WorldWideScience

Sample records for terpene oleoresin formation

  1. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies.

    Science.gov (United States)

    Schmidt, Axel; Wächtler, Betty; Temp, Ulrike; Krekling, Trygve; Séguin, Armand; Gershenzon, Jonathan

    2010-02-01

    The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C(10)) and diterpenes (C(20)). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C(10)) and geranylgeranyl diphosphate (C(20)). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate.

  2. A Bifunctional Geranyl and Geranylgeranyl Diphosphate Synthase Is Involved in Terpene Oleoresin Formation in Picea abies1[W][OA

    Science.gov (United States)

    Schmidt, Axel; Wächtler, Betty; Temp, Ulrike; Krekling, Trygve; Séguin, Armand; Gershenzon, Jonathan

    2010-01-01

    The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C10) and diterpenes (C20). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C10), farnesyl diphosphate (C15), and geranylgeranyl diphosphate (C20) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C10) and geranylgeranyl diphosphate (C20). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate. PMID:19939949

  3. Estimating terpene and terpenoid emissions from conifer oleoresin composition

    Science.gov (United States)

    Flores, Rosa M.; Doskey, Paul V.

    2015-07-01

    The following algorithm, which is based on the thermodynamics of nonelectrolyte partitioning, was developed to predict emission rates of terpenes and terpenoids from specific storage sites in conifers: Ei =xoriγoripi∘ where Ei is the emission rate (μg C gdw-1 h-1) and pi∘ is the vapor pressure (mm Hg) of the pure liquid terpene or terpenoid, respectively, and xori and γori are the mole fraction and activity coefficient (on a Raoult's law convention), respectively, of the terpene and terpenoid in the oleoresin. Activity coefficients are calculated with Hansen solubility parameters that account for dispersive, polar, and H-bonding interactions of the solutes with the oleoresin matrix. Estimates of pi∘ at 25 °C and molar enthalpies of vaporization are made with the SIMPOL.1 method and are used to estimate pi∘ at environmentally relevant temperatures. Estimated mixing ratios of terpenes and terpenols were comparatively higher above resin-acid- and monoterpene-rich oleoresins, respectively. The results indicated a greater affinity of terpenes and terpenols for the non-functionalized and carboxylic acid containing matrix through dispersive and H-bonding interactions, which are expressed in the emission algorithm by the activity coefficient. The correlation between measured emission rates of terpenes and terpenoids for Pinus strobus and emission rates predicted with the algorithm were very good (R = 0.95). Standard errors for the range and average of monoterpene emission rates were ±6 - ±86% and ±54%, respectively, and were similar in magnitude to reported standard deviations of monoterpene composition of foliar oils (±38 - ±51% and ±67%, respectively).

  4. Antibacterial terpenes from the oleo-resin of Commiphora molmol (Engl.).

    Science.gov (United States)

    Rahman, M Mukhlesur; Garvey, Mark; Piddock, Laura J V; Gibbons, Simon

    2008-10-01

    Two octanordammaranes, mansumbinone (1) and 3,4-seco-mansumbinoic acid (2), and two sesquiterpenes, beta-elemene (3) and T-cadinol (4) have been isolated from the oleo-resin of Commiphora molmol (Engl.). The structures of these compounds were established unambiguously by a series of 1D and 2D-NMR analyses. We have also unambiguously assigned all (1)H and (13)C NMR resonances for 2 and revised its (13)C data. The crude extract of the oleo-resin of C. molmol displayed potentiation of ciprofloxacin and tetracycline against S. aureus, several Salmonella enterica serovar Typhimurium strains and two K. pneumoniae strains. The antibacterial activity of terpenes 1-4 was determined against a number of Staphylococcus aureus strains: SA1199B, ATCC25923, XU212, RN4220 and EMRSA15 and minimum inhibitory concentration (MIC) values were found to be in the range of 4-256 microg/ml. The highest activity was observed by the seco-A-ring octanordammarane 2 with an MIC of 4 microg/ml against SA1199B, a multidrug-resistant strain which over-expresses the NorA efflux transporter, the major characterized antibiotic pump in this species. This activity compared favorably to the antibiotic norfloxacin with an MIC of 32 microg/ml. Compound 2 also displayed weak potentiation of ciprofloxacin and tetracycline activity against strains of Salmonella enterica serovar Typhimurium SL1344 and L10. (c) 2008 John Wiley & Sons, Ltd.

  5. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion

    Energy Technology Data Exchange (ETDEWEB)

    Himejima, Masaki; Hobson, K.R.; Otsuka, Toshikazu; Wood, D.L.; Kubo, Isao (Univ. of California, Berkeley (United States))

    1992-10-01

    The oleoresin of the ponderosa pine, Pinus ponderosa (Pinaceae) exhibited broad antimicrobial activity. In order to identify the active compounds, the oleoresin was steam distilled to give a distillate and residue. The distillate contained mainly monoterpenes and some sesquiterpenes, while the residue consisted chiefly of four structurally related diterpene acids. An antimicrobial assay with the pure compounds indicated that the monoterpenes were active primarily against fungi, but there was also some activity against gram-positive bacteria. The diterpene acids, in contrast, only exhibited activity against gram-positive bacteria. Although not all of the identified sesquiterpenes could be tested, longifolene showed activity only against gram-positive bacteria. Therefore, it appears that the oleoresin of P. ponderosa functions as a biochemical defense against microbial invasion.

  6. Copaifera duckei Oleoresin and Its Main Nonvolatile Terpenes: In Vitro Schistosomicidal Properties.

    Science.gov (United States)

    Borges, Carly H G; Cruz, Michele G; Carneiro, Luiza J; da Silva, Jonas J M; Bastos, Jairo K; Tavares, Denise C; de Oliveira, Pollyanna F; Rodrigues, Vanderlei; Veneziani, Rodrigo C S; Parreira, Renato L T; Caramori, Giovanni F; Nagurniak, Gláucio R; Magalhães, Lizandra G; Ambrósio, Sérgio R

    2016-10-01

    In this article, the in vitro schistosomicidal effects of three Brazilian Copaifera oleoresins (C. duckei, C. langsdorffii, and C. reticulata) are reported. From these botanical sources, the oleoresin of C. duckei (OCd) demonstrated to be the most promising, displaying LC50 values of 75.8, 50.6, and 47.2 μg/ml at 24, 48, and 72 h of incubation, respectively, against adult worms of Schistosoma mansoni, with a selectivity index of 10.26. Therefore, the major compounds from OCd were isolated, and the diterpene, (-)-polyalthic acid (PA), showed to be active (LC50 values of 41.7, 36.2, and 33.4 μg/ml, respectively, at 24, 48, and 72 h of incubation). Moreover, OCd and PA affected the production and development of eggs, and OCd modified the functionality of the tegument of S. mansoni. Possible synergistic and/or additive effects of this balsam were also verified when a mixture of the two of its main compounds (PA and ent-labd-8(17)-en-15,18-dioic acid) in the specific proportion of 3:1 (w/w) was tested. The obtained results indicate that PA should be considered for further investigations against S. mansoni, such as, synergistic (combination with praziquantel (PZQ)) and in vivo studies. It also shows that diterpenes are an important class of natural compounds for the investigation of agents capable of fighting the parasite responsible for human schistosomiasis. © 2016 Wiley-VHCA AG, Zürich.

  7. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots.

    Science.gov (United States)

    Yahyaa, Mosaab; Tholl, Dorothea; Cormier, Guy; Jensen, Roderick; Simon, Philipp W; Ibdah, Mwafaq

    2015-05-20

    Plants produce an excess of volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and aroma of carrots (Daucus carota L.). A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of volatile terpenes in a diverse collection of fresh carrots (D. carota L.). Here, we report on a transcriptome-based identification and functional characterization of two carrot terpene synthases, the sesquiterpene synthase, DcTPS1, and the monoterpene synthase, DcTPS2. Recombinant DcTPS1 protein produces mainly (E)-β-caryophyllene, the predominant sesquiterpene in carrot roots, and α-humulene, while recombinant DcTPS2 functions as a monoterpene synthase with geraniol as the main product. Both genes are differentially transcribed in different cultivars and during carrot root development. Our results suggest a role for DcTPS genes in carrot aroma biosynthesis.

  8. Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation.

    Science.gov (United States)

    Schmidt, Axel; Gershenzon, Jonathan

    2007-11-01

    The conifer Picea abies (Norway spruce) employs terpenoid-based oleoresins as part of its constitutive and induced defense responses to herbivores and pathogens. The isoprenyl diphosphate synthases are branch-point enzymes of terpenoid biosynthesis leading to the various terpene classes. We isolated three genes encoding isoprenyl diphosphate synthases from P. abies cDNA libraries prepared from the bark and wood of methyl jasmonate-treated saplings and screened via a homology-based PCR approach using degenerate primers. Enzyme assays of the purified recombinant proteins expressed in Escherichia coli demonstrated that one gene (PaIDS 4) encodes a farnesyl diphosphate synthase and the other two (PaIDS 5 and PaIDS 6) encode geranylgeranyl diphosphate synthases. The sequences have moderate similarity to those of farnesyl diphosphate and geranylgeranyl diphosphate synthases already known from plants, and the kinetic properties of the enzymes are not unlike those of other isoprenyl diphosphate synthases. Of the three genes, only PaIDS 5 displayed a significant increase in transcript level in response to methyl jasmonate spraying, suggesting its involvement in induced oleoresin biosynthesis.

  9. Utilization of dynamic light scattering to evaluate Pterodon emarginatus oleoresin-based nanoemulsion formation by non-heating and solvent-free method

    Directory of Open Access Journals (Sweden)

    Anna E.M.F.M. Oliveira

    Full Text Available Abstract Pterodon emarginatus Vogel, Fabaceae, is a great source of bioactive compounds. The most known and studied herbal derivative from this species is an ambar-colored oleoresin that contains vouacapane diterpenes and volatile terpenoids, such as β-caryophyllene. Some recent papers aimed to generate nanoemulsions using this oleoresin for biological applications. However, they used high-energy methods that elevate costs of the process or heating procedures, which offer the disadvantage of possible volatile substances loss. Thus, as part of our ongoing studies with nanobiotechnology of natural products, especially regarding preparation of nanoemulsions with promising plant-based oils by low cost and low energy methods, we decided to evaluate the ability of non-heating and solvent-free method to generate P. emarginatus oleoresin-based nanoemulsions. Two non-ionic surfactants were used to generate the nanoemulsions by a simple homogenization method with vortex stirrer. Low mean droplet size (<180 nm and low polydispersity index (<0.200 were observed even after one day of preparation. The low coefficient of variation for the analyzed parameters of different batches and similar profile for droplet size distribution suggested reproducibility of the method. After 30 days, some degree of droplet growth was observed on nanoemulsion prepared with polyethyleneglycol 400 monooleate, while almost no alteration was observed for nanoemulsion prepared with polysorbate 85. Programmed temperature ramp analysis revealed that no major effects on droplet size and polydispersity index were observed, suggesting the robustness of formed nanoemulsions. Thus, the present study shows for the first time the formation of sucupira-based nanoemulsions by a simple, low cost and ecofriendly method. This study opens new perspectives for bioactive evaluation of this novel nano-product.

  10. Induction of Volatile Terpene Biosynthesis and Diurnal Emission by Methyl Jasmonate in Foliage of Norway Spruce1

    Science.gov (United States)

    Martin, Diane M.; Gershenzon, Jonathan; Bohlmann, Jörg

    2003-01-01

    Terpenoids are characteristic constitutive and inducible defense chemicals of conifers. The biochemical regulation of terpene formation, accumulation, and release from conifer needles was studied in Norway spruce [Picea abies L. (Karst)] saplings using methyl jasmonate (MeJA) to induce defensive responses without inflicting physical damage to terpene storage structures. MeJA treatment caused a 2-fold increase in monoterpene and sesquiterpene accumulation in needles without changes in terpene composition, much less than the 10- and 40-fold increases in monoterpenes and diterpenes, respectively, observed in wood tissue after MeJA treatment (D. Martin, D. Tholl, J. Gershenzon, J. Bohlmann [2002] Plant Physiol 129: 1003–1018). At the same time, MeJA triggered a 5-fold increase in total terpene emission from foliage, with a shift in composition to a blend dominated by oxygenated monoterpenes (e.g. linalool) and sesquiterpenes [e.g. (E)-β-farnesene] that also included methyl salicylate. The rate of linalool emission increased more than 100-fold and that of sesquiterpenes increased more than 30-fold. Emission of these compounds followed a pronounced diurnal rhythm with the maximum amount released during the light period. The major MeJA-induced volatile terpenes appear to be synthesized de novo after treatment, rather than being released from stored terpene pools, because they are almost completely absent from needle oleoresin and are the major products of terpene synthase activity measured after MeJA treatment. Based on precedents in other species, the induced emission of terpenes from Norway spruce foliage may have ecological and physiological significance. PMID:12857838

  11. Processing of larch oleoresin

    Energy Technology Data Exchange (ETDEWEB)

    Delkova, K.K. Repyakh, S.M.; Rachinskii, A.V.; Gornostaeva, L.I.; Manakov, V.A.; Ivanov, A.F.

    1978-01-01

    Larch oleoresin was processed by conventional method involving distillation of turpentine by direct steam or CO/sub 2/ clarification with H/sub 3/PO/sub 4/ in slightly higher concentration than that used for pine oleoresin. Larch rosin has the following composition: resin acids 57.13, unsaponifiable matter 24.60, fatty acids, 9.24, and oxidized matter 8.68%. In general, larch rosin is slightly inferior to pine rosin, but still meets the basic requirements.

  12. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C[sub 10]) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C[sub 15] C[sub 20], C[sub 30], C[sub 40]) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C[sub 15]) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  13. Stimulant Paste Preparation and Bark Streak Tapping Technique for Pine Oleoresin Extraction.

    Science.gov (United States)

    Füller, Thanise Nogueira; de Lima, Júlio César; de Costa, Fernanda; Rodrigues-Corrêa, Kelly C S; Fett-Neto, Arthur G

    2016-01-01

    Tapping technique comprises the extraction of pine oleoresin, a non-wood forest product consisting of a complex mixture of mono, sesqui, and diterpenes biosynthesized and exuded as a defense response to wounding. Oleoresin is used to produce gum rosin, turpentine, and their multiple derivatives. Oleoresin yield and quality are objects of interest in pine tree biotechnology, both in terms of environmental and genetic control. Monitoring these parameters in individual trees grown in the field provides a means to examine the control of terpene production in resin canals, as well as the identification of genetic-based differences in resinosis. A typical method of tapping involves the removal of bark and application of a chemical stimulant on the wounded area. Here we describe the methods for preparing the resin-stimulant paste with different adjuvants, as well as the bark streaking process in adult pine trees.

  14. Foliar and cortex oleoresin variability of silver fir (Abies alba Mill.) in Albania.

    Science.gov (United States)

    Zeneli, G; Tsitsimpikou, C; Petrakis, P V; Naxakis, G; Habili, D; Roussis, V

    2001-01-01

    Terpene composition of needle and cortical oleoresin from lateral shoots were analyzed by GC/MS for four Silver fir (Abies alba Mill.) populations scattered in natural species range in Albania. More than sixty compounds were detected in the needle oleoresin, which was characterized by a high content of alpha-pinene, camphene, beta-pinene, limonene and bornyl acetate. Three monoterpenes, alpha-pinene, beta-pinene and limonene, and two sesquiterpenes, beta-caryophyllene and germacrene D, comprised the majority of cortical oleoresin. The terpene composition differences among the populations that led to the recognition of two chemotypes. The needle oleoresin from the provinces of Puka, Bulqiza and Llogara were characterised by high amounts of beta-pinene, camphene and alpha-pinene and low amounts of limonene, while that from Drenova had high amounts of beta-pinene and limonene. A similar pattern was found in the cortical oleoresin with the exception of camphene that was a minor contributor. Geographical and seasonal variation between the populations was, also, investigated. Multivariate analysis of both needle and cortical oleoresin separated Drenova (southeastern population) from the other sites. When both major monoterpenes and sesquiterpenes were considered four chemical profiles could be attributed. Based on their chemical profiles, the populations can be divided into two groups: Populations with high content of beta-pinene and alpha-pinene but a low content of limonene (Puka, Bulqiza and Llogara), typical of most of A. alba populations in all its distribution range. Population with a high content of limonene and a moderate content of beta-pinene and alpha-pinene (Drenova).

  15. 21 CFR 73.615 - Turmeric oleoresin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Turmeric oleoresin. 73.615 Section 73.615 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.615 Turmeric oleoresin. (a) Identity. (1) The color additive turmeric oleoresin is the combination of flavor and color principles obtained from turmeric (Curcuma longa...

  16. 21 CFR 73.345 - Paprika oleoresin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Paprika oleoresin. 73.345 Section 73.345 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.345 Paprika oleoresin. (a) Identity. (1) The color additive paprika oleoresin is the combination of flavor and color principles obtained from paprika (Capsicum annuum...

  17. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera.

    Science.gov (United States)

    Matarese, Fabiola; Cuzzola, Angela; Scalabrelli, Giancarlo; D'Onofrio, Claudio

    2014-09-01

    Plants produce a plethora of volatile organic compounds (VOCs) which are important in determining the quality and nutraceutical properties of horticultural food products, including the taste and aroma of wine. Given that some of the most prevalent grape aroma constituents are terpenoids, we investigated the possible variations in the relative expression of terpene synthase (TPS) genes that depend on the organ. We thus analysed mature leaves, young leaves, stems, young stems, roots, rachis, tendrils, peduncles, bud flowers, flowers and berries of cv Moscato bianco in terms of their VOC content and the expression of 23 TPS genes. In terms of the volatile characterization of the organs by SPME/GC-MS analysis, flower buds and open flowers appeared to be clearly distinct from all the other organs analysed in terms of their high VOC concentration. Qualitatively detected VOCs clearly separated all the vegetative organs from flowers and berries, then the roots and rachis from other vegetative organs and flowers from berries, which confirms the specialization in volatile production among different organs. Our real-time RT-PCR results revealed that the majority of TPS genes analysed exhibited detectable transcripts in all the organs investigated, while only some were found to be expressed specifically in one or just a few organs. In most cases, we found that the known products of the in vitro assay of VvTPS enzymes corresponded well to the terpenes found in the organs in which the encoding gene was expressed, as in the case of (E)-β-caryophyllene synthases, α-terpineol synthase and α-farnesene synthase. In addition, we found groups of homologous TPS genes, such as (E)-β-caryophyllene and β-ocimene synthases, expressed distinctively in the various tissues. This thus confirmed the subfunctionalization events and a specialization on the basis of the organs in which they are mostly expressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Induced Terpene Accumulation in Norway Spruce Inhibits Bark Beetle Colonization in a Dose-Dependent Manner

    Science.gov (United States)

    Zhao, Tao; Krokene, Paal; Hu, Jiang; Christiansen, Erik; Björklund, Niklas; Långström, Bo; Solheim, Halvor; Borg-Karlson, Anna-Karin

    2011-01-01

    Background Tree-killing bark beetles (Coleoptera, Scolytinae) are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization. Methods To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L.) we inoculated 20 mature Norway spruce Picea abies (L.) Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem.) C. Moreau, and investigated induced terpene levels and beetle colonization in the bark. Results Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7) had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m−2) and 2.6% as much gallery length (0.029 m m−2 vs. 1.11 m m−2) as trees with low terpene levels (n = 6). There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g−1 dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g−1 dry phloem trees were virtually unattacked. Conclusion/Significance This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles. PMID:22028932

  19. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner.

    Science.gov (United States)

    Zhao, Tao; Krokene, Paal; Hu, Jiang; Christiansen, Erik; Björklund, Niklas; Långström, Bo; Solheim, Halvor; Borg-Karlson, Anna-Karin

    2011-01-01

    Tree-killing bark beetles (Coleoptera, Scolytinae) are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization. To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L.) we inoculated 20 mature Norway spruce Picea abies (L.) Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem.) C. Moreau, and investigated induced terpene levels and beetle colonization in the bark. Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7) had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m(-2)) and 2.6% as much gallery length (0.029 m m(-2) vs. 1.11 m m(-2)) as trees with low terpene levels (n = 6). There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g(-1) dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g(-1) dry phloem trees were virtually unattacked. This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles.

  20. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner.

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    Full Text Available BACKGROUND: Tree-killing bark beetles (Coleoptera, Scolytinae are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization. METHODS: To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L. we inoculated 20 mature Norway spruce Picea abies (L. Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem. C. Moreau, and investigated induced terpene levels and beetle colonization in the bark. RESULTS: Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7 had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m(-2 and 2.6% as much gallery length (0.029 m m(-2 vs. 1.11 m m(-2 as trees with low terpene levels (n = 6. There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g(-1 dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g(-1 dry phloem trees were virtually unattacked. CONCLUSION/SIGNIFICANCE: This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles.

  1. Synthesis and characterization of nano-encapsulated black pepper oleoresin using hydroxypropyl beta-cyclodextrin for antioxidant and antimicrobial applications.

    Science.gov (United States)

    Teixeira, Bruna N; Ozdemir, Necla; Hill, Laura E; Gomes, Carmen L

    2013-12-01

    Previous studies have reported antimicrobial and antioxidant activity of black pepper oleoresin which is associated to its phenolic compounds and piperine. The ability of cyclodextrins to form an inclusion complex with a guest molecule could improve black pepper oleoresin application, bioavailability, and stability in foods. Hydroxypropyl beta-cyclodextrin (HPBCD) inclusion complex with black pepper olereosin were synthesized using the kneading method and characterized for its physico-chemical properties and its antioxidant and antimicrobial activities. Inclusion complex size was 103.9 ± 7.6 nm and indicated to be a polydisperse system. The entrapment efficiency was 78.3 ± 3.6%, which suggests that other constituents in black pepper oleoresin have higher affinities for HPBCD than piperine (major compound in black pepper oleoresin). Thermograms showed the disappearance of oxidation peaks of black pepper oleoresin, proving complex formation with HPBCD. Phase solubility results indicated 1:1 stoichiometric inclusion complex formation and an increase of black pepper oleoresin aqueous solubility with HPBCD concentration. Nano-encapsulation with HPBCD did not affect (P > 0.05) total phenolic content; however, it enhanced (P black pepper oleoresin antioxidant activity. Black pepper oleoresin and its inclusion complex were analyzed for their antimicrobial activity against Escherichia coli K12 and Salmonella enterica serovar Typhimurium LT2. Both free and encapsulated black pepper oleoresin effectively inhibited bacterial growth within the concentration range tested. Black pepper oleoresin encapsulated in HPBCD was able to inhibit Salmonella at lower (P black pepper oleoresin-HPBCD nanocapsules could have important applications in the food industry as antimicrobial and antioxidant system. © 2013 Institute of Food Technologists®

  2. Effects of Copaifera duckei Dwyer oleoresin on the cell wall and cell division of Bacillus cereus.

    Science.gov (United States)

    Gomes Dos Santos, Elizabeth Cristina; Donnici, Claudio Luis; Camargos, Elizabeth Ribeiro da Silva; Augusto de Rezende, Adriana; Andrade, Eloisa Helena de Aguiar; Soares, Luiz Alberto Lira; Farias, Luiz de Macêdo; Roque de Carvalho, Maria Auxiliadora; Almeida, Maria das Graças

    2013-07-01

    The aim of this work was to evaluate the antibacterial activity of Copaifera duckei oleoresin and to determine its possible mechanism of action against bacteria of clinical and food interest. The antibacterial activity was determined by agar diffusion and dilution methods; the mechanism of action by transmission electron microscopy and by SDS-PAGE; the bioactive compounds by bioautography; and the chemical analysis by GC/MS. Oleoresin showed activity against nine of the 11 strains of bacteria tested. Bacillus cereus was the most sensitive, with a MIC corresponding to 0.03125 mg ml(-1) and with a bactericidal action. Oleoresin acted on the bacterial cell wall, removing proteins and the S-layer, and interfering with the cell-division process. This activity probably can be attributed to the action of terpenic compounds, among them the bisabolene compound. Gram-negative bacteria tested were not inhibited. C. duckei oleoresin is a potential antibacterial, suggesting that this oil could be used as a therapeutic alternative, mainly against B. cereus.

  3. Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth

    Science.gov (United States)

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina; Heitto, Arto; Lutz, Anna; Hallquist, Mattias; D'Ambro, Emma L.; Rissanen, Matti P.; Hao, Liqing; Schobesberger, Siegfried; Kulmala, Markku; Mauldin, Roy L.; Makkonen, Ulla; Sipilä, Mikko; Petäjä, Tuukka; Thornton, Joel A.

    2017-03-01

    We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10-15 to 10-6 µg m-3 (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10-3 to 10-2 µg m-3 ( 106-107 molecules cm-3) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of 5% to early stage particle growth from the 60 gaseous dimer compounds.

  4. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Min-Hung Chen

    2016-12-01

    Full Text Available As local varieties of citrus fruit in Taiwan, Ponkan (Citrus reticulata Blanco, Tankan (C. tankan Hayata, and Murcott (C. reticulate × C. sinensis face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g, limonoids (111.7~406.2 mg/g, and phytosterols (686.1~1316.4 μg/g. The DPPH (1,1-Diphenyl-2-picrylhydrazyl, ABTS [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.

  5. Bacterial terpene cyclases.

    Science.gov (United States)

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references.

  6. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1992-01-01

    This report describes accomplishments over the past year on understanding of terpene synthesis in mint plants and sage. Specifically reported are the fractionation of 4-S-limonene synthetase, the enzyme responsible for the first committed step to monoterpene synthesis, along with isolation of the corresponding RNA and DNA cloning of its gene; the localization of the enzyme within the oil glands, regulation of transcription and translation of the synthetase, the pathway to camphor biosynthesis,a nd studies on the early stages and branch points of the isoprenoid pathway.

  7. Chemical variability of Copaifera reticulata Ducke oleoresin.

    Science.gov (United States)

    Herrero-Jáuregui, Cristina; Casado, Miguel A; das Graças Bichara Zoghbi, Maria; Célia Martins-da-Silva, Regina

    2011-04-01

    The copaiba tree (Copaifera spp.) produces an oleoresin which is highly valued due to its medicinal properties. The chemical composition of C. reticulata oleoresin was characterized, and its variability related to seasonal variation (dry and rainy seasons), to successive extractions, and to several factors associated with tree morphometry, disease, and surrounding vegetation structure was investigated. Oleoresin was collected from 24 C. reticulata individuals between October 2006 and March 2008. For seven individuals, oleoresin was extracted for a second time between three and nine months after the first extraction. For each tree, several morphometric variables, viz., the presence of termites, vines, and holes as well as the soil type and surrounding vegetation structure, were recorded. The chemical composition and concentration of the main volatile compounds were identified by GC/MS. Almost 100% of the constituents were sesquiterpenes, the three main ones being β-caryophyllene, trans-α-bergamotene, and β-bisabolene. A classification analysis separated the C. reticulata individuals in two main groups and further divided one of the main groups in two subgroups, which were defined by different concentrations of the three main compounds. The results showed high intra-population variability in the composition and concentration of sesquiterpenes, this being comparable to the interspecific variability. It was not possible to determine a clear influence of environmental, morphometrical, and structural factors on the oleoresin composition, although some compounds varied according to the soil type, the volume of oleoresin extracted, and the crown surface. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  8. 21 CFR 178.3930 - Terpene resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components of...

  9. Quantitative analysis of the flavonoid glycosides and terpene trilactones in the extract of Ginkgo biloba and evaluation of their inhibitory activity towards fibril formation of β-amyloid peptide.

    Science.gov (United States)

    Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong

    2014-04-10

    The standard extract of Ginkgo biloba leaves (EGb761) is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ) and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer's Disease (AD), and the inhibition of Aβ aggregation and destabilization of the preformed fibrils represent viable approaches for the prevention and treatment of AD. Flavonoid glycosides and terpene trilactones (TTLs) are the two main components of EGb761 which represent 24 and 6% of the overall content, respectively. In our research, seven abundant flavonoid glycosides 1-7 were isolated from the extract of Ginkgo biloba leaves and characterized by spectroscopic analysis. Furthermore, an ultra-high performance liquid chromatography method was established for the simultaneous quantification of these seven flavonoids. The inhibitory activities of these flavonoids, as well as four TTLs, i.e., ginkgolides A, B, and C and bilobalide (compounds 8-11), were evaluated towards Aβ42 fibril formation using a thioflavin T fluorescence assay. It was found that three flavonoids 1, 3 and 4 exhibited moderate inhibitory activities, whereas the other four flavonoids 2, 5, 6 and 7, as well as the four terpene trilactones, showed poor activity. This is the first report of the inhibition of Aβ fibril formation of two characteristic acylated flavonoid glycosides 6, 7 in Ginkgo leaves, on the basis of which the structure-activity relationship of these flavonoids 1-7 was discussed.

  10. SOLVENT EXTRACTION OF GINGER OLEORESIN USING ULTRASOUND

    Directory of Open Access Journals (Sweden)

    Normalina Arpi

    2011-11-01

    Full Text Available The use of ultrasound in extraction process creates novel and interesting methodologies, which are oftencomplementary to conventional extraction methods. In the present study, the use of ultrasound to extract oleoresin fromginger (Zingiber officinale R. was investigated. The extraction was performed by using ethanol as solvent in thepresence of ultrasonic irradiations operating at frequency of 42 kHz at extraction temperature of 60 oC. The oleoresinextracted was in the form of dark thick liquid with specific ginger flavor. Based on GC-MS analysis, the use ofultrasound was not give an effect on alteration of main component in ginger oleoresin. The main component inextracted ginger oleoresin was zingerone. Gingerol as one of the pungent principle of the ginger oleoresin was notdetected due to decomposition of gingerol at a temperature above 45 oC. Extraction rate of ultrasound-assistedextraction was about 1.75 times more rapid than a conventional system based on soxhlet. The scanning electronmicroscopy images provided more evidence for the mechanical effects of ultrasound, mainly appearing on cells’ wallsand shown by the destruction of cells, facilitating the release of their contents.

  11. Production of Oleoresin from southern pine trees.

    Science.gov (United States)

    T.A. Harrington

    1969-01-01

    Developments in techniques, methods, and equipment for producing oleoresin from the living pine are discussed. Particular emphasis is given to the need for mechanized production methods if this ancient industry is to survive the competition from other sources of rosin and turpentine.

  12. Identification of oleoresin in epoxy-embedded slash pine tissue

    Energy Technology Data Exchange (ETDEWEB)

    Birchem, R.; Brown, C.L.

    1978-01-01

    Sudan black B stains oleoresin blue-black in epoxy-embedded material as well as in living tissue. The Sudan black B staining properties of oleoresin are similar to those of lipid, but it can be distinguished from tannin, which stains brown. Practically all oleoresin present in resin ducts and intercellular spaces, and much of that contained in epithelial and ray cells, is extracted in preparatory procedures for electron microscopy. A fixation procedure is proposed which preserves significantly more oleoresin in situ. The use of Sudan black B enables one to localize oleoresin by light microscopy, and permits direct comparison of adjacent sections of epoxy-embedded material at the ultrastructure level. Ultrastructurally oleoresin and lipid possess similar electron densities and can be distinguished from the highly electron-opaque tannin deposits.

  13. Terpene synthases from Cannabis sativa.

    Science.gov (United States)

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  14. Terpene synthases from Cannabis sativa.

    Directory of Open Access Journals (Sweden)

    Judith K Booth

    Full Text Available Cannabis (Cannabis sativa plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E-β-ocimene, (--limonene, (+-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  15. Carbocations and the Complex Flavor and Bouquet of Wine: Mechanistic Aspects of Terpene Biosynthesis in Wine Grapes.

    Science.gov (United States)

    Wedler, Henry B; Pemberton, Ryan P; Tantillo, Dean J

    2015-06-11

    Computational chemistry approaches for studying the formation of terpenes/terpenoids in wines are presented, using five particular terpenes/terpenoids (1,8-cineole, α-ylangene, botrydial, rotundone, and the wine lactone), volatile compounds (or their precursors) found in wine and/or wine grapes, as representative examples. Through these examples, we show how modern computational quantum chemistry can be employed as an effective tool for assessing the validity of proposed mechanisms for terpene/terpenoid formation.

  16. Hydroxyl radical yields from reactions of terpene mixtures with ozone.

    Science.gov (United States)

    Forester, C D; Wells, J R

    2011-10-01

    Chamber studies were conducted to quantify hydroxyl radical (OH·) yields and to determine whether water vapor affected OH· formation in the reactions of ozone (O(3)) with a single terpene, two-component terpene mixtures, and a commercial pine oil cleaning product (POC). Solid-phase microextraction fibers (SPME) were used for sampling the terpenes and the 2-butanone formation from the hydroxyl reaction with 2-butanol as a measure of OH· yields. Analyses were performed using gas chromatography with flame ionization detection. The individual terpenes' OH· yields from α-terpineol, limonene, and α-pinene were 64 ± 8%, 64 ± 6%, and 76 ± 6%, respectively. OH· yields were also measured from two-component mixtures of these terpenes. In each mixture that contained α-terpineol, the overall OH· yield was lower than the modeled OH· yields of the individual components that comprised the reaction mixture. Reactions of a commercial POC with O(3) were also studied to determine how the individual terpenes react in a complex mixture system, and an OH· formation yield of 51 ± 6% was measured. Relative humidity did not have a significant effect on the OH· formation in the mixtures studied here. The data presented here demonstrate that mixtures may react differently than the sum of their individual components. By investigating the chemistry of mixtures of chemicals in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on indoor environments. © 2011 John Wiley & Sons A/S.

  17. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-01-01

    During the last grant period, we have completed studies on the key pathways of monoterpene biosynthesis and catabolism in sage and peppermint, and have, by several lines of evidence, deciphered the rate-limiting step of each pathway. We have at least partially purified and characterized the relevant enzymes of each pathway. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation depends upon the balance between biosynthesis and catabolism, and provided supporting evidence that these processes are developmentally-regulated and very closely associated with senescence of the oil glands. Oil gland ontogeny has been characterized at the ultrastructural level. We have exploited foliar-applied bioregulators to delay gland senescence, and have developed tissue explant and cell culture systems to study several elusive aspects of catabolism. We have isolated pure gland cell clusters and localized monoterpene biosynthesis and catabolism within these structures, and have used these preparations as starting materials for the purification to homogeneity of target regulatory'' enzymes. We have thus developed the necessary background knowledge, based on a firm understanding of enzymology, as well as the necessary experimental tools for studying the regulation of monoterpene metabolism at the molecular level. Furthermore, we are now in a position to extend our systematic approach to other terpenoid classes (C[sub 15]-C[sub 30]) produced by oil glands.

  18. Copaifera multijuga oleoresin and its constituent diterpene (-)-copalic acid: Genotoxicity and chemoprevention study.

    Science.gov (United States)

    Alves, Jacqueline M; Senedese, Juliana M; Leandro, Luís F; Castro, Pâmela T; Pereira, Daiane E; Carneiro, Luiza J; Ambrósio, Sérgio R; Bastos, Jairo K; Tavares, Denise C

    2017-07-01

    Copaiba oleoresins are used in alternative medicine as anti-inflammatory, antitumoral, and antimicrobial treatments. (-)-Copalic acid (CA) is the major diterpene found in exudates from Copaifera species. We have examined the genotoxicity and the chemopreventive potential of Copaifera multijuga oleoresin (CM) and CA. Genotoxicity assessment was examined with the peripheral blood micronucleus test and the comet assay (male Swiss mouse hepatocytes). In the chemoprevention study, we evaluated the effects of CM and CA on the formation of 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in male Wistar rat colon. Neither agent caused a significant increase in micronucleus frequency relative to controls, but the highest CM dose tested (400mg/kg b.w.) caused DNA damage in the comet assay. Both agents significantly reduced the frequency of DMH-induced ACF. Both CM and CA suppressed ACF formation and may have a protective effect against colon carcinogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Regulation of terpene metabolism. Progress report, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1986-01-01

    Studies on the metabolism of terpenes by peppermint (Menta piperita) are described. The studies describe the characterization of enzymes involved in the biosynthesis and catabolism of terpenes and the ultrastructure of the oil glands. 10 refs. (DT)

  20. Physical parameters, oleoresin and volatile oil contents of five ...

    African Journals Online (AJOL)

    Physical parameters, oleoresin and volatile oil contents of five pepper (pepper Nigrum l.) cultivars as ... Harvesting of berries from five pepper cultivars was carried out at 3.5, 4.5, 5.5, and 6.5 months after 70% set of the berries. The experiment was ... Keywords: Black Pepper; Essential Oil; Oleoresin; Peppercorn; Volatile Oil ...

  1. Repeatability for oleoresin yield determinations in southern pines

    Science.gov (United States)

    J. H. Roberds; Brian L. Strom

    2004-01-01

    Flow of constitutive oleoresin is believed to be a major component of tree defense against attack by the southern pine pine beetle (Dendroctonus frontalis Zimmermann). Pines that exude large quantities of oleoresin are considered to be most capable of preventing or obstructing colonization by this destructive insect herbivore (Hodges et al. 1979;...

  2. Emergence of terpene cyclization in Artemisia annua

    OpenAIRE

    Salmon, Melissa; Laurendon, Caroline; Vardakou, Maria; Cheema, Jitender; Defernez, Marianne; Faraldos, Juan A.; O'Maille, Paul E.

    2015-01-01

    The emergence of terpene cyclization was critical to the evolutionary expansion of chemical diversity yet remains unexplored. Here we report the first discovery of an epistatic network of residues that controls the onset of terpene cyclization in Artemisia annua. We begin with amorpha-4,11-diene synthase (ADS) and (E)-b-farnesene synthase (BFS), a pair of terpene synthases that produce cyclic or linear terpenes, respectively. A library of B27,000 enzymes is generated by breeding combinations ...

  3. Clinicopathological effects of pepper (oleoresin capsicum) spray.

    Science.gov (United States)

    Yeung, M F; Tang, William Y M

    2015-12-01

    Pepper (oleoresin capsicum) spray is one of the most common riot-control measures used today. Although not lethal, exposure of pepper spray can cause injury to different organ systems. This review aimed to summarise the major clinicopathological effects of pepper spray in humans. MEDLINE, EMBASE database, and Cochrane Database of Systematic Reviews were used to search for terms associated with the clinicopathological effects of pepper spray in humans and those describing the pathophysiology of capsaicin. A phone interview with two individuals recently exposed to pepper spray was also conducted to establish clinical symptoms. Major key words used for the MEDLINE search were "pepper spray", "OC spray", "oleoresin capsicum"; and other key words as "riot control agents", "capsaicin", and "capsaicinoid". We then combined the key words "capsaicin" and "capsaicinoid" with the major key words to narrow down the number of articles. A search with other databases including EMBASE and Cochrane Database of Systematic Reviews was also conducted with the above phrases to identify any additional related articles. All article searches were confined to human study. The bibliography of articles was screened for additional relevant studies including non-indexed reports, and information from these was also recorded. Non-English articles were included in the search. Fifteen articles were considered relevant. Oleoresin capsicum causes almost instantaneous irritative symptoms to the skin, eyes, and respiratory system. Dermatological effects include a burning sensation, erythema, and hyperalgesia. Ophthalmic effects involve blepharospasm, conjunctivitis, peri-orbital oedema, and corneal pathology. Following inhalation, a stinging or burning sensation can be felt in the nose with sore throat, chest tightness, or dyspnoea. The major pathophysiology is neurogenic inflammation caused by capsaicinoid in the pepper spray. There is no antidote for oleoresin capsicum. Treatment consists of

  4. Optimasi Proses Ekstraksi Oleoresin Jahe (Zingiber officinale Rosc Menggunakan Ultrasonik

    Directory of Open Access Journals (Sweden)

    Sri Hartuti

    2012-06-01

    Full Text Available The study on extraction of oleoresin from ginger by using ultrasonic was carried out in order to obtain the optimum condition of extraction process. The effect of ratio of ginger to solvent (ethanol, X1, extraction temperature (X2, and extraction duration (X3 are studied on the yield of oleoresin. Response surface design method with Central Composite Design (CCD was used to obtain a mathematical model which describes the relationship between the yield of ginger oleoresin and influencing variables. The experimental results indicate that the optimum condition of extraction which yield of oleoresin of 11.026% was found at ratio of ginger to ethanol (X1 of 1:4.68 gr.ml-1, extraction temperature (X2 of 420 OC, and extraction duration (X3 of 79 minutes. Keywords: extraction, response surface method, ginger oleoresin, ultrasonic

  5. Biosynthesis and transport of terpenes

    NARCIS (Netherlands)

    Ting, H.M.

    2014-01-01

    Terpenoids are the largest class of natural product that are produced by plants, with functions that range from a role in plant development to direct defence against pathogens and indirect defence against insects through the attraction of natural enemies. While terpene biosynthesis genes have been

  6. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils

    Science.gov (United States)

    2012-01-01

    Background The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Results Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (−)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (−)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (−)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. Conclusions The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils. PMID:22682202

  7. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils.

    Science.gov (United States)

    Irmisch, Sandra; Krause, Sandra T; Kunert, Grit; Gershenzon, Jonathan; Degenhardt, Jörg; Köllner, Tobias G

    2012-06-08

    The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (-)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (-)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (-)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils.

  8. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils

    Directory of Open Access Journals (Sweden)

    Irmisch Sandra

    2012-06-01

    Full Text Available Abstract Background The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS, the key enzymes in constructing terpene carbon skeletons. Results Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita. Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (−-(E-β-caryophyllene (MrTPS1, (+-germacrene A (MrTPS3, (E-β-ocimene (MrTPS4 and (−-germacrene D (MrTPS5. A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (−-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. Conclusions The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils.

  9. A high-throughput colorimetric screening assay for terpene synthase activity based on substrate consumption.

    Directory of Open Access Journals (Sweden)

    Maiko Furubayashi

    Full Text Available Terpene synthases catalyze the formation of a variety of terpene chemical structures. Systematic mutagenesis studies have been effective in providing insights into the characteristic and complex mechanisms of C-C bond formations and in exploring the enzymatic potential for inventing new chemical structures. In addition, there is growing demand to increase terpene synthase activity in heterologous hosts, given the maturation of metabolic engineering and host breeding for terpenoid synthesis. We have developed a simple screening method for the cellular activities of terpene synthases by scoring their substrate consumption based on the color loss of the cell harboring carotenoid pathways. We demonstrate that this method can be used to detect activities of various terpene synthase or prenyltransferase genes in a high-throughput manner, irrespective of the product type, enabling the mutation analysis and directed evolution of terpene synthases. We also report the possibility for substrate-specific screening system of terpene synthases by taking advantage of the substrate-size specificity of C30 and C40 carotenoid pathways.

  10. Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bio-Based Organic Carbonates.

    Science.gov (United States)

    Fiorani, Giulia; Stuck, Moritz; Martín, Carmen; Belmonte, Marta Martínez; Martin, Eddy; Escudero-Adán, Eduardo C; Kleij, Arjan W

    2016-06-08

    The challenging coupling of highly substituted terpene oxides and carbon dioxide into bio-based cyclic organic carbonates catalyzed by Al(aminotriphenolate) complexes is reported. Both acyclic as well as cyclic terpene oxides were used as coupling partners, showing distinct reactivity/selectivity behavior. Whereas cyclic terpene oxides showed excellent chemoselectivity towards the organic carbonate product, acyclic substrates exhibited poorer selectivities owing to concomitant epoxide rearrangement reactions and the formation of undesired oligo/polyether side products. Considering the challenging nature of these coupling reactions, the isolated yields of the targeted bio-carbonates are reasonable and in most cases in the range 50-60 %. The first crystal structures of tri-substituted terpene based cyclic carbonates are reported and their stereoconnectivity suggests that their formation proceeds through a double inversion pathway. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mechanistic investigations on six bacterial terpene cyclases

    Directory of Open Access Journals (Sweden)

    Patrick Rabe

    2016-08-01

    Full Text Available The products obtained by incubation of farnesyl diphosphate (FPP with six purified bacterial terpene cyclases were characterised by one- and two-dimensional NMR spectroscopic methods, allowing for a full structure elucidation. The absolute configurations of four terpenes were determined based on their optical rotary powers. Incubation experiments with 13C-labelled isotopomers of FPP in buffers containing water or deuterium oxide allowed for detailed insights into the cyclisation mechanisms of the bacterial terpene cyclases.

  12. Mapping Terpenes over the Teakettle Experimental Forest

    Science.gov (United States)

    Tycner, J.; Ustin, S.; Grigsby, S.

    2015-12-01

    Terpenes are a category of biogenic volatile organic compounds (BVOC) produced by many plants, most notably coniferous plants. Commonly, these terpenes are aromatic compounds. The intensity of terpene emission varies depending greatly on light and temperature. Through remote sensing data as well as ASD spectroradiometry data this study focuses on locating sources of terpene emissions in the Teakettle Experimental Forest. These emissions are of particular concern because of their influence on the chemical concentration of the lower troposphere, as well as being an indicator of tree health. A novel approach has been designed through this study in order to locate and further understand these terpene emissions. Terpenes such as camphene have been reported to have subtle spectral features located at around 1.7 μm. For the first time, a map of terpene sources has been constructed by accentuating this particular feature. A continuum interpolated band ratio (CIBR) was used in order to compute a relative abundance of terpenes from the AVIRIS data. The CIBR equation showed promise, as terpenes were most strongly concentrated in areas of coniferous vegetation (a primary source of terpenes) and were less prominent over bodies of water or industrialized areas. The greatest concentrations were focused over treetops and other woody vegetation. Although it is known that terpenes have weak absorption features in the SWIR, there is little information available regarding the mapping of terpene emissions. This project addresses a novel approach to observing biochemical components in the lower troposphere and could potentially give more information to explain the health of forest ecosystems.

  13. Volatilisation of terpenes from Salvia mellifera

    Science.gov (United States)

    Tyson, B. J.; Dement, W. A.; Mooney, H. A.

    1974-01-01

    The study demonstrates significant terpene volatilisation from Salvia mellifera. Net photosynthesis and dark respiration were measured in an intact branch of a potted plant using a gas analysis system. Photosynthesis and respiration rates were determined for various temperatures. The rates were directly proportional to leaf temperature and were the same in both light and dark reactions. Using the temperature curve for the steady-state rate of terpene volatilisation and the gas exchange characteristics, the daily carbon gain and terpene loss were calculated.

  14. Unique biosynthesis of sesquarterpenes (C35 terpenes).

    Science.gov (United States)

    Sato, Tsutomu

    2013-01-01

    To the best of my knowledge, only 19 cyclic and 8 linear C35 terpenes have been identified to date, and no family name was assigned to this terpene class until recently. In 2011, it was proposed that these C35 terpenes should be called sesquarterpenes. This review highlights the biosynthesis of two kinds of sesquarterpenes (C35 terpenes) that are produced via cyclization of a linear C35 isoprenoid in Bacillus and Mycobacterium species. In Bacillus species, a new type of terpene cyclase that has no sequence homology with any known terpene synthases, as well as a bifunctional terpene cyclase that biosynthesizes two classes of cyclic terpenes with different numbers of carbons as natural products, have been identified. On the other hand, in Mycobacterium species, the first bifunctional Z-prenyltransferase has been found, but a novel terpene cyclase and a unique polyprenyl reductase remain unidentified. The identification of novel enzyme types should lead to the discovery of many homologous enzymes and their products including novel natural compounds. On the other hand, many enzymes responsible for the biosynthesis of natural products have low substrate specificities in vitro. Therefore, to find novel natural products present in organisms, the multifunctionality of enzymes in the biosynthetic pathway of natural products should be analyzed.

  15. Long-chain N-vanillyl-acylamides from Capsicum oleoresin.

    Science.gov (United States)

    Kobata, Kenji; Saito, Kazumi; Tate, Hitomi; Nashimoto, Aki; Okuda, Hiromi; Takemura, Ikue; Miyakawa, Ken; Takahashi, Masayoshi; Iwai, Kazuo; Watanabe, Tatsuo

    2010-03-24

    N-Vanillyl-acylamides (NVAs) naturally occur as capsaicinoids in Capsicum plants. NVAs with a longer chain acyl moiety (LCNVAs) have been developed as attractive tools for medicinal usage because of their capsaicin-like bioactive and physiological properties, without harmful irritancy. In this study, we isolated four LCNVAs from Capsicum oleoresin. Their structures were determined to be N-vanillyl-hexadecanamide (palvanil, 2), N-vanillyl-octadecanamide (stevanil, 3), N-vanillyl-9E-octadecenamide (olvanil, 4), and N-vanillyl-9E,12E-octadecadienamide (livanil, 5) by spectroscopic analysis and gas chromatography-mass spectrometry analysis of their methanolysis products. Furthermore, the existence of two LCNVAs in oleoresin, N-vanillyl-tetradecanamide (myrvanil, 1) and N-vanillyl-9E,12E,15E-octadecatrienamide (linvanil, 6), was suggested. The contents of these LCNVAs and the major capsaicinoids-capsaicin and dihydrocapsaicin-in three Capsicum oleoresins and the fresh fruits of two hot peppers were measured by a liquid chromatography-tandem mass spectrometry system. The content ratios of the total LCNVAs, except for myrvanil, versus the capsaicin in the oleoresins (0.1-41%) was significantly larger than that in fresh fruits (oleoresin was similar to that of fatty acids in the oil fraction of each oleoresin. We observed no relationship between the composition of these LCNVAs in the fresh fruits.

  16. Incorporation of carotenoids from paprika oleoresin into human chylomicrons.

    Science.gov (United States)

    Pérez-Gálvez, Antonio; Martin, Hans D; Sies, Helmut; Stahl, Wilhelm

    2003-06-01

    The intake of a carotenoid-rich diet is epidemiologically related to a lower risk for different chronic disorders like cardiovascular disease, some types of cancer or age-related macular degeneration. Red pepper (Capsicum annuum L.) and its dietary products contain a variety of carotenoids, which may contribute to the carotenoid pattern of human blood and tissues. The objective of the present study was to assess the availability of carotenoids from paprika oleoresin, including zeaxanthin, beta-cryptoxanthin, beta-carotene and the paprika-specific oxocarotenoids capsanthin and capsorubin. After overnight fasting, the volunteers (n 9) ingested a single dose of the paprika oleoresin containing 6.4 mg zeaxanthin, 4.2 mg beta-cryptoxanthin, 6.2 mg beta-carotene, 35.0 mg capsanthin and 2.0 mg capsorubin. At different time points the carotenoid pattern in the chylomicron fraction was analysed to evaluate carotenoid absorption. From the major carotenoids present in the paprika oleoresin only zeaxanthin, beta-cryptoxanthin and beta-carotene were detectable in considerable amounts. Although the xanthophylls in paprika oleoresin were mainly present as mono- or di-esters, only free zeaxanthin and beta-cryptoxanthin were found in human samples. The bioavailability of the pepper-specific carotenoids capsanthin and capsorubin from paprika oleoresin is very low. However, oleoresin is a suitable source for the provitamin A carotenoids beta-carotene and beta-cryptoxanthin and the macular pigment zeaxanthin.

  17. Repeatability estimates for oleoresin yield measurements in three species of the southern pines

    Science.gov (United States)

    James H. Roberds; Brain L. Strom

    2006-01-01

    Repeatability was estimated for constitutive oleoresin yield measurements in 10 stands of three species of pines native to southeastern United States. Trees of these species that discharge large quantities of oleoresin upon wounding are considered to be most resistant to attack by southern pine beetle (Dendroctonus frontalis Zimmermann). Oleoresin...

  18. Optimization and Characterization of Cinnamon Leaves (Cinnamomum burmannii) Oleoresin

    Science.gov (United States)

    Khasanah, L. U.; Kawiji; Prasetyawan, P.; Utami, R.; Atmaka, W.; Manuhara, G. J.; Sanjaya, A. P.

    2017-04-01

    This research aimed to determine the optimum yield condition on cinnamon leaves oleoresin production at various temperature and contact time during maceration and to find out the characteristics of cinnamon leaves oleoresin such as active compound, cinnamon leaves oil content, and solvent residue levels at optimum yield. This research used the variations of extraction temperature (70, 75 and 80°C) and extraction time (4, 5 and 6 h). Based on Response Surface Methodology (RSM), the equation of cinnamon leaves oleoresin sample optimization as follow: Y = 13 - 1.0167X1- 0.2833X2- 0.6833X12- 0.5833X22- 0.3250 X1X2. The optimum yield of cinnamon leaves oleoresin (13.3790%) was obtained at 77.754°C for 4.9185 h. The characteristics of cinnamon leaves oleoresin that showed the optimum yield were 59.56% eugenol level, 9.50% cinnamon leaves oil content and 22700 ppm solvent residue level.

  19. Terpene synthases are widely distributed in bacteria

    Science.gov (United States)

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  20. Trypanocidal activity of oleoresin and terpenoids isolated from Pinus oocarpa.

    Science.gov (United States)

    Rubio, Julieta; Calderón, José S; Flores, Angélica; Castroa, Clementina; Céspedes, Carlos L

    2005-01-01

    Fractionation with n-hexane/ethyl acetate (1:1 v/v) by open column chromatography of the oleoresin from Pinus oocarpa Schiede yielded two diterpenes, pimaric acid (1) and dehydroabietic acid (5), the sesquiterpene longifolene (3) and a diterpenic mixture containing pimaric acid (1), isopimaric acid (4) and dehydroabietic acid (5). Subsequently, the isolated compounds, the mixture of 1, 4 and 5, the oleoresin and the dehydroabietic acid methyl ester (2), were tested in vitro against epimastigotes of Trypanosoma cruzi, the causative agent of Chagas disease. The most active compounds were 1, 3 and the oleoresin, being as active as nifurtimox, a drug effective in the treatment of acute infection by American trypanosomiasis and used in this work as positive control.

  1. Oleoresin Capsicum toxicology evaluation and hazard review

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-10-01

    Oleoresin Capsicum (OC) is an extract of the pepper plant used for centuries as a culinary spice (hot peppers). This material has been identified as a safe and effective Less-Than- Lethal weapon for use by Law enforcement and security professionals against assault. The National Institute of Justice (NIJ) is currently also evaluating its use in conjunction with other Less-Than-Lethal agents such as aqueous foam for use in corrections applications. Therefore, a comprehensive toxicological review of the literature was performed for the National Institute of Justice Less-Than-Lethal Force program to review and update the information available on the toxicity and adverse health effects associated with OC exposure. The results of this evaluation indicate that exposure to OC can result in dermatitis, as well as adverse nasal, pulmonary, and gastrointestinal effects in humans. The primary effects of OC exposure include pain and irritation of the mucous membranes of the eyes, nose, and lining of the mouth. Blistering and rash have been shown to occur after chronic or prolonged dermal exposure. Ingestion of capsicum may cause acute stinging of the lips, tongue, and oral mucosa and may lead to vomiting and diarrhea with large doses. OC vapors may also cause significant pulmonary irritation and prolonged cough. There is no evidence of long term effects associated with an acute exposure to OC, and extensive use as a culinary additive and medicinal ointment has further provided no evidence of long term adverse effects following repeated or prolonged exposure.

  2. Ekstraksi Oleoresin dari Limbah Penyulingan Pala Menggunakan Ultrasonik

    Directory of Open Access Journals (Sweden)

    Normalina Arpi

    2013-12-01

    Full Text Available Penelitian ini bertujuan untuk mempelajari pengaruh ukuran partikel limbah penyulingan pala (Myristica fragrans Houtt. dan suhu ekstraksi terhadap rendemen dan mutu oleoresin pala yang dihasilkan pada proses ekstraksi pelarut menggunakan bantuan ultrasonik. Etanol mutu teknis (technical grade digunakan sebagai pelarut. Penelitian ini menggunakan Rancangan Acak Kelompok (RAK Faktorial dengan ulangan sebagai kelompok yang terdiri dari ukuran partikel bahan (P yaitu P1= 10 mesh, P2= 40 mesh dan P3= 60 mesh dan suhu ekstraksi (S yaitu S1= 40oC, S2= 50oC dan S3= 60oC. Analisis oleoresin pala yang dilakukan meliputi analisis awal (kadar air dan kadar abu dan analisis akhir (bobot jenis, indeks bias, dan sisa pelarut. Hasil penelitian menunjukkan ukuran partikel dan suhu ekstraksi berpengaruh terhadap rendemen dan mutu oleoresin yang dihasilkan. Rendemen tertinggi sebesar 7,16% diperoleh pada  ukuran partikel 10 mesh dan suhu 60oC. Hasil analisis bobot jenis oleoresin menunjukkan bahwa bobot jenis tertinggi yaitu 1,250 dihasilkan pada suhu ekstraksi 50oC. Sementara itu, hasil analisis indeks bias oleoresin menunjukkan bahwa ukuran partikel dan suhu ekstraksi memberikan pengaruh yang sangat nyata terhadap oleoresin pala dimana ukuran partikel 40 mesh pada suhu ekstraksi 40oC dan 60oC  serta ukuran partikel 60 mesh pada suhu 50oC memiliki nilai indeks bias yang lebih tinggi yaitu berkisar antara 1,476 hingga 1,480. Hasil analisis sisa pelarut juga menunjukkan bahwa ukuran partikel dan suhu ekstraksi berpengaruh terhadap tingginya sisa pelarut, dimana ukuran partikel 10 mesh mengandung sisa pelarut 0,229% dan suhu ekstraksi 40oC mengandung sisa pelarut 0,265%.

  3. New malabaricane triterpenes from the oleoresin of Ailanthus malabarica.

    Science.gov (United States)

    Achanta, Prabhakar S; Gattu, Rajesh Kumar; Belvotagi, Adavi Rao V; Akkinepally, Raghuram Rao; Bobbala, Ravi Kumar; Achanta, Appa Rao V N

    2015-01-01

    Ten malabaricane type triterpenes were isolated from the oleoresin of Ailanthus malabarica, out of which six (1-6) were new. For three of the known compounds (7-9), NMR assignments are being reported for the first time. Compound 10, a known one, is a new report from this source. The structures were established by extensive 1D and 2D NMR spectroscopy. The oleoresin and some of the isolates did not possess antimicrobial activity and did not lyse RBCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Copaifera reticulata oleoresin: Chemical characterization and antibacterial properties against oral pathogens.

    Science.gov (United States)

    Bardají, Danae Kala Rodríguez; da Silva, Jonas Joaquim Mangabeira; Bianchi, Thamires Chiquini; de Souza Eugênio, Daniele; de Oliveira, Pollyanna Francielli; Leandro, Luís Fernando; Rogez, Hervé Louis Ghislain; Venezianni, Rodrigo Cassio Sola; Ambrosio, Sergio Ricardo; Tavares, Denise Crispim; Bastos, Jairo Kenupp; Martins, Carlos Henrique G

    2016-08-01

    Oral infections such as periodontitis and tooth decay are the most common diseases of humankind. Oleoresins from different copaifera species display antimicrobial and anti-inflammatory activities. Copaifera reticulata is the commonest tree of this genus and grows abundantly in several Brazilian states, such as Pará, Amazonas, and Ceará. The present study has evaluated the chemical composition and antimicrobial potential of the Copaifera reticulata oleoresin (CRO) against the causative agents of tooth decay and periodontitis and has assessed the CRO cytotoxic potential. Cutting edge analytical techniques (GC-MS and LC-MS) aided the chemical characterization of CRO. Antimicrobial assays included determination of the Minimum Inhibitory Concentration (MIC), determination of the Minimum Bactericidal Concentration (MBC), determination of the Minimum Inhibitory Concentration of Biofilm (MICB50), Time Kill Assay, and Checkerboard Dilution. Conduction of XTT assays on human lung fibroblasts (GM07492-A cells) helped to examine the CRO cytotoxic potential. Chromatographic analyses revealed that the major constituents of CRO were β-bisabolene, trans-α-bergamotene, β-selinene, α-selinene, and the terpene acids ent-agathic-15-methyl ester, ent-copalic acid, and ent-polyalthic acid. MIC and MBC results ranged from 6.25 to 200 μg/mL against the tested bacteria. The time-kill assay conducted with CRO at concentrations between 50 and 100 μg/mL showed bactericidal activity against Fusobacterium nucleatum (ATCC 25586) and Streptococcus mitis (ATCC 49456) after 4 h, Prevotella nigrescens (ATCC 33563) after 6 h, Porphyromonas gingivalis (ATCC 33277) and Lactobacillus casei (clinical isolate) after 12 h, and Streptococcus salivarius (ATCC 25975) and Streptococcus mutans (ATCC 25175) after 18 h. The fractional inhibitory concentration indexes (FICIs) revealed antagonistic interaction for Lactobacillus casei (clinical isolate), indifferent effect for Porphyromonas gingivalis

  5. Effects of capsicum oleoresin, garlic botanical, and turmeric oleoresin on gene expression profile of ileal mucosa in weaned pigs.

    Science.gov (United States)

    Liu, Y; Song, M; Che, T M; Bravo, D; Maddox, C W; Pettigrew, J E

    2014-08-01

    This study was conducted to characterize the effects of feeding 3 plant extracts on gene expression in ileal mucosa of weaned pigs. Weaned pigs (n = 32, 6.3 ± 0.2 kg BW, and 21 d old) were housed in individual pens for 9 d and fed 4 different diets: a nursery basal diet as control diet, basal diet supplemented with 10 mg/kg of capsicum oleoresin, garlic botanical, or turmeric oleoresin. Results reported elsewhere showed that the plant extracts reduced diarrhea and increased growth rate of weaning pigs. Total RNA (4 pigs/treatment) was extracted from ileal mucosa of pigs at d 9. Double-stranded cDNA was amplified, labeled, and further hybridized to the microarray. Microarray data were analyzed in R using packages from the Bioconductor project. Differential gene expression was tested by fitting a mixed linear model equivalent to ANOVA using the limma package. Bioinformatics analysis was conducted by DAVID Bioinformatics Resources. Three pairwise comparisons were used to compare each plant extract diet with the control diet. Quantitative real time PCR was applied to verify the mRNA expression detected by microarray. Compared with the control diet, feeding capsicum oleoresin altered (P oleoresin altered (P oleoresin and turmeric oleoresin increased [Expression Analysis Systematic Explorer (EASE) < 0.05] the expression of genes related to integrity of membranes and tight junctions, indicating enhanced gut mucosa health, but decreased (EASE < 0.05) the cell cycle pathway. Feeding each of the 3 plant extracts enhanced (EASE < 0.05) the expression of genes associated with immune responses, indicating that feeding these plant extracts may stimulate the immune responses of pigs in the normal conditions. In conclusion, plant extracts regulated the expression of genes in ileal mucosa of pigs, perhaps providing benefits by enhancing the gut mucosa health and stimulating the immune system.

  6. Emergence of terpene cyclization in Artemisia annua.

    Science.gov (United States)

    Salmon, Melissa; Laurendon, Caroline; Vardakou, Maria; Cheema, Jitender; Defernez, Marianne; Green, Sol; Faraldos, Juan A; O'Maille, Paul E

    2015-02-03

    The emergence of terpene cyclization was critical to the evolutionary expansion of chemical diversity yet remains unexplored. Here we report the first discovery of an epistatic network of residues that controls the onset of terpene cyclization in Artemisia annua. We begin with amorpha-4,11-diene synthase (ADS) and (E)-β-farnesene synthase (BFS), a pair of terpene synthases that produce cyclic or linear terpenes, respectively. A library of ~27,000 enzymes is generated by breeding combinations of natural amino-acid substitutions from the cyclic into the linear producer. We discover one dominant mutation is sufficient to activate cyclization, and together with two additional residues comprise a network of strongly epistatic interactions that activate, suppress or reactivate cyclization. Remarkably, this epistatic network of equivalent residues also controls cyclization in a BFS homologue from Citrus junos. Fitness landscape analysis of mutational trajectories provides quantitative insights into a major epoch in specialized metabolism.

  7. Supramolecular catalysis: Terpenes in tight spaces

    Science.gov (United States)

    Roach, Jeremy J.; Shenvi, Ryan A.

    2015-03-01

    The ability of enzymes to direct the synthesis of complex natural products from simple starting materials is epitomized by terpene biosynthesis. Now, a supramolecular catalyst has been shown to mimic some of the reactivity of this process.

  8. Methods for high yield production of terpenes

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  9. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.

    Directory of Open Access Journals (Sweden)

    Dullat Harpreet K

    2011-03-01

    Full Text Available Abstract Background In conifers, terpene synthases (TPSs of the gymnosperm-specific TPS-d subfamily form a diverse array of mono-, sesqui-, and diterpenoid compounds, which are components of the oleoresin secretions and volatile emissions. These compounds contribute to defence against herbivores and pathogens and perhaps also protect against abiotic stress. Results The availability of extensive transcriptome resources in the form of expressed sequence tags (ESTs and full-length cDNAs in several spruce (Picea species allowed us to estimate that a conifer genome contains at least 69 unique and transcriptionally active TPS genes. This number is comparable to the number of TPSs found in any of the sequenced and well-annotated angiosperm genomes. We functionally characterized a total of 21 spruce TPSs: 12 from Sitka spruce (P. sitchensis, 5 from white spruce (P. glauca, and 4 from hybrid white spruce (P. glauca × P. engelmannii, which included 15 monoterpene synthases, 4 sesquiterpene synthases, and 2 diterpene synthases. Conclusions The functional diversity of these characterized TPSs parallels the diversity of terpenoids found in the oleoresin and volatile emissions of Sitka spruce and provides a context for understanding this chemical diversity at the molecular and mechanistic levels. The comparative characterization of Sitka spruce and Norway spruce diterpene synthases revealed the natural occurrence of TPS sequence variants between closely related spruce species, confirming a previous prediction from site-directed mutagenesis and modelling.

  10. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.)

