discuss the different pathways for terpenes to reach the needle surfaces and the implications for air chemistry.

  16. Complexity and Uniqueness of the Aromatic Profile of Smoked and Unsmoked Herreño Cheese

    Directory of Open Access Journals (Sweden)

    Gemma Palencia

    2014-06-01

    Full Text Available In this work, the volatile fraction of unsmoked and smoked Herreño cheese, a type of soft cheese from the Canary Islands, has been characterized for the first time. In order to evaluate if the position in the smokehouse could influence the volatile profile of the smoked variety, cheeses smoked at two different heights were studied. The volatile components were extracted by Solid Phase Microextraction using a divinylbenzene/carboxen/ polydimethylsiloxane fiber, followed by Gas Chromatography/Mass Spectrometry. In total, 228 components were detected. The most numerous groups of components in the unsmoked Herreño cheese were hydrocarbons, followed by terpenes and sesquiterpenes, whereas acids and ketones were the most abundant. It is worth noticing the high number of aldehydes and ketones, and the low number of alcohols and esters in this cheese in relation to others, as well as the presence of some specific unsaturated hydrocarbons, terpenes, sesquiterpenes and nitrogenated derivatives. The smoking process enriches the volatile profile of Herreño cheese with ketones and diketones, methyl esters, aliphatic and aromatic aldehydes, hydrocarbons, terpenes, nitrogenated compounds, and especially with ethers and phenolic derivatives. Among these, methylindanones or certain terpenes like α-terpinolene, have not been detected previously in other types of smoked cheese. Lastly, the results obtained suggest a slightly higher smoking degree in the cheeses smoked at a greater height.

  17. Complexity and uniqueness of the aromatic profile of smoked and unsmoked Herreño cheese.

    Science.gov (United States)

    Palencia, Gemma; Ibargoitia, Maria Luisa; Fresno, Maria; Sopelana, Patricia; Guillén, Maria Dolores

    2014-06-12

    In this work, the volatile fraction of unsmoked and smoked Herreño cheese, a type of soft cheese from the Canary Islands, has been characterized for the first time. In order to evaluate if the position in the smokehouse could influence the volatile profile of the smoked variety, cheeses smoked at two different heights were studied. The volatile components were extracted by Solid Phase Microextraction using a divinylbenzene/carboxen/ polydimethylsiloxane fiber, followed by Gas Chromatography/Mass Spectrometry. In total, 228 components were detected. The most numerous groups of components in the unsmoked Herreño cheese were hydrocarbons, followed by terpenes and sesquiterpenes, whereas acids and ketones were the most abundant. It is worth noticing the high number of aldehydes and ketones, and the low number of alcohols and esters in this cheese in relation to others, as well as the presence of some specific unsaturated hydrocarbons, terpenes, sesquiterpenes and nitrogenated derivatives. The smoking process enriches the volatile profile of Herreño cheese with ketones and diketones, methyl esters, aliphatic and aromatic aldehydes, hydrocarbons, terpenes, nitrogenated compounds, and especially with ethers and phenolic derivatives. Among these, methylindanones or certain terpenes like α-terpinolene, have not been detected previously in other types of smoked cheese. Lastly, the results obtained suggest a slightly higher smoking degree in the cheeses smoked at a greater height.

  18. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Smedsgaard, Jørn; Larsen, Thomas Ostenfeld

    2004-01-01

    by 13 species, penicillic acid which is produced by 10 species, and terrestric acid and 2-methyl isoborneol that are produced by 8 species. Most species produce both polyketides, terpenes and amino acid derived extrolites and a large number of the species produce bioactive metabolites. The nephrotoxic...

  19. Phytochemical and microscopical evaluation of Desmodium ...

    African Journals Online (AJOL)

    Calcium oxalate crystals were observed in between veins in fresh leaf and numerous unicellular covering trichomes were observed all over the epidermis. The thin layer chromatography(TLC) of the leaf powder of the plant revealed the presence of tannins, steroids, flavonoids and terpenes but absence of alkaloid.

  20. Discovery and reconstitution of the secoiridoid pathway of Catharanthus roseus

    NARCIS (Netherlands)

    Dong, L.

    2014-01-01

      Terpene indole alkaloids (TIAs) are important plant-produced secondary metabolites for humans, because of their anti-cancer properties. The production of TIAs still fully relies on extraction from medicinal plants like Catharanthus roseus, which only contains extreme low amounts of these