    Science.gov (United States)

    2011-01-01

    Background In conifers, terpene synthases (TPSs) of the gymnosperm-specific TPS-d subfamily form a diverse array of mono-, sesqui-, and diterpenoid compounds, which are components of the oleoresin secretions and volatile emissions. These compounds contribute to defence against herbivores and pathogens and perhaps also protect against abiotic stress. Results The availability of extensive transcriptome resources in the form of expressed sequence tags (ESTs) and full-length cDNAs in several spruce (Picea) species allowed us to estimate that a conifer genome contains at least 69 unique and transcriptionally active TPS genes. This number is comparable to the number of TPSs found in any of the sequenced and well-annotated angiosperm genomes. We functionally characterized a total of 21 spruce TPSs: 12 from Sitka spruce (P. sitchensis), 5 from white spruce (P. glauca), and 4 from hybrid white spruce (P. glauca × P. engelmannii), which included 15 monoterpene synthases, 4 sesquiterpene synthases, and 2 diterpene synthases. Conclusions The functional diversity of these characterized TPSs parallels the diversity of terpenoids found in the oleoresin and volatile emissions of Sitka spruce and provides a context for understanding this chemical diversity at the molecular and mechanistic levels. The comparative characterization of Sitka spruce and Norway spruce diterpene synthases revealed the natural occurrence of TPS sequence variants between closely related spruce species, confirming a previous prediction from site-directed mutagenesis and modelling. PMID:21385377

  11. Antifungal Activity of Copaifera langsdorffii Desf Oleoresin against Dermatophytes

    Directory of Open Access Journals (Sweden)

    Nádia R. B. Raposo

    2013-10-01

    Full Text Available Dermatophytoses are mycoses that affect keratinized tissues in both humans and animals. The aim of this study was to investigate the antifungal activity of the oleoresin extracted from Copaifera langsdorffii Desf. against the strains Microsporum canis ATCC 32903, Microsporum gypseum ATCC 14683, Trichophyton mentagrophytes ATCC 11481 and Trichophyton rubrum CCT 5507. The antimicrobial activity was determined by minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC values. Ketoconazole and terbinafine were used as reference drugs. The copaiba oleoresin showed moderate fungicidal activity against T. mentagrophytes ATCC 11481 (MIC and MFC = 170 μg mL−1 and weak fungicidal activity against T. rubrum CCT 5507 (MIC = 1,360 μg mL−1 and MFC = 2,720 μg mL−1. There was no activity against M. canis ATCC 32903 and M. gypseum ATCC 14683. SEM analysis revealed physical damage and morphological alterations such as compression and hyphae clustering in the structure of the fungi exposed to the action of the oleoresin. The results stimulate the achievement of in vivo assays to confirm the benefits of the application of oleoresin extracted from copaiba in the treatment of dermatophytosis, both in humans and in animals.

  12. An improved method for collecting and monitoring pine oleoresin

    Science.gov (United States)

    Dick Karsky; Brian Strom; Harold Thistle

    2004-01-01

    A new method for collecting and monitoring pine oleoresin has been developed through a cooperative project involving the Missoula Technology Development Center (MTDC), Southern Research Station (Brian Strom, research entomologist), and the Forest Health Technology Enterprise Team. The new sampling unit (figure 1) is cast from rugged plastic. It provides a closed system...

  13. Characterization of active paper packaging incorporated with ginger pulp oleoresin

    Science.gov (United States)

    Wiastuti, T.; Khasanah, L. U.; Atmaka Kawiji, W.; Manuhara, G. J.; Utami, R.

    2016-02-01

    Utilization of ginger pulp waste from herbal medicine and instant drinks industry in Indonesia currently used for fertilizer and fuel, whereas the ginger pulp still contains high oleoresin. Active paper packaging were developed incorporated with ginger pulp oleoresin (0%, 2%, 4%, and 6% w/w). Physical (thickness, tensile strength, and folding endurance, moisture content), sensory characteristics and antimicrobial activity of the active paper were evaluated. Selected active paper then were chemically characterized (functional groups). The additional of ginger pulp oleoresin levels are reduced tensile strength, folding endurance and sensory characteristic (color, texture and overall) and increased antimicrobial activity. Due to physical, sensory characteristic and antimicrobial activity, active paper with 2% ginger pulp oleoresin incorporation was selected. Characteristics of selected paper were 9.93% of water content; 0.81 mm of thickness; 0.54 N / mm of tensile strength; 0.30 of folding endurance; 8.43 mm inhibits the growth of Pseudomonas fluorescence and 27.86 mm inhibits the growth of Aspergillus niger (antimicrobial activity) and neutral preference response for sensory properties. For chemical characteristic, selected paper had OH functional group of ginger in 3422.83 cm-1 of wave number and indicated contain red ginger active compounds.

  14. Quality of commercial ground paprika and its oleoresins

    Directory of Open Access Journals (Sweden)

    Tepić Aleksandra N.

    2008-01-01

    Full Text Available Spices are widely used in food processing. One of the main disadvantages of spices application is their frequent microbiological spoilage. Health benefits (microbiological status, mineral and heavy metal content of commercial ground paprika (Capsicum annuum, as well as the colour and microbiological status of its conventional and supercritical oleoresins were examined in this work.

  15. Variations in the monoterpene composition of ponderosa pine wood oleoresin

    Science.gov (United States)

    Richard H. Smith

    1964-01-01

    A wide range in quantitative composition of the wood oleoresin monoterpenes was found among 64 ponderosa pines in the central Sierra Nevada by gas chromatographic analysis. An inverse relationship was found in the amount of β-pinene and Δ3-carene. Practically no difference in composition could be associated with (a) type of...

  16. Antifungal activity of Copaifera langsdorffii Desf oleoresin against dermatophytes.

    Science.gov (United States)

    Zimmermam-Franco, Danielle C; Bolutari, Edilene B; Polonini, Hudson C; do Carmo, Antônio Márcio R; Chaves, Maria das Graças A M; Raposo, Nádia R B

    2013-10-11

    Dermatophytoses are mycoses that affect keratinized tissues in both humans and animals. The aim of this study was to investigate the antifungal activity of the oleoresin extracted from Copaifera langsdorffii Desf. against the strains Microsporum canis ATCC 32903, Microsporum gypseum ATCC 14683, Trichophyton mentagrophytes ATCC 11481 and Trichophyton rubrum CCT 5507. The antimicrobial activity was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values. Ketoconazole and terbinafine were used as reference drugs. The copaiba oleoresin showed moderate fungicidal activity against T. mentagrophytes ATCC 11481 (MIC and MFC = 170 μg mL-1) and weak fungicidal activity against T. rubrum CCT 5507 (MIC = 1,360 μg mL-1 and MFC = 2,720 μg mL-1). There was no activity against M. canis ATCC 32903 and M. gypseum ATCC 14683. SEM analysis revealed physical damage and morphological alterations such as compression and hyphae clustering in the structure of the fungi exposed to the action of the oleoresin. The results stimulate the achievement of in vivo assays to confirm the benefits of the application of oleoresin extracted from copaiba in the treatment of dermatophytosis, both in humans and in animals.

  17. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host.

    Science.gov (United States)

    Yamada, Yuuki; Arima, Shiho; Nagamitsu, Tohru; Johmoto, Kohei; Uekusa, Hidehiro; Eguchi, Tadashi; Shin-ya, Kazuo; Cane, David E; Ikeda, Haruo

    2015-06-01

    Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match with any known compounds in spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowed assignment of the structures of 13 new cyclic terpenes. Among these newly identified compounds, two were found to be linear triquinane sesquiterpenes that have never previously been isolated from bacteria or any other source. The remaining 11 new compounds were shown to be diterpene hydrocarbons and alcohol, including hydropyrene (1), hydropyrenol (2), tsukubadiene (11) and odyverdienes A (12) and B (13) each displaying a novel diterpene skeleton that had not previously been reported.

  18. Extraction and Analysis of Terpenes/Terpenoids.

    Science.gov (United States)

    Jiang, Zuodong; Kempinski, Chase; Chappell, Joe

    2016-01-01

    Terpenes/terpenoids constitute one of the largest classes of natural products, this is due to the incredible chemical diversity that can arise from the biochemical transformations of the relatively simple prenyl diphosphate starter units. All terpenes/terpenoids comprise a hydrocarbon backbone that is generated from the various length prenyl diphosphates (a polymer chain of prenyl units). Upon ionization (removal) of the diphosphate group, the remaining allylic carbocation intermediates can be coaxed down complex chemical cascades leading to diverse linear and cyclized hydrocarbon backbones, which can then be further modified with a wide range of functional groups ( e.g . alcohol, ketones, etc .) and substituent additions ( e.g . sugars, fatty acids). Because of this chemical diversity, terpenes/terpenoids have great industrial uses as flavors, fragrances, high grade lubricants, biofuels, agricultural chemicals and medicines. The protocols presented here focus on the extraction of terpenes/terpenoids from various plant sources and have been divided into extraction methods for terpenes/terpenoids with various levels of chemical decoration, from the relative small, nonpolar, volatile hydrocarbons to substantially large molecules with greater physical complexity due to their chemical modifications.

  19. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels.

    Science.gov (United States)

    Mewalal, Ritesh; Rai, Durgesh K; Kainer, David; Chen, Feng; Külheim, Carsten; Peter, Gary F; Tuskan, Gerald A

    2017-03-01

    Research toward renewable and sustainable energy has identified specific terpenes capable of supplementing or replacing current petroleum-derived fuels. Despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants because of low yields. Plant terpene biosynthesis is regulated at multiple levels, leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit, including annotated genomes, high-throughput omics profiling, and genome editing, have begun to elucidate plant terpene metabolism, and such information is useful for bioengineering metabolic pathways for specific terpenes. We review here the status of terpenes as a specialty biofuel and discuss the potential of plants as a viable agronomic solution for future terpene-derived biofuels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. New antibacterial hydrophobic assay reveals Abies balsamea oleoresin activity against Staphylococcus aureus and MRSA.

    Science.gov (United States)

    Coté, Héloïse; Boucher, Marie-Anne; Pichette, André; Roger, Benoit; Legault, Jean

    2016-12-24

    Oleoresin of Abies balsamea (L.) Mill. was used by Native Americans of the boreal forest of Canada and French Canadians to treat various infections, suggesting that oleoresin has antibacterial properties. In this study, the antibacterial activity of whole oleoresin from A. balsamea was investigated against E. coli, S. aureus and two methicillin-resistant S. aureus (MRSA) strains using a new sensitive assay developed to evaluate hydrophobic matrix and compounds. Antibacterial activity of oleoresin was first investigated using dilution and disk diffusion methods against E. coli and S. aureus, and compared to a new sensitive assay for hydrophobic matrix. Moreover, whole oleoresin was analyzed by GC-MS to characterize the composition and to identify the compounds responsible of the antibacterial activity. The results showed that whole oleoresin was inactive against Gram-negative E. coli (MIC90 >90µg/ml) but active against Gram-positive S. aureus and MRSA with MIC90 ranging from 18.2 to 30µg/ml. The oleoresin is mainly composed of monoterpene (28%), sesquiterpenes (2%), and diterpenes (45%). Resin acids were found, in part, responsible for the antibacterial activity of whole oleoresin. Isopimaric acid and levopimaric acid are the most active with a MIC90 of respectively 9.7µg/ml and 10µg/ml. This study supports the use of oleoresin of A. balsamea by the Native Americans and French Canadians to treat bacterial infections due to S. aureus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Pengaruh Penggunaan Cassiavera (Cinnamommum burmannii Mutu Rendah Terhadap Kualitas Oleoresin

    Directory of Open Access Journals (Sweden)

    Silfia Silfia

    2013-12-01

    Full Text Available Low grade cinnamon (Cinnamommum burmannii such as grade B, C , KA, KB and KC is cinnamon produced from bark of twigs and branches, the most part of them is not scraped with clean, range of color between brownish dark yellow to blackish brown, less spicy flavor, and consists of chips. The purpose of this research to increase the added value of low grade Cassiavera became oleoresin in order to be more efficient of its utilize in industry and avoid from contamination of microorganisms so that can be improved the economic value. The research was conducted with variations of source of Cassiavera raw materials that consisted of treatment A (Cassiavera grade A as a control, B (Cassiavera grade C, C (Cassiavera grade A broken, D (Cassiavera grade KB, and E (Cassiavera grade KC. To produce oleoresin, Cassiavera powder 40 mesh sieve was extracted for 2x2.5 hours at 50°C in 95% ethanol in ratio 1:6. Results of the research were obtained that the best treatment come from Cassiavera grade A broken with the highest yield of oleoresin and cinnamaldehyde obtained were 32.85% and 62.84%, low specific gravity 1.008 and refractive index 1.507, moreover results of the moisture content and ash content analysis of raw material were 10.97% and 2.982% respectively.ABSTRAKCassiavera (Cinnamommum burmannii mutu rendah (grade B, C, KA , KB dan KC merupakan cassiavera yang berasal dari kulit ranting dan dahan, sebagian besar tidak terkikis dengan bersih, berwarna kuning tua kecoklatan sampai coklat kehitaman, rasa kurang pedas, dan terdiri dari kepingan. Tujuan penelitian adalah untuk meningkatkan nilai tambah cassiavera mutu rendah menjadi oleoresin agar penggunaannya dalam industri lebih effisien dan terhindar dari pencemaran mikroorganisme sehingga dapat ditingkatkan nilai ekonomisnya. Penelitian dilakukan dengan memvariasikan sumber bahan baku cassiavera yaitu perlakuan A (Casiavera mutu A, sebagai kontrol, B (Cassiavera mutu C, C (Cassiavera mutu A pecahan, D

  2. 40 CFR 721.9635 - Terpene residue distillates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Terpene residue distillates. 721.9635... Substances § 721.9635 Terpene residue distillates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as terpene residue distillates (PMN P-96-897...

  3. Terpenes and terpenoids in chemical sensitivity.

    Science.gov (United States)

    Rea, William J; Restrepo, Carolina; Pan, Yaqin

    2015-01-01

    CONTEXT : Terpenes and terpenoids are a diverse class of organic compounds produced by a variety of plants, particularly conifers. Chemically sensitive patients can be targeted by terpenes and terpenoids, resulting in a triggering of symptoms and pathology. Often patients cannot clear their symptoms from exposure to chemicals unless terpenes and terpenoids are avoided and neutralized along with chemical avoidance and treatment. This article evaluates the presence, diagnosis, and treatment of terpenes exposure in chemically sensitive patients. A double-blind, placebo-controlled, 2-part study was designed to establish the chemically sensitive state of the patients in part 1, followed by a second set of challenges to determine each patient's concurrent sensitivity to terpenes and terpenoids in part 2. In all of the challenges, normal saline was used as a control. A case report illustrates the history of 1 patient and describes the authors' treatment methods. The study was developed and conducted at the Environmental Health Center of Dallas (EHC-D) because the environment within the center is 5 times less polluted than the surrounding environments, as determined by quantitative air analysis and particulate counts. A total of 45 chemically sensitive patients at EHC-D with odor sensitivity to terpenes. The cohort included 18 males and 27 females, aged 24-62 y.Intervention • Patients were deadapted (4 d) and evaluated in a 5-times-less-polluted environment, which was evaluated using air analysis and particulate counts. After deadaptation, the patients were challenged by inhalation in a controlled, less-polluted glass steel booth inside an environmentally controlled room with an ambient air dose of the toxics in the order of parts per billion (PPB) and parts per million (PPM). These toxics included formaldehyde, pesticide, cigarette smoke, ethanol, phenol, chlorine, new sprint, perfume, and placebo. They were also challenged intradermally with extracts of volatile

  4. Some effects of douglas fir terpenes on certain microorganisms.

    Science.gov (United States)

    Andrews, R E; Parks, L W; Spence, K D

    1980-08-01

    The Douglas fir terpene alpha-pinene was shown to inhibit the growth of a variety of bacteria and a yeast. Other terpenes of the Douglas fir, including limonene, camphene, and isobornyl acetate, were also inhibitory to Bacillus thuringiensis. All terpenes were inhibitory at concentrations normally present in the fir needle diet of Douglas fir tussock moth larvae. The presence of such terpenes in the diet of these insects was found to strongly influence the infectivity of B. thuringiensis spores for the Douglas fir tussock moth larvae. The terpene alpha-pinene destroyed the cellular integrity and modified mitochondrial activity in certain microorganisms.

  5. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    Falara, V.; Akhtar, T.A.; Nguyen, T.T.H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R.C.; Pichersky, E.

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  6. [Regulation of terpene metabolism: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-12-31

    We have completed studies on the key pathways of monoterpene biosynthesis in sage and peppermint, and on biosynthetic enzymes. We have confirmed that monoterpene turnover does occur, have deciphered the function of this process in plants, delineated the essential features of the catabolic pathways for camphor and menthone, and initiated studies on the relevant enzymology. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation (yield and composition) depends on the balance between biosynthetic and catabolic events, and provided supporting evidence that these processes are developmentally regulated and very closely associated with senescence (collapse) of the oil glands. We have demonstrated that foliar applied bioregulators influence terpene composition and yield, probably by a combination of effects in oil gland development and by more direct alteration of enzyme levels. These studies have provided a practical means for modifying terpene composition and yield and, moreover, have provided a powerful approach to studying developmental regulation in intact plants, explants and tissue culture systems. We have thus developed the fundamental background knowledge needed as well as the necessary experimental tools for studying the regulation of terpene metabolism.

  7. (Regulation of terpene metabolism: Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-01-01

    We have completed studies on the key pathways of monoterpene biosynthesis in sage and peppermint, and on biosynthetic enzymes. We have confirmed that monoterpene turnover does occur, have deciphered the function of this process in plants, delineated the essential features of the catabolic pathways for camphor and menthone, and initiated studies on the relevant enzymology. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation (yield and composition) depends on the balance between biosynthetic and catabolic events, and provided supporting evidence that these processes are developmentally regulated and very closely associated with senescence (collapse) of the oil glands. We have demonstrated that foliar applied bioregulators influence terpene composition and yield, probably by a combination of effects in oil gland development and by more direct alteration of enzyme levels. These studies have provided a practical means for modifying terpene composition and yield and, moreover, have provided a powerful approach to studying developmental regulation in intact plants, explants and tissue culture systems. We have thus developed the fundamental background knowledge needed as well as the necessary experimental tools for studying the regulation of terpene metabolism.

  8. 21 CFR 182.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural...

  9. 21 CFR 582.50 - Certain other spices, seasonings, essential oils, oleoresins, and natural extracts.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Certain other spices, seasonings, essential oils... GENERALLY RECOGNIZED AS SAFE General Provisions § 582.50 Certain other spices, seasonings, essential oils, oleoresins, and natural extracts. Certain other spices, seasonings, essential oils, oleoresins, and natural...

  10. Oleoresin yield and 6-gingerol in two varieties of Nigerian ginger ...

    African Journals Online (AJOL)

    Two varieties of ginger at various maturity stages were extracted with acetone to obtain ginger oleoresins which were quantitatively estimated for the 6-gingerol content and pungency. The results showed that the yield of oleoresins ranged within 86-140g.kg-1 in both ginger varieties with UG14 giving the highest yield and ...

  11. Dietary supplementation of young broiler chickens with capsicum and turmeric oleoresin increases resistance to necrotic enteris

    Science.gov (United States)

    The Clostridium-related poultry disease, necrotic enteritis (NE), causes substantial economic losses on a global scale. In this study, a mixture of two plant-derived phytonutrients, Capsicum oleoresin and turmeric oleoresin (XT), was evaluated for its effects on local and systemic immune responses ...

  12. Dietary supplementation of young broiler chickens with Capsicum and turmeric oleoresins increases resistance to necrotic enteritis

    Science.gov (United States)

    The Clostridium-related poultry disease, necrotic enteritis (NE), causes substantial economic losses on a global scale. In this study, a mixture of two plant-derived phytonutrients, Capsicum oleoresin and turmeric oleoresin (XT), was evaluated for its effects on local and systemic immune responses ...

  13. Genetic and phenotypic variability for constitutive oleoresin flow in loblolly pine

    Science.gov (United States)

    James H. Roberds; Brian L. Strom; F.P. Hain

    2003-01-01

    In loblolly pine, Pinus taeda L., flow of oleoresin at penetration sites is considered to be a major component of defense against attack by the southern pine beetle (SPB) Dendroctonus frontalis Zimm. Trees with copious amounts of constitutive or preformed oleoresin appear to be most able to prevent or impede colonization by this...

  14. Paraquat-induced resinosis in Pinus radiata. Part 3. Factors influencing oleoresin yields

    Energy Technology Data Exchange (ETDEWEB)

    Sioumis, A.A.; Smelstorius, J.A.; Lau, L.S.

    1979-01-01

    Factors affecting oleoresin yield were: the amount and mode of application of paraquat; and age, size, and dominance of the tree. In trials with 12-year old P. radiata, the bark removal technique yielded more oleoresin than the drill-hole method.

  15. Estimates of genetic parameters for oleoresin and growth traits in juvenile loblolly pine

    Science.gov (United States)

    James H. Roberds; Brian L. Strom; Fred P. Hain; David P. Gwaze; Steven E. McKeand; Larry H. Lott

    2003-01-01

    In southern pines of the United States, resistance to attack by southern pine beetle, Dendroctonus frontalis Zimmermann, is believed to principally involve flow of oleoresin to beetle attack sites. Both environmental and genetic factors are known to affect the quantity of oleoresin flow in loblolly pine, Pinus taeda L., but little...

  16. OPTIMASI YIELD ETIL P METOKSISINAMAT PADA EKSTRAKSI OLEORESIN KENCUR (Kaempferia galanga MENGGUNAKAN PELARUT ETANOL

    Directory of Open Access Journals (Sweden)

    Eko Setyawan

    2013-05-01

    Full Text Available Kencur (Kaempferia galanga L. banyak digunakan sebagai bahan baku obat tradisional (jamu, fitofarmaka, industri kosmetika, industri makanan, dan industri insektisida. Minyak atsiri rimpang kencur mengandung etil sinnamat dan metil p-metoksi sinamat (EPMS. Ekstraksi oleoresin kencur dilakukan dengan etanol sebagai pelarut. Optimasi yield EPMS diteliti terhadap perbandingan massa serbuk kering kencur dan etanol dan waktu ekstraksi. Perbandingan kencur : etanol yang digunakan adalah 1 : 2, 1 : 3, dan 1 : 4. Waktu operasi yang digunakan adalah 2 s.d 5 jam. Tahapan proses ekstraksi oleoresin kencur adalah preparasi bahan, ekstraksi, evaporasi dan pemurnian. Oleoresin hasil ekstraksi dianalisis dengan uji GC-MS untuk mengetahui kandungan EPMS dan kandungan minyak atsiri lain dalam oleoresin kencur. Oleoresin hasil ekstraksi berwarna coklat tua dengan yield antara 6-8%. Kandungan EPMS dalam oleoresin bervariasi antara 67,77 hingga 87,57%. Massa oleoresin optimal hasil ekstraksi adalah 6,09 gram pada perbandingan kencur dan etanol 1:4 selama 4 jam. Pendekatan persamaan hasil ekperimen ekstraksi kencur dan etanol menghasilkan titik optimal EPMS pada waktu ekstraksi 3,62 dengan massa EPMS 6,04 gram Lesser galangal (Kaempferia galanga L. is widely used as a traditional medicine (herbal medicine, fitofarmaka, cosmetics industry, food industry, and insecticide industry. The essential oils in the Lesser galangal contain ethyl sinnamat and methyl p-methoxy cinnamic (EPMS. The oleoresin extraction of Lesser galangal was performed using ethanol as a solvent. Optimization of the EPMS yield was investigated to dry powder mass ratio of Lesser galangal and ethanol as well as the extraction time. The ratio of Lesser galangal : ethanol was  varied from 1: 2, 1: 3 and 1: 4. The chosen operating time were 2 to 5 hours. The procedure of the oleoresin extraction process of Lesser galangal includes the preparation of materials, extraction, evaporation and

  17. Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control.

    Science.gov (United States)

    Oliveira, Anna E M F M; Duarte, Jonatas L; Cruz, Rodrigo A S; Souto, Raimundo N P; Ferreira, Ricardo M A; Peniche, Taires; da Conceição, Edemilson C; de Oliveira, Leandra A R; Faustino, Silvia M M; Florentino, Alexandro C; Carvalho, José C T; Fernandes, Caio P

    2017-01-03

    Preparation of nanoformulations using natural products as bioactive substances is considered very promising for innovative larvicidal agents. On this context, oil in water nanoemulsions develop a main role, since they satisfactorily disperse poor-water soluble substances, such as herbal oils, in aqueous media. Pterodon emarginatus, popularly known as sucupira, has a promising bioactive oleoresin. However, to our knowledge, no previous studies were carried out to evaluate its potential against Culex quinquefasciatus, the main vector of the tropical neglected disease called lymphatic filariasis or elephantiasis. Thus, we aimed to investigate influence of different pairs of surfactants in nanoemulsion formation and investigate if a sucupira oleoresin-based nanoemulsion has promising larvicidal activity against this C. quinquefasciatus. We also evaluated morphological alteration, possible mechanism of insecticidal action and ecotoxicity of the nanoemulsion against a non-target organism. Among the different pairs of surfactants that were tested, nanoemulsions obtained with polysorbate 80/sorbitan monooleate and polysorbate 80/sorbitan trioleate presented smallest mean droplet size just afterwards preparation, respectively 151.0 ± 2.252 and 160.7 ± 1.493 nm. They presented high negative zeta potential values, low polydispersity index (nanoemulsion prepared with polysorbate 80/sorbitan monooleate was considered more stable and was chosen for biological assays. It presented low LC50 value against larvae (34.75; 7.31-51.86 mg/L) after 48 h of treatment and some morphological alteration was observed. The nanoemulsion did not inhibit acetylcholinesterase of C. quinquefasciatus larvae. It was not toxic to green algae Chlorella vulgaris at low concentration (25 mg/L). Our results suggest that optimal nanoemulsions may be prepared with different surfactants using a low cost and low energy simple method. Moreover, this prototype proved to be effective against C

  18. Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem.

    Science.gov (United States)

    Achotegui-Castells, Ander; Della Rocca, Gianni; Llusià, Joan; Danti, Roberto; Barberini, Sara; Bouneb, Mabrouk; Simoni, Sauro; Michelozzi, Marco; Peñuelas, Josep

    2016-01-22

    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle.

  19. Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem

    Science.gov (United States)

    Achotegui-Castells, Ander; Della Rocca, Gianni; Llusià, Joan; Danti, Roberto; Barberini, Sara; Bouneb, Mabrouk; Simoni, Sauro; Michelozzi, Marco; Peñuelas, Josep

    2016-01-01

    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle.

  20. Comparison of terpene composition in Engelmann spruce (Picea engelmannii) using hydrodistillation, SPME and PLE.

    Science.gov (United States)

    Mardarowicz, Marek; Wianowska, Dorota; Dawidowicz, Andrzej L; Sawicki, Ryszard

    2004-01-01

    Terpenes emitted by conifer trees are generally determined by analysing plant extracts or essential oils, prepared from foliage and cones using steam distillation. The application of these procedures limits experiments to cut plant materials. Recently headspace techniques have been adopted to examine terpene emission by living plants. This paper deals with the application of solid-phase micro-extraction (SPME) for the analysis of terpenes emitted by conifers foliage of Engelmann spruce (Picea engelmannii), including its seedlings. The compositions of SPME extracts obtained for destroyed and non-destroyed old and juvenile spruce needles were compared with the compositions of essential oils and pressurised liquid extraction (PLE) extracts corresponding to the same plant materials. No substantial differences have been found in the qualitative terpene composition estimated by analysing essential oil and PLE and SPME extracts from non-destroyed old and juvenile foliage. The disintegration of spruce needles results in the formation of a significant amount of myrcene in the case of the old conifer foliage and non-terpenoic compounds in the case of juvenile conifer foliage. This phenomenon can be attributed to enzymatic reactions occurring in the destroyed plant cells.

  1. Extraction of basil leaves (ocimum canum) oleoresin with ethyl acetate solvent by using soxhletation method

    Science.gov (United States)

    Tambun, R.; Purba, R. R. H.; Ginting, H. K.

    2017-09-01

    The goal of this research is to produce oleoresin from basil leaves (Ocimum canum) by using soxhletation method and ethyl acetate as solvent. Basil commonly used in culinary as fresh vegetables. Basil contains essential oils and oleoresin that are used as flavouring agent in food, in cosmetic and ingredient in traditional medicine. The extraction method commonly used to obtain oleoresin is maceration. The problem of this method is many solvents necessary and need time to extract the raw material. To resolve the problem and to produce more oleoresin, we use soxhletation method with a combination of extraction time and ratio from the material with a solvent. The analysis consists of yield, density, refractive index, and essential oil content. The best treatment of basil leaves oleoresin extraction is at ratio of material and solvent 1:6 (w / v) for 6 hours extraction time. In this condition, the yield of basil oleoresin is 20.152%, 0.9688 g/cm3 of density, 1.502 of refractive index, 15.77% of essential oil content, and the colour of oleoresin product is dark-green.

  2. Chemistry and Biological Activities of Terpenoids from Copaiba (Copaifera spp. Oleoresins

    Directory of Open Access Journals (Sweden)

    Jamilly Kelly Oliveira Neves

    2012-03-01

    Full Text Available Copaiba oleoresins are exuded from the trunks of trees of the Copaifera species (Leguminosae-Caesalpinoideae. This oleoresin is a solution of diterpenoids, especially, mono- and di-acids, solubilized by sesquiterpene hydrocarbons. The sesquiterpenes and diterpenes (labdane, clerodane and kaurane skeletons are different for each Copaifera species and have been linked to several reported biological activities, ranging from anti-tumoral to embriotoxic effects. This review presents all the substances already described in this oleoresin, together with structures and activities of its main terpenoids.

  3. OPTIMASI EKSTRAKSI GELOMBANG ULTRASONIK UNTUK PRODUKSI OLEORESIN JAHE (Zingiber officinale Roscoe MENGGUNAKAN RESPONSE SURFACE METHODOLOGY (RSM

    Directory of Open Access Journals (Sweden)

    Sri Hartuti

    2014-02-01

    Full Text Available The research aims to optimize extraction process of ginger oleoresin using ultrasonic wave. The variables observed include ratio of ginger to ethanol solvent (X1, extraction temperature (X2, and extraction time (X3. The response surface method with central composite design (CCD was used to obtain a mathematical model in order to define correlation between yield and refractive index of ginger oleoresin to any effected variables. The optimum conditions of ginger oleoresin using ultrasonic wave was obtained at composition ratio of ginger powder to ethanol X1 at 1:3.70 g g-1, X2 at 46 oC, and X3 for 129 minutes generating 8.884% yield, and refractive index value at 1.487. A GC-MS analysis result shows that ginger oleoresin components in the best state consist of 41.65% volatile oil component and 26.2% carriers of spicy flavor. The ginger oleoresin produced in the research meets the Eoa standard No. 243. Keywords: Ginger oleoresin, extraction, ultrasound, response surface methods   ABSTRAK Penelitian ini bertujuan melakukan optimasi proses ekstraksi oleoresin jahe menggunakan gelombang ultrasonik. Variabel-variabel yang dipelajari adalah: rasio jahe terhadap pelarut etanol (X1, temperatur ekstraksi (X2, dan waktu ekstraksi (X3. Metode permukaan respons dengan rancangan Central Composite Design (CCD digunakan untuk memperoleh model matematis yang menggambarkan hubungan antara rendemen dan indeks bias oleoresin jahe terhadap variabel-variabel yang mempengaruhinya. Kondisi optimum ekstraksi oleoresin jahe menggunakan gelombang ultrasonik diperoleh pada komposisi perbandingan bubuk jahe terhadap X1 sebesar 1:3,70 g g-1, X2 sebesar 46 oC, dan X3 selama 129 menit dengan rendemen sebesar 8,884%, dan nilai indeks bias sebesar 1,487. Hasil analisis GC-MS menunjukkan bahwa komponen oleoresin jahe pada kondisi terbaik, terdiri atas 41,65% komponen minyak yang mudah menguap dan 26,2% pembawa rasa pedas. oleoresin jahe yang dihasilkan pada penelitian ini telah

  4. OPTIMASI EKSTRAKSI OLEORESIN PALA (Myristica fragrans Houtt ASAL MALUKU UTARA MENGGUNAKAN RESPONSE SURFACE METHODOLOGY (RSM

    Directory of Open Access Journals (Sweden)

    Muhammad Assagaf

    2013-03-01

    Full Text Available The purpose of this study was to obtain the optimum extraction conditions by performing the optimization of temperature and extraction time and characterization of constituent chemical components of oleoresin nutmeg (Myristica fragrans Houtt Origin of North Maluku. Oleoresin extracted using maceration method, for optimization of extraction conditions was done by using Response Surface Methodology (RSM design with the Central Composite Design (CCD two factors X1 (temperature / oC and X2 (times / minute. As for the characterization of the chemical constituent components of nutmeg oleoresin used GC-MS. From the results obtained by the optimization of extraction conditions for extracting the optimum temperature of 51.98 °C and the optimum extraction time was 273.82 minutes with the results for the optimum result of oleoresin obtained by 14.88%. The results of characterization by using GC-MS obtained with 39 components making up oleoresin chemical compound with the largest relative area of the compound methyleugenol (33,397%, myristicine (10,898%, cis-methyl isoeugenol (9,086%, elemicin (8,329% , and isocoumarin (5,608% with 34 percent of the components that have relatively minor area. Keywords: Nutmeg oleoresin, extraction optimization, Response Surface Methodology, characterization   ABSTRAK   Tujuan dari penelitian ini adalah untuk memperoleh kondisi ekstraksi yang optimum dengan melakukan optimasi suhu dan lama ekstraksi dan karakterisasi komponen kimia penyusun oleoresin pala (Myristica fragrans Houtt Asal Maluku Utara. Oleoresin diekstrak menggunakan metode maserasi, untuk optimasi kondisi ekstraksi dilakukan dengan menggunakan metode Response Surface Methodology (RSM dengan disain rancangan Central Composite Design (CCD dua faktor yaitu X1 (suhu/oC dan X2 (waktu/menit. Sedangkan untuk karakterisasi komponen senyawa kimia penyusun oleoresin pala digunakan GC-MS. Hasil optimasi kondisi ekstraksi diperoleh suhu optimum ekstraksi sebesar  51

  5. Thermooxidative stability of fennel oleoresin microencapsulated in blended biopolymer agents.

    Science.gov (United States)

    Chranioti, Charikleia; Tzia, Constantina

    2014-06-01

    In this work, the oxidative and thermal stabilities of 4 different encapsulating agents (chitosan [CH], modified starch [MS], gum arabic [GA], and maltodextrin [MD]) used in fennel oleoresin microencapsulation by the freeze-drying technique were evaluated both individually and in blends (binary and ternary ones). The oxidative stability of the encapsulated products was assessed by gas chromatography/mass spectrometry analysis of the secondary oxidation volatiles along with the use of oxidation markers (peroxide value, PV), while a differential scanning calorimetery analysis was conducted. Gum arabic, both plain and its mixtures, exhibited the lowest protection against lipid oxidation, presenting high PVs. However, good microencapsulation efficiency along with the best oxidative stability in terms of PV and thermal stability indicated that the formulations of MS-CH and MS-MD-CH could be suggested as alternative encapsulating agents. Herbal oleoresins including fennel can provide various nutritional benefits; however, they are sensitive to oxidation and should be microencapsulated. Therefore, there is a need for encapsulating agents that provide good microencapsulation efficiency and enhance at the same time oxidative and thermal stability. © 2014 Institute of Food Technologists®

  6. Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei oleoresin

    Directory of Open Access Journals (Sweden)

    Escarleth da C.R. Rodrigues

    Full Text Available Copaiba (Copaifera duckei Dwyer, Fabaceae oleoresin is an important Amazonian raw material. Despite its insecticidal potential, poor water solubility remains a challenge for the development of effective and viable products. Nanotechnology has emerged as a promising area to solve this problem, especially oil-in-water nanoemulsions. On this context, the aim of the present study was to develop oil-in-water nanoemulsions using copaiba oleoresin dispersed through a high internal phase; and evaluate its potential insecticidal action against Aedes aegypti larvae. Overall, 31 formulations were prepared, ranging from 11.5 ± 0.2 to 257.3 ± 4.1 nm after one day of manipulation. Some of them reached small mean droplet sizes (< 200 nm and allowed achievement of a nanoemulsion region. The formulation consisted of 5% (w/w of copaiba oil, 5% (w/w of surfactant and 90% (w/w of water, which presented mean droplet size of 145.2 ±0.9 nm and polidispersity of 0.378 ± 0.009 after one day of manipulation, and these were evaluated for larvicidal potential. According to mortality level (250 ppm - 93.3 after 48 h, this nanoemulsion was classified as a promising insecticidal agent against Aedes aegypti larvae. The present study allowed the development of low-cost ecofriendly green natural-based nanoformulations with potential larvicidal activity, using a nanobiotechnology approach.

  7. Differential sensing using proteins: exploiting the cross-reactivity of serum albumin to pattern individual terpenes and terpenes in perfume.

    Science.gov (United States)

    Adams, Michelle M; Anslyn, Eric V

    2009-12-02

    There has been a growing interest in the use of differential sensing for analyte classification. In an effort to mimic the mammalian senses of taste and smell, which utilize protein-based receptors, we have introduced serum albumins as nonselective receptors for recognition of small hydrophobic molecules. Herein, we employ a sensing ensemble consisting of serum albumins, a hydrophobic fluorescent indicator (PRODAN), and a hydrophobic additive (deoxycholate) to detect terpenes. With the aid of linear discriminant analysis, we successfully applied our system to differentiate five terpenes. We then extended our terpene analysis and utilized our sensing ensemble for terpene discrimination within the complex mixtures found in perfume.

  8. Antifungal activity of Oleoresins used in meat industry on some toxigenic Aspergillus spp.

    Directory of Open Access Journals (Sweden)

    Šošo Vladislava M.

    2013-01-01

    Full Text Available Different spice oleoresins are widely used in meat industry. They contribute to the specific aroma and flavor of the end products, but they have also been reported to have strong antimicrobial activity. These properties open a plenty of possibilities to be used for defining the specific sensory profile of the product but also as natural food preservatives. This paper focuses on the antifungal activity of four oleoresins against different foodborne toxigenic Aspergillus species. Oleoresins used in the experiments were cayenne pepper, black pepper, garlic and rosemary oleoresins, and they were tested against following Aspergillus species: A. clavatus, A. flavus, A. fumigatus, A. niger, A. ochraceus and A. versicolor. Antifungal activity was tested using microtitre-plate-based assay incorporating resazurin as an indicator of cell growth and broth microdilution-method. [Projekat Ministarstva nauke Republike Srbije, br. III46009

  9. (Regulation of terpene metabolism. ) Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1984-01-01

    This research program represents a very broad-based approach to understanding the biochemistry of the monoterpene and sesquiterpene constituents of the essential oils. This program includes basic research on the pathways, enzymes and mechanisms of terpene biosynthesis and catabolism, on the physiology of essential oil production, and on the morphology and development of oil glands, as well as practical approaches to manipulating essential oil composition and yield. As a natural extension of research on monoterpene biosynthesis and catabolism in sage and peppermint we have explored some aspects of possible regulatory mechanisms. Tentative evidence has been obtained for developmental regulation of the levels of biosynthetic and catabolic enzymes. 10 refs., 8 figs.

  10. Cyclopentanoid terpene biosynthesis in a phasmid insect and in catmint.

    Science.gov (United States)

    Meinwald, J; Happ, G M; Labows, J; Eisner, T

    1966-01-07

    The stick insect, Anisomorpha buprestoides, and the catmint, Nepeta cataria, produce closely related cyclopentanoid terpenes, anisomorphal and nepetalactone. Tracer experiments with isotopes indicate that anisomorphal is synthesized by the walking stick from normal terpene precursors (acetate or mevalonate). In the catmint plant, isolated leaf disks synthesized nepetalactone, utilizing the same precursors.

  11. Selected oxidized fragrance terpenes are common contact allergens

    DEFF Research Database (Denmark)

    Matura, Mihaly; Sköld, Maria; Börje, Anna

    2005-01-01

    Terpenes are widely used fragrance compounds in fine fragrances, but also in domestic and occupational products. Terpenes oxidize easily due to autoxidation on air exposure. Previous studies have shown that limonene, linalool and caryophyllene are not allergenic themselves but readily form allerg...

  12. ANALYTICAL STUDY OF CURCUMIN CONTENT IN DIFFERENT DOSAGE FORMS CONTAINING TURMERIC EXTRACT POWDER AND TURMERIC OLEORESIN

    OpenAIRE

    Rane Rajashree; Gangolli Divya; Patil Sushma; Ingawale Kanchan; Kundalwal Sachin

    2013-01-01

    Different dosage forms namely tablets, capsules, creams and syrups were analysed for curcumin content, by the well-known spectrophotometric method. Turmeric extract powder was used as a source of curcumin in capsule and tablet formulations. Turmeric oleoresin was used as a source of curcumin in cream formulation. Additionally, syrup formulations containing turmeric extract powder as well as turmeric oleoresin, separately, were also tested for their curcumin contents. Analytical results for cu...

  13. Antioxidant activity and chemical composition of oleoresin from leaves and flowers of Brunfelsia uniflora.

    Science.gov (United States)

    Jorge, L F; Meniqueti, A B; Silva, R F; Santos, K A; Da Silva, E A; Gonçalves, J E; De Rezende, C M; Colauto, N B; Gazim, Z C; Linde, G A

    2017-08-17

    In this study, the temperature and pressure of supercritical CO2 extraction were evaluated to obtain oleoresin of Brunfelsia uniflora leaves and flowers. The oleoresin compounds were identified by gas chromatography-mass spectrometry. The antioxidant activity was evaluated by three different methods. The highest oleoresin yields were 3.32% at 40°C and 200 bar for the leaves, and 1.03% at 60°C and 200 bar for the flowers. The main extracted compounds from leaves were phytol varying from 11.95 to 36.42% and α-tocopherol from 15.53 to 43.10%, and from flowers were geranyl linalool from 11.05 to 21.42% and α-amyrin from 9.66 to 22.12%. Oleoresin obtained at 60°C and 150 bar from leaves presented high antioxidant activity by DPPH (IC50 1.90 mg/mL) and by FRAP (1.8 µmol Fe2+/mg). β-carotene/linoleic acid co-oxidation oleoresin from leaves at 0.25 mg/mL presented higher antioxidant activity than Trolox. The total phenolic content of the oleoresin from leaves ranged from 66.20 to 83.33 µg/mg and from flowers it was just up to 12.46 µg/mg. The extraction conditions affected yield, chemical composition, and antioxidant activity of oleoresin from leaves and flowers. This is the first report on the antioxidant activity of B. uniflora oleoresin from leaves and flowers and provides subsidies for potential applications in chemical, pharmaceutical, and food industries.

  14. PENGAMBILAN OLEORESIN DARI AMPAS JAHE (HASIL SAMPING PENYULINGAN MINYAK JAHE DENGAN PROSES EKSTRAKSI

    Directory of Open Access Journals (Sweden)

    Faleh Setia Budi

    2012-02-01

    Full Text Available During this time the ginger oil distillation waste are only used as fire wood for the distillation process. It ispredicted that this waste still contain oleoresin. Oleoresin is the mixture fixed oil (3 – 4 %, essential oil (1 – 3%, resin etc. This research aims to find the most affecting variable and the optimum operation condition inthe extraction processing oleoresin from ginger oil distillation waste. The research is planned to use thefactorial design method 2 levels and 3 independent variables i.e.: temperature (30-60 oC, time (2-6 hoursand solvent volume (300/150- 700/150 ml/gr the weight of ginger waste. The experiment quantities whichmust be carried out are 8 runs. The observed parameters are weight, density and refraction index. The threeindependent variables give positive effect/ increase the product and time is the most influential variables. Thenthe optimization process is carried out to get the optimum operation condition by varying the extraction time.The optimum operation condition of oleoresin extraction is 5.5 hours, temperature 60 oC and solvent volume700ml/150 gr the weight of ginger waste. The number of oleoresin which can be obtained volume 4.1 ml,weight oleoresin 2.7 grams, density 0.67 grams/ml, and refraction index 1.4744. GCMS analysis shows thatthe zingeberence content is 14.91%.

  15. Antibacterial Combination of Oleoresin from Copaifera multijuga Hayne and Biogenic Silver Nanoparticles Towards Streptococcus agalactiae.

    Science.gov (United States)

    Otaguiri, Eliane S; Morguette, Ana E B; Biasi-Garbin, Renata P; Morey, Alexandre T; Lancheros, Cesar A C; Kian, Danielle; de Oliveira, Admilton G; Kerbauy, Gilselena; Perugini, Marcia R E; Duran, Nelson; Nakamura, Celso V; da Veiga, Valdir F; Nakazato, Gerson; Pinge-Filho, Phileno; Yamauchi, Lucy M; Yamada-Ogatta, Sueli F

    2017-01-01

    Streptococcus agalactiae (group B Streptococcus - GBS) remains a leading cause of neonatal infections and an important cause of invasive infections in adults with underlying conditions. This study evaluated for the first time the effect of an oleoresin collected from Copaifera multijuga Hayne (copaiba oil) alone or in combination with silver nanoparticles produced by green synthesis using Fusarium oxysporum (AgNPbio) against planktonic and sessile cells of GBS isolated from colonized women. Copaiba oil showed a dose-dependent bactericidal activity against planktonic GBS strains, including those resistant to erythromycin and/or clindamycin. Scanning and transmission electron microscopy of GBS treated with copaiba oil revealed morphological and ultrastructural alterations, displaying disruption of the cell wall and decreased electron density due to leakage of cytoplasmic content. Copaiba oil also exhibited antibacterial activity against biofilms of GBS strains, inhibiting their formation as well as the viability of mature biofilms. In addition, the combination of copaiba oil with AgNPbio resulted in a synergistic effect against planktonic cells and biofilm formation, reducing the minimal inhibitory concentration values of both compounds. No hemolytic activity was detected for both compounds. These results indicate the potential of copaiba oil, alone or in combination with AgNPbio, for the development of new alternative strategies for controlling GBS infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. In vitro Evaluation of Copaifera oblongifolia Oleoresin Against Bacteria Causing Oral Infections and Assessment of Its Cytotoxic Potential.

    Science.gov (United States)

    da S Moraes, Thaís; Leandro, Luis F; de O Silva, Larissa; Santiago, Mariana B; Souza, Ariana B; Furtado, Ricardo A; Tavares, Denise C; Veneziani, Rodrigo C S; Ambrósio, Sérgio R; Bastos, Jairo K; Martins, Carlos H G

    The oral cavity, which harbors more than 750 bacterial species, is one of the most diverse sites of the human body. Some of these bacteria have been associated with oral diseases, such as dental caries and endodontic infections. We report on the antimicrobial and cytotoxic activities of Copaifera oblongifolia oleoresin against bacteria that cause caries and endodontic infections. The aim of this study is to determine the minimum (MIC) and the bactericidal (MBC) inhibitory concentrations as well as the biofilm inhibition ability (through determination of MBIC50) of the C. oblongifolia oleoresin. This study also investigated the bactericidal kinetics (time-kill curves) and the synergistic effect of the C. oblongifolia oleoresin. Additionally, this study evaluated the cytotoxic activity of the oleoresin toward V79 cells by means of the colony-forming assay. The C. oblongifolia oleoresin gave promising MIC and MBC values, which ranged from 25 to 200 μg/mL. Analysis of the MBIC50values of the oleoresin revealed it displayed biofilm inhibitory activity against all the assayed bacteria. Analysis of the bactericidal kinetics showed different behaviors of the oleoresin against the tested bacteria at the different time intervals and concentrations assayed in this study. An additive effect of the oleoresin with chlorhexidine dihydrochloride occurred only for S. mitis and A. actinomycetemcomitans. The C. oblongifolia oleoresin showed cytotoxic activity at concentrations ≥ 625 μg/mL.

  17. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  18. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    Science.gov (United States)

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  19. Lanostane- and cycloartane-type triterpenoids from Abies balsamea oleoresin

    Directory of Open Access Journals (Sweden)

    Serge Lavoie

    2013-07-01

    Full Text Available Phytochemical analysis of A. balsamea oleoresin led to the isolation of three new 3,4-seco-lanostane triterpenoids 1–3, one new cycloartane triterpenoid 4 along with fourteen known terpenoids. Structure determinations were based on extensive 1D/2D NMR, IR and MS spectroscopic analyses, and comparison with literature data. The isolated compounds were evaluated in vitro for their cytotoxicity against human cell lines (A549, DLD-1, WS1 and their antibacterial activity against E. coli and S. aureus. Abiesonic acid (6 exhibited weak cytotoxic activity against A549 (IC50 = 22 µM while compounds 1 and 4 were weakly active against S. aureus (MIC = 25 µM.

  20. Lanostane- and cycloartane-type triterpenoids from Abies balsamea oleoresin.

    Science.gov (United States)

    Lavoie, Serge; Gauthier, Charles; Legault, Jean; Mercier, Sylvain; Mshvildadze, Vakhtang; Pichette, André

    2013-01-01

    Phytochemical analysis of A. balsamea oleoresin led to the isolation of three new 3,4-seco-lanostane triterpenoids 1-3, one new cycloartane triterpenoid 4 along with fourteen known terpenoids. Structure determinations were based on extensive 1D/2D NMR, IR and MS spectroscopic analyses, and comparison with literature data. The isolated compounds were evaluated in vitro for their cytotoxicity against human cell lines (A549, DLD-1, WS1) and their antibacterial activity against E. coli and S. aureus. Abiesonic acid (6) exhibited weak cytotoxic activity against A549 (IC50 = 22 µM) while compounds 1 and 4 were weakly active against S. aureus (MIC = 25 µM).

  1. [Regulation of terpene metabolism]. Annual progress report, March 15, 1989--March 14, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C{sub 10}) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C{sub 15} C{sub 20}, C{sub 30}, C{sub 40}) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C{sub 15}) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  2. Antimicrobial activity and chemical composition of Brunfelsia uniflora flower oleoresin extracted by supercritical carbon dioxide.

    Science.gov (United States)

    Thiesen, L C T; Sugauara, E Y Y; Tešević, V; Glamočlija, J; Soković, M; Gonçalves, J E; Gazim, Z C; Linde, G A; Colauto, N B

    2017-04-13

    Brunfelsia genus is traditionally utilized in popular medicine due to its antibacterial and antifungal properties to name but a few. However, studies on the antimicrobial activity of Brunfelsia uniflora flower oleoresin have not been found yet. This study aimed to evaluate the chemical composition and antimicrobial activity of B. uniflora flower oleoresin obtained by supercritical carbon dioxide. Oleoresin from the plant dried flowers was obtained by carbon dioxide, and the chemical composition was analyzed by gas chromatographic-mass spectrometry. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) of this oleoresin for seven bacteria and eight fungi were determined using 96-well microtiter plates. The oleoresin MBC for Bacillus cereus, Enterobacter cloacae, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enterica, and Staphylococcus aureus ranged from 0.01 to 0.08 mg/mL, whereas the controls streptomycin and ampicillin varied from 0.1 and 0.5 mg/mL. The oleoresin MFC for Aspergillus fumigatus, Aspergillus niger, Aspergillus ochraceus, Aspergillus versicolor, Penicillium funiculosum, Penicillium ochrochloron, Penicillium verrucosum var. cyclopium, and Trichoderma viride varied from 0.01 to 0.08 mg/mL, whereas the controls bifonazole and ketoconazole ranged from 0.2 to 3.5 mg/mL. The oleoresin obtained by supercritical carbon dioxide presented bacteriostatic, bactericidal, fungistatic, and fungicidal activities that were higher than the positive controls streptomycin, ampicillin, bifonazole, and ketoconazole. The high antimicrobial activity was related to the high content of (E, E)-geranyllinalool that composes 21.0% of the oleoresin and a possible synergic action with fatty acid esters that made up 50.5% of the oleoresin. The oleoresin antimicrobial activity against common multiresistant bacteria in severe infectious processes as P. aeruginosa or against toxin

  3. Terpenes removal from biogas; Terpenenverwijdering uit biogas

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, P.; Holstein, J.; De Haan, HR.; Vlap, H. [DNV KEMA, Arnhem (Netherlands)

    2013-06-15

    Biogas may contain unwanted and harmful components, including aromatic hydrocarbons such as terpenes. These terpenes (organic oils) are mainly present in citrus peel and plant residues; that is why especially raw biogas from organic waste digestion plants contains high concentrations of terpenes. If terpenes end up in the gas grid (with the injected biomethane) there is a risk that plastics (PE pipes) lose their mechanical properties by absorbing liquids or extracting ethereal plasticizers. This can lead to embrittlement greatly lowering the reliability of the piping. In addition, soft components are als o affected (gaskets and rubber O-rings). Besides the impact on the integrity of the gas grid, terpenes also mask the odor of natural gas odorants such as THT. This impedes the detection of gas leaks which is a significant security risk. Furthermore, the presence of terpenes in biogas leads to fouling of equipment used for the drying of biomethane, as well as contamination of adsorption liquids and membranes used in the upgrading process. Currently, terpenes are removed by activated carbon filters. The tool life of such a filter can be relatively short if terpene concentrations are high in the biogas; this results in a significant increase of the operational costs, due to the replacement of the carbon. This study looked at alternative techniques for removing much of the terpenes from biogas in a simple, efficient and cheap way. In a workshop with stakeholders two techniques were chosen to be tested on laboratory scale in order to demonstrate the proof of principle. These techniques are photo-oxydation and a gas scrubbing. Of all investigated techniques for the removal of limonene the application of UV radiation seems to be the most promising option because of the simplicity of the process, the high efficiency (up to 94%), the comparable operational costs with activated carbon (6.7 to 9.5 euro/kg limonene removed, compared to 10 euro/kg limonene removed for activated

  4. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  5. Photosynthetic terpene hydrocarbon production for fuels and chemicals.

    Science.gov (United States)

    Wang, Xin; Ort, Donald R; Yuan, Joshua S

    2015-02-01

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced 'drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to 'disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Removal of floral microbiota reduces floral terpene emissions

    Science.gov (United States)

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-10-01

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

  7. Effects of ingested turmeric oleoresin on glucose and lipid metabolisms in obese diabetic mice: a DNA microarray study.

    Science.gov (United States)

    Honda, Shinichi; Aoki, Fumiki; Tanaka, Hozumi; Kishida, Hideyuki; Nishiyama, Tozo; Okada, Shinji; Matsumoto, Ichiro; Abe, Keiko; Mae, Tatsumasa

    2006-11-29

    Turmeric, the rhizome of Curcuma longa L., has a wide range of effects on human health. Turmeric oleoresin, an extract of turmeric, is often used for flavoring and coloring. Curcuminoids and turmeric essential oil are both contained in turmeric oleoresin, and both of these fractions have hypoglycemic effects. In the present study, we comprehensively assessed the effect of turmeric oleoresin on hepatic gene expression in obese diabetic KK-Ay mice using DNA microarray analysis and quantitative real-time polymerase chain reaction (PCR). Female KK-Ay mice aged 6 weeks (n = 6/group) were fed a high-fat diet containing turmeric oleoresin, curcuminoids, and essential oil for 5 weeks. The same diet without any of these fractions was used as a control diet. Ingestion of turmeric oleoresin and essential oil inhibited the development of increased blood glucose and abdominal fat mass, while curcuminoids only inhibited the increase in blood glucose. DNA microarray analysis indicated that turmeric oleoresin ingestion up-regulated the expression of genes related to glycolysis, beta-oxidation, and cholesterol metabolism in the liver of KK-Ay mice, while expression of gluconeogenesis-related genes was down-regulated. Real-time PCR analysis was conducted to assess the contribution of the curcuminoids and essential oil in turmeric oleoresin to the changes in expression of representative genes selected by DNA microarray analysis. This analysis suggested that curcuminoids regulated turmeric oleoresin ingestion-induced expression of glycolysis-related genes and also that curcuminoids and turmeric essential oil acted synergistically to regulate the peroxisomal beta-oxidation-related gene expression induced by turmeric oleoresin ingestion. These changes in gene expression were considered to be the mechanism by which the turmeric oleoresin affected the control of both blood glucose levels and abdominal adipose tissue masses. All of these results suggest that the use of whole turmeric

  8. Terpene microemulsions for transdermal curcumin delivery: effects of terpenes and cosurfactants.

    Science.gov (United States)

    Liu, Chi-Hsien; Chang, Fu-Yen; Hung, De-Kai

    2011-01-01

    Microemulsion systems composed of terpenes, polysorbate 80, cosurfactants, and water were investigated as transdermal delivery vehicles for curcumin. Pseudoternary phase diagrams of three terpenes (limonene, 1,8-cineole, and α-terpineol) at a constant surfactant/cosurfactant ratio (1:1) were constructed to illustrate their phase behaviors. Limonene combined with cosurfactants like ethanol, isopropanol, and propylene glycol were employed as microemulsion ingredients to study their potential for transdermal curcumin delivery. The transdermal delivery efficacy and skin retention of curcumin were evaluated using neonate pig skin mounted on a Franz diffusion cell. The curcumin permeation rates in the limonene microemulsion studied were 30- and 44-fold higher than those of 1,8-cineole and α-terpineol microemulsions, respectively. Significant effects on the skin permeation rates were observed from microemulsions containing different limonene/water contents. Histological examination of treated skin was performed to investigate the change of skin morphologies. Characteristics such as droplet size, conductivity, interfacial tension, and viscosity were analyzed to understand the physicochemical properties of the transdermal microemulsions. In conclusion, microemulsions loaded with curcumin were successfully optimized for transdermal delivery after screening various terpenes, cosurfactants, and limonene/water ratios. These results indicate that the limonene microemulsion system is a promising tool for the percutaneous delivery of curcumin. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Transcriptomic insight into terpenoid and carbazole alkaloid biosynthesis, and functional characterization of two terpene synthases in curry tree (Murraya koenigii).

    Science.gov (United States)

    Meena, Seema; Rajeev Kumar, Sarma; Dwivedi, Varun; Kumar Singh, Anup; Chanotiya, Chandan S; Akhtar, Md Qussen; Kumar, Krishna; Kumar Shasany, Ajit; Nagegowda, Dinesh A

    2017-03-08

    Curry tree (Murraya koenigii L.) is a rich source of aromatic terpenes and pharmacologically important carbazole alkaloids. Here, M. koenigii leaf transcriptome was generated to gain insight into terpenoid and alkaloid biosynthesis. Analysis of de novo assembled contigs yielded genes for terpene backbone biosynthesis and terpene synthases. Also, gene families possibly involved in carbazole alkaloid formation were identified that included polyketide synthases, prenyltransferases, methyltransferases and cytochrome P450s. Further, two genes encoding terpene synthases (MkTPS1 and MkTPS2) with highest in silico transcript abundance were cloned and functionally characterized to determine their involvement in leaf volatile formation. Subcellular localization using GFP fusions revealed the plastidial and cytosolic localization of MkTPS1 and MkTPS2, respectively. Enzymatic characterization demonstrated the monoterpene synthase activity of recombinant MkTPS1, which produced primarily (-)-sabinene from geranyl diphosphate (GPP). Recombinant MkTPS2 exhibited sesquiterpene synthase activity and formed (E,E)-α-farnesene as the major product from farnesyl diphosphate (FPP). Moreover, mRNA expression and leaf volatile analyses indicated that MkTPS1 accounts for (-)-sabinene emitted by M. koenigii leaves. Overall, the transcriptome data generated in this study will be a great resource and the start point for characterizing genes involved in the biosynthetic pathway of medicinally important carbazole alkaloids.

  10. Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis.

    Science.gov (United States)

    Crocoll, Christoph; Asbach, Julia; Novak, Johannes; Gershenzon, Jonathan; Degenhardt, Jörg

    2010-08-01

    The aroma, flavor and pharmaceutical value of cultivated oregano (Origanum vulgare L.) is a consequence of its essential oil which consists mostly of monoterpenes and sesquiterpenes. To investigate the biosynthetic pathway to oregano terpenes and its regulation, we identified and characterized seven terpene synthases, key enzymes of terpene biosynthesis, from two cultivars of O. vulgare. Heterologous expression of these enzymes showed that each forms multiple mono- or sesquiterpene products and together they are responsible for the direct production of almost all terpenes found in O. vulgare essential oil. The correlation of essential oil composition with relative and absolute terpene synthase transcript concentrations in different lines of O. vulgare demonstrated that monoterpene synthase activity is predominantly regulated on the level of transcription and that the phenolic monoterpene alcohol thymol is derived from gamma-terpinene, a product of a single monoterpene synthase. The combination of heterologously-expressed terpene synthases for in vitro assays resulted in blends of mono- and sesquiterpene products that strongly resemble those found in vivo, indicating that terpene synthase expression levels directly control the composition of the essential oil. These results will facilitate metabolic engineering and directed breeding of O. vulgare cultivars with higher quantity of essential oil and improved oil composition.

  11. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products.

    Science.gov (United States)

    Brill, Zachary G; Condakes, Matthew L; Ting, Chi P; Maimone, Thomas J

    2017-09-27

    The pool of abundant chiral terpene building blocks (i.e., "chiral pool terpenes") has long served as a starting point for the chemical synthesis of complex natural products, including many terpenes themselves. As inexpensive and versatile starting materials, such compounds continue to influence modern synthetic chemistry. This review highlights 21st century terpene total syntheses which themselves use small, terpene-derived materials as building blocks. An outlook to the future of research in this area is highlighted as well.

  12. Insights into molecular architecture of terpenes using small angle neutron scattering

    Science.gov (United States)

    Rai, Durgesh K.; Annamraju, Aparna; Pingali, Sai Venkatesh; O'Neill, Hugh M.; Mewalal, Ritesh; Gunter, Lee E.; Tuskan, Gerald A.

    Understanding macromolecular architectures is vital to engineering prospective terpene candidates for advanced biofuels. Eucalyptus plants store terpenes in specialized cavity-like structures in the leaves called oil glands, which comprises of volatile (VTs) and non-volatile (NVTs) terpenes. Using small-angle neutron scattering, we have investigated the structure and phase behavior of the supramolecular assembly formed by Geranyl beta-D-glucoside (GDG), a NVT and compare the results with that of beta-octyl glucoside (BOG). The formation of micellar structures was observed in the concentration range of 0.5-5 v/v% in water using small angle neutron scattering (SANS) where Schultz sphere model was used in quantifying structural parameters of micelles. SANS studies determine that GDG and BOG behave like amphiphiles forming micellar structures in aqueous solution. The micelles swell upon addition of alpha-Pinene (AP) indicating partition to the core region of the micelles. The general behavior of the micellar growth after partitioning of AP to form thermodynamically stable sizes varies with the NVT concentration. Our studies reveal that the presence of steric hindrance in the GDG via the unsaturated bonds could help stabilize VTs inside the oil glands. LDRD project LOIS ID 7428, SNS, CSMB, HFIR, ORNL, DOE Office of Science User Facilities.

  13. Karakterisasi Kemasan Kertas Aktif dengan Penambahan Oleoresin Ampas Destilasi Sereh Dapur (Cymbopogon citratus

    Directory of Open Access Journals (Sweden)

    Lia Umi Khasanah

    2017-03-01

    Full Text Available The aims of this research were to determine the effect of lemongrass distillation dregs oleoresin concentration (0 %, 2 %, 4 %, and 6 % b/b on the active paper packaging characteristics (sensory, water content, thickness, tensile strength, fold endurance and antimicrobial activity, to determine the functional groups of the control and selected active paper packaging, to determine the effect of days of storage (0, 5, 10, 15, and 20 day on the control and selected active paper packaging characteristics (tensile strength, and fold endurance, and to determine antimicrobial activity of the control and selected active paper packaging during 20 days storage. The result showed that the concentration of lemongrass distillation dregs oleoresin significantly affected the color, overall, tensile strength, fold endurance, and antimicrobial activity while did not significantly affected the flavor, texture, water content, and thickness of the active paper packaging. The addition of lemongrass distillation dregs oleoresin increased the water content, thickness, microbial activity, while decreased the panelists preference, tensile strength and fold endurance of the active paper packaging. The spectrum of functional groups of the active paper packaging showed the presence of chitosan, cellulose, tween 80, and lemongrass oleoresin. The storage days had no significant effect on tensile strength and fold endurance of the control and selected active paper packaging. The control and selected active paper packaging were significantly different at each 5 days storage. However the 20 day of storage showed no significant effect on the antimicrobial activity of the control and selected active paper packaging.   ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh konsentrasi oleoresin ampas destilasi sereh dapur (0 %, 2 %, 4 %, dan 6 % b/b terhadap karakteristik kemasan kertas aktif (analisis sensoris, kadar air, ketebalan, ketahanan tarik, ketahanan lipat

  14. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  15. Structural determinants of reductive terpene cyclization in iridoid biosynthesis

    DEFF Research Database (Denmark)

    Kries, Hajo; Caputi, Lorenzo; Stevenson, Clare E M

    2016-01-01

    The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound...

  16. Simultaneous Determination of Flavonols and Terpene Lactones in ...

    African Journals Online (AJOL)

    Simultaneous Determination of Flavonols and Terpene Lactones in Beagle Dog Plasma by Ultra-Performance Liquid Chromatography-Tandem - Mass Spectrometry: 2. Application to Pharmacokinetic Studies on Ginkgo Leaf Extract.

  17. In vivo evaluation of the mutagenic potential and phytochemical characterization of oleoresin from Copaifera duckei Dwyer

    Directory of Open Access Journals (Sweden)

    Edson Luis Maistro

    2005-12-01

    Full Text Available We characterized the chemical constituents of Copaifera duckei oleoresin and used dermal application to Wistar rats to evaluated its possible mutagenic and cytotoxic activities on peripheral blood reticulocytes and bone marrow cells. Chemical characterization of the oleoresin revealed the presence of sesquiterpene hydrocarbons, an unidentified neutral diterpene and diterpene acids. To evaluate mutagenicity evaluation the rats were treated with 10, 25 and 50% of the LD50 dose of the oleoresin for three consecutive days and peripheral blood collected after 0, 24, 48 and 72 h for micronucleus analysis. The rats were humanly sacrificed 24 hours after the last treatment and chromosome preparations made using standard techniques. At the three concentrations and the three time intervals tested we found that there were no statistically significant differences in either the mean number of micronucleated reticulocytes (MNRETs or the number of chromosomal aberrations as to the negative control. However, at 25 and 50% of the LD50 dose of the oleoresin there was a significant decrease in the mitotic index (MI as compared to the negative control. Under our experimental conditions, C. duckei V11 oleoresin produced no mutagenic effects on bone marrow cells or in peripheral reticulocytes as assessed by chromosome aberrations and the micronucleus test respectively, but showed cytotoxic activity at high doses.

  18. Genetic and correlation analysis of oleoresin chemical components in slash pine.

    Science.gov (United States)

    Zhang, S; Jiang, J; Luan, Q

    2016-08-29

    This is the first comprehensive study of the genetic analysis of the majority of oleoresin components of slash pine (Pinus elliottii). Pine oleoresin, the resin secreted from the pine tree, is a raw material widely used in industrial products. The objective of this study was to explore the genetic variation and correlation between the major oleoresin components of 50 open pollinated families of slash pine. The individual narrow-sense heritability of the 23 oleoresin components and genetic correlations between them were estimated using the residual maximum likelihood in the flexible mixed modeling program, ASReml-R. A high heritability of 0.424 was observed for β-pinene. Moderate levels of heritability were estimated for β-phellandrene, methyl abietate, estragole, 15-hydroxy-dehydroabietic acid, and isopimaric acid methyl ester at 0.303, 0.294, 0.27, 0.258, and 0.2, respectively. The heritabilities for pimaric acid methyl ester, abieta-8, 13-diene-18-oic acid methyl ester, sandaracopimaric acid, methyl ester, and camphene were relatively low and ranged from 0.11 to 0.17. Many negative genetic correlations were observed as unfavorable while the corresponding phenotypic correlations presented no significant relationships or positive phenotypic correlations. However, the heritabilities and genetic correlations showed that single or multiple component selections and improvement, directly or indirectly, were effective. We postulate that genetic parameters estimated in this study will work as a reference in breeding programs of oleoresin components, especially in slash pine.

  19. Antioxidant capacity and antimutagenic activity of natural oleoresin from greenhouse grown tomatoes (Lycopersicon esculentum).

    Science.gov (United States)

    Rodríguez-Muñoz, Eustolia; Herrera-Ruiz, Gilberto; Pedraza-Aboytes, Gustavo; Loarca-Piña, Guadalupe

    2009-03-01

    Natural oleoresins rich in lycopene were obtained from two varieties of tomato (Zedona and Gironda) and their nutraceutical potential (antioxidant and antimutagenic capacity) was evaluated. Both oleoresins had a high content of lycopene, 58.33+/-1.67 mg/g (Zedona) and 63.97+/-0.80 mg/g (Gironda). The antioxidant activity (AA) of the oleoresins by beta-carotene method were 56.4-74.5% (Zedona) and 51-72.8% (Gironda), while when using the free radical stable 2,2-diphenyl-picryl-hydrazyl (DPPH) method, the antiradical activity (ARA) was determined to be 18.2-32.7% (Zedona) and 16.6-26.7% (Gironda) for the concentrations tested that of 200-400 microM equivalents of lycopene. The antimutagenic activity of the oleoresins was tested against aflatoxin B1 (AFB1) using the microsuspension assay, both varieties had a very high antimutagenic potential against AFB1 (60-66%).These results suggest the NCRT can be taken advantage to obtaining rich oleoresin in lycopene with a nutraceutical value.

  20. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications.

    Science.gov (United States)

    Edris, Amr E; Kalemba, Danuta; Adamiec, Janusz; Piątkowski, Marcin

    2016-08-01

    Oleoresin of Nigella sativa L. (Black cumin) was obtained from the seeds using hexane extraction at room temperature. The oleoresin was emulsified in an aqueous solution containing gum Arabic/maltodextrin (1:1 w/w) and then encapsulated in powder form by spray drying. The characteristics of the obtained powder including moisture content, bulk density, wettability, morphology, encapsulation efficiency were evaluated. The effect of the spray drying on the chemical composition of the volatile oil fraction of N. sativa oleoresin was also evaluated using gas chromatographic-mass spectroscopic analysis. Results indicated that the encapsulation efficiency of the whole oleoresin in the powder can range from 84.2±1.5% to 96.2±0.2% depending on the conditions of extracting the surface oil from the powder. On the other hand the encapsulation efficiency of the volatile oil fraction was 86.2% ±4.7. The formulated N. sativa L. oleoresin powder can be used in the fortification of processed food and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Chemistry and in vitro antioxidant activity of volatile oil and oleoresins of black pepper (Piper nigrum).

    Science.gov (United States)

    Kapoor, I P S; Singh, Bandana; Singh, Gurdip; De Heluani, Carola S; De Lampasona, M P; Catalan, Cesar A N

    2009-06-24

    Essential oil and oleoresins (ethanol and ethyl acetate) of Piper nigrum were extracted by using Clevenger and Soxhlet apparatus, respectively. GC-MS analysis of pepper essential oil showed the presence of 54 components representing about 96.6% of the total weight. beta-Caryophylline (29.9%) was found as the major component along with limonene (13.2%), beta-pinene (7.9%), sabinene (5.9%), and several other minor components. The major component of both ethanol and ethyl acetate oleoresins was found to contain piperine (63.9 and 39.0%), with many other components in lesser amounts. The antioxidant activities of essential oil and oleoresins were evaluated against mustard oil by peroxide, p-anisidine, and thiobarbituric acid. Both the oil and oleoresins showed strong antioxidant activity in comparison with butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) but lower than that of propyl gallate (PG). In addition, their inhibitory action by FTC method, scavenging capacity by DPPH (2,2'-diphenyl-1-picrylhydrazyl radical), and reducing power were also determined, proving the strong antioxidant capacity of both the essential oil and oleoresins of pepper.

  2. AKTIVITAS ANTI INFLAMASI OLEORESIN JAHE (Zingiber officinale PADA GINJAL TIKUS YANG MENGALAMI PERLAKUAN STRES [Anti Inflammation Activity of Ginger (Zingiber officinale Oleoresin on Kidney of Rats Under Stress Condition

    Directory of Open Access Journals (Sweden)

    I Ketut Mudite AdnyanE1

    2003-08-01

    Full Text Available The present study was conducted to observe the role of antioxidant content of ginger oleoresin (Zingiber officinale on inflammation in the kidney of rats under stress condition, as an anti inflammation. A total of sixty male Wistar rats were used for this study. They were divided into twelve groups; (1 control group, without treatment of both stress and oleoresin, (2 stress group, was treated by stress only, without oleoresin treatment, while (3 and (4 are groups that were treated by stress and then fed by standard feed for three and seven days, without oleoresin. Group (5 to group (12 were treated by stress and then followed by treatment of oleoresin for three and seven days. The doses of oleoresin were 20, 40, 60, and 80 mg/kgBW/day. Stress condition was done by 5 days fasting and swimming for 5 minutes/day, while drinking water was provided ad libitum. The highest number of inflammatory cells in the kidney of rats was observed in the stress group. The treatment of oleoresin after fasting stress showed decreasing of the number of inflammatory cells in the tissues. The decreasing rate was higher in the higher dose of oleoresin. The treatment groups that showed the number of inflammatory cells not significantly different from that of control group are treated groups receiving oleoresin 60 mg/kgBW/day for seven days, and 80 mg/kgBW/day for three and seven days, respectively. These results showed that ginger oleoresin has anti inflammatory effect in the kidney of rats kept under stress condition.

  3. Studies on the pinus species growing in sir lankan plantations. I. Tapping of pinus caribaea (erabedde) for oleoresin

    Energy Technology Data Exchange (ETDEWEB)

    Goonetilleke, L.A.; Jansz, E.R.; Dharmadasa, H.M.; Wijayatileka, S.C.; Vivekanandan, K.

    1980-01-01

    The P. caribaea plantation at Erabedde (Gurutalawa) was investigated for suitability for utilization for oleoresin production. Trees varied markedly from one another with respect to oleoresin output. This marked variation resulted in difficulty in interpreting data on different techniques of tapping. Tree girth was not related to oleoresin yield. Based on these studies trees may be divided into 3 categories: (1) trees that produce good yields at all times, (2) trees that produce little or no oleoresin, and (3) trees which produce average yields of oleoresin only under favorable conditions. Favorable conditions were difficult to define, but appeared to be related to rainfall. Although systematic tapping of the trees of the plantation may not be feasible, selected slaughter tapping could form the basis for an industry for producing rolsin and turpentine.

  4. Multi-substrate terpene synthases: their occurrence and physiological significance

    Directory of Open Access Journals (Sweden)

    Leila Pazouki

    2016-07-01

    Full Text Available Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15, and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5, mono- (C10 and diterpenes (C20. Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

  5. Tomato Fruits-A Platform for Metabolic Engineering of Terpenes.

    Science.gov (United States)

    Gutensohn, M; Dudareva, N

    2016-01-01

    Terpenoids are a large and diverse class of plant metabolites including mono-, sesqui-, and diterpenes. They have numerous functions in basic physiological processes as well as the interaction of plants with their biotic and abiotic environment. Due to the tight regulation of biosynthetic pathways and the resulting limited natural availability of terpenes, there is a strong interest in increasing their production in plants by metabolic engineering for agricultural, pharmaceutical, and industrial applications. The tomato fruit system was developed as a platform for metabolic engineering of terpenes to overcome detrimental effects on overall plant growth and photosynthesis traits, which are affected when terpenoid engineering is performed in vegetative tissues. Here we describe how the use of fruit-specific promoters for transgene expression can avoid these unwanted effects. In addition, targeting the expression of the introduced terpene biosynthetic gene to fruit tissue can take advantage of the large precursor pool provided by the methylerythritol-phosphate (MEP) pathway, which is highly active during tomato fruit ripening to facilitate the accumulation of carotenoids. We also discuss how the production of high levels of target terpene compounds can be achieved in fruits by the expression of individual or a combination of (i) the MEP or mevalonic acid pathway enzymes, (ii) prenyltransferases, and/or (iii) terpene synthases. Finally, we provide a brief outline of how the emitted as well as internal pools of terpenes can be analyzed in transgenic tomato fruits. © 2016 Elsevier Inc. All rights reserved.

  6. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance.

    Science.gov (United States)

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

  7. Building terpene production platforms in yeast.

    Science.gov (United States)

    Zhuang, Xun; Chappell, Joe

    2015-09-01

    Plants and microbes commonly make terpenes and terpenoids in small amounts and as complex mixtures, and their chemical synthesis is often costly and inefficient. Hence, there are many efforts to create robust and efficient biological production platforms for this interesting class of molecules. In this study, our effort was directed towards building a yeast production platform using an unbiased genetic selection approach. Yeast strain BY4741 was subjected to EMS mutagenesis, followed by selection for growth in the presence of nystatin, squalestatin, and exogenous cholesterol. This unbiased screen selected for mutant yeast lines having a dispensable mevalonate pathway and containing uncharacterized SUE (sterol uptake enhancement) mutations supporting aerobic uptake of exogenous sterol. These mutants were next screened for high level accumulation of farnesol (FOH), an indicator for high level accumulation of the key intermediate FPP, farnesyl diphosphate. To further improve the FPP pool in these mutants, insertional mutations into the ERG9 gene (coding for squalene synthase) were introduced into those lines capable of accumulating ≥50 mg farnesol/L. This generated another series of lines that accumulated farnesol levels over 70 mg/L in small-scale shake cultures. To evaluate the utility of these lines as a general production platform for specific terpenes, select SUE/erg9 lines were transformed with a vector harboring the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene encoding for a sesquiterpene synthase. The new yeast line ZX178-08 accumulated the highest level of premnaspirodiene, up to 116 mg/L, with FOH levels of 23.6 mg/L. In comparison, the parental line BY4741 accumulated 10 times less premnaspirodiene, 10.94 mg/L, with no farnesol detectable. Co-expression of the HPS gene with an amino-terminal truncated, catalytic form of the hamster HMGR gene, tHMGR, increased premnaspirodiene accumulation to 170.23 ± 30.44 mg/L, almost a 50

  8. Terpene and dextran renewable resources for the synthesis of amphiphilic biopolymers.

    Science.gov (United States)

    Alvès, Marie-Hélène; Sfeir, Huda; Tranchant, Jean-François; Gombart, Emilie; Sagorin, Gilles; Caillol, Sylvain; Billon, Laurent; Save, Maud

    2014-01-13

    The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.

  9. Antimicrobial activity and chemical constituents of essential oils and oleoresins extracted from eight pepper species

    Directory of Open Access Journals (Sweden)

    Laira Martinelli

    Full Text Available ABSTRACT: Essential oils are the most important compounds produced during secondary metabolism in aromatic plants. Essential oils are volatile, have characteristic odor and are used as defensive agents by plants. In pepper, it is possible to say that essential oils are the “flavor fingerprint” of each species. In the present article, eight species of pepper were studied in order to extract their essential oils and oleoresins, test their antibacterial and antifungal activities and also to identify the compounds present in the most bioactive samples. Results demonstrated that two essential oils [Pimenta dioica (L. Merr. and Schinus terebinthifolius] and three oleoresins (Schinus terebinthifolius and Piper nigrum white and black recorded significant antimicrobial activity. These active essential oils and oleoresins are interesting for use in biotechnological processes employed in food, pharmaceutical and other industries.

  10. Effect of ground paprika and its oleoresin on marinated chicken breast meat quality

    Directory of Open Access Journals (Sweden)

    Jokanović Marija R.

    2011-01-01

    Full Text Available The still-marinating process is a simplified technology used to tenderize and to improve the flavour, colour and juiciness of meat products. The effects of marinade type, addition of ground paprika (P or paprika oleoresin (O, on the instrumental and sensory properties of cooked marinated chicken fillets were investigated. It was observed that marinade uptake was greater (P > 0.05 for the fillets marinated with paprika oleoresin. Cooking loss was lowest for experimental group O, and signifycantly lower (P<0.05 comparing to control group. Determined L

  11. Terpenic profile of different Rosmarinus officinalis extracts.

    Science.gov (United States)

    Olah, Neli-Kinga; Benedec, Daniela; Socaci, Sonia; Toma, Claudia Crina; Filip, Lorena; Morgovan, Claudiu; Hanganu, Daniela

    2017-07-01

    The Rosemary (Rosmarinus officinalis L.), a well-known medicinal and culinary herb, was studied to compare the terpenic profile of different extracts obtained from dry and fresh herb. There were studied the volatile oil extracted by hydro distillation from dry plant, the hydroalcoholic extracts obtained from fresh respectively dry plant and the glycerol macerate obtained from fresh plant, by GC-MS using headspace injection. The separated compounds were identified using a MS spectra library. The quantitative determination was performed by normalization respectively by calibration curve method for 1,8-cineole, alpha-pinene and D-limonene. The main separated compounds were alpha-pinene, 1,8-cineol, camphene, camphor, D-limonene and cymene. A significant difference was observed between the 4 samples volatile profiles. 1,8-cineole was found major component of the essential oil (VO-21.39%) and glycerol macerate (GM-35.60%), while and α-pinene was detected as the main constituent of the two tinctures (T-46.05%; MT-31.93%). The highest 1,8-cineol content, determined by calibration curve method, was found in the volatile oil, while the fresh plant hydroalcoholic extract was richer in α-pinene and D-limonene.

  12. EKSTRAKSI OLEORESIN DARI KAYU MANIS BERBANTU ULTRASONIK DENGAN MENGGUNAKAN PELARUT ALKOHOL

    Directory of Open Access Journals (Sweden)

    Bakti Jos

    2012-05-01

    Full Text Available ULTRASOUND ASSISTED EXTRACTION OF CINNAMON OLEORESIN FROM CINNAMON BARK USING ALCOHOLS AS SOLVENTS. Cinnamon oleoresin is a complex mixture of resin and essential oil extracted from cinnamon burmanii by using organic solvent, and is primarily used as a coloring and flavoring in food products. Major component in essential oil is cinnamic aldehyde. Extraction was usually performed by percolation or soxhlet with various solvents. Several studies on the extraction of oleoresin have been completed by using polar organic solvents. Generally Recognized as Safe (GRAS solvents, which are safe to use in food, were considered as alternative extraction solvents. Hildebrand solubility parameter concept was also used to choose the solvent. In this research, oleoresin from cinnamon was extracted by using ultrasound assisted extraction. Methanol, ethanol and isopropyl alcohol were used as the solvent to determine the extraction time, extraction rate and the kinetic model correspond to the yield of oleoresin. The result showed that the optimal time and extraction intensity are 66 minutes and 20% respectively, oleoresin yield by using solvent extraction of methanol, ethanol, and isopropyl alcohol were 22.86%, 17.87%, and 14.64% respectively. The results were similar compared to conventional extraction. Kinetic study confirmed that the second-order kinetic model is suitable for this research and the extraction rate constant for the second-order kinetic model of these solvents were 0.098, 0.057, and 0.089 respectively.  Abstrak  Oleoresin kayu manis merupakan campuran komplek antara resin dan minyak atsiri sebagai hasil ekstraksi kayu manis dengan menggunakan pelarut organik. Oleoresin banyak digunakan sebagai pewarna dan flavor dalam industri makanan. Komponen utama dalam minyak atsiri kayu manis adalah cinnamic aldehyde. Pada umumnya ekstraksi kayu manis menggunakan cara perkolasi atau soxhlet dengan berbagai pelarut. Beberapa studi ekstraksi oleoresin yang

  13. EFFECT OF REMOVING OLEORESIN WITH VARIOUS CHEMICAL COMPOUNDS ON PHYSICAL AND MECHANICAL PROPERTIES OF KERUING WOOD (DIPTEROCARPUS SPP.

    Directory of Open Access Journals (Sweden)

    Bambang Wiyono

    2007-03-01

    Full Text Available Keruing  (Dipterocarpus spp.  was  the  second  important  wood  export of   Indonesia. Unfortunately, this wood contains oleoresin that hinders its utilization. Currently, the method used to remove oleoresin from keruing is by soaking it into bollied sodium salt solution. Result of  this method is unsatisfactory because the residual heavy oleoresin might still appear on the wood surface. The study was conducted to determine suitable chemical compounds for removing oleoresin from keruing, and the effects on physical and mechanical properties of the wood. Four types of chemical compounds were tested, i.e. sodium chloride, oxalic acid, sulfuric acid, and nitric acid, each at the concentrations of  0.5 percent, 1.0 percent, and 1.5 percent. Wood samples were soaked in the boiling solution at different concentration level for seven hours. When the solution cooled down, the oleoresin exudated out of  the wood samples was separated. The oleoresin was weighed for recovery determination after air dried, and the wood samples were cut into smaller-sized specimens for the physical and mechanical testing (MOE, MOR, compression parallel to grain, hardness and density. Results showed that sulfuric acid was the best chemical compound for removing oleoresin, and the higher the concentration the greater the oleoresin recovery. The second best chemical compound was nitric acid at an optimum concentration of one percent. The soaking of keruing in sulfuric acid and oxalic acid solution resulted in paler wood color compare with the untreated wood sample. Nitric acid solutions caused the color of the wood surface to turn into yellow brownish. The physical and mechanical properties (MOE, MOR, compression parallel to grain, hardness and density of the oleoresin-removed keruing were slightly lower than the untreated (control samples.

  14. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.

    Science.gov (United States)

    Paramasivan, Kalaivani; Mutturi, Sarma

    2017-12-01

    Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses' viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40 g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies

  15. Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex.

    Science.gov (United States)

    Blanch, Josep-Salvador; Peñuelas, Josep; Llusià, Joan

    2007-10-01

    We studied the effects of water stress, fertilization and time course on foliar volatile terpene emission rates by Quercus ilex and Pinus halepensis in a garden experiment. The terpenes mostly emitted by both species were alpha-pinene, beta-pinene, beta-myrcene and Delta(3)-carene. P. halepensis emission rates (average 31.45 microg g(-1) DM h(-1)) were similar to those of Q. ilex (average 31.71 microg g(-1) DM h(-1)). The effects of drought (reduction to one-third of full watering) and fertilization (250 kg N ha(-1), 250 kg P ha(-1), or both) were different depending on the species: the drought treatment significantly increased the terpene emissions from Q. ilex by 33%, and the fertilization treatments reduced the terpene emissions from P. halepensis by 38%. Terpene emission rates increased with time course in parallel to raising summer temperatures in P. halepensis and Q. ilex, whose emission rates were temperature related (r = 0.42 and r = 0.68, respectively) and light related (r = 0.32 and r = 0.57, respectively). There was a positive relationship for P. halepensis, and a negative relationship for Q. ilex, between emission rates and relative water contents. No relationship was found between emission rates and N or P foliar concentrations. The results of this study show complex species-specific responses with stronger and faster short-term responses in terpene-non-storing than in storing species and indicate that terpene emissions may significantly change in the warmer, drier and more fertilized conditions predicted for the next decades in the Mediterranean region.

  16. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple.

    Science.gov (United States)

    Nieuwenhuizen, Niels J; Green, Sol A; Chen, Xiuyin; Bailleul, Estelle J D; Matich, Adam J; Wang, Mindy Y; Atkinson, Ross G

    2013-02-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies.

  17. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  18. Estrogenic terpenes and terpenoids: Pathways, functions and applications.

    Science.gov (United States)

    Kiyama, Ryoiti

    2017-11-15

    Terpenes are made of the isoprene unit (C 5 ), and along with their derivatives, terpenoids, they are widely distributed in plants as active ingredients involved in anti-inflammation, anti-carcinogenesis and neuroprotection. Estrogenic terpenes and terpenoids are an important category of phytoestrogens and have been used as traditional medicines. The comprehensive list of estrogenic terpenes and terpenoids includes hemi-, mono-, sesqui-, di-, tri-, tetra- and polyterpenes, their derivatives, and meroterpenes, along with the signaling pathways and cellular functions on which their estrogenicity is exerted. Signaling pathways are further classified as bidirectional or unidirectional, the latter being further divided into two types depending upon the presence of both ligands, or the absence of one or both ligands. Although estrogenic activity of terpenes and terpenoids was evaluated by ligand-binding assays, yeast two-hybrid assays, reporter-gene assays, transcription assays, protein assays, cell assays and animal testing, the mechanism of estrogenic activity is still not fully understood. Applications of estrogenic terpenes and terpenoids are categorized into cancer treatment and prevention, cardioprotection, endocrine toxicity/reproductive dysfunction, food/supplement/traditional medicine, immunology/inflammation, menopausal syndromes and neuroprotection, where their benefits are discussed based on their availability, stability and variations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot.

    Science.gov (United States)

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-11-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    Science.gov (United States)

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  1. COMPARISON OF GINGER (Zingiber officiale Roscoe OLEORESIN OBTAINED WITH ETHANOL AND ISOPROPANOL WITH THAT OBTAINED WITH PRESSURIZED CO2

    Directory of Open Access Journals (Sweden)

    NOBREGA Lia P.

    1997-01-01

    Full Text Available Ginger (Zingiber officinale Roscoe belongs to the Zingiberacea family. It is a spice of great commercial importance. In this work ginger oleoresin was obtained with ethanol, isopropanol and liquid carbon dioxide. The chemical compositions of the extract were compared with each other. All oleoresin samples had monoterpenes and sesquiterpenes. Carboxylic acids were found in organic solvent extracts for an extraction time of 2 hours. The component responsible the for pungent characteristic of the oleoresin, gingerois, were detected in samples obtained with organic solvent for extraction times of 6 hours and in samples obtained with CO2 liquid for extraction times of 2 hours.

  2. Quantitative analysis of capsaicinoids in fresh peppers, oleoresin capsicum and pepper spray products.

    Science.gov (United States)

    Reilly, C A; Crouch, D J; Yost, G S

    2001-05-01

    Liquid chromatography-mass spectrometry was used to identify and quantify the predominant capsaicinoid analogues in extracts of fresh peppers, in oleoresin capsicum, and pepper sprays. The concentration of capsaicinoids in fresh peppers was variable. Variability was dependent upon the relative pungency of the pepper type and geographical origin of the pepper. Nonivamide was conclusively identified in the extracts of fresh peppers, despite numerous reports that nonivamide was not a natural product. In the oleoresin capsicum samples, the pungency was proportional to the total concentration of capsaicinoids and was related by a factor of approximately 15,000 Scoville Heat Units (SHU)/microg of total capsaicinoids. The principle analogues detected in oleoresin capsicum were capsaicin and dihydrocapsaicin and appeared to be the analogues primarily responsible for the pungency of the sample. The analysis of selected samples of commercially available pepper spray products also demonstrated variability in the capsaicinoid concentrations. Variability was observed among products obtained from different manufacturers as well as from different product lots from the same manufacturer. These data indicate that commercial pepper products are not standardized for capsaicinoid content even though they are classified by SHU. Variability in the capsaicinoid concentrations in oleoresin capsicum-based self-defense weapons could alter potency and ultimately jeopardize the safety and health of users and assailants.

  3. A two year study on Oleoresin tapping in Kenya | Chikamai | East ...

    African Journals Online (AJOL)

    A two year study on Oleoresin tapping in Kenya. B Chikamai. Abstract. No Abstract. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics. Metrics Loading ... Metrics powered by PLOS ALM · http://dx.doi.org/10.4314/eaafj.v60i4.46779 · AJOL African Journals ...

  4. Oleoresin characteristics of progeny of loblolly pines that escaped attack by southern pine beetle

    Science.gov (United States)

    B.L. Strom; R.A. Goyer; L.L. Ingram; G.D.L. Boyd; L.H. Lott

    2002-01-01

    Oleoresin characteristics of first-generation (F1) progeny of loblolly pines (Pinus taeda L.) that escaped mortality from the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), despite heavy mortality of neighbors, were evaluated and compared to trees from a general (i.e., trees...

  5. Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe

    Science.gov (United States)

    Bellik, Yuva

    2014-01-01

    Objective To compare in vitro antioxidant and antimicrobial activities of the essential oil and oleoresin of Zingiber officinale Roscoe. Methods The antioxidant activity was evaluated based on the ability of the ginger extracts to scavenge ABTS°+ free radical. The antimicrobial activity was studied by the disc diffusion method and minimal inhibitory concentration was determined by using the agar incorporation method. Results Ginger extracts exerted significant antioxidant activity and dose-depend effect. In general, oleoresin showed higher antioxidant activity [IC50=(1.820±0.034) mg/mL] when compared to the essential oil [IC50=(110.14±8.44) mg/mL]. In terms of antimicrobial activity, ginger compounds were more effective against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, and less effective against Bacillus cereus. Aspergillus niger was least, whereas, Penicillium spp. was higher sensitive to the ginger extracts; minimal inhibitory concentrations of the oleoresin and essential oil were 2 mg/mL and 869.2 mg/mL, respectively. Moreover, the studied extracts showed an important antifungal activity against Candida albicans. Conclusions The study confirms the wide application of ginger oleoresin and essential oil in the treatment of many bacterial and fungal diseases.

  6. Assessing the Potential Oleoresin Yields of Slash Pine Progenies at Juvenile Ages

    Science.gov (United States)

    A.E. Squillace; Charles R. Gansel

    1968-01-01

    The potential oleoresin yields of slash pine progenies can be assessed at juvenile ages, 7 to 8 years earlier than with previous methods. Seeds are sown in peat pots, outplanted shortly after germination at a spacing of 14 by 3 feet, and given intensive cultural treatment. At 26 years from seed, when the trees average about 9 feet tall, their potential yields are...

  7. Effects of mass inoculation on induced oleoresin response in intensively managed loblolly pine

    Science.gov (United States)

    Kier D. Klepzig; Daniel J. Robison; Glenn Fowler; Peter R. Minchin; Fred P. Hain; H. Lee Allen

    2005-01-01

    Oleoresin flow is an important factor in the resistance of pines to attack by southern pine beetle, Dendroctonus frontalis Zimm., and its associated fungi. Abiotic factors, such as nutrient supply and water relations, have the potential to modify this plant–insect–fungus interaction; however, little is known of the effects of inoculation with beetle-...

  8. Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe

    Directory of Open Access Journals (Sweden)

    Yuva Bellik

    2014-02-01

    Full Text Available Objective: To compare in vitro antioxidant and antimicrobial activities of the essential oil and oleoresin of Zingiber officinale Roscoe. Methods: The antioxidant activity was evaluated based on the ability of the ginger extracts to scavenge ABTS °+ free radical. The antimicrobial activity was studied by the disc diffusion method and minimal inhibitory concentration was determined by using the agar incorporation method. Results: Ginger extracts exerted significant antioxidant activity and dose-depend effect. In general, oleoresin showed higher antioxidant activity [IC50=(1.820依0.034 mg/mL] when compared to the essential oil [IC50=(110.14依8.44 mg/mL]. In terms of antimicrobial activity, ginger compounds were more effective against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, and less effective against Bacillus cereus. Aspergillus niger was least, whereas, Penicillium spp. was higher sensitive to the ginger extracts; minimal inhibitory concentrations of the oleoresin and essential oil were 2 mg/mL and 869.2 mg/mL, respectively. Moreover, the studied extracts showed an important antifungal activity against Candida albicans. Conclusions: The study confirms the wide application of ginger oleoresin and essential oil in the treatment of many bacterial and fungal diseases.

  9. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology.

    Science.gov (United States)

    Balasubramani, P; Palaniswamy, P T; Visvanathan, R; Thirupathi, V; Subbarayan, A; Prakash Maran, J

    2015-01-01

    Experiments were conducted on microencapsulation of garlic oleoresin by spray drying with garlic oleoresin concentration (10%, 20% and 30%) as core material, maltodextrin concentration (40%, 50% and 60%) as wall material and inlet temperature of drying air (180 °C, 200 °C and 220 °C) as process parameters. The process in-terms of encapsulation efficiency was optimised following response surface methodology and Pareto analysis of variance (ANOVA). Second order polynomial regression model showed good fit of the experimental data with high coefficient of determination (R(2)) along with predicted values. The relationships between the independent and dependent parameters were represented using response surface and contour plots. The optimum levels of process parameters, viz., garlic oleoresin concentration, maltodextrin concentration and inlet temperature of air drying were found to be 10%, 60% and 200 °C, respectively with the maximum encapsulation efficiency of 81.9% and desirability of 0.998. The microencapsulated garlic oleoresin powder obtained at optimized conditions was spherical with smooth surface as analysed through scanning electron microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Paraquat Induced Changes in Reserve Carbohydrates, Fatty Acids and Oleoresin Content of Young Slash Pines

    Science.gov (United States)

    Claud L. Brown; Terry R. Clason; Jerry L. Michael

    1976-01-01

    Paraquat was fed into the terminal leaders of five-year-old slash pine trees and collected at weekly intervals for 4 weeks.Cytological observations showed a decrease in starch levels and a corresponding increase in content of oleoresin. Quantitative analysis indicated a decrease in starch accompanying increases in fatty acids, monoterpenes, and resin acids.

  11. Comparative phytochemical analysis of Shorea robusta Gaertn (oleoresin) WSR to its seasonal collection.

    Science.gov (United States)

    Poornima, B

    2009-07-01

    The oleoresin of the Shorea robusta Gaertn is called as Shala niryasa, Kala, Sarja rasa which has the chemical constituents such as nor-triterpene, dammarenolic acid, asiatic acid, dipterocarpol, triterpenic acid, tannic acid and phenolic content and possesses antibacterial, analgesic and wound healing effect.The medicinal property of the plant is highly influenced by the the season in which it is cultivated and collected. The classical texts of Ayurveda provide guidelines on the time of collection of raw drugs. Hence following these indications the oleoresin was collected in two seasons as per reference of Acharya Charaka and Susrutha in Hemantha rutu (Dec-Jan) and Vasantha rutu (April-May) respectively. Analytical studies revealed that the oleoresin collected in Vasantha rutu contained more tannin, resin, volatile matter, phenolic content, which are the active ingredients of the drug as compared to the oleoresin collected in Hemantha rutu .This is a preclinical work and further clinical study has to be done to prove efficacy of the seasonally collected samples.

  12. Investigation of colour agent content of paprika powders with added oleoresin

    Directory of Open Access Journals (Sweden)

    Szabó L.

    2015-01-01

    Full Text Available The paprika oleoresin, that is an oil soluble extract from the fruits of Capsicum Annum Linn or Capsicum Frutescens, is used often to raise the colour agent content of paprika powders. We investigated how the colour agent content of paprika powder samples with added oleoresin change in the course of storage. The colour agent content of 7 different quality powders was increased with 7-75% using two types of oleoresin. The initial colour agent content of the samples changed between 41 and 169 ASTA units. The powders were made from Chinese, Peruvian and Hungarian paprika. The colour agent content of the samples was measured throughout 10 months. The measured values were analysed using ANOVA. The decrease of colour agent content varied between 22 and 51 percent, while the average reduction was 33 percent. The initial colour agent content of the paprika powder samples did not influence the colour agent content decrease significantly. The effect of the quantity of added oleoresin did not influence either the colour agent content decrease significantly. The decrease of the colour agent content of the Hungarian paprika samples significantly differs from the Chinese and Peruvian paprika samples colour agent content decrease.

  13. Carotenoids, fatty acid composition and heat stability of supercritical carbon dioxide-extracted-oleoresins

    National Research Council Canada - National Science Library

    Longo, Cristiano; Leo, Lucia; Leone, Antonella

    2012-01-01

    .... We compared two S-CO(2)-extracted oleoresins (from tomato and tomato/hazelnut matrices), which showed an oil-solid bi-phasic appearance, a higher cis-lycopene content, and enhanced antioxidant ability compared with the traditional solvent extracts...

  14. Menthol differs from other terpenic essential oil constituents.

    Science.gov (United States)

    Kolassa, Norbert

    2013-02-01

    The European Medicines Agency concluded that there is a risk of suppositories containing terpenic derivatives, which are used to treat coughs and colds, inducing neurological disorders, especially convulsions, in infants and small children. Terpenic derivatives are found in essential oils obtained from plants and include camphor, eucalyptol (syn. 1,8-cineol), thujone, and menthol. Chemistry, pharmacodynamics and pharmacokinetics of these compounds are clearly different and explain the appearance of convulsions following camphor, thujone, and eucalyptus oil overdose/poisoning, whereas no convulsions have been reported in cases of menthol overdose/poisoning in accordance with the pharmacological properties of menthol. Thus, a general verdict on all terpenic derivatives without differentiation appears inappropriate. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae.

    Science.gov (United States)

    Keszei, Andras; Brubaker, Curt L; Carter, Richard; Köllner, Tobias; Degenhardt, Jörg; Foley, William J

    2010-06-01

    Myrtaceae is one of the chemically most variable and most significant essential oil yielding plant families. Despite an abundance of chemical information, very little work has focussed on the biochemistry of terpene production in these plants. We describe 70 unique partial terpene synthase transcripts and eight full-length cDNA clones from 21 myrtaceous species, and compare phylogenetic relationships and leaf oil composition to reveal clades defined by common function. We provide further support for the correlation between function and phylogenetic relationships by the first functional characterisation of terpene synthases from Myrtaceae: a 1,8-cineole synthase from Eucalyptus sideroxylon and a caryophyllene synthase from Eucalyptusdives. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Genetics, phosphorus availability, and herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine species

    Science.gov (United States)

    Sampedro, Luis; Llusia, Joan; Peñuelas, Josep; Zas, Rafael

    2010-01-01

    Oleoresin produced and stored in pine tree leaves provides direct resistance to herbivores, while leaf volatile terpenes (LVT) in the resin are also powerful airborne infochemicals. Resin concentration and profile show considerable spatial and temporal phenotypic variation within and among pine populations. LVT biochemistry is known to be under genetic control, and although LVT should be plastic to diverse abiotic and biotic environmental factors such as nutrient availability and herbivore attack, little is known about their relative contributions and interactive effects. The aim of this paper was to clarify whether reduced phosphorus availability could increase the LVT concentration and affect the expression of herbivore-derived induced defences, and how plasticity would contribute to the phenotypic variation of LVT. The constitutive and methyl-jasmonate (MeJa) induced LVT concentration and profile were analysed in 17 half-sib Pinus pinaster families growing under two levels of P-availability (complete and P-limited fertilization). Individual terpene concentrations showed large additive genetic variation, which was more pronounced in the control than in MeJa-induced pines. MeJa application did not affect the LVT concentration, but significantly modified the LVT profile by depleting the α-pinene content and reducing the sesquiterpene fraction. Low P-availability strongly reduced plant growth and foliar nutrient concentrations, but did not affect LVT concentration and profile, and did not interact with MeJa-induction. Results indicate a strong homeostasis of LVT concentration to P-availability, and minor changes in the LVT profile due to MeJa-induction. Genetic variation appears to be the main source of phenotypic variation affecting the LVT concentration in this pine species. PMID:20952630

  17. SNARE-RNAi results in higher terpene emission from ectopically expressed caryophyllene synthase in nicotiana benthamiana

    NARCIS (Netherlands)

    Ting, Jimmy; Delatte, Thierry L.; Kolkman, P.; Misas-Villamil, Johana C.; Hoorn, Van Der Renier A.L.; Bouwmeester, Harro J.; Krol, van der Sander

    2015-01-01

    Plants produce numerous terpenes and much effort has been dedicated to the identification and characterization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within the cell and from the cell into the apoplast. To investigate a putative role of

  18. Development of next generation biogas cleaning and upgrading technology: demonstration of terpene removal

    NARCIS (Netherlands)

    Linders, M.J.G.; Ham, L.V. van der; Stille, L.C.; Trap, H.C.; Huigen, L.; Mooijer, J.; Goetheer, E.L.V.

    2015-01-01

    Terpenes are a problem for biogas producers, as grid owners will refuse entry to the natural gas grid when more than a few ppm terpenes are detected in the renewable natural gas injected. The problems are related to the integrity of pipelines, safety at the upgrading plant and the fact that terpenes

  19. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components.

    Science.gov (United States)

    Singh, Gurdip; Marimuthu, Palanisamy; de Heluani, Carola S; Catalan, Cesar A N

    2006-01-11

    In the present study, chemical constituents of the essential oil and oleoresin of the seed from Carum nigrum obtained by hydrodistillation and Soxhlet extraction using acetone, respectively, have been studied by GC and GC-MS techniques. The major component was dillapiole (29.9%) followed by germacrene B (21.4%), beta-caryophyllene (7.8%), beta-selinene (7.1%), and nothoapiole (5.8%) along with many other components in minor amounts. Seventeen components were identified in the oleoresin (Table 2) with dillapiole as a major component (30.7%). It also contains thymol (19.1%), nothoapiole (15.2.3%), and gamma-elemene (8.0%). The antioxidant activity of both the essential oil and oleoresin was evaluated in mustard oil by monitoring peroxide, thiobarbituric acid, and total carbonyl and p-anisidine values of the oil substrate. The results showed that both the essential oil and oleoresin were able to reduce the oxidation rate of the mustard oil in the accelerated condition at 60 degrees C in comparison with synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene at 0.02%. In addition, individual antioxidant assays such as linoleic acid assay, DPPH scavenging activity, reducing power, hydroxyl radical scavenging, and chelating effects have been used. The C. nigrum seed essential oil exhibited complete inhibition against Bacillus cereus and Pseudomonas aeruginosa at 2000 and 3000 ppm, respectively, by agar well diffusion method. Antifungal activity was determined against a panel of foodborne fungi such as Aspergillus niger, Penicillium purpurogenum, Penicillium madriti, Acrophialophora fusispora, Penicillium viridicatum, and Aspergillus flavus. The fruit essential oil showed 100% mycelial zone inhibition against P. purpurogenum and A. fusispora at 3000 ppm in the poison food method. Hence, both oil and oleoresin could be used as an additive in food and pharmaceutical preparations after screening.

  20. Capsicum oleoresin: development of an in-soil repellent for pocket gophers.

    Science.gov (United States)

    Sterner, Ray T; Shumake, Stephen A; Gaddis, Stanley E; Bourassa, Jean B

    2005-12-01

    A pre- and post-monitoring study was conducted of the potential use of capsicum oleoresin as an in-soil repellent for northern pocket gophers (Thomomys talpoides). Pocket gophers were captured in irrigated alfalfa (Medicago sativa L), affixed with radio transmitters, and monitored daily for location. Six plots (4.87 x 4.87 m) each were randomly assigned to capsicum oleoresin and soybean oil treatments; these were set up based upon the centers of initial core areas of gophers. Mean (+/-SD) volumes of capsicum oleoresin and water and soybean oil and water mixtures (10 + 90 by volume) dispensed onto plots equaled 178.5 (+/-4.7) and 175.7 (+/-14.0) liters, respectively. Movements (m) of the radio-transmitted gophers from plot centers were computed for four daily readings (i.e., 0801-1000, 1101-1300, 1501-1700 and 1801-2000 h). Spectrophotometric analysis of soil samples from capsicum oleoresin plots validated the presence of capsicum on plots and the absence of capsicum on placebo- and off-plot locations. Analysis of variance for movement distances of gophers yielded a Date main effect [F(11, 103) = 2.08, P oleoresin and soil treatments of 1.5% w/w capsicum caused nearly a 50% decrease in soil contact time by gophers relative to placebo-exposed control animals. This implies that procedural variables warrant revision before abandoning this approach. The potential for soil insertion of repellents as a technique for expelling pocket gophers from territories and some methodological changes for future research of the technique are discussed.

  1. Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants.

    Science.gov (United States)

    Cimmino, Alessio; Andolfi, Anna; Evidente, Antonio

    2014-03-01

    This review is about the isolation as well as chemical and biological characterization of simple and complex mono-, sesqui-, di-, sester- and tri-terpenes produced by fungal pathogens of agrarian and forest plants and by some allelopathic plants. In several cases, the structure activity relationships are also discussed, as well as their potential application in agriculture as natural safe herbicides, fungicides and bactericides. Furthermore, the potential application of some fungal terpenes as anticancer compounds with a new mode of action is also discussed.

  2. Chemistry and biology of terpene trilactones from Ginkgo biloba

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Nakanishi, Koji

    2004-01-01

    Ginkgo biloba, the ginkgo tree, is the oldest living tree, with a long history of use in traditional Chinese medicine. In recent years, the leaf extracts have been widely sold as phytomedicine in Europe and as a dietary supplement worldwide. Effects of Ginkgo biloba extracts have been postulated...... for total synthesis. Terpene trilactones are believed to be partly responsible for the neuromodulatory properties of Ginkgo biloba extracts, and several biological effects of the terpene trilactones have been discovered in recent years, making them attractive pharmacological tools that could provide insight...... into the effects of Ginkgo biloba extracts....

  3. Transfer of terpenes from essential oils into cow milk.

    Science.gov (United States)

    Lejonklev, J; Løkke, M M; Larsen, M K; Mortensen, G; Petersen, M A; Weisbjerg, M R

    2013-07-01

    The objective of this study was to investigate the transfer of volatile terpenes from caraway seed and oregano plant essential oils into cow's milk through respiratory and gastrointestinal exposure. Essential oils have potential applications as feed additives because of their antimicrobial properties, but very little work exists on the transfer of their volatile compounds into milk. Lactating Danish Holstein cows with duodenum cannula were used. Gastrointestinal exposure was facilitated by infusing the essential oils, mixed with deodorized sesame oil, into the duodenum cannula. Two levels were tested for each essential oil. Respiratory exposure was facilitated by placing the animal in a chamber together with a sponge soaked in the essential oils. All exposures were spread over 9h. Milk samples were collected immediately before and after exposure, as well as the next morning. Twelve monoterpenes and 2 sesquiterpenes were analyzed in essential oils and in milk samples using dynamic headspace sampling and gas chromatography-mass spectrometry. In the essential oils, almost all of the terpenes were detected in both essential oils at various levels. For caraway, the monoterpenes limonene, carvone, and carvacrol were most abundant; in oregano, the monoterpenes carvacrol and ρ-cymene were most abundant. For almost all treatments, an immediate effect was detected in milk, whereas little or no effect was detected in milk the following day. This suggests that the transfer into milk of these volatile terpenes is fast, and that the milk will not be influenced when treatment is discontinued. Principal component analysis was used to elucidate the effect of the treatments on the terpene profile of the milk. Terpene content for treatment milk samples was characterized by the same terpenes found in the treatment essential oil used for that animal, regardless of pathway of exposure. The terpenes appear to be transferred unaltered into the milk, regardless of the pathway of exposure

  4. PERBANDINGAN EKSTRAKSI OLEORESIN BIJI PALA (MYRICTICA FRAGRANS HOUTT ASAL MALUKU UTARA MENGGUNAKAN METODE MASERASI DAN GABUNGAN DISTILASI – MASERASI

    Directory of Open Access Journals (Sweden)

    Muhammad Assagaf

    2013-03-01

    Full Text Available PERBANDINGAN EKSTRAKSI OLEORESIN BIJI PALA (MYRICTICA FRAGRANSHOUTT ASAL MALUKU UTARA MENGGUNAKAN METODE MASERASI DANGABUNGAN DISTILASI – MASERASI Comparison of Nutmeg (Myristica fragrans Houtt Oleoresin Extraction from North Maluku UsingMaceration and Combination of Distillation-Maceration Methods Muhammad Assagaf1, Pudji Hastuti2, Chusnul Hidayat2, Supriyadi2 1 Balai Pengkajian Teknologi Pertanian (BPTP Maluku Utara, Jl. Kusu, SoÞ Þ , Kota Tidore Kepulauan 2 Fakultas Teknologi Pertanian Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281 Email: assagaf_met@yahoo.com ABSTRAK Penelitian ini bertujuan untuk membandingkan komponen penyusun oleoresin biji pala (Myristica fragrans Houttyang dibuat dengan cara maserasi langsung dan gabungan distilasi – maserasi. Yield oleoresin pala sebesar 15,17±0,07(% bk yang diperoleh dengan cara maserasi langsung dan oleoresin hasil ekstraksi gabungan metode distilasi danmaserasi diperoleh yield sebesar 20,07±0,23 (% bk. Sedangkan yield minyak atsiri sendiri dari hasil distilasi air-uapdiperoleh sebesar 6,61 (% bk. Senyawa penyusun oleoresin ekstrak etanol hasil analisis menggunakan metode GCMSteridentiÞ kasi senyawa sebanyak 39 macam dengan komponen yang berada dalam jumlah besar adalah methyleugenol(33,40 %, myristicine (10,90 %, cis-methyl isoeugenol (9,09 %, elemicin (8,33 %, dan isocoumarin (5,61 %. Untukminyak atsiri biji pala terdapat 31 komponen senyawa, dimana komponen yang berada dalam jumlah yang besar adalahsabinene (34,97 %, !– phellandrene (9,19 %, methyleugenol (7,55 %, myristicine (5,29 % dan elimicine (3,21%.Sedangkan untuk minyak atsiri yang dicampur dengan oleoresin dari ampas sisa distilasi terdapat 58 komponen senyawayang menyusun oleoresin campuran tersebut dengan senyawa yang berada dalam jumlah besar yaitu; sabinene (12,38% myristicine (10,88 %, elemicin (8,93 %, isocoumarin (6,26 %, myristic acid (5,96 %, dan !- pinene (4,73 %.Kata kunci: minyak atsiri

  5. Microencapsulation of oleoresin from red ginger (Zingiber officinale var. Rubrum) in chitosan and alginate for fresh milk preservatives

    Science.gov (United States)

    Krisanti, Elsa; Astuty, Rizka Margi; Mulia, Kamarza

    2017-02-01

    The usage of red ginger rhizome (Zingiber officinale var. Rubrum) oleoresin extract as the preservative for fresh milk has not been studied yet. The aim of this research was to compare the inhibition effect of oleoresin extract-loaded chitosan-alginate microparticles, and various ginger-based preservatives added into fresh milk, on the growth of bacteria. The total count plate growth of bacteria after addition of the oleoresin-loaded chitosan-alginate microparticles was the lowest. In addition, the organoleptic test showed that this formulation had no significant effect on the color, taste, and flavor of fresh milk. The experimental results indicated that the oleoresin-loaded chitosan-alginate microparticles may effectively be used as a preservative for fresh milk.

  6. In vitro and in vivo antimalarial potential of oleoresin obtained from Copaifera reticulata Ducke (Fabaceae) in the Brazilian Amazon rainforest.

    Science.gov (United States)

    de Souza, Giovana A G; da Silva, Nazaré C; de Souza, Juarez; de Oliveira, Karen R M; da Fonseca, Amanda L; Baratto, Leopoldo C; de Oliveira, Elaine C P; Varotti, Fernando de Pilla; Moraes, Waldiney P

    2017-01-15

    In view of the wide variety of the flora of the Amazon region, many plants have been studied in the search for new antimalarial agents. Copaifera reticulata is a tree distributed throughout the Amazon region which contains an oleoresin rich in sesquiterpenes and diterpenes with β-caryophyllene as the major compound. The oleoresin has demonstrated antiparasitic activity against Leishmania amazonensis. Because of this previously reported activity, this oleoresin would be expected to also have antimalarial activity. In this study we evaluated the in vitro and in vivo antimalarial potential of C. reticulata oleoresin. In vitro assays were done using P. falciparum W2 and 3D7 strains and the human fibroblast cell line 26VA Wi-4. For in vivo analysis, BALB/c mice were infected with approximately 106 erythrocytes parasitized by P. berghei and their parasitemia levels were observed over 7 days of treatment with C. reticulata; hematological and biochemical parameters were analyzed at the end of experiment. The oleoresin of C. reticulata containing the sesquiterpenes β-caryophyllene (41.7%) and β-bisabolene (18.6%) was active against the P. falciparum W2 and 3D7 strains (IC50 = 1.66 and 2.54 µg/ml, respectively) and showed low cytotoxicity against the 26VA Wi-4 cell line (IC50 > 100 µg/ml). The C. reticulata oleoresin reduced the parasitemia levels of infected animals and doses of 200 and 100 mg/kg/day reached a rate of parasitemia elimination resembling that obtained with artemisinin 100 mg/kg/day. In addition, treatment with oleoresin improved the hypoglycemic, hematologic, hepatic and renal parameters of the infected animals. The oleoresin of C. reticulata has antimalarial properties and future investigations are necessary to elucidate its mechanism of action. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Qualitative analysis of Copaifera oleoresin using comprehensive two-dimensional gas chromatography and gas chromatography with classical and cold electron ionisation mass spectrometry.

    Science.gov (United States)

    Wong, Yong Foo; Uekane, Thais M; Rezende, Claudia M; Bizzo, Humberto R; Marriott, Philip J

    2016-12-16

    Improved separation of both sesquiterpenes and diterpenic acids in Copaifera multijuga Hayne oleoresin, is demonstrated by using comprehensive two-dimensional gas chromatography (GC×GC) coupled to accurate mass time-of-flight mass spectrometry (accTOFMS). GC×GC separation employs polar phases (including ionic liquid phases) as the first dimension (1D) column, combined with a lower polarity 2D phase. Elution temperatures (Te) of diterpenic acids (in methyl ester form, DAME) increased as the 1D McReynolds' polarity value of the column phase decreased. Since Te of sesquiterpene hydrocarbons decreased with increased polarity, the very polar SLB-IL111 1D phase leads to excessive peak broadening in the 2D apolar phase due to increased second dimension retention (2tR). The combination of SLB-IL59 with a nonpolar column phase was selected, providing reasonable separation and low Te for sesquiterpenes and DAME, compared to other tested column sets, without excessive 2tR. Identities of DAME were aided by both soft (30eV) electron ionisation (EI) accurate mass TOFMS analysis and supersonic molecular beam ionisation (cold EI) TOFMS, both which providing less fragmentation and increased relative abundance of molecular ions. The inter-relation between EI energies, emission current, signal-to-noise and mass error for the accurate mass measurement of DAME are reported. These approaches can be used as a basis for conducting of GC×GC with soft EI accurate mass measurement of terpenes, particularly for unknown phytochemicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Sesquarterpenes (C35 terpenes) biosynthesized via the cyclization of a linear C35 isoprenoid by a tetraprenyl-β-curcumene synthase and a tetraprenyl-β-curcumene cyclase: identification of a new terpene cyclase.

    Science.gov (United States)

    Sato, Tsutomu; Yoshida, Satoru; Hoshino, Hiroko; Tanno, Mizuki; Nakajima, Mami; Hoshino, Tsutomu

    2011-06-29

    In this study, mono- and pentacyclic C(35) terpenes from Bacillus subtilis were biosynthesized via the cyclization of C(35) isoprenoid using purified enzymes, including the first identified new terpene cyclase that shows no sequence homology to any of the known terpene cyclases. On the basis of these findings, we propose that these C(35) terpenes should be called the new family of "sesquarterpenes."

  9. Dietary Capsicum and Curcuma longa oleoresins increase intestinal microbiome and necrotic enteritis in three commercial broiler breeds.

    Science.gov (United States)

    Kim, Ji Eun; Lillehoj, Hyun S; Hong, Yeong Ho; Kim, Geun Bae; Lee, Sung Hyen; Lillehoj, Erik P; Bravo, David M

    2015-10-01

    Three commercial broiler breeds were fed from hatch with a diet supplemented with Capsicum and Curcuma longa oleoresins, and co-infected with Eimeria maxima and Clostridium perfringens to induce necrotic enteritis (NE). Pyrotag deep sequencing of bacterial 16S rRNA showed that gut microbiota compositions were quite distinct depending on the broiler breed type. In the absence of oleoresin diet, the number of operational taxonomic units (OTUs), was decreased in infected Cobb, and increased in Ross and Hubbard, compared with the uninfected. In the absence of oleoresin diet, all chicken breeds had a decreased Candidatus Arthromitus, while the proportion of Lactobacillus was increased in Cobb, but decreased in Hubbard and Ross. Oleoresin supplementation of infected chickens increased OTUs in Cobb and Ross, but decreased OTUs in Hubbard, compared with unsupplemented/infected controls. Oleoresin supplementation of infected Cobb and Hubbard was associated with an increased percentage of gut Lactobacillus and decreased Selenihalanaerobacter, while Ross had a decreased fraction of Lactobacillus and increased Selenihalanaerobacter, Clostridium, Calothrix, and Geitlerinema. These results suggest that dietary Capsicum/Curcuma oleoresins reduced the negative consequences of NE on body weight and intestinal lesion, in part, through alteration of the gut microbiome in 3 commercial broiler breeds. Published by Elsevier Ltd.

  10. Isolation of two bioactive diterpenic acids from Copaifera glycycarpa oleoresin by high-speed counter-current chromatography.

    Science.gov (United States)

    De Souza, P A; Rangel, L P; Oigman, S S; Elias, M M; Ferreira-Pereira, A; De Lucas, N C; Leitão, G G

    2010-01-01

    Phytochemical and biological studies carried out on Copaifera species showed that their oleoresins and isolated compounds have various biological activities. The aims of this work were (i) to analyse the Copaifera oleoresin by gas chromatography-mass spectrometry, (ii) to isolate the diterpenic acids from this oleoresin by high-speed countercurrent chromatography (HSCCC) and (iii) to determine the rhodamine 6G Pdr5p activity of these acids. HSCCC was used for the preparative separation of the diterpenes. Spectroscopic methods were used to establish their identity. The gas chromatogram of the oleoresin showed approximately 30 compounds. The two major ones, kaur-16-en-18-oic and polyalthic acids, were isolated in high purity. Kaur-16-en-18-oic acid exhibited the highest rodomine 6G Pdr5p activity among the tested compounds. HSCCC was shown to be a quick and effective tool in the isolation and purification of diterpenes from Copaifera oleoresin. This is the first report on the use of HSCCC for the fractionation of an oleoresin from Copaifera and the isolation of diterpenes therein. Copyright © 2010 John Wiley & Sons, Ltd.

  11. KARAKTER OLEORESIN PALA (MYRISTICA FRAGRANS HOUTT YANG DIMIKROENKAPSULASI: PENENTUAN RASIO WHEY PROTEIN CONCENTRATE (WPC:MALTODEKSTRIN (MD

    Directory of Open Access Journals (Sweden)

    Muhammad Assagaf

    2013-06-01

    C dengan laju alir umpan 300 ml/jam. Mikrokapsul yang dihasilkan dianalisis karakternya yang meliputi surface oil, total volatil, non volatil, kadar air, aktivitas air, komponen penyusun oleoresin sebelum dan setelah mikroenkapsulasi serta morfologi mikrokapsulnya. Hasil penelitian menunjukkan bahwa mikrokapsul oleoresin pala yang dibuat dengan enkapsulan rasio WPC:MD (1:7,3 atau WPC 12% + MD 88%, menghasilkan mikrokapsul dengan surface oil yang rendah (0,16% dan total volatil yang lebih tinggi (26,7% dibanding formula lainnya. Sedangkan kadar air rata-rata 3,4% (bk dengan nilai aktivitas air antara 0,29-0,41 dan ukuran partikel antara 1,39-56,6 μm. Dari hasil penelitian ini dapat disimpulkan bahwa mikrokapsul oleoresin pala yang terbaik adalah mikrokapsul yang terbuat dari campuran enkapsulan WPC 12% dengan indikator rendahnya surface oil dan tingginya total volatil, non volatil dan ekstrak eter. Komponen penyusun oleoresin sebelum enkapsulasi yang teridentifi kasi sebanyak 47 senyawa sedangkan dari oleoresin yang dimikroenkapsulasi teridentifi kasi 34 senyawa. Kata kunci: Oleoresin pala, whey protein concentrate, maltodekstrin, mikroenkapsulasi

  12. Changes in the contents of oleoresin and pungent bioactive principles of Jamaican ginger (Zingiber officinale Roscoe.) during maturation.

    Science.gov (United States)

    Bailey-Shaw, Yvonne A; Williams, Lawrence A D; Junor, Grace-Ann O; Green, Cheryl E; Hibbert, Sheridan L; Salmon, Colleen N A; Smith, Ann Marie

    2008-07-23

    Changes in the yields of the oleoresin and content of pungent bioactive principles: [6], [8], [10] gingerols and [6] shogaol of Jamaican ginger ( Zingiber officinale) were investigated during different stages of maturity (7-9 months). Ethanolic oleoresin extracts were prepared (95%, w/w) by cold maceration of dried ginger powder, and their percentage yields were calculated (w/w). The pungent bioactive principles in the ginger oleoresin were extracted with methanol and quantitatively analyzed by high performance liquid chromatography (HPLC). Ginger harvested at 8 months from Bourbon, Portland had the highest oleoresin yield (8.46 +/- 0.46%). [6] Gingerol was found to be the most abundant pungent bioactive principle in all the oleoresin samples investigated, with the 9 months sample from Bourbon, Portland containing the highest level (28.94 +/- 0.39%). The content of [6] gingerols was also found to be consistently high (7-9 months) in oleoresin samples from Johnson Mountain, St. Thomas (15.12 +/- 0.39 to 16.02 +/- 0.95%). The results suggest that Bourbon in Portland may be the most ideal location for cultivating ginger for high yields and quality, however, Johnson Mountain in St. Thomas could prove to be the least restrictive location, allowing for harvesting of good quality material throughout the maturity period (7-9 months).

  13. Vanadium haloperoxidase-catalyzed bromination and cyclization of terpenes.

    Science.gov (United States)

    Carter-Franklin, Jayme N; Parrish, Jon D; Tschirret-Guth, Richard A; Little, R Daniel; Butler, Alison

    2003-04-02

    Marine red algae (Rhodophyta) are a rich source of bioactive halogenated natural products, including cyclic terpenes. The biogenesis of certain cyclic halogenated marine natural products is thought to involve marine haloperoxidase enzymes. Evidence is presented that vanadium bromoperoxidase (V-BrPO) isolated and cloned from marine red algae that produce halogenated compounds (e.g., Plocamium cartilagineum, Laurencia pacifica, Corallina officinalis) can catalyze the bromination and cyclization of terpenes and terpene analogues. The V-BrPO-catalyzed reaction with the monoterpene nerol in the presence of bromide ion and hydrogen peroxide produces a monobromo eight-membered cyclic ether similar to laurencin, a brominated C15 acetogenin, from Laurencia glandulifera, along with noncyclic bromohydrin, epoxide, and dibromoproducts; however, reaction of aqueous bromine with nerol produced only noncyclic bromohydrin, epoxide, and dibromoproducts. The V-BrPO-catalyzed reaction with geraniol in the presence of bromide ion and hydrogen peroxide produces two singly brominated six-membered cyclic products, analogous to the ring structures of alpha and beta snyderols, brominated sesquiterpenes from Laurencia, spp., along with noncyclic bromohydrin, epoxide, and dibromoproducts; again, reaction of geraniol with aqueous bromine produces only noncyclic bromohydrin, epoxide, and dibromoproducts. Thus, V-BrPO can direct the electrophilic bromination and cyclization of terpenes.

  14. Transfer of Orally Administered Terpenes in Goat Milk and Cheese

    Directory of Open Access Journals (Sweden)

    I. Poulopoulou

    2012-10-01

    Full Text Available The objective of the present study was to investigate the relationships between terpenes’ intake and their presence in animal tissues (blood and milk as well as in the final product (cheese. Eight dairy goats were divided in two balanced groups, representing control (C and treatment (T group. In T group oral administration of a mixture of terpenes (α-pinene, limonene and β-caryophyllene was applied over a period of 18 d. Cheese was produced, from C and T groups separately, on three time points, twice during the period of terpenes’ oral administration and once after the end of experiment. Terpenes were identified in blood by extraction using petroleum ether and in milk and cheese by the use of solid phase micro-extraction (SPME method, followed by GC-MS analysis. Chemical properties of the milk and the produced cheeses were analyzed and found not differing between the two groups. Limonene and α-pinene were found in all blood and milk samples of the T group after a lag-phase of 3 d, while β-caryophyllene was determined only in few milk samples. Moreover, none of the terpenes were traced in blood and milk of C animals. In cheese, terpenes’ concentrations presented a more complicated pattern implying that terpenes may not be reliable feed tracers. We concluded that monoterpenes can be regarded as potential feed tracers for authentification of goat milk, but further research is required on factors affecting their transfer.

  15. Sustainable heterologous production of terpene hydrocarbons in cyanobacteria.

    Science.gov (United States)

    Formighieri, Cinzia; Melis, Anastasios

    2016-12-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases (k cat = 4 s-1 or slower) makes them noncompetitive for the pool of available substrate, thereby limiting the rate and yield of product generation. Work in this paper applied transformation technologies in Synechocystis for the heterologous production of β-phellandrene (monoterpene) hydrocarbons. Conditions were defined whereby expression of the β-phellandrene synthase (PHLS), as a CpcB·PHLS fusion protein with the β-subunit of phycocyanin, accounted for up to 20 % of total cellular protein. Moreover, CpcB·PHLS was heterologously co-expressed with enzymes of the mevalonic acid (MVA) pathway and geranyl-diphosphate synthase, increasing carbon flux toward the terpenoid biosynthetic pathway and enhancing substrate availability. These improvements enabled yields of 10 mg of β-phellandrene per g of dry cell weight generated in the course of a 48-h incubation period, or the equivalent of 1 % β-phellandrene:biomass (w:w) carbon-partitioning ratio. The work helped to identify prerequisites for the efficient heterologous production of terpene hydrocarbons in cyanobacteria: (i) requirement for overexpression of the heterologous terpene synthase, so as to compensate for the slow catalytic turnover of the enzyme, and (ii) enhanced endogenous carbon partitioning toward the terpenoid biosynthetic pathway, e.g., upon heterologous co-expression of the MVA pathway, thereby supplementing the native metabolic flux toward the universal isopentenyl-diphosphate and dimethylallyl-diphosphate terpenoid precursors. The two prerequisites are shown to be critical determinants of yield in the photosynthetic CO2 to terpene hydrocarbons conversion process.

  16. Investigation of terpene diversification across multiple sequenced plant genomes.

    Science.gov (United States)

    Boutanaev, Alexander M; Moses, Tessa; Zi, Jiachen; Nelson, David R; Mugford, Sam T; Peters, Reuben J; Osbourn, Anne

    2015-01-06

    Plants produce an array of specialized metabolites, including chemicals that are important as medicines, flavors, fragrances, pigments and insecticides. The vast majority of this metabolic diversity is untapped. Here we take a systematic approach toward dissecting genetic components of plant specialized metabolism. Focusing on the terpenes, the largest class of plant natural products, we investigate the basis of terpene diversity through analysis of multiple sequenced plant genomes. The primary drivers of terpene diversification are terpenoid synthase (TS) "signature" enzymes (which generate scaffold diversity), and cytochromes P450 (CYPs), which modify and further diversify these scaffolds, so paving the way for further downstream modifications. Our systematic search of sequenced plant genomes for all TS and CYP genes reveals that distinct TS/CYP gene pairs are found together far more commonly than would be expected by chance, and that certain TS/CYP pairings predominate, providing signals for key events that are likely to have shaped terpene diversity. We recover TS/CYP gene pairs for previously characterized terpene metabolic gene clusters and demonstrate new functional pairing of TSs and CYPs within previously uncharacterized clusters. Unexpectedly, we find evidence for different mechanisms of pathway assembly in eudicots and monocots; in the former, microsyntenic blocks of TS/CYP gene pairs duplicate and provide templates for the evolution of new pathways, whereas in the latter, new pathways arise by mixing and matching of individual TS and CYP genes through dynamic genome rearrangements. This is, to our knowledge, the first documented observation of the unique pattern of TS and CYP assembly in eudicots and monocots.

  17. OPTIMASI PROSES PEMBUATAN BUBUK OLEORESIN LADA (Piper nigrum MELALUI PROSES EMULSIFIKASI DAN MIKROENKAPSULASI (Optimization Process Production Powder of Oleoresin Pepper (Piper nigrum by Process of Emulsification and Microencapsulation

    Directory of Open Access Journals (Sweden)

    Firdaus Syafi'i

    2016-10-01

    Full Text Available The aim of this study was to improve the quality of pepper product by optimize process of emulsification and microencapsulation. The experimental design used in this study was Response Surface Methodology (RSM. The results showed that the selected emulsifier was arabic gum that had the highest solubility in water (99.78%. The optimum point of emulsification occured at 15% of concentration arabic gum and 4 minutes of homogenization time with the result was solubility in water 99.80%, and emulsion stability 97.78%. The optimum point of microencapsulation process occured at 3:1 of maltodextrin and sodium caseinate ratio, 10% of coating material concentration, and 180°C of drying temperature with the result was essential oil content 1.04%, solubility in water 98.18%, surface oil 0.20%, water content 2.45%, oil recovery 77.07%, and the yield of microcapsule 69.87% Keywords: Pepper oleoresin, RSM, emulsification, microencapsulation ABSTRAK Penelitian ini bertujuan untuk memperbaiki kualitas mutu produk oleoresin lada melalui optimasi proses emulsifikasi dan mikroenkapsulasi. Rancangan percobaan yang digunakan adalah Response Surface Methodology (RSM. Hasil penelitian menunjukkan bahan pengemulsi yang terpilih adalah gum arab yang memiliki kelarutan tertinggi dalam air (99,78%. Titik optimum proses emulsifikasi terjadi pada konsentrasi gum arab 15% dan lama homogenisasi 4 menit yang memberikan nilai kelarutan dalam air 99,80% dan stabilitas emulsi 97,15%. Titik optimum proses mikroenkapsulasi terjadi pada rasio maltodekstrin dan natrium kaseinat (3:1, konsentrasi bahan penyalut 10%, dan suhu inlet pengeringan 180°C yang memberikan nilai kadar minyak atsiri 1,04%, kelarutan dalam air 98,18%, kadar surface oil 0,20%, kadar air 2,45%, oil recovery 77,07%, dan rendemen 69,87% Kata kunci: Oleoresin lada, RSM, emulsifikasi, mikroenkapsulasi

  18. Economic importance of oleoresin (Dipterocarpus alatus) to forest-adjacent households in Cambodia

    OpenAIRE

    Dyrmose, Anne-Mette Hüls; Turreira Garcia, Nerea; THEILADE, IDA; Meilby, Henrik

    2017-01-01

    The genus Dipterocarpus is the main source of marketable liquid oleoresin, which is important as a source of income for forest communities in Southeast Asia. However, deforestation and illegal as well as legal logging pose a threat to resin yielding species (Dipterocarpus spp.). There is still more to be learned about resin yield, harvest techniques, and the importance of resin to local livelihoods. This study quantifies yields from one of the most intensively tapped resin species, Dipterocar...

  19. Larvicidal activity of Copaifera sp. (Leguminosae) oleoresin microcapsules against Aedes aegypti (Diptera: Culicidae) larvae.

    Science.gov (United States)

    Kanis, Luiz Alberto; Prophiro, Josiane Somariva; Vieira, Edna da Silva; Nascimento, Mariane Pires do; Zepon, Karine Modolon; Kulkamp-Guerreiro, Irene Clemes; Silva, Onilda Santos da

    2012-03-01

    Studies have demonstrated the potential of Copaifera sp. oleoresin to control Aedes aegypti proliferation. However, the low water solubility is a factor that limits its applicability. Thus, the micro- or nanoencapsulation could be an alternative to allow its use in larval breeding places. The purpose of this study was to evaluate if achievable lethal concentrations could be obtained from Copaifera sp. oleoresin incorporated into polymers (synthetic or natural) and, mainly, if it can be sustained in the residual activity compared to the pure oil when tested against the A. aegypti larvae. Microcapsules were prepared by the process of emulsification/precipitation using the polymers of cellulose acetate (CA) and poly(ethylene-co-methyl acrylate) (PEMA), yielding four types of microcapsules: MicPEMA₁ and MicPEMA₂, and MicCA₁ and MicCA₂. When using only Copaifera sp. oleoresin, the larvicidal activity was observed at concentrations of LC₅₀ = 48 mg/L and LC₉₉ = 149 mg/L. For MicPEMA₁, the LC₅₀ and LC₉₉ were 78 and 389 mg/L, respectively. Using MicPEMA₂, the LC₅₀ was 120 mg/L and LC₉₉ > 500 mg/L. For microcapsules MicCA₁ and MicCA₂, the LC₅₀ and LC₉₉ were 42, 164, 140, and 398 mg/L, respectively. For a dose of 150 mg/L of pure oleoresin, the residual activity remained above 20% for 10 days, while the dose of 400 mg/L remained above 40% for 21 days. The MicPEMA₁ microcapsules showed a loss in residual activity up to the first day; however, it remained in activity above 40% for 17 days. The microcapsules of MicCA₁ showed similar LC₅₀ of pure oil with 150 mg/L.

  20. The effect of storage on the colour of paprika powders with added oleoresin

    Directory of Open Access Journals (Sweden)

    Horváth Zs. H.

    2016-12-01

    Full Text Available The use of natural food colours is preferred to that of arti­ficial dyestuffs for modern alimentary purposes. Paprika is a spice plant grown and consumed in considerable quantities worldwide and also used as a natural food colour, so the colouring power of powders is very important. The colour of paprika powder is highly relevant too because the consumer concludes its colouring power based on its colour. The colouring power of paprika powders is directly determined by the quality and quantity of the colouring agent of paprika. The paprika oleoresin, that is an oil soluble extract from the fruits of Capsicum Annum Linn or Capsicum Frutescens, is suitable to raise the colour agent content of paprika powders. We investigated how the colour and the characteristics of paprika powder samples with added oleoresin change in the course of storage. The colour agent content of 7 different quality powders was increased with 7-75% using oleoresin. The initial colour agent content of samples changed between 41 and 169 ASTA units. The powders were made from Chinese, Peruvian, and Hungarian paprika. Colour measurements were performed with a HunterLab MiniScan colour-measuring instrument. The CIELab colour system was used for colour characterization. The colour agent content and the colour coordinates of samples were measured throughout 9 months. The decrease of colour agent con­tent varied between 22 and 51 percent, while the average reduction was 33 percent. The quantity of added oleoresin did not influence the colour agent content decrease significantly.

  1. Comparative phytochemical analysis of Shorea robusta Gaertn (oleoresin) WSR to its seasonal collection

    OpenAIRE

    Poornima, B.

    2009-01-01

    The oleoresin of the Shorea robusta Gaertn is called as Shala niryasa, Kala, Sarja rasa which has the chemical constituents such as nor-triterpene, dammarenolic acid, asiatic acid, dipterocarpol, triterpenic acid, tannic acid and phenolic content and possesses antibacterial, analgesic and wound healing effect. The medicinal property of the plant is highly influenced by the the season in which it is cultivated and collected. The classical texts of Ayurveda provide guidelines on the time of col...

  2. Inclusion Complexes of Copaiba (Copaifera multijuga Hayne) Oleoresin and Cyclodextrins: Physicochemical Characterization and Anti-Inflammatory Activity.

    Science.gov (United States)

    Pinheiro, Jonas Gabriel de Oliveira; Tavares, Emanuella de Aragão; Silva, Sofia Santos da; Félix Silva, Juliana; Carvalho, Yasmim Maria Barbosa Gomes de; Ferreira, Magda Rhayanny Assunção; Araújo, Adriano Antunes de Souza; Barbosa, Euzébio Guimarães; Fernandes Pedrosa, Matheus de Freitas; Soares, Luiz Alberto Lira; Azevedo, Eduardo Pereira de; Veiga Júnior, Valdir Florêncio da; Lima, Ádley Antonini Neves de

    2017-11-18

    Complexation with cyclodextrins (CDs) is a technique that has been extensively used to increase the aqueous solubility of oils and improve their stability. In addition, this technique has been used to convert oils into solid materials. This work aims to develop inclusion complexes of Copaifera multijuga oleoresin (CMO), which presents anti-inflammatory activity, with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) by kneading (KND) and slurry (SL) methods. Physicochemical characterization was performed to verify the occurrence of interactions between CMO and the cyclodextrins. Carrageenan-induced hind paw edema in mice was carried out to evaluate the anti-inflammatory activity of CMO alone as well as complexed with CDs. Physicochemical characterization confirmed the formation of inclusion complex of CMO with both β-CD and HP-β-CD by KND and SL methods. Carrageenan-induced paw edema test showed that the anti-inflammatory activity of CMO was maintained after complexation with β-CD and HP-β-CD, where they were able to decrease the levels of nitrite and myeloperoxidase. In conclusion, this study showed that it is possible to produce inclusion complexes of CMO with CDs by KND and SL methods without any change in CMO's anti-inflammatory activity.

  3. Inclusion Complexes of Copaiba (Copaifera multijuga Hayne Oleoresin and Cyclodextrins: Physicochemical Characterization and Anti-Inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Jonas Gabriel de Oliveira Pinheiro

    2017-11-01

    Full Text Available Complexation with cyclodextrins (CDs is a technique that has been extensively used to increase the aqueous solubility of oils and improve their stability. In addition, this technique has been used to convert oils into solid materials. This work aims to develop inclusion complexes of Copaifera multijuga oleoresin (CMO, which presents anti-inflammatory activity, with β-cyclodextrin (β-CD and hydroxypropyl-β-cyclodextrin (HP-β-CD by kneading (KND and slurry (SL methods. Physicochemical characterization was performed to verify the occurrence of interactions between CMO and the cyclodextrins. Carrageenan-induced hind paw edema in mice was carried out to evaluate the anti-inflammatory activity of CMO alone as well as complexed with CDs. Physicochemical characterization confirmed the formation of inclusion complex of CMO with both β-CD and HP-β-CD by KND and SL methods. Carrageenan-induced paw edema test showed that the anti-inflammatory activity of CMO was maintained after complexation with β-CD and HP-β-CD, where they were able to decrease the levels of nitrite and myeloperoxidase. In conclusion, this study showed that it is possible to produce inclusion complexes of CMO with CDs by KND and SL methods without any change in CMO’s anti-inflammatory activity.

  4. Terpene arms race in the Seiridium cardinale – Cupressus sempervirens pathosystem

    Science.gov (United States)

    Achotegui-Castells, Ander; Della Rocca, Gianni; Llusià, Joan; Danti, Roberto; Barberini, Sara; Bouneb, Mabrouk; Simoni, Sauro; Michelozzi, Marco; Peñuelas, Josep

    2016-01-01

    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle. PMID:26796122

  5. THE INFLUENCE OF COATING MATERIAL DIFFERENCE AGAINST ENCAPSULATION EFFICIENCY OF RED GINGER OLEORESIN

    Directory of Open Access Journals (Sweden)

    Jayanudin Jayanudin

    2017-09-01

    Full Text Available The purpose of this study was to determine the effect of different coating materials on the efficiency of red ginger oleoresin encapsulation and characterization of microcapsule surface. The encapsulation process begins by dissolving chitosan with 1 % (v/v acetic acid and dissolving sodium alginate using aquadest to be used as a coating material. Red ginger oleoresin alginate included in the solution was stirred. The mixture entered into the chitosan solution and added tween 80 was stirred using a homogenizer to emulsify. The emulsion that forms included in the spray dryer to be converted into a powder of microcapsules, and then analyzes the encapsulation efficiency and surface morphology of microcapsules using scanning electron microscopy (SEM. Differences in the coating material used were chitosan, mixture of chitosan-alginate and mixture of chitosan-alginate-sodium tripolyphosphate (STPP. Weight ratio of red ginger oleoresin and the coating material were 1: 1, 1: 2 and 1: 3. The research results obtained were the highest encapsulation efficiency obtained from the coating material of the chitosan-alginate-sodium tripolyphosphate (STPP at a ratio of 1: 3, namely by 85 %.

  6. Carotenoids, Fatty Acid Composition and Heat Stability of Supercritical Carbon Dioxide-Extracted-Oleoresins

    Science.gov (United States)

    Longo, Cristiano; Leo, Lucia; Leone, Antonella

    2012-01-01

    The risk of chronic diseases has been shown to be inversely related to tomato intake and the lycopene levels in serum and tissue. Cis-isomers represent approximately 50%–80% of serum lycopene, while dietary lycopene maintains the isomeric ratio present in the plant sources with about 95% of all-trans-lycopene. Supercritical CO2 extraction (S-CO2) has been extensively developed to extract lycopene from tomato and tomato processing wastes, for food or pharmaceutical industries, also by using additional plant sources as co-matrices. We compared two S-CO2-extracted oleoresins (from tomato and tomato/hazelnut matrices), which showed an oil-solid bi-phasic appearance, a higher cis-lycopene content, and enhanced antioxidant ability compared with the traditional solvent extracts. Heat-treating, in the range of 60–100 °C, led to changes in the lycopene isomeric composition and to enhanced antioxidant activity in both types of oleoresins. The greater stability has been related to peculiar lycopene isomer composition and to the lipid environment. The results indicate these oleoresins are a good source of potentially healthful lycopene. PMID:22605975

  7. Developmental toxicity of copaiba tree (Copaifera reticulata Ducke, Fabaceae) oleoresin in rat.

    Science.gov (United States)

    Sachetti, Camile G; de Carvalho, Rosângela R; Paumgartten, Francisco J R; Lameira, Osmar A; Caldas, Eloisa D

    2011-05-01

    The oleoresin of the copaiba tree (Copaifera sp., Fabaceae) is traditionally used in Brazilian herbal medicine to treat a variety of illnesses and symptoms. This study, conducted according to the OECD Guideline 414, provides data on the developmental toxicity of oleoresin from C. reticulata (COPA-R) in rats. Pregnant Wistar rats (25 per dose group) were treated by gavage with COPA-R (0, 500, 1000 and 1250 mg/kg bw/day) on gestation days (GD) 6-19 and Caesarean sections performed on GD20. Implantations, living and dead fetuses and resorptions were recorded. Half of the fetuses from each litter were examined for visceral abnormalities and the remaining were cleared and stained for skeleton evaluation. COPA-R was maternally toxic (reduced food intake and weight gain) and embryotoxic (lower fetal body weight and increased occurrence of fetal skeleton variations) at the two highest doses, but did not cause embryo deaths or fetal malformations at any dose level. The study derived an oral no-observed-adverse-effect-level (NOAEL) for maternal and developmental toxicity induced by COPA-R of 500 mg/kg bw/day. The results suggest that copaiba oleoresin does not pose a health risk to pregnant women when used according to the recommended doses (up to five drops, three times a day). Copyright © 2011. Published by Elsevier Ltd.

  8. Diurnal patterns in Scots pine stem oleoresin pressure in a boreal forest.

    Science.gov (United States)

    Rissanen, K; Hölttä, T; Vanhatalo, A; Aalto, J; Nikinmaa, E; Rita, H; Bäck, J

    2016-03-01

    Coniferous tree stems contain large amounts of oleoresin under positive pressure in the resin ducts. Studies in North-American pines indicated that the stem oleoresin exudation pressure (OEP) correlates negatively with transpiration rate and soil water content. However, it is not known how the OEP changes affect the emissions of volatile vapours from the trees. We measured the OEP, xylem diameter changes indicating changes in xylem water potential and monoterpene emissions under field conditions in mature Scots pine (Pinus sylvestris L.) trees in southern Finland. Contrary to earlier reports, the diurnal OEP changes were positively correlated with temperature and transpiration rate. OEP was lowest at the top part of the stem, where water potentials were also more negative, and often closely linked to ambient temperature and stem monoterpene emissions. However, occasionally OEP was affected by sudden changes in vapour pressure deficit (VPD), indicating the importance of xylem water potential on OEP as well. We conclude that the oleoresin storage pools in tree stems are in a dynamic relationship with ambient temperature and xylem water potential, and that the canopy monoterpene emission rates may therefore be also regulated by whole tree processes and not only by the conditions prevailing in the upper canopy. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  9. Efficacy of capsicum oleoresin nanocapsules formulation by the modified emulsion-diffusion method.

    Science.gov (United States)

    Surassmo, Suvimol; Min, Sang-Gi; Bejrapha, Piyawan; Choi, Mi-Jung

    2011-01-01

    In this study, we investigated the effect of high pressure homogenizer on the physico-chemical properties of capsicum oleoresin loaded nanoemulsion (NE) or nanocapsules (NCs) based on the emulsion-diffusion method. According to the application stage of high pressure process at principle emulsion-diffusion method, NCs was prepared by conventional-emulsion-diffusion method (CED), modified-emulsion-microfluidization-diffusion method (MEMD) and modified-emulsion-diffusion-microfluidization method (MEDM). The nanocapsules of MEMD showed homogeneous and the smallest particle size as compared with CED. In addition, MEMD presented the surface tension at the value 36.5 mN/m. The encapsulated capsicum oleoresin was generated the bright color and suppressed the dark red color. Furthermore, MEMD gave the high encapsulation efficiency of capsicum oleoresin around 95% and showed the slow release rate. On the other hand, MEDM presented the non-homogeneous and agglomerate of the particle, low percentage of encapsulation efficiency and the high initial release rate when compared with CED and MEMD methods. According these results, it was supposed that the microfluidization was interesting technique to ameliorate the physical properties and efficiency of NCs. However, it was depending on the appropriate combination of microfluidization based on the emulsion-diffusion method.

  10. Separation of curcuminoids enriched fraction from spent turmeric oleoresin and its antioxidant potential.

    Science.gov (United States)

    Nagarajan, S; Kubra, I Rahath; Rao, L Jagan Mohan

    2010-08-01

    The rhizomes of turmeric are processed to obtain oleoresin and subsequently curcuminoids are isolated. The mother liquor, after partial isolation of curcuminoids, known as spent turmeric oleoresin (STO), is considered as industrial waste. Curcuminoids enriched spent turmeric oleoresin (CSTO) is prepared by removal of nonantioxidant constituents, and investigated for its antioxidant potential using in vitro methods, and also the total curcuminoids and phenolic contents were determined. CSTO has a total phenolic content of 267.27 +/- 5.75 mg GAE/g that is almost double the amount present in STO (118.3 +/- 3.0 mg GAE/g). The total amount of curcuminoids in CSTO is found to be 39 +/- 1.2%, whereas STO had 15 +/- 2.0%. CSTO possessed radical scavenging activity of 84% at 50 microg/mL, antioxidant activity of 74% at 25 microg/mL, high antioxidant capacity, and moderate total reducing power. These results provide scope for utilization of CSTO/STO as natural antioxidant/preservative as well as colorant in various foods.

  11. Analysis of acute impact of oleoresin capsicum on rat nasal mucosa using scanning electron microscopy.

    Science.gov (United States)

    Catli, Tolgahan; Acar, Mustafa; Olgun, Yüksel; Dağ, İlknur; Cengiz, Betül Peker; Cingi, Cemal

    2015-01-01

    Analysis of acute cellular changes seen in nasal mucosa of Wistar-Albino rats exposed to different doses of oleoresin capsicum for various time periods by means of scanning electron microscopy. Thirty-five Wistar-Albino rats were divided into five groups of seven rats each. 6-gram oleoresin capsicum per second was sprayed into cages of the groups except group 1. Spray times and duration of exposure to pepper gasses were different for each group. Thirty minutes after the exposure, the animals were killed and specimens from their nasal mucosas were harvested and examined under scanning electron microscope. Mucosal damage was scored from 0-4 points. Mean values of nasal mucosa damage scores of the groups were calculated and compared statistically. Average damage scores of the groups exposed to identical doses of oleoresin capsicum for various exposure times were compared and a statistically significant difference was seen between Groups 2 and 3 (p 0.05). Average damage scores of the groups exposed to various doses for identical exposure times were compared, and statistically significant differences were observed between Groups 2 and 4 and also Groups 3 and 5 (p < 0.05). Outcomes of our study have demonstrated that pepper gas exerts destructive changes on rat nasal mucosa. The extent of these destructive changes increases with the prolonged exposure to higher doses. Besides, exposure time also stands out as an influential factor on the extent of the destructive changes.

  12. Isolation and evaluation of antiglycation potential of polyalthic acid (furano-terpene from Daniella oliveri

    Directory of Open Access Journals (Sweden)

    Olubunmi Atolani

    2014-12-01

    Full Text Available A furano-diterpene (polyalthic acid was isolated as a major stable compound for the first time from the oleoresin of the Daniella oliveri of the family Caesalpiniacea through column chromatography fractionation. Polyalthic acid was characterized using data obtained from EIMS, HREIMS, ESI-MS, MALDI-MS as well as 1D and 2D NMR and it was evaluated for its potential to inhibit the formation of advanced glycation end-products (AGEs using a standard in vitro antiglycation procedure. Polyalthic acid indicated a negative antiglycation potential compared to standard inhibitor that has 85% inhibition, which is an indication that polyalthic acid may not contribute to the antiglycation activity of the plant as acclaimed in folkloric medicine. The negative antiglycation observed could indicate that the polyalthic acid could trigger glycation, thereby subjecting users to various degrees of complications. The bioactivity evaluation on molinspiration evaluator indicated that polyalthic acid could be a potential drug candidate. The biological and chemical insights gained on polyalthic acid provide a good basis for future research. Keywords: Daniella oliveria, Polyalthic acid, Furano-diterpene, Antiglycation, Matrix assisted laser desorption/ionization (MALDI

  13. Progress in renewable polymers from natural terpenes, terpenoids, and rosin.

    Science.gov (United States)

    Wilbon, Perry A; Chu, Fuxiang; Tang, Chuanbing

    2013-01-11

    The development of sustainable renewable polymers from natural resources has increasingly gained attention from scientists, engineers as well as the general public and government agencies. This review covers recent progress in the field of renewable bio-based monomers and polymers from natural resources: terpenes, terpenoids, and rosin, which are a class of hydrocarbon-rich biomass with abundance and low cost, holding much potential for utilization as organic feedstocks for green plastics and composites. This review details polymerization and copolymerization of terpenes such as pinene, limonene, and myrcene and their derivatives, terpenoids including carvone and menthol, and rosin-derived monomers. The future direction on the utilization of these natural resources is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Terpene cyclization catalysed inside a self-assembled cavity

    Science.gov (United States)

    Zhang, Q.; Tiefenbacher, K.

    2015-03-01

    In nature, complex terpene natural products are formed by the so-called tail-to-head terpene (THT) cyclization. The cationic reaction cascade is promoted efficiently in complex enzyme pockets, in which cationic intermediates and transition states are stabilized. In solution, the reaction is hard to control and man-made catalysts able to perform selective THT cyclizations are lacking. We herein report the first example of a successful THT cyclization inside a supramolecular structure. The basic mode of operation in cyclase enzymes was mimicked successfully and a catalytic non-stop THT was achieved with geranyl acetate as the substrate. The results presented have implications for the postulated reaction mechanism in cyclase enzymes. Evidence indicates that the direct isomerization of a geranyl cation to the cisoid isomer, which so far was considered unlikely, is feasible.

  15. Esterification and etherification of steroid and terpene under Mitsunobu conditions

    Directory of Open Access Journals (Sweden)

    Samia Guezane Lakoud

    2016-09-01

    Full Text Available The synthesis and study of steroids and terpenes continues to be a topic of widespread interest, the esterification and etherification under Mitsunobu conditions of primary alcohol such as geraniol prepared in 95% yield, and when a chiral secondary alcohol such as cholesterol or menthol is used, sufficient configurational inversion of alcohol with 65% yield, but the reaction of tertiary alcohols the α-terpeniol for example are rare.

  16. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Catalytic Synthesis and Antifungal Activity of New Polychlorinated Natural Terpenes

    Directory of Open Access Journals (Sweden)

    Hana Ighachane

    2017-01-01

    Full Text Available Various unsaturated natural terpenes were selectively converted to the corresponding polychlorinated products in good yields using iron acetylacetonate in combination with nucleophilic cocatalyst. The synthesized compounds were evaluated for their in vitro antifungal activity. The antifungal bioassays showed that 2c and 2d possessed significant antifungal activity against Fusarium oxysporum f. sp. albedinis (Foa, Fusarium oxysporum f. sp. canariensis (Foc, and Verticillium dahliae (Vd.

  18. Microencapsulation of H. pluvialis oleoresins with different fatty acid composition: Kinetic stability of astaxanthin and alpha-tocopherol.

    Science.gov (United States)

    Bustamante, Andrés; Masson, Lilia; Velasco, Joaquín; Del Valle, José Manuel; Robert, Paz

    2016-01-01

    Haematococcus pluvialis is a natural source of astaxanthin (AX). However, AX loses its natural protection when extracted from this microalga. In this study, a supercritical fluid extract (SFE) of H. pluvialis was obtained and added to oils with different fatty acid compositions (sunflower oil (SO) or high oleic sunflower oil (HOSO)). The oleoresins of H. pluvialis ((SO+SFE) and (HOSO+SFE)) were encapsulated with Capsul by spray drying. The stability of the oleoresins and powders were studied at 40, 50 and 70° C. AX and alpha-tocopherol (AT) degradation followed a zero-order and first-order kinetic model, respectively, for all systems. The encapsulation of oleoresins improved the stability of AX and AT to a greater extent in oleoresins with a monounsaturated fatty acid profile, as shown by the significantly lowest degradation rate constants and longest half-lives. Therefore, the encapsulation of H. pluvialis oleoresins is an alternative to developing a functional ingredient for healthy food design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Comparative study of chemistry compositions and antimicrobial potentials of essential oils and oleoresins from dried and fresh Mentha longifolia L.

    Directory of Open Access Journals (Sweden)

    Sunita Singh

    2015-12-01

    Full Text Available Objective: To investigate the chemical compositions and antimicrobial potentials of the essential oils and oleoresins obtained from fresh and dried Mentha longifolia L. Methods: Gas chromatography and gas chromatography-mass spectrometer techniques were used to determine the profiling of the essential oils and oleoresins. In order to determine the antimicrobial efficacy of the volatile oil and oleoresins, the pathogenic fungus Aspergillus niger (1884, Aspergillus flavus (2479, Fusarium monoliforme (1893, Fusarium graminearum (2088 and Penicillium viridicatum (2007 were undertaken whereas four pathogenic bacteria Bacillus subtilis (1790, Staphylococcus aureus (3103 (Gram-positive, Escherichia coli (1672, Pseudomonas aeruginosa (1942 (Gram-negative were selected for the present study. Food poisoned, inverted Petri plate, agar well diffusion and disk diffusion methods were employed for investigating antimicrobial potentials. Results: Piperitenone oxide, an oxygenated monoterpene, dominated the chemical compositions of essential oils and oleoresins whose compositions varied from 23.5%–87.8%. Both essential oils showed good antifungal activities against Aspergillus and Fusarium species. The antibacterial investigations revealed that Gram-positive bacteria were more sensitive to the essential oils. Conclusions: Drying the fresh herbal materials influences the chemical contents and the biological activities of the essential oils and oleoresins. Such results indicate that essential oils of Mentha longifolia L. can be possible candidates for further investigations to isolate and characterize their active principles as possible new natural preservatives.

  20. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb by Transcriptomic Analysis.

    Directory of Open Access Journals (Sweden)

    Qinghua Liu

    Full Text Available Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS and (--alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9, phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (--alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase

  1. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb) by Transcriptomic Analysis.

    Science.gov (United States)

    Liu, Qinghua; Zhou, Zhichun; Wei, Yongcheng; Shen, Danyu; Feng, Zhongping; Hong, Shanping

    2015-01-01

    Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs) were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS) and (-)-alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9), phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs) were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (-)-alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase, ERFs and pathogen

  2. Four terpene synthases contribute to the generation of chemotypes in tea tree (Melaleuca alternifolia).

    Science.gov (United States)

    Padovan, Amanda; Keszei, Andras; Hassan, Yasmin; Krause, Sandra T; Köllner, Tobias G; Degenhardt, Jörg; Gershenzon, Jonathan; Külheim, Carsten; Foley, William J

    2017-10-04

    Terpene rich leaves are a characteristic of Myrtaceae. There is significant qualitative variation in the terpene profile of plants within a single species, which is observable as "chemotypes". Understanding the molecular basis of chemotypic variation will help explain how such variation is maintained in natural populations as well as allowing focussed breeding for those terpenes sought by industry. The leaves of the medicinal tea tree, Melaleuca alternifolia, are used to produce terpinen-4-ol rich tea tree oil, but there are six naturally occurring chemotypes; three cardinal chemotypes (dominated by terpinen-4-ol, terpinolene and 1,8-cineole, respectively) and three intermediates. It has been predicted that three distinct terpene synthases could be responsible for the maintenance of chemotypic variation in this species. We isolated and characterised the most abundant terpene synthases (TPSs) from the three cardinal chemotypes of M. alternifolia. Functional characterisation of these enzymes shows that they produce the dominant compounds in the foliar terpene profile of all six chemotypes. Using RNA-Seq, we investigated the expression of these and 24 additional putative terpene synthases in young leaves of all six chemotypes of M. alternifolia. Despite contributing to the variation patterns observed, variation in gene expression of the three TPS genes is not enough to explain all variation for the maintenance of chemotypes. Other candidate terpene synthases as well as other levels of regulation must also be involved. The results of this study provide novel insights into the complexity of terpene biosynthesis in natural populations of a non-model organism.

  3. “Cation-Stitching Cascade”: exquisite control of terpene cyclization in cyclooctatin biosynthesis

    Science.gov (United States)

    Sato, Hajime; Teramoto, Kazuya; Masumoto, Yui; Tezuka, Noriyuki; Sakai, Kenta; Ueda, Shota; Totsuka, Yusuke; Shinada, Tetsuro; Nishiyama, Makoto; Wang, Chao; Kuzuyama, Tomohisa; Uchiyama, Masanobu

    2015-12-01

    Terpene cyclization is orchestrated by terpene cyclases, which are involved in the biosynthesis of various cyclic natural products, but understanding the origin and mechanism of the selectivity of terpene cyclization is challenging. In this work, we describe an in-depth mechanistic study on cyclooctatin biosynthesis by means of theoretical calculations combined with experimental methods. We show that the main framework of cyclooctatin is formed through domino-type carbocation transportation along the terpene chain, which we call a “cation-stitching cascade”, including multiple hydrogen-shifts and a ring rearrangement that elegantly determine the stereoselectivity.

  4. "Cation-Stitching Cascade": exquisite control of terpene cyclization in cyclooctatin biosynthesis.

    Science.gov (United States)

    Sato, Hajime; Teramoto, Kazuya; Masumoto, Yui; Tezuka, Noriyuki; Sakai, Kenta; Ueda, Shota; Totsuka, Yusuke; Shinada, Tetsuro; Nishiyama, Makoto; Wang, Chao; Kuzuyama, Tomohisa; Uchiyama, Masanobu

    2015-12-18

    Terpene cyclization is orchestrated by terpene cyclases, which are involved in the biosynthesis of various cyclic natural products, but understanding the origin and mechanism of the selectivity of terpene cyclization is challenging. In this work, we describe an in-depth mechanistic study on cyclooctatin biosynthesis by means of theoretical calculations combined with experimental methods. We show that the main framework of cyclooctatin is formed through domino-type carbocation transportation along the terpene chain, which we call a "cation-stitching cascade", including multiple hydrogen-shifts and a ring rearrangement that elegantly determine the stereoselectivity.

  5. A Comparative Study on Turpentine Oils of Oleoresins of Pinus sylvestris L. from Three Districts of Denizli

    Directory of Open Access Journals (Sweden)

    İbrahim Tümen

    2010-10-01

    Full Text Available Oleoresin samples collected from Pinus sylvestris L. trees from Acıpayam, Çal and Çamlıbel, three different locations in Denizli-Turkey. The constituents of the turpentine oil, obtained by hydrodistillation of oleoresin of Pinus sylvestris L., were identified by GC-MS. Fifty four constituents were detected from the turpentine oil, which constituted about between 96.2% and 98.2% of the total amount. Major constituents of the oil were a-pinene, b-pinene, camphene, longifolene, D3-carene, limonene and b-caryophyllene

  6. A chamber study of alkyl nitrate production formed by terpene ozonolysis in the presence of NO and alkanes

    Science.gov (United States)

    Jackson, Stephen R.; Harrison, Joel C.; Ham, Jason E.; Wells, J. R.

    2017-12-01

    Organic nitrates are relatively long-lived species and have been shown to have a potential impact on atmospheric chemistry on local, regional, and even global scales. However, the significance of these compounds in the indoor environment remains to be seen. This work describes an impinger-based sampling and analysis technique for organic nitrate species, focusing on formation via terpene ozonolysis in the presence of nitric oxide (NO). Experiments were conducted in a Teflon film environmental chamber to measure the formation of alkyl nitrates produced from α-pinene ozonolysis in the presence of NO and alkanes using gas chromatography with an electron capture detector. For the different concentrations of NO and O3 analyzed, the concentration ratio of [O3]/[NO] around 1 was found to produce the highest organic nitrate concentration, with [O3] = 100 ppb & [NO] = 105 ppb resulting in the most organic nitrate formation, roughly 5 ppb. The experiments on α-pinene ozonolysis in the presence of NO suggest that organic nitrates have the potential to form in indoor air between infiltrated ozone/NO and terpenes from household and consumer products.

  7. Actividad antimicobacteriana de terpenos Antimycobacterial activity of terpenes

    Directory of Open Access Journals (Sweden)

    Juan Gabriel Bueno-Sánchez

    2009-12-01

    Full Text Available Introducción: La tuberculosis (TB, causada por Mycobacterium tuberculosis es la mayor causa de mortalidad mundial por un único agente patógeno. Asimismo, un gran número de micobacterias no tuberculosas, especialmente M. avium, M. intracellulare y M. chelonae, causan infecciones oportunistas en pacientes con SIDA. Muchos terpenos poseen actividad biológica y se emplean en el tratamiento de diversas enfermedades, razón que los hace fuente de moléculas promisorias. Objetivo: El objetivo del presente estudio fue determinar la actividad antimicobacteriana de 16 terpenos contra M. tuberculosis H37Rv y un aislamiento clínico de M. chelonae. Materiales y métodos: Se obtuvo la concentración mínima inhibitoria (CMI de los mismos y se realizaron curvas de letalidad para establecer actividad bactericida, empleando una técnica de macrodilución en caldo estandarizada para este tipo de compuestos volátiles. Resultados: Los terpenos con menor valor de CMI fueron timol y carvacrol, con concentraciones de 125-250 μg/mL, y actividad bactericida contra los dos microorganismos. Geraniol, mirceno, ρ-cimeno, alfa-pineno, presentaron valores de CMI entre 250 y 500 μg/mL. Conclusiones: Algunos terpenos han presentado actividad importante contra microorganismos del género Mycobacterium, sin embargo los valores de CMI obtenidos no explican el efecto antimicrobiano presentado por el aceite completo, se requiere evaluar las interacciones de sinergismo y/o antagonismo entre los terpenos para determinar los componentes responsables de la acción farmacológica. Salud UIS 2009; 41: 231-235Introduction: Tuberculosis (TB caused by Mycobacterium tuberculosis is the major source of global mortality from a single pathogen. Moreover, a large number of nontuberculous mycobacteria, especially M. avium, M. intracellulare and M. chelonae, cause opportunistic infection in AIDS patients. Terpenes, possess a wide spectrum of biological activity and are used in the

  8. Synthesis of a labelled terpene synthon, useful in the preparation of metabolites of [Delta][sup 1]-tetrahydrocannabinol

    Energy Technology Data Exchange (ETDEWEB)

    Szirmai, M. (Uppsala Univ. (Sweden)); Halldin, M.M.; Ohlsson, A. (Karolinska Inst., Stockholm (Sweden))

    1992-02-01

    The synthesis of an isotopically labelled terpene synthon (4) is described. The usefulness of this terpene synthon in the synthesis of [delta][sup 1]-THC metabolites is shown by preparation of ([+-])-[[sup 2]H[sub 10

  9. Copaifera langsdorffii oleoresin and its isolated compounds: antibacterial effect and antiproliferative activity in cancer cell lines.

    Science.gov (United States)

    Abrão, Fariza; de Araújo Costa, Luciana Delfino; Alves, Jacqueline Morais; Senedese, Juliana Marques; de Castro, Pâmela Tinti; Ambrósio, Sérgio Ricardo; Veneziani, Rodrigo Cássio Sola; Bastos, Jairo Kenupp; Tavares, Denise Crispim; Martins, Carlos Henrique G

    2015-12-21

    Natural products display numerous therapeutic properties (e.g., antibacterial activity), providing the population with countless benefits. Therefore, the search for novel biologically active, naturally occurring compounds is extremely important. The present paper describes the antibacterial action of the Copaifera langsdorffii oleoresin and ten compounds isolated from this oleoresin against multiresistant bacteria; it also reports the antiproliferative activity of the Copaifera langsdorffii oleoresin and (-)-copalic acid. MICs and MBCs were used to determine the antibacterial activity. Time-kill curve assays provided the time that was necessary for the bacteria to die. The Minimum Inhbitory Concentration of Biofilm (CIMB50) of the compounds that displayed the best results was calculated. Cytotoxicity was measured by using the XTT assay. The diterpene (-)-copalic acid was the most active antibacterial and afforded promising Minimum Inhibitory Concentration (MIC) values for most of the tested strains. Determination of the bactericidal kinetics against some bacteria revealed that the bactericidal effect emerged within six hours of incubation for Streptococcus pneumoniae. Concerning the antibiofilm action of this diterpene, its MICB50 was twofold larger than its CBM against S. capitis and S. pneumoniae. The XTT assay helped to evaluate the cytotoxic effect; results are expressed as IC50. The most pronounced antiproliferative effect arose in tumor cell lines treated with (-)-copalic acid; the lowest IC50 value was found for the human glioblastoma cell line. The diterpene (-)-copalic acid is a potential lead for the development of new selective antimicrobial agents to treat infections caused by Gram-positive multiresistant microorganisms, in both the sessile and planktonic mode. This diterpene is also a good candidate to develop anticancer drugs.

  10. Association genetics of oleoresin flow in loblolly pine: discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential.

    Science.gov (United States)

    Westbrook, Jared W; Resende, Marcio F R; Munoz, Patricio; Walker, Alejandro R; Wegrzyn, Jill L; Nelson, C Dana; Neale, David B; Kirst, Matias; Huber, Dudley A; Gezan, Salvador A; Peter, Gary F; Davis, John M

    2013-07-01

    Rapidly enhancing oleoresin production in conifer stems through genomic selection and genetic engineering may increase resistance to bark beetles and terpenoid yield for liquid biofuels. We integrated association genetic and genomic prediction analyses of oleoresin flow (g 24 h(-1)) using 4854 single nucleotide polymorphisms (SNPs) in expressed genes within a pedigreed population of loblolly pine (Pinus taeda) that was clonally replicated at three sites in the southeastern United States. Additive genetic variation in oleoresin flow (h(2) ≈ 0.12-0.30) was strongly correlated between years in which precipitation varied (r(a) ≈ 0.95), while the genetic correlation between sites declined from 0.8 to 0.37 with increasing differences in soil and climate among sites. A total of 231 SNPs were significantly associated with oleoresin flow, of which 81% were specific to individual sites. SNPs in sequences similar to ethylene signaling proteins, ABC transporters, and diterpenoid hydroxylases were associated with oleoresin flow across sites. Despite this complex genetic architecture, we developed a genomic prediction model to accelerate breeding for enhanced oleoresin flow that is robust to environmental variation. Results imply that breeding could increase oleoresin flow 1.5- to 2.4-fold in one generation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. BIOLOGICAL ACTIVITY AND PHYTOCHEMICAL SCREENING OF THE OLEORESIN OF Shorea robusta Gaertn. f.

    Directory of Open Access Journals (Sweden)

    Kondragunta Sri Rama Murthy

    2011-07-01

    Full Text Available Shorea robusta Gaertn.f. oleoresin (gum extracts were used against the skin allergies, diarrhea, dysentery, astringency and is wide spread in different parts of Eastern Ghats of Southern Peninsular India. The objective of the present study was to evaluate the antimicrobial and phytochemical activity of resin extract against pathogenic microorganisms. Successive petroleum ether, methanol, benzene and aqueous extracts of Shorea robusta resin were tested for their phytochemical constituents, antibacterial and antifungal activity. The aqueous and methanolic extracts were found to be most effective against most of the tested organisms. The results confirmed the potency of this plant in the indigenous systems of medicine.

  12. Chemical analysis of turmeric from Minas Gerais, Brazil and comparison of methods for flavour free oleoresin

    Directory of Open Access Journals (Sweden)

    Cyleni R. A. Souza

    1998-01-01

    Full Text Available Chemical analysis of turmeric (Curcuma longa L cultivated in eight different cities in the state of Minas Gerais, Brazil was carried out. The levels of curcuminoid pigments varied from 1.4 to 6.14 g/100 g and of volatile oil from 0.97 to 7.55 mL/100 g (dry basis. Samples from Patrocínio, Arinos and Brasilândia contained higher pigment levels compared to the others. The sample from Patrocínio contained the highest volatile oil content. The mean levels of ethyl ether extract, protein, fiber, ash and starch were 8.51, 7.01, 7.22, 7.81 and 39.87 g/100 g dry basis, respectively. Laboratory extraction of flavour free oleoresin was performed in triplicate. A higher yield of pigment in the oleoresin was obtained when the volatile oil was extracted with water vapor and the oleoresin with ethanol. The oleoresin obtained was free of flavour and could be used in a wider range of food applications.Análise química de cúrcuma (Curcuma longa L provenientes de oito municípios do Estado de Minas Gerais - Brasil foi efetuada. Os teores (base seca de pigmentos curcuminóides variaram de 1,4 a 6,14 g/100 g e os de óleo volátil, de 0,97 a 7,55 mL/100 g. Amostras de Patrocínio, Arinos e Brasilândia continham os maiores teores de pigmentos e as de Patrocínio os maiores teores de óleos voláteis. Os teores médios (base seca de extrato etéreo, proteínas, fibras, cinzas e amido encontrados foram 8,51; 7,01; 7,22; 7,81 e 39,87 g/100 g, respectivamente. Com o objetivo de obter corante amarelo isento de flavor, métodos de extração em laboratório foram comparados em triplicata. Um maior rendimento de pigmento na oleoresina foi obtido extraindo-se o óleo volátil com vapor d'água e a oleoresina com etanol. A oleoresina obtida é isenta de flavor e pode ser utilizada em um número maior de aplicações na indústria alimentícia

  13. A Modified Protocol for High-Quality RNA Extraction from Oleoresin-Producing Adult Pines.

    Science.gov (United States)

    de Lima, Júlio César; Füller, Thanise Nogueira; de Costa, Fernanda; Rodrigues-Corrêa, Kelly C S; Fett-Neto, Arthur G

    2016-01-01

    RNA extraction resulting in good yields and quality is a fundamental step for the analyses of transcriptomes through high-throughput sequencing technologies, microarray, and also northern blots, RT-PCR, and RTqPCR. Even though many specific protocols designed for plants with high content of secondary metabolites have been developed, these are often expensive, time consuming, and not suitable for a wide range of tissues. Here we present a modification of the method previously described using the commercially available Concert™ Plant RNA Reagent (Invitrogen) buffer for field-grown adult pine trees with high oleoresin content.

  14. Abibalsamins A and B, two new tetraterpenoids from Abies balsamea oleoresin.

    Science.gov (United States)

    Lavoie, Serge; Legault, Jean; Gauthier, Charles; Mshvildadze, Vakhtang; Mercier, Sylvain; Pichette, André

    2012-03-16

    Abibalsamins A (1) and B (2), two unprecedented tetraterpenoids featuring a 3,4-seco-rearranged lanostane system fused with a β-myrcene lateral chain via a [4 + 2] Diels-Alder cycloaddition, were isolated from the oleoresin of Abies balsamea. Their structures were elucidated by means of extensive 2D NMR, IR, and MS spectroscopy analyses. The absolute configuration of 1 was determined by single-crystal X-ray diffraction. Both compounds exhibited significant cytotoxic activity against cancer cell lines.

  15. Transfer of terpenes from essential oils into cow milk

    DEFF Research Database (Denmark)

    Lejonklev, J.; Løkke, M.M.; Larsen, M.K.

    2013-01-01

    properties, but very little work exists on the transfer of their volatile compounds into milk. Lactating Danish Holstein cows with duodenum cannula were used. Gastrointestinal exposure was facilitated by infusing the essential oils, mixed with deodorized sesame oil, into the duodenum cannula. Two levels were......The objective of this study was to investigate the transfer of volatile terpenes from caraway seed and oregano plant essential oils into cow's milk through respiratory and gastrointestinal exposure. Essential oils have potential applications as feed additives because of their antimicrobial...

  16. Terpenes of Salvia species leaf oils: chemosystematic implications

    OpenAIRE

    Coassini Lokar, Laura; Moneghini, Mariarosa

    2017-01-01

    Wild specimens of Salvia L. were collected in three different moments of anthesis and their volatile leaf oils were analyzed by GC/GCMS. The quantitative terpene composition is very variable with the anthesis. S. bertolonii is the richest species in a-thujone. S. officinalis is characterized by high percentages of 1,8 cineole, 4-terpineol, isorboneol and a -bisabolol. In S. verticillata high percentages of borneol and {3-cariophyllene are present. In the three species a-thujone was always mor...

  17. Terpenes as Green Solvents for Extraction of Oil from Microalgae

    Directory of Open Access Journals (Sweden)

    Celine Dejoye Tanzi

    2012-07-01

    Full Text Available Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  18. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters

    NARCIS (Netherlands)

    Spyropoulou, E.A.; Haring, M.A.; Schuurink, R.C.

    2014-01-01

    BACKGROUND: Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant's defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of

  19. Production of alpha-cuprenene in Xanthophyllomyces dendrorhous : a step closer to a potent terpene biofactory

    NARCIS (Netherlands)

    Melillo, Elena; Setroikromo, Rita; Quax, Wim J.; Kayser, Oliver

    2013-01-01

    Background: The red yeast Xanthophyllomyces dendrorhous is a natural producer of the carotenoid astaxanthin. Because of its high flux, the native terpene pathway leading to the production of the tetraterpene is of particular interest as it can be redirected toward the production of other terpene

  20. Identification of isoafricanol and its terpene cyclase in Streptomyces violaceusniger using CLSA-NMR.

    Science.gov (United States)

    Riclea, Ramona; Citron, Christian A; Rinkel, Jan; Dickschat, Jeroen S

    2014-04-25

    The recently developed CLSA-NMR technique that is based on feeding experiments with (13)C-labelled precursors was applied in the identification of isoafricanol as the main volatile terpene emitted by Streptomyces violaceusniger. The isoafricanol synthase of this organism is presented, together with a recent phylogenetic analysis of bacterial terpene cyclases.

  1. [Studies on metabolism of total terpene ketones from Swertia mussotii with human intestinal bacteria].

    Science.gov (United States)

    Li, Shuang; Tian, Cheng-Wang; Wu, Shuai; Yang, Xiu-Wei; Wang, Li-Li; Zhang, Tie-Jun

    2012-12-01

    To study the metabolism of total terpene ketones from Swertia mussotii with human intestinal bacteria. Total terpene ketones were incubated with human intestinal bacteria under an anaerobic environment and at 37 degrees C. The metabolites were extracted by ethyl acetate processing, detected by HPLC-DAD method. A qualitative analysis was made for its metabolites by HPLC-MS. Eight metabolites were detected from total terpene ketones from S. mussotii with human intestinal bacteria, and two of them were preliminarily identified as gentianine and mangiferin aglycon. Total terpene ketones can be metabolized with human intestinal bacteria, which provides basis for experiments on the metabolism process total terpene ketones from S. mussotii with human intestinal bacteria.

  2. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Science.gov (United States)

    2010-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  3. Dietary Capsicum and Curcuma longa oleoresins alter the intestinal microbiome and Necrotic Enteritis Severity in three commercial broiler breeds

    Science.gov (United States)

    Three commercial broiler breeds were fed from hatch with a diet supplemented with Capsicum and Curcuma longa oleoresins, and co-infected with Eimeria maxima and Clostridium perfringens to induce necrotic enteritis (NE). Pyrotag deep sequencing of bacterial 16S rRNA showed that gut microbiota compos...

  4. Composition, In Vitro Antioxidant and Antimicrobial Activities of Essential Oil and Oleoresins Obtained from Black Cumin Seeds (Nigella sativa L.)

    Science.gov (United States)

    Singh, Sunita; Das, S. S.; Singh, G.; Schuff, Carola; de Lampasona, Marina P.; Catalán, César A. N.

    2014-01-01

    Gas chromatography-mass spectrometry (GC-MS) analysis revealed the major components in black cumin essential oils which were thymoquinone (37.6%) followed by p-cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component. The antioxidant activity of essential oil and oleoresins was evaluated against linseed oil system at 200 ppm concentration by peroxide value, thiobarbituric acid value, ferric thiocyanate, ferrous ion chelating activity, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging methods. The essential oil and ethyl acetate oleoresin were found to be better than synthetic antioxidants. The total phenol contents (gallic acid equivalents, mg GAE per g) in black cumin essential oil, ethyl acetate, ethanol, and n-hexane oleoresins were calculated as 11.47 ± 0.05, 10.88 ± 0.9, 9.68 ± 0.06, and 8.33 ± 0.01, respectively, by Folin-Ciocalteau method. The essential oil showed up to 90% zone inhibition against Fusarium moniliforme in inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria. PMID:24689064

  5. Chemical Composition, Enantiomeric Distribution, and Antifungal Activity of the Oleoresin Essential Oil of Protium amazonicum from Ecuador.

    Science.gov (United States)

    Satyal, Prabodh; Powers, Chelsea N; Parducci V, Rafael; McFeeters, Robert L; Setzer, William N

    2017-09-23

    Background:Protium species (Burseraceae) have been used in the treatment of various diseases and conditions such as ulcers and wounds. Methods: The essential oil from the oleoresin of Protium amazonicum was obtained by hydrodistillation and analyzed by GC-MS, GC-FID, and chiral GC-MS. P. amazonicum oleoresin oil was screened for antifungal activity against Candida albicans, Aspergillus niger, and Cryptococcus neoformans. Results: A total of 54 components representing 99.6% of the composition were identified in the oil. The essential oil was dominated by δ-3-carene (47.9%) with lesser quantities of other monoterpenoids α-pinene (4.0%), p-cymene (4.1%), limonene (5.1%), α-terpineol (5.5%) and p-cymen-8-ol (4.8%). Chiral GC-MS revealed most of the monoterpenoids to have a majority of levo enantiomers present with the exceptions of limonene and α-terpineol, which showed a dextro majority. P. amazonicum oleoresin oil showed promising activity against Cryptococcus neoformans, with MIC = 156 μg/mL. Conclusions: This account is the first reporting of both the chemical composition and enantiomeric distribution of the oleoresin essential oil of P. amazonicum from Ecuador. The oil was dominated by (-)-δ-3-carene, and this compound, along with other monoterpenoids, likely accounts for the observed antifungal activity of the oil.

  6. Effect of solvents and methods of stirring in extraction of lycopene, oleoresin and fatty acids from over-ripe tomato.

    Science.gov (United States)

    López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Valenzuela-Sánchez, Karla P; Núñez-Gastélum, José A; Escárcega-Galaz, Ana A; Rodríguez-Ramírez, Roberto

    2014-03-01

    Lycopene and oleoresin extraction from powder of tomato over-ripe by three agitation methods and four solvents have been evaluated. Also, tomato powder and the oleoresins were characterized biochemically. On average, the moisture content of powder was found to be 4.30, ash 8.90, proteins 11.23 and lipids 4.35 g 100 g(-1). The best oleoresin extraction yield was achieved by combining sonication and acetone at 1.43 g 100 g(-1). The greatest amount of lycopene (65.57 ± 0.33 mg 100 g(-1)) was also obtained using the same treatment. The presence of trans-lycopene was positively confirmed by HPLC and FTIR. In oleoresins, linoleic acid (C18:2n6) was the predominant with 50% of total fatty acids, whereas stearic acid (C18:0) is presented in a smaller proportion (5%). A simple and suitable method for extraction of lycopene from over-ripe tomato was optimized. In industrial applications, tomato by-products are a viable source of analytes, such as lycopene and unsaturated fatty acids.

  7. The transfer of natural Rhodamine B contamination from raw paprika fruit to capsicum oleoresin during the extraction process.

    Science.gov (United States)

    Wu, Naiying; Gao, Wei; Lian, Yunhe; Du, Jingjing; Tie, Xiaowei

    2017-12-15

    Occurrence of Rhodamine B (RhB) contamination in paprika caused by agricultural materials during the vegetation process has been reported. It may transfer during the process of active compounds extraction, and eventually exist in final products. Herein, the re-distribution of RhB during the extraction process was assessed in terms of RhB contents, as well as mass, color value and capsaicinoids yield of each process. Results revealed that natural RhB contamination at 0.55-1.11µg/kg originated from raw paprika fruit then transferred with the extraction proceeded. About 95.5% of RhB was found in red oleoresin. After separation of red oleoresin, 91.6% of RhB was remained in capsicum oleoresin, only 3.7% in paprika red. These results were consistent with total capsaicinoids recovery of each product. The RhB levels in edible capsicum oleoresin in our present study at 0.01-0.34µg/kg did not exceed the legal limits established by the European Union. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Composition, In Vitro Antioxidant and Antimicrobial Activities of Essential Oil and Oleoresins Obtained from Black Cumin Seeds (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    Sunita Singh

    2014-01-01

    Full Text Available Gas chromatography-mass spectrometry (GC-MS analysis revealed the major components in black cumin essential oils which were thymoquinone (37.6% followed by p-cymene (31.2%, α-thujene (5.6%, thymohydroquinone (3.4%, and longifolene (2.0%, whereas the oleoresins extracted in different solvents contain linoleic acid as a major component. The antioxidant activity of essential oil and oleoresins was evaluated against linseed oil system at 200 ppm concentration by peroxide value, thiobarbituric acid value, ferric thiocyanate, ferrous ion chelating activity, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging methods. The essential oil and ethyl acetate oleoresin were found to be better than synthetic antioxidants. The total phenol contents (gallic acid equivalents, mg GAE per g in black cumin essential oil, ethyl acetate, ethanol, and n-hexane oleoresins were calculated as 11.47±0.05, 10.88±0.9, 9.68±0.06, and 8.33±0.01, respectively, by Folin-Ciocalteau method. The essential oil showed up to 90% zone inhibition against Fusarium moniliforme in inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria.

  9. High-throughput gene expression analysis of intestinal intraepithelial lymphocytes following oral feeding of Carvacrol, cinnamaldehyde, or capsicum oleoresin

    Science.gov (United States)

    Among dietary phytonutrients, carvacrol, cinnamaldehyde, and Capsicum oleoresin are well-known for their anti-inflammatory and antibiotic effects in human and veterinary medicine. To further define the molecular and genetic mechanisms responsible for these properties, broiler chickens were fed a st...

  10. Antimicrobial activity of copaíba (Copaifera langsdorffii oleoresin on bacteria of clinical significance in cutaneous wounds

    Directory of Open Access Journals (Sweden)

    D.S. Masson

    2013-01-01

    Full Text Available The present study was designed to evaluate the in vitro antimicrobial activity of Copaifera langsdorffii oleoresin, which has been used in folk medicine as an anti-inflammatory, antibacterial, healing among others. The oleoresin was tested against Gram-positive (Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Gram-negative (Pseudomonas aeruginosa and Escherichia coli bacteria related to infections in cutaneous wounds. Antimicrobial activity was determined by the minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC assays. Copaiba oleoresin showed antimicrobial activity only against the Gram-positive bacteria with MIC of 200 μg/mL, 400 μg/mL and 1100 μg/mL for S. aureus, S. pyogenes and E. faecalis, respectively. MBC values were the same as MIC for S. aureus and S. pyogenes and for E. faecalis it was 1200 μg/mL. Considering that infection significantly impairs the wound healing process, we believe that the use of copaiba oleoresin as a component of a topical formulation could be a valuable adjunct in the treatment of infected wounds, mainly in the case of wounds infected by Gram-positive microorganisms.

  11. Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries.

    Science.gov (United States)

    Shim, Jimin; Lee, Jae Won; Bae, Ki Yoon; Kim, Hee Joong; Yoon, Woo Young; Lee, Jong-Chan

    2017-05-22

    Lithium-metal anode has fundamental problems concerning formation and growth of lithium dendrites, which prevents practical applications of next generation of high-capacity lithium-metal batteries. The synergistic combination of solid polymer electrolyte (SPE) crosslinked with naturally occurring terpenes and lithium-powder anode is promising solution to resolve the dendrite issues by substituting conventional liquid electrolyte/separator and lithium-foil anode system. A series of SPEs based on polysiloxane crosslinked with natural terpenes are prepared by facile thiol-ene click reaction under mild condition and the structural effect of terpene crosslinkers on electrochemical properties is studied. Lithium powder with large surface area is prepared by droplet emulsion technique (DET) and used as anode material. The effect of the physical state of electrolyte (solid/liquid) and morphology of lithium-metal anode (powder/foil) on dendrite growth behavior is systematically studied. The synergistic combination of SPE and lithium-powder anode suggests an effective solution to suppress the dendrite growth owing to the formation of a stable solid-electrolyte interface (SEI) layer and delocalized current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antimicrobial Evaluation of Diterpenes from Copaifera langsdorffii Oleoresin Against Periodontal Anaerobic Bacteria

    Directory of Open Access Journals (Sweden)

    Rodrigo C. S. Veneziani

    2011-11-01

    Full Text Available The antimicrobial activity of four labdane-type diterpenes isolated from the oleoresin of Copaifera langsdorffii as well as of two commercially available diterpenes (sclareol and manool was investigated against a representative panel of microorganisms responsible for periodontitis. Among all the evaluated compounds, (−-copalic acid (CA was the most active, displaying a very promising MIC value (3.1 µg mL−1; 10.2 µM against the key pathogen (Porphyromonas gingivalis involved in this infectious disease. Moreover, CA did not exhibit cytotoxicity when tested in human fibroblasts. Time-kill curve assays performed with CA against P. gingivalis revealed that this compound only inhibited the growth of the inoculums in the first 12 h (bacteriostatic effect. However, its bactericidal effect was clearly noted thereafter (between 12 and 24 h. It was also possible to verify an additive effect when CA and chlorhexidine dihydrochloride (CHD, positive control were associated at their MBC values. The time curve profile resulting from this combination showed that this association needed only six hours for the bactericidal effect to be noted. In summary, CA has shown to be an important metabolite for the control of periodontal diseases. Moreover, the use of standardized extracts based on copaiba oleoresin with high CA contents can be an important strategy in the development of novel oral care products.

  13. Tomato oleoresin inhibits DNA damage but not diethylnitrosamine-induced rat hepatocarcinogenesis.

    Science.gov (United States)

    Scolastici, Clarissa; Lopes, Gisele A D; Barbisan, Luís F; Salvadori, Daisy M F

    2008-06-01

    Various studies have shown that lycopene, a non-provitamin A carotenoid, exerts antioxidant, antimutagenic and anticarcinogenic activities in different in vitro and in vivo systems. However, the results concerning its chemopreventive potential on rat hepatocarcinogenesis are ambiguous. The aim of the present study was to investigate the antigenotoxic and anticarcinogenic effects of dietary tomato oleoresin adjusted to lycopene concentration at 30, 100 or 300 ppm (administered 2 weeks before and during or 8 weeks after carcinogen exposure) on liver of male Wistar rats treated with a single intraperitoneal dose of 20 or 100mg/kg of diethylnitrosamine (DEN), respectively. The level of DNA damage in liver cells and the development of putative preneoplastic single hepatocytes, minifoci and foci of altered hepatocytes (FHA) positive for glutathione S-transferase (GST-P) were used as endpoints. Significant reduction of DNA damage was detected when the highest lycopene concentration was administered before and during the DEN exposure (20mg/kg). However, the results also showed that lycopene consumption did not reduce cell proliferation in normal hepatocytes or the growth of initiated hepatocytes into minifoci positive for GST-P during early regenerative response after 70% partial hepatectomy, or the number and area of GST-P positive FHA induced by DEN (100mg/kg) at the end of week 10. Taken together, the data suggest a chemopreventive effect of tomato oleoresin against DNA damage induced by DEN but no clear effectiveness in initiating or promoting phases of rat hepatocarcinogenesis.

  14. Tomato-oleoresin supplement prevents doxorubicin-induced cardiac myocyte oxidative DNA damage in rats.

    Science.gov (United States)

    Ferreira, Ana Lucia Anjos; Salvadori, Daisy Maria Favero; Nascimento, Maria Carolina Munhoz Oliveira; Rocha, Noeme Souza; Correa, Camila R; Pereira, Elenize Jamas; Matsubara, Luiz Shiguero; Matsubara, Beatriz Bojikian; Ladeira, Marcelo Sady Plácido

    2007-07-10

    Doxorubicin (DOX) is an efficient chemotherapeutic agent used against several types of tumors; however, its use is limited due to severe cardiotoxicity. Since it is accepted that reactive oxygen species are involved in DOX-induced cardiotoxicity, antioxidant agents have been used to attenuate its side effects. To determine tomato-oleoresin protection against cardiac oxidative DNA damage induced by DOX, we distributed Wistar male rats in control (C), lycopene (L), DOX (D) and DOX+lycopene (DL) groups. They received corn oil (C, D) or tomato-oleoresin (5mg/kg body wt. day) (L, DL) by gavage for a 7-week period. They also received saline (C, L) or DOX (4mg/kg body wt.) (D, DL) intraperitoneally at the 3rd, 4th, 5th, and at 6th week. Lycopene absorption was checked by HPLC. Cardiac oxidative DNA damage was evaluated by the alkaline Comet assay using formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (endo III). Cardiomyocyte levels of SBs, SBs FPG and SBs Endo III were higher in rats from D when compared to other groups. DNA damage levels in cardiomyocytes from DL were not different when compared to C and L groups. The viability of cardiomyocytes from D or DL was lower than C or L groups (poleoresin supplementation protected against cardiomyocyte oxidative DNA damage.

  15. MICROENCAPSULATION OF TURMERIC OLEORESIN IN BINARY AND TERNARY BLENDS OF GUM ARABIC, MALTODEXTRIN AND MODIFIED STARCH

    Directory of Open Access Journals (Sweden)

    Diana Maria Cano-Higuita

    2015-04-01

    Full Text Available Spray-drying is a suitable method to obtain microencapsulated active substances in the powdered form, resulting in powders with improved protection against environmental factors as well as with higher solubility in water, as in the case of turmeric oleoresin. The present study investigated the spray-drying process of turmeric oleoresin microencapsulated with binary and ternary mixtures of different wall materials: gum Arabic, maltodextrin, and modified corn starch. A statistical simplex centroid experimental design was used considering the encapsulation efficiency, curcumin retention, process yield, water content, solubility, and particle morphology as the analyzed responses. Wall matrices containing higher proportions of modified starch and gum Arabic resulted in higher encapsulation efficiency and curcumin retention, whereas the process yield and water content increased with higher proportions of maltodextrin and gum Arabic, respectively. Regression models of the responses were obtained using a surface response method (ANOVA way, showing statistical values of R2 > 0.790. Also, mean analysis was carried out by Tukey's test, permitting to observe some statistical differences between the blends

  16. Antidiabetic and antioxidant potentials of spent turmeric oleoresin, a by-product from curcumin production industry

    Directory of Open Access Journals (Sweden)

    Suresh V Nampoothiri

    2012-05-01

    Full Text Available Objective: To investigate the antidiabetic and antioxidant activity of spent turmeric oleoresin (STO. Methods: Antidiabetic activity of STO evaluated by α - amylase and α - glucosidase enzyme inhibition assays. The antioxidant capacity studied by DPPH. , ABTS., superoxide radical scavenging and metal chelating activity methods. Results: The STO showed good antidiabetic activity by inhibiting key enzymes linked to type 2 diabetes, viz α -glucosidase and α -amylase with an IC50values of 0.71 and 0.16毺 g/mL respectively. The IC50 values for DPPH. and ABTS. assay were 58.1 and 33 毺 g/mL respectively. STO effectively scavenged the superoxide free radical with an IC50 value of 61.5毺 g/mL and showed a moderate iron chelation property. Conclusions: The above study reveals that the spent turmeric oleoresin being wasted at present can be used as antioxidant and antidiabetic agent in food and neutraceutical products.

  17. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria.

    Science.gov (United States)

    Souza, Ariana B; de Souza, Maria G M; Moreira, Maísa A; Moreira, Monique R; Furtado, Niege A J C; Martins, Carlos H G; Bastos, Jairo K; dos Santos, Raquel A; Heleno, Vladimir C G; Ambrosio, Sergio Ricardo; Veneziani, Rodrigo C S

    2011-11-18

    The antimicrobial activity of four labdane-type diterpenes isolated from the oleoresin of Copaifera langsdorffii as well as of two commercially available diterpenes (sclareol and manool) was investigated against a representative panel of microorganisms responsible for periodontitis. Among all the evaluated compounds, (-)-copalic acid (CA) was the most active, displaying a very promising MIC value (3.1 µg mL-1; 10.2 µM) against the key pathogen (Porphyromonas gingivalis) involved in this infectious disease. Moreover, CA did not exhibit cytotoxicity when tested in human fibroblasts. Time-kill curve assays performed with CA against P. gingivalis revealed that this compound only inhibited the growth of the inoculums in the first 12 h (bacteriostatic effect). However, its bactericidal effect was clearly noted thereafter (between 12 and 24 h). It was also possible to verify an additive effect when CA and chlorhexidine dihydrochloride (CHD, positive control) were associated at their MBC values. The time curve profile resulting from this combination showed that this association needed only six hours for the bactericidal effect to be noted. In summary, CA has shown to be an important metabolite for the control of periodontal diseases. Moreover, the use of standardized extracts based on copaiba oleoresin with high CA contents can be an important strategy in the development of novel oral care products.

  18. POPULATION STRUCTURE AND PRODUCTION OF COPAIBA OLEORESIN BETWEEN VALLEYS AND HILLSIDES OF THE MINING AREA OFTROMBETAS RIVER - PARÁ1

    Directory of Open Access Journals (Sweden)

    Jonas Gebara

    2016-02-01

    Full Text Available ABSTRACT We aimed in this work to study natural populations of copaiba (Copaifera multijuga Hayne on the Monte Branco mountain at Porto Trombetas-PA, in order to support sustainable management and the exploitation of oleoresin from copaiba. We studied the population structure of copaiba on hillsides and valleys of the south face of Monte Branco, within Saracá Taquera National Forest, where bauxite ore was extracted in the biennium 2013-2014 by Mineração Rio do Norte (MRN. We produced a 100% forest inventory of the specie and of oleoresin extraction in order to quantify the potential production of the remaining area. The density of copaiba individuals with DBH > 30 cm was 0.33 individuals per hectare in the hillside and 0.25 individuals per hectare in the valley. Both environments presented a density of 0.28 individuals per hectare. The average copaiba oleoresin yield was 0.661±0.334 liters in the hillside and 0.765±0.280 liters in the valley. The average value of both environments together (hillside and valley was 0.714±0.218 liters. From all individuals with DBH over 30 cm, 38 (58% produced some amount of oleoresin, averaging 1.113±0.562 liters in the hillside, 1.329±0.448 liters in the valley and 1.190±0.355 liters in both environments together. The results show the need for planning the use of the surroundings of the study area in order to reach the required volume of copaiba to make feasible the sustainable management of oleoresin extraction in the region.

  19. PENGARUH RASIO BAHAN PENYALUT MALTODEKSTRIN, GUM ARAB, DAN SUSU SKIM TERHADAP KARAKTERISTIK FISIK DAN KIMIA MIKROKAPSUL OLEORESIN DAUN KAYU MANIS (Cinnamomum burmannii

    Directory of Open Access Journals (Sweden)

    Lia Umi Khasanah

    2015-11-01

    sebesar 0 ppm. Mikrokapsul ini mengandung senyawa aktif berupa linalool, coumarin, 9-hexadecenoic acid, 1,8-cineole serta benzene (3,3 dimehyl buthyl. Kata kunci: Oleoresin, daun kayu manis, maltodekstrin, gum arab, susu skim, bahan penyalut

  20. Composition, In Vitro Antioxidant and Antimicrobial Activities of Essential Oil and Oleoresins Obtained from Black Cumin Seeds (Nigella sativaL.)

    National Research Council Canada - National Science Library

    Singh, Sunita; Das, S. S; Singh, G; Schuff, Carola; de Lampasona, Marina P; Catalán, César A. N

    2014-01-01

    ...%) followed by p-cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component...

  1. Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells

    National Research Council Canada - National Science Library

    Kaihua Ji; Lianying Fang; Hui Zhao; Qing Li; Yang Shi; Chang Xu; Yan Wang; Liqing Du; Jinhan Wang; Qiang Liu

    2017-01-01

    .... Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs...

  2. Terpene chemodiversity of relict conifers Picea omorika, Pinus heldreichii, and Pinus peuce, endemic to Balkan.

    Science.gov (United States)

    Nikolić, Biljana; Ristić, Mihailo; Tešević, Vele; Marin, Petar D; Bojović, Srdjan

    2011-12-01

    Terpenes are often used as ecological and chemotaxonomic markers of plant species, as well as for estimation of geographic variability. Essential oils of relic and Balkan endemic/subendemic conifers, Picea omorika, Pinus heldreichii, and P. peuce, in central part of Balkan Peninsula (Serbia and Montenegro), on the level of terpene classes and common terpene compounds were investigated. In finding terpene combinations, which could show the best diversity between species and their natural populations, several statistical methods were applied. Apart from the content of different terpene classes (P. omorika has the most abundant O-containing monoterpenes and sesquiterpenes; P. heldreichii and P. peuce have the largest abundance of sesquiterpene and monoterpene hydrocarbons, resp.), the species are clearly separated according to terpene profile with 22 common compounds. But, divergences in their populations were established only in combination of several compounds (specific for each species), and they were found to be the results of geomorphologic, climatic, and genetic factors. We found similarities between investigated species and some taxa from literature with respect to terpene composition, possibly due to hybridization and phylogenetic relations. Obtained results are also important regarding to chemotaxonomy, biogeography, phylogeny, and evolution of these taxa. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  3. In vitro activity of terpenes against Candida albicans and ultrastructural alterations.

    Science.gov (United States)

    Martínez, Alejandra; Rojas, Ninón; García, Loreto; González, Felipe; Domínguez, Mariana; Catalán, Alfonso

    2014-11-01

    The purpose of this study was to investigate the in vitro activity of terpene blends combined with tissue conditioner against Candida albicans and the effect on its morphology and sub-micro structure. The minimal inhibitory concentration (MIC) of terpenes, obtained from a by-product of kraft pulping, was determined using broth microdilution against C. albicans strains, and the activity of terpenes combined with Coe-Comfort tissue conditioner was assessed. Cell morphologic alterations were evaluated using scanning electronic microscopy and transmission electronic microscopy. Data was analyzed using Student's t test P terpene blends fluctuated between 0.097% and 0.39% (v/v). Coe-Comfort tissue conditioner mixed with terpenes exhibited a total inhibition of C. albicans (P Terpenes induced ultrastructural alterations, even at the MIC value, including an increase in size, shape modification, cell wall damage with perforations, pronounced disconnection between cell wall and cytoplasm, and cytoplasmic vacuoles. Terpenes had pronounced effects against C. albicans alone and in combination with Coe-Comfort tissue conditioner, which mainly resulted in cell wall damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Ex vivo skin absorption of terpenes from Vicks VapoRub ointment.

    Science.gov (United States)

    Cal, Krzysztof; Sopala, Monika

    2008-08-01

    The pharmaceutical market offers a wide range of inhalant drug products applied on the skin that contain essential oils and/or their isolated compounds, i.e. terpenes. Because there are few data concerning the skin penetration of terpenes, especially from complex carriers, the goal of this study was to determine the ex vivo skin absorption kinetics of chosen terpenes, namely eucalyptol, menthol, camphor, alpha-pinene, and beta-pinene, from the product Vicks VapoRub. Human cadaver skin was placed in a flow-through diffusion chamber and the product was applied for 15, 30, and 60 min. After the application time the skin was separated into layers using a tape-stripping technique: three fractions of stratum corneum and epidermis with dermis, and terpenes amounts in the samples were determined by gas-chromatography. The investigated terpenes showed different absorption characteristics related to their physicochemical properties and did not permeate through the skin into the acceptor fluid. Eucalyptol had the largest total accumulation in the stratum corneum and in the epidermis with dermis, while alpha-pinene penetrated into the skin in the smallest amount. The short time in which saturation of the stratum corneum with the terpenes occurred and the high accumulation of most of the investigated terpenes in the skin layers proved that these compounds easily penetrate and permeate the stratum corneum and that in vivo they may easily penetrate into the blood circulation.

  5. Differences in volatile terpene composition between the bark and leaves of tropical tree species.

    Science.gov (United States)

    Courtois, Elodie A; Baraloto, Christopher; Paine, C E Timothy; Petronelli, Pascal; Blandinieres, Pierre-Alain; Stien, Didier; Höuel, Emeline; Bessière, Jean-Marie; Chave, Jérôme

    2012-10-01

    Volatile terpenes are among the most diverse class of defensive compounds in plants, and they are implicated in both direct and indirect defense against herbivores. In terpenes, both the quantity and the diversity of compounds appear to increase the efficiency of defense as a diverse blend of compounds provides a more efficient protection against a broader range of herbivores and limits the chances that an enemy evolves resistance. Theory predicts that plant defensive compounds should be allocated differentially among tissues according to the value of the tissue, its cost of construction and the herbivore pressure on it. We collected volatile terpenes from bark and leaves of 178 individual tree belonging to 55 angiosperm species in French Guiana and compare the kind, amount, and diversity of compounds in these tissues. We hypothesized that in woody plants, the outermost part of the trunk should hold a more diverse blend of volatile terpenes. Additionally, as herbivore communities associated with the leaves is different to the one associated with the bark, we also hypothesized that terpene blends should be distinct in the bark vs. the leaves of a given species. We found that the mixture of volatile terpenes released by bark is different and more diverse than that released by leaves, both in monoterpenes and sesquiterpenes. This supports our hypothesis and further suggests that the emission of terpenes by the bark should be more important for trunk defense than previously thought. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The α-Terpineol to 1,8-Cineole Cyclization Reaction of Tobacco Terpene Synthases.

    Science.gov (United States)

    Piechulla, Birgit; Bartelt, Richard; Brosemann, Anne; Effmert, Uta; Bouwmeester, Harro; Hippauf, Frank; Brandt, Wolfgang

    2016-12-01

    Flowers of Nicotiana species emit a characteristic blend including the cineole cassette monoterpenes. This set of terpenes is synthesized by multiproduct enzymes, with either 1,8-cineole or α-terpineol contributing most to the volatile spectrum, thus referring to cineole or terpineol synthase, respectively. To understand the molecular and structural requirements of the enzymes that favor the biochemical formation of α-terpineol and 1,8-cineole, site-directed mutagenesis, in silico modeling, and semiempiric calculations were performed. Our results indicate the formation of α-terpineol by a nucleophilic attack of water. During this attack, the α-terpinyl cation is stabilized by π-stacking with a tryptophan side chain (tryptophan-253). The hypothesized catalytic mechanism of α-terpineol-to-1,8-cineole conversion is initiated by a catalytic dyad (histidine-502 and glutamate-249), acting as a base, and a threonine (threonine-278) providing the subsequent rearrangement from terpineol to cineol by catalyzing the autoprotonation of (S)-(-)-α-terpineol, which is the favored enantiomer product of the recombinant enzymes. Furthermore, by site-directed mutagenesis, we were able to identify amino acids at positions 147, 148, and 266 that determine the different terpineol-cineole ratios in Nicotiana suaveolens cineole synthase and Nicotiana langsdorffii terpineol synthase. Since amino acid 266 is more than 10 Å away from the active site, an indirect effect of this amino acid exchange on the catalysis is discussed. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. The α-Terpineol to 1,8-Cineole Cyclization Reaction of Tobacco Terpene Synthases1

    Science.gov (United States)

    Piechulla, Birgit; Bartelt, Richard; Brosemann, Anne; Bouwmeester, Harro; Hippauf, Frank

    2016-01-01

    Flowers of Nicotiana species emit a characteristic blend including the cineole cassette monoterpenes. This set of terpenes is synthesized by multiproduct enzymes, with either 1,8-cineole or α-terpineol contributing most to the volatile spectrum, thus referring to cineole or terpineol synthase, respectively. To understand the molecular and structural requirements of the enzymes that favor the biochemical formation of α-terpineol and 1,8-cineole, site-directed mutagenesis, in silico modeling, and semiempiric calculations were performed. Our results indicate the formation of α-terpineol by a nucleophilic attack of water. During this attack, the α-terpinyl cation is stabilized by π-stacking with a tryptophan side chain (tryptophan-253). The hypothesized catalytic mechanism of α-terpineol-to-1,8-cineole conversion is initiated by a catalytic dyad (histidine-502 and glutamate-249), acting as a base, and a threonine (threonine-278) providing the subsequent rearrangement from terpineol to cineol by catalyzing the autoprotonation of (S)-(−)-α-terpineol, which is the favored enantiomer product of the recombinant enzymes. Furthermore, by site-directed mutagenesis, we were able to identify amino acids at positions 147, 148, and 266 that determine the different terpineol-cineole ratios in Nicotiana suaveolens cineole synthase and Nicotiana langsdorffii terpineol synthase. Since amino acid 266 is more than 10 Å away from the active site, an indirect effect of this amino acid exchange on the catalysis is discussed. PMID:27729471

  8. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

  9. Chemical Components and Pharmacological Activities of Terpene Natural Products from the Genus Paeonia.

    Science.gov (United States)

    Zhao, Dan-Dan; Jiang, Li-Li; Li, Hong-Yi; Yan, Peng-Fei; Zhang, Yan-Long

    2016-10-13

    Paeonia is the single genus of ca. 33 known species in the family Paeoniaceae, found in Asia, Europe and Western North America. Up to now, more than 180 compounds have been isolated from nine species of the genus Paeonia, including terpenes, phenols, flavonoids, essential oil and tannins. Terpenes, the most abundant naturally occurring compounds, which accounted for about 57% and occurred in almost every species, are responsible for the observed in vivo and in vitro biological activities. This paper aims to give a comprehensive overview of the recent phytochemical and pharmacological knowledge of the terpenes from Paeonia plants, and enlighten further drug discovery research.

  10. Chemical Components and Pharmacological Activities of Terpene Natural Products from the Genus Paeonia

    Directory of Open Access Journals (Sweden)

    Dan-Dan Zhao

    2016-10-01

    Full Text Available Paeonia is the single genus of ca. 33 known species in the family Paeoniaceae, found in Asia, Europe and Western North America. Up to now, more than 180 compounds have been isolated from nine species of the genus Paeonia, including terpenes, phenols, flavonoids, essential oil and tannins. Terpenes, the most abundant naturally occurring compounds, which accounted for about 57% and occurred in almost every species, are responsible for the observed in vivo and in vitro biological activities. This paper aims to give a comprehensive overview of the recent phytochemical and pharmacological knowledge of the terpenes from Paeonia plants, and enlighten further drug discovery research.

  11. Characterization of the first naturally thermostable terpene synthases and development of strategies to improve thermostability in this family of enzymes.

    Science.gov (United States)

    Styles, Matthew Q; Nesbitt, Edward A; Marr, Scott; Hutchby, Marc; Leak, David J

    2017-06-01

    The terpenoid family of natural products is being targeted for heterologous microbial production as a cheaper and more reliable alternative to extraction from plants. The key enzyme responsible for diversification of terpene structure is the class-I terpene synthase (TS), and these often require engineering to improve properties such as thermostability, robustness and catalytic activity before they are suitable for industrial use. Improving thermostability typically relies on screening a large number of mutants, as there are no naturally thermostable TSs described upon which to base rational design decisions. We have characterized the first examples of natural TSs exhibiting thermostability, which catalyse the formation of the sesquiterpene τ-muurolol at temperatures up to 78 °C. We also report an enzyme with a kcat value of 0.95 s-1 at 65 °C, the highest kcat recorded for a bacterial sesquiterpene synthase. In turn, these thermostable enzymes were used as a model to inform the rational engineering of another TS, with the same specificity but low sequence identity to the model. The newly engineered variant displayed increased thermostability and turnover. Given the high structural homology of the class-I TS domain, this approach could be generally applicable to improving the properties of other enzymes in this class. Model data are available in the PMDB database under the accession number PM0080780. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  12. Antimicrobial terpenoids from the oleoresin of the Peruvian medicinal plant Copaifera paupera.

    Science.gov (United States)

    Tincusi, Benigna M; Jiménez, Ignacio A; Bazzocchi, Isabel L; Moujir, Laila M; Mamani, Zulma A; Barroso, José P; Ravelo, Angel G; Hernández, Basilio V

    2002-09-01

    Twelve known diterpenes 1 - 11 and 13, and three known sesquiterpenes 14 - 16, along with a new C(20) - C(15) terpenoid 17, with a structure based on an unprecedented skeleton in which a labdane diterpene is linked to a monocyclic sesquiterpene by an ester bridge, were isolated from the oleoresin of the Peruvian medicinal plant Copaifera paupera (Herzog) Dwyer (Leguminosae). Their structures were elucidated on the basis of spectral analysis, including homo- and heteronuclear correlation NMR experiments (COSY, ROESY, HMQC and HMBC), and by comparison with data in the literature. The leishmanicidal, antimicrobial, cytotoxic, and aldose reductase inhibitory activities were studied. Compounds 1 and 11 showed significant antimicrobial activity (MIC < 10 microg/ml) against Gram-positive bacteria, comparable with cephotaxime used as control. Compound 2 exhibited moderate cytotoxic activity against four cancer cell lines.

  13. Preparation of enteric-coated microcapsules of astaxanthin oleoresin by complex coacervation.

    Science.gov (United States)

    Li, Rongli; Chen, Rencai; Liu, Weiwei; Qin, Cuiying; Han, Jing

    2016-10-25

    Astaxanthin oleoresin (AO) has a number of beneficial physiological functions. However, its sensitivity to light, heat, oxygen and gastric fluids has limited its application. In this paper, we describe the preparation of AO enteric microcapsules by coacervation to improve its stability and enteric solubility, and evaluate their efficacy by measuring the drug loading, encapsulation efficiency, optical microscopic appearance, stability, in vitro release and bioavailability. The results obtained showed that the AO enteric microcapsules possessed a high encapsulation efficiency (85.9%), a satisfactory in vitro release profile, and the ability of the microencapsulated AO to resist the effects of light, heat and oxygen was improved by 2.2-fold, 3.1-fold and 2.4-fold, respectively, during storage. In addition, the bioavailability of AO microcapsules was approximately 1.29-fold higher than AO, which is important for pharmaceutical applications and as a functional food.

  14. Copaiba oleoresin: evaluation of the presence of polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Wilson Gomes da Silva

    2010-09-01

    Full Text Available The copaiba oleoresin extracted by perforating the tree-trunk found in the Amazonian forest has been used by the native indigenous communities to treat several diseases and also as fuel for lighting and for the motorboats plying the region's rivers. Currently, the oleoresin is mostly employed as a traditional remedy, mainly for the treatment of tonsillitis and as an anti-inflammatory and healing agent in oil and capsule forms, and is also used in several industry sectors. Due to its use in oral form, especially as a traditional remedy, an analysis of the presence of polycyclic aromatic hydrocarbons (PAHs as contaminants in the oleoresin was performed. PAHs are substances formed by two or more benzoic rings and found in the atmosphere as a residue from incomplete combustion of petroleum derivatives and industrial activities. These substances are found everywhere on land and water, and as a consequence can also be found in vegetables and foodstuffs in general. The use of products contaminated with these substances can compromise human and animal life. This study was performed on oleoresin from different areas or regions in the Amazon, using the HPLC methodology with fluorescence detection. The samples analyzed revealed different concentrations of these compounds.O óleo-resina de copaíba que é extraído mediante a perfuração do tronco da árvore que se encontra em forma nativa na floresta amazônica já era empregado pelas comunidades indígenas para a cura de várias doenças e, também, como combustível em iluminação e para o funcionamento de motores de barcos que trafegavam pelos rios da região. Hoje, é largamente empregado na medicina popular, principalmente para o tratamento de amigdalite e como antiinflamatório e cicatrizante na forma de óleo e em cápsulas, sendo utilizado, também, em vários setores da indústria. Devido ao seu uso na forma oral, principalmente na medicina popular, realizou-se um trabalho para avaliar a presen

  15. Resin acids as the potential growth-affecting component of pine oleoresin

    Directory of Open Access Journals (Sweden)

    T. J. Wodzicki

    2015-01-01

    Full Text Available The nonvolatile fraction of the oleoresin of Pinus sihestris L. was found to contain substances which inhibit growth of wheat ceoleoptile and oat mesocotyl sections in standard bioassays. The inhibition is mainly confined to the fraction of resin acids. Among the seven authentic resin acids tested, the effects of dehydroabietic and abietic acids were most sifgnificant. Palustric, pimaric and isopimaric acids were not effective in the wheat coleoptile section straight growth test. None of the substances, in the amounts tested, except for extremely high concentration, exerted an inhibitory effect on natural or IAA-induced elongation of pine hypocotyl sections. Neither was an inhibitory effect discovered in the microbiological test with the Aspergillus niger van Tiegh. The results obtained with pine hypocotyl sections, allow the conclusion that resin acids interfering with the results of standard bioassays are probably not effective as inhibitory factors in the regulation of pine tissue growth.

  16. A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens.

    Science.gov (United States)

    Crutcher, Frankie K; Parich, Alexandra; Schuhmacher, Rainer; Mukherjee, Prasun K; Zeilinger, Susanne; Kenerley, Charles M

    2013-07-01

    A putative terpene cyclase vir4, which is a member of a secondary metabolite cluster, has been deleted in Trichoderma virens to determine its function. The deletion mutants were compared for volatile production with the wild-type as well as two other Trichoderma spp. This gene cluster was originally predicted to function in the synthesis of viridin and viridiol. However, the experimental evidence demonstrates that this gene cluster is involved in the synthesis of volatile terpene compounds. The entire vir4-containing gene cluster is absent in two other species of Trichoderma, T. atroviride and T. reesei. Neither of these two species synthesizes volatile terpenes associated with this cluster in T. virens. We have thus identified a novel class of volatile fungal sesquiterpenes as well as the gene cluster involved in their biosynthesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA

    OpenAIRE

    Mariia Nesterkina; Iryna Kravchenko

    2016-01-01

    Novel esters of ?-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate ac...

  18. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  19. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis.

    Science.gov (United States)

    Alessio, G A; Peñuelas, J; De Lillis, M; Llusià, J

    2008-01-01

    We investigated the implications of foliar hydration and terpene content on leaf flammability in two widely distributed forest species of the Mediterranean basin, Quercus ilex, which does not store terpenes, and Pinus halepensis, a terpene-storing species. The experiments were carried out in plants grown under different water regimes that generated a wide range of foliar hydration and terpene contents. We monitored the temperatures and time elapsed to reach the smoke, pyrolysis and flame phases. Smoke appeared much earlier (37 versus 101 s) and at lower temperatures (96 versus 139 degrees C) in Quercus ilex than in Pinus halepensis. Quercus ilex reached pyrolysis earlier than Pinus halepensis (278 versus 338 s) but at the same temperature (365-371 degrees C). There were no significant differences in time elapsed nor in temperature for flammability (386-422 s; 505-487 degrees C in both species). Quercus ilex had lower water hydration than Pinus halepensis (41 versus 100%) and the leaf content of terpenes in Quercus was three orders of magnitude lower. The results of this study show no differences in the flame phase between the two species and the absence of a significant relationship between temperature and elapsed time of the different flammability phases in relation to monoterpene content; thus indicating that the role of monoterpenes in flammability phases is smaller than that of the water content. This, however, does not exclude the effects of terpene content on plant combustibility and fire propagation once fires start.

  20. Selecting microbial strains from pine tree resin: biotechnological applications from a terpene world.

    Science.gov (United States)

    Vilanova, Cristina; Marín, Maria; Baixeras, Joaquín; Latorre, Amparo; Porcar, Manuel

    2014-01-01

    Resin is a chemical and physical defensive barrier secreted by many plants, especially coniferous trees, with insecticidal and antimicrobial properties. The degradation of terpenes, the main components accounting for the toxicity of resin, is highly relevant for a vast range of biotechnological processes, including bioremediation. In the present work, we used a resin-based selective medium in order to study the resin-tolerant microbial communities associated with the galls formed by the moth Retinia resinella; as well as resin from Pinus sylvestris forests, one of the largest ecosystems on Earth and a yet-unexplored source of terpene-degrading microorganisms. The taxonomic and functional diversity of the cultivated, resin-tolerant fraction of the whole microbiota were unveiled by high-throughput sequencing, which resulted in the detection of more than 40 bacterial genera among the terpene-degrading microorganisms, and a range of genes involved in the degradation of different terpene families. We further characterized through culture-based approaches and transcriptome sequencing selected microbial strains, including Pseudomonas sp., the most abundant species in both environmental resin and R. resinella resin-rich galls, and three fungal species, and experimentally confirmed their ability to degrade resin and also other terpene-based compounds and, thus, their potential use in biotechnological applications involving terpene catabolism.

  1. Selecting microbial strains from pine tree resin: biotechnological applications from a terpene world.

    Directory of Open Access Journals (Sweden)

    Cristina Vilanova

    Full Text Available Resin is a chemical and physical defensive barrier secreted by many plants, especially coniferous trees, with insecticidal and antimicrobial properties. The degradation of terpenes, the main components accounting for the toxicity of resin, is highly relevant for a vast range of biotechnological processes, including bioremediation. In the present work, we used a resin-based selective medium in order to study the resin-tolerant microbial communities associated with the galls formed by the moth Retinia resinella; as well as resin from Pinus sylvestris forests, one of the largest ecosystems on Earth and a yet-unexplored source of terpene-degrading microorganisms. The taxonomic and functional diversity of the cultivated, resin-tolerant fraction of the whole microbiota were unveiled by high-throughput sequencing, which resulted in the detection of more than 40 bacterial genera among the terpene-degrading microorganisms, and a range of genes involved in the degradation of different terpene families. We further characterized through culture-based approaches and transcriptome sequencing selected microbial strains, including Pseudomonas sp., the most abundant species in both environmental resin and R. resinella resin-rich galls, and three fungal species, and experimentally confirmed their ability to degrade resin and also other terpene-based compounds and, thus, their potential use in biotechnological applications involving terpene catabolism.

  2. Transcriptome analysis of terpene chemotypes of Melaleuca alternifolia across different tissues.

    Science.gov (United States)

    Bustos-Segura, Carlos; Padovan, Amanda; Kainer, David; Foley, William J; Külheim, Carsten

    2017-10-01

    Plant chemotypes or chemical polymorphisms are defined by discrete variation in secondary metabolites within a species. This variation can have consequences for ecological interactions or the human use of plants. Understanding the molecular basis of chemotypic variation can help to explain how variation of plant secondary metabolites is controlled. We explored the transcriptomes of the 3 cardinal terpene chemotypes of Melaleuca alternifolia in young leaves, mature leaves, and stem and compared transcript abundance to variation in the constitutive profile of terpenes. Leaves from chemotype 1 plants (dominated by terpinen-4-ol) show a similar pattern of gene expression when compared to chemotype 5 plants (dominated by 1,8-cineole). Only terpene synthases in young leaves were differentially expressed between these chemotypes, supporting the idea that terpenes are mainly synthetized in young tissue. Chemotype 2 plants (dominated by terpinolene) show a greater degree of differential gene expression compared to the other chemotypes, which might be related to the isolation of plant populations that exhibit this chemotype and the possibility that the terpinolene synthase gene in M. alternifolia was derived by introgression from a closely related species, Melaleuca trichostachya. By using multivariate analyses, we were able to associate terpenes with candidate terpene synthases. © 2017 John Wiley & Sons Ltd.

  3. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    Science.gov (United States)

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  4. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters.

    Science.gov (United States)

    Spyropoulou, Eleni A; Haring, Michel A; Schuurink, Robert C

    2014-05-27

    Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant's defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of transcription factors (TFs) that control the expression of terpene synthases. A trichome transcriptome database was created with a total of 27,195 contigs that contained 743 annotated TFs. Furthermore a quantitative expression database was obtained of jasmonic acid-treated trichomes. Sixteen candidate TFs were selected for further analysis. One TF of the MYC bHLH class and one of the WRKY class were able to transiently transactivate S. lycopersicum terpene synthase promoters in Nicotiana benthamiana leaves. Strikingly, SlMYC1 was shown to act synergistically with a previously identified zinc finger-like TF, Expression of Terpenoids 1 (SlEOT1) in transactivating the SlTPS5 promoter. High-throughput sequencing of tomato stem trichomes led to the discovery of two transcription factors that activated several terpene synthase promoters. Our results identified new elements of the transcriptional regulation of tomato terpene biosynthesis in trichomes, a largely unexplored field.

  5. Volatile terpenes from actinomycetes: a biosynthetic study correlating chemical analyses to genome data.

    Science.gov (United States)

    Rabe, Patrick; Citron, Christian A; Dickschat, Jeroen S

    2013-11-25

    The volatile terpenes of 24 actinomycetes whose genomes have been sequenced (or are currently being sequenced) were collected by use of a closed-loop stripping apparatus and identified by GC/MS. The analytical data were compared against a phylogenetic analysis of all 192 currently available sequences of bacterial terpene cyclases (excluding geosmin and 2-methylisoborneol synthases). In addition to the several groups of terpenes with known biosynthetic origin, selinadienes were identified as a large group of biosynthetically related sesquiterpenes that are produced by several streptomycetes. The detection of a large number of previously unrecognised side products of known terpene cyclases proved to be particularly important for an in depth understanding of biosynthetic pathways to known terpenes in actinomycetes. Interpretation of the chemical analytical data in the context of the phylogenetic tree of bacterial terpene cyclases pointed to the function of three new enzymes: (E)-β-caryophyllene synthase, selina-3,7(11)-diene synthase and aristolochene synthase. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chemodiversity of a Scots pine stand and implications for terpene air concentrations

    Directory of Open Access Journals (Sweden)

    J. Bäck

    2012-02-01

    Full Text Available Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 48 yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40–97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum. An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene

  7. [Analysis of volatile and non-volatile compositions in ginger oleoresin by gas chromatography-mass spectrometry].

    Science.gov (United States)

    Zhan, Kunyou; Wang, Chao; Xu, Kun; Yin, Hongzong

    2008-11-01

    Ginger oleoresin was extracted from Zingiber officinale Rose. var. Laiwudajiang by the technique of supercritical fluid extraction. Gas chromatography and mass spectrometry technique were employed to analyze the ginger oleoresin. This analysis resulted in the detection of 3 hitherto unknown natural compounds, 24 compounds previously reported as pungent compounds and 50 volatile compounds from ginger. The volatile compounds were mainly alpha-zingiberene (22.29%), beta-sesquiphellandrene (8.58%), alpha-farnesene (3.93%), beta-bisabolene (3.87%), alpha-curcumene (2.63%), which were mostly consisted of sesquiterpene hydrocarbons. The pungent compounds of ginger were mainly 6-gingerol (9.38%), 6-shogaol (7.59%), zingerone (9.24%) produced by the thermal degradation of gingerols or shogaols. The mass spectral fragmentation patterns for the three new compounds (6-isogingerol, (Z)-10-isoshogaol, (E)-10-isoshogaol) are discussed and interpreted.

  8. Biological activity of terpene compounds produced by biotechnological methods.

    Science.gov (United States)

    Paduch, Roman; Trytek, Mariusz; Król, Sylwia K; Kud, Joanna; Frant, Maciej; Kandefer-Szerszeń, Martyna; Fiedurek, Jan

    2016-01-01

    Biotransformation systems are profitable tools for structural modification of bioactive natural compounds into valuable biologically active terpenoids. This study determines the biological effect of (R)-(+)-limonene and (-)-α-pinene, and their oxygenated derivatives, (a) perillyl alcohol and (S)-(+)- and (R)-(-)-carvone enantiomers and (b) linalool, trans-verbenol and verbenone, respectively, on human colon tumour cells and normal colonic epithelium. Biotransformation procedures and in vitro cell culture tests were used in this work. Cells were incubated for 24 h with terpenes at concentrations of 5-500 μg/mL for NR, MTT, DPPH, and NO assays. IL-6 was determined by ELISA with/without 2 h pre-activation with 10 μg/mL LPS. trans-Verbenol and perillyl alcohol, obtained via biotransformation, produced in vitro effect against tumour cells at lower concentrations (IC50 value = 77.8 and 98.8 μg/mL, respectively) than their monoterpene precursors, (R)-(+)-limonene (IC50 value = 171.4 μg/mL) and (-)-α-pinene (IC50 value = 206.3 μg/mL). They also showed lower cytotoxicity against normal cells (IC50 > 500 and > 200 μg/mL, respectively). (S)-(+)-Carvone was 59.4% and 27.1% more toxic to tumour and normal cells, respectively, than the (R)-(-)-enantiomer. (R)-(+)-limonene derivatives decreased IL-6 production from normal cells in media with or without LPS (30.2% and 13.9%, respectively), while (-)-α-pinene derivatives induced IL-6 (verbenone had the strongest effect, 60.2% and 29.1% above control, respectively). None of the terpenes had antioxidative activity below 500 μg/mL. Bioactivity against tumour cells decreased in the following order: alcohols > ketones > hydrocarbons. (R)-(+)-limonene, (-)-α-pinene, and their derivatives expressed diverse activity towards normal and tumour cells with noticeable enantiomeric differences.

  9. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning.

    Science.gov (United States)

    Varakumar, Sadineni; Umesh, Kannamangalam Vijayan; Singhal, Rekha S

    2017-02-01

    Ginger (Zingiber officinale R.) is a popular spice used worldwide. The oleoresin consists of gingerols, shogaols and other non-volatiles as chief bioactive constituents. Three phase partitioning (TPP), a bioseparation technique, based on partitioning of polar constituents, proteins, and hydrophobic constituents in three phases comprising of water, ammonium sulphate and t-butanol, was explored for extraction of oleoresin and gingerols from dry powder. Parameters optimized for maximum recovery of gingerols and [6]-shogaol were ammonium sulphate concentration, ratio of t-butanol to slurry, solid loading and pH. Ultrasound and enzymatic pretreatments increased the yield of oleoresin and its phytoconstituents. Ultrasound pretreatment showed separation of starch in the bottom aqueous phase but is an additional step in extraction. Enzymatic pretreatment using accellerase increased the yield of [6]-, [8]-, [10]-gingerols and [6]-shogaol by 64.10, 87.8, 62.78 and 32.0% within 4h and is recommended. The efficacy of the enzymatic pretreatment was confirmed by SEM and FTIR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. High-throughput gene expression analysis of intestinal intraepithelial lymphocytes after oral feeding of carvacrol, cinnamaldehyde, or Capsicum oleoresin.

    Science.gov (United States)

    Kim, D K; Lillehoj, H S; Lee, S H; Jang, S I; Bravo, D

    2010-01-01

    Among dietary phytonutrients, carvacrol, cinnamaldehyde, and Capsicum oleoresin are well known for their antiinflammatory and antibiotic effects in human and veterinary medicine. To further define the molecular and genetic mechanisms responsible for these properties, broiler chickens were fed a standard diet supplemented with either of the 3 phytochemicals and intestinal intraepithelial lymphocytes were examined for changes in gene expression by microarray analysis. When compared with chickens fed a nonsupplemented standard diet, carvacrol-fed chickens showed altered expression of 74 genes (26 upregulated, 48 downregulated) and cinnamaldehyde led to changes in the levels of mRNAs corresponding to 62 genes (31 upregulated, 31 downregulated). Most changes in gene expression were seen in the Capsicum-fed broilers with 98 upregulated and 156 downregulated genes compared with untreated controls. Results from the microarray analysis were confirmed by quantitative real-time PCR with a subset of selected genes. Among the genes that showed >2.0-fold altered mRNA levels, most were associated with metabolic pathways. In particular, with the genes altered by Capsicum oleoresin, the highest scored molecular network included genes associated with lipid metabolism, small molecule biochemistry, and cancer. In conclusion, this study provides a foundation to further investigate specific chicken genes that are expressed in response to a diet containing carvacrol, cinnamaldehyde, or Capsicum oleoresin.

  11. Extraction, processing, and storage effects on curcuminoids and oleoresin yields from Curcuma longa L. grown in Jamaica.

    Science.gov (United States)

    Green, Cheryl E; Hibbert, Sheridan L; Bailey-Shaw, Yvonne A; Williams, Lawrence A D; Mitchell, Sylvia; Garraway, Eric

    2008-05-28

    Aromatic diarylheptanoid compounds from Curcuma longa Linn grown in Jamaica were quantified by UV-vis spectrophotometry and high-performance liquid chromatographic (HPLC) analyses. The oleoresin yields from ethanolic extracts were quantified and evaluated with regard to the effects of the type of postharvesting process and the type of extraction method conducted on the plant material. Fresh samples that were hot solvent extracted provided the highest oleoresin yields of 15.7% +/- 0.4 ( n = 3), and the lowest oleoresin yields of 7.8% +/- 0.2 ( n = 3) were from the dried milled samples that were cold solvent extracted. Data from the ASTA spectrophotometer assay confirmed that dried samples contained the highest curcuminoid content of 55.5% +/- 2.2 ( n = 6) at the fifth month of storage, and the fresh samples showed a curcuminoid content of 47.1% +/- 6.4 ( n = 6) at the third month of storage. A modified HPLC analysis was used to quantify curcumin content. Data from the HPLC analysis confirmed that the dried treated, hot extracted, room temperature stored samples had the highest curcumin content of 24.3%. A novel high-performance thin layer chromatography (HPTLC) method provided a chemical fingerprint of the C. longa with the use of a commercial curcumin standard.

  12. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry.

    Science.gov (United States)

    Rodríguez-Maecker, Roman; Vyhmeister, Eduardo; Meisen, Stefan; Rosales Martinez, Antonio; Kuklya, Andriy; Telgheder, Ursula

    2017-11-01

    Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.

  13. [Effect of terpene penetration enhancer and its mechanisms on membrane fluidity and potential of HaCaT keratinocytes].

    Science.gov (United States)

    Lan, Yi; Wang, Jing-yan; Liu, Yan; Ru, Qing-guo; Wang, Yi-fei; Yu, Jing-xin; Wu, Qing

    2015-02-01

    The aim of this paper was to investigate the effect of terpene penetration enhancers on membrane fluidity and membrane potential using HaCaT keratinocytes, and study the potential mechanisms of these terpene compounds using as natural transdermal penetration enhancer. Six terpene compounds, namely menthol, limonene, 1,8-cineole, menthone, terpinen-4-ol and pulegone, were chosen in this study on account of their good penetration-enhancement activities. The cytotoxicity of these terpene compounds was measured using an MTT assay. The fluorescence recovery after photobleaching (FRAP) technique was employed to measure the change of membrane fluidity of HaCaT cells. The flow cytometer was used to study the alteration of membrane fluidity of HaCaT cells, and investigate the effect of terpene compounds on intracellular Ca2+. It was found that 6 terpene compounds possessed low cytotoxicity in comparison to the well-established and standard penetration enhancer azone. Those terpene compounds could significantly enhance HaCaT cells membrane fluidity and decrease HaCaT cells membrane potentials. Meanwhile, after treated with various terpene compounds, the Ca2(+)-ATPase activity and intracellular Ca2+ of HaCaT cells was decreased significantly. Terpene penetration enhancers perhaps changed the membrane fluidity and potentials of HaCaT cells by altering the Ca2+ balance of the cell inside and outside, resulting in the low skin permeability to increase the drug transdermal absorption.

  14. Terpene compound drug as medical expulsive therapy for ureterolithiasis: a meta-analysis.

    Science.gov (United States)

    Chua, Michael Erlano; Park, Jane Hyeon; Castillo, Josefino Cortez; Morales, Marcelino Lopeztan

    2013-04-01

    The aim of this study is to investigate the efficacy of terpene compound drug (pinene, camphene, borneol, anethole, fenchone and cineol in olive oil) in facilitating spontaneous passage of ureteral calculi through meta-analysis of randomized controlled trials (RCT). Systematic literature search on MEDLINE, EMBASE, OVID, Science Direct, Proquest, Google scholar, Cochrane Library databases and reference list of related literatures were done without language restriction. RCTs on ureterolithiasis medical expulsive therapy (MET) that compare terpene compound drug versus placebo/control group or alpha-blockers were identified. Articles retrieved were critically appraised by two independent reviewers according to Cochrane Collaboration recommendations. Data from included studies were extracted for calculation of risk ratio (RR) and 95 % confidence interval (CI). Effect estimates were pooled using Mantel-Haenszel method with random effect model. Inter-study heterogeneity and publication bias were assessed. The PRISMA guidelines for meta-analysis reporting were followed. Five RCTs (total of 344 subjects) of adequate methodological quality were included. Pooled effect estimates from homogenous studies showed that compared to placebo/control group, patients treated with terpene compound drug had significantly better ureteral calculi spontaneous expulsion rate (pooled RR: 1.34; 95 % CI 1.12, 1.61). Subgroup analysis of studies that compare terpene compound drug with alpha-blockers showed no significant difference (pooled RR: 0.79; 95 % CI 0.59, 1.06), while significant inter-study heterogeneity was noted. Only minor gastrointestinal adverse effect was reported on terpene compound drug use. The results suggest that terpene compound drug as MET is effective in augmenting spontaneous passage of ureterolithiasis. High quality large-scale RCTs comparing alpha-blockers and terpene compound drug are warranted to make a more definitive conclusion.

  15. Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis

    Energy Technology Data Exchange (ETDEWEB)

    Penuelas, J.; Llusia, J. [Universitat Autonoma, Barcelona (Spain)

    1997-04-01

    Rosmarinus officinalis L. plants were grown under carbon dioxide concentrations of 350 and 700 {mu}mol (atmospheric CO{sub 2} and elevated CO{sub 2}) and under two levels of irrigation (high water and low water) from October 1, 1994 to May 31, 1996. Elevated CO{sub 2} led on increasingly larger monthly growth rates than the atmospheric CO{sub 2} treatments. The increase was 9.5% in spring 1995, 23% in summer 1995, and 53% in spring 1996 in the high-water treatments, whereas in low-water treatments the growth response to elevated CO{sub 2} was constrained until the second year spring, when there was a 47% increase. The terpene concentrations was slightly larger in the elevated CO{sub 2} treatments than in atmospheric CO{sub 2} treatments and reached a maximum 37% difference in spring 1996. There was no significant effect of water treatment, likely as a result of a mild low water treatment for a Mediterranean plant. Terpene concentrations increased throughout the period of study, indicating possible age effects. The most abundant terpenes were {alpha}-pinene, cineole, camphor, borneol, and verbenone, which represented about 75% of the total. No significant differences were found in the terpene composition of the plants in the different treatments or seasons. The emission of volatile terpenes was much larger in spring (about 75 {mu}g/dry wt/hr) than in autumn (about 10 {mu}g/dry wt/hr), partly because of higher temperature and partly because of seasonal effect, but no significant differences was found because of CO{sub 2} or water treatment. The main terpene emitted was {alpha}-pinene, which represented about 50% of the total. There was no clear correlation between content and emission, either quantitatively or qualitatively. More volatile terpenes were proportionally more important in the total emission than in total content and in autumn than in spring.

  16. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species.

    Science.gov (United States)

    Borzak, Christina L; Potts, Brad M; Davies, Noel W; O'Reilly-Wapstra, Julianne M

    2015-01-01

    The development of plant secondary metabolites during early life stages can have significant ecological and evolutionary implications for plant-herbivore interactions. Foliar terpenes influence a broad range of ecological interactions, including plant defence, and their expression may be influenced by ontogenetic and genetic factors. This study investigates the role of these factors in the expression of foliar terpene compounds in Eucalyptus globulus seedlings. Seedlings were sourced from ten families each from three genetically distinct populations, representing relatively high and low chemical resistance to mammalian herbivory. Cotyledon-stage seedlings and consecutive leaf pairs of true leaves were harvested separately across an 8-month period, and analysed for eight monoterpene compounds and six sesquiterpene compounds. Foliar terpenes showed a series of dynamic changes with ontogenetic trajectories differing between populations and families, as well as between and within the two major terpene classes. Sesquiterpenes changed rapidly through ontogeny and expressed opposing trajectories between compounds, but showed consistency in pattern between populations. Conversely, changed expression in monoterpene trajectories was population- and compound-specific. The results suggest that adaptive opportunities exist for changing levels of terpene content through ontogeny, and evolution may exploit the ontogenetic patterns of change in these compounds to create a diverse ontogenetic chemical mosaic with which to defend the plant. It is hypothesized that the observed genetically based patterns in terpene ontogenetic trajectories reflect multiple changes in the regulation of genes throughout different terpene biosynthetic pathways. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Investigation of effects of terpene skin penetration enhancers on stability and biological activity of lysozyme.

    Science.gov (United States)

    Varman, Rahul M; Singh, Somnath

    2012-12-01

    The transport of proteins through skin can be facilitated potentially by using terpenes as chemical enhancers. However, we do not know about the effects of these enhancers on the stability and biological activity of proteins which is crucial for the development of safe and efficient formulations. Therefore, this project investigated the effects of terpene-based skin penetration enhancers which are reported as nontoxic to the skin (e.g., limonene, p-cymene, geraniol, farnesol, eugenol, menthol, terpineol, carveol, carvone, fenchone, and verbenone), on the conformational stability and biological activity of a model protein lysozyme. Terpene (5% v/v) was added to lysozyme solution and kept for 24 h (the time normally a transdermal patch remains) for investigating conformational stability profiles and biological activity. Fourier transform infrared spectrophotometer was used to analyze different secondary structures, e.g., α-helix, β-sheet, β-turn, and random coil. Conformational changes were also monitored by differential scanning calorimeter by determining midpoint transition temperature (Tm) and calorimetric enthalpy (ΔH). Biological activity of lysozyme was determined by measuring decrease in A (450) when it was added to a suspension of Micrococcus lysodeikticus. The results of this study indicate that terpenes 9, 10, and 11 (carvone, L-fenchone, and L-verbenone) decreased conformational stability and biological activity of lysozyme significantly (p terpenes used in this study. It is concluded that smaller terpenes containing ketones with low lipophilicity (log K (ow) ∼2.00) would be optimal for preserving conformational stability and biological activity of lysozyme in a transdermal formulation containing terpene as permeation enhancer.

  18. Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells

    Science.gov (United States)

    Ji, Kaihua; Li, Qing; Shi, Yang; Xu, Chang; Wang, Yan; Du, Liqing

    2017-01-01

    Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent. PMID:29181121

  19. ANTIOXIDANT ACTIVITY OF GINGER (Zingiber officinale OLEORESIN ON THE PROFILE OF SUPEROXIDE DISMUTASE (SOD IN THE KIDNEY OF RATS UNDER STRESS CONDITION

    Directory of Open Access Journals (Sweden)

    Tutik Wresdiyati1

    2007-12-01

    Full Text Available Stress condition has beeb reported to decrease intracellular antioxidant-superoxide dismutase(SOD in the liver and kidney of rats. This study was conducted to evaluate the antioxidant activies of ginger oleoresin on the profile of superoxide dismutase(SOD in the kidney of rats under stress condition. The stress condition was achieved by five days of fasting together with swimming for 5 min/day. Ginger oleoresin was orally administrated in a dose of 60 mg/KgBW/day for seven days. Drinking water was provided ad libitum to all groups. The treatment of ginger oleoresin significantly decreased malondialdehyde (MDA levels and increased SOD activity, as well as immunohistochemicall, increased the content of copper, zinc-SOD (Cu, Zn-SOD in the kidney tissues compared to that of untreated group. The antioxidant content in ginger oleoresin such as shogaol, zingeron, and gingerol, etc. were shownto have activities in the kidney tissues of rats under stress condition that is increasunf the profile of SOD. Ginger oleoresin treatment in combination both before and after stress gave the best result.

  20. Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Ji, Kaihua; Fang, Lianying; Zhao, Hui; Li, Qing; Shi, Yang; Xu, Chang; Wang, Yan; Du, Liqing; Wang, Jinhan; Liu, Qiang

    2017-01-01

    Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.

  1. Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Kaihua Ji

    2017-01-01

    Full Text Available Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR- induced injuries were caused by generation of reactive oxygen species (ROS. Human mesenchymal stem cells (hMSCs, which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs. We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.

  2. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows.

    Science.gov (United States)

    Oh, J; Giallongo, F; Frederick, T; Pate, J; Walusimbi, S; Elias, R J; Wall, E H; Bravo, D; Hristov, A N

    2015-09-01

    This study investigated the effect of Capsicum oleoresin in granular form (CAP) on nutrient digestibility, immune responses, oxidative stress markers, blood chemistry, rumen fermentation, rumen bacterial populations, and productivity of lactating dairy cows. Eight multiparous Holstein cows, including 3 ruminally cannulated, were used in a replicated 4×4 Latin square design experiment. Experimental periods were 25 d in duration, including a 14-d adaptation and an 11-d data collection and sampling period. Treatments included control (no CAP) and daily supplementation of 250, 500, or 1,000 mg of CAP/cow. Dry matter intake was not affected by CAP (average 27.0±0.64 kg/d), but milk yield tended to quadratically increase with CAP supplementation (50.3 to 51.9±0.86 kg/d). Capsicum oleoresin quadratically increased energy-corrected milk yield, but had no effect on milk fat concentration. Rumen fermentation variables, apparent total-tract digestibility of nutrients, and N excretion in feces and urine were not affected by CAP. Blood serum β-hydroxybutyrate was quadratically increased by CAP, whereas the concentration of nonesterified fatty acids was similar among treatments. Rumen populations of Bacteroidales, Prevotella, and Roseburia decreased and Butyrivibrio increased quadratically with CAP supplementation. T cell phenotypes were not affected by treatment. Mean fluorescence intensity for phagocytic activity of neutrophils tended to be quadratically increased by CAP. Numbers of neutrophils and eosinophils and the ratio of neutrophils to lymphocytes in peripheral blood linearly increased with increasing CAP. Oxidative stress markers were not affected by CAP. Overall, in the conditions of this experiment, CAP did not affect feed intake, rumen fermentation, nutrient digestibility, T cell phenotypes, and oxidative stress markers. However, energy-corrected milk yield was quadratically increased by CAP, possibly as a result of enhanced mobilization of body fat reserves. In

  3. Feeding and oviposition deterrent activities of microencapsulated cardamom oleoresin and eucalyptol against Cydia pomonella

    Directory of Open Access Journals (Sweden)

    Orkun Baris Kovanci

    2016-03-01

    Full Text Available Behavioral manipulation of codling moth with spice-based deterrents may provide an alternative control strategy. Microencapsulation technology could lead to more effective use of spice essential oils and oleoresins in the field by extending their residual activity. The feeding and oviposition deterrent potential of the microencapsulated cardamom (Elettaria cardamomum [L.] Maton oleoresin (MEC-C and eucalyptol (MEC-E were evaluated against codling moth, Cydia pomonella Linnaeus, 1758. MEC-C capsules contained both 1,8-cineole and a-terpinyl acetate, whereas MEC-E capsules contained only 1,8-cineole. In larval feeding bioassays, MEC-E exhibited the lowest feeding deterrent activity (33% while MEC-C at 100 mg mL-1 had the highest (91%. The highest oviposition deterrence activity against gravid females was also shown by MEC-C at 100 mg mL-1 with 84% effective repellency. In 2010 and 2011, two apple orchards were divided into four 1 ha blocks and sprayed with the following treatments in ultra-low volume sprays: (a MEC-E at 100 g L-1, (b MEC-C at 50 g L-1, (c MEC-C at 100 g L-1, and (d MEC-pyrethrin at 15 mL L-1. Water-treated abandoned orchards were used as negative controls. Moth catches were monitored weekly using Ajar traps baited with the combination of codlemone, pear ester, and terpinyl acetate. Based on pooled data, mean cumulative moth catch per trap per week was significantly higher in the MEC-E blocks (26.3 male and 13.5 female moths than those in other treatments except the abandoned blocks. At mid-season and pre-harvest damage assessment, the percentage of infested fruits with live larvae in the high dose MEC-C-treated blocks was reduced to 1.9% and 2.3% in 2010 and to 1.1% and 1.8% in 2011, respectively. Since fruit damage exceeded the economic damage threshold of 1%, high-dose MEC-C treatment may only offer supplementary protection against codling moth in integrated pest management programs.

  4. Terpene composited lipid nanoparticles for enhanced dermal delivery of all-trans-retinoic acids.

    Science.gov (United States)

    Charoenputtakun, Ponwanit; Pamornpathomkul, Boonnada; Opanasopit, Praneet; Rojanarata, Theerasak; Ngawhirunpat, Tanasait

    2014-01-01

    In the present study, terpene composited lipid nanoparticles and lipid nanoparticles were developed and evaluated for dermal delivery of all-trans-retinoic acids (ATRA). Terpene composited lipid nanoparticles and lipid nanoparticles were investigated for size, size distribution, zeta potential, entrapment efficiency, photostability, and cytotoxicity. In vitro skin permeation of ATRA lipid formulations were also evaluated. To explore the ability of lipid nanocarriers to target the skin, the distribution of rhodamine B base in the skin was investigated using confocal laser scanning microscopy (CLSM). The results indicated that the physicochemical characteristics of terpene composited lipid nanoparticles influenced skin permeability. All lipid nanocarriers significantly protected ATRA from photodegradation and were non-toxic to normal human foreskin fibroblast cells in vitro. Solid lipid nanoparticles containing 10% limonene (10% L-SLN) had the highest ATRA skin permeability. Terpene composited SLN and nanostructured lipid carriers (NLC) showed higher epidermal permeation of rhodamine B across the skin based on CLSM image analysis. Our study suggests that terpene composited SLN and NLC can be potentially used as dermal drug delivery carriers for ATRA.

  5. Seasonal variations in terpene emission factors of dominant species in four ecosystems in NE Spain

    Science.gov (United States)

    Llusia, Joan; Peñuelas, Josep; Guenther, Alex; Rapparini, Francesca

    2013-05-01

    We studied the daily patterns in the rates of foliar terpene emissions by four typical species from the Mediterranean region in two days of early spring and two days of summer in 4 localities of increasing biomass cover in Northern Spain. The species studied were Thymelaea tinctoria (in Monegros), Quercus coccifera (in Garraf), Quercus ilex (in Prades) and Fagus sylvatica (in Montseny). Of the total 43 VOCs detected, 23 were monoterpenes, 5 sesquiterpenes and 15 were not terpenes. Sesquiterpenes were the main terpenes emitted from T. tinctoria. Total VOC emission rates were on average about 15 times higher in summer than in early spring. The maximum rates of emission were recorded around midday. Emissions nearly stopped in the dark. No significant differences were found for nocturnal total terpene emission rates between places and seasons. The seasonal variations in the rate of terpene emissions and in their chemical composition can be explained mainly by dramatic changes in emission factors (emission capacity) associated in some cases, such as for beech trees, with very different foliar ontogenical characteristics between spring and summer. The results show that temperature and light-standardised emission rates were on average about 15 times higher in summer than in early spring, which, corroborating other works, calls to attention when applying the same emission factor in modelling throughout the different seasons of the year.

  6. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients.

    Science.gov (United States)

    Ormeño, Elena; Baldy, Virginie; Ballini, Christine; Fernandez, Catherine

    2008-09-01

    Fertilizer effects on terpene production have been noted in numerous reports. In contrast, only a few studies have studied the response of leaf terpene content to naturally different soil fertility levels. Terpene content, as determined by gas chromatography/mass spectrometry/flame ionization detector, and growth of Pinus halepensis, Rosmarinus officinalis, and Cistus albidus were studied on calcareous and siliceous soils under field conditions. The effect of nitrogen (N) and extractable phosphorus (P(E)) from these soils on terpenes was also investigated since calcareous soils mainly differ from siliceous soils in their higher nutrient loadings. Rich terpene mixtures were detected. Twenty-one terpenes appeared in leaf extracts of R. officinalis and C. albidus and 20 in P. halepensis. Growth of all species was enhanced on calcareous soils, while terpene content showed a species-specific response to soil type. The total monoterpene content of P. halepensis and that of some major compounds (e.g., delta-terpinene) were higher on calcareous than on siliceous soils. A significant and positive relationship was found between concentration of N and P(E) and leaf terpene content of this species. These findings suggest that P. halepensis may respond to an environment characterized by increasing soil deposition, by allocating carbon resources to the synthesis of terpene defense metabolites without growth reduction. Results obtained for R. officinalis showed high concentrations of numerous major monoterpenes (e.g., myrcene, camphor) in plants growing on calcareous soils, while alpha-pinene, beta-caryophyllene, and the total sesquiterpene content were higher on siliceous soils. Finally, only alloaromadendrene and delta-cadinene of C. albidus showed higher concentrations on siliceous soils. Unlike P. halepensis, soil nutrients were not involved in terpene variation in calcareous and siliceous soils of these two shrub species. Possible ecological explanations on the effect of

  7. Antioxidant potential of oregano (Oreganum vulgare L., basil (Ocimum basilicum L. and thyme (Thymus vulgaris L.: application of oleoresins in vegetable oil

    Directory of Open Access Journals (Sweden)

    Patrícia Vieira Del Ré

    2011-12-01

    Full Text Available Studies have been carried out in order to increase the stability of vegetable oils due to economic and health protection reasons. There is a growing interest in the addition of natural antioxidants; especially herbs and spices. For this reason, this study aimed at evaluating the antioxidant potential of the oleoresins of oregano, basil, and thyme, as well as their behavior when applied to soybean oil under various concentrations. Firstly, the antioxidant activity was determined by the β-carotene/linoleic acid system and by the quantification of total phenolic compounds. Next, different concentrations of oleoresins (500 to 3000 mg.kg-1 were added to the soybean oil, and its antioxidant potential was analyzed using the oxidative stability through a Rancimat equipment. The value of 3000 mg.kg-1 of thyme and oregano oleoresins was the concentration that presented the greatest oxidative stability to soybean oil making them a natural alternative to vegetable oil conservation.

  8. Effects of oleoresin-tocopherol combinations on lipid oxidation, off-odor, and color of irradiated raw and cooked pork patties.

    Science.gov (United States)

    Nam, K C; Ko, K Y; Min, B R; Ismail, H; Lee, E J; Cordray, J; Ahn, D U

    2007-01-01

    Lipid oxidation, color, and volatiles of double-packaged pork loins with various oleoresin or oleoresin-tocopherol combinations were determined to establish the best oleoresin-tocopherol conditions that can improve the quality of irradiated raw and cooked pork loins. Rosemary and α-tocopherol combination at 0.05% and 0.02% of meat weight, respectively, showed the most potent antioxidant effects in reducing both TBARS values and the amounts of volatile aldehydes in irradiated raw and cooked pork loins. The antioxidant combination, however, did not affect the production of sulfur volatiles responsible for irradiation off-odor and showed little effects on color changes in irradiated raw and cooked pork loins. Exposing double-packaged irradiated pork to aerobic conditions for 3days during the 10-day storage was effective in controlling both lipid oxidation and irradiation off-odor, regardless of packaging sequences.

  9. Effect of varieties composition of wall material on physical and chemistry characteristics of microcapsulated kaffir lime leave oleoresin (Citrus hystrix DC)

    Science.gov (United States)

    Latifatunissa, Zhulfani Nur; Kawiji, Khasanah, Lia Umi; Utami, Rohula

    2016-02-01

    This study aimed to determine the effect of variety composition of wall material on characteristic of micro capsulated kaffir lime leave oleoresin which includes yield, water content, and solubility in water, microstructure, residual solvent content and active compound content. This study used variety composition of maltodextrin and carrageenan (100%: 0%; 97%: 3%; 95%: 5%; 90%: 10%) as wall material, and kaffir lime leave oleoresin as core material which was extracted by maceration using ethanol as solvent. Analysis's result showed that the varieties composition of wall material influenced on yield and water content significantly. However, there was no significant influence discovered in solubility in water and residual solvent content. Active compounds contained in the product of oleoresin microcapsules kaffir lime leaves are citronella, citronellol, citronellyl acetate, nerolidol, phytol, farnesol while the levels of residual solvents in this study ranged from 0.01-0.015%. Based on experiment result showed that use carrageenan can produce preferable microstructure.

  10. The family of terpene synthases in plants: a mid‐size family of genes for specialized metabolism that is highly diversified throughout the kingdom

    National Research Council Canada - National Science Library

    Chen, Feng; Tholl, Dorothea; Bohlmann, Jörg; Pichersky, Eran

    2011-01-01

    .... In plants, a family of terpene synthases (TPSs) is responsible for the synthesis of the various terpene molecules from two isomeric 5‐carbon precursor ‘building blocks’, leading to 5‐carbon...

  11. Development and characterization of poly(lactic-co-glycolic) acid nanoparticles loaded with copaiba oleoresin.

    Science.gov (United States)

    de Almeida Borges, Vinícius Raphael; Tavares, Marina R; da Silva, Julianna Henriques; Tajber, Lidia; Boylan, Fabio; Ribeiro, Ana Ferreira; Nasciutti, Luiz Eurico; Cabral, Lucio Mendes; de Sousa, Valeria Pereira

    2017-02-20

    Copaiba oleoresin (CPO), obtained from Copaifera landgroffii, is described as active to a large number of diseases and more recently in the endometriosis treatment. In this work, poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing CPO were obtained using the design of experiments (DOE) as a tool to optimize the production process. The nanoparticles optimized by means of DOE presented an activity in relation to the cellular viability of endometrial cells. The DOE showed that higher amounts of CPO combined with higher surfactant concentrations resulted in better encapsulation efficiency and size distribution along with good stability after freeze drying. The encapsulation efficiency was over 80% for all produced nanoparticles, which also presented sizes below 300 nm and spherical shape. A decrease in viability of endometrial stromal cells from ectopic endometrium of patients with endometriosis and from eutopic endometriotic lesions was demonstrated after 48 h of incubation with the CPO nanoparticles. The nanoparticles without CPO were not able to alter the cell viability of the same cells, indicating that this material was not cytotoxic to the tested cells and suggesting that the effect was specific to CPO. The results indicate that the use of CPO nanoparticles may represent a promising alternative for the treatment of endometriosis.

  12. Chemometric approach to develop frying stable sunflower oil blends stabilized with oleoresin rosemary and ascorbyl palmitate.

    Science.gov (United States)

    Upadhyay, Rohit; Sehwag, Sneha; Niwas Mishra, Hari

    2017-03-01

    The frying performance of sunflower oil blends (SOBs) stabilized with oleoresin rosemary (Rosmarinus officinalis L.) (ROSM) (200-1500mg/kg) and ascorbyl palmitate (AP) (100-300mg/kg) were tested for 18hopen pan-frying. Sunflower oil with TBHQ (SOTBHQ) (200mg/kg) and without additives (SOcontrol) served as positive and negative controls, respectively. The frying stability was monitored over time by estimating the levels of conjugated dienes, total polar compounds, polymeric compounds viz., triglyceride polymers, dimers, oxidized triglyceride monomers, diglycerides and free fatty acids, and induction period based on Rancimat. Chemometric tools were used to classify the oil samples based on frying stability. Thermo-oxidative changes were reduced significantly for blends stabilized with ROSM and AP (p<0.05). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) distinguished SOBs from positive controls. A formulation consisting of 1309.62 and 129.29mg/kg of ROSM and AP, respectively, was optimized using a hybrid PCA-RSM approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Oleoresin chemistry mediates oviposition behavior and fecundity of a tree-killing bark beetle.

    Science.gov (United States)

    Davis, Thomas S; Hofstetter, Richard W

    2011-11-01

    Many herbivores are sensitive to the secondary chemistry of their host plants. However, the influence of pine secondary chemicals (monoterpenes) on bark beetle fitness is poorly understood. We tested the hypothesis that the monoterpene composition of the phloem oleoresin of ponderosa pine, Pinus ponderosa var scopulorum, mediates rates of host acceptance, oviposition behavior, and fecundity of the western pine beetle, Dendroctonus brevicomis. We performed reciprocal rearing experiments, controlling for the monoterpene composition (chemotype) of host material. We tested the effects of two geographically interspersed host chemotypes on beetles with unknown (wild) and known (reared F(1)) chemical histories. Host chemotype and insect chemical history did not affect rates of acceptance of host material by female beetles. Insect chemical history affected egg gallery construction, and beetles constructed egg galleries that were on average 24.3% longer when reared in host material that was chemically similar to their natal host material. However, mean egg gallery lengths did not differ between host chemotypes. Insect chemical history also influenced fecundity: F(1) beetles produced 52.7% more offspring on average when reared in host material that was chemically similar to their natal host. Our experiments demonstrate that the chemical history of bark beetles mediates egg gallery construction and fecundity, but not host acceptance. This implicates chemical history as a more important factor than host chemotype in the oviposition behavior and fecundity of D. brevicomis.

  14. Development of an alternative method for determination of terpene lactones in ginkgo dry extract.

    Science.gov (United States)

    Ekman, L; Fransson, D; Claeson, P; Johansson, M

    2009-10-01

    A new liquid chromatographic mass spectrometric (LC-MS) method for determination of terpene lactones in ginkgo dry extract has been developed. The new method has several advantages over the existing European Pharmacopoeia (Ph. Eur.) method for analysis of terpene lactones in ginkgo dry extract, the major ones being a very simple sample pre-treatment and an excellent selectivity. 5 terpene lactones were analysed with a precision expressed as relative standard deviation (RSD) of 0.4-3.1% and a mean relative error (RE) within +/-4.6%. The method was used to analyse 9 samples of ginkgo dry extracts from 3 different extract producers. The content of bilobalide was found to be in the range of 2.6-3.4% in all samples, whereas the sum of ginkgolides A, B and C was found to be in the range of 3.0-3.6%. Ginkgolide J was found in the range of 0.3-0.6%.

  15. Determination of the terpene flux from orange species and Norway spruce by relaxed eddy accumulation

    DEFF Research Database (Denmark)

    Christensen, C.S.; Hummelshøj, P.; Jensen, N.O.

    2000-01-01

    Terpene fluxes from a Norway spruce (Picea abies) forest and an orange orchard (Citrus clementii and Citrus sinensis) were measured by relaxed eddy accumulation (REA) during summer 1997. alpha-pinene and beta-pinene were the most abundant terpenes emitted from Norway spruce and constituted...... or downward flux was observed. The results from a laboratory intercomparison made in Spain deviated by maximum 7%. The flux measured at the two sites exhibited a strong diurnal variation with maximum in the afternoon and minimum in the morning hours and evenings. The applied REA system is new in its design...... rate by using two precision pumps operated at approximately 60 mi min(-1). The terpenes collected on the adsorbent tubes were significantly decomposed by ozone during sampling unless ozone scrubbers were applied. (C) 2000 Elsevier Science Ltd. All rights reserved....

  16. Inhibition of a multiproduct terpene synthase from Medicago truncatula by 3-bromoprenyl diphosphates.

    Science.gov (United States)

    Vattekkatte, Abith; Gatto, Nathalie; Schulze, Eva; Brandt, Wolfgang; Boland, Wilhelm

    2015-04-28

    The multiproduct sesquiterpene synthase MtTPS5 from Medicago truncatula catalyzes the conversion of farnesyl diphosphate (FDP) into a complex mixture of 27 terpenoids. 3-Bromo substrate analogues of geranyl diphosphate (3-BrGDP) and farnesyl diphosphate (3-BrFDP) were evaluated as substrates of MTPS5 enzyme. Kinetic studies demonstrated that these compounds were highly potent competitive inhibitors of the MtTPS5 enzyme with fast binding and slow reversibility. Since there is a lack of knowledge about the crystal structure of multiproduct terpene synthases, these molecules might be ideal candidates for obtaining a co-crystal structure with multiproduct terpene synthases. Due to the structural and mechanistic similarity between various terpene synthases we expect these 3-bromo isoprenoids to be ideal probes for crystal structure studies.

  17. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis

    OpenAIRE

    Blanch, J.; Sampedro, L.; Llusia, Joan; Moreira Tomé, X.; Zas Arregui, Rafael; Peñuelas, Josep

    2012-01-01

    We studied the effects of phosphorus fertilisation on foliar terpene concentrations and foliar volatile terpene emission rates in six half-sib families of Pinus pinaster Ait. seedlings. Half of the seedlings were resistant to attack of the pine weevil Hylobius abietis L., a generalist phloem feeder, and the remaining seedlings were susceptible to this insect. We hypothesised that P stress could modify the terpene concentration in the needles and thus lead to altered terpene emission patterns ...

  18. Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter

    NARCIS (Netherlands)

    Spyropoulou, E.A.; Haring, M.A.; Schuurink, R.C.

    2014-01-01

    Terpene biosynthesis in tomato glandular trichomes has been well studied, with most if not all terpene synthases (TPSs) being identified. However, transcription factors (TFs) that regulate TPSs have not yet been discovered from tomato. In order to unravel the transcriptional regulation of the

  19. Protective Effects of Terpenes on the Cardiovascular System: Current Advances and Future Perspectives.

    Science.gov (United States)

    Alves-Silva, Jorge M; Zuzarte, Monica; Marques, Carla; Salgueiro, Ligia; Girao, Henrique

    2016-01-01

    Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide that seriously affect patient's life quality and are responsible for huge economic and social burdens. It is widely accepted that a plant-based diet may reduce the risk of CVDs by attenuating several risk factors and/or modulating disease's onset and progression. Plants are rich in secondary metabolites, being terpenes the most abundant and structurally diverse group. These compounds have shown broad therapeutic potential as antimicrobial, antiviral, anti-inflammatory and antitumor agents. Despite their popularity, scientific evidence on terpenes cardiovascular effects remains sparse, limiting their potential use as cardioprotective and/or cardiotherapeutic agents. Bearing in mind the lack of comprehensive and systematic studies, the present review aims to gather the knowledge and some of the most scientific evidence accumulated over the past years on the effect of terpenes in the cardiovascular field with focus on CVDs namely ischemic heart disease, heart failure, arrhythmias and hypertension. Several popular search engines including PubMed, Science Direct, Scopus and Google Scholar were consulted. The bibliographic research focused primarily on English written papers published over the last 15 years. A systematic and comprehensive update on the cardiovascular effects of terpenes is provided. Moreover, whenever known, the possible mechanisms of action underlying the cardiovascular effects are pointed out as well as an attempt to identify the most relevant structure- activity relationships of the different classes of terpenes. Overall, this review enables a better understanding of the cardiovascular effects of terpenes, thus paving the way towards future research in medicinal chemistry and rational drug design.

  20. Molecular architecture and biomedical leads of terpenes from red sea marine invertebrates.

    Science.gov (United States)

    Hegazy, Mohamed Elamir F; Mohamed, Tarik A; Alhammady, Montaser A; Shaheen, Alaa M; Reda, Eman H; Elshamy, Abdelsamed I; Aziz, Mina; Paré, Paul W

    2015-05-20

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species.

  1. Temporal effects of prescribed burning on terpene production in Mediterranean pines.

    Science.gov (United States)

    Valor, Teresa; Ormeño, Elena; Casals, Pere

    2017-06-23

    Prescribed burning is used to reduce fuel hazard but underburning can damage standing trees. The effect of burning on needle terpene storage, a proxy for secondary metabolism, in fire-damaged pines is poorly understood despite the protection terpenes confer against biotic and abiotic stressors. We investigated variation in needle terpene storage after burning in three Mediterranean pine species featuring different adaptations to fire regimes. In two pure-stands of Pinus halepensis Mill. and two mixed-stands of Pinus sylvestris L. and Pinus nigra ssp. salzmanni (Dunal) Franco, we compared 24 h and 1 year post-burning concentrations with pre-burning concentrations in 20 trees per species, and evaluated the relative contribution of tree fire severity and physiological condition (δ13C and N concentration) on temporal terpene dynamics (for mono- sesqui- and diterpenes). Twenty-four hours post-burning, monoterpene concentrations were slightly higher in P. halepensis than at pre-burning, while values were similar in P. sylvestris. Differently, in the more fire-resistant P. nigra monoterpene concentrations were lower at 24 h, compared with pre-burning. One year post-burning, concentrations were always lower compared with pre- or 24 h post-burning, regardless of the terpene group. Mono- and sesquiterpene variations were negatively related to pre-burning δ13C, while diterpene variations were associated with fire-induced changes in needle δ13C and N concentration. At both post-burning times, mono- and diterpene concentrations increased significantly with crown scorch volume in all species. Differences in post-burning terpene contents as a function of the pine species' sensitivity to fire suggest that terpenic metabolites could have adaptive importance in fire-prone ecosystems in terms of flammability or defence against biotic agents post-burning. One year post-burning, our results suggest that in a context of fire-induced resource availability, pines likely prioritize

  2. Terpene sensor array with bridge-type resistors by CMOS technology

    Science.gov (United States)

    Lee, Sung Pil

    2015-07-01

    The interaction of terpene gas with the sensing element in the sensor array can cause changes in electrical properties because of a charge transfer and the polymer chain structure. Resistive type interdigited electrode sensor arrays covered with a mixture of molecularly imprinted polymer (MIP)/conductive polymer (CP) were designed and fabricated to detect terpene gases. MIP coated on CP (MOC) type showed markedly higher sensitivity compared to mixture of MIP and CP (MMC) type. The gas detection patterns by PCA were used to get higher selectivity of multicomponent chemical media.

  3. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates

    Directory of Open Access Journals (Sweden)

    Mohamed Elamir F. Hegazy

    2015-05-01

    Full Text Available Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species.

  4. The cytotoxic and embryotoxic effects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleo-resin.

    Science.gov (United States)

    Costa-Lotufo, L V; Cunha, G M A; Farias, P A M; Viana, G S B; Cunha, K M A; Pessoa, C; Moraes, M O; Silveira, E R; Gramosa, N V; Rao, V S N

    2002-08-01

    In this work, we studied the effects of kaurenoic acid, a diterpene isolated from the oleo-resin of Copaifera langsdorffii in developing sea urchin (Lytechinus variegatus) embryos, on tumor cell growth in microculture tetrazolium (MTT) test and on mouse and human erythrocytes in hemolysis assay. Continuous exposure of embryos to kaurenoic acid starting immediately after fertilization inhibited the first cleavage (IC(50): 84.2 microM) and progressively induced embryo destruction (IC(50): 44.7 microM and sea urchin embryos, the inhibition of tumor cell growth and the hemolysis of mouse and human erythrocytes indicate the potential cytotoxicity of kaurenoic acid.

  5. Classification of Sunflower Oil Blends Stabilized by Oleoresin Rosemary (Rosmarinus officinalis L.) Using Multivariate Kinetic Approach.

    Science.gov (United States)

    Upadhyay, Rohit; Mishra, Hari Niwas

    2015-08-01

    The sunflower oil-oleoresin rosemary (Rosmarinus officinalis L.) blends (SORB) at 9 different concentrations (200 to 2000 mg/kg), sunflower oil-tertiary butyl hydroquinone (SOTBHQ ) at 200 mg/kg and control (without preservatives) (SO control ) were oxidized using Rancimat (temperature: 100 to 130 °C; airflow rate: 20 L/h). The oxidative stability of blends was expressed using induction period (IP), oil stability index and photochemiluminescence assay. The linear regression models were generated by plotting ln IP with temperature to estimate the shelf life at 20 °C (SL20 ; R(2) > 0.90). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) was used to classify the oil blends depending upon the oxidative stability and kinetic parameters. The Arrhenius equation adequately described the temperature-dependent kinetics (R(2) > 0.90, P < 0.05) and kinetic parameters viz. activation energies, activation enthalpies, and entropies were calculated in the range of 92.07 to 100.50 kJ/mol, 88.85 to 97.28 kJ/mol, -33.33 to -1.13 J/mol K, respectively. Using PCA, a satisfactory discrimination was noted among SORB, SOTBHQ , and SOcontrol samples. HCA classified the oil blends into 3 different clusters (I, II, and III) where SORB1200 and SORB1500 were grouped together in close proximity with SOTBHQ indicating the comparable oxidative stability. The SL20 was estimated to be 3790, 6974, and 4179 h for SO control, SOTBHQ, and SORB1500, respectively. The multivariate kinetic approach effectively screened SORB1500 as the best blend conferring the highest oxidative stability to sunflower oil. This approach can be adopted for quick and reliable estimation of the oxidative stability of oil samples. © 2015 Institute of Food Technologists®

  6. The α-terpineol to 1,8-cineole cyclization reaction of tobacco terpene synthases

    NARCIS (Netherlands)

    Piechulla, Birgit; Bartelt, Richard; Brosemann, Anne; Effmert, Uta; Bouwmeester, Harro; Hippauf, Frank; Brandt, Wolfgang

    2016-01-01

    Flowers of Nicotiana species emit a characteristic blend including the cineole cassette monoterpenes. This set of terpenes is synthesized by multiproduct enzymes, with either 1,8-cineole or α-terpineol contributing most to the volatile spectrum, thus referring to cineole or terpineol synthase,

  7. Ozone-initiated terpene reaction products in five European offices: Replacement of a floor cleaning agent

    NARCIS (Netherlands)

    Nørgaard, A.W.; Kofoed-Sørensen, V.; Mandin, C.; Ventura, G.; Mabilia, R.; Perreca, E.; Cattaneo, A.; Spinazzè, A.; Mihucz, V.G.; Szigeti, T.; De Kluizenaar, Y.; Cornelissen, H.J.M.; Trantallidi, M.; Carrer, P.; Sakellaris, I.; Bartzis, J.; Wolkoff, P.

    2014-01-01

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union

  8. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum.

    Science.gov (United States)

    Pontin, Mariela; Bottini, Rubén; Burba, José Luis; Piccoli, Patricia

    2015-07-01

    This study investigated terpene biosynthesis in different tissues (root, protobulb, leaf sheath and blade) of in vitro-grown garlic plants either infected or not (control) with Sclerotium cepivorum, the causative agent of Allium White Rot disease. The terpenes identified by gas chromatography-electron impact mass spectrometry (GC-EIMS) in infected plants were nerolidol, phytol, squalene, α-pinene, terpinolene, limonene, 1,8-cineole and γ-terpinene, whose levels significantly increased when exposed to the fungus. Consistent with this, an increase in terpene synthase (TPS) activity was measured in infected plants. Among the terpenes identified, nerolidol, α-pinene and terpinolene were the most abundant with antifungal activity against S. cepivorum being assessed in vitro by mycelium growth inhibition. Nerolidol and terpinolene significantly reduced sclerotia production, while α-pinene stimulated it in a concentration-dependent manner. Parallel to fungal growth inhibition, electron microscopy observations established morphological alterations in the hyphae exposed to terpinolene and nerolidol. Differences in hyphal EtBr uptake suggested that one of the antifungal mechanisms of nerolidol and terpinolene might be disruption of fungal membrane integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Needle Terpenes as Chemotaxonomic Markers in Pinus: Subsections Pinus and Pinaster.

    Science.gov (United States)

    Mitić, Zorica S; Jovanović, Snežana Č; Zlatković, Bojan K; Nikolić, Biljana M; Stojanović, Gordana S; Marin, Petar D

    2017-05-01

    Chemical compositions of needle essential oils of 27 taxa from the section Pinus, including 20 and 7 taxa of the subsections Pinus and Pinaster, respectively, were compared in order to determine chemotaxonomic significance of terpenes at infrageneric level. According to analysis of variance, six out of 31 studied terpene characters were characterized by a high level of significance, indicating statistically significant difference between the examined subsections. Agglomerative hierarchical cluster analysis has shown separation of eight groups, where representatives of subsect. Pinaster were distributed within the first seven groups on the dendrogram together with P. nigra subsp. laricio and P. merkusii from the subsect. Pinus. On the other hand, the eighth group included the majority of the members of subsect. Pinus. Our findings, based on terpene characters, complement those obtained from morphological, biochemical, and molecular parameters studied over the past two decades. In addition, results presented in this article confirmed that terpenes are good markers at infrageneric level. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. Concurrent and supercritical fluid chromatographic analysis of Terpene Lactones and ginkolic acids in Ginko biloba

    Science.gov (United States)

    Supercritical fluid chromatography was used to resolve and determine ginkgolic acids (GAs) and terpene lactones concurrently in ginkgo plant materials and commercial dietary supplements. Analysis of GAs (C13:0, C15:0, C15:1 and C17:1) was carried out by ESI (-) mass detection. The ESI (-) spectra of...

  11. Comprehensive two-dimensional gas chromatography for determination of the terpenes profile of blue honeysuckle berries.

    Science.gov (United States)

    Kupska, Magdalena; Chmiel, Tomasz; Jędrkiewicz, Renata; Wardencki, Waldemar; Namieśnik, Jacek

    2014-01-01

    Terpenes are the main group of secondary metabolites, which play essential role in human. The establishment of the terpenes profile of berries of different blue honeysuckle cultivars was achieved by headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GC×GC-TOFMS). The berries were found to contain 44 terpenes identified by GC×GC-TOFMS. From these, 10 were previously reported in blueberries. According to their chemical structure, the compounds were organised in different groups: monoterpene hydrocarbons and monoterpene oxygen-containing compounds (oxides, alcohols, aldehydes, and ketones). Positive identification of some of the compounds was performed using authentic standards, while tentative identification of the compounds was based on deconvoluted mass spectra and comparison of linear retention indices (LRI) with literature values. The major components of volatile fraction were monoterpenes, such as eucalyptol, linalool and p-cymene. Furthermore, quantitative analysis showed that eucalyptol was the most abundant bioactive terpene in analysed berries (12.4-418.2 μg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae.

    Science.gov (United States)

    Wu, Weihua; Tran, William; Taatjes, Craig A; Alonso-Gutierrez, Jorge; Lee, Taek Soon; Gladden, John M

    2016-01-01

    Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs) derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME) and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.

  13. Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes.

    Science.gov (United States)

    Zhang, Pangzhen; Fuentes, Sigfredo; Siebert, Tracey; Krstic, Mark; Herderich, Markus; Barlow, Edward William R; Howell, Kate

    2016-08-01

    The flavour of wine is derived, in part, from the flavour compounds present in the grape, which change as the grapes accumulate sugar and ripen. Grape berry terpene concentrations may vary at different stages of berry development. This study aimed to investigate terpene evolution in grape berries from four weeks post-flowering to maturity. Grape bunches were sampled at fortnightly intervals over two vintages (2012-13 and 2013-14). In total, five monoterpenoids, 24 sesquiterpenes, and four norisoprenoids were detected in grape samples. The highest concentrations of total monoterpenoids, total sesquiterpenes, and total norisoprenoids in grapes were all observed at pre-veraison. Terpenes derived from the same biosynthetic pathway had a similar production pattern during berry development. Terpenes in grapes at harvest might not necessarily be synthesised at post-veraison, since the compounds or their precursors may already exist in grapes at pre-veraison, with the veraison to harvest period functioning to convert these precursors into final products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae.

    Directory of Open Access Journals (Sweden)

    Weihua Wu

    Full Text Available Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.

  15. Mechanism-Based Post-Translational Modification and Inactivation in Terpene Synthases.

    Science.gov (United States)

    Kersten, Roland D; Diedrich, Jolene K; Yates, John R; Noel, Joseph P

    2015-11-20

    Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Moreover, the level of cation-mediated inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.

  16. Natural and Semi synthetic Antimalarial Compounds: Emphasis on the Terpene Class.

    Science.gov (United States)

    Silva, G N S; Rezende, L C D; Emery, F S; Gosmann, G; Gnoatto, S C B

    2015-01-01

    Malaria is one of the most important tropical diseases since more than 40% of the world population is at risk. This disease is endemic to more than 100 nations and remains one of the main leading causes of death in children less than five years of age worldwide. Natural product-derived compounds have played a major role in drug discovery, often as prototypes to obtain more active semi synthetic derivatives. Antimalarial pharmacotherapy is a significant example of plant-derived medicines, such as quinine and artemisinin. This review highlights studies on terpenes and their semi synthetic derivatives from natural sources with antimalarial activity reported in the literature during eleven years (2002-2013). A total of 114 compounds are found among terpenes and their semi synthetic derivatives. Cytotoxicity of the compounds is also found in this review. Furthermore, the physicochemical properties of the terpenes addressed are discussed based on seven well established descriptors, which provide a useful source for the elaboration of a terpene library of antimalarial compounds.

  17. In Vitro Screening of α-Amylase Inhibition by Selected Terpenes ...

    African Journals Online (AJOL)

    HP

    from 0.39 – 5.50 µmol cm-3. Commercial sera (with normal-N and high-H enzyme activity) were used as a source of α-amylase. α-Amylase activity was determined by standard methods using an automated analyzer. Results: All the selected terpenes at their maximal concentrations inhibited α-amylase in N-sera in the.

  18. 75 FR 39450 - Terpene Constituents of the Extract of Chenopodium ambrosioides

    Science.gov (United States)

    2010-07-09

    ... human consumption. 2. d-Limonene is a major terpene constituent of lemon oil, orange oil, and grapefruit..., raspberries, lemon oil, and spices. p-Cymene is permitted by FDA for direct addition to food as a flavoring... Health Assessment Data Requirements Acute toxicity data were submitted for this synthetically...

  19. Development of a validated ultra-high-performance liquid chromatography tandem mass spectrometry method for determination of acid diterpenes in Copaifera oleoresins.

    Science.gov (United States)

    da Silva, Jonas Joaquim Mangabeira; Crevelin, Eduardo José; Carneiro, Luiza Junqueira; Rogez, Hervé; Veneziani, Rodrigo Cassio Sola; Ambrósio, Sérgio Ricardo; Beraldo Moraes, Luiz Alberto; Bastos, Jairo Kenupp

    2017-09-15

    Species of Copaifera genus (Fabaceae - Caesalpinoiodidaeae) produces an important commercial oleoresin that displays many medicinal properties. Copaifera oleoresins (COR) are composed mainly of a mixture of diterpenes and sequiterpenes, and the main reported acid diterpenes for this genus are kaurenoic, copalic, hardwickiic and polyaltic acids. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for identification and quantification of nine acid diterpenes. The developed method was applied in the analyses of 10 authentic COR samples collected in the North and Southeast of Brazil and six commercial COR samples. Samples preparation consisted of simple dilution of oleoresins in methanol followed by filtration. Validation parameters of the method for nine acid diterpenes were satisfactory: selectivity/specificity was defined by retention time and MS/MS analyses for each analyte; generally all analytical curves presented r2>0.99, Lack-of-fit test not significant and RSDoleoresin samples was analyzed by Principal Component Analysis (PCA), suggesting a botanical origin for the commercial samples. The developed UPLC method was shown to be reliable for the analysis of acid diterpenes in commercial Copaifera oleoresins. Copyright © 2017. Published by Elsevier B.V.

  20. Extraction and purification of capsaicin from capsicum oleoresin using an aqueous two-phase system combined with chromatography.

    Science.gov (United States)

    Fan, Yong; Lu, Yan-Min; Yu, Bin; Tan, Cong-Ping; Cui, Bo

    2017-09-15

    Capsaicin was extracted from capsicum oleoresin using an aqueous two-phase system (ATPS) composed of an ethylene oxide-propylene oxide (EOPO) copolymer, salt and ethanol. Capsaicin was concentrated in the top polymer-rich phase. To determine the optimal conditions, the partitioning of capsaicin in the ATPS was investigated, considering a single-factor experiment including the salt concentration, polymer concentration, buffer pH, ethanol concentration, sample loading and extraction duration. Response surface methodology was applied to investigate the effects of the polymer concentration, buffer pH and sample loading on capsaicin partitioning. A capsaicin yield of 95.5% was obtained using the optimal extraction system, which consisted of 16.3% UCON 50-HB-5100/10% K2HPO4/1% ethanol, a buffer pH of 4.35 and 0.24g of capsicum oleoresin. Capsaicin was purified from the capsaicinoid extract using a two-step macroporous adsorption resin (MAR) method. After purification using non-polar MAR ADS-17, the recovery and purity of capsaicin were 83.7% and 50.3%, respectively. After purification using weakly polar MAR AB-8, the recovery and purity of capsaicin were 88.0% and 85.1%, respectively. Copyright © 2017. Published by Elsevier B.V.

  1. Aqueous two-phase extraction combined with chromatography: new strategies for preparative separation and purification of capsaicin from capsicum oleoresin.

    Science.gov (United States)

    Zhao, Pei-Pei; Lu, Yan-Min; Tan, Cong-Ping; Liang, Yan; Cui, Bo

    2015-01-01

    Capsaicin was preparatively separated and purified from capsicum oleoresin with a new method combined with aqueous two-phase extraction (ATPE) and chromatography. Screening experiments of ATPE systems containing salts and hydrophilic alcohols showed that potassium carbonate/ethanol system was the most suitable system for capsaicin recovery among the systems considered. Response surface methodology was used to determine an optimized aqueous two-phase system for the extraction of capsaicin from capsaicin oleoresin. In a 20 % (w/w) ethanol/22.3 % (w/w) potassium carbonate system, 85.4 % of the capsaicin was recovered in the top ethanol-rich phase while most oil and capsanthin ester were removed in the interphase. The capsaicinoid extract was then subjected to two chromatographic steps using D101 macroporous resin and inexpensive SKP-10-4300 reverse-phase resin first applied for the purification of capsaicin. After simple optimization of loading/elution conditions for D101 macroporous resin chromatography and SKP-10-4300 reverse-phase resin chromatography, the purities of capsaicin were improved from 7 to 85 %. In the two chromatography processes, the recoveries of capsaicin were 93 and 80 % respectively; the productivities of capsaicin were 1.86 and 4.2 (g capsaicin/L resin) per day respectively. It is worth mentioning that a by-product of capsaicin production was also obtained with a high purity (90 %).

  2. CCN activity of secondary aerosols from terpene ozonolysis under atmospheric relevant conditions

    Science.gov (United States)

    Yuan, Cheng; Ma, Yan; Diao, Yiwei; Yao, Lei; Zhou, Yaoyao; Wang, Xing; Zheng, Jun

    2017-04-01

    Gas-phase ozonolysis of terpenes is an important source of atmospheric secondary organic aerosol. The contribution of terpene-derived aerosols to the atmospheric cloud condensation nucleus (CCN) burden under atmospheric conditions, however, remains highly uncertain. The results obtained in previous studies under simple laboratory conditions may not be applicable to atmospheric relevant conditions. Here we present that CCN activities of aerosols from terpene ozonolysis can be significantly affected by atmospheric relevant species that can act as stabilized Criegee intermediate (SCI) or OH scavengers. Ozonolysis reactions of α-pinene, limonene, α-cedrene, and α-humulene were conducted in a 4.5 m3 collapsible fluoropolymer chamber at near-atmospheric concentrations in the presence of different OH scavengers (cyclohexane, 2-butanol, or CO) and SCI scavengers (CH3COOH, H2O, or SO2). The number size distribution and CCN activity of aerosol particles formed during ozonolysis were simultaneously determined. Additionally, particulate products were chemically analyzed by using a Filter Inlet for Gases and AEROsols High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer. Results showed that aerosol CCN activity following monoterpene ozonolysis was more sensitive to the choice of OH scavengers, while that from sesquiterpene ozonolysis was significantly affected by SCI scavengers. Combined with chemical analysis results, it was concluded that the unimolecular decomposition of CIs giving hygroscopic organic products can be largely suppressed by bimolecular reactions during sesquiterpene ozonolysis but was not significantly impacted in monoterpene ozonolysis. Our study underscores the key role of CIs in the CCN activity of terpene ozonolysis-derived aerosols. The effects of atmospheric relevant species (e.g., SO2, H2O, and CO) need to be considered when assessing the contribution of biogenic terpenes to the atmospheric CCN burden under ambient conditions.

  3. The health significance of gas- and particle-phase terpene oxidation products: a review.

    Science.gov (United States)

    Rohr, Annette C

    2013-10-01

    The reactions between terpenes and ozone (or other oxidants) produce a wide variety of both gas- and particle-phase products. Terpenes are biogenic volatile organic compounds (VOCs) that are also contained in many consumer products. Ozone is present indoors since it infiltrates into the indoor environment and is emitted by some office and consumer equipment. Some of the gaseous products formed are irritating to biological tissues, while the condensed-phase products have received attention due to their contribution to ambient fine particulate matter (PM2.5) and its respective health significance. Despite common scientific questions, the indoor and ambient air research communities have tended to operate in isolation regarding this topic. This review critically evaluates the literature related to terpene oxidation products and attempts to synthesize results of indoor and ambient air studies to better understand the health significance of these materials and identify knowledge gaps. The review documents the results of a literature search covering terpene oxidation chemistry, epidemiological, toxicological, and controlled human exposure studies, as well as health studies focused more generically on secondary organic aerosol (SOA). The literature shows a clear role for gas-phase terpene oxidation products in adverse airway effects at high concentrations; however, whether these effects occur at more environmentally relevant levels is unclear. The evidence for toxicity of particle-phase products is less conclusive. Knowledge gaps and future research needs are outlined, and include the need for more consistency in study designs, incorporation of reaction product measurements into epidemiological studies conducted in both indoor and ambient settings, and more focused research on the toxicity of SOA, especially SOA of biogenic origin. © 2013.

  4. Safety assessment of a natural tomato oleoresin containing high amounts of Z-isomers of lycopene prepared with supercritical carbon dioxide.

    Science.gov (United States)

    Honda, Masaki; Higashiura, Takuma; Fukaya, Tetsuya

    2017-02-01

    Z-isomers of lycopene, which are abundantly present in processed tomato products, are more bioavailable than (all-E)-lycopene found predominantly in raw tomatoes. Despite extensive studies on the bioavailability and biological activities of Z-isomers of lycopene, detailed studies on their safety and toxicology are limited. The geno-, acute and subacute toxicities of tomato oleoresin that contained high amounts of lycopene Z-isomers (10.9% lycopene with 66.3% Z-isomer content) and had been prepared with supercritical carbon dioxide were investigated. The oleoresin was non-mutagenic in the Ames test with and without metabolic activation (S9 mix). The medial lethal dose (LD50 ) of the oleoresin in rats, as determined by a single-dose oral test, was more than 5000 mg kg body weight-1 (bw) [361 mg (Z)-lycopene kg bw-1 ]. In the 4-week repeated-dose oral toxicity test, rats were administered oleoresin at 4500 mg kg-1 day-1 [325 mg (Z)-lycopene kg bw-1 day-1 ]. There were no clinically significant changes with respect to vital signs, physical examination outcomes and laboratory test values during the test period. Based on our findings and as supported by its long history of consumption, tomato oleoresin that contains high amounts of Z-isomers of lycopene prepared with supercritical carbon dioxide can be considered as safe for human consumption. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Rice terpene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses.

    Science.gov (United States)

    Lee, Gun Woong; Lee, Sungbeom; Chung, Moon-Soo; Jeong, Yeon Sim; Chung, Byung Yeoup

    2015-07-01

    This study examined the volatile terpenes produced by rice seedlings in response to oxidative stress induced by various abiotic factors. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analyses revealed that when exposed to UV-B radiation, rice seedlings emitted a bouquet of monoterpene mixtures in a time-dependent manner. The mixtures comprised limonene, sabinene, myrcene, α-terpinene, β-ocimene, γ-terpinene, and α-terpinolene. Among them, (S)-limonene was the most abundant volatile, discriminated by chiral SPME-GC-MS. The volatile profiles collected from rice plants treated with both γ-irradiation and H2O2 were identical to those observed in the UV-B irradiated plants, thus indicating that the volatile mixtures were specifically produced in response to oxidative stress, particularly in the presence of H2O2. Using a reverse genetics approach, we isolated full-length rice terpene synthase 20 (OsTPS20, 599 amino acids, 69.39 kDa), which was further characterized as an (S)-limonene synthase by removing the N-terminal signal peptide (63 amino acids) of the protein. The recombinant OsTPS20 protein catalyzed the conversion of geranyl diphosphate to (S)-limonene and other minor monoterpenes, essentially covering all of the volatile compounds detected from the plant. Moreover, qRT-PCR revealed that the transcript levels of OsTPS20 were significantly induced in response to oxidative stress, thereby suggesting that OsTPS20 plays a major role in producing terpene volatiles during abiotic stress. Detailed biochemical analyses and the unusual domain characteristics of OsTPS20 are also discussed in this report.

  6. Analysis of terpene lactones in a Ginkgo leaf extract by high-performance liquid chromatography using charged aerosol detection.

    Science.gov (United States)

    Kakigi, Yasuhiro; Mochizuki, Naoki; Icho, Takeshi; Hakamatsuka, Takashi; Goda, Yukihiro

    2010-01-01

    A new HPLC method using charged aerosol detection was developed for the determination of terpene lactones in a Ginkgo leaf extract. The linearity of the standard curves was excellent (r>0.999). The repeatability of the method was less than 3%, and its reproducibility was less than 5% for each analyte. The limit of detection was between 0.087 and 0.45 microg/ml. The developed method was applied to the analysis of terpene lactones in Ginkgo leaf products distributed in the Japanese market. The results suggest that some health food products contained approximately equivalent amounts of terpene lactones to those in the medical product and that the proportion of terpene lactones varied in each health product.

  7. Observational Constraints on Terpene Oxidation with and without Anthropogenic Influence in the Amazon using Speciated Measurements from SV-TAG

    Science.gov (United States)

    Yee, L.; Isaacman, G. A.; Kreisberg, N. M.; Liu, Y.; McKinney, K. A.; de Sá, S. S.; Martin, S. T.; Alexander, M. L.; Palm, B. B.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Viegas, J.; Springston, S. R.; Wurm, F.; Ferreira De Brito, J.; Artaxo, P.; Manzi, A. O.; Machado, L.; Longo, K.; Oliveira, M. B.; Souza, R. A. F. D.; Hering, S. V.; Goldstein, A. H.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) from the Amazon forest represent the largest regional source of organic carbon emissions to the atmosphere. These BVOC emissions dominantly consist of volatile and semi-volatile terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). However, the oxidation pathways of these compounds are still not well understood, and are expected to differ significantly between "pristine" conditions, as is common in Amazonia, and polluted conditions caused by emissions from growing cities. Our focus is to elucidate how anthropogenic emissions influence BVOC chemistry and BSOA formation through speciated measurements of their oxidation products. We have deployed the Semi-Volatile Thermal desorption Aerosol Gas Chromatograph (SV-TAG) at the rural T3 site located west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon) 2014 field campaign to measure hourly concentrations of semi-volatile BVOCs and their oxidation products during the wet and dry seasons. Primary BVOC concentrations measured by the SV-TAG include sesquiterpenes and diterpenes, which have rarely been speciated with high time-resolution. We observe sesquiterpenes to be anti-correlated with ozone, indicative of sesquiterpene oxidation playing a major role in the regional oxidant budget. The role of sesquiterpenes in atmospheric SOA formation are of interest due to their high aerosol yields and high reactivity with ozone, relative to more commonly measured BVOCs (e.g. monoterpenes). We explore relative concentrations of sesquiterpenes and monoterpenes and their roles as precursors to SOA formation by combining SV-TAG measurements with those from an additional suite of VOC and particle measurements deployed in the Amazon. We also report the first ever hourly observations of the gas-particle partitioning of speciated terpene oxidation products in the Amazon

  8. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis.

    Science.gov (United States)

    Blanch, J-S; Sampedro, L; Llusià, J; Moreira, X; Zas, R; Peñuelas, J

    2012-03-01

    We studied the effects of phosphorus fertilisation on foliar terpene concentrations and foliar volatile terpene emission rates in six half-sib families of Pinus pinaster Ait. seedlings. Half of the seedlings were resistant to attack of the pine weevil Hylobius abietis L., a generalist phloem feeder, and the remaining seedlings were susceptible to this insect. We hypothesised that P stress could modify the terpene concentration in the needles and thus lead to altered terpene emission patterns relevant to plant-insect signalling. The total concentration and emission rate ranged between 5732 and 13,995 μg·g(-1) DW and between 2 and 22 μg·g(-1) DW·h(-1), respectively. Storage and emission were dominated by the isomers α- and β-pinene (77.2% and 84.2% of the total terpene amount amassed and released, respectively). In both resistant and susceptible families, P stress caused an increase of 31% in foliar terpene concentration with an associated 5-fold decrease in terpene emission rates. A higher terpene content in the leaves implies that the 'excess carbon', available under limiting growth conditions (P scarcity), is allocated to terpene production. Sensitive families showed a greater increase in terpene emission rates with increasing P concentrations, which could explain their susceptibility to H. abietis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Frankincense derived heavy terpene cocktail boosting breast cancer cell (MDA-MB-231 death in vitro

    Directory of Open Access Journals (Sweden)

    Faruck Lukmanul Hakkim

    2015-10-01

    Conclusions: Extracting anti-cancer active principle cocktail by simple Soxhlet method is cost effective and less time consuming. Our in vitro anti-cancer data forms the rationale for us to test heavy terpene complex in breast cancer xenograft model in vivo. Furthermore, fractionation and developing frankincense heavy terpene based breast cancer drug is the major goal of our laboratory.

  10. Strong Induction of Minor Terpenes in Italian Cypress, Cupressus sempervirens, in Response to Infection by the Fungus Seiridium cardinale.

    Science.gov (United States)

    Achotegui-Castells, Ander; Danti, Roberto; Llusià, Joan; Della Rocca, Gianni; Barberini, Sara; Peñuelas, Josep

    2015-03-01

    Seiridium cardinale, the main fungal pathogen responsible for cypress bark canker, is the largest threat to cypresses worldwide. The terpene response of canker-resistant clones of Italian cypress, Cupressus sempervirens, to two differently aggressive isolates of S. cardinale was studied. Phloem terpene concentrations, foliar terpene concentrations, as well as foliar terpene emission rates were analyzed 1, 10, 30, and 90 days after artificial inoculation with fungal isolates. The phloem surrounding the inoculation point exhibited de novo production of four oxygenated monoterpenes and two unidentified terpenes. The concentrations of several constitutive mono- and diterpenes increased strongly (especially α-thujene, sabinene, terpinolene, terpinen-4-ol, oxygenated monoterpenes, manool, and two unidentified diterpenes) as the infection progressed. The proportion of minor terpenes in the infected cypresses increased markedly from the first day after inoculation (from 10% in the control to 30-50% in the infected treatments). Foliar concentrations showed no clear trend, but emission rates peaked at day 10 in infected trees, with higher δ-3-carene (15-fold) and total monoterpene (10-fold) emissions than the control. No substantial differences were found among cypresses infected by the two fungal isolates. These results suggest that cypresses activate several direct and indirect chemical defense mechanisms after infection by S. cardinale.

  11. Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa.

    Science.gov (United States)

    Danner, Holger; Boeckler, G Andreas; Irmisch, Sandra; Yuan, Joshua S; Chen, Feng; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2011-06-01

    After herbivore damage, many plants increase their emission of volatile compounds, with terpenes usually comprising the major group of induced volatiles. Populus trichocarpa is the first woody species with a fully sequenced genome, enabling rapid molecular approaches towards characterization of volatile terpene biosynthesis in this and other poplar species. We identified and characterized four terpene synthases (PtTPS1-4) from P. trichocarpa which form major terpene compounds of the volatile blend induced by gypsy moth (Lymantria dispar) feeding. The enzymes were heterologously expressed and assayed with potential prenyl diphosphate substrates. PtTPS1 and PtTPS2 accepted only farnesyl diphosphate and produced (-)-germacrene D and (E,E)-α-farnesene as their major products, respectively. In contrast, PtTPS3 and PtTPS4 showed both mono- and sesquiterpene synthase activity. They produce the acyclic terpene alcohols linalool and nerolidol but exhibited opposite stereospecificity. qRT-PCR analysis revealed that the expression of the respective terpene synthase genes was induced after feeding of gypsy moth caterpillars. The TPS enzyme products may play important roles in indirect defense of poplar to herbivores and in mediating intra- and inter-plant signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Variation of terpenes in milk and cultured cream from Norwegian alpine rangeland-fed and in-door fed cows.

    Science.gov (United States)

    Borge, Grethe Iren A; Sandberg, Ellen; Øyaas, Jorun; Abrahamsen, Roger K

    2016-05-15

    The terpene content of milk and cream made from milk obtained from cows fed indoors, and by early or late grazing, in alpine rangeland farms in Norway, were analysed for three consecutive years. The main terpenes identified and semi-quantified were the monoterpenes β-pinene, α-pinene, α-thujene, camphene, sabinene, δ-3-carene, d-limonene, γ-terpinene, camphor, β-citronellene, and the sesquiterpene β-caryophyllene. The average total terpene content increased five times during the alpine rangeland feeding period. The terpenes α-thujene, sabinene, γ-terpinene and β-citronellene were only detected in milk and cultured cream from the alpine rangeland feeding period and not in samples from the indoors feeding period. These four terpenes could be used, as indicators, to show that milk and cultured cream originate from the alpine rangeland feeding period. The terpenes did not influence the sensorial quality of the milk or the cultured cream. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Determination of terpene alcohols in Sicilian Muscat wines by HS-SPME-GC-MS.

    Science.gov (United States)

    Barbera, Daniela; Avellone, Giuseppe; Filizzola, Felice; Monte, Lucio G; Catanzaro, Paola; Agozzino, Pasquale

    2013-01-01

    Muscat is a grape family used to obtain several sweet, aromatic white dessert wines common in the Mediterranean area. Currently, three Sicilian cultivars (all classified DOC) are known: 'Moscato di Siracusa' the oldest and very rare today; 'Moscato di Noto', a modern derivative of the first and finally 'Moscato di Pantelleria', now the most common. This study concerns the volatile profile of 15 different Sicilian Muscat wines produced in different years using HS-SPME-GC-MS. In particular, four fundamental terpene alcohols (linalool, geraniol, nerol and citronellol) were considered. The principal aim was to study the evolution of aromatic compounds in wine during aging, and the information obtained is useful for production and marketing. It was found that the amount of terpenes decreased with aging, thereby reducing the quality characteristic of these wines. An accurate analysis of chromatograms could characterise Muscat wines on the basis of geographic origin.

  14. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery

    Science.gov (United States)

    Jansen, Daniel J; Shenvi, Ryan A

    2014-01-01

    Terpenoids constitute a significant fraction of molecules produced by living organisms that have found use in medicine and other industries. Problems associated with their procurement and adaptation for human use can be solved using chemical synthesis, which is an increasingly economical option in the modern era of chemistry. This article documents, by way of individual case studies, strategies for reducing the time and cost of terpene synthesis for drug discovery. A major trend evident in recent syntheses is that complex terpenes are increasingly realistic starting points for both medicinal chemistry campaigns and large-scale syntheses, at least in the context of the academic laboratory, and this trend will likely penetrate the commercial sector in the near future. PMID:25078134

  15. An unusual terpene cyclization mechanism involving a carbon-carbon bond rearrangement.

    Science.gov (United States)

    Meguro, Ayuko; Motoyoshi, Yudai; Teramoto, Kazuya; Ueda, Shota; Totsuka, Yusuke; Ando, Yumi; Tomita, Takeo; Kim, Seung-Young; Kimura, Tomoyuki; Igarashi, Masayuki; Sawa, Ryuichi; Shinada, Tetsuro; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2015-03-27

    Terpene cyclization reactions are fascinating owing to the precise control of connectivity and stereochemistry during the catalytic process. Cyclooctat-9-en-7-ol synthase (CotB2) synthesizes an unusual 5-8-5 fused-ring structure with six chiral centers from the universal diterpene precursor, the achiral C20 geranylgeranyl diphosphate substrate. An unusual new mechanism for the exquisite CotB2-catalyzed cyclization that involves a carbon-carbon backbone rearrangement and three long-range hydride shifts is proposed, based on a powerful combination of in vivo studies using uniformly (13)C-labeled glucose and in vitro reactions of regiospecifically deuterium-substituted geranylgeranyl diphosphate substrates. This study shows that CotB2 elegantly demonstrates the synthetic virtuosity and stereochemical control that evolution has conferred on terpene synthases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. HPLC determination of certain flavonoids and terpene lactones in selected Ginkgo biloba L. phytopharmaceuticals.

    Science.gov (United States)

    Mesbah, Mostafa K; Khalifa, Sherief I; El-Gindy, Alaa; Tawfik, Kamilia A

    2005-01-01

    The biologically active secondary metabolites of Ginkgo biloba extract EGb 761 in phytopharmaceuticals were analyzed using two simple, rapid, accurate and sensitive HPLC methods. The proposed methods were successfully applied in the determination of terpenes and flavonoids in four phytopharmaceutical preparations selected from the Egyptian market. The terpenes; ginkgolide A, ginkgolide B, and bilobalide were analyzed using RP 18 column with a mobile phase consisting of water/methanol/isopropanol (72.5:17.5:10, v/v) at a flow rate of 1 ml min-1 and UV detection at 220 nm. The flavonoids; quercetin and kaempferol were analyzed using RP 18 column in a step gradient elution with acetonitrile and water at pH 3.3 and flow rate of 1.5 ml min-1 with UV detection at 370 nm. The two HPLC methods were completely validated.

  17. Polyphenylenesulfide, noxon® an ozone scavenger for the analysis of oxygenated terpenes in air

    Science.gov (United States)

    Calogirou, A.; Duane, M.; Kotzias, D.; Lahaniati, M.; Larsen, B. R.

    During sampling, oxygenated terpenes may undergo decomposition through reaction with atmospheric ozone. We have studied their ozonolytic decomposition during preconcentration on Tenax. The saturated. terpenoids 1,8-cineole, bornyl acetate nopinone and pinonaldehyde are practically unaffected by ozone in the range of 8 to 120 ppbv. Compounds which contain one or more C-C double bonds are decomposed in the order: linalool ≈ citronellal ≈ 6-methyl-5-hepten-2-one > citral > 4-acetyl-1-methyl-cyclohexane > 3-(1-methylethenyl)-6-oxo-heptanal > myrtenal ≈ 2-methyl-3-buten-2-ol. The degree of decomposition varies from 0 to 5% for the least reactive to 80 to 90% for the most reactive compounds. A broad range of material was investigated as potential ozone scavengers. By using the polymer noXon (polyphenylenesulfide) all the investigated compounds could be sampled with quantitative recoveries even at high ozone mixing ratios (95-110 ppbv). This ozone scrubber was tested for sampling of terpene oxidation products on Tenax and dinitrophenylhydrazine impregnated C 18-silicagel cartridges. Recoveries from 85 to 110% were obtained for all investigated compounds. The method was used for the analysis of oxidation products of terpenes in ambient air in three campaigns. Attention was focused on nopinone from β-pinene, pinonaldehyde from α-pinene, 3-(1-methylethenyl)-6-oxo-heptanal and 4-acetyl-1-methyl-cyclohexane from limonene, and 5-(1-methylethyl)-bicyclo[3.1.0] hexan-2-one from sabinene. Nopinone was the only product which could be frequently detected in ratios from 0 to 90% of the measured β-pinene concentrations. Pinonaldehyde was encountered only once (30% of α-pinene) while the other products were not found. These data have to be seen as a first attempt to measure terpene oxidation products in the troposphere.

  18. Selected terpenes from leaves of Ocimum basilicum L. induce hemoglobin accumulation in human K562 cells.

    Science.gov (United States)

    Giordana, Feriotto; Nicola, Marchetti; Valentina, Costa; Torricelli, Piera; Beninati, Simone; Tagliati, Federico; Mischiati, Carlo

    2018-02-13

    Re-expression of fetal hemoglobin (HbF) was proposed as a possible therapeutic strategy for β-haemoglobinopathies. Although several inducers of HbF were tested in clinical trials, only hydroxyurea (HU) received FDA approval. Despite it produced adequate HbF levels only in half of HU-treated SCD patients, and was ineffective at all in β-thalassemia patients, beneficial effects of this approach suggested to continue in this direction identifying further molecules capable of inducing HbF. We tested the potential of essential oil isolated from Ocimum basilicum L. leaves (ObEO) in inducing hemoglobin biosynthesis. Initially, dose-dependent effect and kinetics of hemoglobin accumulation in K562 cells after treatment with ObEO were evaluated. ObEO induced dose-dependent hemoglobin accumulation superior to hydroxyurea and rapamycin and a strongest γ-globin mRNA expression. Terpenes composition of ObEO was studied by GC-MS. Three main constituents, linalool, eugenol and eucalyptol, represented about 75% of total. A blend of these three terpenes fully replicated the ObEO's biological effect, thus indicating that one of them or all together could be the active ingredients. When terpenes were tested individually, eugenol was the only one inducing stable hemoglobin accumulation, while eucalyptol and linalool produced only a small transient response. However, eugenol potential was strongly enhanced in the presence of eucalyptol and linalool, suggesting a synergistic effect on hemoglobin accumulation. By these results, the discovery of a new inducer and the interesting activity of a blend of major terpenes from ObOE on Hb accumulation could have positive fallouts on β-thalassemia and sickle cells anemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. An improved technique for the rapid chemical characterisation of bacterial terpene cyclases.

    Science.gov (United States)

    Dickschat, Jeroen S; Pahirulzaman, Khomaizon A K; Rabe, Patrick; Klapschinski, Tim A

    2014-04-14

    A derivative of the pET28c(+) expression vector was constructed. It contains a yeast replication system (2μ origin of replication) and a yeast selectable marker (URA3), and can be used for gene cloning in yeast by efficient homologous recombination, and for heterologous expression in E. coli. The vector was used for the expression and chemical characterisation of three bacterial terpene cyclases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of commercial rosemary oleoresin preparations on ground chicken thigh meat quality packaged in a high-oxygen atmosphere.

    Science.gov (United States)

    Keokamnerd, T; Acton, J C; Han, I Y; Dawson, P L

    2008-01-01

    Four commercial rosemary oleoresin preparations were added to ground chicken thigh meat at the recommended levels of the manufacturer then packaged in 80% O(2)-20% CO(2) modified atmosphere trays. The rosemary preparations differed in oil and water solubility, dispersion properties, or both. Addition of rosemary to ground chicken had an overall positive effect on raw meat appearance during storage and cooked meat flavor. No effect on bacterial growth was observed due to rosemary addition. However, oxidation was slowed in meat with added rosemary as indicated by lower TBA values, lower hexanal concentrations, and sensory scores. Color (redness) was more stable in meat with added rosemary compared with meat without rosemary, as reflected in redness (a*) values, hue angles, and visual scores. Of the 4 rosemary preparations tested, the oil-soluble, most concentrated preparation (HT-O) was most effective in maintaining meat quality compared with the other 3 types tested.

  1. DFT Calculations and ROESY NMR Data for the Diastereochemical Characterization of Cytotoxic Tetraterpenoids from the Oleoresin of Abies balsamea.

    Science.gov (United States)

    Lavoie, Serge; Gauthier, Charles; Mshvildadze, Vakhtang; Legault, Jean; Roger, Benoit; Pichette, André

    2015-12-24

    Eight non-carotenoid tetraterpenoids, abibalsamins C-J (3-10), were isolated from the oleoresin of Abies balsamea. Their chemical structures were determined based on analysis of 1D/2D NMR and MS data. The assignment of their relative configurations was accomplished using homonuclear coupling constants in tandem with ROESY data. However, the presence of two stereogenic centers on a flexible side chain complicated the characterization. In silico models and ROESY data were analyzed in order to assign relative configurations of the isolated tetraterpenoids. Abibalsamins B and H-J showed moderate cytotoxicity against human A549 lung carcinoma cells, with IC50 values ranging between 6.7 and 10 μM.

  2. Chemotypic variation in terpenes emitted from storage pools influences early aphid colonisation on tansy.

    Science.gov (United States)

    Clancy, Mary V; Zytynska, Sharon E; Senft, Matthias; Weisser, Wolfgang W; Schnitzler, Jörg-Peter

    2016-11-28

    Tansy plants (Tanacetum vulgare L.) exhibit high chemical variation, particularly in mono- and sesquiterpenes that are stored in specialised glands on the plant surface. In the present work we investigated the effects of terpene chemotypes on Metopeurum fuscoviride, an aphid species specialised on tansy, and their tending ants, at the field scale. Previous studies have chemotyped tansy by assessing dominant compounds; here we propose a method of chemotyping using all volatile compounds that are likely emitted from the storage glands. The analysis is based on two extraction methods: GC-MS analysis of leaf hexane extracts and SBSE analysis of headspace emissions. In an initial screening we identified the subset of compounds present in both chemical patterns, labelled as 'compounds likely emitted from storage'. In a large field survey we could show that the putative chemotypic emission pattern from storage pools significantly affected the early aphid colonisation of tansy. Moreover, the statistical analyses revealed that minor compounds exerted a stronger influence on aphid and tending-ant presence than dominant compounds. Overall we demonstrated that within the enormous chemotypic variation of terpenes in tansy plants, chemical signatures of volatile terpenes can be related to the occurrence of insects on individual plants in the field.

  3. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Science.gov (United States)

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  4. Synthesis and antibacterial properties of 2,3-dideoxyglucosides of terpene alcohols and phenols.

    Science.gov (United States)

    Bound, D James; Murthy, Pushpa S; Srinivas, P

    2015-10-15

    Essential oils and their oxygenated terpene constituents possess potent antimicrobial properties. In the present study, a facile synthetic route to the 2,3-dideoxy 1-O-glucosides of important phenols and terpene alcohols in excellent yields (85-96%) has been delineated. Studies on their antimicrobial action against four food-borne pathogens--Bacillus cereus, Staphylococcus aureus, Escherichia coli and Yersinia enterocolitica--demonstrated that the zone of inhibition, in general, was higher for the 2,3-unsaturated 1-O-glucoside derivatives (1b-6b) and the corresponding saturated glucosides (1c-5c) when compared to the parent alcohols/phenols (1-6). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for these derivatives too were generally lower than those of the parent compounds. Furthermore, the time-kill and bacteriolysis assays too demonstrated the greater antimicrobial potential of the derivatives. The 2,3-dideoxy 1-O-glucosides of phenols and terpene alcohols were more effective in their antimicrobial action than the corresponding parent compounds. The study indicated that these novel derivatives can find useful application in control of food-related pathogenic microbes in foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Berta Alquézar

    2017-08-01

    Full Text Available Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck genome sequence allowed us to characterize for the first time the terpene synthase (TPS family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  6. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates.

    Science.gov (United States)

    Bution, Murillo L; Molina, Gustavo; Abrahão, Meissa R E; Pastore, Gláucia M

    2015-01-01

    Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aromas in industry. Terpenes belong to the largest class of natural compounds, are produced by all living organisms and play a fundamental role in human nutrition, cosmetics and medicine. Recent advances in systems biology and synthetic biology are allowing us to perform metabolic engineering at the whole-cell level, thus enabling the optimal design of microorganisms for the efficient production of drugs, cosmetic and food additives. This review describes the recent advances made in the genetic and metabolic engineering of the terpenes pathway with a particular focus on systems biotechnology.

  7. Determination of terpenes in tequila by solid phase microextraction-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Peña-Alvarez, Araceli; Capella, Santiago; Juárez, Rocío; Labastida, Carmen

    2006-11-17

    Solid phase microextraction and capillary gas chromatography-mass spectrometry were used for the determination of seven terpenes in tequila. The method was selected based on the following parameters: coating selection (PA, PDMS, CW/DVB, and PDMS/DVB), extraction temperature, addition of salt, and extraction time profile. The extraction conditions were: PDMS/DVB fiber, Headspace, 100% NaCl, 25 degrees C extraction temperature, 30 min extraction time and stirring at 1200 rpm. The calibration curves (50-1000 ng/ml) for the terpenes followed linear relationships with correlation coefficients (r) greater than 0.99, except for trans,trans-farnesol (r = 0.98). RSD values were smaller than 10% confirmed that the technique was precise. Samples from 18 different trade brands of "Aged" tequila analyzed with the developed method showed the same terpenes in different concentrations. The analytical procedure used is selective, robust (more than 100 analyses with the same fiber), fast and of low-cost.

  8. A Genome-Wide Scenario of Terpene Pathways in Self-pollinated Artemisia annua.

    Science.gov (United States)

    Ma, Dong-Ming; Wang, Zhilong; Wang, Liangjiang; Alejos-Gonzales, Fatima; Sun, Ming-An; Xie, De-Yu

    2015-11-02

    Scenarios of genes to metabolites in Artemisia annua remain uninvestigated. Here, we report the use of an integrated approach combining metabolomics, transcriptomics, and gene function analyses to characterize gene-to-terpene and terpene pathway scenarios in a self-pollinating variety of this species. Eighty-eight metabolites including 22 sesquiterpenes (e.g., artemisinin), 26 monoterpenes, two triterpenes, one diterpene and 38 other non-polar metabolites were identified from 14 tissues. These metabolites were differentially produced by leaves and flowers at lower to higher positions. Sequences from cDNA libraries of six tissues were assembled into 18 871 contigs and genome-wide gene expression profiles in tissues were strongly associated with developmental stages and spatial specificities. Sequence mining identified 47 genes that mapped to the artemisinin, non-amorphadiene sesquiterpene, monoterpene, triterpene, 2-C-methyl-D-erythritol 4-phosphate and mevalonate pathways. Pearson correlation analysis resulted in network integration that characterized significant correlations of gene-to-gene expression patterns and gene expression-to-metabolite levels in six tissues simultaneously. More importantly, manipulations of amorpha-4,11-diene synthase gene expression not only affected the activity of this pathway toward artemisinin, artemisinic acid, and arteannuin b but also altered non-amorphadiene sesquiterpene and genome-wide volatile profiles. Such gene-to-terpene landscapes associated with different tissues are fundamental to the metabolic engineering of artemisinin. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  9. Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows.

    Science.gov (United States)

    Oh, J; Harper, M; Giallongo, F; Bravo, D M; Wall, E H; Hristov, A N

    2017-03-01

    The objective of this experiment was to investigate the effects of rumen-protected Capsicum oleoresin (RPC) supplementation on feed intake, milk yield and composition, nutrient utilization, fecal microbial ecology, and responses to a glucose tolerance test in lactating dairy cows. Nine multiparous Holstein cows were used in a replicated 3 × 3 Latin square design balanced for residual effects with three 28-d periods. Each period consisted of 14 d for adaptation and 14 d for data collection and sampling. Treatments were 0 (control), 100, and 200 mg of RPC/cow per day. They were mixed with a small portion of the total mixed ration and top-dressed. Glucose tolerance test was conducted once during each experimental period by intravenous administration of glucose at a rate of 0.3 g/kg of body weight. Dry matter intake was not affected by RPC. Milk yield tended to increase for RPC treatments compared to the control. Feed efficiency was linearly increased by RPC supplementation. Concentrations of fat, true protein, and lactose in milk were not affected by RPC. Apparent total-tract digestibility of dry matter, organic matter, and crude protein was linearly increased, and fecal nitrogen excretion was linearly decreased by RPC supplementation. Rumen-protected Capsicum oleoresin did not affect the composition of fecal bacteria. Glucose concentration in serum was not affected by RPC supplementation post glucose challenge. However, compared to the control, RPC decreased serum insulin concentration at 5, 10, and 40 min post glucose challenge. The area under the insulin concentration curve was also decreased 25% by RPC. Concentration of nonesterified fatty acids and β-hydroxybutyrate in serum were not affected by RPC following glucose administration. In this study, RPC tended to increase milk production and increased feed efficiency in dairy cows. In addition, RPC decreased serum insulin concentration during the glucose tolerance test, but glucose concentration was not affected

  10. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions.

    Science.gov (United States)

    Wen, Ya-Qin; Zhong, Gan-Yuan; Gao, Yuan; Lan, Yi-Bin; Duan, Chang-Qing; Pan, Qiu-Hong

    2015-10-06

    Terpenes are of great interest to winemakers because of their extremely low perception thresholds and pleasant floral odors. Even for the same variety, terpene profile can be substantially different for grapevine growing environments. Recently a series of genes required for terpene biosynthesis were biochemically characterized in grape berries. However, the genes that dominate the differential terpene accumulation of grape berries between regions have yet to be identified. Free and glycosidically-bound terpenes were identified and quantified using gas chromatography-mass spectrometry (GC-MS) technique. The transcription expression profiling of the genes was obtained by RNA sequencing and part of the results were verified by quantitative real time PCR (QPCR). The gene co-expression networks were constructed with the Cytoscape software v 2.8.2 ( www.cytoscape.org). 'Muscat Blanc a Petits Grains' berries were collected from two wine-producing regions with strikingly different climates, Gaotai (GT) in Gansu Province and Changli (CL) in Hebei Province in China, at four developmental stages for two consecutive years. GC-MS analysis demonstrated that both free and glycosidically bound terpenes accumulated primarily after veraison and that mature grape berries from CL contained significantly higher concentrations of free and glycosidically bound terpenes than berries from GT. Transcriptome analysis revealed that some key genes involved in terpene biosynthesis were markedly up-regulated in the CL region. Particularly in the MEP pathway, the expression of VviHDR (1-hydroxy-2-methyl-2-butenyl 4-diphosphate reductase) paralleled with the accumulation of terpenes, which can promote the flow of isopentenyl diphosphate (IPP) into the terpene synthetic pathway. The glycosidically bound monoterpenes accumulated differentially along with maturation in both regions, which is synchronous with the expression of a monoterpene glucosyltransferase gene (VviUGT85A2L4 (VviGT14)). Other

  11. In vitro evaluation of antimicrobial activities of various commercial essential oils, oleoresin and pure compounds against food pathogens and application in ham.

    Science.gov (United States)

    Dussault, Dominic; Vu, Khanh Dang; Lacroix, Monique

    2014-01-01

    The purpose of this research was to evaluate the application of commercially available essential oils (EOs) and oleoresins to control bacterial pathogens for ready to eat food. In this study, sixty seven commercial EOs, oleoresins (ORs) and pure compounds were used to evaluate in vitro their antimicrobial activity against six food pathogens. These products were first screened for their antimicrobial activity using disk diffusion assay. Forty one products were then chosen for further analysis to determine their minimum inhibitory concentration against 6 different bacteria. There were 5 different products (allyl isothiocyanate, cinnamon Chinese cassia, cinnamon OR, oregano and red thyme) that showed high antimicrobial activity against all tested bacteria. Further analysis examined the effect of four selected EOs on controlling the growth rate of mixed cultures of Listeria monocytogenes in ham. A reduction of the growth rate by 19 and 10% was observed when oregano and cinnamon cassia EOs were respectively added in ham at a concentration of 500 ppm. © 2013.

  12. Isocratic non-aqueous reversed-phase high-performance liquid chromatographic separation of capsanthin and capsorubin in red peppers (Capsicum annuum L.), paprika and oleoresin.

    Science.gov (United States)

    Weissenberg, M; Schaeffler, I; Menagem, E; Barzilai, M; Levy, A

    1997-01-03

    A simple, rapid high-performance liquid chromatography method has been devised in order to separate and quantify the xanthophylls capsorubin and capasanthin present in red pepper (Capsicum annuum L.) fruits and preparations made from them (paprika and oleoresin). A reversed-phase isocratic non-aqueous system allows the separation of xanthophylls within a few minutes, with detection at 450 nm, using methyl red as internal standard to locate the various carotenoids and xanthophylls found in plant extracts. The selection of extraction solvents, mild saponification conditions, and chromatographic features is evaluated and discussed. The method is proposed for rapid screening of large plant populations, plant selection, as well as for paprika products and oleoresin, and also for nutrition and quality control studies.

  13. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values.

    Directory of Open Access Journals (Sweden)

    Heverton Silva Camargos

    Full Text Available Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6 parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9% at their respective IC50 values. For assays with high cell concentrations (2×10(9 parasites/mL, the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.

  14. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values.

    Science.gov (United States)

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6) parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9%) at their respective IC50 values. For assays with high cell concentrations (2×10(9) parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.

  15. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes.

    Science.gov (United States)

    Aizpurua-Olaizola, Oier; Soydaner, Umut; Öztürk, Ekin; Schibano, Daniele; Simsir, Yilmaz; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-02-26

    The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled conditions. Every week, three plants from each variety were cut and dried, and the leaves and flowers were analyzed separately. Eight major cannabinoids were analyzed via HPLC-DAD, and 28 terpenes were quantified using GC-FID and verified via GC-MS. The chemotypes of the plants, as defined by the tetrahydrocannabinolic acid/cannabidiolic acid (THCA/CBDA) ratio, were clear from the beginning and stable during growth. The concentrations of the major cannabinoids and terpenes were determined, and different patterns were found among the chemotypes. In particular, the plants from chemotypes II and III needed more time to reach peak production of THCA, CBDA, and monoterpenes. Differences in the cannabigerolic acid development among the different chemotypes and between monoterpene and sesquiterpene evolution patterns were also observed. Plants of different chemotypes were clearly differentiated by their terpene content, and characteristic terpenes of each chemotype were identified.

  16. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.

    Science.gov (United States)

    Nørgaard, A W; Kofoed-Sørensen, V; Mandin, C; Ventura, G; Mabilia, R; Perreca, E; Cattaneo, A; Spinazzè, A; Mihucz, V G; Szigeti, T; de Kluizenaar, Y; Cornelissen, H J M; Trantallidi, M; Carrer, P; Sakellaris, I; Bartzis, J; Wolkoff, P

    2014-11-18

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways.

  17. Enhancing Terpene yield from sugars via novel routes to 1-deoxy-d-xylulose 5-phosphate.

    Science.gov (United States)

    Kirby, James; Nishimoto, Minobu; Chow, Ruthie W N; Baidoo, Edward E K; Wang, George; Martin, Joel; Schackwitz, Wendy; Chan, Rossana; Fortman, Jeffrey L; Keasling, Jay D

    2015-01-01

    Terpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5 sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of a dxs deletion in Escherichia coli grown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-type E. coli yajO gene, annotated as a putative xylose reductase, or via various mutations in the native ribB gene. In vitro analysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway in E. coli for production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Genomic characterization, molecular cloning and expression analysis of two terpene synthases from Thymus caespititius (Lamiaceae).

    Science.gov (United States)

    Lima, A Sofia; Schimmel, Jette; Lukas, Brigitte; Novak, Johannes; Barroso, José G; Figueiredo, A Cristina; Pedro, Luis G; Degenhardt, Jörg; Trindade, Helena

    2013-07-01

    The identification, isolation and functional characterization of two genes encoding two monoterpene synthases-γ-terpinene synthase (Tctps2) and α-terpineol synthase (Tctps5)-from three chemically distinct Thymus caespititius (Lamiaceae) genotypes were performed. Genomic exon-intron structure was also determined for both terpene synthase genes, revealing an organization with seven exons and six introns. The cDNA of Tctps2 was 2,308 bp long and had an open reading frame of 1,794 bp encoding for a protein with 598 amino acids. Tctps5 was longer, mainly due to intron sequences, and presented high intraspecific variability on the plants analyzed. It encoded for a protein of 602 amino acids from an open reading frame of 1,806 bp comprising a total of 2,507 bp genomic sequence. The amino acid sequence of these two active Tctps genes shared 74 % pairwise identity, ranging between 42 and 94 % similarity with about 50 known terpene synthases of other Lamiaceae species. Gene expression revealed a multi-product Tctps2 and Tctps5 enzymes, producing γ-terpinene and α-terpineol as major components, respectively. These enzymatic results were consistent with the monoterpene profile present in T. caespititius field plants, suggesting a transcriptional regulation in leaves. Herewith reported for the first time for this species, these two newly characterized Tctps genes improve the understanding of the molecular mechanisms of reaction responsible for terpene biosynthesis and chemical diversity found in T. caespititius.

  19. [Regulation of terpene metabolism]. Annual progress report, March 15, 1991--March 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1992-12-31

    This report describes accomplishments over the past year on understanding of terpene synthesis in mint plants and sage. Specifically reported are the fractionation of 4-S-limonene synthetase, the enzyme responsible for the first committed step to monoterpene synthesis, along with isolation of the corresponding RNA and DNA cloning of its gene; the localization of the enzyme within the oil glands, regulation of transcription and translation of the synthetase, the pathway to camphor biosynthesis,a nd studies on the early stages and branch points of the isoprenoid pathway.

  20. Reaction rates of ozone and terpenes adsorbed to model indoor surfaces.

    Science.gov (United States)

    Springs, M; Wells, J R; Morrison, G C

    2011-08-01

    Reaction rates and reaction probabilities have been quantified on model indoor surfaces for the reaction of ozone with two monoterpenes (Δ(3) -carene and d-limonene). Molar surface loadings were obtained by performing breakthrough experiments in a plug-flow reactor (PFR) packed with beads of glass, polyvinylchloride or zirconium silicate. Reaction rates and probabilities were determined by equilibrating the PFR with both the terpene and the ozone and measuring the ozone consumption rate. To mimic typical indoor conditions, temperatures of 20, 25, and 30°C were used in both types of experiments along with a relative humidity ranging from 10% to 80%. The molar surface loading decreased with increased relative humidity, especially on glass, suggesting that water competed with the terpenes for adsorption sites. The ozone reactivity experiments indicate that higher surface loadings correspond with higher ozone uptake. The reaction probability for Δ(3) -carene with ozone ranged from 2.9 × 10(-6) to 3.0 × 10(-5) while reaction probabilities for d-limonene ranged from 2.8 × 10(-5) to 3.0 × 10(-4) . These surface reaction probabilities are roughly 10-100 times greater than the corresponding gas-phase values. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially for lower volatility terpenoids. At present, it is unclear how important heterogeneous reactions will be in influencing indoor concentrations of terpenes, ozone and their reaction products. We observe that surface reaction probabilities were 10 to 100 times greater than their corresponding gas-phase values. Thus indoor surfaces do enhance effective reaction rates and adsorption of terpenes will increase ozone flux to otherwise low-reactivity surfaces. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially

  1. In-vitro study on ureteral smooth muscle contractility with tamsulosin, nifedipine, and terpene mixture (Rowatinex®).

    Science.gov (United States)

    Whan Lee, J; Young Lee, M; Young Seo, I

    2015-06-01

    The aim of this study was to evaluate whether tamsulosin, an alpha-blocker, has an effect on decreasing spontaneous ureteral contractility with or without phenylephrine, an alpha-agonist. Additionally, nifedipine and a terpene mixture (Rowatinex®) were tested and compared with each other. We obtained ureteral segments from freshly killed eight-week-old rabbits. Preparation was performed in an aerated Krebs buffer (95% oxygen and 5% carbon dioxide) at a constant temperature of 37 °C. All segments were suspended into organ tissue baths containing aerated Krebs buffer using stainless steel hangers and clips. The ureter was divided into four segments: upper, middle, low and uretero-vesical junction. Each ureteral segment was suspended longitudinally and circularly by opposite corners, respectively. Tamsulosin, nifedipine, and the terpene mixture were separately applied into the segments. Contractile activities of each drug were recorded and analyzed by the PowerLab data acquisition system (AD instruments CO., USA). The area under the curve was compared between before and after each drug application for each 5 minutes with or without pheylephrine. Statistical analysis was performed using the unpaired Student's t test. Under Krebs solution, ureteral smooth muscle contractility was significantly decreased in all segments over 10(-6) M in tamsulosin, 10(-7) M in nifedipine and 0.001x1 concentrations in the terpene mixture (P=0.038). However, under Krebs solution with 10(-5) M phenylephrine, there was no significant difference at all concentrations in tamsoluin and nifedipine. In contrast to tamsolusin and nifedipine, there was a significant decrease in ureteral smooth muscle contractility in most of segments at 0.01x1 concentrations (P=0.042) in the terpene mixture. Tamsulosin, nifedipine, and the terpene mixture showed the effect on spontaneous ureteral contractility. In particular, the terpene mixture might have the better effect on decreasing ureteral smooth muscle

  2. Terpene content of wine from the aromatic grape variety ‘Irsai Oliver’ (Vitis vinifera L. depends on maceration time

    Directory of Open Access Journals (Sweden)

    Baron Mojmir

    2017-03-01

    Full Text Available This study deals with the determination of the content of both free and bound terpenes in berries and wine of the aromatic grapevine variety ‘Irsai Oliver’. Grapes were macerated in juice for different time intervals (viz. 0; 5; 12; 24 hours and thereafter processed to wine. The objective was to map the dependence of some selected terpenes on the period of maceration. Using gas chromatography, some nine organic compounds were detected. Attention was paid to contents of linalool (3,7-dimethylokta-1,6-dien-3-ol, 2,6-dimetyl-3,7-octadiene-2,6-diol, hotrienol ([(5E-3,7-dimethylocta-1,5,7-trien-3-yl] acetate, αterpineol (2-(4-Methyl-1-cyclohex-3-enylpropan-2-ol, β-citronellol (3,7-Dimethyloct-6-en-1-ol, nerol ((Z-3,7-dimethyl-2,6-octadien-1-ol, geraniol ((trans-3,7-dimethyl-2,6-oktadien-1-ol and epoxylinalool (2-(5-ethenyl-5-methyloxolan-2-ylpropan-2- ol: epoxylinalool 1 (trans-linalool oxide (furanoid cis-linalool oxide (furanoid and epoxylinalool 2 (trans-linalool oxide (pyranoid cis-linalool oxide (pyranoid. Some basic wine parameters (alcohol, pH, sugars and total acids were estimated as well. The terpene content in wine increased gradually with the period of maceration. The highest and the lowest amounts of terpenes were recorded after 24 hours of maceration and no maceration, respectively. The terpene glycosides content was higher than that of the aglycones. Linalool and 2,6-dimetyl-3,7-octadiene-2,6-diol were the most abundant terpenes.

  3. Biomimetic synthesis of (+)-ledene, (+)-viridiflorol, (-)-palustrol, (+)-spathulenol, and psiguadial A, C, and D via the platform terpene (+)-bicyclogermacrene.

    Science.gov (United States)

    Tran, Duc N; Cramer, Nicolai

    2014-08-18

    (+)-Bicyclogermacrene is a strained bicyclic and common sesquiterpene found in several essential oils. A short and good yielding synthesis of bicyclogermacrene proceeding in seven steps is reported. This terpene is used as key platform intermediate for a biomimetic access to several aromadendrene sesquiterpenoids, such as ledene, viridiflorol, palestrol, and spathulenol. Furthermore, bicyclogermacrene is shown to be the terpene component in the synthesis of the meroterpenoids psiguadial A, C, and D. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA

    Science.gov (United States)

    Nesterkina, Mariia; Kravchenko, Iryna

    2016-01-01

    Novel esters of γ-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg) was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg) and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects. PMID:27304960

  5. Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA

    Directory of Open Access Journals (Sweden)

    Mariia Nesterkina

    2016-06-01

    Full Text Available Novel esters of γ-aminobutyric acid (GABA with monocyclic terpenes were synthesized via Steglich esterification and characterized by 1H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects.

  6. Terpene trilactones from Ginkgo biloba are antagonists of cortical glycine and GABA(A) receptors.

    Science.gov (United States)

    Ivic, Lidija; Sands, Tristan T J; Fishkin, Nathan; Nakanishi, Koji; Kriegstein, Arnold R; Strømgaard, Kristian

    2003-12-05

    Glycine and gamma-aminobutyric acid, type A (GABA(A)) receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory synaptic transmission in the adult central nervous system. During development, the activation of these receptors leads to membrane depolarization. Ligands for the two receptors have important implications both in disease therapy and as pharmacological tools. Terpene trilactones (ginkgolides and bilobalide) are unique constituents of Ginkgo biloba extracts that have various effects on the central nervous system. We have investigated the relative potency of these compounds on glycine and GABA(A) receptors. We find that most of the ginkgolides are selective and potent antagonists of the glycine receptor. Bilobalide, the single major component in G. biloba extracts, also reduces glycine-induced currents, although to a lesser extent. Both ginkgolides and bilobalide inhibit GABA(A) receptors, with bilobalide demonstrating a more potent effect. Additionally, we provide evidence that open channels are required for glycine receptor inhibition by ginkgolides. Finally, we employ molecular modeling to elucidate the similarities and differences in the structure of the terpene trilactones to account for the pharmacological properties of these compounds and demonstrate a striking similarity between ginkgolides and picrotoxinin, a GABA(A) and recombinant glycine alpha-homomeric receptor antagonist.

  7. Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from Zea mays.

    Science.gov (United States)

    Vattekkatte, Abith; Gatto, Nathalie; Köllner, Tobias G; Degenhardt, Jörg; Gershenzon, Jonathan; Boland, Wilhelm

    2015-06-07

    Multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from maize (Zea mays) catalyze the conversion of farnesyl diphosphate (FDP) and geranyl diphosphate (GDP) into a complex mixture of sesquiterpenes and monoterpenes, respectively. Various isotopic and geometric isomers of natural substrates like (2Z)-[2-(2)H]- and [2,4,4,9,9,9-(2)H6]-(GDP) and (2Z,6E)-[2-(2)H]- and [2,4,4,13,13,13-(2)H6]-(FDP) were synthesized analogous to presumptive reaction intermediates. On incubation with labeled (2Z) substrates, TPS4 and TPS5 showed much lower kinetic isotope effects than the labeled (2E) substrates. Interestingly, the products arising from the deuterated (2Z)-precursors revealed a distinct preference for cyclic products and exhibited an enhanced turnover on comparison with natural (2E)-substrates. This increase in the efficiency due to (2Z) configuration emphasizes the rate limiting effect of the initial (2E) → (2Z) isomerization step in the reaction cascade of the multiproduct terpene synthases. Apart from turnover advantages, these results suggest that substrate geometry can be used as a tool to optimize the biosynthetic reaction cascade towards valuable cyclic terpenoids.

  8. Comparing terpenes from plant essential oils as pesticides for the poultry red mite (Dermanyssus gallinae).

    Science.gov (United States)

    Sparagano, O; Khallaayoune, K; Duvallet, G; Nayak, S; George, D

    2013-11-01

    Resistance to conventional synthetic pesticides has been widely reported in ticks, parasitic mites and other pests of veterinary and medical significance. New and novel approaches to manage these pests are therefore needed to ensure efficient control programmes that can be implemented now and in the future. Recent research in this area has focused on the pesticidal potential of plant essential oils. These products are attractive as pesticide candidates on the grounds of low mammalian toxicity, short environmental persistence and complex chemistries (limiting the development of pest resistance against them). Although issues may exist concerning reliability in efficacy of essential oils, these may be overcome by identifying and developing bioactive oil components for use in pest management. In the current work, three such components (terpenes) found in essential oils (eugenol, geraniol and citral) were tested against the poultry red mite Dermanyssus gallinae. All provided 100% mortality in toxicity tests when undiluted. Even at 1% of this dose, eugenol was 20% effective against experimental pest populations, although the remaining terpenes were largely ineffective at this concentration. © 2013 Blackwell Verlag GmbH.

  9. Terpene-induced porphyria and the illness of Vincent van Gogh

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, R.; Cable, E.; Cable, J.; Clements, E.; Donohue, S.; Greene, Y.; Srivastava, K.; Arnold, W.; Bonkovsky, H. (Univ. of Massachusetts Medical Center, Worcester (United States) Univ. of Kansas Medical Center, Kansas City (United States))

    1992-01-01

    Vincent van Gogh suffered from recurrent bouts of an illness that may have been acute porphyria and abused camphor and alcohol, the latter particularly in the form of absinthe, a liqueur distilled from wormwood that was popular in 19th C France. To learn whether camphor or terpenes found in absinthe are porphyrogenic, the authors studied them in cultures of chick embryo liver cells. All were found to be porphyrogenic, especially in the presence of deferoxamine. The terpenes also induced the activity and protein amount of 5-aminolevulinate synthase and heme oxygenase, and induced activities of benzphetamine demethylase. The degree of porphyrin and enzyme induction produced by 1mM camphor was similar to that produced by 50uM glutethimide, a potent porphyrogen. Potency of pinene and thujone were lower. Camphor and glutethimide both produced accumulations of 8- and 7-COOH porphyrins, whereas pinene and thujone produced 4- and 2-COOH porphyrin accumulation. The authors conclude that camphor, pinen and thujone are porphyrogenic, cable of exacerbating acute porphyria, and may have done so in van Gogh.

  10. Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3.

    Science.gov (United States)

    Liu, Jianyu; Huang, Fang; Wang, Xia; Zhang, Man; Zheng, Rui; Wang, Jiao; Yu, Deyue

    2014-07-01

    Terpenes (terpenoids or isoprenoids) constitute a large class of plant natural products and play numerous functional roles in primary and secondary metabolism as well as inecological interactions. This study presents a genomic analysis of 23 putative soybean (Glycine max) terpene synthase genes (GmTPSs) distributed over 10 of 20 chromosomes. The GmTPSs are grouped into six types based on gene architecture and sequence identity. Sequence alignment indicates that most GmTPSs contain the conserved aspartate-rich DDX2D motif, and two clades encoded by TPS-a and TPS-b contain variations of an arginine-rich RRX8W motif. Quantitative real-time PCR analysis demonstrated that GmTPSs were predominantly expressed in reproductive organs. Heterologous expression followed by enzymatic assay suggested that GmTPS3 functions as a geraniol synthase. We also generated transgenic tobacco plants ectopically expressing GmTPS3. In dual-choice feeding-preference and force-feeding assays, the transgenic tobacco lines expressing GmTPS3 exhibited enhanced resistance to cotton leafworms and an increased level of geraniol. Taken together, these data provide a comprehensive understanding of the TPS family in soybeans and suggest a promising approach to engineering transgenic plants with enhanced insect resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    Science.gov (United States)

    Klein, Felix; Farren, Naomi J.; Bozzetti, Carlo; Daellenbach, Kaspar R.; Kilic, Dogushan; Kumar, Nivedita K.; Pieber, Simone M.; Slowik, Jay G.; Tuthill, Rosemary N.; Hamilton, Jacqueline F.; Baltensperger, Urs; Prévôt, André S. H.; El Haddad, Imad

    2016-11-01

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air.

  12. Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet.

    Science.gov (United States)

    Kim, Joo-Yeon; Lee, Mak-Soon; Jung, Sunyoon; Joo, Hyunjin; Kim, Chong-Tai; Kim, In-Hwan; Seo, Sangjin; Oh, Soojung; Kim, Yangha

    2014-01-01

    This study determined the effects of oleoresin capsicum (OC) and nanoemulsion OC (NOC) on obesity in obese rats fed a high-fat diet. THE RATS WERE RANDOMLY SEPARATED INTO THREE GROUPS: a high-fat (HF) diet group, HF + OC diet group, and HF + NOC diet group. All groups were fed the diet and water ad libitum for 14 weeks. NOC reduced the body weight and adipose tissue mass, whereas OC did not. OC and NOC reduced mRNA levels of adipogenic genes, including peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, and fatty acid-binding protein in white adipose tissue. The mRNA levels of genes related to β-oxidation or thermogenesis including PPAR-α, palmitoyltransferase-1α, and uncoupling protein-2 were increased by the OC and NOC relative to the HF group. Both OC and NOC clearly stimulated AMP-activated protein kinase (AMPK) activity. In particular, PPAR-α, palmitoyltransferase-1α, uncoupling protein-2 expression, and AMPK activity were significantly increased in the NOC group compared to in the OC group. NOC decreased glycerol-3-phosphate dehydrogenase activity whereas OC did not. From these results, NOC could be suggested as a potential anti-obesity agent in obese rats fed a HF diet. The effects of the NOC on obesity were associated with changes of multiple gene expression, activation of AMPK, and inhibition of glycerol-3-phosphate dehydrogenase in white adipose tissue.

  13. Lipolytic efficacy of alginate double-layer nanoemulsion containing oleoresin capsicum in differentiated 3T3-L1 adipocytes.

    Science.gov (United States)

    Lee, Mak-Soon; Jung, Sunyoon; Shin, Yoonjin; Lee, Seohyun; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2017-01-01

    Background: Oleoresin capsicum (OC) is an organic extract from fruits of the genus Capsicum, and has been reported to have an anti-obesity effect. Objective: This study comparatively investigated lipolytic effects of single-layer nanoemulsion (SN) and alginate double-layer nanoemulsion (AN) containing OC in 3T3-L1 adipocytes. Methods: SN and AN were compared by analyzing the intracellular lipid accumulation, triglyceride (TG) content, release of free fatty acids (FFAs) and glycerol, and mRNA expression of genes related to adipogenesis and lipolysis were analyzed in fully differentiated 3T3-L1 adipocytes. Results: Compared with SN, AN exhibited higher efficiency in inhibiting the intracellular lipid accumulation and TG content, and enhanced the release of FFAs and glycerol into the medium. In AN-treated cells, mRNA levels of peroxisome proliferator-activated receptor-γ and the fatty acid-binding protein adipocyte protein-2, which are involved in adipogenesis, were down-regulated, whereas those of genes related to lipolysis, including hormone-sensitive lipase and carnitine palmitoyl transferase-1α, were up-regulated compared with SN-treated cells. Conclusion: The lipolytic effect of AN was greater than that of SN; this was partly associated with the increased TG hydrolysis via induction of lipolytic gene expression and suppression of adipogenic gene expression in 3T3-L1 adipocytes.​​​​.

  14. A randomized controlled trial comparing treatment regimens for acute pain for topical oleoresin capsaicin (pepper spray) exposure in adult volunteers.

    Science.gov (United States)

    Barry, James D; Hennessy, Robert; McManus, John G

    2008-01-01

    Several topical therapies have been proposed to treat acute pain from exposure to oleoresin capsaicin (OC). The purpose of this study was to determine the most beneficial topical treatment for relieving contact dermatitis pain caused by OC exposure. We performed a single-blind, randomized human experiment evaluating the effectiveness of five different regimens for the treatment of topical facial OC exposure. Forty-nine volunteer, adult law enforcement trainees were exposed to OC during a routine training exercise and were randomized to one of five treatment groups (aluminum hydroxide-magnesium hydroxide [Maalox], 2% lidocaine gel, baby shampoo, milk, or water). After initial self-decontamination with water, subjects rated their pain using a 10-cm visual analog scale (VAS) and then every 10 minutes, for a total of 60 minutes. Subjects were blinded to previous VAS recordings. A two-factor analysis of variance (ANOVA) (treatment, time) with repeated measures on one factor (time) was performed using a 1.3-cm difference as clinically significant. Forty-four men and five women, with an average age of 24 years, participated in the study. There was a significant difference in pain with respect to time (p 0.05). There was no significant difference in pain between treatment groups (p > 0.05). In this study, there was no significant difference in pain relief provided by five different treatment regimens. Time after exposure appeared to be the best predictor for decrease in pain.

  15. Multivariate optimization of a synergistic blend of oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate to stabilize sunflower oil.

    Science.gov (United States)

    Upadhyay, Rohit; Mishra, Hari Niwas

    2016-04-01

    The simultaneous optimization of a synergistic blend of oleoresin sage (SAG) and ascorbyl palmitate (AP) in sunflower oil (SO) was performed using central composite and rotatable design coupled with principal component analysis (PCA) and response surface methodology (RSM). The physicochemical parameters viz., peroxide value, anisidine value, free fatty acids, induction period, total polar matter, antioxidant capacity and conjugated diene value were considered as response variables. PCA reduced the original set of correlated responses to few uncorrelated principal components (PC). The PC1 (eigen value, 5.78; data variance explained, 82.53 %) was selected for optimization using RSM. The quadratic model adequately described the data (R (2) = 0. 91, p  0.05). The contour plot of PC 1 score indicated the optimal synergistic combination of 1289.19 and 218.06 ppm for SAG and AP, respectively. This combination of SAG and AP resulted in shelf life of 320 days at 25 °C estimated using linear shelf life prediction model. In conclusion, the versatility of PCA-RSM approach has resulted in an easy interpretation in multiple response optimizations. This approach can be considered as a useful guide to develop new oil blends stabilized with food additives from natural sources.

  16. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes

    NARCIS (Netherlands)

    Aizpurua-Olaizola, Oier; Soydaner, Umut; Öztürk, Ekin; Schibano, Daniele; Simsir, Yilmaz; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-01-01

    The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled

  17. Palladium-catalysed telomerisation of isoprene with glycerol and polyethylene glycol: A facile route to new terpene derivatives

    NARCIS (Netherlands)

    Gordillo, A.; Durán Páchon, L.; de Jesus, E.; Rothenberg, G.

    2009-01-01

    We present here the first example of the telomerisation of isoprene with glycerol and polyethylene glycol (PEG-200), opening a facile route to new terpene structures, based on a combination of renewable and petroleum-based feedstocks. The reaction is catalysed by a palladium-carbene complex.

  18. Effects of Terpene Chemotypes of Melaleuca alternifolia on Two Specialist Leaf Beetles and Susceptibility to Myrtle Rust.

    Science.gov (United States)

    Bustos-Segura, Carlos; Külheim, Carsten; Foley, William

    2015-10-01

    Plant chemical polymorphisms, or plant chemotypes, are characterized by intraspecific discrete differences of plant secondary metabolites in the same plant tissue. Chemotypes that differ in foliar terpene composition are found commonly in Myrtaceae. In this study, we focused on terpene chemotypes of medicinal tea tree, Melalecua alternifolia, to explore whether this variation affects two specialist herbivores Paropsisterna tigrina and Faex sp. (Coleoptera: Chrysomelidae), and if this could explain the maintenance of this variation. We tested whether insect performance, oviposition preference, and plant damage were associated with different chemotypes. We found that larval growth rate of Faex sp. was higher in chemotypes with high concentrations of 1,8-cineole, and that oviposition preference depended on the chemotype of the larval diet. Although performance traits and preference for oviposition of P. tigrina did not vary among chemotypes, adults inflicted less damage on plants with a high concentration of terpinolene. Additionally, we tested whether different chemotypes showed different levels of susceptibility by myrtle rust (Puccinia psidii). We found that plants with a high concentration of 1,8-cineole were more likely to be infected under controlled conditions. Although there is evidence that terpene chemotypes are a mediator of the interaction with natural enemies, the most detrimental pest of this plant, P. tigrina, does not seem to be affected by variation in plant terpenes.

  19. Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds.

    Science.gov (United States)

    Wu, Weihua; Liu, Fang; Davis, Ryan W

    2018-06-01

    Recent studies have revealed that caryophyllene and its stereoisomers not only exhibit multiple biological activities but also have desired properties as renewable candidates for ground transportation and jet fuel applications. This study presents the first significant production of caryophyllene and caryolan-1-ol by an engineered E. coli with heterologous expression of mevalonate pathway genes with a caryophyllene synthase and a caryolan-1-ol synthase. By optimizing metabolic flux and fermentation parameters, the engineered strains yielded 449 mg/L of total terpene, including 406 mg/L sesquiterpene with 100 mg/L caryophyllene and 10 mg/L caryolan-1-ol. Furthermore, a marine microalgae hydrolysate was used as the sole carbon source for the production of caryophyllene and other terpene compounds. Under the optimal fermentation conditions, 360 mg/L of total terpene, 322 mg/L of sesquiterpene, and 75 mg/L caryophyllene were obtained from the pretreated algae hydrolysates. The highest yields achieved on the biomass basis were 48 mg total terpene/g algae and 10 mg caryophyllene/g algae and the caryophyllene yield is approximately ten times higher than that from plant tissues by solvent extraction. The study provides a sustainable alternative for production of caryophyllene and its alcohol from microalgae biomass as potential candidates for next generation aviation fuels.

  20. Evaluation of oleoresin capsicum of Capsicum frutescenes var. Nagahari containing various percentages of capsaicinoids following inhalation as an active ingredient for tear gas munitions.

    Science.gov (United States)

    Kumar, Pravin; Deb, Utsab; Kaushik, M P

    2012-08-01

    Comparative efficacy as peripheral sensory irritant, oral and inhalation exposure studies were carried out on oleoresin capsicum (OC) of Capsicum frutescence var. Nagahari containing various percentages of capsaicinoids and two synthetic isomers of capsaicin in Swiss albino male mouse model to come up with a suitable active ingredient from natural source for tear gas munitions. The compounds screened were OC having varying percentages of capsaicinoids (20, 40 and 80%, respectively) and synthetic isomers (E and Z) of capsaicin (8-methyl-N-vanillyl-6-nonenamide). Mice were exposed to pyrotechnically generated smoke of the compounds in an all glass static exposure chamber for 15 min to determine acute inhalation toxicity (LC₅₀) and quantitative sensory irritation potential (RD₅₀). Acute oral median lethal dose (LD₅₀) was also evaluated. Safety index of tear gas (SITG), a ratio of lethal concentration 50% (LC₅₀) and the concentration which depresses respiration by 50% (RD₅₀) due to peripheral sensory irritation is also proposed. The compound having highest SITG is considered as the most suitable to be used for tear gas munitions. The study revealed that oleoresin capsicum containing 40% capsaicinoids had the highest SITG among the compounds studied. The oral dosage versus mortality pattern of some compounds did not follow a true dose-response curve (DRC); however, following inhalation, all the compounds followed DRC. It was concluded that oleoresin capsicum (40% capsaicinoids) may be considered as the most suitable and environmental friendly compound from natural source to be used as an active ingredient for tear gas munitions.

  1. Preservation Effect of Two-Stage Cinnamon Bark (Cinnamomum Burmanii) Oleoresin Microcapsules On Vacuum-Packed Ground Beef During Refrigerated Storage

    Science.gov (United States)

    Irfiana, D.; Utami, R.; Khasanah, L. U.; Manuhara, G. J.

    2017-04-01

    The purpose of this study was to determine the effect of two stage cinnamon bark oleoresin microcapsules (0%, 0.5% and 1%) on the TPC (Total Plate Count), TBA (thiobarbituric acid), pH, and RGB color (Red, Green, and Blue) of vacuum-packed ground beef during refrigerated storage (at 0, 4, 8, 12, and 16 days). This study showed that the addition of two stage cinnamon bark oleoresin microcapsules affected the quality of vacuum-packed ground beef during 16 days of refrigerated storage. The results showed that the TPC value of the vacuum-packed ground beef sample with the addition 0.5% and 1% microcapsules was lower than the value of control sample. The TPC value of the control sample, sample with additional 0.5% and 1% microcapsules were 5.94; 5.46; and 5.16 log CFU/g respectively. The TBA value of vacuum-packed ground beef were 0.055; 0.041; and 0.044 mg malonaldehyde/kg, resepectively on the 16th day of storage. The addition of two-stage cinnamon bark oleoresin microcapsules could inhibit the growth of microbia and decrease the oxidation process of vacuum-packed ground beef. Moreover, the change of vacuum-packed ground beef pH and RGB color with the addition 0.5% and 1% microcapsules were less than those of the control sample. The addition of 1% microcapsules showed the best effect in preserving the vacuum-packed ground beef.

  2. Supercritical CO₂extraction of oleoresin from marigold (Tagetes erecta L.) flowers and determination of its antioxidant components with online HPLC-ABTS(·+) assay.

    Science.gov (United States)

    Gong, Ying; Plander, Szabina; Xu, Honggao; Simandi, Bela; Gao, Yanxiang

    2011-12-01

    Marigold is a traditional medicine herb which shows good pharmacological activity in many aspects. It is very important to obtain and investigate the specific bioactive compounds from marigold. The objective of the study was to extract the oleoresin from marigold with supercritical CO(2) (SC-CO(2) ) at different pressures and temperatures, detect the fatty acid composition by gas chromatography-mass spectrometry and investigate the antioxidative components in the extracts by combined online high-performance liquid chromatography-2,2-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid (HPLC-ABTS(•+) ) post-column assay and HPLC-tandem mass spectrometry. For the pressure range (20-40 MPa) and temperature range (30-70 °C), 30 MPa/70 °C gave the highest yield of oleoresin (58.9 g kg(-1) ). The dominant fatty acids of marigold flower oleoresin were linoleic acid (>26.41%), palmitic acid (>24.22%) and oleinic acid (>20.12%). Significant effects of the extraction pressure and temperature on the antioxidant activity were observed (P < 0.05). Lutein esters, α-tocopherol, β-tocopherol, γ-tocopherol and δ-tocopherol were the dominant antioxidant compounds in the extracts. The study has shown that the yield and total antioxidant activity of the marigold extracts were affected by the pressure and temperature of SC-CO(2) , and that online HPLC technique could be used as an efficient and rapid method for separation and identification of bioactive compounds from a complex mixture. Copyright © 2011 Society of Chemical Industry.

  3. Lycopene in serum, skin and adipose tissues after tomato-oleoresin supplementation in patients undergoing haemorrhoidectomy or peri-anal fistulotomy.

    Science.gov (United States)

    Walfisch, Yossi; Walfisch, S; Agbaria, R; Levy, J; Sharoni, Y

    2003-10-01

    Lycopene, the main carotenoid found in tomatoes and tomato-based products, has been reported to be protective against several types of cancer. Assessment of changes in plasma concentration of carotenoids following ingestion of lycopene-rich food sources does not necessarily predict changes in lycopene concentration or distribution of its isomers in other body tissues. Our aim was to determine the relationship between concentrations of lycopene and other tomato carotenoids in human serum and body tissues after tomato-oleoresin supplementation. Tomato lycopene oleoresin (30 mg/d) or a placebo was administered for 1 to 7 weeks to seventy-five volunteers undergoing elective haemorrhoidectomy or peri-anal fistulotomy. Carotenoid concentration and isomer distribution in blood and in the surgically removed skin and adipose tissues was measured by HPLC. The serum concentration of lycopene increased after supplementation from 0.26 (SD 0.12) to 0.52 (SD 0.25) micromol/l (n 35; Ptreatment was 2.2-fold greater in the lycopene group than in the placebo group, a slightly higher ratio than that found in skin and adipose tissue (1.6- and 1.4-fold higher than the placebo, respectively). A significant correlation between serum and tissue concentrations was found for both beta-carotene and lycopene in the placebo group, whereas in the lycopene-supplemented group the correlation between serum and tissues remained the same for beta-carotene but for lycopene was weak. Lycopene supplementation did not significantly change the proportion of all-trans v. cis isomers in the serum and tissues, despite the fact that more than 90 % of the supplemented lycopene was in the all-trans form. These results show that tomato-oleoresin supplementation increases lycopene concentrations in serum and in adipose tissue and skin. The ability to increase lycopene levels in tissues is one of the prerequisites for using it as a food supplement with health benefits.

  4. Measurement of Secondary Products During Oxidation Reactions of Terpenes and Ozone Based on the PTR-MS Analysis: Effects of Coexistent Carbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Yukio Yanagisawa

    2010-11-01

    Full Text Available Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene.

  5. Measurement of Secondary Products During Oxidation Reactions of Terpenes and Ozone Based on the PTR-MS Analysis: Effects of Coexistent Carbonyl Compounds

    Science.gov (United States)

    Ishizuka, Yusuke; Tokumura, Masahiro; Mizukoshi, Atsushi; Noguchi, Miyuki; Yanagisawa, Yukio

    2010-01-01

    Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS) can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs) are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs) concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene. PMID:21139865

  6. Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites.

    Science.gov (United States)

    Gonzales-Vigil, Eliana; Hufnagel, David E; Kim, Jeongwoon; Last, Robert L; Barry, Cornelius S

    2012-09-01

    A systematic screen of volatile terpene production in the glandular trichomes of 79 accessions of Solanum habrochaites was conducted and revealed the presence of 21 mono- and sesquiterpenes that exhibit a range of qualitative and quantitative variation. Hierarchical clustering identified distinct terpene phenotypic modules with shared patterns of terpene accumulation across accessions. Several terpene modules could be assigned to previously identified terpene synthase (TPS) activities that included members of the TPS-e/f subfamily that utilize the unusual cis-prenyl diphosphate substrates neryl diphosphate and 2z,6z-farnesyl diphosphate. DNA sequencing and in vitro enzyme activity analysis of TPS-e/f members from S. habrochaites identified three previously unassigned enzyme activities that utilize these cisoid substrates. These produce either the monoterpenes α-pinene and limonene, or the sesquiterpene 7-epizingiberene, with the in vitro analyses that recapitulated the trichome chemistry found in planta. Comparison of the distribution of S. habrochaites accessions with terpene content revealed a strong preference for the presence of particular TPS20 alleles at distinct geographic locations. This study reveals that the unusually high intra-specific variation of volatile terpene synthesis in glandular trichomes of S. habrochaites is due at least in part to evolution at the TPS20 locus. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  7. [Spray for self-defense against subjects with aggressive behavior: review of the scientific literature on the use of oleoresin capsicum].

    Science.gov (United States)

    Clerici, Carlo Alfredo; Pelettii, Gianfranco; Veneroni, Laura; de Micheli, Angelo

    2012-01-01

    ABSTRACT. In several countries oleoresin capsicum (OC) spray is being used as non lethal weapon in recent years. In 2009 in Italy a Security Act has established that self-defence spray devices can lawfully be purchased and possessed by citizens; at the same time corps of local police started to adopt these devices for self defence and aid in arresting aggressive individuals. This article analizes the multidisciplinar literature about the efficacy and possible acute and long-term health risks of pepper spray for exposed individuals and police or civilians users. The paper also reports updated considerations about correct use of this devices.

  8. Circulating and in situ lymphocyte subsets and Langerhans cells in patients with compositae oleoresin dermatitis and increased ultraviolet A sensitivity during treatment with azathioprine

    Energy Technology Data Exchange (ETDEWEB)

    Baadsgaard, O.

    1986-04-01

    Circulating and in situ lymphocyte subsets and Langerhans cells in four patients with compositae oleoresin dermatitis and increased ultraviolet A sensitivity before and during treatment with azathioprine were estimated. It was found that the number of Leu 6+ Langerhans cells decreased during therapy. This decrease was accompanied by a reduction in the number of Leu 2a+, Leu 3a+, Leu 4+, DR+, and Leu M2+ cells in the blood and a reduction in the number of Leu 2a+, Leu 3a+, Leu 4+, and DR+ cells in the skin. Concomitantly with the changes in the number of immunocompetent cells, the eczema cleared.

  9. Influence of cultivar and maturity at harvest on the essential oil composition, oleoresin and [6]-gingerol contents in fresh ginger from northeast India.

    Science.gov (United States)

    Kiran, Challa Ravi; Chakka, Ashok Kumar; Amma, K P Padmakumari; Menon, A Nirmala; Kumar, M M Sree; Venugopalan, V V

    2013-05-01

    Severe flooding of the Brahmaputra River during the monsoon season and continuous rainfall in the northeast region (NER) of India cause an enormous loss of ginger crop every year. In this context, the present study investigates the variation in the essential oil composition and oleoresin and [6]-gingerol contents in 10 different fresh ginger cultivars harvested at 6- and 9-month maturity from five different states of NER. Monoterpenes, sesquiterpenes, and citral composition in the essential oil were evaluated to ascertain their dependence upon the maturity of ginger. Except Mizoram Thinglaidum, Mizoram Thingria, Nagaland Nadia, and Tripura I ginger cultivars, all other cultivars showed an increase in the citral content during the maturity that was observed for the first time. At 6-month maturity, a higher undecanone level was found in Nagaland Nadia (7.36 ± 0.61%), Tripura I (6.23 ± 0.61%), and Tripura III (9.17 ± 0.76%) cultivars, and these data can be used as a benchmark to identify those immature varieties. Interestingly, the Nagaland Nadia cultivar showed higher ar-curcumene (9.57 ± 0.58%) content than zingiberene (5.84 ± 0.24%), which was unique among all cultivars. Ginger harvested at 9-month maturity from the Tripura II cultivar had the highest citral content (22.03 ± 0.49%), and the Meghalaya Mahima cultivar had the highest zingiberene content (29.89 ± 2.92%). The oleoresin content was found to decrease with maturity in all cultivars, except Assam Fibreless and Manipur I. Moreover, the highest oleoresin (11.43 ± 0.58 and 9.42 ± 0.63%) and [6]-gingerol (1.67 ± 0.03 and 1.67 ± 0.05 g) contents were observed for Tripura II and Nagaland Nadia, respectively. This study suggests that Tripura and Nagaland are the most ideal locations in NER for ginger cultivation to obtain high yields of oleoresin and [6]-gingerol contents and harvesting at the 6-month maturation will compensate for the loss of ginger crop caused by the Brahmaputra River flooding in NER

  10. Synthesis and Analysis of Putative Terpene Oxidation Products and the Secondary Organic Aerosol Particles that Form from Them

    Science.gov (United States)

    Ebben, C. J.; Strick, B. F.; Upshur, M.; Shrestha, M.; Velarde, L.; Lu, Z.; Wang, H.; Xiao, D.; Batista, V. S.; Martin, S. T.; Thomson, R. J.; Geiger, F. M.

    2013-12-01

    The terpenes isoprene and α-pinene are abundant volatile organic compounds (VOCs) that are emitted by trees and oxidized in the atmosphere. However, the chemical processes involved in the formation of secondary organic aerosol (SOA) particles from VOCs are not well understood. In this work, we use a combined synthetic, analytical, and theoretical approach to gain a molecular level understanding of the chemistry involved in the formation of SOA particles from VOC precursors. To this end, we have synthesized putative products of isoprene and α-pinene oxidation and the oligomers that form from them. Specifically, we have focused on the epoxide and 2-methyltetraols that form from isoprene oxidation by hydroxyl radicals, as well as products of α-pinene ozonolysis. In our analysis, we utilize a spectroscopic technique called sum frequency generation (SFG). SFG is a coherent, surface-specific, vibrational spectroscopy that uses infrared and visible laser light fields, overlapped spatially and temporally at a surface, to probe vibrational transitions within molecules. Our use of this technique allows us to assess the chemical identity of aerosol-forming components at their surfaces, where interactions with the gas phase occur. The spectral responses from these compounds are compared to those of synthetic isoprene- and α-pinene-derived aerosol particles, as well as natural aerosol particles collected in tropical and boreal forests to begin to predict the constituents that may be present at the surfaces of these particles. In addition, isotope editing is utilized to gain a better understanding of α-pinene. The rigidity of this molecule makes it difficult to understand spectroscopically. The combination of synthesis with deuterium labeling, theory, and broadband and high-resolution SFG spectroscopy in the C-H and C-D stretching regions allow us to determine the orientation of this important molecule on a surface, which could have implications for its reactivity in the

  11. Assessing terpene content variability of whitebark pine in order to estimate representative sample size

    Directory of Open Access Journals (Sweden)

    Stefanović Milena

    2013-01-01

    Full Text Available In studies of population variability, particular attention has to be paid to the selection of a representative sample. The aim of this study was to assess the size of the new representative sample on the basis of the variability of chemical content of the initial sample on the example of a whitebark pine population. Statistical analysis included the content of 19 characteristics (terpene hydrocarbons and their derivates of the initial sample of 10 elements (trees. It was determined that the new sample should contain 20 trees so that the mean value calculated from it represents a basic set with a probability higher than 95 %. Determination of the lower limit of the representative sample size that guarantees a satisfactory reliability of generalization proved to be very important in order to achieve cost efficiency of the research. [Projekat Ministarstva nauke Republike Srbije, br. OI-173011, br. TR-37002 i br. III-43007

  12. Oxidized limonene and oxidized linalool - concomitant contact allergy to common fragrance terpenes

    DEFF Research Database (Denmark)

    Bråred Christensson, Johanna; Karlberg, Ann-Therese; Andersen, Klaus E

    2016-01-01

    BACKGROUND: Limonene and linalool are common fragrance terpenes. Both oxidized R-limonene and oxidized linalool have recently been patch tested in an international setting, showing contact allergy in 5.2% and 6.9% of dermatitis patients, respectively. OBJECTIVE: To investigate concomitant reactions...... between oxidized R-limonene and oxidized linalool in consecutive dermatitis patients. METHODS: Oxidized R-limonene 3.0% (containing limonene hydroperoxides 0.33%) and oxidized linalool 6% (linalool hydroperoxides 1%) in petrolatum were tested in 2900 consecutive dermatitis patients in Australia, Denmark......, Singapore, Spain, Sweden, and the United Kingdom. RESULTS: A total of 281 patients reacted to either oxidized R-limonene or oxidized linalool. Of these, 25% had concomitant reactions to both compounds, whereas 29% reacted only to oxidized R-limonene and 46% only to oxidized linalool. Of the 152 patients...

  13. Stingless bees use terpenes as olfactory cues to find resin sources.

    Science.gov (United States)

    Leonhardt, S D; Zeilhofer, S; Blüthgen, N; Schmitt, Thomas

    2010-09-01

    Insects largely rely on olfactory cues when seeking and judging information on nests, partners, or resources. Bees are known to use volatile compounds-besides visual cues-to find flowers suitable for pollen and nectar collection. Tropical stingless bees additionally collect large amounts of plant resins for nest construction, nest maintenance, nest defense, and to derive chemical constituents for their cuticular profiles. We here demonstrate that stingless bees of Borneo also use olfactory cues to find tree resins. They rely on volatile mono- and sesquiterpenes to locate or recognize known resin sources. Moreover, by modifying resin extracts, we found that stingless bees do not use the entire resin bouquet but relative proportions of several terpenes. In doing so, the bees are able to learn specific tree resin profiles and distinguish between tree species and partly even tree individuals.

  14. Application of terpene-induced cell for enhancing biodegradation of TCE contaminated soil

    Directory of Open Access Journals (Sweden)

    Ekawan Luepromchai

    2004-02-01

    Full Text Available Trichloroethylene (TCE, a chlorinated solvent, is a major water pollutant originating from spillage and inappropriate disposal of dry cleaning agents, degreasing solvents, and paint strippers. Due to its widespread contamination and potential health threat, remediation technology to clean-up TCE is necessary. Aerobic biodegradation of TCE is reported to occur via cometabolism, by which TCE degrading bacteria utilize other compounds such as toluene, phenol, and methane as growth substrate and enzyme inducer. Although toluene is reported to be the most effective inducer, it is regulated as a hazardous material and should not be applied to the environment. The objectives of this study were to identify an alternative enzyme inducer as well as to apply the induced bacteria for degradation of TCE in contaminated soil. We investigated the effect of terpenes, the main components in volatile essential oils of plants, on induction of TCE degradation in Rhodococcus gordoniae P3, a local Gram (+ bacterium. Selected terpenes including cumene, limonene, carvone and pinene at various concentrations were used in the study. Results from liquid culture showed that 25 mg l-1 cumeneinduced R. gordoniae P3 cells resulted in 75% degradation of 10 ppm TCE within 24 hrs. Soil microcosms were later employed to investigate the ability of cumene to enhance TCE biodegradation in the environment. There were two bioremediation treatments studied, including bioaugmentation, the inoculation of cumeneinduced R. gordoniae P3, and biostimulation, the addition of cumene to induce soil indigenous microorganisms to degrade TCE. Bioaugmentation and biostimulation were shown to accelerate TCE reduction significantly more than control treatment at the beginning of study. The results suggest that cumene-induced R. gordoniae P3 and cumene can achieve rapid TCE biodegradation.

  15. Impact of biogenic terpene emissions from Brassica napus on tropospheric ozone over Saxony (Germany): numerical investigation.

    Science.gov (United States)

    Renner, Eberhard; Münzenberg, Annette

    2003-01-01

    The role of biogenic emissions in tropospheric ozone production is currently under discussion and major aspects are not well understood yet. This study aims towards the estimation of the influence of biogenic emissions on tropospheric ozone concentrations over Saxony in general and of biogenic emissions from brassica napus in special. MODELLING TOOLS: The studies are performed by utilizing a coupled numerical modelling system consisting of the meteorological model METRAS and the chemistry transport model MUSCAT. For the chemical part, the Euro-RADM algorithm is used. EMISSIONS: Anthropogenic and biogenic emissions are taken into account. The anthropogenic emissions are introduced by an emission inventory. Biogenic emissions, VOC and NO, are calculated within the chemical transport model MUSCAT at each time step and in each grid cell depending on land use type and on the temperature. The emissions of hydrocarbons from forest areas as well as biogenic NO especially from agricultural grounds are considered. Also terpene emissions from brassica napus fields are estimated. SIMULATION SETUP AND METEOROLOGICAL CONDITIONS: The simulations were performed over an area with an extension of 160 x 140 km2 which covers the main parts of Saxony and neighboring areas of Brandenburg, Sachsen-Anhalt and Thuringia. Summer smog with high ozone concentrations can be expected during high pressure conditions on hot summer days. Typical meteorological conditions for such cases were introduced in an conceptual way. It is estimated that biogenic emissions change tropospheric ozone concentrations in a noticeable way (up to 15% to 20%) and, therefore, should not be neglected in studies about tropospheric ozone. Emissions from brassica napus do have a moderate potential to enhance tropospheric ozone concentrations, but emissions are still under consideration and, therefore, results vary to a high degree. Summing up, the effect of brassica napus terpene emissions on ozone concentrations is

  16. Comparative genomic and transcriptomic analysis of terpene synthases in Arabidopsis and Medicago.

    Science.gov (United States)

    Parker, Michael T; Zhong, Yuan; Dai, Xinbin; Wang, Shiliang; Zhao, Patrick

    2014-08-01

    This study provides a timely comparative genomic and transcriptomic analysis of the terpene synthase (TPS) gene family in Medicago truncatula (bears glandular and non-glandular trichomes) and Arabidopsis thaliana (bears non-glandular trichomes). The authors' efforts aimed to gain insight into TPS function, phylogenetic relationships and the role of trichomes in terpene biosynthesis and function. In silico analysis identified 33 and 23 putative full-length TPS genes in Arabidopsis and Medicago, respectively. All AtTPS and MtTPS fall into the five established angiosperm TPS subfamilies, with lineage-specific expansion of Subfamily A in Arabidopsis and Subfamily G in Medicago. Large amounts of tandem duplication have occurred in both species, but only one syntenic duplication seems to have occurred in Arabidopsis, with no such duplication apparent in Medicago. Expression analysis indicates that there is much more trichome-localised TPS expression in Medicago than in Arabidopsis. However, TPS genes were expressed in non-glandular trichomes in both species. One trichome-specific gene has been identified in each Medicago and Arabidopsis along with flower-, seed-, stem- and root-specific genes. Of these, MtTPS11 is a promising candidate for trichome-specific genetic engineering, a technology that may be possible for both plants according to the findings of this manuscript. These results suggest that non-glandular trichomes may play a role in plant chemical defense and/or ecological communication instead of only in physical defence. Finally, the general lack of correlation between expression patterns and phylogenetic relationships in both species suggests that phylogenetic analysis alone is insufficient to predict gene function even for phylogenetically close paralogs.

  17. Enzyme-assisted supercritical carbon dioxide extraction of black pepper oleoresin for enhanced yield of piperine-rich extract.

    Science.gov (United States)

    Dutta, Sayantani; Bhattacharjee, Paramita

    2015-07-01

    Black pepper (Piper nigrum L.), the King of Spices is the most popular spice globally and its active ingredient, piperine, is reportedly known for its therapeutic potency. In this work, enzyme-assisted supercritical carbon dioxide (SC-CO2) extraction of black pepper oleoresin was investigated using α-amylase (from Bacillus licheniformis) for enhanced yield of piperine-rich extract possessing good combination of phytochemical properties. Optimization of the extraction parameters (without enzyme), mainly temperature and pressure, was conducted in both batch and continuous modes and the optimized conditions that provided the maximum yield of piperine was in the batch mode, with a sample size of 20 g of black pepper powder (particle diameter 0.42 ± 0.02 mm) at 60 °C and 300 bar at 2 L/min of CO2 flow. Studies on activity of α-amylase were conducted under these optimized conditions in both batch and continuous modes, with varying amounts of lyophilized enzyme (2 mg, 5 mg and 10 mg) and time of exposure of the enzyme to SC-CO2 (2.25 h and 4.25 h). The specific activity of the enzyme increased by 2.13 times when treated in the continuous mode than in the batch mode (1.25 times increase). The structural changes of the treated enzymes were studied by (1)H NMR analyses. In case of α-amylase assisted extractions of black pepper, both batch and continuous modes significantly increased the yields and phytochemical properties of piperine-rich extracts; with higher increase in batch mode than in continuous. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03.

    Science.gov (United States)

    Huang, Mengsu; Abel, Christian; Sohrabi, Reza; Petri, Jana; Haupt, Ina; Cosimano, John; Gershenzon, Jonathan; Tholl, Dorothea

    2010-07-01

    When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated intraspecific differences of volatile emissions induced from rosette leaves of 27 accessions of Arabidopsis (Arabidopsis thaliana) upon treatment with coronalon, a jasmonate mimic eliciting responses similar to those caused by insect feeding. Quantitative variation was found for the emission of the monoterpene (E)-beta-ocimene, the sesquiterpene (E,E)-alpha-farnesene, the irregular homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene, and the benzenoid compound methyl salicylate. Differences in the relative emissions of (E)-beta-ocimene and (E,E)-alpha-farnesene from accession Wassilewskija (Ws), a high-(E)-beta-ocimene emitter, and accession Columbia (Col-0), a trace-(E)-beta-ocimene emitter, were attributed to allelic variation of two closely related, tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-beta-ocimene and (E,E)-alpha-farnesene synthase activities. However, differential subcellular compartmentalization of the two enzymes in plastids and the cytosol was found to be responsible for the ecotype-specific differences in (E)-beta-ocimene/(E,E)-alpha-farnesene emission. Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and insect treatment and occurs constitutively in floral tissues. Our studies show that both pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes control the variation and plasticity of induced volatile emissions in wild plant species.

  19. Oxidative stability of refined olive and sunflower oils supplemented with lycopene-rich oleoresin from tomato peels industrial by-product, during accelerated shelf-life storage.

    Science.gov (United States)

    Kehili, Mouna; Choura, Sirine; Zammel, Ayachi; Allouche, Noureddine; Sayadi, Sami

    2018-04-25

    Tomato peels by-product from a Tunisian industry was used for the extraction of lycopene-rich oleoresin using hexane solvent maceration. Tomato peels oleoresin, TPO, exhibited competitive free radicals scavenging activity with synthetic antioxidants. The efficacy of TPO in stabilizing refined olive (ROO) and sunflower (RSO) oils was investigated for five months, under accelerated shelf-life, compared to the synthetic antioxidant, butylated hydroxytoluene (BHT). TPO was added to ROO and RSO at four different concentrations, namely 250, 500, 1000 and 2000 µg/g and BHT standard at 200 µg/g. Lipid oxidation was tracked by measuring the peroxide value, acidity, conjugated dienes and trienes. Results suggested the highest efficiency of 250 µg/g and 2000 µg/g of TPO, referring to 5 µg/g and 40 µg/g of lycopene, for the oxidative stabilization of ROO and RSO, respectively. The protective effect of TPO against the primary oxidation of these refined oils was significantly correlated to their lycopene contents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of a specific combination of carvacrol, cinnamaldehyde, and Capsicum oleoresin on the growth performance, carcass quality and gut integrity of broiler chickens

    Directory of Open Access Journals (Sweden)

    M. H. H. Awaad

    2014-05-01

    Full Text Available Aim: The effect of a specific combination (SC of carvacrol, cinnamaldehyde, and Capsicum oleoresin was investigated on productive performance and immune response in broiler chickens. Materials and Methods: Six hundred one-day-old broiler chickens were randomly allocated into two groups for 5 weeks. The SC was supplemented at 100 ppm of ration (presence or absence. Results: Treatment of broiler chickens with the SC improved productive performance variables as compared with the blank control birds. It decreased total mortality, increased final body weight, weight gain, production number and decreased final feed conversion ratio (FCR (P<0.05. The SC had a positive effect on carcass quality and enhanced HI titer against Newcastle disease (ND virus vaccine, as compared to their untreated control group (P<0.05. The SC treated birds had higher values of intestinal diameter than the control ones. Conclusion: It could be concluded that administration of a specific combination of carvacrol, cinnamaldehyde, and Capsicum oleoresin to broiler chickens improved chicken zootechnical performance response variables, had a potent immuno-modulatory effect (potentiated immune response and improved gut integrity. Eventually, this combination could be used as a replacement to the controversial feed additives (antibiotic growth promoters.

  1. Phytochemicals in Capsicum oleoresin from different varieties of hot chilli peppers with their antidiabetic and antioxidant activities due to some phenolic compounds.

    Science.gov (United States)

    Sricharoen, Phitchan; Lamaiphan, Nattida; Patthawaro, Pongpisoot; Limchoowong, Nunticha; Techawongstien, Suchila; Chanthai, Saksit

    2017-09-01

    Due to its wide use in nutritional therapy, a capsicum oleoresin extraction from hot chilli pepper was optimized using ultrasound assisted extraction. Under optimal conditions, a 0.1g sample in 10mL of a 20% water in methanol solution was extracted at 50°C for 20min to remove phytochemicals consisting of oleoresin, phenolics, carotenoids, flavonoids, capsaicinoids (pungency level), reducing sugars. Antioxidant and antidiabetic activities of the crude extracts from 14 chilli pepper varieties were examined. The antioxidant and antidiabetic activities of some phenolic compounds were also tested individually. The results showed that these chilli pepper samples are a rich source of phytochemicals with antioxidant and antidiabetic activities. High antioxidant activity of the extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl, N,N-dimethyl-p-phenylenediamine dihydrochloride, 2,2'-azino-bis(3-ethylbenzothiazolin-6-sulfonic acid) and ferric ion reducing antioxidant power assays. The crude extracts had a lower level of sugars induced by the inhibitory effect of α-amylase activity. Thus, their enzymatic inhibitory effect might have resulted from a synergism among the phytochemicals concerned. Therefore, a diet with this type of food may have beneficial health effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Process development for the enrichment of curcuminoids in turmeric spent oleoresin and its inhibitory potential against LDL oxidation and angiotensin-converting enzyme.

    Science.gov (United States)

    Nampoothiri, Suresh V; Praseetha, E K; Venugopalan, V V; Nirmala Menon, A

    2012-09-01

    Turmeric (Curcuma longa) contains biologically active colouring constituents, curcuminoids, which are isolated from the turmeric rhizome by solvent extraction. The mother liquor left after the separation of curcuminoids is known as turmeric spent oleoresin (SOT). The present study developed a method for the enrichment of curcuminoids in SOT. By using this method, curcuminoids in the SOT (8.4%) were doubled (17.5%). Presence of curcuminoids in enriched fraction was confirmed by high performance liquid chromatography (HPLC) and liquid chromatography coupled with mass spectroscopy analysis. Further studies on this fraction showed that it can effectively inhibit angiotensin-converting enzyme and low-density lipoprotein oxidation with IC(50) values of 19.45 μg/ml and 30.52 μg/ml, respectively. The results showed that curcuminoids enriched fraction (CEF) can reduce the risk of hypertension and cardiovascular diseases. In addition to this fraction, a turmerone-rich hexane fraction was also separated from the spent oleoresin.

  3. The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies.

    Science.gov (United States)

    Zhao, Tao; Krokene, Paal; Björklund, Niklas; Långström, Bo; Solheim, Halvor; Christiansen, Erik; Borg-Karlson, Anna-Karin

    2010-08-01

    Constitutive and inducible terpene production is involved in conifer resistance against bark beetles and their associated fungi. In this study 72 Norway spruce (Picea abies) were randomly assigned to methyl jasmonate (MJ) application, inoculation with the bluestain fungus Ceratocystis polonica, or no-treatment control. We investigated terpene levels in the stem bark of the trees before treatment, 30 days and one year after treatment using GC-MS and two-dimensional GC (2D-GC) with a chiral column, and monitored landing and attack rates of the spruce bark beetle, Ips typographus, on the trees by sticky traps and visual inspection. Thirty days after fungal inoculation the absolute amount and relative proportion of (+)-3-carene, sabinene, and terpinolene increased and (+)-alpha-pinene decreased. Spraying the stems with MJ tended to generally increase the concentration of most major terpenes with minor alteration to their relative proportions, but significant increases were only observed for (-)-beta-pinene and (-)-limonene. Fungal inoculation significantly increased the enantiomeric ratio of (-)-alpha-pinene and (-)-limonene 1 month after treatment, whereas MJ only increased that of (-)-limonene. One year after treatment, both MJ and fungal inoculation increased the concentration of most terpenes relative to undisturbed control trees, with significant changes in (-)-beta-pinene, (-)-beta-phellandrene and some other compounds. Terpene levels did not change in untreated stem sections after treatment, and chemical induction by MJ and C. polonica thus seemed to be restricted to the treated stem section. The enantiomeric ratio of (-)-alpha-pinene was significantly higher and the relative proportions of (-)-limonene were significantly lower in trees that were attractive to bark beetles compared to unattractive trees. One month after fungal inoculation, the total amount of diterpenes was significantly higher in putative resistant trees with shorter lesion lengths than in

  4. Cytotoxicity and antiangiogenic effects of Rhus coriaria, Pistacia vera and Pistacia khinjuk oleoresin methanol extracts.

    Science.gov (United States)

    Mirian, M; Behrooeian, M; Ghanadian, M; Dana, N; Sadeghi-Aliabadi, H

    2015-01-01

    Angiogenesis, formation of new blood vessels, play an important role in some diseases such as cancer and its metastasis. Using angiogenesis inhibitors, therefore, is one of the ways for cancer treatment and prevention of metastasis. Medicinal plants have been shown to play a major role in the treatment of a variety of cancers. In this direction, cytotoxic and angiogenic effects of oleo gum resin extracts of Rhus coriaria, Pistacia vera and Pistacia khinjuk from Anacardiaceae family were studied. For IC50 values, cytotoxic effects of the plant extracts were evaluated at different concentrations (1, 10, 20, 40, 80,100 μg/ml) against human umbilical vein endothelial normal cell (HUVEC) and Y79 cell lines using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. In vitro tube formation on matrigel base was used to evaluate angiogenic effects in the presence of increasing concentrations (50, 100, 250 μg/ml) of the extracts. Vascular endothelium growth factor was used as angiogenesis stimulator. Gas chromatography results showed that α-pinene and β-pinene were the major essential oils constituents of all plant extracts. According to the MTT assay results, the R. coriaria resin extract was more cytotoxic than those of P. vera and P. khinjuk extracts (IC50, 9.1 ± 1.6 vs 9.8 ± 2.1 and 12.0 ± 1.9, respectively; P<0.05). Cytotoxic effects of all extracts against Y79 cell line was significantly higher than those of HUVEC used as a normal cell line (P<0.05). Tube formation assay also showed that extract of R. coriaria resin inhibited angiogenesis more significantly than other tested extracts (P<0.05). It could be concluded that R. coriaria resin extract possess cytotoxic effect and antiangiogenesis against cancer cells and as an anticancer natural product has a good potential for future studies.

  5. The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares.

    Science.gov (United States)

    Welter, Saskia; Bracho-Nuñez, Araceli; Mir, Céline; Zimmer, Ina; Kesselmeier, Jürgen; Lumaret, Roselyne; Schnitzler, Jörg-Peter; Staudt, Michael

    2012-09-01

    Interspecific gene flow is common in oaks. In the Mediterranean, this process produced geographical differentiations and new species, which may have contributed to the diversification of the production of volatile terpenes in the oak species of this region. The endemic North African deciduous oak Quercus afares (Pomel) is considered to be a stabilized hybrid between the evergreen Quercus suber (L.) and the deciduous Quercus canariensis (Willd.), presumably being monoterpene and isoprene emitters, respectively. In a common garden experiment, we examined the terpene emission capacities, terpene synthase (TPS) activities and nuclear genetic markers in 52 trees of these three oak species. All but one of the Q. suber and Q. canariensis trees were found to be genetically pure, whereas most Q. afares trees possessed a mixed genotype with a predominance of Q. suber alleles. Analysis of the foliar terpene emissions and TPS activities revealed that all the Q. canariensis trees strongly produced isoprene while all the Q. suber trees were strong monoterpene producers. Quercus afares trees produced monoterpenes as well but at more variable and significantly lower rates, and with a monoterpene pattern different than that observed in Q. suber. Among 17 individuals tested, one Q. afares tree emitted only an insignificant amount of terpenes. No mixed isoprene/monoterpene emitter was detected. Our results suggest that the capacity and pattern of volatile terpene production in Algerian Q. afares populations have strongly diverged from those of its parental species and became quantitatively and qualitatively reduced, including the complete suppression of isoprene production.

  6. Potential Contribution of Fish Feed and Phytoplankton to the Content of Volatile Terpenes in Cultured Pangasius (Pangasianodon hypophthalmus) and Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Podduturi, Raju; Petersen, Mikael A; Mahmud, Sultan; Rahman, Md Mizanur; Jørgensen, Niels O G

    2017-05-10

    Geosmin and 2-methylisoborneol are the most recognized off-flavors in freshwater fish, but terpenes may also contribute off-flavor in fish. We identified six monoterpenes, 11 sesquiterpenes, and three terpene-related compounds in pangasius and tilapia from aquaculture farms in Bangladesh. The concentrations of most of the volatiles were below published odor thresholds, except for α-pinene, limonene, β-caryophyllene, α-humulene, and β-ionone in tilapia, and limonene and β-ionone in pangasius. To identify sources of the terpenes, terpene profiles of fish feed and phytoplankton in the ponds were analyzed. In feed and mustard cake (feed ingredient), five monoterpenes and two sesquiterpenes were identified, and five of these compounds were also detected in the fish. In phytoplankton, 11 monoterpenes were found and three also occurred in the fish. The higher number of terpenes common to both fish and feed, than to fish and phytoplankton, suggests that feed was a more abundant source of odor-active terpenes in the fish than phytoplankton.

  7. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves

    Directory of Open Access Journals (Sweden)

    Patil Shriniwas P.

    2017-07-01

    Full Text Available Several attempts have been made for green synthesis of silver nanoparticles (AgNPs using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii with LD50 value 514.50 µg/ml.

  8. Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization.

    Science.gov (United States)

    Llusia, Joan; Bermejo-Bermejo, Victoria; Calvete-Sogo, Héctor; Peñuelas, Josep

    2014-11-01

    Increasing tropospheric ozone (O3) and nitrogen soil availability (N) are two of the main drivers of global change. They both may affect gas exchange, including plant emission of volatiles such as terpenes. We conducted an experiment using open-top chambers to analyze these possible effects on two leguminous species of Mediterranean pastures that are known to have different O3 sensitivity, Ornithopus compressus and Trifolium striatum. O3 exposure and N fertilization did not affect the photosynthetic rates of O. compressus and T. striatum, although O3 tended to induce an increase in the stomatal conductance of both species, especially T. striatum, the most sensitive species. O3 and N soil availability reduced the emission of terpenes in O. compressus and T. striatum. If these responses are confirmed as a general pattern, O3 could affect the competitiveness of these species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves.

    Science.gov (United States)

    P, Patil Shriniwas; T, Kumbhar Subhash

    2017-07-01

    Several attempts have been made for green synthesis of silver nanoparticles (AgNPs) using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE) of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV-Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose - dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii) with LD50 value 514.50 µg/ml.

  10. QCM-Arrays for Sensing Terpenes in Fresh and Dried Herbs via Bio-Mimetic MIP Layers

    Directory of Open Access Journals (Sweden)

    Naseer Iqbal

    2010-06-01

    Full Text Available A piezoelectric 10 MHz multichannel quartz crystal microbalance (MQCM, coated with six molecularly imprinted polystyrene artificial recognition membranes have been developed for selective quantification of terpenes emanated from fresh and dried Lamiaceae family species, i.e., rosemary (Rosmarinus Officinalis L., basil (Ocimum Basilicum and sage (Salvia Officinalis. Optimal e-nose parameters, such as layer heights (1–6 KHz, sensitivity

  11. Correlation of the solubility of several aromatics and terpenes in aqueous hydroxypropyl-beta-cyclodextrin with steric and hydrophobicity parameters.

    Science.gov (United States)

    Demian, B A

    2000-10-06

    The solubility isotherms of nineteen aromatics and terpenes in aqueous hydroxypropyl-beta-cyclodextrin were determined to be straight lines. This is explained by the host-guest complexation which is characteristic for the whole class of cyclodextrins and derivatives. The slopes of the solubility isotherms correlate with Sterimol L and log P(ow) as descriptors of the steric fit and hydrophobicity match, in accord with the qualitative representation of the phenomenon.

  12. Effect of DC/mDC iontophoresis and terpenes on transdermal permeation of methotrexate: in vitro study.

    Science.gov (United States)

    Prasad, R; Koul, V; Anand, S; Khar, R K

    2007-03-21

    The systemic toxicity caused by methotrexate limits its use and transdermal delivery would be a possible alternative. Transdermal permeation of methotrexate loaded into polyacrylamide-based hydrogel patch, across mice skin was studied in vitro after pretreatment with terpenes and ethanol, alone or in combination with iontophoresis (DC/mDC). Polyacrylamide patches gave the maximum flux as compared to the copolymers of acrylamide and acrylic acid. Of the terpenes used, pure menthol showed maximum enhancement (38%), whereas pure limonene elicited a minimum of 9.9% enhancement. Binary combination of menthol and ethanol increased the permeation to 54.9%, which was further enhanced to 93.69% and 117% when used in combination with DC and square wave (mDC) iontophoresis, respectively. ATR-FTIR of the stratum corneum treated with terpenes showed a split in the asymmetric C-H stretching vibrations along with decrease in peak heights and areas of asymmetric, symmetric C-H stretching, C=O stretching and amide bands. A split in amide II band was observed with iontophoresis. ATR-FTIR studies suggest conformational changes in the lipid-protein domains thereby increasing permeation. Histopathological studies on treated skin samples, gave an insight about the anatomical changes brought by the application of various enhancers. Binary mixture of menthol and ethanol in combination with square wave gave best results.

  13. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases.

    Science.gov (United States)

    Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A; O'Maille, Paul E

    2014-01-01

    Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography-mass spectrometry (GC-MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of k cat/K M among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries.

  14. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L

    Directory of Open Access Journals (Sweden)

    Lundgren Anneli

    2011-03-01

    Full Text Available Abstract Background Recently, Artemisia annua L. (annual or sweet wormwood has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues. Results The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13 reductase and aldehyde dehydrogenase 1 showed remarkably higher expression (between ~40- to ~500-fold in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures. Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves. Conclusions Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes. The expression of dihydroartemisinic aldehyde reductase has been suggested to have a

  15. Effects of rumen-protected Capsicum oleoresin on immune responses in dairy cows intravenously challenged with lipopolysaccharide.

    Science.gov (United States)

    Oh, J; Harper, M; Giallongo, F; Bravo, D M; Wall, E H; Hristov, A N

    2017-03-01

    The objective of this experiment was to investigate the effects of rumen-protected Capsicum oleoresin (RPC) on productivity and immune responses including feed intake, milk yield and composition, white and red blood cells, lipid peroxidation, and blood concentration of cortisol, haptoglobin, glucose, and insulin in lactating dairy cows experimentally challenged with lipopolysaccharide (LPS). The experiment was a replicated 3 × 3 Latin square design with 9 multiparous Holstein cows in three 28-d periods. Treatments were 0 (control), 100, and 200 mg of RPC/cow per day, mixed with small portions of the total mixed ration and top-dressed. Bacterial LPS was intravenously administered at 1.0 μg/kg of body weight in the last week of each experimental period, and blood samples were collected at 0, 2, 4, 8, and 24 h after administration. Dry matter intake, milk yield, and white blood cells including neutrophils, lymphocytes, monocytes, and eosinophils were decreased, and rectal temperature, hemoglobin, and serum concentrations of cortisol and haptoglobin were increased by LPS. Red blood cells, platelets, and plasma concentration of thiobarbituric acid reactive substances were not affected by LPS. Dry matter intake, milk yield, and milk composition in the 5 d post-LPS challenge were not affected by RPC. Rectal temperature, white blood cells, red blood cells, hemoglobin, and platelets were also not affected by RPC. Compared with the control, RPC tended to decrease cortisol at 2 h following LPS challenge and decreased haptoglobin concentration in serum across sampling points. Concentration of thiobarbituric acid reactive substances in plasma was decreased by RPC at 24 h post-LPS challenge. Glucose and insulin were not affected by RPC, but serum insulin concentration at 8 h was lowered by RPC compared to the control. Collectively, RPC had no or subtle effects on feed intake, milk yield and composition, rectal temperature, white and red blood cells, and serum glucose and

  16. Isolation and biological activities of neomyrrhaol and other terpenes from the resin of Commiphora myrrha.

    Science.gov (United States)

    Su, Shu-Lan; Duan, Jin-Ao; Tang, Yu-Ping; Zhang, Xu; Yu, Li; Jiang, Feng-Rong; Zhou, Wei; Luo, Dan; Ding, An-Wei

    2009-03-01

    A new cycloartane-type triterpene named cycloartane-1alpha,2alpha,3beta,25-tetraol (neomyrrhaol) (1), along with four known terpenes, sandaracopimaric acid (2), abietic acid (3), 2-methoxy-5-acetoxyfruranogermacr-1(10)-en-6-one (4), and dehydroabietic acid (5) have been isolated from the resin of COMMIPHORA MYRRHA. Their structures were elucidated by means of 1D, 2 D NMR and HR-mass spectroscopy. Compounds 2-5 are known compounds but not previously isolated from the resin of C. MYRRHA. Compounds 4 and 5 exhibited significant aromatase inhibiting activity with IC50 values at 0.2 microM and 0.3 microM, respectively. As shown in the MTT assay, 2, 3, 4, and 5 had inhibitory effects on HUVEC growth with IC50 values of 0.122 microM (2), 0.125 microM (3), 0.069 microM (5). Compounds 1-5 did not inhibit contraction of the isolated uterine and did not protect HUVEC from damage induced by H2O2 at the tested concentration.

  17. Exposure to formaldehyde, nitrogen dioxide, ozone, and terpenes among office workers and associations with reported symptoms.

    Science.gov (United States)

    Glas, Bo; Stenberg, Berndt; Stenlund, Hans; Sunesson, Anna-Lena

    2015-07-01

    To compare exposure to formaldehyde, nitrogen dioxide, ozone and terpenes among office workers with and without sick building syndrome and the odds ratio for exposure. Are there significant differences? In this cross-sectional study of office workers, we investigated the associations between exposure to formaldehyde, nitrogen dioxide, ozone, α-pinene, and D-limonene using a case-control analysis. Data on perceived general, mucosal, and skin symptoms were obtained by questionnaires. Personal exposure measurements of the compounds were performed among cases and controls, and the odds ratios for exposures to the substances, both singly and in combination, were investigated. Exposures varied for formaldehyde between 0.23 and 45 µg/m(3), nitrogen dioxide between 0.26 and 110 µg/m(3), ozone between <16 and 165 µg/m(3), α-pinene between 0.2 and 170 µg/m(3), and D-limonene between 0.8 and 1,400 µg/m(3). No consistent differences in exposure odds ratios were found between cases and controls or for individual symptoms.

  18. Degradation of terpenes and terpenoids from Mediterranean rangelands by mixed rumen bacteria in vitro.

    Science.gov (United States)

    Malecky, M; Albarello, H; Broudiscou, L P

    2012-04-01

    This in vitro study aimed at estimating the disappearance rates of 14 terpenes and terpenoids after 24-h incubation with mixed bacteria from caprine rumens. These compounds comprised nine monoterpene hydrocarbons (δ-3-carene, p-cymene, β-myrcene, (E)- and (Z)-β-ocimene, α-phellandrene, α-terpinene, γ-terpinene and α-terpinolene), four oxygenated monoterpenes ((E)- and (Z)-linalool oxide, 4-terpinenol, α + γ terpineol) and one sesquiterpene hydrocarbon (β-cedrene). They were individually exposed to goat rumen microflora for 24 h in 70 ml culture tubes at an input level of 0.5 ml/l. Terpenoids were the least degraded, 100% of (E)-linalool oxide, 95% of (Z)-linalool oxide, 91% of 4-terpinenol and 75% of terpineol remained intact after 24-h incubation. In contrast, α-terpinolene concentration in fermentation broth extracts was below quantification limit, thus indicating an extensive, if not complete, degradation by rumen bacteria. Only 2% of the initial amounts of α-phellandrene were recovered. The other monoterpenes and β-cedrene were partly degraded, with losses ranging from 67% for δ-3-carene to 90% for (E)-β-ocimene. The corresponding rates of disappearance were between 2.67 and 4.08 μmol/ml inoculum per day.

  19. Quantitative structure-activity relationship study of phloroglucinol-terpene adducts as anti-leishmanial agents.

    Science.gov (United States)

    Bharate, Sandip B; Singh, Inder Pal

    2011-07-15

    Phloroglucinol class of natural products occur widely in Myrtaceae family and possess variety of biological activities viz. antimicrobial, antimalarial, cancer chemopreventive, anti-HIV and anti-leishmanial. In the present article, quantitative structure-activity relationship (QSAR) study was carried out for a series of phloroglucinol-terpene adducts exhibiting anti-leishmanial activity to find out the structural features which are crucial for the biological activity. The QSAR study was carried out using JChem for Excel and the best QSAR model was derived by multiple regression analysis. The best model of four descriptors yields squared correlation coefficient of 0.930 (s=0.096, F=65.93, Pstudy indicated that the lipophilic character (CLogP), isoelectric point, Haray index and Platt index play important role in anti-leishmanial activity of compounds. Anti-leishmanial activity of several structurally similar naturally occurring euglobals has also been predicted using developed QSAR model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. [Regulation of terpene metabolism]. Annual progress report, March 15, 1990--March 14, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-12-31

    During the last grant period, we have completed studies on the key pathways of monoterpene biosynthesis and catabolism in sage and peppermint, and have, by several lines of evidence, deciphered the rate-limiting step of each pathway. We have at least partially purified and characterized the relevant enzymes of each pathway. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation depends upon the balance between biosynthesis and catabolism, and provided supporting evidence that these processes are developmentally-regulated and very closely associated with senescence of the oil glands. Oil gland ontogeny has been characterized at the ultrastructural level. We have exploited foliar-applied bioregulators to delay gland senescence, and have developed tissue explant and cell culture systems to study several elusive aspects of catabolism. We have isolated pure gland cell clusters and localized monoterpene biosynthesis and catabolism within these structures, and have used these preparations as starting materials for the purification to homogeneity of target ``regulatory`` enzymes. We have thus developed the necessary background knowledge, based on a firm understanding of enzymology, as well as the necessary experimental tools for studying the regulation of monoterpene metabolism at the molecular level. Furthermore, we are now in a position to extend our systematic approach to other terpenoid classes (C{sub 15}-C{sub 30}) produced by oil glands.

  1. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.

    Science.gov (United States)

    Giunta, A D; Runyon, J B; Jenkins, M J; Teich, M

    2016-08-01

    Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with consequences for wildfires. In this study, we measured chemical changes to Douglas-fir (Pseudotsuga menziesii var. glauca (Mirb.) Franco) foliage in response to attack by Douglas-fir beetles (Dendroctonus pseudotsugae Hopkins) as trees die and crowns transitioned from green/healthy, to green-infested (year of attack), to yellow (year after attack), and red (2 yr after attack). We found large differences in volatile and within-needle terpene concentrations among crown classes and variation across a growing season. In general, emissions and concentrations of total and individual terpenes were greater for yellow and red needles than green needles. Douglas-fir beetle attack increased emissions and concentrations of terpene compounds linked to increased tree flammability in other conifer species and compounds known to attract beetles (e.g., [Formula: see text]-pinene, camphene, and D-limonene). There was little relationship between air temperature or within-needle concentrations of terpenes and emission of terpenes, suggesting that passive emission of terpenes (e.g., from dead foliage) does not fully explain changes in volatile emissions. The potential physiological causes and ecological consequences of these bark beetle-associated chemical changes are discussed. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Studies on the pinus species growing in Sri Lankan plantations. IV. Composition of oleoresin and turpentine of Pinus patula and Pinus caribaea of the Kottawa Plantation

    Energy Technology Data Exchange (ETDEWEB)

    Goonetilleke, L.A.; Jansz, E.R.; Balachandran, S.; Vivekanandan, K.

    1980-01-01

    Both the P. patula plantation at Nuwara Eliya and the P. caribaea (var Hondurensis) plantation at Kottawa, Galle, produce low oleoresin yields; only 10-20% of the plants produce > 10 g per tapping day. Turpentine content was also low with mean values of 15.2 and 12.6% for P. patula and P. caribaea, respectively. The major component of P. patula turpentine was beta-phellandrene (70%), the next largest component being longifolene (12%). The alpha-pinene levels of P. caribaea were relatively low (55%), with beta- phellandrene being relatively high for this species in Sri Lanka (26%). The composition of turpentine of P. montezumae (69% beta- phellandrene) and P. insularis (97% alpha-pinene) growing under Sri Lankan conditions was also studied.

  3. Photochemical oxidant injury and bark beetle coleoptera scolytidae infestation of ponderosa pine. II. Effect of injury upon physical properties of oleoresin, moisture content, and phloem thickness

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, F.W. Jr.; Wood, D.L.; Stark, R.W.; Miller, P.R.

    1968-05-01

    Studies were made during the summer, 1966, to determine the effects of air pollution injury (i.e., chlorotic decline) of ponderosa pine on various factors related to tree physiology. The results of these studies show that disease caused by photochemical atmospheric pollution affects certain physiological properties of ponderosa pine that may be related to increased susceptibility to bark beetles. Oleoresin exudation pressure, yield, and rate of flow were substantially reduced in severely affected trees, but crystallization of resin increased as the severity of the disease became greater. Both sapwood and phloem moisture contents were less in diseased trees. Phloem thickness in advanced-diseased trees was less than 60% of that in healthy trees.

  4. Development of a high performance liquid chromatography method for quantification of isomers β-caryophyllene and α-humulene in copaiba oleoresin using the Box-Behnken design.

    Science.gov (United States)

    de Almeida Borges, Vinícius Raphael; Ribeiro, Ana Ferreira; de Souza Anselmo, Carina; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira

    2013-12-01

    The sesquiterpene isomers, β-Cariofileno (CAR) and α-Humuleno (HUM) are the primary constituents of the copaiba oleoresin species. These natural products are primarily used by the Amazonian population and marketed as phytotherapies and cosmetics. The aim of this study was to develop and validate a method that simultaneously assays the isomers present in copaiba oleoresins by high performance liquid chromatography using the Box-Behnken design. After preliminary studies, the reverse phase chromatographic system was selected using a cyano column and a mobile phase consisting of acetonitrile and phosphate buffer. The Box-Behnken design was applied at three levels and with four independent variables: flow rate (X1), gradient slope time (X2), proportion of organic compounds at the end of the gradient (X3) and at the beginning of the gradient (X4). Also, the responses of the dependent variables: CAR retention time (Y1) and the resolution between the CAR and HUM peaks (Y2) was assessed. The mathematical model obtained from the regression results was satisfactory (R(2)>0.98, n=27) and showed a quadratic relationship where the effects of interactions between the variables, was observed by response surface graphs. The simultaneous optimization method was used to establish the best compromise of the resolution between the CAR and HUM isomers while adjusting the retention time of CAR. This method was successfully optimized by BBD obtaining chromatographic peaks with good symmetry, resolution and separation efficiency. The validation of the developed method confirmed its specificity, precision, accuracy and linearity in the range of 5.0-11.0 and 0.4-1.0μg/mL for CAR and HUM, respectively, and is considered suitable for routine applications which assure quality control. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A special terpene combination (Rowatinex®) improves stone clearance after extracorporeal shockwave lithotripsy in urolithiasis patients: results of a placebo-controlled randomised controlled trial.

    Science.gov (United States)

    Romics, Imre; Siller, György; Kohnen, Ralf; Mavrogenis, Stelios; Varga, József; Holman, Endre

    2011-01-01

    To investigate the safety and efficacy of a special terpene combination in the treatment of patients with urolithiasis after extracorporeal shockwave lithotripsy (ESWL). 222 patients with clinically stable kidney or ureter stones of 0.3-2.0 cm undergoing complication-free ESWL were randomised to receive a special terpene combination (Rowatinex®; 3 × 2 capsules/day) or placebo. The study consisted of a 12-week active treatment phase and a 2-week follow-up phase. All patients had a physical examination, and diagnosis of kidney stones was made by X-ray, intravenous pyelogram or ultrasound at weeks 1, 4, 8 and 12 as well as after 2 weeks of follow-up. Stone-free status was defined as obviously successful expulsion of calculi/fragments, being without any stone. In all, when compared to placebo, significantly more patients receiving the terpene combination treatment in the intent-to-treat (ITT) group [72 (67.9%) vs. 49 (50.0%); p = 0.0009] and the per-protocol (PP) group [69 (78.4%) vs. 48 (52.2%); p = 0.0004] were stone-free at the end of the study. Treatment with the terpene combination was also more effective when analysed with respect to the size of the treated stone. In addition, treatment with the terpene combination significantly reduced the median time to stone-free status from 85.0 to 56.0 days (p = 0.0061) and from 85.0 to 49.5 days (p = 0.0028) in the ITT and PP populations, respectively. Nine mild-to-moderate adverse events (AE; terpene combination group: 7 AE in 4 patients; placebo group: 2 AE in 2 patients) were assessed as drug-related. Treatment with the terpene combination is well tolerated and safe. The terpene combination was found to be an efficacious treatment in eliminating calculi fragments generated by ESWL as compared to placebo. The pharmacodynamic properties of the terpene combination (antilithogenic, antibacterial, antiinflammatory, spasmolytic and analgesic effects), which have been also confirmed in preclinical studies, represent a

  6. Immissions of terpenes over Picea abies stands in open-top chambers fumigated with ozone, sulphur dioxide and a mixture of both

    Energy Technology Data Exchange (ETDEWEB)

    Juettner, F.; Bufler, U.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A. (comps.)

    1987-04-01

    The terpene immissions were measured in the air over stands of Picea abies which have been cultivated 3 years in open-top chambers with O/sub 3/-, SO/sub 2/- and O/sub 3//SO/sub 2/-enriched air. A stand fumigated with charcoal-treated air was used as the reference. Highest terpene immissions were observed for ..cap alpha..-pinene, limonene and sabinene, medium for eucalyptol, ..beta..-pinene, camphene and myrcene, and lowest for tricyclene, camphor, ..gamma..-terpinene and bornyl acetate. A reduction of terpene immissions was found over all stands which were fumigated with noxious gases. A change of the terpene pattern that was characterized by an increase of the limonene concentration was observed after a one-week dry period in the O/sub 3/- and O/sub 3//SO/sub 2/-chamber. After sprinkling, the terpene immissions generally increased. Under these conditions, exceptionally high concentrations of sabinene were observed over O/sub 3/-treated stands of Picea abies.

  7. Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers

    Energy Technology Data Exchange (ETDEWEB)

    Zoradova-Murinova, Slavomira; Dudasova, Hana; Lukacova, Lucia; Certik, Milan; Dercova, Katarina [Slovak Univ. of Technology, Bratislava (Slovakia). Inst. of Biotechnology and Food Science; Silharova, Katarina; Vrana, Branislav [Water Research Institute, Bratislava (Slovakia)

    2012-06-15

    In this study, we examined the effect of polychlorinated biphenyls (PCBs) in the presence of natural and synthetic terpenes and biphenyl on biomass production, lipid accumulation, and membrane adaptation mechanisms of two PCB-degrading bacterial strains Pseudomonas stutzeri and Burkholderia xenovorans LB400. According to the results obtained, it could be concluded that natural terpenes, mainly those contained in ivy leaves and pine needles, decreased adaptation responses induced by PCBs in these strains. The adaptation processes under investigation included growth inhibition, lipid accumulation, composition of fatty acids, cis/trans isomerization, and membrane saturation. Growth inhibition effect decreased upon addition of these natural compounds to the medium. The amount of unsaturated fatty acids that can lead to elevated membrane fluidity increased in both strains after the addition of the two natural terpene sources. The cells adaptation changes were more prominent in the presence of carvone, limonene, and biphenyl than in the presence of natural terpenes, as indicated by growth inhibition, lipid accumulation, and cis/trans isomerization. Addition of biphenyl and carvone simultaneously with PCBs increased the trans/cis ratio of fatty acids in membrane fractions probably as a result of fluidizing effects of PCBs. This stimulation is more pronounced in the presence of PCBs as a sole carbon source. This suggests that PCBs alone have a stronger effect on bacterial membrane adaptation mechanisms than when added together with biphenyl or natural or synthetic terpenes. (orig.)

  8. Zero-emission wood chip drier with terpene recovery. Project 2: Condensate treatment and terpene production. Final report; Emissonsfreier Holzspaenetrockner mit Rueckgewinnung von Terpenen. Teilvorhaben 2: Kondensataufbereitung und Terpengewinnung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, H.; Sievers, M.

    2002-07-01

    The wood drying process releases volatile constituents, of which terpene compounds are the most important as they can be used as feedstocks for the chemical industry (odorants and aromatic substances). Closed-cycle steam drying of wood chips (pinewood) with vapour condensation and integrated production of terpenes was investigated on a pilot scale and semi-industrial scale. The project was successful. An economic assessment of the pilot experiments showed that integrated terpene production may be economically interesting, especially if the condensates are used as process fluids and the process heat is recycled at least partly. (orig.) [German] Bei der Trocknung von Holz werden fluechtige orginaere Holzinhaltsstoffe freigesetzt. Besondere Bedeutung kommt den Terpenverbindungen zu, da diese als Rohstoffe in der chemischen Industrie (Duft- und Aromastoffherstellung) eingesetzt werden. Mit der Dampftrocknung im geschlossenen Gaskreislauf bietet sich erstmals die Moeglichkeit einer wirtschaftlichen produktionsintegrierten Gewinnung von Terpenverbindungen ueber eine Kondensation der angereicherten Brueden. Im Rahmen eines Verbundvorhabens wurde deshalb a) die technische Umsetzung eines Spaenetrockners (hier: Kiefernholz) wissenschaftlich und messtechnisch begleitet (Teilvorhaben 1, Bearbeitung: Wilhelm-Klauditz-Institut (FhG), Braunschweig) und b) die integrierte Gewinnung von Terpenen im Pilot- und halbtechnischen Massstab untersucht (Teilvorhaben 2, CUTEC-Institut). Mit Hilfe einer zweistufigen Abluftbehandlung aus Absorption und Kondensation im halbtechnischen Massstab konnte eine Vorfraktionierung der Holzinhaltsstoffe dahingehend erreicht werden, dass sich Staub, Harze und Wachse im Waschwasser anreichern, waehrend die fuer die Duftstoffindustrie interessanten Holzoele (Terpene) mit dem Kondensat abgeschieden werden. Die Abtrennung der Holzoele aus dem Kondensat wurde mit einem Leichtstoffabscheider realisiert. Bei Kondensatmengen von 200 bis 500 L/h wurden

  9. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    Science.gov (United States)

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants. Copyright © 2015. Published by Elsevier Inc.

  10. Taxadiene Synthase Structure and Evolution of Modular Architecture in Terpene Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    M Köksal; Y Jin; R Coates; R Croteau; D Christianson

    2011-12-31

    With more than 55,000 members identified so far in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A well-known and important member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization and shows remarkable efficacy in cancer chemotherapy. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia) is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene, which is catalysed by taxadiene synthase. The full-length form of this diterpene cyclase contains 862 residues, but a roughly 80-residue amino-terminal transit sequence is cleaved on maturation in plastids. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N terminus, hereafter designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (1.82 {angstrom} resolution) and 2-fluorogeranylgeranyl diphosphate (2.25 {angstrom} resolution). The TXS structure reveals a modular assembly of three {alpha}-helical domains. The carboxy-terminal catalytic domain is a class I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. The N-terminal domain and a third 'insertion' domain together adopt the fold of a vestigial class II terpenoid cyclase. A class II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.

  11. In vitro inhibitory activity of terpenic derivatives against clinical and environmental strains of the Sporothrix schenkii complex.

    Science.gov (United States)

    Brilhante, Raimunda Sâmia Nogueira; Silva, Natalya Fechine; Marques, Francisca Jakelyne de Farias; Castelo-Branco, Débora de Souza Collares Maia; de Lima, Rita Amanda Chaves; Malaquias, Angela Donato Maia; Caetano, Erica Pacheco; Barbosa, Giovanna Riello; de Camargo, Zoilo Pires; Rodrigues, Anderson Messias; Monteiro, André Jalles; Bandeira, Tereza de Jesus Pinheiro Gomes; Cordeiro, Rossana de Aguiar; Sidrim, José Júlio Costa; Moreira, José Luciano Bezerra; Rocha, Marcos Fábio Gadelha

    2015-02-01

    Sporotrichosis is a subacute or chronic subcutaneous infection, caused by the fungus Sporothrix schenkii complex, occurring in human and animal tissues. Potassium iodide and itraconazole have been used as effective therapy for first-choice treatment, while amphotericin B may be indicated for disseminated infection. However, the adverse effects of potassium iodide and amphotericin B or the long duration of therapy with itraconazole often weigh against their use, leading to the search for alternatives for the treatment of severe infections. Terpinen-4-ol and farnesol are components of essential oils present in many plant species and have been described to have antifungal activity against microorganisms. In this study, 40 strains of Sporothrix spp. were tested for the susceptibility to terpinen-4-ol and farnesol. Changes in cytoplasmic membrane permeability were also investigated. Terpenes inhibited all Sporothrix strains with MIC values ranging from 87.9 to 1,429.8 μg/ml for terpinen-4-ol and from 0.003 to 0.222 μg/ml for farnesol. The MFC values ranged from 177.8 to 5,722.6 μg/ml and from 0.027 to 0.88 μg/ml, respectively, for terpinen-4-ol and farnesol. Farnesol was the most active compound for the Sporothrix strains. Significant loss of 260 and 280 nm-absorbing material did not occur after treatment with concentrations equivalent to the MIC and sub-MIC of the tested terpenes, when compared to corresponding untreated samples. The failure of terpenes to lyse Sporothrix cells suggests that their primary mechanism of action is not by causing irreversible cell membrane damage. Thus, new studies are needed to better understand the mechanisms involved in the antifungal activity. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Terpene Glycosides from the Roots of Sanguisorba officinalis L. and Their Hemostatic Activities

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2012-06-01

    Full Text Available Guided by a hemostasis bioassay, seven terpene glycosides were isolated from the roots of Sanguisorba officinalis L. by silica gel column chromatography and preparative HPLC. On the grounds of chemical and spectroscopic methods, their structures were identified as citronellol-1-O-α-l-arabinofuranosyl-(1→6-β-d-glucopyranoside (1, geraniol-1-O-α-l-arabinofuranosyl-(1→6-β-d-glucopyranoside (2, geraniol-1-O-α-l-arabinopyranosyl-(1→6-β-d-glucopyranoside (3, 3β-[(α-l-arabinopyranosyloxy]-19α-hydroxyolean-12-en-28-oic acid 28-β-d-glucopyranoside (4, 3β-[(α-l-arabinopyranosyl-oxy]-19α-hydroxyurs-12-en-28-oic acid 28-β-d-glucopyranoside (ziyu-glycoside I, 5, 3β,19α-hydroxyolean-12-en-28-oic acid 28-β-d-glucopyranoside (6 and 3β,19α-di-hydroxyurs-12-en-28-oic acid 28-β-d-glucopyranoside (7. Compound 1 is a new mono-terpene glycoside and compounds 2, 3 and 5 were isolated from the Sanguisorba genus for the first time. Compounds 17 were assayed for their hemostatic activities with a Goat Anti-Human α2-plasmin inhibitor ELISA kit, and ziyu-glycoside I (5 showed the strongest hemostatic activity among the seven terpene glycosides. This is the first report that ziyu-glycoside Ι has strong hemostatic activity.

  13. Terpene Profile, Leaf Anatomy, and Enzyme Activity of Resistant and Susceptible Cocoa Clonesto Vascular Streak Dieback Disease

    Directory of Open Access Journals (Sweden)

    Adi Prawoto

    2014-10-01

    Full Text Available Vascular-streak dieback (VSD, Oncobasidium theobromae is the most prevalent disease of Theobroma cacao L. in Indonesia. This study aims to analyze resistance mechanism to VSD based on terpene profile, leaf anatomy, chitinase, and peroxidase study. Resistant clones of Sulawesi 1 and Sca 6 and susceptible clones of ICS 60 and TSH 858 were used for terpene profile, leaf anatomy analysis, chitinase, peroxides, polyphenol, lignin, and cellulose analysis. Those clones and KEE 2, KKM 22 and ICS 13 were used for peroxides analysis. For trichome study, the resistant clones of Sulawesi 1, Sca 6, KEE 2, and KKM 22, and susceptible clones of ICS 60 and TSH 858 were used. GCMS analysis showed that chromatogram pattern of resistant and susceptible groups were quite similar, but resistant clones contained 22% more components than the susceptible ones. Resistant clones contained groups of pinene, decane, myrcene, and octadecanoic acid, while those substances on usceptible clones were absent. Trichome was thicker on younger leaf, and its density on the basal was higher than that on the middle and tip leaf parts. Trichome density of resistant clone was not always thicker than that of susceptible ones. On resistant clones, stomatal density was lower and width of stomate pits was narrower, while thickness of epidermis layer and pallisade parenchym were higher. Polyphenol content of resistant clones were higher but lignin and cellulose of both groups were similar. Chitinase activity which has a role in hydrolysis of mycelia cell wall was higher on the resistant clones, but peroxides which has a role in polymeration of lignin biosynthesis was similar between both groups. It is concluded that groups of terpene pinene, decane, myrcene, and octadecanoic acid, thickness of leaf epidermis, density and width of stomata pit, and chitinase activity plays important role in cocoa resistance to VSD. Key words: Theobroma cacaoL., clone, vascular-streak dieback, resistance, leaf

  14. Effect of Enzyme Inhibitors on Terpene Trilactones Biosynthesis and Gene Expression Profiling in Ginkgo biloba Cultured Cells.

    Science.gov (United States)

    Chen, Lijia; Tong, Hui; Wang, Mingxuan; Zhu, Jianhua; Zi, Jiachen; Song, Liyan; Yu, Rongmin

    2015-12-01

    The biosynthetic pathway of terpene trilactones of Ginkgo biloba is unclear. In this present study, suspension cultured cells of G. biloba were used to explore the regulation of the mevalonic acid (MVA) and methylerythritol 4-phosphate (MEP) pathways in response to specific enzyme inhibitors (lovastatin and clomazone). The results showed that the biosynthesis of bilobalide was more highly correlated with the MVA pathway, and the biosynthesis of ginkgolides was more highly correlated with the MEP pathway. Meanwhile, according to the results, it could be speculated that bilobalide might be a product of ginkgolide metabolism.

  15. Terpenóides e seu metabolismo em fungos: um estudo de Scleroderma sp. e Xylaria sp.

    OpenAIRE

    Diego Zulkiewicz Gomes

    2011-01-01

    No presente trabalho foram isolados os triterpenos lanostanos Lanosta-8,24-diene-3ß,23-diol e Lanosta-8,23-diene-3ß,25-diol do basidiomiceto Scleroderma sp., uma fonte rica em triterpenos e ainda não reportada como produtora destes metabólitos. As estruturas moleculares foram completamente determinadas por RMN 1D e 2D e análises de espectrometria de massas, tendo ainda as fragmentações propostas. Esses e outros substratos foram considerados para o estudo do metabolismo de terpenóides em Xylar...

  16. Stereoselective Copolymerization of Styrene with Terpenes Catalyzed by an Ansa-Lanthanidocene Catalyst: Access to New Syndiotactic Polystyrene-Based Materials

    Directory of Open Access Journals (Sweden)

    Eva Laur

    2017-11-01

    Full Text Available The copolymerization of bio-renewable β-myrcene or β-farnesene with styrene was examined using an ansa-neodymocene catalyst, affording two series of copolymers with high styrene content and unprecedented syndioregularity of the polystyrene sequences. The incorporation of terpene in the copolymers ranged from 5.6 to 30.8 mol % (β-myrcene and from 2.5 to 9.8 mol % (β-farnesene, respectively. NMR spectroscopy and DSC analyses suggested that the microstructure of the copolymers consists of 1,4- and 3,4-poly(terpene units randomly distributed along syndiotactic polystyrene chains. The thermal properties of the copolymers are strongly dependent on the terpene content, which is easily controlled by the initial feed. The terpolymerization of styrene with β-myrcene in the presence of ethylene was also examined.

  17. Potential contribution of fish feed and phytoplankton to the content of volatile terpenes in cultured Pangasius (Pangasianodon hypophthalmus) and Tilapia (Oreochromis niloticus)

    DEFF Research Database (Denmark)

    Podduturi, Raju; Petersen, Mikael Agerlin; Mahmud, Sultan

    2017-01-01

    Geosmin and 2-methylisoborneol are the most recognized off-flavors in freshwater fish, but terpenes may also contribute off-flavor in fish. We identified six monoterpenes, 11 sesquiterpenes, and three terpene-related compounds in pangasius and tilapia from aquaculture farms in Bangladesh. The con...

  18. Computational selections of terpenes present in the plant Calotropis gigantea as mosquito larvicide’s by blocking the sterol carrying protein, AeSCP-2

    Directory of Open Access Journals (Sweden)

    P. Suresh Kumar

    2012-03-01

    Full Text Available The present study reports the phytochemical properties of Calotropis gigantea (Asclepiadaceae commonly known as milk weed. In addition, in silico docking analysis was also carried out to assess the mosquito larvicidal potential of three terpene compounds isolated from C. gigantea. Considerable amount of primary metabolites, essential macro and micro nutrients were documented in the plant. The GC-MS analysis of the chloroform extract revealed the presence of eight terpenes in the plant. From the docking studies it is evident that ?- amyrin has a great potential against AeSCP-2. The phytochemical screening and docking results gives strong baseline information for the posterity.

  19. Design of the extraction process for terpenes and other volatiles from allspice by solid-phase microextraction and hydrodistillation.

    Science.gov (United States)

    Bajer, Tomáš; Ligor, Magdalena; Ligor, Tomasz; Buszewski, Bogusław

    2016-02-01

    Methods for the separation and determination of terpenes (mono- and sesqui-) and phenylpropanoids such as eugenol and methyleugenol from samples of allspice berries have been developed. Chromatographic analyses of isolated groups of compounds were carried out by means of gas chromatography coupled with mass spectrometry. A comparison of various types of solid-phase microextraction fibers was performed. The highest yields of terpenes were extracted by polydimethylsiloxane and divinylbenzene/Carboxen/polydimethylsiloxane fibers (almost the same for these two fibers), approximately twice as much as by Carbowax/divinylbenzene fiber. The highest amounts of monoterpenes were extracted by divinylbenzene/Carboxen/polydimethylsiloxane fiber, and the highest amounts of sesquiterpenes were extracted by polydimethylsiloxane fiber. Moreover, the effect of water addition on extraction yields as well as time and temperature of extraction were tested. Aroma profiles of extracts obtained by solid-phase microextraction and essential oil obtained by hydrodistillation of allspice berries were compared. The aroma profile of the divinylbenzene/Carboxen/polydimethylsiloxane fiber extract was similar to the aroma profile of essential oil. Particular characteristics of volatile allspice matters were presented. The linear retention indices for each compound were calculated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. QCM-Arrays for Sensing Terpenes in Fresh and Dried Herbs via Bio-Mimetic MIP Layers †

    Science.gov (United States)

    Iqbal, Naseer; Mustafa, Ghulam; Rehman, Abdul; Biedermann, Alexander; Najafi, Bita; Lieberzeit, Peter A.; Dickert, Franz L.

    2010-01-01

    A piezoelectric 10 MHz multichannel quartz crystal microbalance (MQCM), coated with six molecularly imprinted polystyrene artificial recognition membranes have been developed for selective quantification of terpenes emanated from fresh and dried Lamiaceae family species, i.e., rosemary (Rosmarinus Officinalis L.), basil (Ocimum Basilicum) and sage (Salvia Officinalis). Optimal e-nose parameters, such as layer heights (1–6 KHz), sensitivity <20 ppm of analytes, selectivity at 50 ppm of terpenes, repeatability and reproducibility were thoroughly adjusted prior to online monitoring. Linearity in reversible responses over a wide concentration range <20–250 ppm has been achieved. Discrimination between molecules of similar molar masses, even for isomers, e.g. α-pinene and β-pinene is possible. The array has proven its sensitive and selective properties of sensor responses (20–1,200 Hz) for the difference of fresh and dried herbs. The sensor data attained was validated by GC-MS, to analyze the profiles of sensor emanation patterns. The shelf-life of herbs was monitored via emanation of organic volatiles during a few days. Such an array in association with data analysis tools can be utilized for characterizing complex mixtures. PMID:22163554

  1. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais

    Science.gov (United States)

    Pizzolitto, Romina P.; Herrera, Jimena M.; Zaio, Yesica P.; Dambolena, Jose S.; Zunino, Maria P.; Gallucci, Mauro N.; Zygadlo, Julio A.

    2015-01-01

    Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure–activity relationship (Q-SAR) studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87) affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05). The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (−77.8 ± 8.5, p < 0.001) against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize. PMID:27682121

  2. REVIEW: Epistasis and dominance in the emergence of catalytic function as exemplified by the evolution of plant terpene synthases.

    Science.gov (United States)

    Cheema, Jitender; Faraldos, Juan A; O'Maille, Paul E

    2017-02-01

    Epistasis, the interaction between mutations and the genetic background, is a pervasive force in evolution that is difficult to predict yet derives from a simple principle - biological systems are interconnected. Therefore, one effect may be intimately linked to another, hence interdependent. Untangling epistatic interactions between and within genes is a vibrant area of research. Deriving a mechanistic understanding of epistasis is a major challenge. Particularly, elucidating how epistasis can attenuate the effects of otherwise dominant mutations that control phenotypes. Using the emergence of terpene cyclization in specialized metabolism as an excellent example, this review describes the process of discovery and interpretation of dominance and epistasis in relation to current efforts. Specifically, we outline experimental approaches to isolating epistatic networks of mutations in protein structure, formally quantifying epistatic interactions, then building biochemical models with chemical mechanisms in efforts to achieve an understanding of the physical basis for epistasis. From these models we describe informed conjectures about past evolutionary events that underlie the emergence, divergence and specialization of terpene synthases to illustrate key principles of the constraining forces of epistasis in enzyme function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.

    Science.gov (United States)

    Oates, Caryn N; Külheim, Carsten; Myburg, Alexander A; Slippers, Bernard; Naidoo, Sanushka

    2015-07-01

    Plants have evolved complex defenses that allow them to protect themselves against pests and pathogens. However, there is relatively little information regarding the Eucalyptus defensome. Leptocybe invasa is one of the most damaging pests in global Eucalyptus forestry, and essentially nothing is known regarding the molecular mechanisms governing the interaction between the pest and host. The aim of the study was to investigate changes in the transcriptional landscape and terpene profile of a resistant and susceptible Eucalyptus genotype in an effort to improve our understanding of this interaction. We used RNA-seqencing to investigate transcriptional changes following L. invasa oviposition. Expression levels were validated using real-time quantitative PCR. Terpene profiles were investigated using gas chromatography coupled to mass spectometry on uninfested and oviposited leaves. We found 698 and 1,115 significantly differentially expressed genes from the resistant and susceptible interactions, respectively. Gene Ontology enrichment and Mapman analyses identified putative defense mechanisms including cell wall reinforcement, protease inhibitors, cell cycle suppression and regulatory hormone signaling pathways. There were significant differences in the mono- and sesquiterpene profiles between genotypes and between control and infested material. A model of the interaction between Eucalyptus and L. invasa was proposed from the transcriptomic and chemical data. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Terpene Down-Regulation Triggers Defense Responses in Transgenic Orange Leading to Resistance against Fungal Pathogens1[W

    Science.gov (United States)

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Alquézar, Berta; Gadea, José; Gómez-Cadenas, Aurelio; De Ollas, Carlos José; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores. PMID:24192451

  5. A terpene synthase is involved in the synthesis of the volatile organic compound sodorifen of Serratia plymuthica 4Rx13

    Directory of Open Access Journals (Sweden)

    Dajana eDomik

    2016-05-01

    Full Text Available Bacteria release a plethora of volatile organic compounds (VOCs, including compounds with extraordinary structures. Sodorifen (IUPAC name: 1,2,4,5,6,7,8-heptamethyl-3-methylenebicyclo[3.2.1]oct-6-ene is a recently identified and unusual volatile hydrocarbon that is emitted by the rhizobacterium Serratia plymuthica 4Rx13. Sodorifen comprises a bicyclic ring structure solely consisting of carbon and hydrogen atoms, where every carbon atom of the skeleton is substituted with either a methyl or a methylene group. This unusual feature of sodorifen made a prediction of its biosynthetic origin very difficult and so far its biosynthesis was unknown. To unravel the biosynthetic pathway we performed genome and transcriptome analyses to identify candidate genes. One knockout mutant (SOD_c20750 showed the desired negative sodorifen phenotype. Here it was shown for the first time that this gene is indispensable for the synthesis of sodorifen and strongly supports the hypothesis that sodorifen descends from the terpene metabolism. SOD_c20750 is the first bacterial terpene cyclase isolated from Serratia spp. and Enterobacteriales. Homology modeling revealed a 3D structure, which indicated a functional role of amino acids for intermediate cation stabilization (W325 and putative proton acceptance (Y331. Moreover, the size and hydrophobicity of the active site strongly indicated that indeed the enzyme may catalyze the unusual compound sodorifen.

  6. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais

    Directory of Open Access Journals (Sweden)

    Romina P. Pizzolitto

    2015-11-01

    Full Text Available Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure–activity relationship (Q-SAR studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87 affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05. The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (−77.8 ± 8.5, p < 0.001 against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize.

  7. GC-MS profiling of the phytochemical constituents of the oleoresin from Copaifera langsdorffii Desf. and a preliminary in vivo evaluation of its antipsoriatic effect.

    Science.gov (United States)

    Gelmini, Fabrizio; Beretta, Giangiacomo; Anselmi, Cecilia; Centini, Marisanna; Magni, Paolo; Ruscica, Massimiliano; Cavalchini, Alberto; Maffei Facino, Roberto

    2013-01-20

    Copaiba is the oleoresin (OR) obtained from Copaifera (Fabaceae), a neotropical tree which grows in Amazon regions. The balsam, constituted by an essential oil and a resinous fraction is used as folkloristic remedy in the treatment of several inflammatory diseases and for its antioxidant and antibacterial properties. Aim of this work was (a) to carry out a characterization by GC-MS of the volatile and nonvolatile constituents of Copaifera langsdorffii Desf. oleoresin (OR); (b) to investigate the mechanism of its anti-inflammatory activity; (c) to evaluate its antipsoriatic effect after oral intake/topical application. The volatile fraction (yield: 22.51%, w/w) shows: α-bergamotene (48.38%), α-himachalene (11.17%), β-selinene (5.00%) and β-caryophyllene (5.47%). The OR residue (77.49%, w/w), after derivatization, showed as main constituents the following compounds: copalic, abietic, daniellic, lambertinic, labd-7-en-15-oic, pimaric, isopimaric acids and kaur16-en18-oic acid. Preincubation of LPS-stimulated human THP-1 monocytes with increasing concentrations of the OR purified fraction (OR-PF), containing diterpene acids, diterpenes and sesquiterpenes, reduced the release of pro-inflammatory cytokines (IL-1β, IL-6, TNFα) in a dose-range of 0.1-10 μM. In addition, in cell culture system of human THP-1 monocytes, 1 μM OR-PF counteracts LPS-driven NF-κB nuclear translocation. In a preliminary clinical trial three patients affected by chronic psoriasis, treated with oral intake or topical application of the OR, exhibited a significant improvement of the typical signs of this disease, i.e. erythema, skin thickness, and scaliness. In conclusion, the results of this work, beside an extensive analytical characterization of the OR chemical composition, provide strong evidences that its anti-inflammatory activity is related to the inhibition of the NF-κB nuclear translocation, and consequently of proinflammatory cytokines secretion. Copyright © 2012 Elsevier B

  8. Preparation of sulfonated graphene/polypyrrole solid-phase microextraction coating by in situ electrochemical polymerization for analysis of trace terpenes.

    Science.gov (United States)

    Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-06-13

    In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Terpene Down-Regulation in Orange Reveals the Role of Fruit Aromas in Mediating Interactions with Insect Herbivores and Pathogens1[C][W

    Science.gov (United States)

    Rodríguez, Ana; San Andrés, Victoria; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Shimada, Takehiko; Gadea, José; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M.; Castañera, Pedro; Peña, Leandro

    2011-01-01

    Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens. PMID:21525333

  10. Can contact allergy to p-phenylenediamine explain the high rates of terpene hydroperoxide allergy? - An epidemiological study based on consecutive patch test results

    DEFF Research Database (Denmark)

    Bennike, Niels Højsager; Lepoittevin, Jean-Pierre; Johansen, Jeanne D

    2017-01-01

    BACKGROUND: Contact allergy to linalool hydroperoxides (Lin-OOHs) and limonene hydroperoxides (Lim-OOHs) is common. Similarly to what occurs with the terpene hydroperoxides, reactive intermediates formed from p-phenylenediamine (PPD) can cause oxidative modifications of tryptophan residues on pro...

  11. Volatile and within-needle terpene changes to Douglas-fir trees associated with Douglas-fir beetle (Coleoptera: Curculionidae) attack

    Science.gov (United States)

    A. D. Giunta; Justin Runyon; M. J. Jenkins; M. Teich

    2016-01-01

    Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with...

  12. Pistacia lentiscus Oleoresin: Virtual Screening and Identification of Masticadienonic and Isomasticadienonic Acids as Inhibitors of 11β-Hydroxysteroid Dehydrogenase 1.

    Science.gov (United States)

    Vuorinen, Anna; Seibert, Julia; Papageorgiou, Vassilios P; Rollinger, Judith M; Odermatt, Alex; Schuster, Daniela; Assimopoulou, Andreana N

    2015-04-01

    In traditional medicine, the oleoresinous gum of Pistacia lentiscus var. chia, so-called mastic gum, has been used to treat multiple conditions such as coughs, sore throats, eczema, dyslipidemia, and diabetes. Mastic gum is rich in triterpenes, which have been postulated to exert antidiabetic effects and improve lipid metabolism. In fact, there is evidence of oleanonic acid, a constituent of mastic gum, acting as a peroxisome proliferator-activated receptor γ agonist, and mastic gum being antidiabetic in mice in vivo. Despite these findings, the exact antidiabetic mechanism of mastic gum remains unknown. Glucocorticoids play a key role in regulating glucose and fatty acid metabolism, and inhibition of 11β-hydroxysteroid dehydrogenase 1 that converts inactive cortisone to active cortisol has been proposed as a promising approach to combat metabolic disturbances including diabetes. In this study, a pharmacophore-based virtual screening was applied to filter a natural product database for possible 11β-hydroxysteroid dehydrogenase 1 inhibitors. The hit list analysis was especially focused on the triterpenoids present in Pistacia species. Multiple triterpenoids, such as masticadienonic acid and isomasticadienonic acid, main constituents of mastic gum, were identified. Indeed, masticadienonic acid and isomasticadienonic acid selectively inhibited 11β-hydroxysteroid dehydrogenase 1 over 11β-hydroxysteroid dehydrogenase 2 at low micromolar concentrations. These findings suggest that inhibition of 11β-hydroxysteroid dehydrogenase 1 contributes to the antidiabetic activity of mastic gum. Georg Thieme Verlag KG Stuttgart · New York.

  13. Skin Wound Healing Potential and Mechanisms of the Hydroalcoholic Extract of Leaves and Oleoresin of Copaifera langsdorffii Desf. Kuntze in Rats.

    Science.gov (United States)

    Gushiken, Lucas Fernando Sérgio; Hussni, Carlos Alberto; Bastos, Jairo Kenupp; Rozza, Ariane Leite; Beserra, Fernando Pereira; Vieira, Ana Júlia; Padovani, Carlos Roberto; Lemos, Marivane; Polizello Junior, Maurilio; da Silva, Jonas Joaquim Mangabeira; Nóbrega, Rafael Henrique; Martinez, Emanuel Ricardo Monteiro; Pellizzon, Cláudia Helena

    2017-01-01

    The wound healing is a complex process which, sometimes, can be a problem in public health because of the possibility of physical disability or even death. Due to the lack of a gold standard drug in skin wound treatment and aiming at the discovery of new treatments in skin repair and the mechanisms involved in the process, we used oleoresin (OR) from Copaifera langsdorffii and hydroalcoholic extract of the leaves (EH) to treat rat skin wounds. For that, male Wistar rats were divided into groups (n = 8): Lanette, Collagenase, 10% EH, or 10% OR and, after anesthesia, one wound of 2 cm was made in the back of animals. The wounds were treated once a day for 3, 7, or 14 days and the wound areas were measured. The rats were euthanized and skin samples destined to biochemical, molecular, and immunohistochemical analysis. The results showed a macroscopic retraction of the wounds of 10% EH and 10% OR creams and both treatments showed anti-inflammatory activity. Molecular and immunohistochemical results demonstrated the activity of Copaifera langsdorffii creams in angiogenesis, reepithelialization, wound retraction, and remodeling mechanisms.

  14. Shelf life and stability traits of traditionally and modified atmosphere packaged ground beef patties treated with lactic acid bacteria, rosemary oleoresin, or both prior to retail display.

    Science.gov (United States)

    Hoyle Parks, A R; Brashears, M M; Martin, J N; Woerner, W D; Thompson, L D; Brooks, J C

    2012-01-01

    Previous research indicates that lactic acid bacteria (LAB) can inhibit pathogenic bacteria. This research evaluated effects of LAB inclusion on the shelf life of traditionally packaged ground beef patties; as well as the effects and possible interaction of LAB and rosemary oleoresin (RO) on the stability of high oxygen MAP ground beef during display. In both package types, trained and consumer evaluations indicated no effect (P>0.05) of LAB on lean color and off-odor. Display affected trained and consumer sensory evaluations and indicated declined stability over time. Thiobarbituric acid values were lower for traditionally packaged ground beef with LAB (P<0.05) and MAP ground beef with RO or RO and LAB (P<0.05). Overall, LAB had no effect on the shelf life and stability of traditionally or high-oxygen MAP packaged ground beef patties. Therefore, utilization of LAB in ground beef to reduce pathogenic bacteria is viable without alteration of spoilage indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Spoilage characteristics of ground beef with added lactic acid bacteria and rosemary oleoresin packaged in a modified-atmosphere package and displayed at abusive temperatures.

    Science.gov (United States)

    Parks, A R Hoyle; Brashears, M M; Woerner, W D; Martin, J N; Thompson, L D; Brooks, J C

    2012-06-01

    Lactic acid bacteria (LAB) can reduce Escherichia coli O157:H7 and Salmonella spp. in ground beef during storage. Furthermore, the addition of rosemary oleoresin (RO), a natural antioxidant, to ground beef has been shown to increase shelf life and is commonly used in modified-atmosphere packaged (MAP) ground beef. This study evaluated the effects of LAB and RO treatment on the shelf life and stability of MAP ground beef displayed at abusive (10°C) temperatures for 36 h. Subjective and objective sensory analyses were conducted to determine spoilage endpoints. Trained and consumer panel responses and Hunter lightness (L*), redness (a*), and yellowness (b*) values were not affected (P = 0.62, 0.66, 0.45) by LAB addition, although RO inclusion improved (P < 0.05) lean color. Ground beef with LAB and RO had significantly less (P < 0.0001) thiobarbituric acid reactive substance values than control ground beef, indicating decreased lipid oxidation. Additionally, RO inclusion reduced (P < 0.0001) off odors, as determined by trained and consumer odor panelists. Overall, the addition of LAB did not negatively affect beef color, odor, or oxidative rancidity, suggesting that LAB can be added to ground beef in MAP packaging as a processing intervention without detrimentally affecting shelf life or stability.

  16. Skin Wound Healing Potential and Mechanisms of the Hydroalcoholic Extract of Leaves and Oleoresin of Copaifera langsdorffii Desf. Kuntze in Rats

    Directory of Open Access Journals (Sweden)

    Lucas Fernando Sérgio Gushiken

    2017-01-01

    Full Text Available The wound healing is a complex process which, sometimes, can be a problem in public health because of the possibility of physical disability or even death. Due to the lack of a gold standard drug in skin wound treatment and aiming at the discovery of new treatments in skin repair and the mechanisms involved in the process, we used oleoresin (OR from Copaifera langsdorffii and hydroalcoholic extract of the leaves (EH to treat rat skin wounds. For that, male Wistar rats were divided into groups (n=8: Lanette, Collagenase, 10% EH, or 10% OR and, after anesthesia, one wound of 2 cm was made in the back of animals. The wounds were treated once a day for 3, 7, or 14 days and the wound areas were measured. The rats were euthanized and skin samples destined to biochemical, molecular, and immunohistochemical analysis. The results showed a macroscopic retraction of the wounds of 10% EH and 10% OR creams and both treatments showed anti-inflammatory activity. Molecular and immunohistochemical results demonstrated the activity of Copaifera langsdorffii creams in angiogenesis, reepithelialization, wound retraction, and remodeling mechanisms.

  17. Development and validation of a rapid RP-HPLC method for analysis of (-)-copalic acid in copaíba oleoresin.

    Science.gov (United States)

    Souza, Ariana Borges; Moreira, Monique Rodrigues; Borges, Carly Henrique Gambeta; Simão, Marília Rodrigues; Bastos, Jairo Kenupp; de Sousa, João Paulo Barreto; Ambrosio, Sérgio Ricardo; Veneziani, Rodrigo Cassio Sola

    2013-03-01

    The Copaifera species (Leguminoseae) are popularly known as 'copaíba' or 'copaíva' and are grown in the states of Amazonas, Pará and Ceará in northern Brazil. The oleoresins obtained from these species have been extensively used owing to their pharmacological potential and their application in cosmetic and pharmaceutical preparations. In the present study, the development and validation of a novel, rapid and efficient RP-HPLC methodology for the analysis of the diterpene (-)-copalic acid (CA), pointed out as the only chemical marker of the Copaifera genus, are described. The regression equation (Y = 26,707x - 29,498) was obtained with good linearity (r(2) = 0.9993) and the limits of quantification and detection were 9.182 and 3.032 µg/mL, respectively. The precision and the accuracy of the method were adequate (lower than 4%). Finally, the validation parameters evaluated were satisfactorily met, so the developed method represents a suitable tool for application in the quality control of such natural products. Further studies aiming to develop analytical methodologies for each Copaifera species using a more representative number of chemical markers should be performed. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis.

    Science.gov (United States)

    Tsaballa, Aphrodite; Nikolaidis, Alexandros; Trikka, Foteini; Ignea, Codruta; Kampranis, Sotirios C; Makris, Antonios M; Argiriou, Anagnostis

    2015-07-07

    Solanum elaeagnifolium, an invasive weed of the Solanaceae family, is poorly studied although it poses a significant threat to crops. Here the analysis of the transcriptome of S. elaeagnifolium is presented, as a means to explore the biology of this species and to identify genes related to its adaptation to environmental stress. One of the basic mechanisms by which plants respond to environmental stress is through the synthesis of specific secondary metabolites that protect the plant from herbivores and microorganisms, or serve as signaling molecules. One important such group of secondary metabolites are terpenes. By next-generation sequencing, the flower/leaf transcriptome of S. elaeagnifolium was sequenced and de novo assembled into 75,618 unigenes. Among the unigenes identified, several corresponded to genes involved in terpene biosynthesis; these included terpene synthases (TPSs) and genes of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways. Functional characterization of two of the TPSs showed that one produced the sesquiterpene (E)-caryophyllene and the second produced the monoterpene camphene. Analysis of wounded S. elaeagnifolium leaves has shown significant increase of the concentration of (E)-caryophyllene and geranyl linalool, two terpenes implicated in stress responses. The increased production of (E)-caryophyllene was matched to the induced expression of the corresponding TPS gene. Wounding also led to the increased expression of the putative 1-deoxy-D-xylulose-5-phosphate synthase 2 (DXS2) gene, a key enzyme of the MEP pathway, corroborating the overall increased output of terpene biosynthesis. The reported S. elaeagnifolium de novo transcriptome provides a valuable sequence database that could facilitate study of this invasive weed and contribute to our understanding of the highly diverse Solanaceae family. Analysis of genes and pathways involved in the plant's interaction with the environment will help to elucidate the

  19. Effective immobilization of Candida antarctica lipase B in organic-modified clays: Application for the epoxidation of terpenes

    Energy Technology Data Exchange (ETDEWEB)

    Tzialla, Aikaterini A.; Kalogeris, Emmanuel [Department of Biological Applications and Technologies, University of Ioannina, GR-45110 Ioannina (Greece); Enotiadis, Apostolos [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Taha, Ali A. [Department of Biological Applications and Technologies, University of Ioannina, GR-45110 Ioannina (Greece); Gournis, Dimitrios, E-mail: dgourni@cc.uoi.g [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Stamatis, Haralambos, E-mail: hstamati@cc.uoi.g [Department of Biological Applications and Technologies, University of Ioannina, GR-45110 Ioannina (Greece)

    2009-12-15

    The use of three smectite nanoclays (Laponite, SWy-2 and Kunipia) organic-modified with octadecyl-trimethyl-ammonium surfactant, as suitable host matrices for the immobilization of lipase B from Candida antarctica (CaLB) was demonstrated. The resulting hybrid biocatalysts were characterized by a combination of powder X-ray diffraction, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy and infrared spectroscopy. The experimental results confirmed the remarkable binding capacity of the three organoclays for CaLB. Activity and operational stability of immobilized CaLB were determined for the chemo-enzymatic epoxidation of terpenes (alpha-pinene and d-limonene) in organic media using various oxidizing agents. The immobilized enzyme retains a significant part of its activity after repeated use under drastic reaction conditions originating from the use of oxidants.

  20. Bioactive compounds with added value prepared from terpenes contained in solid wastes from the olive oil industry.

    Science.gov (United States)

    Parra, Andres; Lopez, Pilar E; Garcia-Granados, Andres

    2010-02-01

    Starting from solid wastes from two-phase olive-oil extraction, the pentacyclic triterpenes oleanolic acid and maslinic acid were isolated. These natural compounds were transformed into methyl olean-12-en-28-oate (5), which then was transformed into several seco-C-ring triterpene compounds by chemical and photolytic modifications. The triene seco-products were fragmented through several oxidative procedures to produce, simultaneously, cis- and trans-decalin derivatives, both potential synthons for bioactive compounds. The chemical behavior of the isolated fragments was investigated, and a suitable approach to several low-molecular-weight terpenes was performed. These are interesting processes for the value-addition to solid waste from the olive-oil industry.

  1. TPS46, a Rice Terpene Synthase Conferring Natural Resistance to Bird Cherry-Oat Aphid, Rhopalosiphum padi (Linnaeus).

    Science.gov (United States)

    Sun, Yang; Huang, Xinzheng; Ning, Yuese; Jing, Weixia; Bruce, Toby J A; Qi, Fangjun; Xu, Qixia; Wu, Kongming; Zhang, Yongjun; Guo, Yuyuan

    2017-01-01

    Plant terpene synthases (TPSs) are key enzymes responsible for terpene biosynthesis, and can play important roles in defense against herbivore attack. In rice, the protein sequence of TPS46 was most closely related to maize TPS10. However, unlike maize tps10, tps46 was also constitutively expressed in rice even in the absence of herbivore attack. Potential roles or constitutive emissions of specific volatiles may due to the constitutive expressions of tps46 in rice. Therefore, in the present study, RNA interference (Ri) and overexpression (Oe) rice lines were generated to investigate the potential function of TPS46 in Oryza sativa sp. japonica. Interestingly, the rice plants become more susceptible to Rhopalosiphum padi when expression of tps46 was silenced compared with Wt in greenhouse conditions. Artificial infestation bioassays further confirmed that Ri rice lines were susceptible to R. padi, whereas Oe rice lines were repellent to R. padi. Based on GC-MS and ToF-MS analysis, a total of eight volatile products catalyzed by TPS46 in rice were identified. Among them, only limonene and Eβf could be detected in all the Ri, Oe, and Wt lines, whereas other six volatiles were only found in the blend of volatiles from Oe lines. Moreover, the amount of constitutive limonene and Eβf in the Ri lines was significantly lower than in Wt lines, while the amounts of these two volatiles in the Oe line were obviously higher than in control rice. Our data suggested that the constitutive emissions of Eβf and limonene regulated by the constitutive expression of tps46 may play a crucial role in rice defense against R. padi. Consequently, tps46 could be a potential target gene to be employed for improving the resistance of plants to aphids.

  2. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength.

    Science.gov (United States)

    Fu, Xiumin; Chen, Yiyong; Mei, Xin; Katsuno, Tsuyoshi; Kobayashi, Eiji; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2015-11-16

    Regulation of plant growth and development by light wavelength has been extensively studied. Less attention has been paid to effect of light wavelength on formation of plant metabolites. The objective of this study was to investigate whether formation of volatiles in preharvest and postharvest tea (Camellia sinensis) leaves can be regulated by light wavelength. In the present study, in contrast to the natural light or dark treatment, blue light (470 nm) and red light (660 nm) significantly increased most endogenous volatiles including volatile fatty acid derivatives (VFADs), volatile phenylpropanoids/benzenoids (VPBs), and volatile terpenes (VTs) in the preharvest tea leaves. Furthermore, blue and red lights significantly up-regulated the expression levels of 9/13-lipoxygenases involved in VFADs formation, phenylalanine ammonialyase involved in VPBs formation, and terpene synthases involved in VTs formation. Single light wavelength had less remarkable influences on formation of volatiles in the postharvest leaves compared with the preharvest leaves. These results suggest that blue and red lights can be promising technology for remodeling the aroma of preharvest tea leaves. Furthermore, our study provided evidence that light wavelength can activate the expression of key genes involved in formation of plant volatiles for the first time.

  3. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration

    Science.gov (United States)

    Chen, Feng; Li, Li; Xu, Fang; Sun, Yan; Du, Feifei; Ma, Xutao; Zhong, Chenchun; Li, Xiuxue; Wang, Fengqing; Zhang, Nating; Li, Chuan

    2013-01-01

    BACKGROUND AND PURPOSE Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds’ pharmacokinetics. EXPERIMENTAL APPROACH Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. KEY RESULTS Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. CONCLUSION AND IMPLICATIONS Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects. PMID:23808355

  4. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration.

    Science.gov (United States)

    Chen, Feng; Li, Li; Xu, Fang; Sun, Yan; Du, Feifei; Ma, Xutao; Zhong, Chenchun; Li, Xiuxue; Wang, Fengqing; Zhang, Nating; Li, Chuan

    2013-09-01

    Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds' pharmacokinetics. Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.

  5. The Terpene Synthase Gene Family of Carrot (Daucus carota L.: Identification of QTLs and Candidate Genes Associated with Terpenoid Volatile Compounds

    Directory of Open Access Journals (Sweden)

    Jens Keilwagen

    2017-11-01

    Full Text Available Terpenes are an important group of secondary metabolites in carrots influencing taste and flavor, and some of them might also play a role as bioactive substances with an impact on human physiology and health. Understanding the genetic and molecular basis of terpene synthases (TPS involved in the biosynthesis of volatile terpenoids will provide insights for improving breeding strategies aimed at quality traits and for developing specific carrot chemotypes possibly useful for pharmaceutical applications. Hence, a combination of terpene metabolite profiling, genotyping-by-sequencing (GBS, and genome-wide association study (GWAS was used in this work to get insights into the genetic control of terpene biosynthesis in carrots and to identify several TPS candidate genes that might be involved in the production of specific monoterpenes. In a panel of 85 carrot cultivars and accessions, metabolite profiling was used to identify 31 terpenoid volatile organic compounds (VOCs in carrot leaves and roots, and a GBS approach was used to provide dense genome-wide marker coverage (>168,000 SNPs. Based on this data, a total of 30 quantitative trait loci (QTLs was identified for 15 terpenoid volatiles. Most QTLs were detected for the monoterpene compounds ocimene, sabinene, β-pinene, borneol and bornyl acetate. We identified four genomic regions on three different carrot chromosomes by GWAS which are both associated with high significance (LOD ≥ 5.91 to distinct monoterpenes and to TPS candidate genes, which have been identified by homology-based gene prediction utilizing RNA-seq data. In total, 65 TPS candidate gene models in carrot were identified and assigned to known plant TPS subfamilies with the exception of TPS-d and TPS-h. TPS-b was identified as largest subfamily with 32 TPS candidate genes.

  6. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers.

    Science.gov (United States)

    Aros, Danilo; Gonzalez, Veronica; Allemann, Rudolf K; Müller, Carsten T; Rosati, Carlo; Rogers, Hilary J

    2012-04-01

    Native to South America, Alstroemeria flowers are known for their colourful tepals, and Alstroemeria hybrids are an important cut flower. However, in common with many commercial cut flowers, virtually all the commercial Alstroemeria hybrids are not scented. The cultivar 'Sweet Laura' is one of very few scented commercial Alstroemeria hybrids. Characterization of the volatile emission profile of these cut flowers revealed three major terpene compounds: (E)-caryophyllene, humulene (also known as α-caryophyllene), an ocimene-like compound, and several minor peaks, one of which was identified as myrcene. The profile is completely different from that of the parental scented species A. caryophyllaea. Volatile emission peaked at anthesis in both scented genotypes, coincident in cv. 'Sweet Laura' with the maximal expression of a putative terpene synthase gene AlstroTPS. This gene was preferentially expressed in floral tissues of both cv. 'Sweet Laura' and A. caryophyllaea. Characterization of the AlstroTPS gene structure from cv. 'Sweet Laura' placed it as a member of the class III terpene synthases, and the predicted 567 amino acid sequence placed it into the subfamily TPS-b. The conserved sequences R(28)(R)X(8)W and D(321)DXXD are the putative Mg(2+)-binding sites, and in vitro assay of AlstroTPS expressed in Escherichia coli revealed that the encoded enzyme possesses myrcene synthase activity, consistent with a role for AlstroTPS in scent production in Alstroemeria cv. 'Sweet Laura' flowers.

  7. Porphyrogenic properties of the terpenes camphor, pinene, and thujone (with a note on historic implications for absinthe and the illness of Vincent van Gogh).

    Science.gov (United States)

    Bonkovsky, H L; Cable, E E; Cable, J W; Donohue, S E; White, E C; Greene, Y J; Lambrecht, R W; Srivastava, K K; Arnold, W N

    1992-06-09

    Camphor, alpha-pinene (the major component of turpentine), and thujone (a constituent in the liqueur called absinthe) produced an increase in porphyrin production in primary cultures of chick embryo liver cells. In the presence of desferrioxamine (an iron chelator which inhibits heme synthesis and thereby mimics the effect of the block associated with acute porphyria), the terpenes enhanced porphyrin accumulation 5- to 20-fold. They also induced synthesis of the rate-controlling enzyme for the pathway, 5-aminolevulinic acid synthase, which was monitored both spectrophotometrically and immunochemically. These effects are shared by well-known porphyrogenic chemicals such as phenobarbital and glutethimide. Camphor and glutethimide alone led to the accumulation of mostly uro- and heptacarboxylporphyrins, whereas alpha-pinene and thujone resulted in lesser accumulations of porphyrins which were predominantly copro- and protoporphyrins. In the presence of desferrioxamine, plus any of the three terpenes, the major product that accumulated was protoporphyrin. The present results indicate that the terpenes tested are porphyrogenic and hazardous to patients with underlying defects in hepatic heme synthesis. There are also implications for the illness of Vincent van Gogh and the once popular, but now banned liqueur, called absinthe.

  8. Multivariate optimization of a headspace solid-phase microextraction method followed by gas chromatography with mass spectrometry for the determination of terpenes in Nicotiana langsdorffii.

    Science.gov (United States)

    Ardini, Francisco; Carro, Marina Di; Abelmoschi, Maria Luisa; Grotti, Marco; Magi, Emanuele

    2014-07-01

    A simple and sensitive procedure based on headspace solid-phase microextraction and gas chromatography with mass spectrometry was developed for the determination of five terpenes (α-pinene, limonene, linalool, α-terpineol, and geraniol) in the leaves of Nicotiana langsdorffii. The microextraction conditions (extraction temperature, equilibration time, and extraction time) were optimized by means of a Doehlert design. The experimental design showed that, for α-pinene and limonene, a low temperature and a long extraction time were needed for optimal extraction, while linalool, α-terpineol, and geraniol required a high temperature and a long extraction time. The chosen compromise conditions were temperature 60°C, equilibration time 15 min and extraction time 50 min. The main analytical figures of the optimized method were evaluated; LODs ranged from 0.07 ng/g (α-pinene) to 8.0 ng/g (geraniol), while intraday and interday repeatability were in the range 10-17% and 9-13%, respectively. Finally, the procedure was applied to in vitro wild-type and transgenic specimens of N. langsdorffii subjected to abiotic stresses (chemical and heat stress). With the exception of geraniol (75-374 ng/g), low concentration levels of terpenes were measured (ng/g level or lower); some interesting variations in terpene concentration induced by abiotic stress were observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Terpenes as Useful Markers in Differentiation of Natural Populations of Relict Pines Pinus heldreichii, P. nigra, and P. peuce.

    Science.gov (United States)

    Mitić, Zorica S; Nikolić, Biljana M; Ristić, Mihailo S; Tešević, Vele V; Bojović, Srdjan R; Marin, Petar D

    2017-08-01

    Comparative analysis of terpene diversity and differentiation of relict pines Pinus heldreichii, P. nigra, and P. peuce from the central Balkans was performed at the population level. Multivariate statistical analyses showed that the composition of needle terpenes reflects clear divergence among the pine species from different subgenera: P. peuce (subgenus Strobus) vs. P. nigra and P. heldreichii (subgenus Pinus). In addition, despite the described morphological similarities and the fact that P. nigra and P. heldreichii may spontaneously hybridize, our results indicated differentiation of their populations naturally growing in the same area. In accordance with recently proposed concept of 'flavonic evolution' in the genus Pinus, we assumed that the terpene profile of soft pine P. peuce, defined by high amounts of six monoterpenes, is more basal than those of hard pines P. nigra and P. heldreichii, which were characterized by high content levels of mainly sesquiterpenes. In order to establish precise positions of P. heldreichii, P. nigra and P. peuce within the taxonomic and phylogenetic tree, as well as develop suitable conservation strategies and future breeding efforts, it is necessary to perform additional morphological, biochemical, and genetic studies. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. Effect of season on fatty acid and terpene profiles of milk from Greek sheep raised under a semi-extensive production system.

    Science.gov (United States)

    Papaloukas, Loukas; Sinapis, Efthymios; Arsenos, George; Kyriakou, George; Basdagianni, Zoitsa

    2016-08-01

    The objective of the study was to investigate the effect of season on the fatty acid and terpene composition in ewe milk. A total of 760 samples of bulk sheep milk were collected during winter (147 samples), spring (314 samples) and summer (299 samples) of 2011, from 90 commercial farms of dairy sheep from the prefecture of Grevena, Greece. Regarding fatty acid composition, summer samples had higher concentrations of α-linolenic acid, cis-9, trans 11- CLA, trans-11, C18 : 1 and PUFAs but lower content of saturated fatty acids particularly C12 : 0, C14 : 0 and C16 : 0. The winter milk had the lowest content of terpenes, in particular sesquiterpenes, compared to spring and summer milk. The terpene profile of milk samples, in all three seasons, revealed the presence of monoterpenes: a-pinene, b-pinene and D-limonene, especially with a higher frequency of appearance in summer. The most common and abundant sesquiterpenes found in milk samples were β-caryophyllene and α-caryophyllene with a higher frequency of appearance in summer. In conclusion, the available pastures in semi-extensive farming systems can contribute to the production of high quality milk.

  11. Acaricidal Potentials of the Terpene-rich Essential Oils of Two Iranian Eucalyptus Species against Tetranychus urticae Koch.

    Science.gov (United States)

    Ebadollahi, Asgar; Sendi, Jalal Jalali; Maroufpoor, Mostafa; Rahimi-Nasrabadi, Mehdi

    2017-03-01

    There is a rapid growth in the screening of plant materials for finding new bio-pesticides. In the present study, the essential oils of E. oleosa and E. torquata leaves were extracted using a Clevenger apparatus and their chemical profiles were investigated by Gas Chromatography-Mass Spectrometry (GC-MS). Among identified compounds, the terpenes had highest amount for both essential oils; 93.59% for E. oleosa and 97.69% for E. torquata. 1,8-Cineole (31.96%), α-pinene (15.25%) and trans-anethole (7.32%) in the essential oil of E. oleosa and 1,8-cineole (28.57%), α-pinene (15.74%) and globulol (13.11%) in the E. torquata essential oil were identified as the main components. The acaricidal activity of the essential oils of E. oleosa and E. torquata were examined using fumigation methods against the adult females of Tetranychus urticae Koch. The essential oils have potential acaricidal effects on T. urticae. The essential oil of E. oleosa with LC 50 value of 2.42 µL/L air was stronger than E. torquata. A correlation between log concentration and mite mortality has been observed. Based on the results of present study, it can be stated that the essential oils of E. oleosa and E. torquata have a worthy potential in the management of T. urticae.

  12. Analysis of black pepper volatiles by solid phase microextraction-gas chromatography: A comparison of terpenes profiles with hydrodistillation.

    Science.gov (United States)

    Jeleń, Henryk H; Gracka, Anna

    2015-10-30

    Solid phase microextraction (SPME) is widely used in food flavor compounds analysis in majority for profiling volatile compounds. Based on such profiles conclusions are often drawn concerning the percentage composition of volatile compounds in particular food, spices or raw materials. This paper focuses on the usefulness of SPME for the profiling of volatile compounds from spices using black pepper as an example. SPME profiles obtained in different analytical conditions were compared to the profile of pepper volatiles obtained using hydrodistillation in Clevenger apparatus. The profiles of both monoterpenes and sesquiterpenes of black pepper were highly dependent on sample weight (0.1 and 1g samples were tested), and extraction time (durations from 2 to 120min were tested), regardless of the SPME fiber used (PDMS and CAR/PDMS coatings were used). The characteristic phenomenon for extraction from dry ground pepper was the decrease of monoterpenes % share in volatiles with increasing extraction times, whereas at the same time the % contents of sesquiterpenes increased. Addition of water to ground pepper substantially changed extraction kinetics and mutual proportions of mono to sesquiterpenes compared to dry samples by minimizing changes in mono- to sesquiterpenes ratio in different extraction times. Obtained results indicate that SPME can be a fast extraction method for volatiles of black pepper. Short extraction times (2-10min) in conjunction with the fast GC analysis (2.1min) proposed here may offer fast alternative to hydrodistillation allowing black pepper terpenes characterization. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    Science.gov (United States)

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  14. Emission and accumulation of monoterpene and the key terpene synthase (TPS associated with monoterpene biosynthesis in Osmanthus fragrans Lour.

    Directory of Open Access Journals (Sweden)

    Xaingling eZeng

    2016-01-01

    Full Text Available Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2 and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers.

  15. Enzymatic Addition of Alcohols to Terpenes by Squalene Hopene Cyclase Variants.

    Science.gov (United States)

    Kühnel, Lisa C; Nestl, Bettina M; Hauer, Bernhard

    2017-11-16

    Squalene-hopene cyclases (SHCs) catalyze the polycyclization of squalene into a mixture of hopene and hopanol. Recently, amino-acid residues lining the catalytic cavity of the SHC from Alicyclobacillus acidocaldarius were replaced by small and large hydrophobic amino acids. The alteration of leucine 607 to phenylalanine resulted in increased enzymatic activity towards the formation of an intermolecular farnesyl-farnesyl ether product from farnesol. Furthermore, the addition of small-chain alcohols acting as nucleophiles led to the formation of non-natural ether-linked terpenoids and, thus, to significant alteration of the product pattern relative to that obtained with the wild type. It is proposed that the mutation of leucine at position 607 may facilitate premature quenching of the intermediate by small alcohol nucleophiles. This mutagenesis-based study opens the field for further intermolecular bond-forming reactions and the generation of non-natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    Science.gov (United States)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humanki